
Opportunities for optimism in contended main-
memory multicore transactions

Citation
Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira. Opportunities for
optimism in contended main-memory multicore transactions. The VLDB Journal 31, 1239–1261
(2022). https://doi.org/10.1007/s00778-021-00719-9

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37378372

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37378372
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Opportunities%20for%20optimism%20in%20contended%20main-memory%20multicore%20transactions&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=cf9b160799020452e47ed13e5aaa998f&department
https://dash.harvard.edu/pages/accessibility

VLDB manuscript No.
(will be inserted by the editor)

Opportunities for Optimism in Contended Main-Memory Multicore
Transactions

Yihe Huang1 · William Qian1 · Eddie Kohler1 · Barbara Liskov2 · Liuba Shrira3

Received: date / Accepted: date

Abstract Main-memory multicore transactional systems
have achieved excellent performance using single-version
optimistic concurrency control (OCC), especially on un-
contended workloads. Nevertheless, systems based on
other concurrency control protocols, such as hybrid OCC/
locking and variations on multiversion concurrency con-
trol (MVCC), are reported to outperform the best OCC
systems, especially with increasing contention. This pa-
per shows that implementation choices unrelated to con-
currency control can explain some of these performance
differences. Our evaluation shows the strengths and weak-
nesses of OCC, MVCC, and TicToc concurrency control un-
der varying workloads and contention levels, and the impor-
tance of several implementation choices called basis factors.
Given sensible basis factor choices, OCC performance does
not collapse on high-contention TPC-C. We also present two
optimization techniques, deferred updates and timestamp
splitting, that can dramatically improve the high-contention
performance of both OCC and MVCC. These techniques are
known, but we apply them in a new context and highlight
their potency: when combined, they lead to performance

Yihe Huang
E-mail: yihehuang@g.harvard.edu

William Qian
E-mail: wqian@g.harvard.edu

Eddie Kohler
E-mail: kohler@seas.harvard.edu

Barbara Liskov
E-mail: liskov@piano.csail.mit.edu

Liuba Shrira
E-mail: liuba@brandeis.edu

1Harvard University, Cambridge, MA
2MIT, Cambridge, MA
3Brandeis University, Waltham, MA

gains of 4.74× for MVCC and 5.01× for OCC in a TPC-
C workload.

1 Introduction

The performance of multicore main-memory transactional
systems remains a subject of intense study [12,21,24,32,37,
38, 52–54, 60]. Techniques based on optimistic concurrency
control perform extremely well on low-contention workloads
due to their efficient use of shared memory bandwidth and
avoidance of unnecessary memory writes. On high-conten-
tion workloads, however, OCC abort rates rise, and in the
worst case classes of transaction can experience contention
collapse: repeated conflicts prevent the transactions from
ever committing.

Designs targeted at high-contention workloads, includ-
ing partially-pessimistic concurrency control [53], dynamic
transaction reordering [60], and variants of multiversion con-
currency control (MVCC) [25, 32], adapt their core transac-
tional concurrency control protocols to better support high-
contention transactions. These designs are reported to show
dramatic benefits over OCC on high-contention workloads,
including TPC-C, and some report benefits over OCC even
at low contention [32]. But many of these evaluations com-
pare different code bases, meaning other implementation dif-
ferences can influence the results.

Our analysis of main-memory transactional systems in-
cluding Silo [52], DBx1000 [59], Cicada [32], ERMIA [25],
and MOCC [53] shows that engineering choices separate
from concurrency control protocol have dramatically affected
these systems’ performance under high contention. For in-
stance, some systems’ abort mechanisms exacerbate conten-
tion by obtaining a hidden lock in the language runtime. We
call these engineering choices basis factors. To better iso-
late the impact of concurrency control (CC) on performance,

2 Y. Huang et al.

we implement and evaluate three CC mechanisms – OCC,
TicToc [60], and MVCC – in a new system, STOv2, that
makes consistent and reasonable implementation choices for
all identified basis factors. We show results up to 64 cores
and for several benchmarks, including low- and high-con-
tention TPC-C, YCSB, and benchmarks based on Wikipedia
and RUBiS. STOv2 OCC performance does not collapse on
these benchmarks, even at high contention, and OCC and
TicToc significantly outperform MVCC at low and medium
contention. This contrasts with prior evaluations, which re-
ported OCC collapsing at high contention [14] and MVCC
performing as well as OCC at all contention levels [32].

With basis factors controlled, changes to core concur-
rency control protocol show limited benefits on high-contention
workloads and nontrivial costs on low-contention workloads.
We therefore introduce, implement, and evaluate two op-
timization techniques that safely eliminate classes of con-
flict common in our high-contention workloads. These tech-
niques improve high-contention performance for all of OCC,
TicToc, and MVCC, and by much larger margins than pro-
tocol choice alone. The deferred update technique elimi-
nates conflicts that arise when read-modify-write operations,
such as increments, are implemented using plain reads and
writes, and the timestamp splitting technique avoids con-
flicts between transactions that read some parts of a record
and transactions that write other parts of the same record.
These techniques have little performance impact on low-
contention workloads. Though they have workload-specif-
ic parameters, they are conceptually general and applied to
every workload we investigated. The techniques are widely
known, but our variants are new, and we are the first to report
their application to TicToc and MVCC.

The rest of the paper is organized as follows. After de-
scribing related work (§2), we present our OCC, TicToc, and
MVCC implementations (§3) and our experimental setup
(§4). We identify the basis factors we discovered and char-
acterize their effects on performance (§5), then compare the
performance of the OCC, TicToc, and MVCC concurrency
control protocols, with basis factors fixed, on a range of low-
and high-contention benchmarks (§6). We then describe the
deferred update and timestamp splitting techniques (§7) and
evaluate their performance (§8). Finally we conclude (§9).

2 Related work

2.1 Optimistic concurrency control protocols

Concurrency control is a central concern for database re-
search, with work going back many decades [17]. The best
choice of concurrency control algorithm can depend on work-
load, and OCC has long been understood to work best for
workloads “where transaction conflict is highly unlikely” [28].
Optimistic approaches can experience starvation of whole

classes of transactions (see Figure 9 in §6.1). Locking ap-
proaches, such as two-phase locking (2PL), never abort trans-
actions due to conflicts, but the shared-memory writes and
stalls required to lock records can cause performance degra-
dation close to starvation at even low conflict rates [38].
Since performance tradeoffs between OCC and locking de-
pend on technology characteristics as well as workload char-
acteristics, and multicore main-memory systems have high
penalties for memory contention, OCC can perform surpris-
ingly well even for relatively high-conflict workloads and
long-running transactions. This work was motivated by a de-
sire to better understand the limitations of OCC execution,
especially on high-conflict workloads.

The main-memory Silo database [52, 61] introduced an
OCC protocol that, unlike other implementations [7,28], had
no per-transaction contention point, such as a shared time-
stamp counter. Though Silo addressed some starvation is-
sues by introducing snapshots for read-only transactions, and
performed reasonably on some high-contention workloads,
subsequent work has reported that Silo still experiences per-
formance collapse on other high-contention workloads. These
discrepancies are due to its basis factor implementations, as
discussed in §5.

Several concurrency control techniques have aimed to
preserve OCC’s advantages at low contention and mitigate
its flaws at high contention. We focus our efforts on two,
TicToc [60] and optimistic MVCC [4, 42].

TicToc records have two timestamps. Write timestamps
resemble OCC record timestamps, while read timestamps al-
low TicToc to commit some apparently-conflicting transac-
tions by reordering them. Timestamp maintenance becomes
more expensive than OCC, but reordering has benefits for
high-contention workloads. We present results for our im-
plementation of TicToc.

MVCC systems such as ERMIA [25] and Cicada [32]
keep multiple versions of each record. These versions al-
low more transactions to commit through reordering, and
in particular, read-only transactions can always commit. We
present results for ERMIA and Cicada, as well as for our
MSTO MVCC system, which adopts some (but not all) of
Cicada’s optimizations.

ERMIA uses a novel commit-time validation mechanism
called the Serial Safety Net (SSN) to ensure strict transac-
tion serializability. ERMIA transactions perform a check at
commit time that is intended to be cheaper than OCC-style
read set validations. The check is also less conservative, and
can allow more transaction schedules to commit. The SSN
mechanisms in ERMIA, however, involve expensive global
thread registration and deregistration operations that limit
its scalability [53]. In our experiments, ERMIA’s locking
overhead further swamps any improvements from its com-
mit protocol.

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 3

Cicada contains optimizations that reduce overhead com-
mon to many MVCC systems, and in its measurements, its
MVCC outperforms single-version alternatives on both low-
and high-contention workloads. This disagrees with our re-
sults, where our OCC, OSTO, outperforms Cicada at low
contention (Figure 10b). This difference is due to basis fac-
tor choices in Cicada’s OCC comparison systems.

Optimistic MVCC still suffers from many of the same
problems as single-version OCC. When executing read-write
transactions with serializability guarantees, read-write and
write-write conflicts still result in aborts. Optimizations such
as deferred updates and timestamp splitting can alleviate
these conflicts.

2.2 Other concurrency control research

Hybrid concurrency control in MOCC [53] and ACC [49]
uses online conflict measurements and statistics to switch
between OCC-like and locking protocols dynamically. We
evaluate MOCC. Locking can be expensive (it handicaps
MOCC in our evaluation), but prevents starvation.

Transaction batching and reordering [10] aims to dis-
cover more reordering opportunities by globally analyzing
dependencies within small batches of transactions. It im-
proves OLTP performance at high contention, but requires
more extensive changes to the commit protocol to accom-
modate batching and intra-batch dependency analyses. Our
workload-specific optimizations are orthogonal to these tech-
niques; our optimizations can eliminate some dependency
edges, while batching and reordering can work around oth-
ers.

Static analysis can improve the performance of high-
contention workloads. Given an entire workload, a system
can discover equivalent alternative executions that generate
many fewer conflicts. Transaction chopping [45] uses global
static analysis of all possible transactions to break up long-
running transactions, allowing subsequent pieces in a trans-
action to execute conflict-free. Systems like IC3 [54] com-
bine static analysis with dynamic admission control to sup-
port more workloads. Static analysis techniques are comple-
mentary to our work; for instance, static analyses could help
automate the application of deferred updates and timestamp
splitting to a given workload.

2.3 Basis factors

Prior studies have measured the effects of some basis fac-
tors on database performance. One study found that a good
memory allocator alone can improve analytical query pro-
cessing performance by 2.7× [13]. A separate study pre-
sented a detailed evaluation of implementation and design

choices in main-memory database systems, with a heavy fo-
cus on MVCC [58]; similar to our findings, the results ac-
knowledge that CC is not the only contributing factor to per-
formance, and lower-level factors like the memory allocator
and index design (physical vs. logical pointers) can play a
role in database performance. While we make similar claims
in our work, we also describe more factors and expand the
scope of our investigation beyond OLAP and MVCC.

Contention regulation [16] provides dynamic mechanisms,
often orthogonal to concurrency control, that aim to avoid
scheduling conflicting transactions together. Cicada includes
a contention regulator. Despite being acknowledged as an
important factor in the database research community, our
work demonstrates instances in prior performance studies
where contention regulation is left uncontrolled, leading to
potentially misleading results.

A review of database performance studies in the 1980s [2]
acknowledged conflicting performance results and attributed
much of the discrepancy to the implicit assumptions made
in different studies about how transactions behave in a sys-
tem. These assumptions – which concerned, for example,
how transactions restart and how system resources are han-
dled – are analogous to our basis factors in that they do not
concern the core CC algorithm, but significantly affect per-
formance results. Our study highlights the significance of
basis factors in the modern context, despite the evolution of
database system architecture and hardware capabilities.

2.4 High-contention optimizations

Our deferred update and timestamp splitting optimizations
have extensive precursors in other work. Timestamp split-
ting resembles row splitting, or vertical partitioning [39],
which splits records based on workload characteristics in
order to optimize I/O. Taken to an extreme, row splitting
leads to column stores [29,48] or attribute-level locking [33].
Compared to these techniques, timestamp splitting has coarser
granularity; this reduces fine-grained locking overhead, and
suffices to reduce conflicts, but does not facilitate column-
store-like compressed data storage.

Deferred updates obtain some of the same benefits as
those obtained by commutative operators in other contexts,
such as databases, file systems, and distributed systems [3,
27, 38, 43, 44, 57]. We know of no other work that applies
commutativity or deferred updates to MVCC records, though
many systems reason about the commutativity properties of
modifications to MVCC indexes. Upserts in BetrFS [23, §2.2]
resemble how we encode deferred updates; they are used
to avoid expensive key-value lookups in lower-layer LSMs
rather than for conflict reduction. Differential techniques used
in column store databases [18] involve techniques and data
structures that resemble deferred updates, though their goal

4 Y. Huang et al.

is to reduce I/O bandwidth usage in a read-mostly OLAP
system.

2.5 Transactional memory

Transactional memory systems [20] provide a transaction
abstraction that operates not on typed database records, but
on words of primary memory. This simplifies the develop-
ment of concurrent main-memory data structures, since trans-
actions can be much easier to use and reason about than
locks, compare-and-swap instructions, and other low-level
synchronization primitives. The first transactional memories
required hardware support, but pure software implementa-
tions are now common. These software transactional mem-
ories (STMs) use atomic instructions to build transaction
abstractions that operate on general memory words [8, 46].
There are even multiversion STMs [5, 15].

Though a main-memory database transaction could cor-
respond to a single transaction provided by a transactional
memory, such an implementation would have poor perfor-
mance [19, 21]. Transactional memories can perform well
when transactions have a small memory footprint, as is typ-
ical for concurrent data structure operations; they struggle
when transactions access hundreds or thousands of memory
words, as is typical for main-memory database transactions.
However, many of the basis factors we present have been
explored in the context of software transactional memory.
Some of our baseline choices were inspired by prior STM
work [8], such as SwissTM’s contention regulation [11].

Recent STM systems bridge the gap between TMs and
main-memory databases by implementing semantically-aware
transactions on data structures, rather than on raw memory [21,
47]. We base our platform on our prior semantically-aware
STM system, STOv1 [21], an OCC-only system that had
good overall performance on some benchmarks and partial
support for deferred updates and timestamp splitting.

STO has also been used as a baseline for other systems
that address OCC’s problems on high-contention workloads,
such as DRP [37]. DRP effectively changes large portions of
OCC transactions into deferred updates by using lazy eval-
uation, automatically implemented by C++ operator over-
loading. This moves most computation into OCC’s commit
phase, which works well at high contention, but imposes ad-
ditional runtime overhead that our simpler implementation
avoids.

Several systems have achieved benefits by augmenting
software CC mechanisms with hardware transactional mem-
ory [30, 55, 56]. HTM can also be used to implement effi-
cient deadlock avoidance as an alternative to bounded spin-
ning [55].

Worker 1 Worker 2 Worker 3· · · · · ·

Concurrent Masstree

Leaf

R
ec

or
dP

tr
R

ec
or

dP
tr

R
ec

or
dP

tr
R

ec
or

dP
tr

Ve
rs

io
n

· · ·

R
ec

or
dP

tr Leaf
· · ·

(a) Retrieving a record by key.

Lock Timestamp Key Value

(b) Record structure in OSTO.

Record Key Head version Inlined version
COMMITTED

Version
chain

Version
PENDING

Version
COMMITTED

Version
ABORTED

(c) Record structure in MSTO. The record contains a pointer to the
head of the version chain, which may include the inlined version.

Write
timestamp

Read
timestamp State Value

(d) Version chain element in MSTO.

Fig. 1: STOv2 overview.

2.6 Previous versions of this work

The measurements presented here include the results of some
changes made since our original publication [22]. Our im-
plementations of deferred updates (§7.1), timestamp split-
ting (§7.2), and garbage collection (§3.4) have been over-
hauled, reducing aborts and improving baseline performance.
The high-contention optimizations also have much lower per-
formance costs in low-contention scenarios. Several errors
were corrected, including an error with our YCSB imple-
mentation that led to improper commits in certain configu-
rations and an instance of false sharing on benchmark meta-
data in our RUBiS implementation.

3 STOv2 design

This work uses our STOv2 main-memory database. STOv2
is a redesign of STOv1 (Software Transactional Objects) [21],
a type-aware software transactional memory with some sup-
port for database workloads. Compared with STOv1, STOv2
supports TicToc and MVCC as well as OCC, makes better

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 5

choices for basis factors (as explained in §5), and focuses
solely on database workloads, where it offers better overall
performance and scalability than STOv1.

We evaluate OSTO, MSTO, and TSTO, which are ver-
sions of STOv2 built around three concurrency control pro-
tocols. OSTO implements optimistic single-version concur-
rency control, MSTO implements optimistic multi-version
concurrency control, and TSTO implements TicToc concur-
rency control. (TicToc [60] is an optimistic concurrency con-
trol protocol with characteristics of both single- and multi-
version systems; each record has exactly two timestamps,
and transaction ordering flexibility lies between that of OCC
and MVCC.)

Figure 1 shows an overview of the STOv2 system and ar-
chitecture. Primary and secondary indexes are implemented
using hash tables and trees. Unordered indexes use hash ta-
bles to map keys to records; for ordered indexes, STO uses
Masstree [34], a highly-concurrent B-tree variant that adopts
some aspects of tries. All concurrency control mechanisms
use identical trees and hash tables, differing in the structure
of stored records.

Transactions are implemented as workload-specific C++
programs that access transactional data structures. Data struc-
ture code and the STOv2 core library work together to en-
sure transaction serializability. Transactions execute in “one-
shot” style, meaning that all user inputs are available when
transactions begin and transactions run without external com-
munication until they commit. However, transactions build
their read and write sets dynamically as they run (there is no
need to pre-declare read or write sets). We do not support
durability or networking, as they are not primary concerns
of this work.

We now for completeness describe the designs of OSTO,
MSTO, and TSTO. Many aspects of these designs are shared
with other systems; important differences are highlighted.
STOv2’s read-copy-update-based garbage collection system
(§3.4) is particularly important for its performance. Objects
such as records and index nodes are enqueued for garbage
collection when they become obsolete, but physically deleted
only after all parallel transactions that could be accessing the
corresponding memory have completed. The commit proto-
cols and garbage collection system depend on the per-thread
and global timestamps listed in Figure 2.

3.1 OSTO

In OSTO, the STOv2 implementation of single-version op-
timistic concurrency control, each record contains one time-
stamp, that of the most recently committed transaction to
modify that record. Transaction execution generates read and
write sets in the usual way; a transaction’s read set con-
tains the timestamps of records it read, and its write set con-

Name Description
ctsg Global commit timestamp counter; atomically

incremented for each commit attempt
wtsth Per-thread commit bound; must be < the timestamps of

all concurrent or future updates committed by
transactions on this thread (maxwtsth < ctsg)

wtsg Global commit bound; must be < the timestamps of all
concurrent or future updates committed by any
transaction (wtsg ≤minwtsth)

rtsth Per-thread read bound; must be ≤ the timestamp used
for all future observations made by transactions on this
thread (maxrtsth ≤ wtsg)

rtsg Global garbage collection bound; must be ≤ the
timestamp used for any future observation made by any
transaction (rtsg ≤minrtsth)

Fig. 2: Timestamp variables in STOv2. Per-thread vari-
ables and ctsg are maintained by each worker thread that
executes transactions, while wtsg and rtsg are maintained
by a periodic maintenance thread. See §3.4 for details.

tains record modifications that will be installed upon com-
mit. Core library code aborts the enclosing transaction if a
conflict is detected during execution, for instance if a record
is observed multiple times with different timestamps, or if a
record remains locked for so long that the library suspects
deadlock. If the transaction completes its execution success-
fully, it invokes the commit protocol. This core library code
ensures serializability and exposes modifications to other
transactions.

The commit protocol runs in three phases. In Phase 1, all
records in the write set are locked. An abort occurs if dead-
lock is suspected. After Phase 1, the commit protocol se-
lects the transaction’s unique timestamp, marking the trans-
action’s serialization point. This timestamp is selected by
atomically incrementing a globally-accessible commit time-
stamp counter ctsg, ensuring that transactions always com-
mit at distinct increasing timestamps. In Phase 2, the time-
stamps of records in the read set are validated. This checks
that the versions are unchanged and that records are not
locked by other transactions; abort occurs on validation fail-
ure. If Phase 2 succeeds, then the transaction will definitely
commit. In Phase 3, new versions of the records in the write
set are installed. The protocol also updates modified records’
timestamps to the commit timestamp, and releases record
locks.

When a record is inserted, OSTO adds it eagerly to the
corresponding index while the transaction is running. This
approach, which is shared with STOv1, has the important ad-
vantage that the commit protocol usually need not access in-
dexes at all. The eagerly-added record is marked as DELETED,
and concurrent transactions abort if they access such a key.
If the transaction commits, OSTO updates the record to con-
tain the written value and the commit timestamp, and re-
moves the DELETED flag, allowing concurrent transactions

6 Y. Huang et al.

x

y

t1 writes x = 4

t2 writes y = 42t2 reads x = 3

t1 commits

t2 commits

Fig. 3: Although t2 finishes later in time, it can still commit
if placed earlier than t1 in the serial order. OCC will abort
t2; MVCC and TicToc can commit it.

to access the new value. If the transaction aborts, however,
the record is removed from its index and garbage collected.

When a transaction that deletes a key commits, the record
is assigned the transaction’s timestamp and is marked as
DELETED; after the commit protocol completes, the record
is removed from its index and garbage collected. If the trans-
action aborts nothing needs to be done.

3.2 MSTO

MSTO is our multi-version optimistic concurrency control
implementation. MSTO maintains multiple versions of each
record so that transactions can access recent-past states as
well as present states. Like any MVCC protocol, MSTO
can run transactions declared as read-only in the recent past,
allowing them to execute conflict-free and always commit.
In addition it can commit read/write transactions in sched-
ules that OCC and OSTO cannot, such as the one in Fig-
ure 3. However, these benefits come at the cost of increased
memory usage for versions, increased cache pressure dur-
ing transaction execution, and increased garbage collection
overhead.

MSTO, like OSTO, uses indexes to map primary keys
to records, but rather than storing data directly in records, it
introduces a layer of indirection called a version chain (Fig-
ure 1c). A record comprises a key and a pointer to the head
version in the chain. Each version carries a write timestamp,
a read timestamp, and a status, as well as the record data and
a chain pointer. The write timestamp, like an OSTO record’s
timestamp, is the timestamp of the transaction that created
the version. The chain is sorted by write timestamp: a com-
mitted chain vn, . . . ,v1, where vn is the most recent version,
will have vn.wts> vn−1.wts> · · ·> v1.wts. In addition, each
version v has v.rts≥ v.wts, and v.rts will be no smaller than
the timestamp of the latest committed transaction that ob-
served the version. A version’s status is COMMITTED if the
transaction that added the version committed, ABORTED if
it aborted, and PENDING if the transaction is trying to com-
mit. The version chain for a freshly-inserted record contains
a single COMMITTED version that is marked as DELETED.
Unlike in OSTO, transactions observing a deleted version

need not abort (a deleted version is treated like an absent
record).

Each MSTO transaction executes at a timestamp tstx that
determines which versions it observes. When the transaction
reads a record, MSTO scans the record’s chain and uses the
version visible at tstx. This is the most recent non-aborted
version vi that satisfies vi.wts≤ tstx. If that version has PEND-
ING status, the transaction waits for its status to resolve to
either COMMITTED or ABORTED.

For transactions declared to be read-only, the transaction
timestamp tstx is set less than or equal to wtsg (see Figure 2).
This timestamp is by construction less than the commit time-
stamp of all concurrent or future transactions, so all read-
/write transactions at or prior to that timestamp have already
committed or aborted, and reading at this timestamp will al-
ways succeed without conflicts. Declared read-only transac-
tions are therefore certain to commit, and there is no need
to maintain a read set or to update observed versions’ v.rts
fields.

Transactions not declared to be read-only execute as fol-
lows. Transaction read sets contain versions of records, not
the records themselves. The transaction timestamp tstx is
chosen the first time a record is accessed by atomically incre-
menting ctsg; the transaction observes versions at that time-
stamp and will commit its modifications at that timestamp.
The transaction is guaranteed to serialize after any transac-
tions that completed before this first access.

The commit protocol again runs in three phases; Algo-
rithm 1 describes it in detail. Phase 1 processes the write
set, inserting for each item a new write version at the correct
location in the corresponding record’s version chain. (This
is often at the head of the version chain – the write version
most likely has the largest timestamp of any record version
– but not always.) The write version wv has wv.status =

PENDING, indicating that the relevant transaction is trying to
commit, and read and write timestamps both set to tstx. The
insertion protocol uses lock-free atomic operations to ensure
the version chain stays in correct order. It also checks for
an irreconcilable conflict caused by an anti-dependency: a
concurrent transaction that observed a value this transaction
would overwrite, but that will commit after this transaction
in the serial order. It finds these conflicts by examining the
read timestamps of the version vp that was committed most
recently before tstx. If this version has vp .rts > tstx, tx must
abort.

In Phase 2, MSTO checks the read set. For each ob-
served version v, MSTO first updates the version’s read time-
stamp v.rts to max{v.rts, tstx} using atomic operations. Then
MSTO scans the record’s chain for the version visible at tstx.
If that version differs from the version in the read set, a con-
current transaction overwrote the value this transaction ob-
served, and this transaction must abort. The atomic update of
the read timestamp in Phase 2 synchronizes with the atomic

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 7

insertion of the write version in Phase 1 to ensure that anti-
dependencies are detected. Every thread will observe these
atomic operations in the same order. If the rts update hap-
pens first, a concurrent transaction running Phase 1 will de-
tect that update and abort; if the insertion happens first, a
concurrent transaction running Phase 2 will wait for the new
version to resolve and abort if necessary.

Finally, in Phase 3, all PENDING versions are changed
to COMMITTED or ABORTED as appropriate, and redundant
parts of version chains are cleaned for garbage collection
(§3.4).

Algorithm 1 MSTO commit protocol.
Every version chain is created with an initial version xv represent-
ing the absence of a value. It has xv .wts = xv . rts = 0, xv . status =
COMMITTED, and is marked as DELETED.

TRY-INSERT-WRITE-VERSION(wv)

1 vptr = &wv. record.head
2 forever:
3 v = ∗vptr
4 if v.wts > wv .wts:
5 // move down version chain
6 vptr = &v.prev
7 elseif v. rts > wv .wts and v. status 6= ABORTED:
8 return FALSE
9 else

10 // insert wv before v; retry on concurrent modification
11 wv .prev = v
12 if COMPARE-EXCHANGE(∗vptr,v,wv) succeeds:
13 return TRUE

MSTO-PHASE1(tx)
1 for each wv ∈ tx .writeset:
2 wv .wts = wv . rts = tx . ts
3 wv . status = PENDING
4 if ¬TRY-INSERT-WRITE-VERSION(wv):
5 ABORT(tx); return
6 // Now wv is in the version chain at the proper location.
7 // Check for concurrent read
8 vp = wv .prev
9 while vp . status 6= COMMITTED:

10 vp = vp .prev
11 if vp . rts > wv .wts:
12 ABORT(tx); return

MSTO-PHASE2(tx)
1 for each rv ∈ tx . readset:
2 rv . rts = atomic max{rv . rts, tx . ts}
3 v = rv. record.head
4 while v 6= rv:
5 if v.wts < rv . rts and v. status 6= ABORTED:
6 ABORT(tx); return
7 v = v.prev

A transaction that deletes a record adds a DELETED ver-
sion to the chain. The record cannot be immediately removed
from its index because it may still be needed by other trans-

actions, including read-only transactions that run in the past;
furthermore, if the record were reinserted, we might need
to access versions both before and after the delete. Long-
deleted records are garbage collected from indexes using a
cleaning procedure (§3.4).

Our MSTO implementation was influenced by Cicada,
but has important differences. Our commit protocol does
not limit new versions to being added only at the top of the
chain; it is highly concurrent and avoids the use of locks.
Another important difference is the way we manage record
inserts and deletes: we continue to use the same chain if a
key is deleted and then re-inserted, and we do not use ver-
sion chains for tree nodes. We do take advantage of Cicada’s
inlined versions optimization. One version can be stored in-
line with the record, which reduces memory indirections,
and therefore cache pressure, for values that change infre-
quently. MSTO fills the inline version slot when it is empty
or has been garbage collected.

3.3 TSTO

TSTO is an OSTO variant that uses TicToc [60] in place
of plain OCC as the CC mechanism. TicToc, like MVCC,
uses separate read and write timestamps for each record, but
maintains only the most recent version. It computes trans-
actions’ commit timestamps based on read and write set
information, allowing for more flexible transaction sched-
ules than simple OCC at the cost of more complex time-
stamp management. Except for concurrency control, TSTO
and OSTO share identical infrastructure. We use full 64-
bit words for wts and rts rather than TicToc’s delta-rts en-
coding [60, §3.6]; in our benchmarks the delta-rts encoding
caused many false aborts and worse performance, especially
in read-heavy workloads.

3.4 Garbage collection

Memory deallocation in STOv2 is managed using read-copy-
update (RCU) techniques [35]. This lets transactions access
records safely after their logical deletion and largely elim-
inates readers-writer locks. RCU requires a mechanism for
determining when logically deleted objects are safe to free,
so STOv2 maintains a set of thread-local variables and sev-
eral global variables that are used by the concurrency con-
trol implementation both to run transactions and to inform
STOv2 when records or tree nodes are safe to delete. Fig-
ure 2 lists these variables.

The commit bounds wtsth and wtsg define timestamps
below which no concurrent or future read/write transaction
will commit. Each worker thread (that is, each thread that
can execute transactions) maintains its wtsth variable by pe-
riodically setting wtsth = ctsg, and every millisecond a main-

8 Y. Huang et al.

tenance thread computes wtsg by taking the minimum of all
threads’ wtsth values. The read bounds rtsth and rtsg define
timestamps below which no concurrent or future transaction
will read. Each worker thread maintains its rtsth by periodi-
cally setting rtsth = wtsg, and the maintenance thread main-
tains rtsg by periodically setting rtsg = minrtsth.

These variables let OSTO and TSTO safely free records
and versions once their contents become inaccessible to con-
current transactions. Say that a transaction with commit time-
stamp tstx makes an object redundant (for instance, by delet-
ing a record from a shared data structure). The object cannot
be deleted right away, since concurrent transactions might
be accessing it or have stored it in their read sets. How-
ever, it is safe to delete the object once all concurrent and
future transactions are guaranteed to access the object – that
is, when rtsg > tstx. Thus, the thread running the transaction
enqueues the object on a thread-local garbage collection list,
marking it with a freeing timestamp fts that equals the trans-
action’s commit timestamp tstx. The object is garbage col-
lected later, when the global garbage collection bound rtsg
is > fts.1

Garbage collection of redundant versions in MSTO ver-
sion chains takes two rounds because MSTO can commit
versions out of order. When MSTO commits a new version
v, it enqueues that version for cleaning with freeing time-
stamp fts equal to the transaction timestamp tstx. The clean-
ing procedure runs when wtsg > fts. At this point the chain
of versions older than v has become fixed (whereas at v’s
commit time, concurrent transactions might be modifying
the chain). The cleaning procedure traverses the chain start-
ing just below v and enqueues those versions, up to and in-
cluding the previous committed version, for second-round
garbage collection. The versions are logged with fts and will
be garbage collected as described above. This two-round
structure allows segments of the version chain to be cleaned
independently: every committed version’s first-round clean-
ing will run before that committed version is freed in the sec-
ond round. Another two-round procedure is used to safely
remove deleted records from data structures, ensuring that
trees and hash tables do not grow without bound.

4 Experimental setup

We conducted our experiments on Amazon EC2 m4.16xlarge
dedicated instances, each powered by two Intel Xeon E5-
2686 v4 CPUs (16 cores/32 threads each, 32 cores/64 threads
per machine) with 256GiB of RAM. For our experiments,
we enable support for 200GiB in 2MiB hugepages. The op-
erating system is an Ubuntu 18.04 image on the Linux 4.18.0-

1 The distinction between commit and read bounds matters only for
MSTO, which executes declared read-only transactions at timestamp
wtsg. OSTO and TSTO never execute transactions in the past and could
alternatively free objects sooner, when wtsg > fts.

25-generic kernel with all security mitigations enabled. (This
performed better than kernel version 5.4.)

Medians of 5 runs (or 10 for RUBiS experiments) are
reported with mins and maxes shown as error bars. Some re-
sults show very little variation so error bars are not always
visible. In all experiments, aborted transactions are automat-
ically retried on the same worker thread until they commit.

4.1 Workloads

We measure two standard benchmarks, YCSB (A, B, and
C) [6] and TPC-C [50] (high and low contention settings).
We also measure two additional high-contention workloads
modeled after Wikipedia and RUBiS.

The TPC-C benchmark models an inventory manage-
ment workload. We implement the full mix and report the
total number of transactions committed per second across
all transaction types, including 45% new-order transactions.
As required by the TPC-C specification, we implement a
queue per warehouse for delivery transactions, and assign
one thread per warehouse to preferentially execute from this
queue. (“[T]he Delivery transaction must be executed in de-
ferred mode . . . by queuing the transaction for deferred exe-
cution” [51, §2.7].) Delivery transactions for the same ware-
house always conflict, so there is no point in trying to exe-
cute them in parallel on different cores. TPC-C contention
is controlled by varying the number of warehouses. With
one warehouse per core, contention is relatively rare (cross-
warehouse transactions still introduce some conflicts); when
many cores access one warehouse, many transactions con-
flict. We enable Silo’s fast order-ID optimization [52], which
reduces unnecessary conflicts between new-order transac-
tions. We implement contention-aware range indexes (§5.5)
and use hash tables to implement indexes that are never range-
scanned. On MVCC systems (MSTO and Cicada), we run
read-only TPC-C transactions slightly in the past, allowing
them to commit with no conflict every time.

YCSB models key-value store workloads. YCSB-A is
update-heavy, YCSB-B is read-heavy, and YCSB-C is read-
only. YCSB contention is controlled by a skew parameter.
We set this relatively high, resulting in high contention on
YCSB-A and moderate contention on YCSB-B (the bench-
mark is read-heavy, so most shared accesses do not cause
conflicts). We use a uniform distribution for YCSB-C. All
YCSB indexes use hash tables.

Our Wikipedia workload is modeled after OLTP-bench [9].
By default, the workload mix is around 5% writes and 95%
reads. Among the writes, almost all transactions are Update-
Page, which selects a random page from among a skewed
distribution, creating high contention on a few key pages.

Our RUBiS workload is the core bidding component of
the RUBiS benchmark [40], which models an online auc-
tion site. The workload mix is 50% reads and 50% writes.

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 9

60% of writes are PlaceBid and 40% are BuyNow, with both
transactions being somewhat similar. Both transactions con-
tend heavily on updating the Items table, and each contends
with other transactions of the same type on appending the
bid or buy to the corresponding table. Whenever necessary,
indexes use Masstree to support range queries.

We also evaluate other implementations’ TPC-C bench-
marks, specifically Cicada, MOCC, and ERMIA. All sys-
tems use Silo’s fast order-ID optimization (we enabled it
when present and implemented it when not present). We
modified Cicada to support delivery queuing, but did not
modify MOCC or ERMIA.

5 Basis factors

Main-memory transaction processing systems differ in con-
currency control, but also differ in implementation choices
such as memory allocation, index types, and backoff strat-
egy. In years of running experiments on such systems, we
developed a list of basis factors where different choices can
have significant impact on performance. This section de-
scribes the most impactful basis factors. For instance, OCC’s
contention collapse on TPC-C can stem not from inherent
limitations, but from basis factor choices. For each factor
we suggest a specific choice that performs well, and conduct
experiments using both high- and low-contention TPC-C to
show the effects of the choice on performance. We end the
section by describing how other systems implement the fac-
tors, calling out important divergences.

Figure 4 shows an overview of our results for OSTO,
TSTO, and MSTO. The light-blue lines represent the base-
lines in which all basis factors are implemented according
to our guidelines. In every other line, a single factor’s im-
plementation is replaced with a different choice taken from
previous work. The impact of the factors varies, but on high-
contention TPC-C with OSTO, four factors have 20% or
more impact on performance, and two factors can cause col-
lapse. In TSTO and MSTO, the basis factors have similar
impact, except that a slow allocator has even more impact
on MSTO because multi-versioning causes more allocation
and deallocation.

5.1 Contention regulation

Contention regulation avoids repeated cache line invalida-
tions by delaying retry after a transaction experiences a con-
flict. Over-eager retry can exacerbate contention, while over-
delayed retry can leave cores idle. We recommend random-
ized exponential backoff as a baseline for contention regu-
lation. This is not optimal at all contention levels – under
medium contention, it can cause some idleness – but as with
spinlock implementations [36] and network congestion [1],

exponential backoff balances quick retry at low contention
with low invalidation overhead at high contention.

The “No contention regulation” lines in Figure 4 show
OSTO, TSTO, and MSTO performances with no backoff.
Lack of contention regulation can severely impact perfor-
mance as contention rises. (We have observed high perfor-
mance variability and even complete performance collapse
in other benchmarks, though not in Figure 4.) Silo supports
exponential backoff through configuration, though unfortu-
nately it does not enable backoff by default [52]. Some com-
parisons using Silo have explicitly disabled backoff, citing
mild effects at medium contention [31]. This provides a mis-
leading picture of OCC’s inherent performance in evalua-
tions including high-contention experiments.

5.2 Memory allocation

Transactional systems stress memory allocation by allocat-
ing and freeing many records and index structures. This is
particularly true for MVCC-based systems, where every up-
date allocates memory so as to preserve old versions. Mem-
ory allocators can impose hidden additional contention (on
memory pools) as well as other overheads, such as TLB
pressure and memory being returned prematurely to the op-
erating system. We recommend using a fast general-purpose
scalable memory allocator as a baseline, and have had good
experience with rpmalloc [41]. (The popular jemalloc and
tcmalloc allocators are not nearly as fast.) A special-purpose
allocator could potentially perform even better, and several
systems implement their own allocators, but efficient general-
purpose allocators are now available, scalable allocators are
complex, and we found bugs in Cicada’s allocator that hob-
bled performance at high core counts (§6.3). Some systems,
such as DBx1000, reduce allocator overhead to zero by pre-
allocating all record and index memory before experiments
begin. We believe this form of preallocation changes system
dynamics significantly – for instance, preallocated indexes
never change size – and should be avoided.

The “Slow allocator” lines in Figure 4 show performance
using the default glibc memory allocator; jemalloc outper-
forms glibc, but not by much. The glibc allocator is Silo’s
default choice [52]. OSTO and TSTO with rpmalloc per-
form 1.6× better at high contention, whereas MSTO with
rpmalloc performs about 2.5× better at high contention. On
low contention benchmarks, the glibc allocator hamstrings
performance on all three protocols.

5.3 Abort mechanism

High-contention workloads stress the abort mechanism in
transaction systems. High abort rates do not necessarily cor-
respond to lower throughput on modern systems, and reduc-

10 Y. Huang et al.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Baseline No contention regulation Slow allocator Inefficient aborts No hash indexes

0 10 20 30 40 50 60
threads

0.0

0.1

0.2

0.3

0.4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(a) OSTO: One warehouse (high contention).

0 10 20 30 40 50 60
threads

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)
(b) OSTO: Four warehouses per worker
(medium contention).

0 10 20 30 40 50 60
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(c) OSTO: One warehouse per worker (low
contention).

0 10 20 30 40 50 60
threads

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(d) TSTO: One warehouse (high contention).

0 10 20 30 40 50 60
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(e) TSTO: Four warehouses per worker
(medium contention).

0 10 20 30 40 50 60
threads

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(f) TSTO: One warehouse per worker (low
contention).

0 10 20 30 40 50 60
threads

0.0

0.2

0.4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(g) MSTO: One warehouse (high contention).

0 10 20 30 40 50 60
threads

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(h) MSTO: Four warehouses per worker
(medium contention).

0 10 20 30 40 50 60
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(i) MSTO: One warehouse per worker (low
contention).

Fig. 4: OSTO, TSTO, MSTO throughput under full-mix TPC-C showing impact of basis factors. The thick blue line repre-
sents our baseline implementation with reasonable basis factor choices; the other lines show the impact of changing one
base factor choice (contention regulation, allocator, abort mechanism, or index type) relative to that baseline.

ing abort rates does not always improve performance [32];
50% abort rates are not necessarily bad for overall perfor-
mance on very fast systems. However, some abort mecha-
nisms impose surprisingly high hidden overheads. C++ ex-
ceptions – a tempting abort mechanism for programmabil-
ity reasons – can acquire a global lock in the language run-
time to protect exception-handling data structures from con-
current modification by the dynamic linker. This lock then
causes all aborted transactions to contend! We recommend
implementing aborts using checked return values instead.

The “Inefficient aborts” lines in Figure 4a, Figure 4d,
and Figure 4g show performance using C++ exceptions for
aborts. STOv1, Silo, and ERMIA abort using exceptions.
Fast abort support offers 1.2–1.5× higher throughput at high
contention for all CCs.

5.4 Index types

Transaction systems support different index types for table
indexes. Silo, for instance, uses Masstree [34], a B-tree-like
structure, for all indexes. Other systems can choose different
structures based on transaction requirements. Most TPC-C
implementations we have examined use hash tables for in-
dexes unused in range queries; some implementations use
hash tables for all indexes and implement complex worka-
rounds for range queries [59]. Hash tables offer O(1) access
time where B-trees offer O(logN), and a hash table can per-
form 2.5× or more operations per second than a B-tree even
for a relatively easy workload. We recommend using hash
tables when the workload allows it, and B-tree-like indexes
elsewhere.

The “No hash index” lines in Figure 4 show performance
when all indexes use Masstree, whether or not range scans

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 11

→ range scan→ · · ·
leaf node

wid
1

did
1

oid
999

wid
1

did
2

oid
1ins

er
t scan start

Fig. 5: Illustration of index contention on the TPC-C NEW
ORDER table. An insert to one district in a new-order trans-
action has a physical conflict with a range scan in a de-
livery transaction on the adjacent district, though these
transactions do not logically conflict.

0 10 20 30 40 50 60
threads

0

5

10

15

Th
ro

ug
hp

ut
 (K

tx
ns

/s
ec

)

OSTO
Index contention

Fig. 6: Throughput of delivery transactions with and with-
out contention-aware indexes. OSTO, full-mix TPC-C, one
warehouse (high contention).

are required. Silo and ERMIA lack hash table support. Hash
indexes offer at most 1.2× higher throughput in this exper-
iment; this is less than 2.5× because data structure lookups
are not the dominant factor in TPC-C transaction execution.

5.5 Contention-aware indexes

Some basis factors do not greatly affect overall TPC-C per-
formance, but hugely impact the performance of some classes
of transaction. For instance, the NEW ORDER table in the TPC-
C benchmark is keyed by 〈wid,did,oid〉, a combination of
warehouse ID, district ID, and order ID. Each new-order
transaction inserts records at the end of a 〈wid,did〉 range,
while each delivery transaction scans a 〈wid,did〉 range from
its beginning. Ideally, new-order and delivery transactions
would conflict only if they used the same district (the same
〈wid,did〉 pair). However, if a district boundary falls within
a B-tree node, phantom protection can cause new-order and
delivery for adjacent districts to appear to conflict, inducing
aborts (see Figure 5).

A contention-aware index is an index that avoids conten-
tion between important disjoint ranges. We recommend im-
plementing contention-aware indexing, either automatically
or by taking advantage of static workload properties. Our
baselines implement contention-aware indexing via a side
effect of Masstree’s trie-like structure [34, §4.1]: certain key
ranges in Masstree completely avoid phantom-protection con-
flicts. If, for example, a 〈wid,did〉 pair is represented using
an exact multiple of 8 bytes, then scans on one such range

will never conflict with inserts into any other range. To im-
plement contention-aware indexing, we reserve eight bytes
for each key component in a multi-key index. This maps
each key component to distinct layers of B-trees, avoiding
false index contention at the cost of larger key size (24 bytes
instead of 8 bytes). We observe negligible performance over-
head under low contention due to this increase in key size.

Figure 6 shows the impact of contention-aware indexes
on delivery transactions in OSTO full-mix TPC-C. With-
out contention-aware indexes (the “Index contention” line
in the figure), delivery transactions almost completely starve
at high contention. This starvation is similar to the OCC per-
formance collapse under high contention reported in prior
work [32]. When executing delivery transactions in deferred
mode, as required by the TPC-C specification, this starvation
of delivery transactions may not actually lead to a collapse
in overall transaction throughput, because other transactions
can still proceed as normal while delivery transactions are
being starved in the background.

5.6 Deadlock avoidance

Every system that can hold more than one lock at a time
must include a deadlock avoidance or detection strategy.
Early OCC database implementations avoided deadlock by
sorting their write sets into a globally consistent order [26,
52, 60]. Fast sorts are available; for instance, the memory
addresses of records and nodes are satisfactory sort keys.
Transactional memory systems have long relied instead on
bounded spinning, where a transaction that waits too long
to acquire a lock assumes it’s deadlocked, aborts, and tries
again. Bounded spinning can have false positives – it can
detect deadlock where there is none – but it has low over-
head, and when two OCC transactions try to lock the same
record, the second transaction often benefits from aborting
early. (The lock indicates upcoming changes to the underly-
ing record, and if those changes happen the second transac-
tion will typically abort anyway.) Our experience as well as
prior study [55, §7.2] finds that write set sorting is expensive
and we recommend bounded spinning for deadlock avoid-
ance. Although write set sorting generally had relatively low
impact (≈ 10%) on TPC-C, DBx1000 OCC [60] prevents
deadlock using an unusually expensive form of write set
sorting. In that system, comparisons use records’ primary
keys rather than their addresses, which causes many addi-
tional cache misses, and the sort algorithm is O(n2) bubble
sort; as a result, deadlock avoidance takes close to 30% of
the total run time of DBx1000’s “Silo” TPC-C under high
contention.

12 Y. Huang et al.

System
Contention
regulation

Memory
allocation Aborts Index types

Transaction
internals

Deadlock
avoidance

Contention-
aware index

Silo [52] −− −− −− − − + +

STO [21] −− −− −− + + + +

DBx1000 OCC [59] + N/A + + − −− −−
DBx1000 TicToc [60] + N/A + + − + −−
MOCC [53] N/A + + + + + −−
ERMIA [25] + + −− − + + +

Cicada [32] + + + + + N/A N/A
STOv2 (this work) + + + + + + +

Fig. 7: Overview of basis factor impact for our work and seven comparison systems. On high-contention TPC-C at 64
cores, “+” choices have at least 0.9× STOv2’s performance, while “−” choices have 0.7–0.9× and “−−” choices have
less than 0.7×. For instance, Silo’s default implementation of contention regulation (§5.1) dramatically reduces its perfor-
mance on 64-core high-contention TPC-C.

5.7 Transaction internals

Transaction internals refers to a transaction library’s mech-
anisms for maintaining read sets and write sets. The best
internals use fast hash tables that map logical record iden-
tifiers to their physical in-memory locations, and that can
be cleared efficiently on transaction completion. We recom-
mend strong transaction internals by default, but found to
some surprise that the factors listed above have more perfor-
mance impact. Replacing STOv2’s highly-engineered inter-
nals with Cicada’s somewhat simpler versions reduced per-
formance by just 2%. (Using DBx1000’s internals reduced
performance by somewhat more.) Engineering effort spent
on transaction internals seems to quickly reach a point of
diminishing returns.

5.8 Global timestamps

Many concurrency control designs assign each read/write
transaction a unique timestamp. STOv2 computes these time-
stamps by atomically incrementing a shared global counter.
This introduces a point of contention that can be avoided:
other systems, including Silo and Cicada, have engineered
mechanisms that compute unique timestamps with little or
no access to contended global state. However, we have ob-
served little impact from this contention point except on very
small transactions. For instance, YCSB’s mandated record
size, 1000 bytes, is large enough that data movement costs
overshadow global timestamp contention in our experiments.
Previous results that report significant benefits from local
timestamp calculation use records that are an order of mag-
nitude smaller [32].

5.9 Summary

Figure 7 summarizes our investigation of basis factors by
listing each factor and qualitatively evaluating 8 systems, in-

cluding STOv2, according to their implementations of these
factors. We performed this evaluation through experiment
and code analysis. Each system’s choice is evaluated relative
to STOv2’s and characterized as either good (“+”, achieving
at least 0.9× STO’s performance), poor (“−”, 0.7–0.9×), or
very poor (“−−”, less than 0.7×).

6 Evaluation of concurrency control protocols

Armed with this thorough evaluation of effective basis fac-
tor choices, we now evaluate STOv2’s three concurrency
control mechanisms on our suite of benchmarks at differ-
ent contention levels. Our goal is to isolate the performance
impacts of concurrency control choice, rather than basis fac-
tor choice. Prior work showed OCC performance collaps-
ing at high contention on TPC-C, but our findings show
otherwise. None of OSTO, TSTO, and MSTO collapse on
high-contention TPC-C; neither do they scale. OSTO’s high-
contention TPC-C throughput is approximately 0.6× that of
MSTO, even at 64 threads, but at low contention, OSTO
throughput is approximately 2× that of MSTO. For our other
benchmarks, OCC sometimes performs on par with MVCC
(Figure 8h) or even better than MVCC (Figure 8d and Fig-
ure 8g) at high contention.

6.1 Overview

Figure 8 shows the transaction throughput of all three STOv2
variants on all our benchmarks with thread counts varying
from 1 to 64. The committed mix of transactions conforms
to the TPC-C specification except in one-warehouse, high
core count settings. (The warehouse delivery thread man-
dated by the specification cannot execute enough transac-
tions to reach 4% of the mix when 63 other threads are per-
forming transactions on the same warehouse; we observe a
mix of 1.7% delivery transactions on some one-warehouse
TPC-C experiments.)

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 13

Only low-contention benchmarks (TPC-C with one ware-
house per worker, Figure 8c, and YCSB-B, Figure 8e) ap-
proach perfect scalability. (The change in slope at 32 threads
is due to our machine having 2 hyperthreads per core.) On
high-contention benchmarks, each mechanism scales up to 4
or 8 threads, then levels off. Performance declines at higher
thread counts, but does not collapse.

When scalability is good, performance differences can
be attributed primarily to the inherent overhead of each mech-
anism. In Figure 8c, for example, TSTO’s more complex
timestamp management causes it to slightly underperform
low-overhead OSTO, while MSTO’s considerably more com-
plex version chain limits its throughput to 0.52× that of
OSTO.

Some of the high-contention benchmarks impose con-
flicts that affect all mechanisms equally. For example, YCSB-
A has fewer than 0.1% read-only transactions and high key
skew (many transactions touch the same keys). This pre-
vents TicToc and MVCC from discovering safe commit or-
ders, so OSTO, TSTO, and MSTO all scale similarly, and
OSTO outperforms MSTO by 1.5–1.7× due to MSTO over-
head (Figure 8d). On other benchmarks, the mechanisms
scale differently. For example, in high-contention TPC-C
(Figure 8a), OSTO levels off after 4 threads, while MSTO
and TSTO scale well to 8 threads. This is due to OSTO
observing more irreconcilable conflicts and aborting more
transactions, allowing MSTO to overcome its higher over-
head and outperform OSTO. At 12 threads with 1 ware-
house, 47% of new-order/payment transactions that success-
fully commit in MSTO would have been aborted by an OCC-
style timestamp validation.

In summary, we do not observe contention collapse, and
our MVCC implementation has significant overhead over
OCC at low contention and even some high-contention sce-
narios. All these results differ from previous reports.

Some differences from prior results are worth mention-
ing. Our YCSB-A results are lower than those reported pre-
viously [32]. This can be attributed to our use of the YCSB-
mandated 1000-byte records; DBx1000 uses 100-byte records.
Cicada’s reported results for Silo and “Silo′” (DBx1000 Silo)
show total or near performance collapse at high contention,
but our OCC measurements show no such collapse. We at-
tribute this difference to Silo’s lack of contention regula-
tion, inefficient aborts, and general lack of optimization, and
to DBx1000’s unnecessarily expensive deadlock avoidance
and lack of contention-aware indexing.

In these real-world-inspired benchmarks, OCC’s perfor-
mance did not collapse; on some of the benchmarks, MVCC
had similar scaling behavior as OCC. However, we do not
claim that OCC will never collapse: there are workloads
that can cause any optimistic concurrency control protocol
to experience contention collapse, at least for some trans-
action classes in a workload. Figure 9 shows an example.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OSTO TSTO MSTO

0 25 50
threads

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(a) TPC-C, one warehouse (high
contention).

0 25 50
threads

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(b) TPC-C, four warehouses
(medium contention).

0 20 40 60
threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(c) TPC-C, one warehouse per
worker (low contention).

0 25 50
threads

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(d) YCSB-A (high contention:
update-intensive, 50% updates,
skew 0.99).

0 20 40 60
threads

0

2

4

6

8

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(e) YCSB-B (lower contention:
read-intensive, 5% updates, skew
0.8).

0 25 50
threads

0

20

40

60

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(f) YCSB-C (lowest contention:
read-only).

0 25 50
threads

0.0

0.2

0.4

0.6

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(g) Wikipedia (high contention).

0 20 40 60
threads

0

2

4

6

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

(h) RUBiS (high contention).

Fig. 8: STOv2 performance on several workloads.

The workload is YCSB-like, with a 16-record database and
two transaction classes: class-A transactions update all 16
records, and class-B transactions update one of the records
and read the other 15. In our experiment, one thread exe-
cutes class-A transactions, while all other threads execute

14 Y. Huang et al.

0 10 20 30 40 50 60
threads

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (K

tx
ns

/s
ec

)

OSTO
TSTO
MSTO

Fig. 9: Contention collapse can affect OSTO, TSTO, and
MSTO. In this workload, one thread runs “class-A” trans-
actions that update all records in a small database, while
the other threads run transactions that read the database
and update one record each. The graph shows performance
for class-A transactions. From 2 to 64 threads, perfor-
mance collapses on all protocols.

randomly-chosen class-B transactions. (This is somewhat
similar to the setup for TPC-C’s delivery transaction.) Per-
formance on class-A transactions collapses under all three
optimistic protocols.

6.2 Benefits of reordering

Figure 8a (high-contention TPC-C) shows that TSTO, which
implements TicToc concurrency control, has an advantage
even over MSTO. TSTO’s dynamic transaction reordering
avoids some conflicts on this benchmark, helping it outper-
form OSTO by up to 1.7×; since it keeps only one version
per record, it avoids multi-version overheads and outper-
forms MSTO by up to 2×. This effect is limited to TPC-C:
we observed no significant benefit of TSTO over OSTO in
any other workload.

We believe this effect centers on a conflict between TPC-
C’s new-order and payment transactions. These transactions
conflict while trying to access the same WAREHOUSE table
row. New-order transactions read the tax rate of the ware-
house, while payment transactions increment the year-to-
date payment amount of the warehouse. This causes a con-
flict and attendant aborts on OCC, but the conflict is false
– the transactions actually access distinct columns in the
warehouse table – and TicToc and MVCC can reschedule
the new-order transaction to commit with an earlier com-
mit timestamp, reducing aborts and improving performance.
However, this approach may not generalize well. Transac-
tions that issue more reads than new-order are more diffi-
cult to reschedule, since reads constrain ordering, and Tic-
Toc cannot reschedule write-write conflicts. Neither TicToc
nor MVCC addresses the true scalability issue, which is the

false conflict. In §8 we will show that eliminating this class
of conflicts with timestamp splitting is a more effective and
generalizable approach that applies to all our benchmarks,
not just TPC-C.

6.3 Cross-system comparisons

Figure 10 shows how STOv2 baseline systems compare with
other state-of-the-art main-memory transaction systems on
TPC-C. We use reference distributions of Cicada, ERMIA,
and MOCC.

Figure 10a shows that both MOCC and ERMIA struggle
at high contention; the reason is the overhead of locking. Ci-
cada modestly outperforms both MSTO and OSTO. We ex-
pected Cicada to outperform our system, which lacks several
Cicada optimizations. (For instance, Cicada assigns trans-
action timestamps using a scalable distributed algorithm –
“loosely synchronized software clocks” – rather than a possi-
bly-contended global variable, and its “early version consis-
tency check” and “write set sorting by contention” optimiza-
tions attempt to abort doomed transactions as soon as pos-
sible, reducing wasted work.) However, we were surprised
by the relatively small difference in performance, since in
Cicada’s own evaluation it outperformed all other systems,
even on low contention benchmarks, by up to 3×. We be-
lieve that this is due to Cicada’s evaluation comparing sys-
tems with different basis factors, which unfortunately leaves
the relative importance of Cicada’s optimizations in ques-
tion.2 Furthermore, in our measurements at low contention
and high core counts, Cicada’s performance collapses and
it fails to complete some benchmarks due to memory ex-
haustion (Figure 10b). The reason is an issue with Cicada’s
special-purpose memory allocator (there is no exhaustion
when that allocator is replaced with jemalloc), highlighting
the costs as well as potential benefits of purpose-built allo-
cators for in-memory databases.

7 High-contention optimizations

Our measurements show, once basis factors are controlled,
that the choice of concurrency control protocol has limited
effect on scalability. OSTO, TSTO, and MSTO have differ-
ent relative performance on different benchmarks, but scale
similarly on each benchmark. For high-contention read-write
workloads, we see no evidence that a concurrency control
protocol can remove a scalability bottleneck on its own.3 To

2 Since Cicada’s basis factor choices are good, we doubt changes in
basis factors would dramatically alter its performance.

3 MVCC can remove some scalability bottlenecks involving read-
only transactions since declared read-only transactions can always
commit.

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 15

0 25 50
threads

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO
MOCC

0 25 50
threads

TSTO

0 25 50
threads

MSTO
Cicada
ERMIA

(a) TPC-C, one warehouse (high contention).

0 25 50
threads

0

1

2

3

4

5

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

OSTO
MOCC

0 25 50
threads

TSTO

0 25 50
threads

MSTO
Cicada
ERMIA

(b) TPC-C, one warehouse per worker (low contention).

Fig. 10: Cross-system comparisons: STOv2 baselines and other state-of-the-art systems, TPC-C full mix.

make a high-conflict transactional workload scale, program-
mers must remove some conflicts.

We now describe two general techniques, deferred up-
dates (DU) and timestamp splitting (TS), that can eliminate
many false conflicts from a broad range of transactional work-
loads, including every workload we tried. These techniques
are based on previous work: deferred updates relates to ideas
from transaction chopping [45] and timestamp splitting to
vertical partitioning [39]. Our contributions lie in develop-
ing low-overhead versions of these techniques that perform
effectively in memory, and that apply to all of OCC, TicToc,
and MVCC. The techniques require workload-specific con-
figuration by application programmers and/or schema de-
signers, but they are conceptually general and not difficult to
apply. They improved performance, sometimes significantly,
for all of OCC, TicToc, and MVCC, and in some cases, they
are more useful in combination than they are separately. The
rest of this section describes the techniques; the next section
evaluates them.

7.1 Deferred updates

Deferred updates aim to eliminate validation aborts asso-
ciated with read-modify-write operations, which observe a
record value and modify the record based on the previous
value. Optimistic protocols implement these operations by
first observing the relevant record versions (adding to the
read set), then computing new values, and then, in the com-
mit protocol, validating the read sets before committing the
modifications. The validation step causes many aborts in
high-contention workloads. However, many read-modify-write
operations have limited interaction with the rest of a trans-
action, and such delimited operations can be deferred to a
point in transaction execution when validation is no longer
necessary.

Deferred updates are implemented using updaters, which
are function objects that encode a read-modify-write opera-
tion and any parameters. Updaters are invoked on versions
of the underlying record; they are allowed to observe the
record value and their encoded parameters, and to modify

the record value in place. OSTO and TSTO invoke updaters
during Phase 3 of their commit protocols, when the corre-
sponding records are locked and therefore safe to modify.
When all modifications to a record are encoded in an up-
dater, there is no need to validate the version of the corre-
sponding record, and most aborts concerning those records
are eliminated. (Figure 11 demonstrates this for a simple in-
crement transaction.) MSTO goes even further: updaters are
added directly to version chains and invoked only when the
corresponding values are read (or garbage collected). This
avoids validation aborts and additionally supports more flex-
ible transaction ordering than is possible for conventional
OCC or even MVCC. Serializability is ensured by restrict-
ing the operation of updaters according to a set of isolation
requirements, and by updating our commit protocols, espe-
cially for MSTO, to prevent interference from concurrent
transactions.

To support deferred updates, transactional write sets in
STOv2 are generalized to hold updaters as well as values.
Each updater encodes the operation it will perform, such as
“increment column,” and any necessary parameters, such as
the amount to increment by. When invoked with a record
value as an argument, the updater changes the value accord-
ing to its encoded operation. Updaters are not limited to sim-
ple operations; the updater for the TPC-C new-order transac-
tion’s update to the STOCK table is shown in Figure 12. How-
ever, updaters are limited in terms of the operations they can
perform, and limit their containing transactions in terms of
abort behavior. These limitations simplify our implementa-
tion and guarantee that transactions containing updaters are
serializable. Specifically:

1. Each updater applies to a single database record. It can
observe its encoded parameters and observe and modify
the record’s value. It cannot access other database state.

2. If a record associated with a deferred update is deleted or
absent, the transaction must abort. The deferred update
cannot delete or insert its associated record.

3. The record’s observed value may be used to compute
the record’s new value, but must not otherwise affect the

16 Y. Huang et al.

During execution:
abort if x does not exist
[tmp, readset[x]] = atomic read of x.value and x.ts
writeset[x] = tmp + 1

Phase 1 of commit protocol:
lock x
tx.ts = atomic increment of ctsg

Phase 2 of commit protocol:
abort if x.ts != readset[x] or x has been deleted

Phase 3 of commit protocol:
x.value = writeset[x]
x.ts = tx.ts
unlock x

(a) Baseline implementation of a transaction that increments x. Con-
current increments can cause aborts in Phase 2.

During execution:
abort if x does not exist
writeset[x] = (fn rec => rec.value = rec.value + 1)

Phase 1 of commit protocol:
lock x
tx.ts = atomic increment of ctsg

Phase 2 of commit protocol:
abort if x has been deleted

Phase 3 of commit protocol:
writesetx (apply updater)
x.ts = tx.ts
unlock x

(b) Implementation of a transaction that increments x, including de-
ferred updates. Concurrent increments never cause aborts.

Fig. 11: Increment transactions in OSTO, with and without
deferred updates.

transaction’s control or data flow. In particular, no record
value can cause the transaction to abort.4

4. The transaction’s return value must be independent of
the value produced by the deferred update.

5. A transaction cannot apply both an updater and a con-
ventional write to the same record.

If, for example, some of a particular record’s values could
cause the transaction to abort, then the corresponding ob-
servations must be validated using a conventional optimistic
read set.

Deferred updates offer some of the same benefits as trans-
action chopping [45], which divides a single transaction into
multiple pieces that execute partially independently. A de-
ferred update transaction has a main piece that executes ac-
cording to an optimistic concurrency control protocol with
read-set validation, and subsequent pieces – the updaters –
that execute on single locked records. However, compared
to chopped transaction pieces, updater pieces have limited

4 This constrains the use of deferred updates for operations that can
overflow. For example, an increment operation can be encoded as a
deferred update only if the increment can be performed for any value
without error. This is possible for bignums, floating-point numbers, and
fixed-size integers with modular or clipped arithmetic, as well as for
values that are constrained by external factors, but it is not typically
true for fixed-size integers with signaling overflow.

semantics and execute in a particular phase of the commit
protocol. This gives deferred updates serializable results in-
dependent of SC-graphs or the contents of concurrently ex-
ecuting transactions, and allow deferred updates to be im-
plemented without a chopping-style analysis of all possible
concurrent transactions.

7.1.1 Single-version implementation

In OSTO and TSTO updaters are invoked during the com-
mit protocol. The lock phase (Phase 1) locks all modified
records, including records associated with updaters. The val-
idate phase (Phase 2) need not check timestamps on records
associated with updaters, but must abort if an associated
record has been deleted by a concurrent transaction. Finally,
the install phase (Phase 3) executes each updater function
object, passing the associated record’s current value as an
argument.

This implementation is correct because conventional ob-
servations are validated optimistically and updater-based ob-
servations effectively use a variant of two-phase locking.
Just as in conventional single-version OCC, the transaction’s
serialization point is after Phase 1, when the transaction’s
unique timestamp is selected. Read-set validation (Phase 2)
must check that all optimistic observations are valid through
to the serialization point. For deferred updates, though, Phase
2 only needs to validate that the associated records exist.
This follows from the isolation requirements, which ensure
that the transaction using the updater is unaffected by the
computation that the updater performs. The observations as-
sociated with deferred updates are performed in Phase 3, but
the isolation requirements ensure that these observations are
of locked records, and thus equal to the values 2PL would
have observed and equal to the values current at the serial-
ization point.

7.1.2 Multi-version implementation

Multi-version concurrency control can commit transactions
in serializable orders impossible for single-version systems,
but observations, such as read-modify-writes, constrain this
reordering. When a record is observed at some timestamp,
that prevents any modification of the record from commit-
ting at any prior timestamp. The MSTO implementation of
deferred updates loosens this restriction, allowing transac-
tions containing read-modify-write operations to commit out
of order by adding updaters directly to version chains. The
updaters are executed lazily when the full underlying record
values are observed. A read-modify-write executed using an
updater does not observe the underlying record’s value un-
til the updater executes (before updater execution, the trans-
action only observes whether the record is present). There-
fore, the transaction does not need to update any previous

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 17

class NewOrderStockUpdater {
public:

NewOrderStockUpdater(int32_t qty, bool remote)
: update_qty(qty), is_remote(remote) {}

void operate(stock_value& sv) const {
if ((sv.s_quantity - 10) >= update_qty)

sv.s_quantity -= update_qty;
else

sv.s_quantity += (91 - update_qty);
sv.s_ytd += update_qty;
sv.s_order_cnt += 1;
if (is_remote)

sv.s_remote_cnt += 1;
}

private:
int32_t update_qty;
bool is_remote;

};

Fig. 12: Updater for STOCK table records in TPC-C’s new-
order transaction. The operate method encodes the opera-
tion (stock deduction and replenishment).

Record Key Head version Inlined version
COMMITTED MATERIALIZED

Version
chain

Version
COMMITTED UPDATE

Version
COMMITTED UPDATE

MATERIALIZED

Fig. 13: Record structure in MSTO with deferred updates.
Each version can contain an updater, a materialized ver-
sion (a full version), or both; the data in an updater or ma-
terialized version is read-only once it is assigned. Concur-
rent transactions can insert more updaters either above or
below the COMMITTED UPDATE, but not below any materi-
alized version (including the COMMITTED MATERIALIZED

UPDATE). Like materialized versions, updater versions can
be pending or aborted.

versions’ rts values until the updater executes. This allows
future transactions to commit changes before the updater.

Deferred updates required the following changes to MSTO.
In addition to the rts, wts, and value slots present in conven-
tional MSTO versions, deferred updates adds an updater slot
that can hold an updater and an mstatus word holding mate-
rialization status flags (Figure 13). A version v added by a
conventional write will have a full record value in its v.value
slot, an empty v.updater slot, and v.mstatus= MATERIALIZED.
A version w added by a deferred update will, in contrast,
have an updater in its w.updater slot, an empty w.value slot,
and w.mstatus = UPDATE. If and when w is observed by a
conventional read, MSTO must run a materialize procedure
that computes the corresponding full record value, fills in
the w.value slot, and changes w.mstatus to MATERIALIZED

Algorithm 2 MSTO commit protocol with deferred updates.
Compare Algorithm 1.

ALLOW-PRECEDE(v,newerv)

1 // Test if version v may precede version newerv in a chain, where
2 // newerv has a greater timestamp, considering only materialization.
3 // Aborted versions are ignored; pending or committed deleted
4 // versions cannot precede pending or committed updates.
5 return v . status = = ABORTED or newerv . status = = ABORTED
6 or v .mstatus 6= DELETED or newerv .mstatus 6= UPDATE

MSTO-PHASE1-WITH-UPDATES(tx)

1 for each wv ∈ tx .writeset:
2 wv .wts = tx . ts
3 wv . status = PENDING
4 if ¬TRY-INSERT-WRITE-VERSION(wv):
5 ABORT(tx); return
6 // Now wv is in the version chain at the proper location.
7 // Check for updater invalidation
8 v = wv. record.head
9 while v 6= wv:

10 if ¬ALLOW-PRECEDE(wv,v):
11 ABORT(tx); return
12 v = v.prev
13 // Check for concurrent reads and updater invalidation
14 v = wv .prev
15 while v. status 6= COMMITTED:
16 if ¬ALLOW-PRECEDE(v,wv):
17 ABORT(tx); return
18 v = v.prev
19 if v. rts > wv .wts or ¬ALLOW-PRECEDE(v,wv):
20 ABORT(tx); return

UPDATE.5 The materialization procedure requires careful en-
gineering to ensure safety and serializability. It must moni-
tor the version chain for concurrent updates, and it must ad-
just previous versions’ rts values to prevent future updates
from being inserted during the computation. Furthermore,
materialization interacts with garbage collection: the proce-
dure for garbage collecting version chains must materialize
values (it is unsafe to recycle an updater until a later ma-
terialized version exists). Algorithm 2 shows a version of
MSTO’s commit protocol Phase 1 that supports deferred up-
dates. This algorithm must validate that updaters are not ap-
plied to deleted versions or absent records, requiring a new
check that the newly inserted version does not invalidate a
later updater (lines 7–12). It also must check that no pre-
viously inserted version would invalidate a newly inserted
updater (lines 13–20). These checks must be performed af-
ter the version is inserted into the version chain, ensuring
that if conflicting versions are inserted concurrently, at least
one of those versions will view the other version and abort.

Algorithm 3 shows the algorithm used to materialize an
updater version. MSTO must traverse the version chain back-

5 It is important to preserve w.updater in case of concurrent access
by other transactions.

18 Y. Huang et al.

Algorithm 3 Materializing deferred updates.

MATERIALIZE(readv)

1 trace = empty stack of versions
2 v = readv
3 while v. status 6= COMMITTED or v.mstatus = = UPDATE:
4 trace .PUSH(v); v = v.prev
5 vbuf = copy of v.value
6 v. rts = atomic max{v. rts,readv .wts} // prevent later commit
7 while trace is not empty:
8 vbase = v
9 v = trace .POP()

10 // Invariant: The COMMITTED version at or before vbase
11 // has rts≥ readv .wts, so no new committed versions can
12 // appear between vbase and v after this point.
13 // Usually vbase = = v.prev, but not always.
14 while vbase .wts < v.prev.wts:
15 trace .PUSH(v); v = v.prev
16 wait until v. status 6= PENDING
17 if v. status = = COMMITTED:
18 v. rts = atomic max{v. rts,readv .wts}
19 if v.mstatus = = UPDATE:
20 apply v.updater to vbuf
21 else
22 vbuf = copy of v.value
23 // Now v = = readv; versions before readv are fixed;
24 // and vbuf is the correct materialized value for readv.
25 if TRY-LOCK(readv) is successful:
26 readv .value = vbuf
27 readv .mstatus = MATERIALIZED UPDATE
28 UNLOCK(readv)
29 enqueue readv for garbage collection of its predecessors

ward to the previous COMMITTED MATERIALIZED version,
then traverse forward, applying the intervening updaters in
timestamp order. This is done while acquiring minimal locks
to improve concurrency. Care is required to prevent concur-
rent updates: when the materialization process applies an
updater, that fixes the version chain before that point, pre-
venting all transactions with earlier timestamps from com-
mitting. (The updates to v.rts on lines 6 and 18 accomplish
this; they synchronize with the rts check on line 19 of Al-
gorithm 2.) Care is also required to detect versions added
during the traversal. (Lines 13–15 accomplish this.) Each
thread computes the materialized record on a thread-local
copy, allowing multiple threads to materialize the same ver-
sion chain concurrently. Once the materialized record has
been computed, the version that initiated the materialization
is locked while the record data is copied over.

Updater versions also impact MSTO’s garbage collec-
tion. MSTO ensures that whenever a materialized version
is created – either directly, through a conventional write,
or indirectly, through a explicit materialization – all older
versions are enqueued for RCU garbage collection. Addi-
tionally, MSTO periodically materializes infrequently-read
records so that older versions can be marked for garbage
collection and version chains do not grow without bound.

Our implementation doesn’t bother to fill in intermediate
deferred updates as we walk up the chain. This is a perfor-
mance tradeoff: we believe it is rare that such versions will
be observed. This means we assume updaters are determin-
istic. It is also worth noting that the rts updates on lines 6
and 18 may create version chains where a version’s read
timestamp is larger than the write timestamp of its succes-
sor. This is intentional and safe. Attempts to assign precise
read timestamps would be vulnerable to bugs caused by con-
current updates, and our other algorithms understand that a
version’s true read timestamp is bounded above by the next
committed version’s write timestamp.

The materialization procedure guarantees correctness be-
cause it processes the versions in timestamp order as it moves
up the stack, including any concurrent committed versions
that were added to the chain. Progress is ensured because
after each iteration of the main loop, a new version has been
flattened; only a limited number of new versions can be
added to the chain as we move up because of the way we
modify the read timestamp of each version when we process
it.

7.2 Timestamp splitting

The deferred update optimization reduces aborts by splitting
transaction computation into pieces, and by moving some
computation into the commit protocol’s install phase where
validation cannot cause aborts. The complementary time-
stamp splitting optimization, described here, reduces aborts
by splitting records into pieces with independent timestamps;
concurrent transactions that modify different pieces cannot
cause aborts. Timestamp splitting draws inspiration from schema
transformations such as row splitting and vertical partition-
ing [39], which use sub-record access patterns to reduce
database I/O overhead (for example, they might only keep
frequently-accessed record fragments in a memory cache),
but instead uses sub-record access patterns to reduce con-
tention and aborts.

Many database records comprise multiple pieces of state
subject to different access patterns. For instance, records
in a relational database may have many columns, some of
which are accessed more often or in different ways. Time-
stamp splitting divides a record’s columns into disjoint sub-
sets and assigns one timestamp per subset. Transactions that
read or modify such a record observe just those timestamps
sufficient to cover the columns they observed or modified.
In a typical example, shown in Figure 14, one timestamp
covers infrequently-modified columns while another time-
stamp covers the rest of the record. Simple splitting like this
is frequently useful. In TPC-C’s CUSTOMER table, the col-
umns with the customer’s name and ID are often observed
but never modified, whereas other columns, such as those
containing the customer’s balance, change frequently; using

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 19

Lock Frequent
timestamp

Infrequent
timestamp Key Value

Col1 Col2 Col3 Col4

Fig. 14: Record structure in OSTO with timestamp split-
ting. The frequent timestamp protects the frequently-
updated columns, while the infrequent timestamp only up-
dates if col1 or col2 change. This allows transactions that
only read col1 and col2 to avoid conflicts with those that
only write col3 and col4.

a separate timestamp for name and ID allows observations
that only access name and ID to proceed without conflict
even as balance-related columns change.

OSTO, TSTO, and MSTO implement timestamp split-
ting by changing records to contain one or more timestamps,
rather than exactly one timestamp, as shown in Figure 14.
Although we support arbitrary numbers of timestamps per
record, our evaluation only shows results for two timestamps.
Additional timestamps have costs as well as benefits – for
instance, read and write sets as well as record layouts take
more memory – and on all of our benchmarks, three time-
stamps performed worse than two.

Timestamp splitting can expose additional deferred up-
date opportunities. For example, this transaction appears not
to benefit from deferred updates, since it observes x.col1
and x.col2:

tmp = y.col1;
x.col1 += tmp;
return x.col2;

However, if x.col1 and x.col2 are covered by different
timestamps, the modification to x.col1 can be implemented
via an updater since x.col1 is not otherwise observed.

Our implementation of timestamp splitting effectively
stores several “sub-records” within the record, as shown in
Figure 14. In MSTO we maintain a separate chain for each
sub-record. In both cases, deferred updates apply to sub-
records, not the record as a whole.

7.3 Complementary effects

Deferred updates and timestamp splitting have complemen-
tary effects. In the common case, timestamp splitting sep-
arates a frequently-updated part of a record from an infre-
quently-updated, frequently-read part. We often found that
the infrequently-updated part of a record contained record
IDs and other data used in transaction control and data flow,
whereas the frequently-updated part of the record was treated
in a more isolated manner from the rest of the transaction.
This meant that transactions originally unsuitable for de-
ferred updates (because part of a record’s value was used
in control flow) became suitable after timestamp splitting

(because after splitting, the updated parts were not used in
control flow).

MSTO deferred updates particularly benefit from time-
stamp splitting because splitting makes individual versions
smaller and reduces calls to the materialization procedure.
After splitting, reads of the infrequently-updated part of a
record no longer cause materialization of the frequently-up-
dated part, so materialization occurs at a lower rate. This
means that there are more opportunities for concurrent writ-
ers to reorder their changes.

7.4 Implementation in workloads

To implement these optimizations, we manually inspected
our workloads. For timestamp splitting, we inspected each
record type to determine whether and how it could be split.
For record types with no frequently-updated columns, such
as TPC-C’s HISTORY table, we just use one timestamp as
usual. If the record type has both frequently-updated and
infrequently-updated columns – as is the case in many of
TPC-C’s tables, including ORDER and STOCK – the frequent-
ly-updated columns are assigned a separate timestamp. If
all columns of a record type are frequently-updated, as is
the case in YCSB, half of the columns are arbitrarily cho-
sen to be assigned a separate timestamp. (As we’ll see, this
choice has limited benefit for OSTO and TSTO, but good
benefits on MSTO.) Transaction programs identify the col-
umns they access when making point and range queries, but
the column-to-timestamp assignment is handled automati-
cally by STOv2.

For deferred updates, we create an updater implementa-
tion for each relevant record type. Our workloads make use
of many different deferred updates. Some examples: in RU-
BiS, an updater changes an item’s max-bid and quantity
columns; in TPC-C, an updater on the WAREHOUSE table in-
crements its ytd (orders year-to-date) field, and one on the
CUSTOMER table updates several of its fields for orders and
payments. The shortest updater takes about 10 lines of code,
including boilerplate; the longest, on TPC-C’s CUSTOMER ta-
ble, takes about 30 lines. Using deferred updates changes
some full validations in the read set to existence validations.
For example, the number of full read validations in read sets
for TPC-C new-order transactions shrink by 30% on aver-
age, and for payment transactions by 50%. Fewer full read
validations means fewer read-write dependency edges be-
tween transactions and fewer conflicts. Since deletions can
prevent deferred updates from being reordered, workloads
with frequent inserts, deferred updates, and deletions on the
same key may find that DU is less effective at reducing con-
flicts between transactions.

Deferred updates reduce transaction read set sizes. For
example, the read sets for TPC-C new-order transactions
shrink by 30% on average, and payment transactions by 50%.

20 Y. Huang et al.

Smaller read sets mean fewer read-write dependency edges
between transactions and fewer conflicts.

The implementation of these optimizations was facili-
tated by the STO platform, which allows application pro-
grammers to participate in some aspects of concurrency con-
trol through its transaction-aware datatypes.

8 Evaluation of high-contention optimizations

We now evaluate the deferred update and timestamp splitting
optimizations to better understand their benefits at high con-
tention, their overheads at low contention, and their appli-
cability to different workloads and concurrency control pro-
tocols. We observe significant benefits from these optimiza-
tions on high-contention workloads on all concurrency con-
trol protocols, with little degradation of low-contention per-
formance. The performance benefits achievable from high-
contention optimizations outstrip those achievable by switch-
ing the underlying concurrency control protocol. Figure 15
shows the effects of applying deferred updates (DU) and
timestamp splitting (TS), both separately and together, for
all three concurrency control protocols, and on TPC-C, YCSB,
Wikipedia, and RUBiS workloads with different amounts of
contention.

The most dramatic improvement is observed in high-
contention TPC-C (Figure 15a). DU+TS greatly improves
throughput of all three CCs, with gains ranging from 2×
(TSTO) to 5× (OSTO); each optimized CC performs better
than any unoptimized systems. After optimization, MSTO
even scales to 64 threads, though imperfectly, on this high-
contention TPC-C workload. Overall, however, optimized
MSTO only outperforms optimized OSTO or TSTO under
extremely high contention (20 cores running high-contention
TPC-C); at lower contention levels (e.g., Figure 15b), MSTO’s
multi-version overhead limits its performance.

Similar effects are visible on other benchmarks. The high-
contention YCSB-A (Figure 15d), Wikipedia (Figure 15g),
and RUBiS (Figure 15h) workloads benefit from the tech-
niques, especially at high core counts. Deferred updates gen-
erally have more impact than timestamp splitting (TPC-C’s
schema has more natural split points than the other schemas).
The techniques can reduce performance slightly, especially
on MSTO and on low-contention benchmarks; for instance,
in Figure 15c, unoptimized MSTO performs better than all
optimized versions. However, we were surprised to find that
even in some low-contention benchmarks, they can improve
performance slightly: consider, for example, the OSTO and
TSTO graphs in Figures 15e and 15f. This is because TS
can reduce the amount of data retrieved from and written to
the database by accessing subsets of columns, and DU can
reduce read set validation costs.

Figure 15i shows the distinct effects of DU and TS on
our high-contention benchmarks for OCC and MVCC. In

some workloads, such as TPC-C, DU and TS produce greater
benefits together than would be expected from their individ-
ual performance. This is especially clear for MSTO: DU and
TS reduce performance when applied individually, but im-
prove performance by 4.74× at 64 threads when applied
in combination. This is because many frequently-updated
TPC-C fields can be updated using DU, but only after the
infrequently-updated column values use a separate timestamp.
Of the two optimizations, DU is more frequently useful on
its own. For instance, the highest overall performance for
Wikipedia is obtained by applying DU to OSTO. This is an
indication that write-write conflicts are predominant in these
workloads, since DU reduces the impact of write-write con-
flicts while TS reduces the impact of read-write false shar-
ing.

9 Conclusion

We investigated three approaches to improving the through-
put of main-memory transaction processing systems under
high contention, namely basis factor improvements, concur-
rency control algorithms, and high-contention optimizations.
Poor basis factor choices can cause damage up to and in-
cluding performance collapse: we urge future researchers to
consider basis factors when implementing systems, and es-
pecially when evaluating older systems with questionable
choices. Given good choices for basis factors, we believe
that high-contention optimizations – deferred updates and
timestamp splitting – are more powerful than choice of con-
currency control algorithm. DU+TS can improve performance
by up to 5× over base concurrency control for TPC-C, while
the difference between unoptimized CC algorithms is at most
2×.

It is possible that a future workload-agnostic concurrency
control algorithm with no visibility into record semantics
might capture the opportunities exposed by DU+TS, but we
are not optimistic. We believe that the improvement shown
by TicToc and MVCC on high-contention TPC-C is more
likely to be the exception than the rule. The best way to
improve high-contention main-memory transaction perfor-
mance is to eliminate classes of conflict, as CU+TS explic-
itly do. Though in our work these mechanisms require some
manual intervention to apply, we hope future work will ap-
ply them automatically, for instance by using static analysis
to identify potential instances of false sharing.

Finally, we are struck by the overall high performance of
OCC on both low and high contention workloads, although
MVCC and other CC mechanisms may have determinative
advantages in workloads unlike those we tried.

Our code and benchmarks are available online at this
repository, under the vldbj20 tag:

https://readablesystems.github.io/sto

https://readablesystems.github.io/sto

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 21

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OSTO
OSTO+DU

OSTO+TS
OSTO+DU+TS

TSTO
TSTO+DU

TSTO+TS
TSTO+DU+TS

MSTO
MSTO+DU

MSTO+TS
MSTO+DU+TS

0 25 50
threads (OSTO)

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(a) TPC-C, one warehouse (high contention).

0 25 50
threads (OSTO)

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(b) TPC-C, four warehouses (medium contention).

0 25 50
threads (OSTO)

0

1

2

3

4

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(c) TPC-C, one warehouse per worker (low contention).

0 25 50
threads (OSTO)

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)
0 25 50

threads (TSTO)
0 25 50

threads (MSTO)

(d) YCSB-A (high contention: update-intensive, 50% updates, skew
0.99).

0 25 50
threads (OSTO)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(e) YCSB-B (lower contention: read-intensive, 5% updates, skew 0.8).

0 25 50
threads (OSTO)

0

20

40

60

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(f) YCSB-C (read-only workload).

0 25 50
threads (OSTO)

0.0

0.2

0.4

0.6

0.8

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(g) Wikipedia (high contention).

0 25 50
threads (OSTO)

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (M

tx
ns

/s
ec

)

0 25 50
threads (TSTO)

0 25 50
threads (MSTO)

(h) RUBiS (high contention).

Benchmark OSTO OSTO+DU OSTO+TS OSTO+DU+TS MSTO MSTO+DU MSTO+TS MSTO+DU+TS
TPC-C 279 292 (1.05×) 556 (1.99×) 1397 (5.01×) 413 332 (0.80×) 368 (0.89×) 1957 (4.74×)
YCSB-A 405 751 (1.85×) 413 (1.02×) 707 (1.75×) 174 423 (2.43×) 319 (1.83×) 796 (4.57×)
Wikipedia 565 679 (1.20×) 572 (1.01×) 677 (1.20×) 403 663 (1.65×) 405 (1.00×) 662 (1.64×)
RUBiS 5924 10633 (1.79×) 6098 (1.03×) 10516 (1.78×) 5171 7624 (1.71×) 5452 (1.05×) 7827 (1.51×)

(i) Throughput in Ktxns/sec at 64 threads in high-contention benchmarks, with improvements over respective baselines in parentheses.

Fig. 15: STOv2 performance with deferred updates and timestamp splitting (DU+TS).

Acknowledgements Part of the work on basis factors was presented
by Yihe Huang at the Student Research Competition at the 27th ACM
Symposium on Operating Systems Principles (SRC @ SOSP 2019).
We also thank the the AWS Cloud Credits for Research Program for

providing us compute infrastructure. This work was funded through
NSF awards CNS-1704376, CNS-1513416, CNS-1513447, and CNS-
1513471. We’re grateful to Stratos Idreos, Andy Pavlo, and Peter Al-
varo for thoughtful comments on earlier drafts. Thanks also to anony-
mous reviewers of the work.

22 Y. Huang et al.

References

1. Abramson, N.: The Aloha system: Another alternative for com-
puter communications. In: Proceedings of the November 17-19,
1970, Fall Joint Computer Conference, AFIPS ’70 (Fall), pp. 281–
285. ACM (1970)

2. Agrawal, R., Carey, M.J., Livny, M.: Concurrency control perfor-
mance modeling: Alternatives and implications. ACM Transac-
tions on Database Systems (TODS) 12(4), 609–654 (1987)

3. Badrinath, B., Ramamritham, K.: Semantics-based concurrency
control: Beyond commutativity. ACM Transactions on Database
Systems (TODS) 17(1), 163–199 (1992)

4. Bernstein, P.A., Goodman, N.: Multiversion concurrency con-
trol—theory and algorithms. ACM Transactions on Database Sys-
tems (TODS) 8(4), 465–483 (1983)

5. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for mem-
ory transactions. Science of Computer Programming 63(2), 172–
185 (2006)

6. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears,
R.: Benchmarking cloud serving systems with YCSB. In: Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SOCC ’10,
pp. 143–154. ACM (2010)

7. Diaconu, C., Freedman, C., Ismert, E., Larson, P.A., Mittal, P.,
Stonecipher, R., Verma, N., Zwilling, M.: Hekaton: SQL Server’s
memory-optimized OLTP engine. In: Proceedings of the 2013 In-
ternational Conference on Management of Data, SIGMOD ’13,
pp. 1243–1254. ACM (2013)

8. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In:
Proceedings of the 20th International Symposium on Distributed
Computing, DISC ’06, pp. 194–208. Springer (2006)

9. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.:
OLTP-bench: An extensible testbed for benchmarking relational
databases. PVLDB 7(4), 277–288 (2013)

10. Ding, B., Kot, L., Gehrke, J.: Improving optimistic concurrency
control through transaction batching and operation reordering.
PVLDB 12(2), 169–182 (2018)

11. Dragojević, A., Guerraoui, R., Kapalka, M.: Stretching transac-
tional memory. In: Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’09, pp. 155–165. ACM (2009)

12. Dragojević, A., Narayanan, D., Hodson, O., Castro, M.: FaRM:
Fast remote memory. In: Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI
’14, pp. 401–414. ACM (2014)

13. Durner, D., Leis, V., Neumann, T.: On the impact of mem-
ory allocation on high-performance query processing. In: Pro-
ceedings of the 15th International Workshop on Data Manage-
ment on New Hardware, DaMoN ’19. ACM (2019). DOI 10.
1145/3329785.3329918. URL http://dx.doi.org/10.1145/
3329785.3329918

14. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion
concurrency control. PVLDB 8(11), 1190–1201 (2015)

15. Fernandes, S., Cachopo, J.: A scalable and efficient commit algo-
rithm for the JVSTM. In: Proceedings of the 5th ACM SIGPLAN
Workshop on Transactional Computing (2010)

16. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of trans-
actional contention managers. In: Proceedings of the 24th annual
ACM Symposium on Principles of Distributed Computing, PODC
’05, pp. 258–264. ACM (2005)

17. Held, G., Stonebraker, M., Wong, E.: INGRES: a relational data
base system. In: Proceedings of the May 19-22, 1975, national
computer conference and exposition, pp. 409–416. ACM (1975)

18. Héman, S., Zukowski, M., Nes, N.J., Sidirourgos, L., Boncz, P.:
Positional update handling in column stores. In: Proceedings of
the 2010 International Conference on Management of Data, SIG-
MOD ’10, pp. 543–554. ACM (2010)

19. Herlihy, M., Koskinen, E.: Transactional boosting: A methodology
for highly-concurrent transactional objects. In: Proceedings of the
13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’08, pp. 207–216. ACM (2008)

20. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural
support for lock-free data structures. In: Proceedings of the
20th Annual International Symposium on Computer Architecture,
ISCA ’93, pp. 289–300. ACM, New York, NY, USA (1993). DOI
10.1145/165123.165164. URL http://doi.acm.org/10.1145/
165123.165164

21. Herman, N., Inala, J.P., Huang, Y., Tsai, L., Kohler, E., Liskov,
B., Shrira, L.: Type-aware transactions for faster concurrent code.
In: Proceedings of the 11th European Conference on Computer
Systems, EuroSys ’16. ACM (2016)

22. Huang, Y., Qian, W., Kohler, E., Liskov, B., Shrira, L.: Op-
portunities for optimism in contended main-memory multicore
transactions. PVLDB 13(5), 629–642 (2020). DOI 10.14778/
3377369.3377373. URL http://www.vldb.org/pvldb/vol13/
p629-huang.pdf

23. Jannen, W., Yuan, J., Zhan, Y., Akshintala, A., Esmet, J., Jiao, Y.,
Mittal, A., Pandey, P., Reddy, P., Walsh, L., et al.: BetrFS: A right-
optimized write-optimized file system. In: 13th USENIX Confer-
ence on File and Storage Technologies, FAST ’15, pp. 301–315.
ACM (2015)

24. Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik,
S., Jones, E.P.C., Madden, S., Stonebraker, M., Zhang, Y., Hugg,
J., Abadi, D.J.: H-Store: A high-performance, distributed main
memory transaction processing system. PVLDB 1(2), 1496–1499
(2008). DOI 10.14778/1454159.1454211. URL http://dx.doi.
org/10.14778/1454159.1454211

25. Kim, K., Wang, T., Johnson, R., Pandis, I.: ERMIA: Fast memory-
optimized database system for heterogeneous workloads. In: Pro-
ceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, pp. 1675–1687. ACM (2016)

26. Kimura, H.: FOEDUS: OLTP engine for a thousand cores and
NVRAM. In: Proceedings of the 2015 International Confer-
ence on Management of Data, SIGMOD ’15, pp. 691–706. ACM
(2015)

27. Korth, H.F.: Locking primitives in a database system. Journal of
the ACM (JACM) 30(1), 55–79 (1983)

28. Kung, H.T., Robinson, J.T.: On optimistic methods for concur-
rency control. ACM Transactions on Database Systems (TODS)
6(2), 213–226 (1981)

29. Lamb, A., Fuller, M., Varadarajan, R., Tran, N., Vandiver, B.,
Doshi, L., Bear, C.: The Vertica analytic database: C-Store 7 years
later. PVLDB 5(12), 1790–1801 (2012)

30. Leis, V., Kemper, A., Neumann, T.: Exploiting hardware trans-
actional memory in main-memory databases. In: IEEE 30th
International Conference on Data Engineering, Chicago, ICDE
2014, IL, USA, March 31 - April 4, 2014, pp. 580–591 (2014).
DOI 10.1109/ICDE.2014.6816683. URL https://doi.org/10.
1109/ICDE.2014.6816683

31. Lim, H.: Line comment in experiment script
(run exp.py). Available at https://github.
com/efficient/cicada-exp-sigmod2017/blob/
5a4db37750d1dc787f71f22b425ace82a18f6011/
run exp.py#L859 (2017). URL https://github.
com/efficient/cicada-exp-sigmod2017/blob/
5a4db37750d1dc787f71f22b425ace82a18f6011/run exp.
py#L859

32. Lim, H., Kaminsky, M., Andersen, D.G.: Cicada: Dependably fast
multi-core in-memory transactions. In: Proceedings of the 2017
International Conference on Management of Data, SIGMOD ’17,
pp. 21–35. ACM (2017)

33. Maabreh, K.S., Al-Hamami, A.: Increasing database concurrency
control based on attribute level locking. In: 2008 International
Conference on Electronic Design, pp. 1–4. IEEE (2008)

http://dx.doi.org/10.1145/3329785.3329918
http://dx.doi.org/10.1145/3329785.3329918
http://doi.acm.org/10.1145/165123.165164
http://doi.acm.org/10.1145/165123.165164
http://www.vldb.org/pvldb/vol13/p629-huang.pdf
http://www.vldb.org/pvldb/vol13/p629-huang.pdf
http://dx.doi.org/10.14778/1454159.1454211
http://dx.doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2014.6816683
https://doi.org/10.1109/ICDE.2014.6816683
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859
https://github.com/efficient/cicada-exp-sigmod2017/blob/5a4db37750d1dc787f71f22b425ace82a18f6011/run_exp.py#L859

Opportunities for Optimism in Contended Main-Memory Multicore Transactions 23

34. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multi-
core key-value storage. In: Proceedings of the 7th European Con-
ference on Computer Systems, EuroSys ’12, pp. 183–196. ACM
(2012)

35. McKenney, P.E., Boyd-Wickizer, S.: RCU usage in the Linux ker-
nel: One decade later. Tech. rep. (2012)

36. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable syn-
chronization on shared-memory multiprocessors. ACM Transac-
tions on Computer Systems (TOCS) 9(1), 21–65 (1991)

37. Mu, S., Angel, S., Shasha, D.: Deferred runtime pipelining for con-
tentious multicore software transactions. In: Proceedings of the
14th European Conference on Computer Systems, EuroSys ’19,
pp. 40:1–40:16. ACM (2019)

38. Narula, N., Cutler, C., Kohler, E., Morris, R.: Phase reconcilia-
tion for contended in-memory transactions. In: Proceedings of the
11th USENIX Symposium on Operating Systems Design and Im-
plementation, OSDI ’14, pp. 511–524. ACM (2014)

39. Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning
algorithms for database design. ACM Transactions on Database
Systems (TODS) 9(4), 680–710 (1984)

40. OW2 Consortium: RUBiS. Available at https://rubis.ow2.
org/. URL https://rubis.ow2.org/

41. Rampant Pixels: rpmalloc - rampant pixels memory allocator.
Available at https://github.com/rampantpixels/rpmalloc
(2019). URL https://github.com/rampantpixels/rpmalloc

42. Reed, D.P.: Naming and synchronization in a decentralized com-
puter system. Ph.D. thesis, Massachusetts Institute of Technology
(1978)

43. Schwarz, P.M., Spector, A.Z.: Synchronizing shared abstract
types. ACM Transactions on Computer Systems (TOCS) 2(3),
223–250 (1984)

44. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-
free replicated data types. In: Symposium on Self-Stabilizing Sys-
tems, pp. 386–400. Springer (2011)

45. Shasha, D., Llirbat, F., Simon, E., Valduriez, P.: Transaction chop-
ping: Algorithms and performance studies. ACM Transactions on
Database Systems (TODS) 20(3), 325–363 (1995)

46. Shavit, N., Touitou, D.: Software transactional memory. In: Pro-
ceedings of the Fourteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, Ottawa, Ontario, Canada, August
20-23, 1995, pp. 204–213. ACM (1995). DOI 10.1145/224964.
224987. URL https://doi.org/10.1145/224964.224987

47. Spiegelman, A., Golan-Gueta, G., Keidar, I.: Transactional data
structure libraries. In: Proceedings the 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation,
PLDI ’16. ACM (2016)

48. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M.,
Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E., et al.: C-
Store: a column-oriented DBMS. PVLDB pp. 553–564 (2005)

49. Tang, D., Jiang, H., Elmore, A.J.: Adaptive concurrency control:
Despite the looking glass, one concurrency control does not fit
all. In: The 8th Biennial Conference on Innovative Data Systems
Research, CIDR ’17 (2017)

50. Transaction Processing Performance Council: TPC benchmark C.
Available at http://www.tpc.org/tpcc/. URL http://www.
tpc.org/tpcc/

51. Transaction Processing Performance Council: TPC bench-
mark C standard specification, revision 5.11. Available at
http://www.tpc.org/tpc documents current versions/
pdf/tpc-c v5.11.0.pdf (2010). URL http://www.tpc.org/
tpc documents current versions/pdf/tpc-c v5.11.0.pdf

52. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy
transactions in multicore in-memory databases. In: Proceedings
of the 24th ACM Symposium on Operating Systems Principles,
SOSP ’13, pp. 18–32. ACM (2013)

53. Wang, T., Kimura, H.: Mostly-optimistic concurrency control
for highly contended dynamic workloads on a thousand cores.
PVLDB 10(2), 49–60 (2016)

54. Wang, Z., Mu, S., Cui, Y., Yi, H., Chen, H., Li, J.: Scaling multi-
core databases via constrained parallel execution. In: Proceedings
of the 2016 International Conference on Management of Data,
SIGMOD ’16, pp. 1643–1658. ACM (2016)

55. Wang, Z., Qian, H., Li, J., Chen, H.: Using restricted transactional
memory to build a scalable in-memory database. In: Proceedings
of the 9th European Conference on Computer Systems, EuroSys
’14, pp. 26:1–26:15. ACM (2014)

56. Wei, X., Shi, J., Chen, Y., Chen, R., Chen, H.: Fast in-memory
transaction processing using RDMA and HTM. In: Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP
’15, pp. 87–104. ACM (2015). DOI 10.1145/2815400.2815419.
URL http://doi.acm.org/10.1145/2815400.2815419

57. Weihl, W.E.: Commutativity-based concurrency control for ab-
stract data types. IEEE Transactions on Computers 37(12), 1488–
1505 (1988)

58. Wu, Y., Arulraj, J., Lin, J., Xian, R., Pavlo, A.: An empirical eval-
uation of in-memory multi-version concurrency control. PVLDB
10(7), 781–792 (2017)

59. Yu, X., Bezerra, G., Pavlo, A., Devadas, S., Stonebraker, M.: Star-
ing into the abyss: An evaluation of concurrency control with one
thousand cores. PVLDB 8(3), 209–220 (2014)

60. Yu, X., Pavlo, A., Sanchez, D., Devadas, S.: TicToc: Time travel-
ing optimistic concurrency control. In: Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16,
pp. 1629–1642. ACM (2016)

61. Zheng, W., Tu, S., Kohler, E., Liskov, B.: Fast databases with fast
durability and recovery through multicore parallelism. In: Pro-
ceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, pp. 465–477. ACM (2014)

https://rubis.ow2.org/
https://rubis.ow2.org/
https://rubis.ow2.org/
https://github.com/rampantpixels/rpmalloc
https://github.com/rampantpixels/rpmalloc
https://doi.org/10.1145/224964.224987
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://doi.acm.org/10.1145/2815400.2815419

	Introduction
	Related work
	STOv2 design
	Experimental setup
	Basis factors
	Evaluation of concurrency control protocols
	High-contention optimizations
	Evaluation of high-contention optimizations
	Conclusion

