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Abstract 

The two key precipitation trends in Massachusetts are higher-intensity storms and longer dry 
periods between storms, resulting in both higher flooding risks and greater drought stresses. 
Widespread rainwater harvesting on the household scale can alleviate both of these issues, by 
capturing significant amounts of rainfall and serving as a supplementary water source for lawn 
irrigation. As such, an engineering solution is needed to encourage the widespread use of 
rainwater harvesting. This project involves the design, implementation, testing, and evaluation of 
an algorithm that controls the automatic release of water from a lawn irrigation system that 
integrates a household’s piped, treated water supply with the household’s rainwater harvesting 
supply. This algorithm utilizes historical and forecasted weather data from OpenWeatherMap 
APIs to increase water-use efficiency. 90 simulations were run for each of 4 locations in 
Massachusetts using weather data from the past 10 years and various combinations of lawn size 
and rainwater harvesting tank size at a household. While results highlight the complexity of 
making lawn irrigation more efficient, they also suggest potential cost savings for consumers on 
the order of $1,000 dollars per household per year. The relatively simple algorithm developed in 
this project serves as a starting point for the improvement of lawn irrigation technology and can 
be expanded upon for added precision, efficiency, and cost savings.  
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1 Introduction 

1.1 Project Summary 

The impacts of climate change on precipitation trends are widespread. In particular, Eastern 
North America is very likely to experience increased precipitation, both in total annual depths 
and in extreme precipitation events [1]. Confidence in these projections is higher in northern 
regions [2], such that Massachusetts can almost certainly expect to experience these trends in the 
coming years. Increased precipitation will put further stress on drainage systems, especially in 
places with significant amounts of impervious surfaces.  

Widespread use of rainwater harvesting (RWH) would alleviate some of this stress on drainage 
systems and would help with water conservation, as water collected through RWH at the 
household level can be used as a supplementary water source for lawn watering, a water-
intensive process. Currently available RWH systems range from simple cisterns to more complex 
automated-release systems, but even the more complex systems lack integration with a 
household’s primary, piped water supply. Designing a system that integrates a household’s RWH 
water supply with its primary, piped water supply and automatically dispenses water from the 
appropriate source (RWH or piped water) for lawn watering would make widespread RWH at 
the household level more feasible. Designing such a system is the goal of this project. The 
automatic dispensing of water is based on an algorithm that considers the size of the household’s 
lawn, the rainwater level/volume in the RWH tank, the weather forecast in the location of the 
system, and existing soil moisture of the surrounding lawn. This automatic system should not 
only minimize the effort required by users to water their lawns, but the algorithm should also 
optimize water use for lawn watering at the household, thereby resulting in water cost benefits 
for consumers. 

 

1.2 Background and Motivation 

Changes in precipitation trends due to climate change have been observed across the world. 
Particularly, significant increases in mean precipitation and extreme precipitation events have 
been seen in Eastern North America [2][3]. In the Northeast United States, annual precipitation 
rates have increased by over 1 inch per decade since the late 1800s, and additionally, there was 
an observed increase in amount of rainfall during extreme events by over 70% between 1958 and 
2012 [4][5]. These precipitation trends are likely to continue in the Northeast United States as 
global temperatures continue to rise [2]-[5], and, in Massachusetts, increases in the intensity of 
precipitation events is the main driver of these projections [4]. These projections raise concerns 
for the ability of stormwater drainage systems in Massachusetts to manage increasingly heavy 
rain events, especially in areas containing significant impervious coverage. Undersized 
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stormwater systems result in more runoff over impervious surfaces and, therefore, increased 
flooding and negative impacts on water quality.  

Despite projections for increased mean annual precipitation and more extreme rain events, there 
are also concerns for drought conditions becoming more frequent in Massachusetts. Projections 
indicate that precipitation events during Massachusetts summers will have increased intensity but 
will also be separated by longer periods of consecutive dry days [4]-[6]. Therefore, not only are 
there concerns for stormwater drainage systems and flooding, but also for increased dry periods 
in the summer months. As of August 16, 2022, 157 municipalities in Massachusetts had 
implemented mandatory water restrictions [7], and similar restrictions are likely to be seen in 
future summers if trends continue.  

Making upgrades to stormwater drainage systems to increase capacity and implementing water 
restrictions when necessary would both help alleviate these issues at hand. Additionally, green 
stormwater infrastructure projects, a subset of stormwater improvement projects that take a more 
sustainable approach to addressing increased precipitation volumes, have become more prevalent 
in cities, such as an involved program in Philadelphia [8][9]. However, stormwater improvement 
projects can be expensive and long processes, and water restrictions likely would not be well-
received by the general public, so getting other solutions in motion would be helpful. 
Widespread use of rainwater harvesting (RWH) on the household scale is one strategy that could 
impact both challenges suggested by precipitation projections. On one hand, the water volume 
collected with RWH would reduce the amount of water entering the stormwater drainage 
systems during a given rain event, and on the other, the water collected via RWH could be used 
as a supplementary water source for lawn watering, a water-intensive activity, during the longer 
dry periods in between summer storm events. As will be discussed in Section 2, current 
household RWH systems are not optimized to address both challenges arising from precipitation 
trends, and therefore, a new approach to RWH must be developed. 

 

1.3 Project Goals and Problem Statement 

This project seeks to design a RWH system that makes widespread RWH at the household level 
in Massachusetts more feasible, with the overarching idea that widespread RWH will help to 
address the precipitation trends in Massachusetts. In working towards this goal, there are some 
non-technical factors to consider. For one, there must be buy in from the public, such that 
adoption of the RWH system is socially accepted. This likely requires a RWH system that is 
low-effort and easy-to-use. Additionally, ensuring that the RWH system would allow for 
reductions in water use and therefore monetary savings for consumers would help to get public 
buy-in. Overall, the proposed solution should satisfy the technical goals (alleviate drainage 
system stresses and providing a supplementary household water source for irrigation), but should 
also maximize the social and economic benefits to gain consumer buy-in. Thus, this project 
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offers a solution to the following problem: how can household RWH systems be optimized to 
serve as a supplementary water supply for lawn irrigation while minimizing the effort required 
by users to encourage widespread RWH? 

The focus of this project is on Massachusetts specifically, partly because the precipitation trends 
and projections described above are especially strong for the Northeast United States, and partly 
because I have lived my whole life in Massachusetts and will begin my career in the state, too. 
As such, I have a strong interest in improving water systems in Massachusetts and have pursued 
one potential solution through this project.  

 

1.4 Potential Users and Stakeholders 

The targeted end user for this project solution is single-family homeowners in Massachusetts, 
and specifically, those with lawns on their property. These homeowners may feel that 
consistently maintaining their lawn is challenging, either because of the cost of using so much 
water each day or the effort required to water their lawn daily – or both. This project could 
address both of these challenges: RWH would reduce water costs by reducing the amount of 
piped water used for irrigation, and an automatic-release, fully integrated RWH system would 
allow for minimal effort by the end users.  

Additionally, the design focus for this project does not include a RWH tank, but rather this 
project has a focus on the automatic release of water for irrigation and the integration of a RWH 
system with a household’s primary piped water supply. In this sense, the product of this project 
will reside in a larger system, and thus a RWH cistern/tank would also be considered an end user 
for this project, with the ultimate end user being homeowners.  
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2 Existing Solutions and Previous Work 

2.1 Existing Solutions 

At the most basic level, a household RWH system consists of a downspout from roof gutters 
connected to a cistern storage tank, typically with an overflow and outlet pipe, as seen in Joseph 
Taborek’s US patent [10]. This project seeks to integrate a RWH cistern like Taborek’s with a 
household’s piped water supply, and to provide the additional functionality of automatic water 
release for lawn irrigation. There have been some efforts to automate the release of water from 
RWH cisterns, such as John Larrison’s now expired US patent for an “Automated rainwater 
collection system controller”, which utilizes electrical communication between multiple pumps, 
valves, and pipes [11]. This project uses similar concepts for the integration of the RWH cistern 
with a household’s piped water supply and determining which water supply to pull from at a 
given time.  

In addition to existing solutions for RWH specifically, there is existing work related to 
automated lawn irrigation systems that this project seeks to build on. Although there is 
significant previous work with both RWH systems and automated irrigation systems, the key 
needs that must be addressed are integration and increased efficiency for irrigation. That is, a 
RWH collection system must be integrated with a household’s primary, piped water supply, and 
the automatic release of water from this integrated system needs to be optimized for lawn 
irrigation. Table 2.1 below summarizes existing work that will help to inform this project.  

Table 2.1: Existing Work Informing the Design 

Patent Summary 
US 8,881,756 B1: “System for harvesting 
rainwater” [10] 

Simple RWH system. A collection tank with a 
downspout from a roof as the inlet, an overflow 
pipe, and an outlet pipe.  

US 9,633,532 B1: “Automated rainwater 
collection system controller” (expired) [11] 

Electrical communication with pumps, valves, and 
pipes for automated control of a RWH system 

US 6,850,819 B1: “Irrigation control system” 
(expired) [12] 

Irrigation control system that utilizes rainfall data 
and moisture content to determine watering 
schedule. 

US 10,225,997 B1: “Smart sprinkler system and 
method” [13] 

Automated sprinkler system to prevent over-
watering. Utilizes rainfall information via radar 
data to inform watering schedule. 
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2.2 Previous Work and Engineering Background 

I have not conducted any previous work that is directly related to this project. Table 2.2 shows 
the engineering classes that serve as a foundation for this project. 

Table 2.2: Engineering Courses Serving as a Foundation for this Project 

Course Summary 
ES 91hfr / ES 105hfr: 
Humanitarian Design Projects 

During this course, students perform work for Harvard’s chapter of 
Engineers Without Borders. I have taken this course several times 
and have been a part of EWB since my sophomore year, and I was 
a Project Lead for the team during my junior and senior years. The 
EWB project I have been a part of is for designing a water 
distribution system for a small community in the Dominican 
Republic, so this course serves as a strong foundation in water 
systems in general. Additionally, this course has given me exposure 
to various softwares (Civil 3D, Revit, EPANET, etc.) 

ES 123: Intro. to Fluid 
Mechanics & Transport 
Processes 

Some topics covered in this course help with the design of the 
piping aspect of the RWH system (i.e water flow through the 
pipes). 

ES 96: Engineering Problem 
Solving & Design Project 

During my ES 96 project, I gained exposure to working with 
Arduinos, which is useful for the automation / electrical control 
aspect of my project. 

PHYS 113: Electronics for 
Physicists 

I took this course during the Fall 2022 semester. This was a 
laboratory course and gave me further exposure to working with 
circuits and Arduinos.  

 

  



6 
 

3 Design Independent Technical Specifications 

Table 3.1 displays a summary of each design-independent technical specification for this project, 
and the following subsections describe, in further detail, the given specifications, the method for 
measurement, and the justification for each. 

Table 3.1: Design Independent Technical Specifications 

Specification Value Measure Justification 
Average total water 
released for irrigation 
per week 

< 1” (25.4 mm) Simulating irrigation 
during watering 
season based on 
previous years’ 
rainfall & soil 
moisture data 

Recommendations for 
lawn watering from 
EPA and 
municipalities in MA 
are for 1” (25.4 mm) 
per week [14][15][16] 

RWH supply’s share 
of total water released 

> 60% Simulating irrigation 
during watering 
season based on 
previous years’ 
rainfall and soil 
moisture data 

Maximum share from 
RWH is ~86%, based 
on 2014-2020 rainfall 
data [17]. Factor of 1.5 
yields ~60% as a 
reasonable value. 

Total outdoor water 
use from piped water 
supply for a typical 
single-family 
household per 
watering season 

Avg. < 12,000 gal 
(45,425 L) 

Simulations for 
multiple household 
types (different lawn, 
tank sizes) based on 
previous years’ 
rainfall & soil 
moisture data 

Based on total outdoor 
water demand for 
Massachusetts Water 
Resources Authority 
[18], scaled down to 
household water use.  

Rainwater Harvesting 
Tank Size 
Compatibility 

250 – 5000 gal  
(946 – 18.927 L) 

Check if tank size 
input to system allows 
this range 

Typical RWH tank 
sizes (above ground on 
small end, 
underground storage 
on large end) [19] 

Lawn Size 
Compatibility 

1500 – 22,000 sq. ft. 
(139 – 2044 m2) 

Check if lawn size 
input to system allows 
this range 

Typical lawn sizes in 
Boston determine 
minimum, average 
lawn sizes in MA with 
1.5x factor determine 
maximum [20][21] 
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3.1 Average Water Released for Irrigation Per Week 

The United States Environmental Protection Agency (EPA) recommends that a household’s 
landscape will typically require one inch of water per week [14]. Municipalities in Massachusetts 
share this recommendation [15][16]. This one-inch requirement includes rainfall, so assuming 
that rainfall will account for part of this one inch during at least some weeks, a solution for this 
project should release less than the required one inch, on average, in order to accomplish 
efficient water use.  

To measure whether this specification is satisfied by this project, simulations were run over the 
course of a watering season using previous years’ rainfall and weather data, based on the 
automated water release system that was developed, as described in Section 5.1. The total 
volume of water released from the system over the course of the simulated watering season was 
obtained, and a weekly average depth was calculated based on the number of weeks in the 
watering season and the area of the lawn that the simulation is run with as an input. 

3.2 Rainwater Harvesting Supply’s Share of Total Water Released 

The solution developed in this project should result in water cost reductions for users. As such, 
the developed system aims to supply some share of the water released for irrigation using the 
RWH supply, in order to offset some of the household’s piped water use.  

The Massachusetts Department of Conservation and Recreation (Mass DCR) maintains monthly 
average precipitation data for the drought regions of Massachusetts [17]. Using the Mass DCR 
average precipitation data from 2014-2020, and assuming a total rainfall needed for sufficient 
water supply based on the 1” (25.4 mm) per week assumption, the maximum share of water for 
irrigation from a RWH supply was calculated for each month of the watering season (April – 
October). Overall, for the watering season, the maximum share from RWH is 86%. Using a 1.5 
contingency factor to account for the fact that some households’ RWH tanks may not be large 
enough to hold sufficient water to supply this maximum possible share, 60% emerges as a 
reasonable value for this specification. 

To measure this specification for the project, the simulations described in Sections 3.1 and 5.1 
were run, and the percentage share of water released from the RWH system was obtained.  
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3.3 Total Outdoor Water Use from Piped Water Supply for Typical 
Single-Family Household Per Watering Season 

This specification further quantifies the water cost reductions that this project offers, as the 
determined value is based on the total outdoor water demand for the Massachusetts Water 
Resources Authority (MWRA) [18]. The MWRA provides the full water supply to 29 
municipalities in the Boston Metropolitan area, and thus its data offers a reliable picture of water 
demand in Massachusetts. The average outdoor water demand of 17 million gallons per day 
(MGD) over the last 20 years from MWRA was scaled down based on several assumptions in 
order to obtain a value for the outdoor water use for a typical single-family household in 
Massachusetts over the course of a watering season. Assumptions and data used in this scale-
down calculation include: 

 The approximate number of households in MWRA’s full-service area, from the MWRA 
website [22] 

 The percentage of single-family households in the MWRA service area, based on US 
Census data for Essex, Middlesex, Norfolk, and Suffolk counties [23] 

 An assumption that 70% of single-family households in the MWRA service area have a 
lawn, and that they water that lawn – approximately 35% of the full-service flow share is 
from Boston, so the assumption that some homes would not have a lawn is reasonable 
since Boston is a densely populated city 

 An assumption that 17% of water demand is lost to leaks in water main piping [24] 

The result of the scale-down calculations was a value of approximately 12,000 gallons (45,425 
L) of outdoor water use per household per watering season. A system is successful under this 
specification if it releases less than 12,000 gallons of water from the piped water supply over the 
course of a watering season for a typical household in the MWRA full-service area. To measure 
for this specification, the simulations described in Sections 3.1 and 5.1 were run for a variety of 
lawn area and tank size inputs that are reasonable for the MWRA full-service area, and the water 
released from the piped water supply over the course of the watering season was tracked across 
each of the simulations.  

 

3.4 Rainwater Harvesting Tank Size Compatibility 

The system developed in this project should be compatible with a wide range of RWH tanks in 
order to fulfill the requirement of encouraging widespread household RWH. The range of sizes 
for this specification is based on a manufacturer’s available rainwater tank sizes [19]. The low 
end of the range, 250 gallons (946 L), is intended for a smaller rainwater tank above ground, 
with above ground tanks ranging up to about 1000 gallons (3,785 L). The high end of the range 
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accounts for compatibility with underground storage tanks. Some tank sizes on the lower end of 
this 250–5000-gallon (946 – 18,927 L) range may not be sufficient to meet some of the other 
specifications related to piped water use reductions. However, this range is kept intentionally 
wide to ensure that widespread RWH can be encouraged by the project solution. 

Measurement of this specification was completed by determining whether the developed system 
has an input for tank size, and whether the system can take inputs on either end of the specified 
range. 

 

3.5 Lawn Size Compatibility 

The system developed should also be compatible with a range of lawn sizes representative of 
lawns in Massachusetts. The median lot size in Boston for single-family homes is approximately 
4900 square feet (455 m2) [20], suggesting a typical lawn size in Boston of around 3000 square 
feet (279 m2). To account for the smaller lawns in Boston, a lower bound of 1500 square feet 
(139 m2) was determined. The average lawn size across Massachusetts is 14,520 square feet 
(1,349 m2) [21], and a factor of 1.5 to account for the larger lawns yields an upper bound of 
22,000 square feet (2,044 m2). Thus, to encourage widespread RWH, the system developed for 
this project should be able to operate with this wide range of lawn sizes, 1500—22,000 square 
feet (139 – 2,044 m2).  

Measurement of this specification was completed in the same fashion as described in Section 3.4 
to determine whether the developed system can take lawn size inputs on either end of the 
specified range. 
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4 Design Approach 

4.1 Approach Overview 

The design approach for this project is geared towards a system that automatically releases water 
for lawn irrigation at a household from either the household’s piped, treated water supply or from 
the household’s RWH tank supply. The ultimate goal of this system is to integrate a household’s 
RWH supply with the primary, piped water supply and to optimize the release of water from this 
integrated system for irrigation. There are three main components to the overall design of this 
system:  

 An automated water-release algorithm 

 An Arduino-based electrical system 

 A mechanical valve system 

The design is centered around the development of an algorithm that determines whether a 
household’s lawn needs to be watered at a given time, and if so, how much water should be 
released, and which water supply should be used. The electrical system component utilizes 
sensors and internet connectivity to provide data as parameters for the algorithm. Additionally, 
the electrical system communicates with the mechanical valve system to open or close valves to 
the two water supplies (piped or RWH) based on the output of the water-release algorithm.  

 

Figure 4.1: Block diagram showing the three design components. The water-release algorithm and the 
Arduino-based electrical system are within the project scope. The mechanical valve system is outside the 

project scope. 

The key design components and primary scope of this project are the algorithm and the electrical 
system. The algorithm is the most innovative and new approach to the problem at hand, and the 
electrical system is needed to provide the necessary data for the algorithm to run. Due to time 
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and budget constraints, the mechanical valve system is outside the scope of this project, even 
though it is part of the overall system solution.  

Figure 4.1 displays a block diagram showing the three design components and how they interact 
with each other.  

 

4.2 Design Components and Design Dependent Technical 
Specifications 

Table 4.1 summarizes the design-dependent technical specifications for this project. The 
following subsections provide details for the two design components in the scope of the project: 
the water-release algorithm and the Arduino-based electrical system. 

Table 4.1: Design Dependent Technical Specifications 

Specification Value Justification 
Arduino Board with 
Wi-Fi or Bluetooth 
Connectivity 

Arduino MKR WIFI 1010 Electrical system must have internet 
connectivity to obtain rainfall forecast data 
and time of day in real-time 

API to Obtain Weather 
Data 

OpenWeatherMap APIs 
for Historical Weather 
Data and 5-day Weather 
Forecast Data 

Various weather data are required as inputs 
and parameters to the algorithm 

Minimum Nominal 
Pipe Size* 

½” Massachusetts code 248 CMR 10 requires 
½” minimum for hose connections [25] 

Device to Protect 
Against Backflow* 

N/A Required by Massachusetts code 248 CMR 
10 because system will connect potable 
water (piped system from water main) with 
non-potable water (RWH supply) [25] 

* Part of the mechanical system and thus outside the project scope 

4.2.1 Component 1: Water-Release Algorithm 

4.2.1.1 Overview: A Mass-Balance Framework 

The overall design of the water-release algorithm is centered around a mass-balance framework. 
The soil water content of a household’s lawn is monitored in comparison to the soil’s available 
water capacity (AWC), which is the maximum amount of water stored in the soil that can be 
extracted by the grass roots. A minimum soil water content threshold was set, using a 
management allowable depletion (MAD) of 50% of the AWC, and irrigation is triggered when 
the soil water content in the lawn dips below this threshold. Once irrigation is triggered, the 
algorithm uses a mass-balance framework to determine how much water must be released from 
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the system in order to bring the soil water content back to field capacity (FC), which is 100% of 
the AWC. This framework takes into account the potential for rainfall to supply some of this 
water, thus optimizing the amount of water that is released from this system. A visualization of 
the water content available to plants in soil is shown in Figure 4.2. Various inputs and data 
parameters used in the algorithm are described in further detail in Section 4.2.1.2. 

 

Figure 4.2: A visualization of the water available to plants in a typical column of soil [26]. The available 
water capacity (AWC) refers to the maximum amount of water available to be extracted by plants; field 

capacity (FC) refers to a soil water content at 100% of the AWC; and the management allowable 
depletion (MAD) is a value set by irrigation managers that refers to the maximum amount of water 

allowed to be taken up by crops before irrigation is triggered. 

 

4.2.1.2 Inputs and Parameters 

There are two required inputs for the water-release algorithm that serve to calibrate the system to 
an individual household. These two parameters are:  

 The size of the RWH tank at the household  

 The size of the lawn at the household 

Additionally, the algorithm includes four key parameters that are captured in real-time. These 
parameters include past weather data, a soil moisture calculation, weather forecast data, and the 
water level in the RWH tank. The following subsections describe these parameters in further 
detail, including how these parameters are obtained. 

4.2.1.2.1 Past Weather Data 

Weather data from previous days is obtained using OpenWeatherMap’s History API [27]. The 
OpenWeatherMap API contains free options, which is useful for maintaining a low cost for 
consumers and is one of the most widely used APIs for obtaining weather data.  
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This API is used to obtain temperature, relative humidity, wind speed, and precipitation data for 
use in the water-release algorithm. This past weather data is used in an estimation of the soil 
water content in the household’s lawn at a given time. The method for this estimation calculation 
is described in Section 4.2.1.4.  

4.2.1.2.2 Soil Moisture Calculation 

Arduino-compatible soil moisture sensors are low-cost, but they output a relative soil moisture 
value, and the accuracy of calibrating these sensors to a known source can vary. More reliable 
soil moisture sensors exist, but they are more expensive, which would increase costs for 
consumers and thus are counterintuitive to the overall goal of designing a system that is widely 
accessible and encourages widespread RWH use. As such, because of the inability to find a 
reasonable balance between cost and reliability, a soil moisture sensor was considered but not 
utilized in the final design of the algorithm. Instead, a method to calculate the estimated soil 
water content of the lawn is used, as described in Section 4.2.1.4 

4.2.1.2.3 Weather Forecast Data 

Weather forecast data is acquired using OpenWeatherMap’s 5 Day / 3 Hour Forecast API, which 
provides 5-day weather forecasts for any location in 3-hour timesteps [28]. Precipitation data 
obtained from this API is used to determine the potential for rainfall to supply water to the lawn, 
which aids in determining how much water needs to be released from the irrigation system at a 
given time. 

4.2.1.2.4 Water Level in RWH Tank 

The volume of water in the household’s RWH tank is required by the system to determine which 
water source to release water from when irrigation is triggered. A pressure sensor within the 
RWH tank is likely the best strategy for acquiring this parameter. However, since the mechanical 
component of the system is outside the scope of this project, this project does not include a 
physical sensor. Instead, for testing the algorithm, the water volume in the tank is estimated 
using precipitation data and the amount of water released from the RWH water supply. To 
calculate the amount of water collected by the RWH tank based on precipitation volume, 
Equation 4.1 is used, adapted from [29]: 

𝑉௦௨௣௣௟௬ = 𝐴 × 𝑃 × 𝐶, 

(4.1) 

where 𝑉௦௨௣௣௟௬ is the amount of rainfall collected, 𝐴 is the collection surface (roof) area, 𝑃 is the 

precipitation depth, and 𝐶 is the runoff coefficient. The algorithm assumes: 

 a roof area of 1500 square feet (139 square meters) based on Google Earth measurements
of various single-family households in Massachusetts, and

 a runoff coefficient of 0.90, which is the value for asphalt roof and is the more
conservative value to use [29].
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4.2.1.3 Soil Water Content Threshold 

A key aspect of the algorithm design is determining a minimum threshold for the soil water 
content in a household’s lawn that triggers irrigation. This threshold was determined using 
Equation 4.2, consisting of the product of the available water capacity per unit depth of the soil, 
the management allowable depletion as a fraction of the AWC, and the root depth of the crop of 
interest. 

𝑊𝐶௠௜௡ = 𝐴𝑊𝐶 × 𝑀𝐴𝐷 × 𝑟𝑜𝑜𝑡 𝑑𝑒𝑝𝑡ℎ 
(4.2) 

For grass as the crop, the recommended MAD is 50% of the AWC [30].  

Because water movement within soil and irrigation decisions are highly dependent on the 
specific soil and grass type in question, assumptions have been made in this respect to determine 
the appropriate AWC and root depth values. The following subsections describe the soil and 
grass type assumptions, the selected values for AWC and root depth, and the resulting soil water 
content threshold. 

4.2.1.3.1 Soil Type Assumptions and AWC Value Selection 

To determine the appropriate soil type to assume for this system, a qualitative analysis of the US 
Department of Agriculture soil maps in Massachusetts [31] was performed. Based on this 
qualitative analysis, the following four soil series were determined to be representative of 
common soils in Massachusetts: 

 Merrimac series – sandy loam 

 Hollis series – fine sandy loam 

 Paxton series – course sandy loam 

 Canton series – fine sandy loam 

As such, the algorithm assumes a sandy loam for the soil type. For sandy loams, the typical 
AWC range is 1.3–1.6 in/ft (108–133 mm/m) [32], so an AWC of 1.45 in/ft (121 mm/m) was 
assumed as part of the algorithm design. 

4.2.1.3.2  Grass Type Assumption and Root Depth Value Selection 

Common grass types used in Massachusetts lawns are cool season grasses, including Kentucky 
bluegrass, perennial ryegrass, tall fescue, and fine fescues [33]. Of these common types, 
Kentucky bluegrass is the most widely used and therefore serves as the assumption for grass 
type. Kentucky bluegrass roots are most highly concentrated in the upper 10” (254 mm) of soil 
[34], and thus an assumption for a 10” root depth was used to calculate the soil water content 
threshold, such that the system maintains sufficient soil moisture in the most concentrated root 
section. Figure 4.3 displays a typical root concentration profile for Kentucky bluegrass. 
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Figure 4.3: The typical root concentration profile for Kentucky bluegrass, created using information from 
[34]. The highest concentration of roots is in the upper 10” (254 mm) of soil; the majority of roots are 

located within the upper 2’ (0.61 m) of soil; and some roots reach up to 3’ (0.91 m) in depth. 

4.2.1.3.3 Resulting Soil Water Content Threshold 

With these soil and grass type assumptions, and the corresponding values for AWC and root 
depth, Equation 4.2 was used to determine the resulting soil water content threshold: 

𝑊𝐶௠௜௡ = 0.60 𝑖𝑛. (15.24 𝑚𝑚) 

When the soil water content drops below this minimum value, irrigation is triggered by the 
algorithm. 

 

4.2.1.4 Obtaining Soil Water Content Value 

Each run of the algorithm requires a value for the soil water content that can be compared to the 
water content threshold to determine whether irrigation should be triggered. As discussed in 
Section 4.2.1.2.2, low-cost soil moisture sensors are inconsistent with respect to accuracy, and 
thus a method to calculate the soil water content using various data parameters is used instead. 
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The method to calculate the soil water content follows a mass-balance framework, considering 
inputs and outputs to the soil water content. Water inputs to the soil considered for this method 
include infiltration from precipitation (𝐹௉) and infiltration from irrigated water (𝐹ூ), and water 
losses considered are evaporation and transpiration, encompassed in one evapotranspiration 
value (𝐸𝑇௖). Thus, the water content at a given time (𝑊𝐶௧) is calculated using Equation 4.3: 

𝑊𝐶௧ = 𝑊𝐶௧ିଵ + 𝐹௉ + 𝐹ூ − 𝐸𝑇௖, 
            (4.3) 

where 𝑊𝐶௧ିଵ is the previous soil moisture value and all parameters are in units of water depth.  

Another potential water input to the soil is infiltration from groundwater, however this method 
ignores that input because with a focus on solely the upper 10” of soil, infiltration from 
groundwater is negligible.  

The following subsections outline the methods used for calculating infiltration into the soil and 
evapotranspiration rates. 

4.2.1.4.1 Infiltration Calculation Method 

To calculate the amount of water infiltrated into the soil from precipitation and irrigated water, 
an adaptation of the Natural Resources Conservation Services (NRCS) Method for calculating 
rainfall excess is used [35]. The NRCS Method indicates that infiltrated water is given by 
Equation 4.4: 

𝐹 =
(௉ି଴.ଶௌ)ௌ

௉ା଴.଼ௌ
, 

            (4.4) 

where 𝐹 is the depth of water infiltrated into the soil, 𝑃 is the precipitation depth, 𝑆 is the total 
surface storage, and all units are in millimeters. The total surface storage is given by Equation 
4.5: 

𝑆 =
25400

𝐶𝑁
− 254 

            (4.5) 

where CN is the runoff curve number. Assuming grass as the crop and Hydrological Group A as 
the soil type, the runoff curve number is 65 [36], which yields: 

𝑆 = 136.77 𝑚𝑚. 

Substituting this value into Equation 4.4 results in the infiltration calculation used for this 
algorithm, Equation 4.6: 

𝐹 =
(𝑃 − 27.35)  ×  136.77

𝑃 +  109.42
 

            (4.6) 
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This NRCS method is intended for determining the water infiltrated from precipitation, but this 
same method is also used for determining the water infiltrated from irrigation, since there is no 
standard method of calculating infiltration from irrigation. 

4.2.1.4.2 Evapotranspiration Rate Calculation Method 

There are several methods available for obtaining evapotranspiration rates. Among these are: 

 Temperature Method (Blaney-Criddle) 

 Energy Method (Penman-Monteith) 

 Radiation Method 

 Evaporation Pan Method 

Of these methods, the energy method is most accurate for irrigation scheduling on a daily basis 
[37]. Additionally, there are monthly average evapotranspiration estimates available for Boston, 
MA and Worcester, MA that could be used [38]. However, this system is intended to be more 
precise, in both time and space, when estimating the soil water content. As such, the algorithm 
utilizes the Food and Agriculture Organization’s (FAO) Penman-Monteith method to calculate 
the evapotranspiration rate for a given day.  

Equation 4.7 is the FAO Penman-Monteith Equation [39]: 

𝐸𝑇଴ =
0.408∆(𝑅௡ − 𝐺) + 𝛾

900
𝑇 + 273

𝑢ଶ(𝑒௦ − 𝑒௔)

∆ + 𝛾(1 + 0.34𝑢ଶ)
 

(4.7) 

where 𝐸𝑇଴ is the evapotranspiration rate [mm day-1], ∆ is the slope of the vapor pressure curve 
[kPa °C-1], 𝑅௡ is the net radiation at the crop surface [MJ m-2 day-1], 𝐺 is the soil heat flux 
density [MJ m-2 day-1], 𝛾 is the psychrometric constant [kPa °C-1], 𝑇 is the mean daily air 
temperature [°C], 𝑢ଶ is the wind speed at 2 meters height [m s-1], 𝑒௦ is the saturation vapor 
pressure [kPa], and 𝑒௔ is the actual vapor pressure [kPa].  

Wind speed and temperature data are readily available via the OpenWeatherMap API and thus 
those measurements are used directly in the equation. Detailed calculation procedures contained 
in [40] are used in determining the remaining parameters’ values, since measured values are not 
readily available. A summary of these procedures and relevant assumptions are as follows. 

On a daily time scale, the soil heat flux density is negligible, so 𝐺 = 0 is assumed in the 
algorithm. 

The psychrometric constant is given by Equation 4.8: 

𝛾 = 𝑎௣௦௬𝑃 
(4.8) 



18 

where 𝑎௣௦௬ is a coefficient dependent on the psychrometer being used and 𝑃 is atmospheric 

pressure [kPa]. Asmann type psychrometers are the most used, so a value of 𝑎௣௦௬ = 0.000662 is 

assumed. 

Saturation vapor pressure and the slope of the vapor pressure curve are both estimated using 
temperature data obtained from the API. Specifically, saturation vapor pressure for a given 
temperature (𝑒௢(𝑇)) is given by Equation 4.9: 

𝑒௢(𝑇) = 0.6108 exp ൬
17.27𝑇

𝑇 + 237.3
൰ 

(4.9) 

where 𝑇 is the air temperature [°C]. The saturation vapor pressure used in the Penman-Monteith 
Equation (𝑒௦) is the mean between the saturation vapor pressure at the maximum temperature 
(𝑇௠௔௫) and the minimum temperature (𝑇௠௜௡) in the given day, as shown in Equation 4.10: 

𝑒௦ =
𝑒௢(𝑇௠௔௫) + 𝑒௢(𝑇௠௜௡)

2
(4.10) 

The slope of the vapor pressure curve is calculated with Equation 4.11: 

Δ =
4098 𝑒௢(𝑇௠௘௔ )

(𝑇௠௘௔௡ + 237.3)ଶ

(4.11) 

where 𝑇௠௘௔௡ is the mean air temperature on the given day. 

The actual vapor pressure (𝑒௔) is calculated from temperature and relative humidity data 
obtained from the API, following Equation 4.12: 

𝑒௔ =
𝑒௢(𝑇௠௜௡)

𝑅𝐻௠௔௫

100
+ 𝑒௢(𝑇௠௔௫)

𝑅𝐻௠௜௡

100
2

(4.12) 

where 𝑅𝐻௠௔௫ and 𝑅𝐻௠௜  are the maximum and minimum relative humidity [%] for the given 
day. 

Net radiation is estimated with extensive calculations using time, location, and temperature data 
obtained from the API. Details for these calculations can be found in [40]. 

4.2.1.5 Determining the Amount of Water Needed from Irrigation 

Once the soil water content is below the minimum threshold, the algorithm must determine the 
appropriate amount of water to release from the system in order to bring the soil moisture back to 

bbeau
Stamp
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field capacity. The algorithm takes into account the predicted rainfall in this mass-balance 
calculation. As such, the first step after the soil water content dips below the threshold is to use 
the API to query for the projected rainfall in the next three days. In doing so, the algorithm only 
considers rainfall projections with at least a 60% chance of occurring, as anything less than this 
is considered unreliable.  

After the rainfall projections are obtained, the algorithm calculates the amount of water to be 
released from the system using Equation 4.13: 

𝐼 = (𝐹𝐶 − 𝑊𝐶 − 𝐹௉) + 𝑆𝐹 
(4.13) 

where 𝐼 is the amount of water to be released for irrigation, 𝐹𝐶 is the field capacity of the soil, 
𝑊𝐶 is the soil water content at the time of irrigation, 𝐹௉ is the expected amount of water 
infiltrated into the soil from projected rainfall, and 𝑆𝐹 is a safety factor to account for irrigated 
water that does not infiltrate into the soil. Both 𝐹௉ and 𝑆𝐹 are calculated using the NRCS Method 
for infiltration discussed in Section 4.2.1.4.1.  

These calculations are in units of depth of water (e.g., inches or millimeters), and the lawn size 
input is used to convert this depth into a volume of water (e.g., gallons or cubic meters).  

4.2.1.6 Determining Which Water Source to Use 

To determine which water source to open once irrigation is triggered, the volume of water 
needed for irrigation is compared to the volume of water in the household’s RWH tank at the 
given time. If the volume of water needed is less than that in the RWH tank, then all the water 
for irrigation can be supplied from the RWH source. Otherwise, the algorithm instructs the 
system to release water from the RWH supply until the tank is at a critically low level, and then 
release the remaining water needed from the household’s piped water supply. This “critically low 
level” in the RWH tank is reached when the water level in the tank reaches 2” (50.8 mm). This 
threshold will ensure that some water remains in the tank, such that the pump in the tank never 
runs dry, as running a pump in the absence of water can damage the pump. 

4.2.1.7 Algorithm Flowchart Visualization 

Figure 4.4 displays a flowchart outlining the key steps in the water-release algorithm design. 
These steps include: 

1. Determining the water content in the soil 
2. If the water content is below the threshold, querying for project rainfall in the next three 

days 
3. Calculating the amount of water needed for irrigation release 
4. Determining which water supply to open when irrigation is triggered 
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Figure 4.4: A flowchart outlining the main logic steps in the water-release algorithm design. In the 
equations, Id is the depth of water to be released for irrigation, I is the volume of water to be released for 
irrigation, FC is the field capacity of the soil, WC is the soil water content, FP is the water infiltrated into 

the soil from projected rainfall, and SF is a safety factor to account for the fact that not all irrigated 
water will infiltrate into the soil. 

 

4.2.2 Component 2: Arduino-based Electrical System 

The electrical system component of this project has two main functions: 1) obtain weather data 
from an API, and 2) send digital signals to control the valves on the two water sources (RWH 
and piped water). One key constraint to the electrical system arises from the first function: an 
Arduino board with Wi-Fi connection is required, such that obtaining weather data from the 
OpenWeather API is possible. To satisfy this constraint, the Arduino MKR WIFI 1010 was 
selected as the main component of the electrical system.  

To satisfy the second main function, the system outputs a high or low logic signal on two of the 
Arduino’s digital output pins to control whether the solenoid valves are open or closed. Upon 
integration of this electrical system with actual solenoid valves, additional components such as 
op-amps would likely be required, since the Arduino’s supply voltage alone may not be 
sufficient, depending on the solenoid valves selected. Since the mechanical system is outside the 
scope of this project, these high/low signal outputs from the digital pins are a sufficient indicator. 
Figure 4.5 shows a rendering of the electrical system diagram, in which the connection to the 
solenoid valves ignores any additional components needed and is thus a conceptual design for 
visualization purposes only.  
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Figure 4.5: Diagram of the electrical system component design. The connection to the solenoid valves is 
a conceptual design only, as additional components may be needed to amplify the signal from the 

Arduino, depending on the selected solenoid valves. 
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5 Testing and Evaluation 

5.1 Simulations 

5.1.1 Setup Details 

To evaluate the success of this project, testing of the automatic water-release algorithm was 
necessary. The algorithm could not be tested in real-time due to time constraints – that is, it 
would take at least a full watering season (April – October) to acquire meaningful data in real-
time. Instead, testing of the algorithm involved running simulations using previous years’ 
weather data. Simulations were run with multiple scenarios for each of the past ten years (2013-
2022), varying the lawn size, RWH tank size, and location inputs. Small, medium, and large 
lawn and tank size inputs were tested, as indicated in Table 5.1, and the following locations were 
tested to encompass different areas of Massachusetts:  

 Boston, MA 

 Worcester, MA 

 Plymouth, MA 

 Salem, MA 

For each simulation, the following initial conditions were set for the first day of the watering 
season (April 1st): 

 The RWH tank was assumed to be full. 

 The soil water content of the lawn was assumed to be at field capacity. 

Table 5.1: Lawn Size and RWH Tank Size Inputs for Simulations for Testing 

Size Lawn, ft2 (m2) RWH Tank, gal (L) 
Small 2,000 (232) 250 (946) 

Medium 10,000 (929) 1,000 (3,785) 
Large 20,000 (1,858) 5,000 (18,927) 

 

Thus, there are nine scenarios for a given year and location corresponding to the various 
combinations of lawn and tank size, as shown in Table 5.2. For each simulation run over the 
course of a watering season, the total amount of water released from the RWH tank supply, and 
the total water released from the piped, treated water supply were tracked. From these totals, 
values for the technical specifications outlined in Section 3 were calculated for each simulation 
as follows:  

 The average total water released for irrigation per week was calculated by summing the 
totals from the two water sources and dividing by the number of weeks in the watering 
season (30.57 weeks from April 1st to October 31st). 
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 The RWH supply’s share of the total water released was calculated by dividing the total 
water released from the RWH tank by the sum of the total water released from each water 
source. 

 The total outdoor water use from the piped water supply is simply the tracked total from 
the simulation.  

The raw data of the totals and the processed data, including the calculated specification values, 
for each simulation can be found in Appendix A.  

Simulations for the year 2022 were tested with the APIs in the Arduino-based code, found in 
Appendix C, to prove that the Arduino-based system was able to run successfully. The remaining 
simulations were run in Python, with the code in Appendix D, using downloaded bulk history 
weather data from OpenWeatherMap, as the historical weather API is only able to access data 
from the previous year. 

Table 5.2: Nine Scenarios for the Simulations for a Given Year and Location Based on Lawn and RWH 
Tank Size Variations 

Year X, Location Y 
Scenario Lawn Size RWH Tank Size 

1 Small Small 
2 Small Medium 
3 Small Large 
4 Medium Small 
5 Medium Medium 
6 Medium Large 
7 Large Small 
8 Large Medium 
9 Large Large 

 

5.1.2 Results 

For each of the four locations tested, a scatter plot was compiled for each of the three technical 
specifications, displaying the results for the nine scenarios across the ten simulated years. Figure 
5.1 displays the results for the second technical specification – the RWH supply’s share of the 
total water released – for both the Boston location and the Worcester location. The results vary 
slightly across different locations, as seen in Figure 5.1, but the largest variations are a result of 
the differing lawn and tank sizes. As such, this section presents results mainly for the Boston 
location, and a complete set of scatter plots for each location can be found in Appendix B.  
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(a)  

(b)  

Figure 5.1: Simulations results for each of the nine scenarios for the RWH supply’s share of the total 
water released in a watering season for both (a) the Boston location and (b) the Worcester location. 

Scenarios with the same lawn size have the same icon color, and scenarios with the same tank size have 
the same icon shape. 
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There was also considerable variation across the nine scenarios in the total outdoor water use 
from the piped water supply in a watering season, as shown in Figure 5.2. In general, Scenario 3, 
which used the small lawn size and large tank size, performed the best (largest RWH supply 
share and smallest piped water use), while Scenario 7, which used the large lawn size and small 
tank size, performed the worst (smallest RWH supply share and greatest piped water use). As 
expected, larger lawn sizes generally resulted in a smaller RWH share and greater piped water 
use, and larger tank sizes generally resulted in a larger RWH share and less piped water use. 
Additionally, lawn size had a greater impact on the specification results and the overall water use 
for each simulation than tank size. 

 

Figure 5.2: Simulations results for each of the nine scenarios for the total outdoor water use from the 
piped water supply in a watering season for Boston, MA. 

 

There was considerably less variation between scenarios in the average depth of water released 
for irrigation per week, as displayed in Figure 5.3. This tighter spread stems from the fact that 
water depth normalizes for lawn size, and thus variations due to lawn size are eliminated. Across 
the ten simulated years, the average irrigation per week for Boston fell within the range of 2.6 to 
3.4 inches (66.1 to 86.4 mm). 
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Figure 5.3: Simulations results for each of the nine scenarios for the average depth of water released for 
irrigation per week for Boston, MA. 

In the scatter plots for each of the three technical specifications, slight variations are observed 
across the simulated years due to differences in weather conditions, including rainfall, 
temperature, and humidity, among other parameters. As such, considering the time-averaged 
results for each scenario allows for an easier comparison between the scenarios. The average 
values across the ten simulated years for each technical specification and each scenario are 
shown in Table 5.3. 

Table 5.3: Technical Specification Results for Each Scenario Averaged Over 2013 – 2022 in Boston, MA 

Scenario 
[Spec 1] Avg. Water Per 

Week (in [mm]) 
[Spec 2] RWH Supply 

Share (%) 
[Spec 3] Outdoor Water 

Use - Piped (gal [L]) 
1: LSTS 3.14 [79.76] 10% 107,713 [407,693] 
2: LSTM 3.15 [80.01] 40% 72,361 [273,886] 
3: LSTL 3.15 [80.01] 99% 1,474 [5,579] 
4: LMTS 3.15 [80.01] 2% 588,046 [2,225,755] 
5: LMTM 3.15 [80.01] 8% 551,800 [2,088,565] 
6: LMTL 3.15 [80.01] 40% 363,155 [1,374,543] 
7: LLTS 3.15 [80.01] 1% 1,188,192 [4,497,308] 
8: LLTM 3.15 [80.01] 4% 1,151,892 [4,359,912] 
9: LLTL 3.15 [80.01] 20% 961,110 [3,637,800] 
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With these averages, the lack of variation between scenarios in the average water depth per week 
is even more apparent. Additionally, it’s clear to see that if lawn size is fixed, increasing tank 
size results in greater RWH share and a lower volume of water from the piped supply. For 
example, Scenario 3 has a greater RWH share and a lower piped water use than Scenarios 1 and 
2.  

5.2 Electrical Output Testing 

In addition to simulations, testing was required to determine whether the Arduino-based system 
could successfully output a high or low logic signal in response to the water-release algorithm. In 
a deployable system, these outputs would come from two of the Arduino’s digital output pins to 
control solenoid valves, as described in Section 4.2.2. For testing purposes, the built-in RGB 
LED on the MKR WIFI 1010 was used to display this output. During simulations, the Arduino 
turned the LED on green to indicate water being released from the RWH tank supply and turned 
the LED on red to indicate water being released from the piped water supply. Otherwise, the 
Arduino held the LED off. Turning the LED on and off involves sending a high or low logic 
signal to the red, blue, and green digital pins on the Arduino, and thus this method of testing 
accurately shows the system’s ability to control solenoid valves with the same high/low logic. 
This testing is more qualitative than quantitative. For all of the simulations, the LED output 
worked as expected, and thus the electrical output functionality of the system was deemed 
successful.  

5.3 Evaluation of Technical Specifications 

The following subsections discuss whether the project has met each of the five technical 
specifications described in Section 3 based on the simulation results presented in Section 5.1.2 
and Appendices A and B.  

5.3.1 Average Water Released for Irrigation Per Week 

Figure 5.3 and Table 5.3 show that all scenarios had a greater average irrigation depth per week 
for the ten simulated years in the Boston location, and this result was consistent across the other 
three locations, too. Thus, this project’s water-release algorithm fails to meet the technical 
specification of having an average of less than 1” (25.4 mm) of irrigated water per week over the 
course of a watering season.  

Failure to meet this specification may indicate that the water-release algorithm is flawed; 
however, although the algorithm could be developed further to add complexity and accuracy, the 
algorithm as-is is based on reasonable assumptions and irrigation methods from reputable 
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sources. Thus, it is likely that this failure instead highlights how water-intensive of a process 
lawn watering is in general.  

 

5.3.2 Rainwater Harvesting Supply’s Share of Total Water Released 

Figure 5.1 and Table 5.3 indicate that only Scenario 3 had greater than a 60% RWH share over 
the course of a watering season for the ten simulated years for Boston and Worcester, and this 
was also the case for Salem and Plymouth. As such, the algorithm largely fails to meet this 
technical specification.  

Failure to meet this technical specification indicates a general limitation of household RWH as it 
relates to the given lawn and tank size at a household. The success of Scenario 3 shows that 
using the largest tank size (5000 gal) allowed for nearly 100% of irrigation from RWH use for 
the smallest lawn size (2000 ft2). Thus, reaching even the 60% threshold from this specification 
with a larger lawn size would require even larger tank sizes. These larger tanks would likely 
necessitate an underground storage system, which isn’t feasible to have at most homes due to 
spatial and financial constraints. As such, failing to meet this specification is not the fault of the 
designed system, but rather represents a global constraint on the overarching problem. 

 

5.3.3 Total Outdoor Water Use from Piped Water Supply Per Watering 
Season 

Figure 5.2 and Table 5.3 show that only Scenario 3’s total piped water use for irrigation was 
below the threshold set by this specification for Boston, and this result was consistent for 
Plymouth, Salem, and Worcester. Thus, the algorithm largely fails to meet this technical 
specification.  

Similar to the first specification, failure to meet this specification highlights lawn watering as a 
very water-intensive process.  

 

5.3.4 Rainwater Harvesting Tank Size Compatibility  

Testing of the water-release algorithm with the Arduino-based electrical system indicated that 
the system could handle RWH tank size inputs throughout the range documented in Section 3, 
and thus the system successfully meets this technical specification. 
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5.3.5 Lawn Size Compatibility  

Testing of the water-release algorithm with the Arduino-based electrical system indicated that 
the system could handle lawn size inputs throughout the range documented in Section 3, and thus 
the system successfully meets this technical specification.  
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6 Budget 

Table 6.1: Itemized Budget 

Item Example Source Cost 
Arduino MKR WIFI 

1010 
Active Learning Labs $0 

Historical Weather 
Data & Weather 
Forecast APIs 

Open Weather Map – Free Student 
Package 

$0 

Bulk History Weather 
Data 

Open Weather Map 
4 locations x $10 per location 

= $40 
TOTAL $40 
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7 Conclusions 

7.1 Impact 

Despite failing to meet three of the technical specifications, the system designed in this project is 
a valuable starting point for making irrigation technology more efficient and up to date. 
Irrigation is one area where outdated practices and methods are still used, as water is relatively 
cheap and thus increasing efficiency of irrigation has not been a major focus. However, increased 
efficiency of irrigation technology has the potential to provide homeowners with significant cost 
savings, especially if updated technology is paired with rainwater harvesting.  

Table 7.1 shows the potential cost savings for each of the nine simulated scenarios for the Boston 
location based on the results averaged over 2013 to 2022 and assuming a cost of $10 per 1000 
gallons of water [41]. The cost savings are calculated from the product of the cost of water per 
gallon and the water released from the household’s RWH tank supply during a watering season. 
Even the worst-performing scenario, Scenario 7, managed to save an average of 11,511 gal 
(43,568 L) with the RWH water supply, resulting in over $100 in cost savings, which is not a 
negligible amount of money. 

Table 7.1: Potential Cost Savings for Each Scenario Using the Average RWH Water Use for the Ten 
Simulated Years for the Boston Location, Assuming a $10 / 1000 gal Cost of Water [41] 

Scenario 
Average Total RWH Water 

Use (gal [L]) 
Potential Cost Savings 

1: LSTS 11,943 [45205] $119.43  
2: LSTM 47,876 [181210] $478.76  
3: LSTL 124,586 [471557] $1,245.86  
4: LMTS 11,838 [44808] $118.38  
5: LMTM 48,286 [182,764] $482.86  
6: LMTL 238,042 [900,988] $2,380.42  
7: LLTS 11,511 [43,568] $115.11  
8: LLTM 48,013 [181,730] $480.13  
9: LLTL 239,855 [907,850] $2,398.55  

 

7.2 Future Work 

Although the algorithm developed in this project is a valuable start towards increasing the 
efficiency of irrigation technology, there is considerable room for improvement and added 
complexity. One potential point of improvement relates to the method used for calculating 
infiltration from irrigated water. The NRCS method for infiltration was used, as described in 
Section 4.2.1.4.1. However, this method was developed for calculating infiltration from 
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precipitation, and thus future work could determine a more accurate method for infiltration 
calculations from irrigated water specifically.  

Additionally, future work could be dedicated to adding complexity to the water-release 
algorithm. For one, potentially introducing soil moisture sensors to work in parallel with the 
method for calculating the estimated soil water content or including a network of sensors 
throughout a household’s lawn, especially for larger sized lawns. This network of sensors could 
be used to inform lawn irrigation in different sectors of the lawn, as some parts of the lawn may 
dry more quickly than others. Also, complexity could be added by considering how the water 
needs of grass change over the course of the watering season, perhaps by introducing a 
dynamically changing water content threshold instead of maintaining a static threshold 
throughout the year.  

Finally, future work could include testing this water-release algorithm in different locations 
outside Massachusetts, perhaps in places with more yearly rainfall such as the southern United 
States. This could yield better results, as more precipitation has the potential to offset more 
irrigation, leading to less water use.  

Once the water-release algorithm is in satisfactory form, the next major step would be to design 
and build the mechanical valve and piping system that would allow for the water-release 
algorithm to be deployed in actual households. This would result in the most meaningful testing 
and evaluation, as quantitative results could be coupled with qualitative observations (e.g., is the 
lawn healthy, is there any pooling of water, etc.). Ultimately, this project represents a small, yet 
meaningful, piece of the difficult and complex problem of bringing higher efficiency to irrigation 
technology with the goal of being able to modify end-user behavior.  
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FROM SIMULATIONS
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Table A.1: Raw Data from Boston, MA Simulations 

* ALL VALUES IN 
GALLONS Year RWH Piped 

Water 
Days 

Watered 
Scenario 1 2013 12250 109956 56 

 2014 12000 107453 54 

 2015 10000 114733 54 

 2016 11750 116211 54 

 2017 11750 103942 51 

 2018 11500 106808 51 

 2019 11527 98300 53 
 2020 12500 113987 58 
 2021 12122 90770 55 
 2022 13500 114968 55 

Scenario 2 2013 48172 75660 57 
 2014 46880 72521 54 
 2015 43000 83834 55 
 2016 47000 80897 54 
 2017 46000 67582 50 
 2018 46000 72347 51 
 2019 51423 62643 57 
 2020 49696 76825 58 
 2021 43909 56678 54 
 2022 54000 74620 55 

Scenario 3 2013 123832 0 57 
 2014 117499 1902 54 
 2015 122408 4426 55 
 2016 123390 4508 54 
 2017 113582 0 50 
 2018 118347 0 51 
 2019 114066 0 57 
 2020 122618 3903 58 
 2021 100587 0 54 
 2022 128620 0 55 

Scenario 4 2013 12250 606911 57 
 2014 12000 585005 54 
 2015 10750 623421 55 
 2016 11750 627737 54 
 2017 11500 556410 50 
 2018 11500 580235 51 
 2019 10634 559695 57 
 2020 12500 620107 58 
 2021 11594 491340 54 
 2022 13500 629601 55 
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Scenario 5 2013 49000 570161 57 
 2014 48000 549005 54 
 2015 43000 591171 55 
 2016 47000 592487 54 
 2017 46000 521910 50 
 2018 46000 545735 51 
 2019 49634 520695 57 
 2020 50000 582607 58 
 2021 47801 455133 54 
 2022 54000 589101 55 

Scenario 6 2013 237055 382106 57 
 2014 232817 364188 54 
 2015 215000 419171 55 
 2016 233845 405642 54 
 2017 226409 341502 50 
 2018 228845 362889 51 
 2019 257113 313217 57 
 2020 248480 384127 58 
 2021 219545 283389 54 
 2022 267777 375323 55 

Scenario 7 2013 12250 1226072 57 
 2014 12000 1182009 54 
 2015 10750 1257592 55 
 2016 11750 1267224 54 
 2017 11500 1124321 50 
 2018 11500 1171970 51 
 2019 8269 1132390 57 
 2020 12500 1252713 58 
 2021 10938 994930 54 
 2022 13500 1272701 55 

Scenario 8 2013 49000 1189322 57 
 2014 48000 1146009 54 
 2015 43000 1225342 55 

 2016 47000 1231974 54 

 2017 46000 1089821 50 

 2018 46000 1137470 51 

 2019 47269 1093390 57 

 2020 50000 1215213 58 

 2021 47688 958180 54 

 2022 54000 1232201 55 
Scenario 9 2013 240905 997417 57 

 2014 236143 957866 54 

 2015 215000 1053342 55 
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 2016 233845 1045129 54 

 2017 226409 909412 50 

 2018 228845 954624 51 

 2019 255269 885390 57 

 2020 250000 1015213 58 

 2021 231588 774279 54 

 2022 267777 1018424 55 
 

Table A.2: Processed Data from Boston, MA Simulations 

 Year Lawn 
Size (sf) 

Total Water 
Released 

(gal) 

Total 
Water 

Released 
(in) 

[Spec 1] 
Avg. Water 
Per Week 

(in) 

[Spec 2] 
RWH 

Supply 
Share (%) 

[Spec 3] 
Outdoor 

Water Use - 
Piped (gal) 

S1: LSTS 2013 2000 122206 98 3.2 10% 109956 

 2014 2000 119453 96 3.1 10% 107453 

 2015 2000 124733 100 3.3 8% 114733 

 2016 2000 127961 103 3.4 9% 116211 

 2017 2000 115692 93 3.0 10% 103942 

 2018 2000 118308 95 3.1 10% 106808 

 2019 2000 109827 88 2.9 10% 98300 

 2020 2000 126487 101 3.3 10% 113987 
 2021 2000 102892 83 2.7 12% 90770 
 2022 2000 128468 103 3.4 11% 114968 

S2: LSTM 2013 2000 123832 99 3.2 39% 75660 

 2014 2000 119401 96 3.1 39% 72521 

 2015 2000 126834 102 3.3 34% 83834 

 2016 2000 127897 103 3.4 37% 80897 

 2017 2000 113582 91 3.0 40% 67582 

 2018 2000 118347 95 3.1 39% 72347 

 2019 2000 114066 91 3.0 45% 62643 

 2020 2000 126521 101 3.3 39% 76825 
 2021 2000 100587 81 2.6 44% 56678 
 2022 2000 128620 103 3.4 42% 74620 

S3: LSTL 2013 2000 123832 99 3.2 100% 0 

 2014 2000 119401 96 3.1 98% 1902 

 2015 2000 126834 102 3.3 97% 4426 

 2016 2000 127897 103 3.4 96% 4508 

 2017 2000 113582 91 3.0 100% 0 

 2018 2000 118347 95 3.1 100% 0 

 2019 2000 114066 91 3.0 100% 0 

 2020 2000 126521 101 3.3 97% 3903 
 2021 2000 100587 81 2.6 100% 0 
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 2022 2000 128620 103 3.4 100% 0 
S4: LMTS 2013 10000 619161 99 3.2 2% 606911 

 2014 10000 597005 96 3.1 2% 585005 

 2015 10000 634171 102 3.3 2% 623421 

 2016 10000 639487 103 3.4 2% 627737 

 2017 10000 567910 91 3.0 2% 556410 

 2018 10000 591735 95 3.1 2% 580235 

 2019 10000 570330 91 3.0 2% 559695 

 2020 10000 632607 101 3.3 2% 620107 
 2021 10000 502934 81 2.6 2% 491340 
 2022 10000 643101 103 3.4 2% 629601 

S5: LMTM 2013 10000 619161 99 3.2 8% 570161 

 2014 10000 597005 96 3.1 8% 549005 

 2015 10000 634171 102 3.3 7% 591171 

 2016 10000 639487 103 3.4 7% 592487 

 2017 10000 567910 91 3.0 8% 521910 

 2018 10000 591735 95 3.1 8% 545735 

 2019 10000 570330 91 3.0 9% 520695 

 2020 10000 632607 101 3.3 8% 582607 
 2021 10000 502934 81 2.6 10% 455133 
 2022 10000 643101 103 3.4 8% 589101 

S6: LMTL 2013 10000 619161 99 3.2 38% 382106 

 2014 10000 597005 96 3.1 39% 364188 

 2015 10000 634171 102 3.3 34% 419171 

 2016 10000 639487 103 3.4 37% 405642 

 2017 10000 567910 91 3.0 40% 341502 

 2018 10000 591735 95 3.1 39% 362889 

 2019 10000 570330 91 3.0 45% 313217 

 2020 10000 632607 101 3.3 39% 384127 
 2021 10000 502934 81 2.6 44% 283389 
 2022 10000 643101 103 3.4 42% 375323 

S7: LLTS 2013 20000 1238322 99 3.2 1% 1226072 

 2014 20000 1194009 96 3.1 1% 1182009 

 2015 20000 1268342 102 3.3 1% 1257592 

 2016 20000 1278974 103 3.4 1% 1267224 

 2017 20000 1135821 91 3.0 1% 1124321 

 2018 20000 1183470 95 3.1 1% 1171970 

 2019 20000 1140659 91 3.0 1% 1132390 

 2020 20000 1265213 101 3.3 1% 1252713 
 2021 20000 1005867 81 2.6 1% 994930 
 2022 20000 1286201 103 3.4 1% 1272701 

S8: LLTM 2013 20000 1238322 99 3.2 4% 1189322 

 2014 20000 1194009 96 3.1 4% 1146009 
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 2015 20000 1268342 102 3.3 3% 1225342 

 2016 20000 1278974 103 3.4 4% 1231974 

 2017 20000 1135821 91 3.0 4% 1089821 

 2018 20000 1183470 95 3.1 4% 1137470 

 2019 20000 1140659 91 3.0 4% 1093390 

 2020 20000 1265213 101 3.3 4% 1215213 
 2021 20000 1005867 81 2.6 5% 958180 
 2022 20000 1286201 103 3.4 4% 1232201 

S9: LLTL 2013 20000 1238322 99 3.2 19% 997417 

 2014 20000 1194009 96 3.1 20% 957866 

 2015 20000 1268342 102 3.3 17% 1053342 

 2016 20000 1278974 103 3.4 18% 1045129 

 2017 20000 1135821 91 3.0 20% 909412 

 2018 20000 1183470 95 3.1 19% 954624 

 2019 20000 1140659 91 3.0 22% 885390 

 2020 20000 1265213 101 3.3 20% 1015213 
 2021 20000 1005867 81 2.6 23% 774279 
 2022 20000 1286201 103 3.4 21% 1018424 

 

Table A.3: Raw Data from Plymouth, MA Simulations 

* ALL VALUES IN 
GALLONS Year RWH Piped 

Water 
Days 

Watered 
Scenario 1 2013 10500 95192 46 

 2014 11000 101245 51 

 2015 9250 86930 43 

 2016 10750 103342 49 

 2017 11000 96415 47 

 2018 11000 100194 48 

 2019 11000 91370 46 
 2020 10750 99431 48 
 2021 10412 80179 45 
 2022 11500 94369 49 

Scenario 2 2013 42000 62985 45 
 2014 42832 67778 50 
 2015 38000 58043 42 
 2016 43000 70980 49 
 2017 44000 63415 47 
 2018 44000 67186 48 
 2019 45000 58960 47 
 2020 42000 66106 47 
 2021 39663 50995 45 
 2022 42000 63559 48 
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Scenario 3 2013 104985 0 45 
 2014 108059 2551 50 
 2015 96043 0 42 
 2016 111882 2098 49 
 2017 107415 0 47 
 2018 109320 1865 48 
 2019 103960 0 47 
 2020 106118 1988 47 
 2021 90658 0 45 
 2022 105559 0 48 

Scenario 4 2013 10500 514423 45 
 2014 10750 542300 50 
 2015 9500 470715 42 
 2016 10750 559151 49 
 2017 11000 526077 47 
 2018 11000 544928 48 
 2019 11250 508552 47 
 2020 10500 530030 47 
 2021 10500 442791 45 
 2022 10500 517294 48 

Scenario 5 2013 42000 482923 45 
 2014 43000 510050 50 
 2015 38000 442215 42 
 2016 43000 526901 49 
 2017 44000 493077 47 
 2018 44000 511928 48 
 2019 45000 474802 47 
 2020 42000 498530 47 
 2021 41992 411299 45 
 2022 42000 485794 48 

Scenario 6 2013 206622 318301 45 
 2014 210569 342481 50 
 2015 182691 297525 42 
 2016 212991 356910 49 
 2017 218759 318319 47 
 2018 212904 343024 48 
 2019 220768 299034 47 
 2020 208204 332326 47 
 2021 198314 254977 45 
 2022 210000 317794 48 

Scenario 7 2013 10500 1039346 45 
 2014 10750 1095351 50 
 2015 9500 950931 42 
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 2016 10750 1129052 49 
 2017 11000 1063155 47 
 2018 11000 1100856 48 
 2019 11250 1028354 47 
 2020 10500 1070560 47 
 2021 10500 896083 45 
 2022 10500 1045088 48 

Scenario 8 2013 42000 1007846 45 
 2014 43000 1063101 50 
 2015 38000 922431 42 

 2016 43000 1096802 49 

 2017 44000 1030155 47 

 2018 44000 1067856 48 

 2019 45000 994604 47 

 2020 42000 1039060 47 

 2021 42000 864583 45 

 2022 42000 1013588 48 
Scenario 9 2013 206622 843224 45 

 2014 211409 894692 50 

 2015 182691 777740 42 

 2016 212991 926811 49 

 2017 218759 855396 47 

 2018 212904 898952 48 

 2019 220768 818836 47 

 2020 208204 872856 47 

 2021 201628 704954 45 

 2022 210000 845588 48 
 

Table A.4: Processed Data from Plymouth, MA Simulations 

 Year 
Lawn 
Size 
(sf) 

Total 
Water 

Released 
(gal) 

Total 
Water 

Released 
(in) 

[Spec 1] 
Avg. Water 
Per Week 

(in) 

[Spec 2] 
RWH 

Supply 
Share (%) 

[Spec 3] 
Outdoor 

Water Use - 
Piped (gal) 

S1: LSTS 2013 2000 105692 85 2.8 10% 95192 

 2014 2000 112245 90 2.9 10% 101245 

 2015 2000 96180 77 2.5 10% 86930 

 2016 2000 114092 92 3.0 9% 103342 

 2017 2000 107415 86 2.8 10% 96415 

 2018 2000 111194 89 2.9 10% 100194 

 2019 2000 102370 82 2.7 11% 91370 

 2020 2000 110181 88 2.9 10% 99431 
 2021 2000 90591 73 2.4 11% 80179 
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 2022 2000 105869 85 2.8 11% 94369 
S2: LSTM 2013 2000 104985 84 2.8 40% 62985 

 2014 2000 110610 89 2.9 39% 67778 

 2015 2000 96043 77 2.5 40% 58043 

 2016 2000 113980 91 3.0 38% 70980 

 2017 2000 107415 86 2.8 41% 63415 

 2018 2000 111186 89 2.9 40% 67186 

 2019 2000 103960 83 2.7 43% 58960 

 2020 2000 108106 87 2.8 39% 66106 
 2021 2000 90658 73 2.4 44% 50995 
 2022 2000 105559 85 2.8 40% 63559 

S3: LSTL 2013 2000 104985 84 2.8 100% 0 

 2014 2000 110610 89 2.9 98% 2551 

 2015 2000 96043 77 2.5 100% 0 

 2016 2000 113980 91 3.0 98% 2098 

 2017 2000 107415 86 2.8 100% 0 

 2018 2000 111186 89 2.9 98% 1865 

 2019 2000 103960 83 2.7 100% 0 

 2020 2000 108106 87 2.8 98% 1988 
 2021 2000 90658 73 2.4 100% 0 
 2022 2000 105559 85 2.8 100% 0 

S4: LMTS 2013 10000 524923 84 2.8 2% 514423 

 2014 10000 553050 89 2.9 2% 542300 

 2015 10000 480215 77 2.5 2% 470715 

 2016 10000 569901 91 3.0 2% 559151 

 2017 10000 537077 86 2.8 2% 526077 

 2018 10000 555928 89 2.9 2% 544928 

 2019 10000 519802 83 2.7 2% 508552 

 2020 10000 540530 87 2.8 2% 530030 
 2021 10000 453291 73 2.4 2% 442791 
 2022 10000 527794 85 2.8 2% 517294 

S5: LMTM 2013 10000 524923 84 2.8 8% 482923 

 2014 10000 553050 89 2.9 8% 510050 

 2015 10000 480215 77 2.5 8% 442215 

 2016 10000 569901 91 3.0 8% 526901 

 2017 10000 537077 86 2.8 8% 493077 

 2018 10000 555928 89 2.9 8% 511928 

 2019 10000 519802 83 2.7 9% 474802 

 2020 10000 540530 87 2.8 8% 498530 
 2021 10000 453291 73 2.4 9% 411299 
 2022 10000 527794 85 2.8 8% 485794 

S6: LMTL 2013 10000 524923 84 2.8 39% 318301 

 2014 10000 553050 89 2.9 38% 342481 
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 2015 10000 480215 77 2.5 38% 297525 

 2016 10000 569901 91 3.0 37% 356910 

 2017 10000 537077 86 2.8 41% 318319 

 2018 10000 555928 89 2.9 38% 343024 

 2019 10000 519802 83 2.7 42% 299034 

 2020 10000 540530 87 2.8 39% 332326 
 2021 10000 453291 73 2.4 44% 254977 
 2022 10000 527794 85 2.8 40% 317794 

S7: LLTS 2013 20000 1049846 84 2.8 1% 1039346 

 2014 20000 1106101 89 2.9 1% 1095351 

 2015 20000 960431 77 2.5 1% 950931 

 2016 20000 1139802 91 3.0 1% 1129052 

 2017 20000 1074155 86 2.8 1% 1063155 

 2018 20000 1111856 89 2.9 1% 1100856 

 2019 20000 1039604 83 2.7 1% 1028354 

 2020 20000 1081060 87 2.8 1% 1070560 
 2021 20000 906583 73 2.4 1% 896083 
 2022 20000 1055588 85 2.8 1% 1045088 

S8: LLTM 2013 20000 1049846 84 2.8 4% 1007846 

 2014 20000 1106101 89 2.9 4% 1063101 

 2015 20000 960431 77 2.5 4% 922431 

 2016 20000 1139802 91 3.0 4% 1096802 

 2017 20000 1074155 86 2.8 4% 1030155 

 2018 20000 1111856 89 2.9 4% 1067856 

 2019 20000 1039604 83 2.7 4% 994604 

 2020 20000 1081060 87 2.8 4% 1039060 
 2021 20000 906583 73 2.4 5% 864583 
 2022 20000 1055588 85 2.8 4% 1013588 

S9: LLTL 2013 20000 1049846 84 2.8 20% 843224 

 2014 20000 1106101 89 2.9 19% 894692 

 2015 20000 960431 77 2.5 19% 777740 

 2016 20000 1139802 91 3.0 19% 926811 

 2017 20000 1074155 86 2.8 20% 855396 

 2018 20000 1111856 89 2.9 19% 898952 

 2019 20000 1039604 83 2.7 21% 818836 

 2020 20000 1081060 87 2.8 19% 872856 
 2021 20000 906583 73 2.4 22% 704954 
 2022 20000 1055588 85 2.8 20% 845588 
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Table A.5: Raw Data from Salem, MA Simulations 

*ALL VALUES IN GALLONS Year RWH Piped 
Water 

Days 
Watered 

Scenario 1 2013 11250 104939 52 

 2014 11750 107636 54 

 2015 10000 88864 44 

 2016 11250 110734 53 

 2017 11500 104201 51 

 2018 11500 104798 52 

 2019 12750 100019 53 
 2020 11750 109945 53 
 2021 11500 91101 50 
 2022 12500 113989 55 

Scenario 2 2013 45248 73028 53 
 2014 45658 73925 54 
 2015 39792 59528 45 
 2016 43000 79588 53 
 2017 43000 72688 50 
 2018 46000 70789 52 
 2019 51970 62307 54 
 2020 46000 73997 52 
 2021 44504 56417 49 
 2022 51000 77771 56 

Scenario 3 2013 116067 2209 53 
 2014 116946 2637 54 
 2015 96784 2537 45 
 2016 122140 447 53 
 2017 115688 0 50 
 2018 116789 0 52 
 2019 114276 0 54 
 2020 115494 4503 52 
 2021 100921 0 49 
 2022 128202 569 56 

Scenario 4 2013 11500 579883 53 
 2014 11750 586163 54 
 2015 10000 486603 45 
 2016 10750 602188 53 
 2017 10750 567690 50 
 2018 11500 572444 52 
 2019 13000 558381 54 
 2020 11500 588487 52 
 2021 11250 493354 49 
 2022 12750 631106 56 
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Scenario 5 2013 46000 545383 53 
 2014 47000 550913 54 
 2015 40000 456603 45 
 2016 43000 569938 53 
 2017 43000 535440 50 
 2018 46000 537944 52 
 2019 52000 519381 54 
 2020 46000 553987 52 
 2021 45000 459604 49 
 2022 51000 592856 56 

Scenario 6 2013 225300 366083 53 
 2014 227349 370564 54 
 2015 190839 305764 45 
 2016 215000 397938 53 
 2017 212991 365450 50 
 2018 227691 356254 52 
 2019 258053 313328 54 
 2020 227564 372424 52 
 2021 222391 282212 49 
 2022 255000 388856 56 

Scenario 7 2013 11500 1171266 53 
 2014 11750 1184076 54 
 2015 10000 983206 45 
 2016 10750 1215126 53 
 2017 10750 1146131 50 
 2018 11500 1156389 52 
 2019 13000 1129762 54 
 2020 11500 1188474 52 
 2021 11250 997957 49 
 2022 12750 1274962 56 

Scenario 8 2013 46000 1136766 53 
 2014 47000 1148826 54 
 2015 40000 953206 45 

 2016 43000 1182876 53 

 2017 43000 1113881 50 

 2018 46000 1121889 52 

 2019 52000 1090762 54 

 2020 46000 1153974 52 

 2021 45000 964207 49 

 2022 51000 1236712 56 
Scenario 9 2013 229059 953707 53 

 2014 230638 965188 54 

 2015 191877 801329 45 



50 
 

 2016 215000 1010876 53 

 2017 212991 943890 50 

 2018 227691 940198 52 

 2019 258204 884557 54 

 2020 227564 972411 52 

 2021 224059 785148 49 

 2022 255000 1032712 56 
 

Table A.6: Processed Data from Salem, MA Simulations 

 Year 
Lawn 
Size 
(sf) 

Total 
Water 

Released 
(gal) 

Total 
Water 

Released 
(in) 

[Spec 1] 
Avg. 

Water Per 
Week (in) 

[Spec 2] 
RWH 

Supply 
Share (%) 

[Spec 3] 
Outdoor 

Water Use - 
Piped (gal) 

S1: LSTS 2013 2000 116189 93 3.0 10% 104939 

 2014 2000 119386 96 3.1 10% 107636 

 2015 2000 98864 79 2.6 10% 88864 

 2016 2000 121984 98 3.2 9% 110734 

 2017 2000 115701 93 3.0 10% 104201 

 2018 2000 116298 93 3.1 10% 104798 

 2019 2000 112769 90 3.0 11% 100019 

 2020 2000 121695 98 3.2 10% 109945 
 2021 2000 102601 82 2.7 11% 91101 
 2022 2000 126489 101 3.3 10% 113989 

S2: LSTM 2013 2000 118277 95 3.1 38% 73028 

 2014 2000 119583 96 3.1 38% 73925 

 2015 2000 99321 80 2.6 40% 59528 

 2016 2000 122588 98 3.2 35% 79588 

 2017 2000 115688 93 3.0 37% 72688 

 2018 2000 116789 94 3.1 39% 70789 

 2019 2000 114276 92 3.0 45% 62307 

 2020 2000 119997 96 3.1 38% 73997 
 2021 2000 100921 81 2.6 44% 56417 
 2022 2000 128771 103 3.4 40% 77771 

S3: LSTL 2013 2000 118277 95 3.1 98% 2209 

 2014 2000 119583 96 3.1 98% 2637 

 2015 2000 99321 80 2.6 97% 2537 

 2016 2000 122588 98 3.2 100% 447 

 2017 2000 115688 93 3.0 100% 0 

 2018 2000 116789 94 3.1 100% 0 

 2019 2000 114276 92 3.0 100% 0 

 2020 2000 119997 96 3.1 96% 4503 
 2021 2000 100921 81 2.6 100% 0 
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 2022 2000 128771 103 3.4 100% 569 
S4: LMTS 2013 10000 591383 95 3.1 2% 579883 

 2014 10000 597913 96 3.1 2% 586163 

 2015 10000 496603 80 2.6 2% 486603 

 2016 10000 612938 98 3.2 2% 602188 

 2017 10000 578440 93 3.0 2% 567690 

 2018 10000 583944 94 3.1 2% 572444 

 2019 10000 571381 92 3.0 2% 558381 

 2020 10000 599987 96 3.1 2% 588487 
 2021 10000 504604 81 2.6 2% 493354 
 2022 10000 643856 103 3.4 2% 631106 

S5: LMTM 2013 10000 591383 95 3.1 8% 545383 

 2014 10000 597913 96 3.1 8% 550913 

 2015 10000 496603 80 2.6 8% 456603 

 2016 10000 612938 98 3.2 7% 569938 

 2017 10000 578440 93 3.0 7% 535440 

 2018 10000 583944 94 3.1 8% 537944 

 2019 10000 571381 92 3.0 9% 519381 

 2020 10000 599987 96 3.1 8% 553987 
 2021 10000 504604 81 2.6 9% 459604 
 2022 10000 643856 103 3.4 8% 592856 

S6: LMTL 2013 10000 591383 95 3.1 38% 366083 

 2014 10000 597913 96 3.1 38% 370564 

 2015 10000 496603 80 2.6 38% 305764 

 2016 10000 612938 98 3.2 35% 397938 

 2017 10000 578440 93 3.0 37% 365450 

 2018 10000 583944 94 3.1 39% 356254 

 2019 10000 571381 92 3.0 45% 313328 

 2020 10000 599987 96 3.1 38% 372424 
 2021 10000 504604 81 2.6 44% 282212 
 2022 10000 643856 103 3.4 40% 388856 

S7: LLTS 2013 20000 1182766 95 3.1 1% 1171266 

 2014 20000 1195826 96 3.1 1% 1184076 

 2015 20000 993206 80 2.6 1% 983206 

 2016 20000 1225876 98 3.2 1% 1215126 

 2017 20000 1156881 93 3.0 1% 1146131 

 2018 20000 1167889 94 3.1 1% 1156389 

 2019 20000 1142762 92 3.0 1% 1129762 

 2020 20000 1199974 96 3.1 1% 1188474 
 2021 20000 1009207 81 2.6 1% 997957 
 2022 20000 1287712 103 3.4 1% 1274962 

S8: LLTM 2013 20000 1182766 95 3.1 4% 1136766 

 2014 20000 1195826 96 3.1 4% 1148826 



52 
 

 2015 20000 993206 80 2.6 4% 953206 

 2016 20000 1225876 98 3.2 4% 1182876 

 2017 20000 1156881 93 3.0 4% 1113881 

 2018 20000 1167889 94 3.1 4% 1121889 

 2019 20000 1142762 92 3.0 5% 1090762 

 2020 20000 1199974 96 3.1 4% 1153974 
 2021 20000 1009207 81 2.6 4% 964207 
 2022 20000 1287712 103 3.4 4% 1236712 

S9: LLTL 2013 20000 1182766 95 3.1 19% 953707 

 2014 20000 1195826 96 3.1 19% 965188 

 2015 20000 993206 80 2.6 19% 801329 

 2016 20000 1225876 98 3.2 18% 1010876 

 2017 20000 1156881 93 3.0 18% 943890 

 2018 20000 1167889 94 3.1 19% 940198 

 2019 20000 1142762 92 3.0 23% 884557 

 2020 20000 1199974 96 3.1 19% 972411 
 2021 20000 1009207 81 2.6 22% 785148 
 2022 20000 1287712 103 3.4 20% 1032712 

 

Table A.7: Raw Data from Worcester, MA Simulations 

* ALL VALUES IN 
GALLONS Year RWH Piped 

Water 
Days 

Watered 
Scenario 1 2013 11000 106383 52 

 2014 12000 108600 54 

 2015 12000 118255 58 

 2016 12000 115917 56 

 2017 12000 106904 53 

 2018 12750 100350 54 

 2019 11250 97375 52 
 2020 11000 106696 53 
 2021 11045 84132 52 
 2022 12250 105195 53 

Scenario 2 2013 44000 73742 52 
 2014 50000 72614 55 
 2015 47641 80790 57 
 2016 47988 79511 56 
 2017 47291 71677 53 
 2018 51620 63037 55 
 2019 45000 63633 52 
 2020 45000 73690 54 
 2021 40912 50233 48 
 2022 49482 70357 54 
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Scenario 3 2013 115449 2292 52 
 2014 122614 0 55 
 2015 128200 231 57 
 2016 125419 2081 56 
 2017 118969 0 53 
 2018 114657 0 55 
 2019 108529 104 52 
 2020 116814 1876 54 
 2021 91144 0 48 
 2022 119839 0 54 

Scenario 4 2013 11000 577708 52 
 2014 12500 600571 55 
 2015 12000 630151 57 
 2016 12000 625499 56 
 2017 12000 582843 53 
 2018 13000 560286 55 
 2019 11250 531914 52 
 2020 11250 582200 54 
 2021 8824 446898 48 
 2022 12500 586694 54 

Scenario 5 2013 44000 544708 52 
 2014 50000 563071 55 
 2015 48000 594151 57 
 2016 48000 589499 56 
 2017 48000 546843 53 
 2018 52000 521286 55 
 2019 45000 498164 52 
 2020 45000 548450 54 
 2021 42574 413148 48 
 2022 50000 549194 54 

Scenario 6 2013 214313 374395 52 
 2014 247564 365508 55 
 2015 228370 413780 57 
 2016 238360 399139 56 
 2017 235089 359754 53 
 2018 251346 321940 55 
 2019 224059 319105 52 
 2020 223418 370032 54 
 2021 204558 251165 48 
 2022 247408 351786 54 

Scenario 7 2013 11000 1166416 52 
 2014 12500 1213642 55 
 2015 12000 1272301 57 
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 2016 12000 1262999 56 
 2017 12000 1177686 53 
 2018 13000 1133572 55 
 2019 11250 1075079 52 
 2020 11250 1175650 54 
 2021 6399 905046 48 
 2022 12500 1185889 54 

Scenario 8 2013 44000 1133416 52 
 2014 50000 1176142 55 
 2015 48000 1236301 57 

 2016 48000 1226999 56 

 2017 48000 1141686 53 

 2018 52000 1094572 55 

 2019 45000 1041329 52 

 2020 45000 1141900 54 

 2021 40149 871296 48 

 2022 50000 1148389 54 
Scenario 9 2013 214313 963103 52 

 2014 247564 978579 55 

 2015 230167 1054134 57 

 2016 238418 1036581 56 

 2017 236545 953141 53 

 2018 253245 893327 55 

 2019 224059 862270 52 

 2020 223418 963482 54 

 2021 214901 696544 48 

 2022 249816 948573 54 
 

Table A.8: Processed Data from Worcester, MA Simulations 

 Year 
Lawn 
Size 
(sf) 

Total 
Water 

Released 
(gal) 

Total 
Water 

Released 
(in) 

[Spec 1] 
Avg. 

Water Per 
Week (in) 

[Spec 2] 
RWH 

Supply 
Share (%) 

[Spec 3] 
Outdoor 

Water Use - 
Piped (gal) 

S1: LSTS 2013 2000 117383 94 3.1 9% 106383 

 2014 2000 120600 97 3.2 10% 108600 

 2015 2000 130255 104 3.4 9% 118255 

 2016 2000 127917 103 3.4 9% 115917 

 2017 2000 118904 95 3.1 10% 106904 

 2018 2000 113100 91 3.0 11% 100350 

 2019 2000 108625 87 2.9 10% 97375 

 2020 2000 117696 94 3.1 9% 106696 
 2021 2000 95177 76 2.5 12% 84132 
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 2022 2000 117445 94 3.1 10% 105195 
S2: LSTM 2013 2000 117742 94 3.1 37% 73742 

 2014 2000 122614 98 3.2 41% 72614 

 2015 2000 128430 103 3.4 37% 80790 

 2016 2000 127500 102 3.3 38% 79511 

 2017 2000 118969 95 3.1 40% 71677 

 2018 2000 114657 92 3.0 45% 63037 

 2019 2000 108633 87 2.9 41% 63633 

 2020 2000 118690 95 3.1 38% 73690 
 2021 2000 91144 73 2.4 45% 50233 
 2022 2000 119839 96 3.1 41% 70357 

S3: LSTL 2013 2000 117742 94 3.1 98% 2292 

 2014 2000 122614 98 3.2 100% 0 

 2015 2000 128430 103 3.4 100% 231 

 2016 2000 127500 102 3.3 98% 2081 

 2017 2000 118969 95 3.1 100% 0 

 2018 2000 114657 92 3.0 100% 0 

 2019 2000 108633 87 2.9 100% 104 

 2020 2000 118690 95 3.1 98% 1876 
 2021 2000 91144 73 2.4 100% 0 
 2022 2000 119839 96 3.1 100% 0 

S4: LMTS 2013 10000 588708 94 3.1 2% 577708 

 2014 10000 613071 98 3.2 2% 600571 

 2015 10000 642151 103 3.4 2% 630151 

 2016 10000 637499 102 3.3 2% 625499 

 2017 10000 594843 95 3.1 2% 582843 

 2018 10000 573286 92 3.0 2% 560286 

 2019 10000 543164 87 2.9 2% 531914 

 2020 10000 593450 95 3.1 2% 582200 
 2021 10000 455722 73 2.4 2% 446898 
 2022 10000 599194 96 3.1 2% 586694 

S5: LMTM 2013 10000 588708 94 3.1 7% 544708 

 2014 10000 613071 98 3.2 8% 563071 

 2015 10000 642151 103 3.4 7% 594151 

 2016 10000 637499 102 3.3 8% 589499 

 2017 10000 594843 95 3.1 8% 546843 

 2018 10000 573286 92 3.0 9% 521286 

 2019 10000 543164 87 2.9 8% 498164 

 2020 10000 593450 95 3.1 8% 548450 
 2021 10000 455722 73 2.4 9% 413148 
 2022 10000 599194 96 3.1 8% 549194 

S6: LMTL 2013 10000 588708 94 3.1 36% 374395 

 2014 10000 613071 98 3.2 40% 365508 
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 2015 10000 642151 103 3.4 36% 413780 

 2016 10000 637499 102 3.3 37% 399139 

 2017 10000 594843 95 3.1 40% 359754 

 2018 10000 573286 92 3.0 44% 321940 

 2019 10000 543164 87 2.9 41% 319105 

 2020 10000 593450 95 3.1 38% 370032 
 2021 10000 455722 73 2.4 45% 251165 
 2022 10000 599194 96 3.1 41% 351786 

S7: LLTS 2013 20000 1177416 94 3.1 1% 1166416 

 2014 20000 1226142 98 3.2 1% 1213642 

 2015 20000 1284301 103 3.4 1% 1272301 

 2016 20000 1274999 102 3.3 1% 1262999 

 2017 20000 1189686 95 3.1 1% 1177686 

 2018 20000 1146572 92 3.0 1% 1133572 

 2019 20000 1086329 87 2.9 1% 1075079 

 2020 20000 1186900 95 3.1 1% 1175650 
 2021 20000 911445 73 2.4 1% 905046 
 2022 20000 1198389 96 3.1 1% 1185889 

S8: LLTM 2013 20000 1177416 94 3.1 4% 1133416 

 2014 20000 1226142 98 3.2 4% 1176142 

 2015 20000 1284301 103 3.4 4% 1236301 

 2016 20000 1274999 102 3.3 4% 1226999 

 2017 20000 1189686 95 3.1 4% 1141686 

 2018 20000 1146572 92 3.0 5% 1094572 

 2019 20000 1086329 87 2.9 4% 1041329 

 2020 20000 1186900 95 3.1 4% 1141900 
 2021 20000 911445 73 2.4 4% 871296 
 2022 20000 1198389 96 3.1 4% 1148389 

S9: LLTL 2013 20000 1177416 94 3.1 18% 963103 

 2014 20000 1226142 98 3.2 20% 978579 

 2015 20000 1284301 103 3.4 18% 1054134 

 2016 20000 1274999 102 3.3 19% 1036581 

 2017 20000 1189686 95 3.1 20% 953141 

 2018 20000 1146572 92 3.0 22% 893327 

 2019 20000 1086329 87 2.9 21% 862270 

 2020 20000 1186900 95 3.1 19% 963482 
 2021 20000 911445 73 2.4 24% 696544 
 2022 20000 1198389 96 3.1 21% 948573 
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APPENDIX B: GRAPH OUTPUTS FROM 
SIMULATIONS FOR EACH TECHNICAL 

SPECIFICATION AND LOCATION
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Figure B.1: Average Depth of Water Released for Irrigation per Week for Boston, MA Simulations 

 
Figure B.2: Average Depth of Water Released for Irrigation per Week for Plymouth, MA Simulations 
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Figure B.3: Average Depth of Water Released for Irrigation per Week for Salem, MA Simulations 

 
Figure B.4: Average Depth of Water Released for Irrigation per Week for Worcester, MA Simulations 
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Figure B.5: RWH Supply's Share of Total Water Released for Boston, MA Simulations 

 
Figure B.6: RWH Supply's Share of Total Water Released for Plymouth, MA Simulations 
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Figure B.7: RWH Supply's Share of Total Water Released for Salem, MA Simulations 

 
Figure B.8: RWH Supply's Share of Total Water Released for Worcester, MA Simulations 
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Figure B.9: Total Water Use from Piped Supply for Boston, MA Simulations 

 
Figure B.10: Total Water Use from Piped Supply for Plymouth, MA Simulations 
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Figure B.11: Total Water Use from Piped Supply for Salem, MA Simulations 

 
Figure B.12: Total Water Use from Piped Supply for Worcester, MA Simulations 
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APPENDIX C: ARDUINO CODE FOR WATER-
RELEASE ALGORITHM
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This Appendix contains the code written in the Arduino IDE for the water-release algorithm 
developed in this project. The code consists of 6 separate files, and thus the code copied below is 
organized by file. 

Main Arduino file: ES_100.ino 
#include <WiFiNINA.h> 
#include <utility/wifi_drv.h> // needed for accessing LED on board 
#include <ArduinoHttpClient.h> 
#include <ArduinoJson.h> 
#include "arduino_secrets.h" 
#include "FAO_P-M_functions.h" 
#include "API_dataFunctions.h" 
/*  
  Sketch generated by the Arduino IoT Cloud Thing "Untitled" 
  https://create.arduino.cc/cloud/things/c917b7bf-9c96-450c-b30e-b887b7768bdc  
 
  Arduino IoT Cloud Variables description 
 
  The following variables are automatically generated and updated when changes 
are made to the Thing 
 
  - No variables have been created, add cloud variables on the Thing Setup page 
    to see them declared here 
 
  Variables which are marked as READ/WRITE in the Cloud Thing will also have 
functions 
  which are called when their values are changed from the Dashboard. 
  These functions are generated with the Thing and added at the end of this 
sketch. 
*/ 
 
#include "thingProperties.h" 
 
/* GLOBAL PARAMETERS */ 
// Variables Related to Water Content Threshold 
float awc = 1.45; // Available Water Capacity, in/ft. 
float mad = 0.5; // Management Allowable Depletion, b/t 0 and 1. 
float root_depth = 10; // Root Depth of crop, in. 
float FC; // field capacity 
float WC; // soil water content at a given time [in] 
float WC_min; // WC threshold 
 
// Variables for FAO Equation / ET Calcs 
float e_s; // See ET Calcs 
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float delta; // See ET Calcs 
float e_a; // See ET Calcs 
float R_n; // See ET Calcs 
int day = 91; // Day of Year -- start at April 1st -- 91 on normal year, 92 on 
leap year 
int last_day = 304; // Last Day of Watering Season, October 31st --  304 on 
normal year, 305 on leap year 
float lat_deg = 42.360082; 
float ET; // See ET Calcs 
 
// Variables for Infiltration Calcs 
float CN = 65; // Runoff Curve Number 
float S = 25400/CN - 254; // surface storage (mm) 
float F_P; // Infiltration from Precipitation -- calculated later 
float F_I; // Infiltration from Irrigation -- calculated later 
float F_P_predicted; // Expected Infiltration from Forecasted Rain -- calculated 
later 
float F_I_desired; // Desired infiltration from irrigation -- calculated later 
float predicted_rain; // Rainfall in Next 3 Days -- taken from API Call 
 
// Variables for Irrigation Depth & Volume 
float I_depth; // irrigation depth for a given day [in] 
float I_vol; // irrigation volume for a given day [gal] 
 
// USER INPUTS 
float lawnSize = 20000; // Size of Lawn [square feet] 
float tankSize = 5000; // Size of Tank [gallons] 
float roofArea = 1500; // Area of Roof [square feet] 
 
// Variables for RWH Tank 
float waterInTank = tankSize; // Volume of Water in RWH Tank, assume full at 
start [gallons]  
float C_roof = 0.90; // runoff coefficient for roof 
 
// Variables to Collect Water Use Data During Simulations 
float rwhWaterUse = 0; 
float pipedWaterUse = 0; 
float totalWaterUse = 0; 
int waterDays = 0; 
 
// OpenWeatherMap API Key 
String apiKey = "3501dd0601d2417040fe846b7bfa9331"; 
 
// Initialize String for API url 
String url = ""; 
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// Timestamps for API Calls 
int startTimeHistorical = 1648728000; // Historical API Call starts at March 
31st, 8am -- this is for the year 2022 
int startTimeForecast = startTimeHistorical + 86400; // Forecast API Call starts 
at April 1st, 8am -- 24 hours (86400 seconds) after Historical Start Time 
 
// City Codes for OpenWeatherMap API 
int cityCode = 4930956; // Boston, MA 
 
// OpenWeatherMap endpoint 
const char *host = "history.openweathermap.org"; 
const int httpPort = 80; 
 
WiFiClient wifiClient; 
HttpClient client = HttpClient(wifiClient, host, httpPort); 
 

void setup() { 
  // Initialize serial and wait for port to open: 
  Serial.begin(9600); 
  // This delay gives the chance to wait for a Serial Monitor without blocking if 
none is found 
  delay(1500);  
 
  // Defined in thingProperties.h 
  initProperties(); 
 
  // Connect to Arduino IoT Cloud 
  ArduinoCloud.begin(ArduinoIoTPreferredConnection, false); // 'false' disables 
the Watchdog Timer (WDT) 
   
  /* 
     The following function allows you to obtain more information 
     related to the state of network and IoT Cloud connection and errors 
     the higher number the more granular information you’ll get. 
     The default is 0 (only errors). 
     Maximum is 4 
 */ 
  setDebugMessageLevel(2); 
  ArduinoCloud.printDebugInfo(); 
 
  /* CALCULATE THE SOIL WATER CONTENT THRESHOLD */ 
  WC_min = threshold_calc(awc, mad, root_depth); // [inches] 
  Serial.print(F("WC Threshold: ")); 
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  Serial.println(WC_min); 
 
  /* ASSUME SOIL WATER CONTENT IS AT FIELD CAPACITY TO START */ 
  FC = awc * root_depth/12; // Field Capacity of soil [inches] 
  WC = FC; // [inches] 
  Serial.print(F("Initial WC: ")); 
  Serial.println(WC); 
 
  /* SETUP LED ON ARDUINO BOARD */ 
  WiFiDrv::pinMode(25, OUTPUT); // RED will indicate water being released from 
RWH Tank 
  WiFiDrv::pinMode(26, OUTPUT); // GREEN will indicate water being released from 
Piped Supply 
  WiFiDrv::pinMode(27, OUTPUT); // BLUE 
  WiFiDrv::digitalWrite(25, LOW); // Initialize Red as OFF 
  WiFiDrv::digitalWrite(26, LOW); // Initialize Green as OFF 
  WiFiDrv::digitalWrite(27, LOW); // Initialize Blue as OFF 
} 
 
void loop() { 
  ArduinoCloud.update(); 
  // Your code here  
  /* IF END OF SIMULATION, RETURN */ 
  if (day > last_day) { 
    return; 
  } 
  Serial.print(F("Beginning of Loop. Day: ")); 
  Serial.println(day); 
  /* BEGINNING OF DAY (8am) */ 
  /* CALL HISTORICAL API AND COMPILE ALL NECESSARY DATA */ 
  // Getting 6 hrs at a time from API, so need to call 4 times to get data for 
past 24 hrs 
  for (int i=0; i<4; i++) { 
    // Build the URL for the API call 
/data/2.5/weather?q=Boston,us&APPID=3501dd0601d2417040fe846b7bfa9331  
    url = String("/data/2.5/history/city?id=") + cityCode + "&type=hour&start=" + 
startTimeHistorical + "&cnt=" + cnt + "&appid=" + apiKey; 
    // Make API Call and Get JSON doc 
    String response = getResponseFromAPI(client, url); 
    DynamicJsonDocument doc(3072); 
    DeserializationError error = deserializeJson(doc, response); 
    if (error) { 
      Serial.print(F("Deserialization failed: ")); 
      Serial.println(error.c_str()); 
      return; 
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    } 
    response = ""; 
    // If it's the first set of 6 hrs, set each data value as normal 
    if (i == 0) { 
      T_max = get_T_max(doc); 
      T_min = get_T_min(doc); 
      T_mean = get_T_mean(doc); 
      rel_hum_max = get_rel_hum_max(doc); 
      rel_hum_min = get_rel_hum_min(doc); 
      u_mean = get_wind_mean(doc); 
      rain_total = get_rain_sum(doc); 
    } 
    // If it's the 2nd-4th set of 6 hrs, update the data values as necessary 
    else { 
      if (get_T_max(doc) > T_max) { 
        T_max = get_T_max(doc); 
      } 
      if (get_T_min(doc) < T_min) { 
        T_min = get_T_min(doc); 
      } 
      T_mean = T_mean*i/(i+1) + get_T_mean(doc)*1/(i+1); 
      if (get_rel_hum_max(doc) > rel_hum_max) { 
        rel_hum_max = get_rel_hum_max(doc); 
      } 
      if (get_rel_hum_min(doc) < rel_hum_min) { 
        rel_hum_min = get_rel_hum_min(doc); 
      } 
      u_mean = u_mean*i/(i+1) + get_wind_mean(doc)*1/(i+1); 
      rain_total += get_rain_sum(doc); 
    } 
    // At end of loop, update Start Time for the API Call 
    startTimeHistorical += (3600 * cnt); 
    Serial.println(F("Historical Start Time Updated")); 
  }   
  Serial.println(F("Historical Data Acquired")); 
 
  /* CALCULATE VOLUME OF WATER IN RWH TANK USING YESTERDAY'S PRECIPITATION */ 
  waterInTank += (roofArea * rain_total*25.4 * C_roof * 0.623); // [gal] 
  // Make Sure Water Level Isn't Greater Than Tank Size 
  if (waterInTank > tankSize) { 
    waterInTank = tankSize;     
  } 
  Serial.println(F("Water in Tank Updated")); 
 
  /* SOIL MOISTURE CALCULATIONS */ 
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  // Step 1: ET Calc 
  e_s = e_s_calc((T_max - 273.15), (T_min - 273.15)); // sat. pressure calc -- 
convert T_max, T_min to Celsius from K 
  delta = delta_calc(T_mean - 273.15); // slope of sat. pressure curve calc -- 
convert T_mean to Celsius from K 
  e_a = e_a_calc(rel_hum_max, rel_hum_min, (T_max - 273.15), (T_min - 273.15)); 
// actual vapor pressure calc -- convert T_max, T_min to Celsius from K 
  R_n = radiation_calc(day, lat_deg, (T_max - 273.15), (T_min - 273.15), e_a); // 
net radiation calc -- convert T_max, T_min to Celsius from K 
  ET = FAO_ET_calc(R_n, (T_mean - 273.15), u_mean, e_s, e_a, delta); // ET Calc 
[in/day] -- convert T_mean to Celsius from K 
  Serial.print(F("ET Calculated: ")); 
  Serial.println(ET); 
 
  // Step 2: Precipitation Infiltration Calc 
  if (rain_total > (0.2*S)) { 
    F_P = (((rain_total - 0.2*S)*S) / (rain_total + 0.8*S)) / 25.4; // converted 
to [inches] 
  } 
  else { 
    F_P = 0; 
  } 
  Serial.print(F("Precipitation Infiltration Calculated: ")); 
  Serial.println(F_P); 
 
  // Step 3: Irrigation Infiltration Calc 
  if ((I_depth*25.4) > (0.2*S)) { 
    F_I = (((I_depth*25.4 - 0.2*S)*S) / (I_depth*25.4 + 0.8*S)) / 25.4; // 
converted to [inches] 
  } 
  else { 
    F_I = 0; 
  } 
  Serial.print(F("Irrigation Infiltration Calculated: ")); 
  Serial.println(F_I); 
 
  // Step 4: Soil Moisture Calc 
  WC = WC + F_P + F_I - ET; 
  // Make Sure Moisture Doesn't Exceed Field Capacity or Goes Negative 
  if (WC > FC) { 
    WC = FC; 
  } 
  if (WC < 0) { 
    WC = 0; 
  } 
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  Serial.print(F("Soil Moisture Calculated: ")); 
  Serial.println(WC); 
 
  /* CHECK WATER CONTENT AGAINST THRESHOLD */ 
  if (WC < WC_min) { 
    Serial.println(F("Water Content Below Treshold"));  
    waterDays ++;    
    /* CALCULATE PREDICTED INFILTRATION FROM RAINFALL IN NEXT 3 DAYS (TODAY, 
TOMORROW, NEXT DAY) */ 
    // Step 1: Make API Call to Query for Rainfall in Next 3 Days 
    // Getting 6 hrs at a time from API, so need to call 12 times to get data for 
next 72 hrs 
    for (int i=0; i<12; i++) { 
      // Build the URL for the API call 
      url = String("/data/2.5/history/city?id=") + cityCode + "&type=hour&start=" 
+ startTimeForecast + "&cnt=" + cnt + "&appid=" + apiKey; 
      // Make API Call and Get JSON doc 
      String response = getResponseFromAPI(client, url); 
      DynamicJsonDocument doc(3072); 
      DeserializationError error = deserializeJson(doc, response); 
      if (error) { 
        Serial.print(F("Deserialization failed: ")); 
        Serial.println(error.c_str()); 
        i -= 1; // This will make the for loop repeat with the current i value 
        ArduinoCloud.update(); // should help reconnect to the Cloud if 
connection is lost (this is why the API Call would fail) 
      } 
      else { 
        response = ""; 
        // If it's the first set of 6 hrs, set initial rainfall total 
        if (i == 0) { 
          predicted_rain = get_rain_sum(doc); 
        } 
        // If it's the 2nd-12th set of 6 hrs, update the rainfall total 
        else { 
          predicted_rain += get_rain_sum(doc); 
        } 
        // At end of loop, update Start Time for the API Call 
        startTimeForecast += (3600 * cnt); 
        Serial.print(i); 
        Serial.println(F(" out of 12 forecast APIs called")); 
      } 
       
    } 
    Serial.println(F("Forecast Data Collected")); 
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    // Step 2: Calculate Expected Infiltration from Precipitation 
    if (predicted_rain > (0.2*S)) { 
      F_P_predicted = (((predicted_rain - 0.2*S)*S) / (predicted_rain + 0.8*S)) / 
25.4; // converted to [inches] 
    } 
    else { 
      F_P_predicted = 0; 
    } 
    /* CALCULATE DEPTH OF IRRIGATION NEEDED */ 
    F_I_desired = FC - WC - F_P_predicted; // amount of infiltration needed from 
irrigation 
    I_depth = ((S*(0.2*S + 0.8*(F_I_desired*25.4))) / (S - (F_I_desired*25.4))) / 
25.4; // depth of irrigation to release [inches] 
 
    /* CALCULATE VOLUME OF IRRIGATION NEEDED USING LAWN SIZE */ 
    I_vol = ((I_depth/12) * lawnSize) * 7.481; // volume of irrigation to release 
[gallons] 
    Serial.println(F("Irrigation Depth and Volume Calculated")); 
 
    /* RELEASE WATER FROM SYSTEM -- FIRST FROM RWH TANK, THEN FROM PIPED WATER 
SUPPLY */ 
    // if sufficient water in tank, release all water from RWH 
    if (I_vol <= waterInTank) { 
      // Turn Green LED on for 3 seconds to indicate RWH supply is being used 
      WiFiDrv::digitalWrite(26, HIGH); // Green ON 
      delay(3000); // Wait 3 seconds 
      WiFiDrv::digitalWrite(26, LOW); // Green OFF 
      // Update RWH Water Use Total 
      rwhWaterUse += I_vol; 
      // Update Total Water Use 
      totalWaterUse += I_vol; 
      // Update Water Volume in Tank 
      waterInTank -= I_vol; 
    } 
    // if insufficient water in tank BUT tank has some water, empty RWH tank and 
then finish watering with piped supply 
    else if ((I_vol > waterInTank) && (waterInTank > 0)) { 
      // Turn Green LED on for 3 seconds to indicate RWH supply is being used 
      WiFiDrv::digitalWrite(26, HIGH); // Green ON 
      delay(3000); // Wait 3 seconds 
      WiFiDrv::digitalWrite(26, LOW); // Green OFF 
      // Update RWH Water Use Total 
      rwhWaterUse += waterInTank; 
      // Update Piped Water Use Total 
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      pipedWaterUse += (I_vol - waterInTank); 
      // Update Total Water Use 
      totalWaterUse += I_vol; 
      // Update Water Volume in Tank -- tank empty 
      waterInTank = 0; 
      // Turn Red LED on for 3 seconds to indicate piped supply is being used 
      WiFiDrv::digitalWrite(25, HIGH); // Red ON 
      delay(3000); // Wait 3 seconds 
      WiFiDrv::digitalWrite(25, LOW); // Red OFF 
    } 
    // else (RWH tank is completely empty), release all water from piped supply 
    else { 
      // Turn Red LED on for 3 seconds to indicate piped supply is being used 
      WiFiDrv::digitalWrite(25, HIGH); // Red ON 
      delay(3000); // Wait 3 seconds 
      WiFiDrv::digitalWrite(25, LOW); // Red OFF 
      // Update Piped Water Use Total 
      pipedWaterUse += I_vol; 
      // Update Total Water Use 
      totalWaterUse += I_vol; 
    }     
  } 
 
  // If Water Content is Above the Threshold, then set the Irrigation Depth and 
Volume for the Day to Zero 
  else { 
    I_depth = 0; 
    I_vol = 0; 
  } 
 
  /* UPDATE DATE FOR THE NEXT LOOP */ 
  // Go to Next Day 
  day ++; 
  Serial.println(F("Day Updated")); 
  // If end of watering season, print out message and turn Blue LED light on to 
signal end of simulation */ 
  if (day > last_day) { 
    Serial.println(F("Simulation Complete")); 
    Serial.print(F("Total RWH Use: ")); 
    Serial.println(rwhWaterUse); 
    Serial.print(F("Total Piped Water Use: ")); 
    Serial.println(pipedWaterUse); 
    Serial.print(F("Total Water Use: ")); 
    Serial.println(totalWaterUse); 
    Serial.print(F("Total Days Watered: ")); 
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    Serial.println(waterDays); 
    WiFiDrv::digitalWrite(27, HIGH); // Blue Light ON 
    //delay(10000); // keep on for 10 seconds 
    //WiFiDrv::digitalWrite(27, LOW); // Blue Light OFF 
  } 
  // Update Start Time for Forecast API Call (24 hours ahead of Historical Start 
Time) 
  startTimeForecast = startTimeHistorical + 86400; 
  Serial.println(F("Forecast Start Time Updated")); 
   
  delay(1000); 
   
} 
 
 

Helper File for Functions Related to API Calls: 
API_dataFunctions.h 
// Variables for Getting Data from API Call 
float rain_total = 0; // [mm] 
float T_max; // [K] 
float T_min; // [K] 
float T_mean; // [K] 
int rel_hum_max; // [%] 
int rel_hum_min; // [%] 
float u_mean; // Avg Wind Speed [m/s] 
int cnt = 6; 
 
/* FUNCTION: CALL API FOR 6-HR STEP AND RETURN RESPONSE */ 
String getResponseFromAPI(HttpClient client, String url) { 
  // Make the API call 
  client.beginRequest(); 
  client.get(url); 
  client.endRequest(); 
   
  // Read status code and body of the response 
  int statusCode = client.responseStatusCode(); 
  String response = client.responseBody(); 
  //Serial.print(F("Status code: ")); 
  //Serial.println(statusCode); 
  //Serial.println(F("Response Found")); 
  return response; 
} 
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/* FUNCTION: GET MAX TEMP FROM cnt-HR API CALL */ 
float get_T_max(DynamicJsonDocument doc) { 
  float temp; 
  float T_max1; 
  for (int i=0; i<cnt; i++) { 
    temp = doc["list"][i]["main"]["temp"]; // [Kelvin] 
    if (i == 0) { 
      T_max1 = temp; 
    } 
    else { 
      if (temp > T_max1) { 
        T_max1 = temp; 
      } 
    } 
  } 
  return T_max1; // [K] 
} 
 
/* FUNCTION: GET MIN TEMP FROM cnt-HR API CALL */ 
float get_T_min(DynamicJsonDocument doc) { 
  float temp; 
  float T_min1; 
  for (int i=0; i<cnt; i++) { 
    temp = doc["list"][i]["main"]["temp"]; // [Kelvin] 
    if (i == 0) { 
      T_min1 = temp; 
    } 
    else { 
      if (temp < T_min1) { 
        T_min1 = temp; 
      } 
    } 
  } 
  return T_min1; // [K] 
} 
 
/* FUNCTION: GET MEAN TEMP FROM cnt-HR API CALL */ 
float get_T_mean(DynamicJsonDocument doc) { 
  float total = 0; 
  float temp; 
  float T_mean1; 
  for (int i=0; i<cnt; i++) { 
    temp = doc["list"][i]["main"]["temp"]; // [Kelvin] 
    total += temp; 
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  } 
  T_mean1 = total / cnt; 
  return T_mean1; // [K] 
} 
 
/* FUNCTION: GET MAX RELATIVE HUMIDITY FROM cnt-HR API CALL */ 
int get_rel_hum_max(DynamicJsonDocument doc) { 
  int rel_hum; 
  int rel_hum_max1; 
  for (int i=0; i<cnt; i++) { 
    rel_hum = doc["list"][i]["main"]["humidity"]; // [%] 
    if (i == 0) { 
      rel_hum_max1 = rel_hum; 
    } 
    else { 
      if (rel_hum > rel_hum_max1) { 
        rel_hum_max1 = rel_hum; 
      } 
    } 
  } 
  return rel_hum_max1; // [%] 
} 
 
/* FUNCTION: GET MIN RELATIVE HUMIDITY FROM cnt-HR API CALL */ 
int get_rel_hum_min(DynamicJsonDocument doc) { 
  int rel_hum; 
  int rel_hum_min1; 
  for (int i=0; i<cnt; i++) { 
    rel_hum = doc["list"][i]["main"]["humidity"]; // [%] 
    if (i == 0) { 
      rel_hum_min1 = rel_hum; 
    } 
    else { 
      if (rel_hum < rel_hum_min1) { 
        rel_hum_min1 = rel_hum; 
      } 
    } 
  } 
  return rel_hum_min1; // [%] 
} 
 
/* FUNCTION: GET MEAN WIND SPEED FROM cnt-HR API CALL */ 
float get_wind_mean(DynamicJsonDocument doc) { 
  float total = 0; 
  float wind; 
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  float u_mean1; 
  for (int i=0; i<cnt; i++) { 
    wind = doc["list"][i]["wind"]["speed"]; // [m/s] 
    total += wind; 
  } 
  u_mean1 = total / cnt; 
  return u_mean1; // [m/s] 
} 
 
/* FUNCTION: GET TOTAL RAINFALL DEPTH FROM cnt-HR API CALL */ 
float get_rain_sum(DynamicJsonDocument doc) { 
  float rain; 
  float rain_total1 = 0; 
  for (int i=0; i<cnt; i++) { 
    if (doc["list"][i]["rain"]["1h"]) { 
      rain = doc["list"][i]["rain"]["1h"]; // [mm] 
    } 
    else { 
      rain = 0; 
    } 
    rain_total1 += rain;     
  } 
  return rain_total1; // [mm] 
} 
 

Helper File for Functions Related to Penman-
Monteith Equation: FAO_P-M_functions.h 
// Function to Calculate Water Content Threshold based on inputs 
float threshold_calc(float awc, float mad, float depth) { 
  float threshold = awc * mad * depth/12; 
  return threshold; 
} 
 
// FAO Penman-Monteith Equation for Calculating Evapotranspiration Rate, using 
these inputs: 
  // R_n; Net radiation [MJ/m2/day] 
  // T; Mean daily air temp. [Celsius] 
  // u; Wind speed at 2m height [m/s] 
  // e_s; Saturation vapor pressure [kPa] 
  // e_a; Actual vapor pressure [kPa] 
  // delta; Slope vapor pressure curve [kPa/Celsius] 
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float FAO_ET_calc(float R_n, float T, float u, float e_s, float e_a, float delta) 
{ 
  float ET; // ET rate [mm/day] 
  float G = 0; // Soil heat flux density [MJ/m2/day] 
  float gamma = 0.000662 * 101.3; // psychrometric constant [kPa/Celsius] -- 
assume Asmann type psychrometer and atmos. pressure at sea level 
 
  ET = (0.408 * delta * (R_n - G) + gamma * 900/(T+273) * u * (e_s - e_a)) / 
(delta + gamma * (1 + 0.34*u)); 
  float ET_inches = ET / 25.4; // ET value in [in/day] 
  return ET_inches; 
} 
 
// Saturation Vapor Pressure for a given temperature 
float e_s0(float temp) { 
  float e_s0 = 0.6108 * exp(17.27 * temp / (temp + 237.3)); 
  return e_s0; 
} 
 
// Calculate Saturation Vapor Pressure for FAO P-M Equation 
float e_s_calc(float T_max, float T_min) { 
  float e_s0_maxT = e_s0(T_max); 
  float e_s0_minT = e_s0(T_min); 
  float e_s = (e_s0_maxT + e_s0_minT) / 2; 
  return e_s; 
} 
 
// Calculate Slope of Vapor Pressure Curve (delta) for FAO P-M Equation, using 
mean temp 
float delta_calc(float T_mean) { 
  float e_s0_meanT = e_s0(T_mean); 
  float delta = 4098 * e_s0_meanT / sq(T_mean + 237.3); 
  return delta; 
} 
 
// Calculate Actual Vapor Pressure for FAO P-M Equation, using relative humidity 
float e_a_calc(float rel_hum_max, float rel_hum_min, float T_max, float T_min) { 
  float e_s0_maxT = e_s0(T_max); 
  float e_s0_minT = e_s0(T_min); 
  float e_a = (e_s0_minT * rel_hum_max / 100 + e_s0_maxT * rel_hum_min / 100) / 
2; 
  return e_a; 
} 
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// Calculate Net Radiation for FAO P-M Equation -- T_max, T_min both in Celsius -
- e_a is actual vapor pressure 
float radiation_calc(float day, float lat_deg, float T_max, float T_min, float 
e_a) {  
  // Extraterrestrial Radiation 
  float G_sc = 0.0820; // solar constant [MJ/m2/min] 
  float lat_rad = PI / 180 * lat_deg; // latitude in radians 
  float d_r = 1 + 0.033 * cos(2 * PI * day / 365); // inverse relative distance 
Earth-Sun 
  float solar_decl = 0.409 * sin(2 * PI * day / 365 - 1.39); // solar declination 
[rad] 
  float omega_s = acos(-tan(lat_rad) * tan(solar_decl)); // sunset hour angle 
[rad] 
  float R_a = 24 * 60 / PI * G_sc * d_r * (omega_s * sin(lat_rad) * 
sin(solar_decl) + cos(lat_rad) * cos(solar_decl) * sin(omega_s)); // 
Extraterrestrial Radiation (MJ/m2/day) 
 
  // Daylight Hours 
  float N = 24 * omega_s / PI; 
 
  // Solar Radiation 
  float k_rs = 0.19; // adjustment coefficient [Celsius^-0.5] 
  float R_s = k_rs * sqrt(T_max - T_min) * R_a; // Solar Radiation 
   
  // Clear-Sky Solar Radiation 
  float R_so = 0.75 * R_a; 
 
  // Net Solar / Shortwave Radiation 
  float albedo = 0.23; // albedo for grass 
  float R_ns = (1 - albedo) * R_s; 
 
  // Net Longwave Radiation 
  float sb_const = 4.903 * pow(10, -9); // Stefan-Boltzmann constant 
[MJ/K4/m2/day] 
  float T_maxK = T_max + 273.16; // max temp in Kelvin 
  float T_minK = T_min + 273.16; // min temp in Kelvin 
  float R_nl = sb_const * ((pow(T_maxK, 4) + pow(T_minK, 4)) / 2) * (0.34 - 0.14 
* sqrt(e_a)) * (1.35 * R_s / R_so - 0.35); 
   
  // Net Radiation [MJ/m2/day] 
  float R_n = R_ns - R_nl;  
  return R_n; 
} 
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Helper File Containing WIFI Credentials: 
arduino_secrets.h 
#define SECRET_SSID "Harvard University" // name of network 
#define SECRET_USER "bbeauregard@college.harvard.edu" // eg, x@seas.harvard.edu 
#define SECRET_PASS "" // leave this blank 
 
 

JSON File Created by Arduino Cloud: sketch.json 
{ 
  "cpu": { 
    "fqbn": "arduino:samd:mkrwifi1010", 
    "name": "Arduino MKR WiFi 1010", 
    "type": "serial" 
  }, 
  "secrets": [], 
  "included_libs": [] 
} 
 

Helper File Created by Arduino Cloud: 
thingProperties.h 
// Code generated by Arduino IoT Cloud, DO NOT EDIT. 
 
#include <ArduinoIoTCloud.h> 
#include <Arduino_ConnectionHandler.h> 
 
const char THING_ID[] = "ES 100"; // your Thing ID (!) 
 
const char SSID[] = SECRET_SSID;    // Network SSID (name) 
const char USER[] = SECRET_USER; 
const char PASS[] = SECRET_PASS; 
 
void initProperties(){ 
 

} 
WiFiConnectionHandler ArduinoIoTPreferredConnection(SSID, PASS);
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APPENDIX D: PYTHON CODE FOR 
SIMULATIONS
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# Import Libraries 
import math 
import numpy as np 
import json 
from csv import writer 
 
# DEFINE FAO P-M FUNCTIONS 
 
# Function to Calculate Water Content Threshold based on inputs 
def threshold_calc(awc, mad, depth): 
    threshold = awc * mad * depth/12 
    return threshold 
 
# FAO Penman-Monteith Equation for Calculating Evapotranspiration Rate, using 
these inputs: 
  # R_n; Net radiation [MJ/m2/day] 
  # T; Mean daily air temp. [Celsius] 
  # u; Wind speed at 2m height [m/s] 
  # e_s; Saturation vapor pressure [kPa] 
  # e_a; Actual vapor pressure [kPa] 
  # delta; Slope vapor pressure curve [kPa/Celsius] 
def FAO_ET_calc(R_n, T, u, e_s, e_a, delta): 
    G = 0 # Soil heat flux density [MJ/m2/day] 
    gamma = 0.000662 * 101.3 # psychrometric constant [kPa/Celsius] -- assume 
Asmann type psychrometer and atmos. pressure at sea level 
    ET = (0.408 * delta * (R_n - G) + gamma * 900/(T+273) * u * (e_s - e_a)) / 
(delta + gamma * (1 + 0.34*u)) 
    ET_inches = ET / 25.4 # ET value in [in/day] 
    return ET_inches 
 
# Saturation Vapor Pressure for a given temperature 
def e_s0(temp): 
    e_s0 = 0.6108 * math.exp(17.27 * temp / (temp + 237.3)) 
    return e_s0 
 
# Calculate Saturation Vapor Pressure for FAO P-M Equation 
def e_s_calc(T_max, T_min): 
    e_s0_maxT = e_s0(T_max) 
    e_s0_minT = e_s0(T_min) 
    e_s = (e_s0_maxT + e_s0_minT) / 2 
    return e_s 
 
# Calculate Slope of Vapor Pressure Curve (delta) for FAO P-M Equation, using 
mean temp 
def delta_calc(T_mean): 
    e_s0_meanT = e_s0(T_mean) 
    delta = 4098 * e_s0_meanT / pow(T_mean + 237.3, 2) 
    return delta 
 
# Calculate Actual Vapor Pressure for FAO P-M Equation, using relative humidity 
def e_a_calc(rel_hum_max, rel_hum_min, T_max, T_min): 
    e_s0_maxT = e_s0(T_max) 
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    e_s0_minT = e_s0(T_min) 
    e_a = (e_s0_minT * rel_hum_max / 100 + e_s0_maxT * rel_hum_min / 100) / 2 
    return e_a 
 
# Calculate Net Radiation for FAO P-M Equation -- T_max, T_min both in Celsius -- 
e_a is actual vapor pressure 
def radiation_calc(day, lat_deg, T_max, T_min, e_a): 
    # Extraterrestrial Radiation 
    G_sc = 0.0820 # solar constant [MJ/m2/min] 
    lat_rad = math.pi / 180 * lat_deg # latitude in radians 
    d_r = 1 + 0.033 * math.cos(2 * math.pi * day / 365) # inverse relative 
distance Earth-Sun 
    solar_decl = 0.409 * math.sin(2 * math.pi * day / 365 - 1.39) # solar 
declination [rad] 
    omega_s = math.acos(-math.tan(lat_rad) * math.tan(solar_decl)) # sunset hour 
angle [rad] 
    R_a = 24 * 60 / math.pi * G_sc * d_r * (omega_s * math.sin(lat_rad) * 
math.sin(solar_decl) + math.cos(lat_rad) * math.cos(solar_decl) * 
math.sin(omega_s)) # Extraterrestrial Radiation (MJ/m2/day) 
     
    # Daylight Hours 
    N = 24 * omega_s / math.pi 
     
    # Solar Radiation 
    k_rs = 0.19 # adjustment coefficient [Celsius^-0.5] 
    R_s = k_rs * math.sqrt(T_max - T_min) * R_a # Solar Radiation 
     
    # Clear-Sky Solar Radiation 
    R_so = 0.75 * R_a 
     
    # Net Solar / Shortwave Radiation 
    albedo = 0.23 # albedo for grass 
    R_ns = (1 - albedo) * R_s 
     
    # Net Longwave Radiation 
    sb_const = 4.903 * pow(10, -9) # Stefan-Boltzmann constant [MJ/K4/m2/day] 
    T_maxK = T_max + 273.16 # max temp in Kelvin 
    T_minK = T_min + 273.16 # min temp in Kelvin 
    R_nl = sb_const * ((pow(T_maxK, 4) + pow(T_minK, 4)) / 2) * (0.34 - 0.14 * 
math.sqrt(e_a)) * (1.35 * R_s / R_so - 0.35) 
     
    # Net Radiation [MJ/m2/day] 
    R_n = R_ns - R_nl  
    return R_n 
 
# DEFINE DATA COLLECTION FUNCTIONS FOR JSON FILE 
cnt = 24 
 
# GET MAX TEMP FOR cnt-HR RANGE FROM JSON FILE 
def get_T_max(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
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        if x["dt"] == time: 
            startnum = num 
            break 
     
    T_max1 = 0 
    for i in np.arange(startnum, startnum + cnt): 
        temp = doc[i]["main"]["temp"] # [Kelvin] 
        if i == 0: 
            T_max1 = temp 
        else: 
            if temp > T_max1: 
                T_max1 = temp 
     
    return T_max1 # [K] 
 
# GET MIN TEMP FOR cnt-HR RANGE FROM JSON FILE 
def get_T_min(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    T_min1 = 1000 
    for i in np.arange(startnum, startnum + cnt): 
        temp = doc[i]["main"]["temp"] # [Kelvin] 
        if i == 0: 
            T_min1 = temp 
        else: 
            if temp < T_min1: 
                T_min1 = temp 
     
    return T_min1 # [K] 
 
# GET MEAN TEMP FOR cnt-HR RANGE FROM JSON RANGE 
def get_T_mean(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    total = 0 
    for i in np.arange(startnum, startnum + cnt): 
        temp = doc[i]["main"]["temp"] # [Kelvin] 
        total += temp 
     
    T_mean1 = total / cnt 
    return T_mean1 # [K] 
 
# GET MAX RELATIVE HUMIDITY FOR cnt-HR RANGE FROM JSON FILE 
def get_rel_hum_max(doc, time): 
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    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    rel_hum_max1 = 0 
    for i in np.arange(startnum, startnum + cnt): 
        rel_hum = doc[i]["main"]["humidity"] # [%] 
        if i == 0: 
            rel_hum_max1 = rel_hum 
        else: 
            if rel_hum > rel_hum_max1: 
                rel_hum_max1 = rel_hum 
     
    return rel_hum_max1 # [%] 
 
# GET MIN RELATIVE HUMIDITY FOR cnt-HR RANGE FROM JSON FILE 
def get_rel_hum_min(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    rel_hum_min1 = 1000 
    for i in np.arange(startnum, startnum + cnt): 
        rel_hum = doc[i]["main"]["humidity"] # [%] 
        if i == 0: 
            rel_hum_min1 = rel_hum 
        else: 
            if rel_hum < rel_hum_min1: 
                rel_hum_min1 = rel_hum 
     
    return rel_hum_min1 # [%] 
 
# GET MEAN WIND SPEED FOR cnt-HR RANGE FROM JSON FILE 
def get_wind_mean(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    total = 0 
    for i in np.arange(startnum, startnum + cnt): 
        wind = doc[i]["wind"]["speed"] # [m/s] 
        total += wind 
     
    u_mean1 = total / cnt 
    return u_mean1 # [m/s] 
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# GET TOTAL RAINFALL DEPTH FOR cnt-HR RANGE FROM JSON FILE 
def get_rain_sum(doc, time): 
    # find the index of the element with the correct start time 
    for num, x in enumerate(doc): 
        if x["dt"] == time: 
            startnum = num 
            break 
     
    rain_total1 = 0 
    for i in np.arange(startnum, startnum + cnt): 
        if "rain" in doc[i].keys(): 
            if "1h" in doc[i]["rain"].keys(): 
                rain = doc[i]["rain"]["1h"] # [mm] 
            else: 
                rain = doc[i]["rain"]["3h"] / 3 # [mm] 
        else: 
            rain = 0 
        rain_total1 += rain 
         
    return rain_total1 # [mm] 
 
# DEFINE VARIABLES 
 
# Variables Related to Water Content Threshold 
awc = 1.45 # Available Water Capacity, in/ft. 
mad = 0.5 # Management Allowable Depletion, b/t 0 and 1. 
root_depth = 10 # Root Depth of crop, in. 
FC = awc * root_depth/12 # Field Capacity of Soil [inches] 
WC = FC # Water Content of Soil [inches] 
WC_min = threshold_calc(awc, mad, root_depth) # Water Content Threshold [inches] 
 
# Variables for FAO Equation / ET Calcs 
first_day = 91 # Day of Year -- start at April 1st -- 91 on normal year, 92 on 
leap year 
last_day = 304 # Last Day of Watering Season, October 31st -- 304 on normal year, 
305 on leap year 
days = np.arange(first_day, last_day + 1) 
 
#lat_deg = 42.360082 # decimal degree latitude of Boston 
#lat_deg  = 42.262593 # decimal degree latitude of Worcester 
#lat_deg = 42.519747 # decimal degree latitude of Salem 
lat_deg = 41.958446 # decimal degree latitude of Plymouth 
 
# Variables for Infiltration Calcs 
CN = 65 # Runoff Curve Number 
S = 25400/CN - 254 # Surface Storage [mm] 
rain_yesterday = 0.0 # Rainfall from Previous Day, initially zero [mm] 
 
# Variables for Irrigation Depth & Volume 
I_depth = 0.0 
I_vol = 0.0 
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# USER INPUTS 
lawnSizes = [2000, 10000, 20000] # Size of Lawn [square feet] 
tankSizes = [250, 1000, 5000] # Size of Tank [gallons] 
roofArea = 1500 # Area of Roof [square feet] 
 
# Define Scenarios 
scenarios = { 
    'Scenario 1':{'lawn':lawnSizes[0], 'tank':tankSizes[0]}, 
    'Scenario 2':{'lawn':lawnSizes[0], 'tank':tankSizes[1]}, 
    'Scenario 3':{'lawn':lawnSizes[0], 'tank':tankSizes[2]}, 
    'Scenario 4':{'lawn':lawnSizes[1], 'tank':tankSizes[0]}, 
    'Scenario 5':{'lawn':lawnSizes[1], 'tank':tankSizes[1]}, 
    'Scenario 6':{'lawn':lawnSizes[1], 'tank':tankSizes[2]}, 
    'Scenario 7':{'lawn':lawnSizes[2], 'tank':tankSizes[0]}, 
    'Scenario 8':{'lawn':lawnSizes[2], 'tank':tankSizes[1]}, 
    'Scenario 9':{'lawn':lawnSizes[2], 'tank':tankSizes[2]} 
} 
 
# Define Years 
years = np.arange(2013, 2023) 
 
# Variables for Rainwater Harvesting Tank 
C_roof = 0.90 # runoff coefficient for roof 
 
# Variables to Collect Water Use Data During Simulations 
rwhWaterUses = 0.0 
pipedWaterUse = 0.0 
totalWaterUse = 0.0 
waterDays = 0 
 
# Start Timestamps for Weather Data 
startTimesHistorical = [1364731200, 1396267200, 1427803200, 1459425600, 
1490961600, 1522497600, 1554033600, 1585656000, 1617192000 ,1648728000] # 
Historical API Call starts at March 31st, 8am -- this is for the year 2022 
 
# Read in JSON File 
with open(r'C:\Users\bbeau\OneDrive\Documents\ES 100\History Bulk 
Data\PlymouthHistoryBulk2013_present.json', 'r') as datafile: 
    doc = json.load(datafile) 
 
 
# THE ALGORITHM ITSELF 
 
# Loop Through All Days in the Watering Season 
for y, year in enumerate(years): 
    print(year) 
    row_to_add = [year] 
    if year == 2016 or year == 2020: 
        first_day = 92 # Day of Year -- start at April 1st -- 91 on normal year, 
92 on leap year 
        last_day = 305 # Last Day of Watering Season, October 31st -- 304 on 
normal year, 305 on leap year 
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        days = np.arange(first_day, last_day + 1) 
    else: 
        first_day = 91 # Day of Year -- start at April 1st -- 91 on normal year, 
92 on leap year 
        last_day = 304 # Last Day of Watering Season, October 31st -- 304 on 
normal year, 305 on leap year 
        days = np.arange(first_day, last_day + 1) 
     
     
    for scenario in scenarios: 
        # FIRST RESET ALL THE NECESSARY VARIABLES 
        # Lawn and Tank Size Variables 
        lawnSize = scenarios[scenario]['lawn'] 
        tankSize = scenarios[scenario]['tank'] 
        waterInTank = tankSize # Volume of Water in RWH Tank, assume full at 
start [gallons] 
        rain_yesterday = 0.0 # Rainfall from Previous Day, initially zero [mm] 
        # Variables to Collect Water Use Data During Simulations 
        rwhWaterUse = 0.0 
        pipedWaterUse = 0.0 
        totalWaterUse = 0.0 
        waterDays = 0 
        # Variables for Irrigation Depth & Volume 
        I_depth = 0.0 
        I_vol = 0.0 
        # Variables for Start Times 
        startTimeHistorical = startTimesHistorical[y] 
        startTimeForecast = startTimeHistorical + 86400 
        print(scenario) 
        print("Start Time: ", startTimeHistorical) 
         
         
        for day in days: 
            # BEGINNING OF DAY (8am) 
            # COMPILE NECESSARY DATA FOR PREVIOUS DAY FROM JSON FILE 
            T_max = get_T_max(doc, startTimeHistorical) 
            T_min = get_T_min(doc, startTimeHistorical) 
            T_mean = get_T_mean(doc, startTimeHistorical) 
            rel_hum_max = get_rel_hum_max(doc, startTimeHistorical) 
            rel_hum_min = get_rel_hum_min(doc, startTimeHistorical) 
            u_mean = get_wind_mean(doc, startTimeHistorical) 
            rain_total = get_rain_sum(doc, startTimeHistorical) 
            # Update Start Time for Historical Data 
            startTimeHistorical += (3600 * cnt) 
 
            # CALCULATE VOLUME OF WATER IN RWH TANK USING YESTERDAY'S 
PRECIPITATION 
            waterInTank += (roofArea * rain_total*25.4 * C_roof * 0.623) # [gal] 
            # Make Sure Water level Isn't Greater Than Tank Size 
            if waterInTank > tankSize: 
                waterInTank = tankSize 
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            # SOIL MOISTURE CALCULATIONS 
            # Step 1: ET Calc 
            e_s = e_s_calc((T_max - 273.15), (T_min - 273.15)) # sat. pressure 
calc -- convert T_max, T_min to Celsius from K 
            delta = delta_calc(T_mean - 273.15) # slope of sat. pressure curve 
calc -- convert T_mean to Celsius from K 
            e_a = e_a_calc(rel_hum_max, rel_hum_min, (T_max - 273.15), (T_min - 
273.15)) # actual vapor pressure calc -- convert T_max, T_min to Celsius from K 
            R_n = radiation_calc(day, lat_deg, (T_max - 273.15), (T_min - 
273.15), e_a) # net radiation calc -- convert T_max, T_min to Celsius from K 
            ET = FAO_ET_calc(R_n, (T_mean - 273.15), u_mean, e_s, e_a, delta) # 
ET Calc [in/day] -- convert T_mean to Celsius from K 
 
            # Step 2: Precipitation Infiltration Calc 
            if rain_total > (0.2*S): 
                F_P = (((rain_total - 0.2*S)*S) / (rain_total + 0.8*S)) / 25.4 # 
converted to [inches] 
            else: 
                F_P = 0 
 
            # Step 3: Irrigation Infiltration Calc 
            if (I_depth*25.4) > (0.2*S): 
                F_I = (((I_depth*25.4 - 0.2*S)*S) / (I_depth*25.4 + 0.8*S)) / 
25.4 # converted to [inches] 
            else: 
                F_I = 0 
 
            # Step 4: Soil Moisture Calc 
            WC = WC + F_P + F_I - ET 
            # Make Sure Moisture Doesn't Exceed Field Capacity or Go Negative 
            if WC > FC: 
                WC = FC 
            if WC < 0: 
                WC = 0 
 
            # CHECK WATER CONTENT AGAINST THRESHOLD 
            if WC < WC_min: 
                waterDays += 1 
                # CALCULATE PREDICTED INFILTRATION FROM RAINFALL IN NEXT  
                # Step 1: Compile Rainfall in Next 3 Days from JSON File 
                # Need to Call get_rain_sum() 3 times 
                for i in range(3): 
                    # for first 24-hrs, set initial rainfall total 
                    if i == 0: 
                        predicted_rain = get_rain_sum(doc, startTimeForecast) 
                    # otherwise, add to the total rainfall 
                    else: 
                        predicted_rain += get_rain_sum(doc, startTimeForecast) 
                    # At end of loop, update Start Time 
                    startTimeForecast += (3600 * cnt) 
 
                # Step 2: Calculate Expected Infiltration from Precipitation 
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                if predicted_rain > (0.2*S): 
                    F_P_predicted = (((predicted_rain - 0.2*S)*S) / 
(predicted_rain + 0.8*S)) / 25.4 # converted to [inches] 
                else: 
                    F_P_predicted = 0 
 
                # CALCULATE DEPTH OF IRRIGATION NEEDED 
                F_I_desired = FC - WC - F_P_predicted # amount of infiltration 
needed from irrigation 
                I_depth = ((S*(0.2*S + 0.8*(F_I_desired*25.4))) / (S - 
(F_I_desired*25.4))) / 25.4 # depth of irrigation to release [inches] 
 
                # CALCULATE VOLUME OF IRRIGATION NEEDED USING LAWN SIZE 
                I_vol = ((I_depth/12) * lawnSize) * 7.481 # volume of irrigation 
to release [gallons] 
 
                # RELEASE WATER FROM SYSTEM -- FIRST FROM RWH TANK, THEN FROM 
PIPED WATER SUPPLY 
                # if sufficient water in tank, release all water from RWH 
                if I_vol <= waterInTank: 
                    # Update RWH Water Use Total 
                    rwhWaterUse += I_vol 
                    # Update Total Water Use 
                    totalWaterUse += I_vol 
                    # Update Water Volume in Tank 
                    waterInTank -= I_vol 
                # if insufficient water in tank BUT tank has some water, empty 
RWH tank and then finish watering with piped supply 
                elif (I_vol > waterInTank) and (waterInTank > 0): 
                    # Update RWH Water Use Total 
                    rwhWaterUse += waterInTank 
                    # Update Piped Water Use Total 
                    pipedWaterUse += (I_vol - waterInTank) 
                    # Update Total Water Use 
                    totalWaterUse += I_vol 
                    # Update Water Volume in Tank -- tank empty 
                    waterInTank = 0 
                # else (RWH tank is completely empty), release all water from 
piped supply 
                else: 
                    # Update Piped Water Use Total 
                    pipedWaterUse += I_vol 
                    # Update Total Water Use 
                    totalWaterUse += I_vol 
            # If Water Content is Above the Threshold, then set the Irrigation 
Depth and Volume for the Day to Zero 
            else: 
                I_depth = 0 
                I_vol = 0 
 
            # UPDATE START TIME FOR FORECAST API CALL (24 HOURS AHEAD OF 
HISTORICAL START TIME 
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            startTimeForecast = startTimeHistorical + 86400 
 
 
        # Print Out Info for the Simulation 
        print(scenario) 
         
        # Append Data for the Scenario to the row_to_add List 
        row_to_add.append(rwhWaterUse) 
        row_to_add.append(pipedWaterUse) 
        row_to_add.append(waterDays) 
         
    # At End of Year, Append Row to the CSV File 
    with open(r'C:\Users\bbeau\OneDrive\Documents\ES 100\Plymouth Compiled 
Data.csv', 'a') as csvfile: 
        writer_object = writer(csvfile) 
        writer_object.writerow(row_to_add) 
 




