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Abstract 

Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), 

remains a global health threat, presenting significant challenges to effective treatment due 

to the emergence of drug-resistant strains. The prevalence and mechanisms of drug 

resistance amplification in TB remain areas of ongoing research and debate. 

This study investigated the consequences of suboptimal treatment on the 

acquisition of drug resistance mutations in Mtb. We sought to assess the frequency of 

amplification while identifying potential risk factors; in particular, our goal was to 

understand the true prevalence of resistance amplification. Utilizing patient data collected 

during a comprehensive TB transmissibility and treatment study in Peru, we examined 

changes in drug susceptibility profiles through conventional drug sensitivity testing 

(phenotypic) and identifying genotypic changes via whole-genome sequencing. This dual 

examination provides a comprehensive understanding of drug resistance dynamics, going 

beyond conventional phenotypic assessments to explore the genomic landscape.  

We investigated various factors that we hypothesized might contribute to 

suboptimal treatment outcomes, as suboptimal treatment has been associated with 

resistance amplification. Specifically, we examined variables such as HIV status, diabetes 

status, the presence of cavitary lesions, Mtb lineage, time to effective treatment, and 

adherence to treatment regimens.  

While logistic regression analysis did not reveal statistically significant 

relationships between suboptimal treatment and resistance amplification, our study 



 

provides valuable insight into the acquisition of drug-resistance amplification. It 

underscores the complexity of TB treatment outcomes and emphasizes the need for 

further investigation into the factors contributing to drug-resistance amplification. Our 

main finding was that drug-resistance amplification is rare. Thus, relying solely on 

phenotypic drug susceptibility testing (DST) data may lead to an overestimation of 

resistance amplification. This finding highlights the importance of considering the 

limitations of phenotypic DST data and the potential benefits of integrating advanced 

molecular techniques such as whole genome sequencing to gain a more accurate 

understanding of drug resistance dynamics in TB patients.  
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Chapter I. 

Introduction 

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium 

tuberculosis (Mtb). While the disease primarily affects the pulmonary system, it can also 

affect other sites in the body, such as the gastrointestinal (GI) system, the skin, the central 

nervous system, and the liver.1 Pulmonary disease is the most common presentation, 

characterized by symptoms such as persistent coughing, chest pain, and hemoptysis 

(coughing up blood).1 TB is highly contagious and spreads when actively infected 

individuals expel bacteria into the air, often through coughing.1  

TB is a leading cause of infectious deaths, causing an estimated 1.4 million deaths 

worldwide, annually. 2 Approximately one quarter of the global population is estimated to 

have been infected with Mtb, and each year, roughly 10.6 million infected individuals 

develop active TB.2 Tuberculosis surpasses HIV/AIDS as the leading cause of death from 

a single infectious agent.2 

One of the most pressing challenges in global TB control is the ongoing spread of 

drug-resistant tuberculosis (DR-TB). Particularly, multidrug-resistant tuberculosis 

(MDR-TB) has emerged as a growing public health challenge due to the intrinsic 

 
1 Adigun R, Singh R. Tuberculosis. [Updated 2023 Jul 11]. In: StatPearls [Internet]. Treasure Island (FL): 
StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441916/ 
 
2 World Health Organization (WHO). (2022) Global tuberculosis report 2022. World Health Organization, 
Geneva, Switzerland. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-
tuberculosis-report-2022 
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difficulty in treating these infections. 3 The presence of drug resistance increases the risk 

of adverse outcomes among TB patients, such as treatment failure and death. 4 Each year, 

nearly half a million new cases of MDR-TB are reported worldwide.2 

MDR-TB strains exhibit resistance to the two most effective first-line drugs, 

isoniazid and rifampicin.4 Extensively drug-resistant (XDR) strains are resistant not only 

to these first-line drugs but also to a fluoroquinolone and either a second-line injectable 

(amikacin, capreomycin, and kanamycin) or the drugs bedaquiline or linezolid.4 The 

more drugs a strain of TB is resistant to, the more challenging it becomes to achieve 

effective and complete treatment.4 For this reason, timely and effective treatment is 

crucial for stopping the disease's spread and preventing the emergence of drug-resistant 

strains.  

Treatment for drug-susceptible TB requires a standard 4-drug antibiotic regimen 

lasting approximately 6 months.4 When correctly prescribed and completed, this regimen 

can lead to cure rates as high as 95% when correctly administered to people with drug-

susceptible TB. 5  

Treatment for DR-TB involves the utilization of first-line drugs that the patient's 

TB strain remains susceptible to, in addition to second-line drugs.4 This treatment can 

vary in duration, lasting between six months to two years.4 Drug resistance in Mtb is 

linked to lower treatment success rates. XDR-TB patients have been shown to face a 

 
3 Centers for Disease Control and Prevention. (2021). Tuberculosis. Division of Tuberculosis Elimination. 
Centers for Disease Control and Prevention. https://www.cdc.gov/tb/publications/default.htm 
 
4 Dheda, K., Gumbo, T., Gandhi, N. R., Murray, M., Theron, G., Udwadia, Z., Migliori, G. B., & Warren, 
R. (2014). Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. The 
Lancet. Respiratory medicine, 2(4), 321–338. https://doi.org/10.1016/S2213-2600(14)70031-1 
 
5 Shin, H. J., & Kwon, Y. S. (2015). Treatment of Drug Susceptible Pulmonary Tuberculosis. Tuberculosis 
and Respiratory Diseases, 78(3), 161–167. https://doi.org/10.4046/trd.2015.78.3.161 
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12.2-fold higher likelihood of experiencing an unsuccessful treatment outcome compared 

to MDR-TB patients. 6 Additionally, with each reduction in the number of potentially 

effective drugs in the treatment regimen, the odds of achieving treatment success has 

been shown to be decreased by a factor of 0.62. Conversely, for each additional effective 

drug included in the treatment regimen, the odds of treatment success are increased by a 

factor of 2.1.7 Thus, increased drug resistance negatively impacts treatment success, 

whereas the inclusion of more effective drugs in the treatment plan improves the chances 

of a successful outcome.  

Cases of DR-TB more frequently occur by transmission of drug-resistant Mtb 

strains from person to person, compared with the development of new resistance.4 

However, the acquisition of new drug resistance in response to inadequate treatment is 

more likely to occur through the selection of existing mutations rather than through the 

emergence of new spontaneous mutations in drug-resistance genes. This process of 

selection can be driven by the pressure imposed by minimally-effective or ineffective 

drugs, reinforcing the prevalence of mutations in genes associated with drug resistance. 8  

In the context of drug resistant TB, the differentiation between acquired resistance 

mutation vs primary transmission is a concern. XDR-TB can develop from MDR-TB 

 
6 Bhering, M., & Kritski, A. (2020). Primary and acquired multidrug-resistant tuberculosis: Predictive 
factors for unfavorable treatment outcomes in Rio de Janeiro, 2000-2016. Revista panamericana de salud 
publica = Pan American Journal of Public Health, 44, e178. https://doi.org/10.26633/RPSP.2020.178 
 
7 Cegielski, J. P., Dalton, T., Yagui, M., Wattanaamornkiet, W., Volchenkov, G. V., Via, L. E., Van Der 
Walt, M., Tupasi, T., Smith, S. E., Odendaal, R., Leimane, V., Kvasnovsky, C., Kuznetsova, T., Kurbatova, 
E., Kummik, T., Kuksa, L., Kliiman, K., Kiryanova, E. V., Kim, H., Kim, C. K., … Global Preserving 
Effective TB Treatment Study (PETTS) Investigators (2014). Extensive drug resistance acquired during 
treatment of multidrug-resistant tuberculosis. Clinical infectious diseases: an official publication of the 
Infectious Diseases Society of America, 59(8), 1049–1063. https://doi.org/10.1093/cid/ciu572 
 
8 Shaikh, A., Sriraman, K., Vaswani, S., Oswal, V., Rao, S., & Mistry, N. (2021). Early phase of effective 
treatment induces distinct transcriptional changes in Mycobacterium tuberculosis expelled by pulmonary 
tuberculosis patients. Scientific reports, 11(1), 17812. https://doi.org/10.1038/s41598-021-96902-7 
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through a small number of additional resistance mutations that occur in patients 

undergoing drug treatment. In a study conducted in 2021 involving 286 MDR-TB 

patients, 63 patients developed additional resistance to both second-line injectable drugs 

and fluoroquinolones while undergoing standardized MDR-TB treatment.9 Exogenous re-

infection with a secondary drug-resistant strain was more common (65.1%) in these 

patients than the occurrence of acquired drug resistance through microevolution (28.6%). 

Furthermore, the study identified independent risk factors for the development of 

additional second-line drug resistance, with extensive disease on chest X-ray and the 

presence of type 2 diabetes mellitus being notable contributors.9  

In pathogenic bacteria, whole genome sequencing (WGS) is able to capture 

genetic variation that can lead to drug resistance through the identification of single 

nucleotide polymorphisms (SNPs) in the bacterial genome. Through WGS, we are able to 

uncover SNPs that occur during various treatment scenarios and evaluate how these 

mutations may confer drug resistance to the pathogen.  

In this study, our objective was to investigate whether drug resistance in Mtb 

develops through the acquisition of drug-resistance mutations during exposure to 

antimicrobial drugs and, if so, to quantify the extent to which it occurs. We aimed to shed 

light on the relationship between suboptimal treatment, often due to delays in DR-TB 

diagnosis, and the risk of acquiring resistance to second-line drugs. Our study’s focus 

was on discerning how suboptimal treatment in DR-TB patients affects SNP acquisition, 

 
9 Hu, Y., Zheng, X., Davies Forsman, L., Ning, Z., Chen, C., Gao, Y., Zhang, Z., Lu, W., Werngren, J., 
Bruchfeld, J., Hoffner, S., & Xu, B. (2021). Emergence of additional drug resistance during treatment of 
multidrug-resistant tuberculosis in China: a prospective cohort study. Clinical microbiology and infection: 
the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(12), 
1805–1813. https://doi.org/10.1016/j.cmi.2021.04.001 
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and how SNPs in various regions of the Mtb genome contribute to the amplification of 

drug resistance.  

We hypothesized that suboptimal treatment is a risk factor for drug resistance 

amplification and we anticipated that patients who received suboptimal treatment would 

exhibit increased SNP acquisition compared to those who received the most optimal 

treatment. Further, we expected that SNPs acquired in regions of the genome known to be 

associated with drug-resistance phenotypes would correlate with amplification of drug 

resistance.
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Chapter II. 

Materials and Methods 

In this study, our objective was to gain insights into the true prevalence of 

resistance amplification within the context of TB treatment. Combining data from drug 

susceptibility testing and whole genome sequencing obtained from a prospective cohort 

study of TB patients, we systematically identified phenotypic and genotypic changes 

indicative of amplified drug resistance. Following this, we conducted statistical analyses, 

including univariate and multivariate logistic regression, to explore associations between 

various clinical variables and the likelihood of drug resistance amplification in TB 

patients. This analysis aimed to establish whether these identified changes genuinely 

indicated drug resistance amplification.  

Participants 

This study used patient data obtained during a prospective TB transmissibility and 

treatment study conducted in Lima, Peru, between 2009 and 2012. 10 The study cohort 

initially included 4,500 index patients, of whom 4,044 had microbiologically confirmed 

tuberculosis disease. 

 

 
10 Becerra, M. C., Huang, C. C., Lecca, L., Bayona, J., Contreras, C., Calderon, R., Yataco, R., Galea, J., 
Zhang, Z., Atwood, S., Cohen, T., Mitnick, C. D., Farmer, P., & Murray, M. (2019). Transmissibility and 
potential for disease progression of drug resistant Mycobacterium tuberculosis: prospective cohort study. 
BMJ (Clinical research ed.), 367, l5894. https://doi.org/10.1136/bmj.l5894 
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Ethics statement 

This research utilized previously collected data from human subjects who 

provided written informed consent for their data to be analyzed by the team of Dr. Megan 

Murray for research purposes. No new samples or personally-identifiable data were 

collected for this project. The dataset provided did not contain any identifiers, ensuring 

that individuals could not be re-identified through the data. IRB review was conducted 

for the main study; however, as this current study did not involve new human-subject 

research, additional IRB review was not required.  

Measures 

For index patients, pulmonary TB disease was diagnosed based on positive 

sputum smears or chest radiographs. Sputum samples collected at diagnosis and follow-

up time points underwent bacteriological culture to assess treatment response. Baseline 

drug sensitivity testing targeted first-line drugs, expanding to second-line drugs upon 

detecting resistance. Throughout treatment, patients were regularly monitored, with 

routine cultures at the two-month mark. If persistent culture positivity was observed, 

additional drug sensitivity testing was administered in a predefined order, facilitating 

comprehensive resistance assessment.  

At initiation, all samples from cultures that tested positive for Mtb were subjected 

to a baseline drug sensitivity test (DST), assessing resistance to first-line drugs: 

Pyrazinamide (pza), Isoniazid (inh), Ethambutol (eth), and Rifampin (rif). If resistance to 

any of these drugs was detected, further testing was conducted to assess resistance to 

second-line drugs: Streptomycin (sm), Para-aminosalicylic acid (pas), Capreomycin (cm), 

Ciprofloxacin (cpx), Cycloserine (cs), Ethionamide (eth), Kanamycin (km), Rifabutin 
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(rbu), Levofloxacin (lin), Moxifloxacin (mox), and Amikacin (amk). Whole genome 

sequencing was performed on a subset of Mtb isolates. 

Patients diagnosed with drug-sensitive TB received a standard 6-month treatment 

course, consisting of a two-month phase involving isoniazid, Rifampicin, Pyrazinamide, 

and Ethambutol, followed by a four-month phase of isoniazid and Rifampicin alone. 

Patients with MDR-TB were initiated on a standard treatment regimen until drug 

resistance was confirmed. Delays in initiating appropriate treatment, specifically 

involving second-line drugs, for MDR-TB were due to the extended time required for 

drug resistance testing by culture, which could take several months. Follow-up data were 

collected at two, six, 12, and 24 months for all patients. Patients with DR-TB had 

additional follow-up at 36 or 48 months.  

Procedures 

To identify drug resistance amplification in patients, we used the process 

illustrated in Figure 1. This approach involved the systematic exclusion of cases that were 

not indicative of amplification. Our analysis encompassed both DST results to identify 

patients with phenotypic drug resistance changes and WGS results to pinpoint individuals 

exhibiting genotypic changes indicative of amplified drug resistance 

We took a stepwise exclusion approach to classify participants as “amplified.” 

From the initial 353 index patients, 189 individuals whose DST results showed no change 

in resistance during treatment were eliminated. Fourteen participants with only one 

genomic file were also excluded, as two or more files were required for comparative 

analysis. Additional participants were eliminated if there was evidence of re-infection or 
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mixed infection, including 22 who were determined to exhibit Mtb lineage changes 

during treatment. After we analyzed SNPs in the remaining participants, we then 

eliminated 15 participants whose SNPs were not synonymous or were not unique 

between tests and 12 participants who had more than 50 SNP changes, a threshold we set 

to signify potential reinfection or mixed infection. Finally, 80 participants whose SNPs 

were in genes not associated with resistance were eliminated. The remaining 11 

participants were categorized as amplified, while the 342 participants who were excluded 

were classified as non-amplified. 

 

Figure 1.  Process for Identifying Amplified Drug Resistance. 

Criteria and analyses employed to pinpoint individuals exhibiting amplified drug 
resistance. 
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Analysis of drug susceptibility testing results  

We included a subgroup of 353 index patients with DST results with at least two 

sequential positive sputum cultures. We conducted descriptive statistics for this group, 

particularly focusing on the drugs tested for resistance, and examined the number of 

individuals who exhibited either fully susceptible or drug-resistant TB at enrollment. 

Subsequently, we identified patients whose DST results changed over time, 

focusing on samples that exhibited increased drug resistance or showed a transition from 

susceptibility to resistance during treatment. We identified when these changes occurred, 

noting whether transitions were between samples 1 and 2, 2 and 3, and so on. 15 patients 

had no result for test 1, but DST results that indicated resistance in test 2. This can likely 

be attributed to samples being compromised either before or during testing, leading to the 

inability to produce conclusive results.  

Analysis of genomic data  

To confirm the resistance changes observed through DST, we conducted an 

analysis of SNP changes identified through WGS data. The SNP calls for each sample 

were provided by the team of Dr. Megan Murray. Participants without two or more 

genomic files were omitted since comparisons could not be made in such cases. 

We used lineage data to eliminate individuals whose genomic data indicated 

lineage changes. Such changes suggest potential reinfection or coinfection, and therefore, 

these individuals were excluded from our analysis.  

Next, our objective was to distinguish whether individuals had actually acquired 

drug resistance or if their infections were instead the result of mixed infection or new 

strain infections. We concentrated on non-synonymous SNPs (coding SNPs) and retained 
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only those in coding regions. We excluded SNPs that were located within repeating 

elements because these elements can be duplicated throughout the genome, making it 

challenging to accurately identify their exact location. This exclusion ensured that our 

analysis remained focused on more reliably annotated and interpretable genomic regions.  

Following this, SNP calls against a reference genome were made by the team, and 

we analyzed them here to identify instances of new, unique SNPs emerging between 

sequential tests. These unique SNPs were defined based on their distinct genomic 

positions and/or sequence alterations. To clarify, a SNP was considered unique if it 

appeared in one test but had not been present in the previous test. If the SNP occurred at 

the same genomic position but exhibited a different sequence alteration between tests, it 

was also classified as unique. In contrast, SNPs that repeated between tests without 

alterations or with identical alterations were not considered new and were excluded from 

our analysis. This approach allowed us to identify and track the development of novel 

SNPs that arose over the course of treatment.  

We applied a threshold for exclusion, removing individuals who exhibited more 

than 50 SNP changes between consecutive tests. This threshold was indicative of 

substantial genetic variation that raised the possibility of mixed infection or reinfection 

with a new TB strain, which would make it challenging to definitively attribute drug 

resistance amplification solely to suboptimal treatment.  

Using the remaining SNPs, we compiled a list of genes in which we identified 

SNPs associated with amplification. In order to identify the genes known to be associated 

with resistance and filter out irrelevant ones, we consulted the 'Catalogue of mutations in 

Mycobacterium tuberculosis complex and their association with drug resistance' 
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published by the World Health Organization. 11 From the variant names in the document, 

we compiled a list of genes and drugs associated with resistance. We retained genes from 

the WHO dataset labeled as 'Associated with Resistance' ('Assoc w R'), 'Associated with 

Resistance - Interim' ('Assoc w R - Interim'), or 'Combination' ('Combo') and excluded 

those labeled as 'Not Associated with Resistance' ('Not assoc w R'), 'Not Associated with 

Resistance - Interim' ('Not assoc w R - Interim'), or 'Uncertain Significance.' The WHO 

dataset contained numerous entries with "NA" in the “genome.position” column; these 

entries were omitted. 

Through a comparison of the gene list derived from the WHO dataset and our 

own list of genes containing SNPs, we established a final list of genes potentially 

associated with drug resistance. Subsequently, we identified individuals in our cohort 

with SNP changes in these genes. This process enabled us to categorize participants into 

one of two outcomes: amplified or not amplified. It also offered insights into the 

frequency of amplification. 

Statistical analysis 

To explore the relationship between various independent variables and the 

likelihood of amplification, we conducted a series of univariate logistic regression 

analyses, followed by multivariate logistic regression analysis. The primary dependent 

variable in our analyses was the amplification status: 'amplified' or 'not amplified.’ The  

 

 

 
11 WHO Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug 
resistance. 2021. https://apps.who.int/iris/handle/10665/341981 
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independent variables of interest were: 

• HIV Status: A binary variable indicating the presence or absence of HIV 

infection. Information on HIV status was obtained from a questionnaire 

completed by index patients at enrollment. Patients who did not know their HIV 

status had blood drawn for HIV and cluster of differentiation 4 (CD4) count. 

• Diabetes Status: A binary variable indicating the presence or absence of diabetes. 

Diabetes status was self-reported by patients in the enrollment questionnaire. 

• Cavitary Lesions: A binary variable representing the presence or absence of 

cavitary lesions. Cavitary lesions were identified by chest radiography.  

• Mtb Lineage: A categorical variable representing different M. tuberculosis lineage 

groups. These include lineage2 and lineage4. 

• Time to Effective Treatment: A continuous variable measured in days, signifying 

the duration from the initiation of treatment to the point when it became tailored 

to the patient's DST results.  

• Treatment Adherence: A continuous variable representing the degree of treatment 

adherence, measured on a scale from 0 to 100. This scale reflects the proportion 

of prescribed doses actually taken by patients during the relevant time period. 

Higher values indicate a higher percentage of adherence to the prescribed 

treatment regimen. 

 

Prior to conducting the logistic regression analysis, data cleaning and 

preprocessing were performed to address missing values. Participants with missing 

values were temporarily excluded from specific univariate analyses relevant to the 
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missing data. For instance, if there were five individuals with missing HIV data, they 

were excluded from the HIV analysis but were included in other univariate analyses like 

cavitary lesions. However, all individuals with missing data were ultimately excluded 

from the multivariate analysis to ensure a complete dataset for this comprehensive 

analysis.  

To minimize the risk of reverse causality, in which the presumed cause-and-effect 

relationships could be reversed, we implemented a cutoff point for the 'time to effective 

treatment' variable, capping its values at 60 days. Cases where values exceeded this 

threshold were standardized to 60 days for analytical purposes. Beyond 60 days, the 

likelihood of resistance changes may become less pertinent to our research objectives. It 

also aligns with the critical timeframe for obtaining drug susceptibility testing results, 

during which decisions about treatment adjustments are typically made.  

We pooled all of the sublineages within lineage4 before comparing them with 

lineage2. We used lineage2 as the reference category for this categorical variable. The 

coefficients for lineage4 are interpreted in relation to this chosen baseline, with the 

reference category assigned a value of 1. 

Each logistic regression analysis was conducted using the 'glm' function in the R 

programming environment, specifying 'binomial' as the family parameter. This approach 

allowed us to model the probability of amplification status as a function of the 

independent variables mentioned above, including HIV status, diabetes status, presence 

of cavitary lesions, Mtb lineage, time to effective treatment, and adherence to treatment 

regimens.  
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In our initial analysis, each variable was individually examined in a univariate 

logistic regression analysis, assessing its potential association with drug resistance 

amplification. We then proceeded to conduct a multivariate logistic regression analysis, 

where all variables were included simultaneously to explore potential interactions and 

dependencies among them. 

For these analyses, we applied standard statistical significance thresholds (p < 

0.05) and reported the corresponding coefficient estimates, odds ratios, standard errors, 

and p-values for each predictor variable.  
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Chapter III. 

Results 

The main objectives of this study were to investigate the consequences of 

suboptimal treatment on the acquisition of drug resistance mutations in Mtb, assess the 

frequency of amplification, and identify potential risk factors. Here, we present the 

comprehensive results of our investigation, encompassing cohort descriptive statistics, 

phenotypic and genotypic amplification findings, and a detailed examination of 

independent variables related to study participants, including HIV status, diabetes status, 

cavitary lesions, Mtb lineage, adherence, and time to effective treatment.  

Descriptive Statistics 

Of the initial 4,500 index patients from the Peru study, we identified 353 

participants who remained culture positive 2 months or more after the initiation of TB 

treatment. Among this subset, 119 individuals (33.7%) had drug-susceptible TB whereas 

234 individuals (66.3%) had DR-TB, displaying resistance to at least one drug. One 

participant demonstrated resistance to 12 drugs at baseline, marking the highest degree of 

drug resistance observed within the cohort (Figure 2). 
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Figure 2.  Distribution of Drug Resistance in Study Participants at Baseline. 

Distribution of drug resistance among study participants at baseline. Red error bars 
represent standard deviations. 

Phenotypic Amplification 

Phenotypic amplification was determined by analysis of DST results. Within the 

cohort of 353 individuals, 164 participants (46.5%) exhibited changes in resistance for at 

least one drug during the study. This included 99 individuals with changes from 

susceptible to resistant (S to R), 97 individuals with changes from resistant to susceptible 

(R to S). Among those with multiple resistance changes, 32 individuals had both S to R 

and R to S changes for different drugs. The remaining 189 individuals (53.5%) exhibited 

no changes in resistance to any drug (Table 1). 
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Table 1.  Changes in Drug Resistance Profiles by DST. 

Resistance Changes 
Observed 

Number of 
Individuals 

Percentage 

S to R 99 28.05% 

R to S 97 24.48% 

Both S to R and R to S 32 9.07% 

No changes in resistance 189 53.54% 

Changes in drug resistance profiles observed among the cohort of 353 individuals with 
two or more DST results. Indicates the number of people with changes from susceptible 
to resistant (S to R), resistant to susceptible (R to S), and individuals who had both types 
of changes (to different drugs) or no changes during the course of the study, 

Among those who amplified (exhibited S to R changes) by DST, 59 individuals 

had changes for just one drug, 21 individuals for 2 different drugs, 9 individuals for 3 

different drugs, 6 individuals for 4 different drugs, and 3 individuals for 5 different drugs. 

Conversely, among the individuals with R to S changes, 64 had changes for just one drug, 

22 for 2 different drugs, 7 for 3 different drugs, and 2 for 4 different drugs (Figure 3). 
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Figure 3.  Comparative Analysis of S to R and R to S Transitions. 

The number of individuals exhibiting differing degrees of phenotypic changes from 
susceptible to resistant (S to R) or resistant to susceptible (R to S) during treatment. 

Among individuals who exhibited resistance amplification, the largest proportion 

acquired new phenotypic resistance to first-line drugs, including rifampin (21 

individuals), pyrazinamide (20 individuals), isoniazid (19 individuals), and ethambutol 

(19 individuals) (Table 2). Additionally, there was a noteworthy incidence of resistance 

amplification in streptomycin, with 31 individuals exhibiting changes. Among 

individuals who lost resistance, several drugs within both first and second-line categories 

showed alterations in resistance profiles, including streptomycin (25 individuals), 

ethambutol (21 individuals), pyrazinamide (9 individuals), and rifampin (9 individuals). 
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Table 2.  Phenotypic Changes in Drug Resistance Profiles. 

Drug Name Individuals With Isolates 
That Gained Resistance 

Individuals With IsolatesThat 
Lost Resistance 

Pyrazinamide 20 9 

Isoniazid 19 8 

Ethambutol 19 21 

Rifampin 21 9 

Streptomycin 31 25 

Para-aminosalicylic acid 0 1 

Capreomycin 5 7 

Ciprofloxacin 3 0 

Cycloserine 1 1 

Ethionamide 5 9 

Kanamycin 6 5 

Summary of the phenotypic changes in drug resistance profiles among individuals in the 
study, indicating the number of individuals whose bacterial isolates acquired new 
phenotypic resistance (S to R) and the number of individuals whose isolates lost 
resistance (R to S) to each anti-tuberculosis drug. 
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Genotypic Amplification 

After evaluating phenotypic resistance changes in drug susceptibility testing and 

identifying individuals who exhibited resistance amplification, we further validated these 

findings using WGS data. 

After assessing resistance changes detected by DST and identifying 164 

individuals who displayed phenotypic amplification, we aimed to validate these findings 

using WGS data. To distinguish individuals with genuine genotypic amplification, we 

implemented a multi-step approach. As detailed in Chapter 2, Figure 1, the following 

individuals were systematically eliminated from the “amplified” group and subsequently 

categorized as “non-amplified”: 

1. 14 individuals who did not have more than one genomic file for analysis 

2. 22 people whose genomic data indicated Mtb lineage changes 

3. 15 participants whose SNPs were synonymous 

4. 12 participants with >50 SNP changes in their genomic data 

5. 80 individuals with SNPs not known to be associated with resistance 

After completing step 4, we identified 91 individuals in our cohort with SNP changes 

across 95 distinct genes. In step 5, we aimed to refine our dataset by filtering out SNPs 

not associated with drug resistance. To accomplish this, we cross-referenced our gene list 

with the World Health Organization (WHO) catalog, which featured 17 genes known to 

be linked to resistance. Through this comparative analysis, we identified the  

following final set of six genes associated with resistance amplification: 

• ethA 

• gid 
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• gyrA 

• katG 

• pncA 

• rpoB 

 

We used this list of six genes to classify the remaining participants as either 

'amplified' or 'not amplified,' assigning the 'amplified' designation to individuals who had 

SNPs within these genes.  

Our analysis identified a total of 11 participants (3.1% of the cohort) who 

exhibited phenotypic and genotypic amplification, with a total of 15 SNPs found within 

resistance-associated genes. The remaining 342 individuals (96.9%) in the cohort were 

categorized as 'not amplified.  

Importantly, the identification of only 11 cases of amplification among the total 

4,500 participants equates to 99.76% who were not amplified and only 0.24% exhibited 

amplification, indicating the true rarity of this occurrence. 

Statistical Analysis 

Characteristics of Independent Variables Related to Study Participants. 

HIV status was recorded as negative for 335 individuals, positive for 13 

individuals, and five records contained no information (NA). Notably, one individual 

from the cohort classified as 'amplified' had NA for HIV status. Consequently, this 

individual had to be excluded from the analysis of this variable. 
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Diabetes status was recorded as negative for 328 individuals, positive for 21 

individuals, and four records contained no information (NA). None of the people with 

positive diabetes status were among the amplified subset. Each individual with NA was 

eliminated prior to regression analysis. 

Cavitary lesions were identified in 109 individuals and absent in 236 individuals. 

Eight records contained no information (NA). None of the individuals with cavitary 

lesions exhibited amplification. The 8 individuals with NA were eliminated from the 

analysis before logistic regression. 

The cohort consisted of individuals whose Mtb isolates belonged to two lineages – 

lineage 2 and lineage 4. Of the 353 participants, 36 (10.2%) had isolates that were 

identified as belonging to lineage 2, while the remaining 317 (89.8%) were classified 

under lineage 4. Within the lineage 4 category, participants were further classified into 

distinct sublineages, with the following distribution: : 

• Lineage4.1: 111 participants 

• Lineage4.3: 148 participants 

• Lineage4.4: 3 participants 

• Lineage4.7: 3 participants 

• Lineage4.8: 11 participants 

• Lineage4.x: 18 participants 

 

Treatment-adherence levels ranged from 0 to 100 in the cohort. Eight individuals 

had missing adherence data (NA), and all of these individuals were removed from the 

dataset. Consequently, these 8 individuals were classified as not amplified. Among the 
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remaining 345 participants, one individual exhibited 0% adherence, while 302 individuals 

displayed 100% adherence. Among the final amplified group of 11 individuals, 10 had 

100% adherence, while 1 person had an adherence level of 96.7%. 

Time to effective treatment values ranged from 0 to 1194 days in the dataset, 

where zero days indicated immediate administration of effective treatment. Among 

individuals classified as amplified, the days ranged from 0 to 849, with 5 individuals 

receiving effective treatment on the same day. Detailed descriptive statistics for time to 

effective treatment are provided in Table 3, including the mean, median, and standard 

deviation, for both the full cohort of 353 individuals and the subset of amplified 

individuals. 

Table 3.  Descriptive Statistics for Time to Effective Treatment. 

Subset Mean Median SD 

Full Cohort 196.92 144.50 205.93 

Amplified Subset 224.00 128.00 287.45 

Descriptive statistics for time to effective treatment, including the mean, median, and 
standard deviation, for both the full cohort of 353 individuals and the subset of amplified 
individuals. 

Univariate Logistic Regression Analyses  

We conducted a series of univariate regression analyses to examine the 

relationships between independent variables and resistance amplification. Applying the 
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conventional threshold for statistical significance, none of the variables demonstrated a 

significant association with resistance amplification (Table 4). 

Table 4:  Summary of Univariate Logistic Regression Analyses. 

Predictor Variable Log Odds Odds Ratio Standard 
Error 

P-Value 

HIV Status -15.090 0.000 1809.050 0.993 

Diabetes Status 0.457 1.580 1.074 0.670 

Cavitary Lesions 0.211 1.234 0.638 0.740 

Lineage2 0.000  1.000 NA NA 

Lineage4 0.138 1.147 1.064 0.897 

Time to Effective 
Treatment 

0.004 1.004 0.011 0.730 

Adherence at  
2 mos  

0.079 1.082 0.130 0.543 

Summary of the univariate analyses, examining the relationship between individual 
predictor variables, including lineage, HIV status, diabetes status, cavitary lesions, 
diabetes status, time to effective treatment, and adherence at 2 months, in relation to 
drug resistance amplification. The table includes coefficient estimates, odds ratios, 
standard errors, and p-values. 

Multivariate Logistic Regression Analysis  

Subsequently, we performed a multivariate logistic regression to examine the 

interrelationships among these variables. similar to the univariate analyses, the results 
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from the multivariate logistic regression also demonstrated no statistical significance for 

any of the independent variables (Table 5). 

Table 5:  Summary of Multivariate Logistic Regression Analysis. 

Predictor Variable Log Odds Odds 
Ratio 

Standard 
Error 

P-Value 

HIV Status -15.150 2.633 1963.000 0.994 

Diabetes Status 0.657 1.929 1.094 0.548 

Cavitary Lesions 0.402 1.495 0.663 0.545 

Lineage2 0.000 1.000 NA NA 

Lineage4 0.125  1.133 1.082 0.908 

Time to Effective 
Treatment 

0.000 1.000 0.011 0.994 

Adherence at  
2 mos  

0.076 1.079 0.130 0.556 

Summary of the multivariate analysis, examining the relationship between individual 
predictor variables, including lineage, HIV status, diabetes status, cavitary lesions, time 
to effective treatment, and adherence at 2 months, in relation to drug resistance 
amplification. The table includes coefficient estimates, odds ratios, standard errors, and 
p-values 
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Chapter IV. 

Discussion 

The primary objective of this study was to investigate how suboptimal treatment 

may contribute to the amplification of drug resistance in individuals diagnosed with drug-

resistant tuberculosis, and to measure the frequency of such amplification. We examined 

a range of potential risk factors, including clinical characteristics and treatment-related 

variables, to determine their associations with the likelihood of resistance amplification. 

Our key finding was that drug-resistance amplification is a rare occurrence. Therefore, 

reliance on phenotypic drug susceptibility testing data alone may lead to an 

overestimation of resistance amplification. 

Initially, we anticipated that time to effective therapy would serve as a key 

indicator of suboptimal care for DR-TB patients. Thus, suboptimal treatment was defined 

by the time to effective therapy variable. Other variables such as HIV status, diabetes 

status, the presence of cavitary lesions, Mtb lineage, and adherence to treatment regimens 

were considered potential risk factors for drug resistance amplification.  

Individuals with DR-TB typically received first-line drugs until drug 

susceptibility test results became available at around the two-month mark. During this 

period, they might not be receiving the most effective treatment, constituting a form of 

suboptimal care. We aimed to quantify the incremental impact of time to effective 

therapy on resistance amplification, assessing how each day of delayed effective therapy 

contributed to resistance amplification.  
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Findings of Logistic Regression Analyses 

Our investigation included both univariate and multivariate logistic regression 

analyses, aiming to assess the influence of specific variables on the likelihood of 

experiencing resistance amplification.  

The first variable that we examined was time to effective therapy. Despite 

considering time to effective therapy as a key indicator of suboptimal care for DR-TB 

patients, our logistic regression analysis revealed that the duration from diagnosis to the 

initiation of effective therapy showed no statistically significant association with drug-

resistance amplification. 

Another risk factor we investigated in this study was the presence of cavitary 

lesions. These lesions, a distinctive characteristic of advanced and severe forms 

pulmonary TB disease, manifest as hollow spaces that develop within the lung tissue, 

often as a response to result of tissue destruction caused by infection with Mtb. These 

cavities can harbor populations of Mtb, potentially sheltering the bacteria from the effects 

of anti-TB drugs, thus influencing the overall treatment response. In this way, they may 

contribute to suboptimal treatment outcomes. Our univariate analysis suggested some 

evidence of a potential association, with an odds ratio of 1.23 indicating a 23.4% higher 

likelihood of resistance amplification in individuals with cavitary lesions. 

As a comorbidity, diabetes may complicate tuberculosis by weakening the 

immune system, increasing bacterial levels, and influencing drug effectiveness. In our 

univariate analysis, diabetes status revealed a noticeable trend, suggesting a potential 

association with resistance amplification.  
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Additionally, we examined Mtb lineage as a potential risk factor in our study. 

Genetic diversity within Mtb can influence how the bacterium interacts with the host and 

responds to treatment. Distinct lineages have been associated with varying patterns of 

disease severity, transmissibility, and response to anti-TB drugs. However, our analyses 

revealed no significant association between Lineage4 and the occurrence of resistance 

amplification when compared to Lineage2, which served as the baseline.  

HIV status was another key risk factor investigated in this study. Patients with 

HIV-positive status face an elevated likelihood of developing active TB disease. The 

coexistence of HIV can profoundly influence the host's response to TB treatment, 

potentially contributing to suboptimal treatment outcomes. In our univariate analysis, the 

absence of cases where both HIV and resistance amplification co-occurred made it 

challenging to estimate a meaningful odds ratio, consequently resulting in a higher p-

value.  

Similarly, adherence to treatment during the first two months did not exhibit a 

statistically significant association with resistance amplification. 

Phenotypic and Genotypic Data Integration 

The primary finding of our study was the low frequency of resistance 

amplification observed among study participants. This finding highlights an issue 

concerning the accurate estimation of resistance amplification. Relying solely on 

phenotypic DST data may lead to overestimation. When our analysis focused solely on 

these DST results and compared the shifts from drug-susceptible (S) to drug-resistant (R) 

phenotypes with the reverse transitions from R to S, we noted that both types of shifts 

occurred with similar frequencies among individuals. This observation underscores the 
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need for caution when interpreting DST results, as it carries the inherent risk of 

overestimating the prevalence of resistance amplification, potentially leading to 

misinformed decisions in tuberculosis treatment and intervention development. However, 

the incorporation of WGS analysis presents a useful approach that overcomes the 

limitations of DST and provides a more accurate understanding of drug resistance 

dynamics in TB patients.  

It is valuable to contrast our findings with the research conducted by Cegielski et 

al., whose focus on DST data revealed high prevalence of resistance amplification.7 Their 

research did not include WGS analysis, which we emphasize can provide a more accurate 

and comprehensive perspective on drug resistance dynamics in TB patients. This 

highlights the potential for overestimation in studies relying solely on DST data, making 

a strong case for integrating advanced molecular techniques like WGS to improve our 

understanding of resistance dynamics. 

By acknowledging the limitations of DST and embracing advanced molecular 

techniques like WGS, we can make more informed decisions in the treatment and 

intervention strategies for drug-resistant tuberculosis." 

Considerations 

While our study explored several potential risk factors, it is important to 

recognize the possible involvement of other contributors not considered here, such as 

socioeconomic or environmental influences. Combating the rise of DR-TB requires a 

multifaceted approach that considers not only treatment optimization but also an 

exploration of additional contributing factors. As such, a more comprehensive 
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examination into a wider range of variables may be necessary to better understand the 

dynamics of resistance amplification.  

One important consideration is the limited size of our dataset. While the Peru 

study included over 3,500 participants, making it a substantial study, our specific subset 

consisted of only 353 people, which, when viewed in the context of the entire study, may 

still be considered relatively small. It is reasonable to consider that a larger dataset could 

potentially yield more significant findings, particularly for the variables where we 

observed trends toward significance but didn't reach statistical significance. A larger 

dataset could allow for a better representation of the population and reduce the impact of 

random variability. This would enhance statistical power and increase the likelihood of 

detecting significant relationships or associations that might be more subtle or context-

specific with a smaller sample size. With a larger dataset, we might have more statistical 

power to detect smaller effect sizes, which could lead to significant relationships that 

might not be apparent in a smaller dataset.  

Future research efforts may include the incorporation of advanced data analytics, 

including machine learning and artificial intelligence, to provide enhanced modeling of 

resistance amplification. These advanced approaches offer the potential to uncover subtle 

interactions that might not be easily apparent through the traditional statistical methods 

used in our study. Through advanced computational approaches, researchers could gain 

deeper insights into the complex dynamics of resistance amplification and develop more 

accurate predictive models. This, in turn, can inform more targeted interventions and 

strategies for effectively managing DR-TB. 
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Appendix 1. 

Supplemental Tables 

In this appendix, we present supplemental tables that offer a detailed exploration 

of key aspects related to drug resistance in our study cohort. Table 6 displays the 

distribution of TB drug resistance among study participants, categorizing individuals 

based on the number of drugs to which they exhibited resistance. Tables 7 and 8 provide 

insights into the distribution of S to R and R to S changes in DST resistance profiles, 

offering a nuanced view of the dynamics of resistance amplification during treatment. 

Lastly, Table 9 offers a comprehensive breakdown of sensitivity changes in resistance 

profiles by drug, shedding light on the variations observed in our study cohort. These 

supplemental tables enrich our understanding of the multifaceted factors influencing drug 

resistance, providing context to the primary findings presented in the main results section. 

Table 6.  Distribution of TB Drug Resistance Among Study Participants. 

Number of Drugs 
Resistant to  

Number of 
Individuals 

Percentage Standard  
Deviation 

0 119 33.71% 0 

1 31 8.78% 0 

2 25 7.08% 0 

3 51 14.45% 14.17 
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Number of Drugs 
Resistant to  

Number of 
Individuals 

Percentage Standard  
Deviation 

4 49 13.88% 13.98 

5 38 10.76% 12.64 

6 21 5.95% 7.25 

7 12 3.40% 2.67 

8 2 0.57% 0.57 

9 3 0.85% 0.57 

10 1 0.28% 0.0 

11 0 NA NA 

12 1 0.28% 0.0 

Distribution of drug susceptibility profiles among study participants, including the 
number of drugs to which individuals exhibited susceptibility with the corresponding 
number of participants in each category. The percentages in each cell reflect the 
proportion of participants within each susceptibility category relative to the total study 
cohort of 353 individuals. Participants with resistance to zero drugs had fully susceptible 
TB. 
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Table 7.  Distribution of S to R Changes in DST Resistance Profiles. 

Number of Drugs with S 
to R changes 

Number of 
Participants 

Percentage of Total 
Participants (of 353) 

1 59 0.167 

2 21 0.059 

3 9 0.025 

4 6 0.017 

5 3 0.008 

The distribution of S to R changes in resistance profiles who had two or more DST 
results. Participants are categorized based on the number of drugs for which they 
exhibited changes in resistance profiles. Percentage represents the proportions of 
participants within each category relative to the total study cohort of 353 individuals,  

Table 8.  Distribution of R to S Changes in DST Resistance Profiles. 

Number of Drugs with R to S 
changes 

Number of 
Participants 

Percentage of Total 
Participants 

1 64 0.181 

2 22 0.062 

3 7 0.020 

4 2 0.006 

The distribution of R to S changes in resistance profiles who had two or more DST 
results. 
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Table 9.  Distribution of Sensitivity Changes in Resistance Profiles by Drug. 

Drug Number of 
Tests 

Number of S 
to R Changes 

Number of R 
to S Changes 

Percent  
S to R 

Percent  
R to S 

pza 350 26 15 0.074 0.043 

inh 350 19 19 0.054 0.026 

emb 349 24 31 0.069 0.089 

rif 350 24 12 0.069 0.034 

sm 349 40 29 0.115 0.083 

pas 149 5 1 0.034 0.007 

cm 188 9 8 0.048 0.043 

cpx 149 7 2 0.047 0.013 

cs 149 4 2 0.027 0.013 

eth 188 6 16 0.032 0.085 

km 188 9 7 0.048 0.037 

rbu 0 0 0 NA NA 

lin 0 0 0 NA NA 

mox 0 0 0 NA NA 
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Drug Number of 
Tests 

Number of S 
to R Changes 

Number of R 
to S Changes 

Percent  
S to R 

Percent  
R to S 

amk 0 0 0 NA NA 

The distribution of sensitivity changes in resistance profiles for various drugs within the 
study cohort. Including the number of changes from susceptible to resistant (S to R), the 
number of changes from resistant to susceptible (R to S). Percentages are relative to the 
total number of tests conducted for each drug. 
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