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Abstract 

Organization-level knowledge diversification facilitates exploration – integration of external new 

knowledge –, yet knowledge accumulation poses a challenge because there is a trade-off between 

individual-level breadth and depth of knowledge. This leads to a need to coordinate larger teams in 

order to gather enough diverse expertise and capitalize on its benefits, a complex and costly process. As 

an alternative, we consider and show evidence of the role of individual-level diversification as a 

mechanism through which skilled researchers engage in successful exploration by utilizing the benefits 

of their breadth of knowledge and by mitigating the perceived disadvantages of their shallower depth of 

knowledge through diverse collaboration networks. Our results suggest that organizations seeking to 

innovate at the frontier should consider the benefits of hiring diverse researchers. 
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I. Introduction 

The role of innovation in creating value and competitive advantage for organizations has long been of 

interest to the fields of strategy, management, and economics (e.g., Schumpeter, 1934; Nelson and 

Winter, 1977). In particular, the ability to “explore”, namely, to recognize and integrate new external 

knowledge, that is outside one’s domains of expertise, has continually been shown to allow 

organizations to thrive (Tushman and Anderson, 1986; Cohen and Levinthal, 1989; Christensen, 1992; 

Fleming, 2001; Chatterji and Fabrizio, 2014). For example, Charles Babbage famously utilized advances 

in silk-weaving, which created patterns in silk fabric using cards with holes, to invent computational 

machines powered by punch cards, which laid the groundwork for modern computers.  

Despite this fact, the precise individual characteristics that allow innovators and by extension, their 

organizations, to be amongst the first to successfully explore by integrating new external knowledge – 

knowledge that is outside their existing domains of expertise – have gone underexamined. By and large, 

scholars have revealed that ability is a precursor to successful exploration, both at the individual and the 

organization level (e.g., Henderson, 1993; Gavetti and Levinthal, 2000; Fleming, 2001; King and Tucci, 

2002; Greve, 2007; Ahuja et al., 2008). However, while at the organization level various mechanisms 

through which ability1 leads to successful exploration were analyzed, including aspiration levels (Cybert 

and March, 1963; Greve, 2003; Dothan and Lavie, 2016), connections to basic science (Fleming and 

Sorenson, 2004) and the role of motivation (Eggers and Kaul, 2018), less is known about mechanisms 

through which the successful exploration of skilled individuals2 manifests.  

Understanding this is important because individuals’ ability to explore directly contributes to 

successful organizational-level exploration. Furthermore, knowledge-based organizations are 

increasingly relying on scientists, engineers, and researchers to drive value creation and competitive 

advantage (Agrawal et al., 2017; Barth et al., 2017). After all, combining broadly across the knowledge 

frontier has been shown to lead to the most significant discoveries (e.g., Weitzman, 1998; Katila and 

																																																								
1 There are also numerous studies focused on uncovering factors that contribute to building an ability to successfully explore, such as complementary 
assets (Tripsas, 1997; Rothaermel, 2001; Taylor and Helfat, 2009) and competition pressures (Bayus and Agarwal, 2007; Eggers, 2014; Wu, Wan and 
Levinthal, 2014). 
2 We use the phrase “skilled individuals” throughout the paper to denote individuals who have the proper skill-set, and therefore level of ability 
necessary for exploration. 
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Ahuja, 2002; Schilling and Green, 2011; Boudreau et al., 2011; Uzzi et al., 2013; Chai, 2017; Lifshitz-

Assaf, 2017). 

In this paper, we contribute to this literature by drawing attention to the individuals’ level of 

knowledge diversification as a mechanism through which successful exploration of skilled individuals 

manifests. Knowledge accumulation – the increase in knowledge stock – places a burden on individuals 

looking to explore as individual capacity to store knowledge remains relatively unchanged. In particular, 

Jones (2009, 2010) argues that the knowledge burden effect generates a need to specialize on 

increasingly narrower niches of knowledge. This suggests that individual-level breadth of knowledge is 

likely to come at the expense of knowledge depth. Thus, an alternative response is to compromise on 

knowledge depth in order to cultivate knowledge breadth (Jones 2009, 2010; Schilling and Green, 

2011). This implies that, conditional on ability, individuals’ breadth and depth of knowledge – their 

level of knowledge diversification3 – become increasingly relevant when evaluating exploration – 

attempts to integrate new knowledge that is outside one’s domains of expertise. 

While we focus on the individual level, it is important to note that, ultimately, our goal is to inform 

on organization-level decisions that lead to successful exploration. Knowledge diversification at the 

organization level has long been recognized as a requirement for successful exploration (Cohen and 

Levinthal, 1990; Katila and Ahuja, 2002). However, given the increase in knowledge accumulation, 

achieving knowledge diversification across individuals in an organization is becoming increasingly 

costly, and is therefore a strategic decision that needs to be carefully evaluated. In particular, the fact 

that individual-level breadth of knowledge is likely to come at the expense of knowledge depth implies 

that the ability of an individual to single-handedly capitalize on the benefits of external knowledge 

combinations to generate impactful discoveries is reduced. An alternative for organizations is to 

coordinate larger scale collaborations between individuals with different levels of knowledge breadth 

and hence, depth (Wuchty et al., 2007; Jones, 2009, 2010; Agrawal et al., 2016) in order to capitalize on 

the benefits of cumulative diversification for integrating new external knowledge. However, the 

increasingly narrower niches of specialization at the individual level suggest an increasing complexity in 

																																																								
3 Our focus is on individual-level diversification while holding experience constant. In other words, we focus on comparing the role of skilled individuals 
that have the same amount of expertise either spread across multiple domains (diversified individuals) or concentrated in a narrower set of domains 
(specialized individuals). It follows that a diversified individual with the same amount of total expertise spread across multiple domains would, by 
definition, have less expertise in each domain when compared to a specialist in that domain.  
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organization-level hiring decisions relative to the optimal combinations of knowledge specializations, 

such as choices of types of specializations to hire and concerns of coordination costs in large teams of 

collaborators (Bikard et al., 2015). In this paper, we theorize and provide evidence of the benefits of 

diversified individuals in integrating new knowledge that is outside their domains of expertise, despite 

these individuals’ perceived disadvantage in knowledge depth; the diverse set of collaborators of such 

individuals are a key antecedent to their success. Therefore, our study aims to inform managers looking 

to refine their hiring practices particularly in firms that rely on cutting-edge research to produce value, 

such as those in the biotech, information technology (IT), and chemical fields. 

To evaluate the role of individual-level diversification in integrating new external knowledge, we 

focus on researchers’ propensity to engage with new knowledge as captured by new technology 

developments outside their current domains of knowledge. First, we focus on technology developments 

as embodiments of new knowledge in line with Mokyr’s (2002) arguments that technology facilitates 

access to knowledge that is otherwise inaccessible because it did not exist or because it was costly to 

access. Second, we focus on researchers to be able to measure innovative output in a tangible way - 

academic papers. Although this paper trail of innovation primarily tracks the inventive output of 

individuals working in research-oriented organizations, existing work shows that, within a given field, 

industrial and academic researchers behave similarly in the context of knowledge creation (Sauermann 

and Stephan, 2013). In addition, the use of publications, rather than an alternative measure such as 

patents, is appropriate for addressing the proposed question since we focus on analyzing the role of 

individual levels of diversification in knowledge creation that occurs at all stages of innovation, not only 

at the later, patentable stages. 

Identifying a relationship between individual levels of knowledge diversification and the propensity 

to engage with new technology developments is difficult because, when observing successful 

exploration, it is unclear if individual’s level of diversification facilitates that successful engagement or 

if the individual strategically chose to focus on certain domains of knowledge that were promising in 

facilitating the engagement or if both the level of diversification and the successful engagement are 

driven by individual’s degree of ability. Ideally, we would like to observe individuals exhibiting similar 

ability, but varying levels of diversity being exposed to a new and exogenous technology development 
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that is outside their domains of knowledge, and then estimate if individuals with higher levels of 

diversity exhibit a higher propensity to successfully integrate the new technology. 

We attempt to get close to this setting by following a two-step empirical strategy. First, we exploit 

the unexpected use of Microsoft Kinect in research as a new technology development in motion-sensing 

research. Kinect, an add-on for Xbox 360, was launched in November 2010 in the video game market 

but was unexpectedly embraced by the research community as a motion-sensing research technology in 

fields ranging from artificial intelligence, robotics, and virtual reality to paleontology, education, health 

care, music, cinematography, market research, and advertising.4 We follow the interpretation of the 

events in Teodoridis (2018), which argues that the role of Kinect as a motion-sensing research 

technology was not anticipated by the research community. Second, we observe the impact of this 

technology on a sample of researchers where we hold ability constant but allow for varying levels of 

knowledge diversity. We do so by employing Coarsened Exact Matching (Iacus et al., 2011a, 2011b) 

which allows us to compare individuals who, before the arrival of Kinect, exhibit varying levels of 

diversity, as observed through the breadth of their publication portfolio before Kinect’s launch, but 

comparable levels of ability as measured by their publication age, numbers of publications, number of 

citations and number of coauthors (e.g., Waldinger, 2012; Azoulay et al., 2013; Conti et al., 2013).  

To capture the role individual-level diversity plays in the propensity to engage with the new Kinect 

technology, we estimate the propensity of our ability-matched, diversity-varying sample of researchers 

to publish academic papers referencing the Kinect in the period after the launch. We utilize the 

publication behavior of researchers in the four years before the Kinect’s launch (2007-2010) to construct 

our sample of ability-matched diversity-varying individuals, and their publication behavior in the four 

years after the launch (2011-2014) to observe the role diversification plays in the propensity to 

successfully engage with this new, unexpected, technology development.  

We find that individuals without prior direct experience with motion-sensing – individuals for who 

Kinect represents a new technology development outside their domains of expertise –, but who are in 

the top quartile of knowledge diversification, are 3.1 times more likely to engage with Kinect in their 

research than individuals of similar ability and without motion-sensing experience, but who are in the 

																																																								
4 See, for example, kinecthacks.com and blogs.msdn.microsoft.com/kinectforwindows for a compilation of various applications of Kinect outside the 
gaming industry. A Factiva search on Kinect articles returns close to 20,000 hits for the period 2011–2014.  

Electronic copy available at: https://ssrn.com/abstract=3017363



	

6 

bottom quartile of knowledge diversification. The effect is even more pronounced when focusing on 

highly cited output, with diversified researchers being 3.8 times more likely to produce papers in the top 

10th percentile of academic papers ranked by number of citations. Importantly, the propensity to write 

highly cited output is not accompanied by an increase in output at the left tail of the impact distribution 

(less-cited output). Reassuringly, we find that diversity does not play a significant role when the new 

knowledge is local, namely within the group of individuals with prior expertise in motion-sensing. We 

interpret these results as providing strong support to our arguments that diversification at the individual 

level plays an important role in the propensity to explore – integrate new knowledge that is outside the 

individual’s domains of knowledge. Finally, we show that diversified researchers have a more diverse 

network of collaborators than more specialized researchers. We interpret this finding as evidence of the 

antecedents facilitating the benefits of individual-level diversification, and a feasible mechanism for the 

primary effect. 

Our findings contribute to the strategy literature by identifying the role of an important individual-

level characteristic in successful exploration: these “jacks of all trades, masters of knowledge” are more 

effective at integrating new knowledge that is outside their domains of prior knowledge than their more 

specialized colleagues. In doing so, we offer a deeper understanding of individual characteristics that 

may contribute to firm success, an approach that has been proposed as a central avenue for pushing the 

boundaries of strategic management research (Felin and Foss, 2005; Gavetti, 2005; Teece, 2007; Foss, 

2011). We also help shine a light on the role of the individual in absorptive capacity (Cohen and 

Levinthal, 1990), which we argue to be particularly important given the increased tendency of firms to 

rely on knowledge workers to drive value creation and competitive advantage (Fabrizio, 2009; 

Perkmann et al., 2013). For example, in our dataset, a scientist at Intel whose research before Kinect had 

covered diverse topics such as personal activity sensors (similar to the FitBit), privacy concerns related 

to public WiFi, self-awareness of physical exercise, and human–robot interaction quickly engaged with 

this new and distant knowledge (relative to his research domains up to that point) to help create a system 

allowing a robot to play physical board games, an important research contribution in artificial 

intelligence. We further contribute to the academic literature on the economics of science and 

innovation by offering insights into the role of diversified individuals in knowledge creation and into 

how academics and other researchers pursue their careers. Young researchers, especially in academia, 
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are frequently encouraged to be highly specialized and to focus on a very narrow field (Stephan, 2012), 

even though distant novel combinations of knowledge are shown to generally lead to the most impactful 

results (e.g., Weitzman, 1998; Katila and Ahuja, 2002; Schilling and Green, 2011; Boudreau et al., 

2011; Uzzi et al., 2013; Chai, 2017; Lifshitz-Assaf, 2017). 

Overall, our results suggest that practitioners in knowledge-based organizations would benefit from 

considering the potential benefits of diversified researchers. Specifically, organizations seeking to 

integrate distant knowledge into their knowledge creation efforts should consider hiring such diversified 

individuals to help increase their ability to explore the knowledge frontier more broadly. Finally, our 

results suggest that decision-makers in all fields where research integrating distant knowledge is 

important should reduce the emphasis they place on individual specialization at the expense of 

diversification. 

II. Theory and hypotheses development 

Our goal is to evaluate the role of individual-level diversification in successful exploration. We define 

exploration as the process of integrating new external5 knowledge – that is outside of the individual’s 

domains of knowledge – into successful knowledge creation. Integrating new distant knowledge is not 

necessarily superior to integrating new local knowledge (Kaplan and Vakili, 2015) and both approaches 

were found to benefit organizations. In this paper, we choose to focus on the process of integrating 

distant pieces of knowledge, which the literature considers important for leading to novel and impactful 

innovations. This has been shown to be the case in economics (e.g., Nelson and Winter, 1973; 

Weitzman, 1998), strategic management (Katila and Ahuja, 2002; Schilling and Green, 2011; Uzzi et 

al., 2013), and open and user innovation (Laursen and Salter, 2006; Jeppesen and Lakhani, 2010; 

Boudreau et al., 2011; Afuah and Tucci, 2012; Altman, Nagle, and Tushman, 2014; Boudreau et al, 

2016; Lifshitz-Assaf, 2017).  

																																																								
5 We use the terms “external knowledge” and “distant knowledge” interchangeably. Search distance is frequently thought of in the realm of product 
development and new firm-level innovations (Shane, 2000; Katila and Ahuja, 2002; Gupta, Smith, and Shalley, 2006). As Adner and Levinthal (2008) 
point out, “The distance of search is usually measured as the extent of departure from established routines and behavioral patterns.” However, in the 
realm of knowledge creation and research, we can think of “established routines and behavioral patterns” as the areas in which an individual has 
performed research before. So, when a researcher with prior experience performing research exclusively in the field of microeconomics publishes a 
paper that builds on some new piece of knowledge in the field of microeconomics, they were exploiting their existing experience and utilizing local 
knowledge. However, when the same researcher publishes a paper that builds on some new piece of knowledge in the field of biology, and they have 
never used knowledge from the field of biology, they are exploring new domains of knowledge by performing a distant search and using distant 
knowledge. 
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Novel and impactful innovations are important for organizations because they can be a source of 

competitive advantage (Cohen and Levinthal, 1990; Murmann, 2003). Keeping in mind that knowledge 

production is a recombinant process (Schumpeter, 1943; Fleming, 2001), this implies that there is a 

competitive process in which organizations search for distant knowledge pieces and for the best 

combinations of such pieces with other (potentially local) knowledge pieces, and try to be the first to use 

them. In examining this process, scholars have investigated numerous factors that allow organizations to 

successfully engage in such a recombination process. One of the fundamental findings of this literature 

is that ability is a precursor to successful exploration, both at the individual and the organization level 

(e.g., Henderson, 1993; Gavetti and Levinthal, 2000; Fleming, 2001; King and Tucci, 2002; Greve, 

2007; Ahuja et al., 2008). However, while there is fairly extensive evidence on several mechanisms 

through which skilled organizations can achieve successful exploration (Greve, 2003; Fleming and 

Sorenson, 2004; Dothan and Lavie, 2016; Eggers and Kaul, 2018), less is known about individual-level 

mechanisms of successful exploration.  

We contribute to this literature by drawing attention to individual-level knowledge diversification. 

At the organization-level, knowledge diversification was found to lead to an increased propensity of 

organizations to integrate new distant knowledge (Cohen and Levinthal, 1990; Katila and Ahuja, 2002). 

We argue that achieving organization-level knowledge diversification is an increasingly complex 

endeavor and one that places the role of the individual front and center in exploration attempts. The 

reason for this is the continuous increase in knowledge stock which creates both opportunities and 

challenges for recombining distant pieces of knowledge. In particular, as the burden of knowledge 

accumulation increases, researchers and scientists are forced to specialize in narrower domains of 

knowledge (Jones, 2009). This implies that individuals become increasingly likely to focus their 

knowledge output (producing research) and their knowledge input (consuming research) in the field they 

are specialized in and are therefore unlikely to be aware of and identify distant knowledge given their 

narrow focus in their own field (Toh, 2014). This is important because it suggests that in order to 

achieve organization-level diversification, organizations should ensure access to a wider pool of 

specialists who can collaborate to combine their narrow-specialized knowledge (Jones, 2009, 2010; 

Agrawal et al., 2016). However, this is a costly process. First, it is unclear which specializations should 

be kept on hand in order to achieve a combined level of diversification that is conducive to successful 
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exploration. Second, large teams suffer from coordination costs that increase exponentially with the 

number of specialist collaborators (Bikard et al., 2015; Teodoridis, 2018). 

An alternative to individual-level specialization is an individual who chooses to respond to the 

burden of knowledge accumulation by embracing a wider breath of knowledge albeit at the expense of 

some knowledge depth (Jones, 2010). Thus, unlike their specialized colleagues, individuals who choose 

this diversification path benefit from a higher variety in their knowledge breadth and hence are more 

likely to become aware of new knowledge beyond domains they have produced research in previously. 

Furthermore, these individuals would be more likely to recognize fruitful combinations of knowledge 

pieces that include the new external knowledge. The literature on exploration argues that combining 

distant pieces of knowledge will also lead to more breakthroughs (Schilling and Green, 2011; Uzzi et 

al.., 2013). However, in order to achieve breakthroughs, it is important to understand which knowledge 

pieces to recombine. This can be difficult for specialized individuals (Toh, 2014; Chai, 2017) who rely 

on knowledge pieces that cover a rather narrow knowledge distance and who do not have experience 

working with a wider breadth of knowledge domains. Diversified individuals benefit from experience in 

working across different knowledge domains and hence have a higher propensity to understand what 

knowledge is necessary for potentially impactful recombinations. Because of this type of experience, 

diverse individuals are also more likely to know what knowledge combinations would lead to less 

impactful recombinations.  

However, the shallower knowledge depth of these individuals can present a challenge in their ability 

to single-handedly and successful bring to fruition the identified recombination opportunities. We argue 

that these individuals can successfully execute on the identified recombination opportunities because 

they engage in diverse collaboration. It is this collaboration that allows diversified individuals to 

capitalize on the benefits of their knowledge breadth, and also to sustain and grow their breadth of 

knowledge. Indeed, individuals who have broader networks that bridge diverse groups were found to be 

more likely to have novel ideas that are higher quality and more innovative (Cross et al., 2002; Burt, 

2004). Furthermore, such individuals were found to have a higher propensity to identify unique 

recombination opportunities by having access to a network of collaborators characterized by diverse 

knowledge (Tortoriello et al., 2014) and be more likely to engage in collaboration with individuals with 

a variety of expertise when such opportunities arise (Teodoridis, 2018).  
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More formally, our arguments can be summarized in three hypotheses: 

H1: Individuals who have a higher degree of knowledge diversification have a higher propensity to 
integrate new knowledge from outside their domains of expertise than those who have a lower degree of 
knowledge diversification.  
 
H2: Individuals who have a higher degree of knowledge diversification are more likely to integrate new 
knowledge from outside their domains of expertise in a manner that produces more high-impact output 
than low-impact output.  
 
H3: All else equal, individuals with a higher degree of knowledge diversification have networks of 
collaborators that are more diverse than that of individuals with a lower degree of knowledge 
diversification, and they similarly utilize more diverse sets of co-authors to integrate new external 
knowledge. 
 

Overall, our argument is that individuals who chose to respond to the burden of knowledge by 

embracing a wider breadth of knowledge at the expense of some depth offer a unique benefit for 

organizations in facilitating successful exploration – identification of new distant knowledge and of 

opportunities for recombinations that lead to breakthroughs. These individuals are not characterized by 

superior ability, but rather by a choice to invest in breadth of knowledge and more diverse collaboration, 

albeit at the expense of some individual-level knowledge depth. Specialists are individuals who chose 

the alternative strategy, that of investing in knowledge depth, and hence reduce breadth and, by 

extension, reduced diversity of collaborators. This is important because traditionally it is assumed that 

these “jack-of-all-trades” are spread too thin across domains to have enough depth to make substantial 

contributions to science. Our arguments highlight a process through which these individuals play a 

critical role in the production of knowledge by helping to successfully integrate new distant knowledge 

into innovation. 

III. Data and empirical strategy 

To test our hypotheses, we follow a three-step strategy. First, we focus on individual researchers and 

their innovative output as captured in academic publications. We do so not only to align with our 

theoretical argument at the individual researcher level but also to gain access to a reliable and 

measurable paper trail of innovation. Second, we focus on new technology developments as 

embodiments of new knowledge in line with Mokyr’s (2002) arguments that technology facilitates 

access to knowledge that was previously inaccessible because it either did not exist or was costly to 

access.  
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Third, we recognize that, in observational data, a correlation between individual levels of knowledge 

diversification and the propensity to engage with new external technological developments can be 

driven by unobserved factors. Specifically, if we are to observe diversified individuals having a higher 

propensity to engage with such a technology it is unclear if these individuals’ level of diversification 

facilitates that successful engagement, or if the individuals strategically chose to focus on certain 

domains of knowledge that were promising in facilitating the engagement, or other unobserved factors, 

such as ability, drove both the level of diversification and the successful engagement. Ideally, we would 

like to observe individuals of equal ability and other relevant characteristics but varying levels of 

diversity being exposed to a new and exogenous technology development that is outside their domains 

of knowledge, and then estimate if individuals with higher levels of diversity exhibit a higher propensity 

to successfully integrate the new technology in knowledge creation.  

We attempt to get close to this ideal setting through a two-step empirical strategy. First, we exploit 

the unexpected use of Microsoft Kinect in research as a new technology development in motion-sensing 

research. Second, we observe the impact of this technology on a sample of researchers where we hold 

ability constant but allow for varying levels of knowledge diversity. We focus on ability as the main 

factor that might confound the effect of diversity in line with findings in prior literature that show that 

ability is a precursor for successful exploration and in line with our theory focused on evaluating the 

role of individual level diversity in successful exploration as a mechanism through which individual-

level ability to explore manifests. At the same time, we acknowledge and discuss the possibility of other 

relevant unobserved factors that limit causal interpretations of our findings. 

III.1. Kinect 

Microsoft Kinect was launched on November 4, 2010 as an add-on to the Xbox 360 video game system. 

It allowed users to interact with the games through body gestures rather than using a hand-held 

controller, similar to the competing devices from Nintendo, the Wii Remote, and from Sony, the 

PlayStation Move. While both the Wii Remote and the PlayStation Move operated via gesture-

recognition strategies, the Kinect was a significant leap forward, as it moved the gesture recognition 

from a single tracking point to full-body 3D motion capture, along with facial, gesture, and voice 

recognition. Therefore, Kinect is a significant advance in the knowledge frontier as a physical 
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embodiment of new knowledge in motion-sensing, in line with Mokyr’s (2002) arguments on the role of 

technology in capturing and providing access to the knowledge embedded in its algorithms. 

Furthermore, the role of Kinect as motion-sensing research technology was not anticipated by the 

research community. Although Kinect was launched with great anticipation, at no time before the launch 

did Microsoft or any other party promote, link, or suggest using the Kinect technology outside its 

intended purpose as a gaming device. The starting point of the unexpected adoption of Kinect in 

research can be traced back to the bounty offered by AdaFruit Industries on the very day of Kinect’s 

launch. AdaFruit, an electronics hobbyist company influential in the open hardware community, offered 

a bounty in search of someone who could develop and distribute an open source driver for Kinect. The 

driver would make it possible for researchers and enthusiasts to access the Kinect motion-sensing 

algorithms and use them to integrate with any project of their choice. 

Hours after AdaFruit made the search for an open source driver public, Microsoft voiced its 

disapproval on CNET, saying that it “does not condone the modification of its products . . . With Kinect, 

Microsoft built in numerous hardware and software safeguards designed to reduce the chances of 

product tampering. Microsoft will continue to make advances in these types of safeguards and work 

closely with law enforcement and product safety groups to keep Kinect tamper-resistant” (Terdiman, 

2010). AdaFruit did not withdraw the contest but rather tripled its bounty. Six days later, on November 

10, 2010, a Spanish technology enthusiast, Hector Martin Cantero, released an open source driver and 

won the bounty (BBC News, 2010). As the unexpected Kinect effect in research began to rapidly 

unfold, Microsoft recognized the benefit of Kinect for research and, essentially, approved of its use for 

such purposes although this was not the original intention.6 

III.2. Data collection 

We collect data on academic publications of researchers in computer science, electrical engineering and 

electronics, as available through IEEE Xplore, the bibliographical database maintained by the Institute 

of Electrical and Electronics Engineers (IEEE). We collect data on every academic publication, early-

																																																								
6 Researchers engaged with Kinect in a broad set of projects, like detecting human emotions, with applications ranging from security to market research, 
improving the ability of robots to navigate complex landscapes and sudden changes in scenery, helping individuals with impaired abilities, such as 
allowing the blind to hear an accurate and timely description of their surrounding environment as they attempt to walk within a room, and improving 
medical procedures, such as the ability to track cameras traveling within a patient during surgery, or simulating custom joint prosthetics. 
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access publication, and conference proceeding during a 14-year period from 2001 to 2014 (inclusive), 

resulting in 2,492,451 publications. 

We estimate the propensity of diversified researchers to engage with Kinect based on an eight-year 

subset of this data, from 2007 to 2014 (1,776,125 publications). This represents four years of data before 

and four years after the launch of Kinect. The estimation period is substantial considering that the 

publication cycle is fairly short in computer science, electrical engineering and electronics, and 

conference proceedings are often the primary outlet for disseminating knowledge in these fields. We use 

the remainder of the data (2001–2006) to better estimate researchers’ experience in academic research 

measured as number of years of active publication since 2001 (researchers’ age)7; we use the measure as 

part our strategy to hold ability constant in our final estimation sample. 

Next, we construct our dataset at the individual level, while taking advantage of the IEEE-curated 

unique author identifiers. IEEE identifies 1,391,313 unique names authoring over the period 2001–2014. 

We restrict our analysis to researchers who publish at least one paper in the four-year period before 

Kinect’s launch (2007–2010), which reduces the sample to 342,872 researchers. We focus on this subset 

for two main reasons. First, we want to ensure that our estimations account for researchers’ pre-Kinect 

productivity, which is important for our strategy of controlling for ability. Second, we need to observe 

researchers for a period before Kinect’s launch to determine their degree of diversification across 

research areas, which is our primary variable of interest. 

Within this group, we further reduce the number of authors in our dataset by eliminating outlier 

author IDs that have more than 50 or fewer than three publications in the four-year period before 

Kinect’s launch. We eliminate researchers with fewer than three publications to ensure that our results 

on diversification are not driven by comparisons with unproductive individuals who would, 

mechanically, appear as researchers with a low degree of diversification. This is an important early step 

towards obtaining our final sample that aims to control for researchers’ ability. Note that the group of 

researchers with fewer than three publications includes occasional authors, such as industry partners and 

researchers from other domains outside computer science, electrical engineering and electronics. There 

																																																								
7 In an ideal scenario, we would know how many years it has been since a researcher finished their degree and became research active. However, data 
limitations prevent this. Therefore, we capture age via how long a researcher has been active during the complete period of time we observe in our 
data (i.e., starting in 2001). Although this is not perfect, it does help control for whether or not someone just started doing research at the beginning of 
our sample window (research age = 1), or if they have been research-active for 10+ years (research age = 10), or anything in between. 
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are 156,688 researchers with fewer than three publications in the four-year period before Kinect’s 

launch. We also eliminate researchers with more than 50 publications in the four-year period to ensure 

that our results are not driven by outliers on the higher end of the productivity spectrum.8 We limit the 

maximum number of publications to 50 to align with the anecdotal view of realistic productivity in the 

fields of computer science, electrical engineering and electronics. There are 3,200 researchers with over 

50 publications in the four-year period before Kinect’s launch, less than 1 percent of the sample. The 

resulting sample includes 182,984 researchers. Our results remain robust to considering lower or higher 

cut-off values, including using the full sample.9 

III.3. Sample construction and empirical strategy 

We are interested in identifying how individual levels of knowledge diversification influence the 

propensity to engage with the new Kinect technology in a sample of researchers with comparable 

degrees of ability at the time of the Kinect’s arrival. We infer individual-level diversification from 

researchers’ breadth of academic publications across knowledge areas. We measure engagement with 

Kinect by tracking researchers’ publications that reference this technology after its arrival. We restrict to 

comparable degrees of individual-level pre-Kinect ability through a combination of estimation controls 

and a matching procedure.  

We start by using two features of the IEEE database: (1) the ability to search the full text of all 

publications included in the IEEE bibliographical database, and (2) the fact that IEEE assigns a limited 

set of keywords to publications out of a controlled hierarchical vocabulary of nearly 9,000 words. The 

first feature of the IEEE Xplore database helps us identify publications that refer to Kinect. We search 

the full text and metadata of all publications included in the IEEE using the keyword “Kinect.”10 Next, 

we label authors of at least one such identified Kinect publication as a Kinect author i.e. a researcher 

who successfully engaged with the new technology. All other researchers in our dataset are labeled non-

Kinect authors. We also use the search feature of the IEEE database to identify researchers with 

																																																								
8 In addition, this helps address concerns related to potentially inaccurate name disambiguation in the IEEE database that might incorrectly assign 
individuals with the same name to the same author identifier. Such an error is not uncommon in bibliographical databases and generally occurs when 
the names are very common. We carefully review the set of authors that might fall into this category and observe that the list indeed is composed of 
common names. 
9All additional robustness results not included in the manuscript, mentioned here and thereafter, are not shown due to space constraints but are available 
from the authors upon request.  
10 In our robustness tests, we also use a more restrictive definition of Kinect publications whereby we search only in the metadata for the keyword 
“Kinect.” The results remain consistent. 
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knowledge in motion-sensing, the knowledge domain to which Kinect belongs. This is needed to 

distinguish between researchers for whom the Kinect represents local knowledge and those for whom it 

represents knowledge outside their domains, a distinction that is key to our theoretical arguments. To do 

so, we repeat our search in the full text and metadata of all publications in our dataset using a set of 

keywords that describe motion-sensing research topics. We follow the same set of keywords in 

Teodoridis (2018). The keywords were carefully selected through conversations with experts and cross-

referenced with IEEE’s taxonomy. We focus on the four-year period before Kinect’s launch (2007–

2010) since we seek to identify researchers who had or did not have local domain knowledge at the time 

the new knowledge embodied in the Kinect device became available. We label authors with at least one 

such identified motion-sensing publication as a motion-sensing author, and all other as non-motion-

sensing authors i.e. researchers for whom Kinect is new knowledge that is outside their prior domains of 

knowledge. 

The second feature of the IEEE Xplore database helps us calculate an index of diversification at the 

individual researcher level. The IEEE taxonomy groups publications under 51 main research areas 

(Appendix Table A1). We focus exclusively on the IEEE set of research areas because the taxonomy 

provides a stable and thus tractable classification of scholars’ research portfolio areas. Furthermore, our 

estimates are conservative using this approach since the research areas defined under the IEEE 

taxonomy are at the highest level in the taxonomy. To calculate the individual-level diversity index, we 

begin by collecting all IEEE-assigned keywords per author for the four-year period before Kinect’s 

launch (2007–2010).11 We only use the period before Kinect’s launch since the focus is on estimating 

the role of individual-level diversification in the propensity to engage with new knowledge brought by 

the launch of Kinect. As such, the relevant individual-level characteristics are the ones observed before 

the arrival of Kinect. Next, we refer to the IEEE’s taxonomy to identify the main research area (out of 

the 51 IEEE-identified areas) for each keyword. We proceed by constructing a list of main research 

areas per author and the corresponding keywords used in his/her publications. With these data, we 

construct a measure of diversification of research areas at the individual level that adjusts for the fact 

that the probability of diverse keywords increases with the number of publications per author. First, we 

																																																								
11 The IEEE taxonomy remains unchanged over this period.  
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measure the frequency of occurrence of each research area at the author level for publications between 

2007 and 2010. Specifically, we count the total number of keywords assigned to each of the 51 IEEE top 

categories across all authors’ papers published between 2007 and 2010. Next, we convert the count to 

percentages and calculate the Euclidian distance in the multidimensional space of the 51 research 

areas.12 We focus on percentages rather than counts of publications because our goal is to capture 

variation in knowledge breadth while controlling for within variation in knowledge depth. Note that, by 

construction, the measure is less than or equal to 1 and is never 0. The measure is lowest when the 

percentages per research area are equally spread or when the level of diversification of research 

portfolio areas is highest. Thus, for mathematical convenience, we construct the diversification measure 

to be equal to 1 minus the calculated Euclidian length. The higher the value, the higher the diversity of 

research areas at the individual level:   

!"#$%&$'()$*+ = 1 − /0 123$45%67$%8$(324$+9
:

;<

9=<
																(1) 

where i is the individual researcher and 123$45%67$%8$(324$+9:  represents the squared percentage of 

keywords of researcher i in each category k of the 51 high-level categories of the IEEE taxonomy. 

Last, we restrict our estimations to a set of researchers who exhibit similar levels of ability before 

the launch of Kinect. To construct our sample, we employ the Coarsened Exact Matching (CEM) 

method (Iacus et al., 2011a, 2011b) which pairs individuals based on specified characteristics. In our 

case, the goal is to pair individuals who did and did not successfully engaged with Kinect after its 

launch based on their observed ability in the period before the launch. This approach allows us to 

compare individuals of equal ability and to observe if the individuals who successfully engaged with 

Kinect i.e., published papers that mention Kinect, are the ones characterized by higher levels of diversity 

before Kinect. In our CEM procedure, we capture the ability level of individuals before Kinect through a 

total of nine attributes: four covariates representing the total number of publications weighted by 

citations13 for each researcher, per year, for the four years before Kinect’s launch (e.g., one covariate for 

each year from 2007–2010); four covariates representing the total number of co-authors for each 

																																																								
12 By definition, Euclidian distance is equal to the square root of the Herfindahl index. The results remain robust when considering a diversification 
measure based on the Herfindahl index alone. 
13 Specifically, we sum up citations and counts of publications, such that each publication is counted as one plus its total number of citations. Robustness 
checks confirm that the results hold when matching on citations and publications separately, rather than in a combined measure. 

Electronic copy available at: https://ssrn.com/abstract=3017363



	

17 

researcher, per year, for the four years before Kinect’s launch (2007–2010); and the research age of each 

individual calculated as the number of years since the first observed publication in our large dataset 

going back to 2001. We also include the total number of publications weighted by citations over the 

entire four-year period before Kinect’s launch (2007–2010), the total number of co-authors over the 

same period, and age squared as controls in all of our estimations to capture any remaining variation 

from pre-Kinect time trends and non-linear effects of age that are not captured by our CEM procedure. 

Furthermore, we consider a CEM procedure with weights to make use of as much of our data as 

possible; CEM with weights considers a richer set of matched individuals based on both exact matches 

of paired individuals as well as pairs where the match is constructed with weights when an exact match 

does not exist.14 Our results remain robust to considering only the subset of exact matches, albeit with 

some loss of statistical power and hence ability to more robustly interpret coefficients due to the smaller 

number of observations.  

Taken together, we believe these sample construction steps help us generate a dataset that comes 

close to the ideal setting where individuals of equal ability, but varying levels of diversity, are exposed 

to a new technology development. At the same time, we recognize that ability is a complex attribute to 

accurately capture. Although we proxy for ability using individuals’ observed research output in line 

with prior research (e.g., Waldinger, 2012; Azoulay et al., 2013; Conti et al., 2013) and well-known 

norms in research evaluation procedures such as tenure decisions, we recognize that additional 

attributes, such as place of graduation, history of employment, grants and other awards would have been 

enriching. Unfortunately, we do not have data on such additional attributes, but we believe that the 

citation-weighted publication portfolio is a telling proxy of individuals’ ability to conduct research, one 

that also implicitly captures the benefits of training, intellectual capacity, and other factors that might be 

correlated with ability, and one that we exploit in multiple ways in our sample construction in order to 

incorporate as much of its richness as possible.   

																																																								
14 Considering that, in research, the norms (and other factors) are such that they incentivize specialization, it is reasonable to assume that the 
diversified researchers who survive are, in average, more productive than their specialized colleagues. In other words, the fact that not all diversified 
individuals can be exact matched with specialized individuals characterized by the same level of ability, as per our definition, can be a result of the 
current incentive structure in science which favors specialized individuals. Thus, by employing weighted matching, we aim to make the most of the 
otherwise truncated observational data the nature offers i.e. less able diversified individuals, unlike their less able specialized colleagues, have a 
higher probability of being eliminated from science given the current set of norms and incentives. 
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Specifically, and first, our measure of diversity has a built-in mechanism to avoid the trap of 

mechanically confounding an increase in volume of publication with an increase in diversity. For 

example, with our measure, a researcher with a publication portfolio of 10 papers in 10 different 

research areas will have the same calculated index of diversification as another researcher with 20 

publications, two in each of the 10 research areas. Furthermore, this approach ensures that we remain 

true to our theoretical focus on knowledge breadth vs depth; our focus is on researchers who have the 

same amount of experience and that experience is either 1) spread across multiple domains (wider 

breadth, shallower depth) or 2) concentrated in one domain or a narrow set of domains (narrower 

breadth, deeper depth). Second, and because this approach is not fault-proof for controlling for 

individuals’ volume of publication (i.e., in our example, to reach this particular level of diversification, a 

researcher needs a minimum of 10 papers) we turn to the CEM procedure to ensure that the effect we 

measure for our diversified authors is not driven by their potentially higher average volume of 

publications. In addition, in our CEM procedure, we account for the impact of these publications, as 

measured through the number of citations received. Third, we extend our matching procedure to account 

for the research age of the individuals in our sample and for their number of coauthors. We match on 

age because the ability to produce good research has been shown to increase with experience in research 

(e.g., Azoulay et al., 2013). We match on the number of coauthors because individuals can increase their 

number of publications by engaging in collaboration with more individuals. Fourth, we include 

additional covariates in our regression estimates that control for the total number of citation-weighted 

publications in the period before Kinect, thus capturing any remaining variation due to e.g., time trends 

and for a non-linear effect of age.  

Furthermore, our CEM approach is more conservative than regression estimates that include the 

covariates used in the matching procedure as controls alone. The reason for this stems from the CEM 

process that excludes from the matched sample those individuals for who a suitable exact or weighted 

match could not be located. This is important because it ensures that our sample includes a 

counterfactual for each exploring researcher included in the sample. Absent this approach, an estimation 

using regressions with controls alone could provide results driven by outliers in the group of exploring 

researchers for whom a comparable non-exploring researcher does not exist. However, such non-CEM 

regressions would ensure that our analysis captures all successful exploring researchers, even if the 
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ability to draw more causal conclusions is weakened.15 Therefore, we utilize this non-CEM approach as 

a robustness check and the results are consistent.  

Our main estimating equation is a cross-sectional probability model with CEM weights:  

A"($83BC3ℎ5%+ = '(E!"#$%&$'()$*+ + β!"#$%&$'()$*+ ∗ I53"5(J$(&"(4BC3ℎ5%+ + KL+ + M+) > 0			(2) 

where i is the individual researcher and L+ is a vector of control variables that includes the indicator 

variable I53"5(J$(&"(4BC3ℎ5%+ equal 1 for researchers who published at least one motion-sensing 

paper before Kinect’s launch, between 2007 and 2010, and 0 otherwise. The dependent variable is an 

indicator variable equal to 1 for author i who publishes at least one paper referencing Kinect during the 

four-year period after Kinect’s launch (2011–2014), and 0 otherwise. The coefficient of interest α 

captures the propensity of ability-matched diversified researchers, identified as such based on their 

publication behavior before the launch of Kinect, to refer to Kinect in their academic publications after 

the launch. We interpret a positive estimated value of this coefficient as indicating that a higher level of 

diversification of research portfolio areas in the period before Kinect predicts a higher propensity to 

engage with the new knowledge brought about by the arrival of Kinect. The coefficient β captures how 

the effect of diversification manifests for researchers with prior local knowledge, namely for researchers 

with prior experience in motion-sensing, the knowledge domain of Kinect.  

Additionally, in all of our estimations, we include a variable capturing the affiliation of researchers, 

either in the public or private sector. We collect this information based on the affiliation listed in the 

IEEE profile of researchers in the period before Kinect’s launch. We locate and confirm the affiliation 

of 83,983 individuals in our sample out of 101,593 in total. We include a dummy variable in all of our 

estimations to account for the remaining 17,610 cases where we could not verify researchers’ affiliation. 

We further distinguish between researchers with an industry affiliation, a total of 18,669 individuals, 

and academic researchers, a total of 65,314 individuals. We do so to confirm that our results are not a 

phenomenon that occurs only in an academic environment but is representative of research behavior in 

both industrial and academic settings (Sauermann and Stephan, 2013). Further, we test an interaction of 

an author’s affiliation (academic or industry) with their diversity and find that there is no differing 

																																																								
15 Given that, in research, the norms and other factors incentivize specialization, it is reasonable to assume that the diversified researchers who 
survive are, in average, more productive than their specialized colleagues.  

Electronic copy available at: https://ssrn.com/abstract=3017363



	

20 

impact of diversity depending on affiliation. The impact of diversity is the same for both academic and 

industry researchers. 

Our approach is not without limitations and causal interpretations should be made with care. 

Specifically, and in addition to the already mentioned limitations, it is possible that other attributes that 

are relevant for researchers’ propensity to explore remain unobserved in our empirical strategy. We 

believe our empirical strategy captures the most central attributes, namely those that proxy for 

individuals’ ability, thus allowing us to get closer to drawing causal implications but not without 

limitations. Furthermore, it is important to note that the boundaries of our attempts to get closer to 

causal estimates end with our evaluation of the role of diversified individuals in exploration. We do not 

deny the role of certain unobservable attributes, such as curiosity or a taste for diversification or for 

exploration that might explain why certain individuals become diversified in the first place. In fact, we 

acknowledge that individuals choose to pursue certain levels of diversification or specialization. The 

implication is that our findings should not be used to argue for becoming a generalist. Rather, our study 

suggests that conditional on expressing a preference for the path of a specialist or that of a generalist, 

there are benefits to diversification; diversification is a choice of equally able individuals. Our goal is to 

show that these individuals play at least one important role in knowledge creation, that of enabling 

successful exploration.  

III.4. Descriptive statistics 

We conduct all of our main estimations on the matched sample but present descriptive statistics for the 

full sample as well. From the full sample of 182,984 researchers, we identify 4,705 who published at 

least one Kinect paper during the period 2011–2014. The remaining 178,279 researchers represent the 

full sample of non-Kinect authors. Table 1, Panel 1 shows that Kinect authors are generally more 

productive than non-Kinect authors during the four-year period before Kinect’s launch (2011–2014). 

Specifically, Kinect authors publish more papers, receive more citations, and have more co-authors than 

non-Kinect authors do. Furthermore, Kinect authors also exhibit a higher level of diversification and are 

on average one year older than non-Kinect authors. 

While these differences are most likely attributable to the larger variance in the non-Kinect author 

sample, they nonetheless motivate the use of the CEM methodology to ensure that our group of Kinect 

authors and our group of non-Kinect authors are comparable in ability as measured by productivity, 
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number of co-authors, and age in the period before Kinect’s launch. Table 2 shows the CEM balance on 

all covariates included in the matching. Table 1, Panel 2 shows the same descriptive statistics as Panel 1 

but for the matched sample. The matching reduces the number of Kinect authors to 2,994 and the 

number of non-Kinect authors to 101,593. In this sample, both groups of authors have similar levels of 

productivity in the period before Kinect’s launch. However, as preliminary support for our arguments, 

the difference in diversification persists. 

***** Tables 1 and 2 about here ***** 

In our estimations, we present results using three measures of diversification. First, we show results 

using a continuous measure of diversification equal to our diversification index calculated using 

equation (1). Second, we create a dummy measure of diversification equal to 1 if the focal researcher 

has an index of diversification in the top half of the distribution of the diversification index of all 

authors, namely above 0.646, and 0 otherwise. Third, we create a set of quartile dummies of 

diversification where the omitted category is the bottom 25th percentile of the diversification 

distribution (bottom quartile). Specifically, the omitted category is composed of researchers with a 

diversification index below 0.596. The quartile of diversification in the bottom 25th to 50th percentiles 

of the distribution (second quartile) is composed of researchers with a diversification index above 0.596 

but below 0.646. The quartile of diversification in the top 50th to 75th percentiles of the distribution 

(third quartile) is composed of researchers with a diversification index above 0.646 but below 0.687. 

Finally, the quartile of diversification above the top 75th percentile (top quartile) is composed of 

researchers with a diversification index above 0.687. 

IV. Results 

The results shown in Table 3 are consistent with H1, that among individuals for whom Kinect represents 

new knowledge that is outside of their prior domains of knowledge i.e. non-motion-sensing researchers, 

those with a higher degree of diversification have a higher propensity to engage with Kinect in research. 

Specifically, estimates of a logit model using our three measures of diversification show that the 

propensity to write Kinect papers increases with increased diversification (the coefficient of our 

diversification measures is positive and statistically significant in all models), and that the effect holds 

only for researchers who were not involved in motion-sensing prior to the launch of Kinect (the 

coefficient of our diversification measures interacted with an indicator variable capturing involvement in 
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motion-sensing in the period before Kinect is not statistically significant, meaning the effect is close to a 

statistically estimated zero). We include baseline effects without interaction terms in columns 1, 3 and 5, 

and estimations including interaction terms in columns 2, 4 and 6. Columns 1 and 2 show estimates 

using our continuous measure of diversification based on researchers’ publication portfolios in the four 

years before Kinect’s launch (2007–2010), as described in equation (1). In columns 3 and 4, we replace 

the continuous measure of diversification with a dummy variable equal to 1 if the researcher ranks 

above the median level of the diversification distribution. In columns 5 and 6, we further break down 

this covariate to capture the effect on quartiles across the diversification distribution. The results 

indicate that researchers above the median level of the diversification distribution are 2.1 times more 

likely to write a paper using Kinect than researchers with a diversification level below the median. 

Furthermore, the effect increases linearly with the magnitude of the diversification index. Researchers in 

the second quartile are 1.5 times more likely to engage with Kinect than researchers in the bottom 

quartile, while researchers in the third quartile are 2.1 times more likely to do so. Researchers in the top 

quartile are 3.1 times more likely to include Kinect in their research than researchers in the bottom 

quartile. In all cases, the effect of diversity is positive only when integrating new distant knowledge. 

When the knowledge is local, namely for researchers with prior knowledge in motion-sensing (the 

knowledge domain of Kinect) diversification does not offer an advantage over specialization. This is 

reassuring as our theory is about the benefits of diversification in integrating new knowledge that is 

outside the individual’s prior knowledge domains; when the knowledge is local, it is expected that 

generalists will not have an advantage over specialized individuals who are also familiar with that local 

knowledge space, which allows them to also successfully integrate the new knowledge (Shane, 2000). 

Although we do not directly theorize about the direction and magnitude of these interaction terms, it 

is important to acknowledge the Ai and Norton (2003) critique, that the sign and magnitude of marginal 

effect of these terms are not necessarily the same as the sign and the magnitude of the interaction 

coefficients. We take several steps to demonstrate that the critique does not influence the conclusion we 

can draw from these estimations. First, we do not rely on interpreting marginal effects but rather 

interpret odds ratios, a regression output that is free from the Ai and Norton (2003) critique (e.g., Buis, 

2010). Second, the Ai and Norton (2003) concern does not hold in the case of nonlinear models with 

binary interaction terms (Green, 2010; Kolasinski and Siegel, 2010; Puhani, 2012), like the ones in the 
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models presented in columns 4 and 6. Third, we repeat the estimation separately, using split samples, for 

the groups of researchers with and without prior experience in motion-sensing (Appendix Table A2). 

We observe that in all models the coefficient of the diversification measures is positive and statistically 

significant for the subsample of non-motion-sensing researchers, while the effect diminishes in 

magnitude and statistical significance in the subsample of motion-sensing researchers. Fourth, our 

results remain robust to using a linear probability model (Appendix Table A3). Angrist and Pischke 

(2009) show that there is little qualitative difference between a linear probability model and a logit 

specification, with the advantage that the Ai and Norton (2003) critique does not apply to linear 

estimation models. Taken together, we argue that these steps are reassuring in our interpretation of the 

odds ratios of the interaction terms in our main logit specification as supporting evidence for our main 

effect estimations. 

***** Tables 3 about here ***** 

Our Table 3 results persist when employing our alternative method of identifying Kinect papers, 

based exclusively on metadata searches (Appendix Table A4). This definition of Kinect papers is more 

conservative than our main specification since it excludes those academic publications that mention 

Kinect only in the body of the text, but not in keywords, abstract, or title. Not only do our results hold, 

but the magnitude persists, further strengthening the argument that, within the group of non-motion-

sensing researchers, the more diversified researchers are the ones more likely to engage with Kinect in 

their research. 

Furthermore, since we estimate our models on a cross-sectional dataset where the four publication 

years after Kinect are aggregated, we also want to ensure our results are not driven by any particular 

year, especially a year far after the Kinect launch event. As such, we repeat our main estimation on 

subsets of the data, one for each of the four years after Kinect’s launch. Here, the dependent variable is 1 

if, in a given year, the author published a Kinect paper for the first time (i.e., they had not published a 

Kinect paper in a previous year). We include these results in Appendix Table A5 and observe that the 

effect of diversification on the propensity to engage with Kinect begins immediately in 2011, the first 

year after Kinect’s launch, and persists in following years. We present these results using the continuous 

measure of diversification since this approach is most conservative. Our results remain robust when 

considering the dummy and quartile covariates. 
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Next, we turn to testing our second hypothesis by restricting the dependent variable to equal 1 only 

for those Kinect authors who published at least one Kinect paper ranking in the top 10 percent of papers 

in IEEE Xplore by citation count. We identify such highly cited papers relative to the entire population 

of publications, not only relative to work referencing Kinect.16 In other words, to ensure that we capture 

the propensity to produce high-impact research, we identify those Kinect publications that enter the 

ranks of the top 10 percent most-cited papers of all papers published in computer science, electrical 

engineering and electronics between 2011 and 2014, our four years of interest after Kinect’s launch.17 

To confirm robustness to the definition of “highly cited,” we also consider a top 5 percent threshold, and 

the results remain substantively similar. 

We present results of this one-tailed test of H2 in Table 4 to allow for a more accurate interpretation 

of the magnitude of the coefficient and then utilize a two-tailed estimation to complete the H2 testing. 

As before, in columns 1 and 2 we show estimates of a logit model using the continuous measure of 

diversification based on researchers’ publication portfolios in the four years before Kinect’s launch 

(2007–2010). In columns 3 and 4, we replace the continuous measure of diversification with a dummy 

variable equal to 1 if the researcher ranks above the median of the diversification distribution, and in 

columns 5 and 6 we further break down this covariate to capture the effect on quartiles across the 

diversification distribution. All models show results that support H2, that researchers with a higher 

degree of knowledge diversification are more likely to produce high-impact research using new distant 

knowledge than those with a lower degree of diversification. As before, the sign and magnitude of the 

interaction terms is reassuring in that it suggests that the effect of diversification is diminished when the 

knowledge is local. Specifically, non-motion-sensing researchers above the median of the diversification 

distribution are 2.5 times more likely to produce highly impactful papers using Kinect than non-motion-

sensing researchers with a diversification level below the median. Furthermore, the effect increases 

linearly with the magnitude of the diversification index. Non-motion-sensing researchers in the second 

quartile are 1.3 times more likely to produce impactful papers using Kinect than non-motion-sensing 

researchers in the bottom quartile, while non-motion-sensing researchers in the third quartile are 2 times 

																																																								
16 We confirm that Kinect papers are no more or less likely to be highly cited than papers on other topics.  
17 As discussed above, the publication cycle in these fields is fairly short. Therefore, citations accrue more quickly than in other fields such as 
management and economics. Hence, a four-year post-period captures a significant portion of citations. 
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more likely to do so. Moreover, the result for the second quartile is not statistically significant, whereas 

the result for the third quartile is statistically significant, with a much tighter confidence interval that 

does not overlap with the lower quartile estimate. Non-motion-sensing researchers in the top quartile of 

the diversification distribution are 3.8 times more likely to include Kinect in their research than non-

motion-sensing researchers in the bottom quartile of the diversification distribution. As before, the 

results persist when turning to our split sample estimation (Appendix Table A6) and to our linear 

probability estimation (Appendix Table A7). Furthermore, the results are robust to considering our more 

restrictive definition of Kinect publications, and per-year estimation models.  

***** Tables 4 about here ***** 

In testing H2, a remaining concern is that the increased propensity to produce highly cited papers 

might be an artifact of simply producing more output. To address this issue, Tables 5 and 6 extend our 

analysis to consider the change in publication propensity at the right tail of the citation distribution 

relative to changes in the left tail. More specifically, in Table 5 we replace our dependent variable with 

an indicator variable equal to 1 if the focal researcher published more Kinect papers ranked in the top 

rather than in the bottom 10th percentile of the citation distribution. In Table 6, we consider an 

alternative dependent indicator variable, equal to 1 if the focal researcher published more cited papers 

than non-cited papers. Given the skewed nature of citations, especially in the fields of computer science, 

electrical engineering and electronics most papers in our sample have zero citations. In all cases, we 

continue to find support for our hypothesized effects of diversification (H2). As before, the results 

persist when turning to our split sample estimation (Appendix Tables A8 and A9) and our linear 

probability estimation (Appendix Tables A10 and A11).  

***** Tables 5 and 6 about here ***** 

Having established the role of diversification in integrating new distant knowledge, we turn to 

shedding some light on the process through which skilled researchers activate this diversification 

mechanism for exploration. Specifically, we test if diversified individuals are more likely to have a 

diverse network of collaborators and utilize similarly diverse collaborators to integrate new distant 

knowledge (H3). First, we focus on the pre-Kinect period and test if diversified individuals do indeed 

have a diverse network of coauthors. To provide more direct evidence, we turn to our main sample 

before the CEM procedure and repeat our main estimation where we replace the dependent variable with 
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measures of collaboration diversity. We construct two such measures: 1) a measure of collaboration 

frequency where instead of counting distinct collaborators we count the total number of coauthors 

(allowing for counting the same person more than once if the focal author collaborated with them more 

than once) on each publication over the same time period (2007-2010), and 2) a measure of the pooled 

diversity of all collaborators of the focal author calculated by applying equation (1) to the total number 

of keywords assigned to each of the 51 IEEE top categories across all papers written by these 

collaborators between 2007 and 2010. As in all our estimations, we control for the number of 

collaborators, the productivity and age during the 2007-2010 period. 

It is important to clarify why we control for the number of collaborators rather than considering it as 

an attribute of the network of collaborators of diverse individuals. After all, Table 1 shows that Kinect 

authors, on average, have a higher number of collaborators. The primary reason for this is that our 

theory specifically points to the diversity of the network of collaborators, not to the absolute size of the 

network in terms of numbers of collaborators. This is an important distinction, because, similar to our 

considerations in constructing the individual-level index of diversification, the larger the size of one’s 

collaboration network, the higher the probability of diversity within that network. Thus, to ensure that 

we capture the role of the hypothesized diversity of the collaborator network, we need to control for size 

of the network. 

We present these estimations in Table 7. We employ a negative binomial model for our estimations 

of collaboration frequency, and an OLS model for our estimation of the pooled diversity of 

collaborators. We chose to estimate a negative binomial model rather than a Poisson model because of 

concerns of overdispersion in the dependent variable. As before, column 1 shows results using our 

continuous measure of diversification. In column 2, we replace the continuous measure of 

diversification with a dummy variable equal to 1 if the researcher ranks above the median of the 

diversification distribution, and in column 3 we further break down this covariate to capture the effect 

on quartiles across the diversification distribution. The results indicate that higher degrees of diversity of 

collaborators are correlated with a higher degree of diversification of the focal researcher, in line with 

our hypothesis 3. Specifically, we find that researchers with a diversification above the median 

collaborate 5.5% more frequently than researchers with a diversification below the median. 
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Furthermore, and consistently, columns 4 to 6 shows that more diversified researchers have 

collaborators with a pooled diversification higher than that of less diversified individuals.  

***** Table 7 about here ***** 

Next, we want to test if diverse individuals also use diverse networks of co-authors when working to 

integrate new distant knowledge. However, this is very difficult to test directly. A direct test would 

repeat the above estimation on the subsample of Kinect authors where the measures of collaboration are 

updated to reflect collaboration on the Kinect papers in the post period (2011-2014). However, if we are 

correct in our assertion that diverse individuals engage in diverse collaboration to generate Kinect 

publications, the collaborators of these diverse individuals will also appear as if they ramp up their 

collaboration effort. In other words, in our measures of collaboration we cannot isolate diverse 

individuals’ strategy from that of other researchers if the strategy of diverse individuals is to work with 

these other researchers, which may result in double-counting. Unlike in the tests of H1 and H2 where 

there is an appropriate comparison group, less diverse authors on Kinect papers are not an appropriate 

comparison group for diverse authors on Kinect papers when it comes to evaluating collaboration on 

Kinect papers, because these researchers constitute precisely the pooled diverse network of collaborators 

we hypothesize about. 

To address this issue, we construct a new dataset at the paper level (rather than author level) that 

characterizes the set of coauthors for each Kinect paper. While this approach is not suited to capture 

individual level patterns of collaboration, it does allow us to directly observe the type of collaborators 

that diverse individuals utilize when engaging in working with the new knowledge. Our dataset is 

comprised of 4,478 Kinect papers published between 2011 and 2014. Out of these, 2,469 papers (set A) 

have at least one author with diversity above the median and without local knowledge i.e., diverse non-

motion-sensing researcher. The remaining 2,009 papers (set B) either have an author with local 

knowledge (i.e. motion-sensing researcher) but no author that is diverse without local knowledge, i.e., 

our individuals of interest in Set A (1,004 papers) or have only specialized individuals without local 

knowledge who work with individuals who are new to the IEEE set of publications (i.e., had no IEEE 

publications prior to 2011; 1,005 papers). It is important to note that these new individuals can either be 

newly minted researchers in computer science, electrical engineering and electronics, or established 

researchers from other domains of science who, only after Kinect, publish in computer science, 
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electrical engineering and electronics i.e., researchers from other domains of knowledge for whom we 

do not have the data to evaluate their expertise and diversity, but who show signs of diversification by 

engaging in publication in a new domain of knowledge.    

We start by comparing the set of Kinect papers authored by diverse non-motion-sensing individuals 

who engage in integrating new distant knowledge (set A) with the set of Kinect papers without such an 

author type (set B). We find that the average pooled diversification of authors is higher in set A than in 

set B (0.737 vs. 0.689) and the difference is strongly statistically significant with a p-value of 0.000. 

These differences are consistent with our hypothesis (H3) that individuals with a higher degree of 

diversification utilize more diverse sets of collaborators than more specialized individuals when 

integrating new distant knowledge.  

To gain a deeper insight into the process through which these diverse individuals integrate distant 

knowledge, we next break set A into two subsets, with (948 papers, set A.1) and without (1,521 papers, 

set A.2) collaborators that have local knowledge. It is interesting in itself, that while nearly 40% of 

diverse non-motion-sensing individuals choose to collaborate with a motion-sensing researcher, over 

60% choose to not collaborate with someone with expertise in the field of the new knowledge. Further, 

we find that when working with motion-sensing researchers (set A.1), diverse researchers rely less on 

other non-motion-sensing researchers or on new researchers that had no publications in IEEE in the pre-

period. More specifically, we find that the average number of other authors who are specialists in a field 

other than motion-sensing is slightly lower in set A.1 than in set A.2 (1.614 vs. 1.765) but the difference 

is strongly statistically significant with a p-value of 0.000. Also, we find that the average number of new 

authors is lower in set A.1 than in set A.2 (0.808 vs. 1.045) and the difference is strongly statistically 

significant with a p-value of 0.000. As mentioned above, the set of new authors can either be new 

minted researchers in computer science, electrical engineering and electronics, or established 

researchers from other domains of science who, only after Kinect, publish in computer science, 

electrical engineering and electronics. Although, in our data, we cannot directly distinguish between the 

two types, we infer that new authors who publish other IEEE papers after 2011 are more likely newly 

minted researchers in computer science, electrical engineering and electronics, and those who publish 

only the Kinect paper are most likely researchers from other domains of science. Based on this criterion, 

we observe that diverse non-motion-sensing researchers collaborate less with researchers from other 
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domains (who are new as per the above definition) when they have motion-sensing collaborators. More 

specifically, we find that the average number of such new authors is lower in set A.1 than in set A.2 

(0.384 vs. 0.573) and the difference is strongly statistically significant with a p-value of 0.000. This 

indicates that not only are diverse non-motion-sensing researchers working with a more diverse team 

based on publications within IEEE, but they are also working with individuals whose experience lies in 

fields outside of IEEE and hence have an even broader set of expertise. The difference in average 

number of collaborators who are new researchers in computer science, electrical engineering and 

electronics (e.g. doctoral students, post-docs, etc.) is similarly lower (0.424 in set A.1 and 0.473 in set 

A.2), but the confidence intervals overlap and the difference is weakly statistically significant with a p-

value of 0.114. These differences provide more nuance to the type of expertise coauthors of diverse non-

motion-sensing individuals possess. They also capture additional nuance that we cannot capture with our 

measure of pooled diversification since we do not observe a pre-Kinect set of publications for these 

new-to-IEEE authors, which would be necessary to calculate their diversity index.  

Taken together, these tests show that individuals with a higher degree of knowledge diversification 

have networks of collaborators that are more diverse than that of individuals with a lower degree of 

knowledge diversification. Further, they suggest that when new distant knowledge becomes available, 

these diverse individuals build upon their prior experience and engage in more diverse collaboration 

teams that either 1) exploit the expertise of individuals with local knowledge combined with that of 

individuals from other domains or 2) rely even more heavily on individuals who bring outside expertise.  

V. Discussion and Conclusion 

We examine the role of individual knowledge diversification in integrating new distant knowledge - that 

is outside of the individual’s domains of knowledge. Our study is motivated by the central, yet 

understudied, role of the individual in influencing the innovation performance of organizations. We 

focus on exploration, an endeavor that was shown to contribute to the competitive advantage of 

organizations (Cohen and Levinthal, 1990; Barth et al., 2017) and find evidence consistent with our 

hypotheses that diversified individuals have a higher propensity to engage with new distant knowledge 

and do so in a manner that produces highly impactful output. Furthermore, we show that the more 

diversified collaborator networks of these individuals play an important role in their successful 

exploration endeavors.  
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To shed light on the role of individual-level diversification as a mechanism through which skilled 

individuals engage in successful exploration, our empirical strategy attempts to get close to an ideal 

setting where equally skilled individuals with varying levels of diversity are exposed to the arrival of a 

new knowledge that is outside their domains of expertise. To do so, we construct a sample where we 

evaluate the propensity of ability-matched diversity-varying researchers in computer science, electrical 

engineering and electronics to publish academic papers referencing Kinect, a technology that arrived 

unexpectedly in motion-sensing research. We focus on the Kinect technology developments as 

embodiments of new knowledge in line with Mokyr’s (2002) arguments that technology facilitates 

access to knowledge that is otherwise inaccessible because it did not exist or because it was costly to 

access.  

While our empirical strategy offers certain benefits that allow us to get closer to causal 

interpretations of the findings, the approach is not without limitations. First, there might be 

theoretically-relevant, empirically-unobserved attributes that we cannot capture in our analysis. By 

following prior research and norms in academic evaluations to proxy for researchers’ ability using their 

observed research output, number of collaborators and research age we believe we have captured the 

most relevant factors. Second, our analysis is conditional on observed selection into different levels of 

diversification, and thus is not informing on the antecedents of diversification such as different levels of 

curiosity or taste for diversification. Third, we study researchers engaging with a particular type of new 

knowledge in a particular area of science – computer science, electrical engineering and electronics. It is 

possible that at least some of the observed magnitudes reflect idiosyncratic aspects of this setting. Our 

hope is that our study provides enough compelling evidence to shine a light on the role of individual-

level diversification and to start a conversation that encourages scholars to gain access to more 

comprehensive or granular data in order to refine and extend our findings.  

Our study contributes to the literature examining how organizations can best use their limited 

resources to integrate new external knowledge in impactful and productive ways, which is often referred 

to as absorptive capacity (Cohen and Levinthal, 1989, 1990). While there are many studies on the topic 

(e.g., Lane et al., 2001; Lenox and King, 2004; Pacheco-de-Almeida and Zemsky, 2007; Eggers and 

Kaplan, 2009; Escribano et al., 2009), most focus on firm-level characteristics, despite Cohen and 

Levinthal’s (1990) argument that the concept of absorptive capacity occurs not only at the organization 
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level but also at the individual level. After all, individuals are at the root of the knowledge creation 

process, and it has been posited that diverse knowledge in an individual allows for learning and problem 

solving that leads to innovation (Simon, 1985). Further, our results provide a deeper understanding of 

what individual characteristics allow for more successful exploration through distant search, the benefits 

of which are long-term and lasting (March, 1991) and allow organizations to succeed during rapid 

technological shifts (Tushman and Anderson, 1986; Christensen, 1992; Cohen and Levinthal, 1994; 

Christensen et al., 1998).   

More broadly, the study offers insights into the career paths of researchers and scientists. Although 

institutional norms in both firms and research organizations frequently demonstrate preferences for 

specialization, our results show that individuals with high levels of knowledge diversity play an 

important role in pushing the knowledge frontier forward in critical ways. Furthermore, this role might 

grow in importance with increased knowledge accumulation and divisions into even narrower 

knowledge areas. In aggregate, our study contributes to calls for more individual-level perspectives to 

better understand the micro-foundations of strategy (Felin and Foss, 2005; Gavetti, 2005; Teece, 2007; 

Foss, 2011) by drawing attention to the possibility that rather than being a “jack of all trades and master 

of none,” individuals with high levels of knowledge diversity might play an important role as a “jack of 

all trades and master of knowledge.” 

References 
Adner, R., Levinthal, D. 2008. Doing versus seeing: Acts of exploitation and perceptions of exploration. 
Strategic Entrepreneurship Journal, 2(1), 43-52. 

Afuah A, Tucci CL. 2012. Crowdsourcing as a solution to distant search. Academy of Management Review 
37(3): 355–375. 

Agrawal, A, Goldfarb, A, Teodoridis, F. 2016. Understanding the Changing Structure of Scientific Inquiry. 
American Economic Journal: Applied Economics 8(1): 100-128 

Agrawal, A, McHale, J, Oettl, A. 2017. How stars matter: Recruting and peer effects in evolutionary biology. 
Research Policy, 46: 853-867. 

Ahuja, G., Lampert, C. M., Tandon, V. 2008. Moving beyond Schumpeter: Management research on the 
determinants of technological innovation. The Academy of Management Annals, 2: 1–98. 

Ai C, Norton EC. 2003. Interaction terms in logit and probit models. Economics Letters 80(1): 123–129. 
Altman E, Nagle F, Tushman M. 2014. Innovating without information constraints: organizations, 
communities, and innovation when information costs approach zero. In Oxford Handbook of Creativity, 
Innovation, and Entrepreneurship, Hitt MA, Shalley C, Zhou (eds). Oxford University Press: Oxford, UK. 

Angrist JD, Pischke J-S. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton 
University Press, Princeton, NJ. 

Azoulay, P., Stuart, T., Wang, Y.2013. Matthew: Effect or fable? Management Science, 60(1), 92-109. 
Barth E, Davis JC, Freeman RB, Wang AJ. 2017. The effects of scientists and engineers on productivity and 
earnings at the establishment where they work. NBER Working paper #23484. National Bureau of 
Economic Research, Cambridge, MA. 

Electronic copy available at: https://ssrn.com/abstract=3017363



	

32 

Bayus, B. L., Agarwal, R. 2007. The role of pre-entry experience, entry timing, and product technology 
strategies in explaining firm survival. Management Science, 53: 1887–1902. 

BBC News. 2010. Kinect hacked days after release. http://www.bbc.co.uk/news/technology-11742236. 
Bikard M, Myrray F., Gans J. 2015. Exploring Trade-offs in the Organization of Scientific Work: 
Collaboration and Scientific Award. Management Science 61(7): 1473-1495 

Boudreau KJ, Guinan EC, Lakhani KR, Riedl C. 2016. Looking across and looking beyond the knowledge 
frontier: intellectual distance, novelty, and resource allocation in science. Management Science 62(10): 
2765–2783. 

Boudreau KJ, Lacetera N, Lakhani KR. 2011. Incentives and problem uncertainty in innovation contests: an 
empirical analysis. Management Science 57(5): 843–863. 

Buis, ML. 2010. Stata tip 87: Interpretation of interactions in nonlinear models. The Stata Journal 10(2): 305-
308. 

Burt RS. 2004. Structural holes and good ideas. American Journal of Sociology 110(2): 349–99. 
Chai S. 2017. Near misses in the breakthrough discovery process. Organization Science, 28(3): 379-595. 
Chatterji, AK, Fabrizio, KR. 2014. Using users: When does external knowledge enhance corporate product 
innovation? Strategic Management Journal, 35(1): 1427-1445. 

Christensen CM. 1992. Exploring the limits of the technology S-curve. Part I: component technologies. 
Production and Operations Management 1(4): 334–357. 

Christensen CM, Suárez FF, Utterback JM. 1998. Strategies for survival in fast-changing industries. 
Management Science 44(12-part-2): S207–S220. 

Cohen WM, Levinthal DA. 1989. Innovation and learning: the two faces of R & D. The Economic Journal 
99(397): 569–596. 

Cohen WM, Levinthal DA. 1990. Absorptive capacity: a new perspective on learning and innovation. 
Administrative Science Quarterly 35(1): 128–152. 

Cohen WM, Levinthal DA. 1994. Fortune favors the prepared firm. Management Science 40(2): 227–251. 
Conti R, Gambardella A, Mariani M. 2013. Learning to be Edison: inventors, organizations, and 
breakthrough inventions. Organization Science 25(3): 833–849. 

Cross, R., Borgatti, S. P., Parker, A. (2002). Making invisible work visible: Using social network analysis to 
support strategic collaboration. California management review, 44(2), 25-46. 

Cybert RM, March JG. 1963.A Behavioral Theory of the Firm. Prentice-Hall: Englewood Cliffs, NJ. 
Dothan, A., Lavie, D. 2016. Resource reconfiguration: Learning from performance feedback. In. T. B. Folta, 
C. E. Helfat, & S. Karim(Eds.), Resource redeployment andcorporate strategy (Vol. 35),Advances in 
Strategic Management: 319–369. Bingley, UK: Emerald Group Publishing Ltd. 

Eggers, JP. 2014. Competing technologies and industry evolution: The benefits of making mistakes in the 
flat panel display industry. Strategic Management Journal, 35: 159–178. 

Eggers JP, Kaplan S. 2009. Cognition and renewal: comparing CEO and organizational effects on incumbent 
adaptation to technical change. Organization Science 20(2): 461–477. 

Eggers JP, Kaul A. 2018. Motivation and ability? A behavioral perspective on the pursuit of radical invention 
in multi-technology incumbents. Academy of Management Journal 61(1): 67-93. 

Escribano A, Fosfuri A, Tribó JA. 2009. Managing external knowledge flows: the moderating role of 
absorptive capacity. Research Policy 38(1): 96–105. 

Fabrizio, KR. 2009. Absorptive capacity and the search for innovation. Research Policy, 38(2): 255-267. 
Felin T, Foss NJ. 2005. Strategic organization: a field in search of micro-foundations. Strategic Organization 
3: 441–455. 

Fleming L. 2001. Recombinant uncertainty in technological search. Management Science 47(1): 117–132. 
Fleming, L., Sorenson, O. 2004. Science as a map in technological search. Strategic Management Journal, 
25: 909–928. 

Foss NJ. 2011. Invited editorial: why micro-foundations for resource-based theory are needed and what they 
may look like. Journal of Management 37(5): 1413–1428. 

Gavetti G. 2005. Cognition and hierarchy: rethinking the microfoundations of capabilities’ development. 
Organization Science 16(6): 599–617. 

Electronic copy available at: https://ssrn.com/abstract=3017363



	

33 

Gavetti, G., Levinthal, D. A. 2000. Looking forward and looking backward: Cognitive and experiential 
search. Administrative Science Quarterly, 45: 113–137. 

Green, W. 2010. Testing hypotheses about interaction terms in nonlinear models. Econometric Letters, 
107(2): 291-296.	

Greve, H. R. 2003. A behavioral theory of R&D expenditures and innovations: Evidence from ship-building. 
Academy of Management Journal, 46: 685–702. 

Greve, H. R. 2007. Exploration and exploitation in product innovation. Industrial and Corporate Change, 
16: 945–975. 

Gupta, A.K., Smith, K.G., Shalley, C.E., 2006. The interplay between exploration and exploitation. Academy 
of Management Journal 49, 693–706. 

Henderson, R. 1993. Underinvestment and incompetence as responses to radical innovation: Evidence from 
the photolithographic equipment alignment industry. The Rand Journal of Economics, 24: 248–270. 

Iacus SM, King G, Porro G. 2011a. Causal inference without balance checking: coarsened exact matching. 
Political Analysis, mpr013. 

Iacus SM, King G, Porro G. 2011b. Multivariate matching methods that are monotonic imbalance bounding. 
Journal of the American Statistical Association 106(493): 345–361. 

Jeppesen LB, Lakhani KR. 2010. Marginality and problem-solving effectiveness in broadcast search. 
Organization Science 21(5): 1016–1033. 

Jones B. 2009. The burden of knowledge and the death of the Renaissance Man: is innovation getting harder? 
Review of Economic Studies 76(1): 253–281. 

Jones B. 2010. As science evolves, how can science policy? NBER Innovation Policy and the Economy 11: 
103–131. 

Kaplan S, Vakili K. 2015. The double-edged sword of recombination in breakthrough innovation. Strategic 
Management Journal 36(10): 1435–1457. 

Katila R., Ahuja G. 2002. Something old, something new: a longitudinal study of search behavior and new 
product introduction. The Academy of Management Journal 45(6): 1183–1194. 

King, A. A., Tucci, C. L. 2002. Incumbent entry into new market niches: The role of experience and 
managerial choice in the creation of dynamic capabilities. Management Science, 48: 171–186. 

Kolasinski, AC, Siegel, AF. 2010. On the economic meaning of interaction term coefficients in non-linear 
binary response regression models. Working paper SSRN #1668750 

Lane PJ, Salk JE, Lyles MA. 2001. Absorptive capacity, learning, and performance in international joint 
ventures. Strategic Management Journal 22(12): 1139–1161. 

Laursen K, Salter A. 2006. Open for innovation: the role of openness in explaining innovation performance 
among UK manufacturing firms. Strategic Management Journal 27(2): 131–150. 

Lenox M, King A. 2004. Prospects for developing absorptive capacity through internal information 
provision. Strategic Management Journal 25(4): 331–345. 

Lifshitz-Assaf H. 2017. Dismantling knowledge boundaries at NASA: from problem solvers to solution 
seekers. Administrative Science Quarterly, forthcoming. 

March, JG. 1991. Exploration and exploitation in organizational learning. Organization Science, 2(1), 71-87. 
Mokyr J. 2002. The Gifts of Athena. Princeton University Press: Princeton, NJ. 
Murmann, JP. 2003. Knowledge and competitive advantage: The coevolution of firms, technology, and 
national institutions. Cambridge University Press. 

Nelson RR, Winter SG. 1973. Toward an evolutionary theory of economic capabilities. The American 
Economic Review 63(2): 440–449. 

Nelson RR, Winter SG. 1977. In search of useful theory of innovation. Research Policy 6(1): 36–76. 
Pacheco-de-Almeida G, Zemsky P. 2007. The timing of resource development and sustainable competitive 
advantage. Management Science 53(4): 651–666. 

Perkmann M, Tartari V, McKelvey M, Autio E, Broström A, D’Este P, Fini R, Aldo G, Grimaldi R, Hughes 
A, Krabel S, Kitson M, Llerena P, Lissoni F, Salter A, Sobrero M. 2013. Academic engagement and 
commercialisation: a review of the literature on university–industry relations. Research Policy 42(2): 423–
442. 

Electronic copy available at: https://ssrn.com/abstract=3017363



	

34 

Puhani, P. A., 2012. The treatment effect, the cross difference, and the interaction term in nonlinear 
“difference-in-differences” models. Economics Letters, 115(1), 85-87. 

Rothaermel, FT. 2001. Incumbent’s advantage through exploiting complementary assets via interfirm 
cooperation. Strategic Management Journal, 22: 687–699. 

Sauermann H, Stephan P. 2013. Conflicting logics? A multidimensional view of industrial and academic 
science. Organization Science 24(3): 889–909. 

Schilling MA, Green E. 2011. Recombinant search and breakthrough idea generation: an analysis of high 
impact papers in the social sciences. Research Policy 40(10): 1321–1331. 

Schumpeter J. 1934. The	Theory	of	Economic	Development. Harvard University Press: Cambridge, MA. 
Shane S. 2000. Prior knowledge and the Discovery of Entrepreneurial Opportunities. Organization Science, 
11(4): 448-469. 

Simon HA. 1985. What we know about the creative process. Frontiers in Creative and Innovative 
Management 4: 3–22. 

Singularity 1:1. 2013. Interview with Geordie Rose. https://www.singularityweblog.com/geordie-rose-d-
wave-quantum-computing/ 

Stephan P. 2012. How Economics Shapes Science. Harvard University Press: Cambridge, MA. 
Taylor, A., Helfat, CE. 2009. Organizational linkages for surviving technological change: Complementary 
assets, middle management, and ambidexterity. Organization Science, 20: 718–739. 

Teece DJ. 2007. Explicating dynamic capabilities: the nature and microfoundations of (sustainable) 
enterprise performance. Strategic Management Journal 28(13): 1319–1350. 

Teodoridis F. 2018. Understanding team knowledge production: the interrelated roles of technology and 
expertise. Management Science,64(8):3469-3970. 

Terdiman D. 2010. Bounty offered for open-source Kinect driver. CNET News, 
https://www.cnet.com/news/bounty-offered-for-open-source-kinect-driver/ 

Toh, PK. 2014. Chicken, or egg, or both? The interrelationship between a firm’s inventor specialization and 
scope of technologies. Strategic Management Journal, 35(5): 723-738. 

Tortoriello, M, McEvily, B, Krackhardt, D. 2015. Being a Catalyst of Innovation: The Role of Knowledge 
Diversity and Network Closure. Organization Science 26(2): 423-438 

Tripsas, M. 1997. Unraveling the process of creative destruction: Complementary assets and incumbent 
survival in the typesetter industry. Strategic Management Journal, 18: 119–142. 

Tushman ML, Anderson P. 1986. Technological discontinuities and organizational environments. 
Administrative Science Quarterly 439–465. 

Uzzi B, Mukherjee S, Stringer M, Jones B. 2013. Atypical combinations and scientific impact. Science 
342(6157): 468–472. 

Waldinger, F. 2012. Peer effects in science: Evidence from the dismissal of scientists in Nazi Germany. 
Review of Economic Studies, 79: 838-861. 

Weitzman M. 1998. Recombinant growth. Quarterly Journal of Economics 113(2): 331–360.	
Wu,B.,Wan,Z.,Levinthal, D. A.2014.Complementaryassets as pipes and prisms: Innovation incentives and 
trajectory choices. Strategic Management Journal, 35: 1257–1278. 

Wuchty S, Jones BF, Uzzi B. 2007. The increasing dominance of teams in production of knowledge. Science 
316(5827): 1036–1039. 
  

Electronic copy available at: https://ssrn.com/abstract=3017363



	

 

Table 1. Descriptive statistics 

 Panel 1 

Unmatched sample 

Panel 2 

Matched sample (CEM) 

Variable Observations Min Max Mean St. Dev Observations Min Max Mean St. Dev 
Diversification measure           
All authors 182,984 0 0.804 0.645 0.074 104,587 0 0.793 0.646 0.072 
Kinect authors 4,705 0 0.798 0.688 0.058 2,994 0 0.790 0.674 0.060 
Non-Kinect authors 178,279 0 0.804 0.644 0.074 101,593 0 0.793 0.645 0.073 
Number of publications 2007–2010           
All authors 182,984 3 50 8.493 7.587 104,587 3 50 7.318 4.926 
Kinect authors 4,705 3 50 13.091 10.934 2,994 3 50 7.398 4.953 
Non-Kinect authors 178,279 3 50 8.371 7.441 101,593 3 44 7.316 4.925 
Number of co-authors 2007–2010           
All authors 182,984 3 1073 41.356 48.709 104,587 3 511 29.855 22.253 
Kinect authors 4,705 4 662 58.956 60.652 2,994 4 509 29.742 22.324 
Non-Kinect authors 178,279 3 1073 40.892 48.268 101,593 3 511 29.859 22.251 
Number of citations 2007–2010     	 	 	 	 	 	
All authors 182,984 0 1612 17.952 39.462	 104,587	 0	 198	 11.992	 16.876	
Kinect authors 4,705 0 900 33.735 57.518 2,994 0 179 12.082 16.691 
Non-Kinect authors 178,279 0 1612 17.536 38.785 101,593 0 198 11.989 16.881 
Number of citations-weighted pubs           
All authors 182,984 3 1662 26.445 43.813 104,587 3 217 19.310 19.186 
Kinect authors 4,705 3 932 46.826 63.566 2,994 3 217 19.480 19.127 
Non-Kinect authors 178,279 3 1662 25.907 43.039 101,593 3 206 19.187 19.187 
Author age 2001–2010           
All authors 182,984 1 10 6.572 2.808 104,587 1 10 6.973 2.699 
Kinect authors 4,705 1 10 7.621 2.556 2,994 1 10 7.005 2.709 
Non-Kinect authors 178,279 1 10 6.545 2.809 101,593 1 10 6.972 2.699 
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Table 2. Coarsened Exact Matching balance  

CEM balance 

 Full Sample Matched Sample (CEM) 

 Kinect authors Non-Kinect 
authors 

t-stat Kinect authors Non-Kinect 
authors 

t-stat 

Citation-weighted publication count 2007 15.324 8.015 23.48 6.137 6.131 0.03 

Citation-weighted publication count 2008 15.035 8.305 23.13 5.802 5.773 0.17 

Citation-weighted publication count 2009 8.694 5.038 26.02 3.788 3.732 0.64 

Citation-weighted publication count 2010 7.773 4.549 28.91 3.753 3.669 1.09 

Co-author count 2007 13.726 9.537 14.73 6.369 6.490 0.72 

Co-author count 2008 14.336 10.319 16.50 7.193 7.328 0.78 

Co-author count 2009 14.638 9.999 22.12 7.478 7.458 0.14 

Co-author count 2010 16.255 11.036 23.62 8.702 8.583 0.73 

Total citation-weighted publication count 
2007–2010 

46.826 25.907 32.42 19.480 19.305 0.49 

Total co-author count 2007–2010	 58.956 40.892 25.15 29.742 29.859 0.28 

Author age 7.621 6.545 25.99 7.005 6.972 0.64 

       

Observations 4,705 178,279  2,994 101,593  
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Table 3. Diversification and the propensity to write Kinect papers 
DV = 1 if author published at least one Kinect paper and 0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 1.060/0.059 
(0.004) 

1.071/0.068 
(0.004) 

1.922/0.653 
(0.047) 

2.091/0.738 
(0.050) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    1.511/0.413 
(0.078) 

1.514/0.415 
(0.084) 

Diversification before Kinect in 50th to 75th 
percentiles 

    2.105/0.744 
(0.074) 

2.134/0.758 
(0.080) 

Diversification before Kinect in 75th to 
100th percentiles 

    2.777/1.021 
(0.072) 

3.146/1.146 
(0.076) 

Motion-sensing author 5.967/1.786 
(0.065) 

281.26/5.639 
(0.763) 

6.208/1.826 
(0.065) 

9.586/2.260 
(0.118) 

6.006/1.793 
(0.065) 

10.376/2.339 
(0.204) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.945/-0.056 
(0.011) 

 0.584/-0.538 
(0.140) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.840/-0.174 
(0.251) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.731/-0.313 
(0.239) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.451/-0.797 
(0.224) 

Total citation-weighted publications before 
(2007–2010) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

Total co-authors before 
(2007–2010) 

0.993/-0.007 
(0.002) 

0.993/-0.007 
(0.002) 

0.995/-0.005 
(0.002) 

0.995/-0.005 
(0.002) 

0.994/-0.006 
(0.002) 

0.994/-0.006 
(0.002) 

Author age 0.956/-0.045 
(0.066) 

0.940/-0.062 
(0.065) 

0.961/-0.040 
(0.066) 

0.957/-0.044 
(0.065) 

0.956/-0.045 
(0.066) 

0.946/-0.056 
(0.066) 

Author age sq 1.002/0.002 
(0.004) 

1.003/0.003 
(0.003) 

1.002/0.002 
(0.004) 

1.002/0.002 
(0.004) 

1.002/0.002 
(0.004) 

1.003/0.003 
(0.004) 

Unable to obtain affiliation (flag) 0.275/-1.293 
(0.090) 

0.273/-1.299 
(0.090) 

0.270/-1.312 
(0.089) 

0.269/-1.314 
(0.089) 

0.272/-1.303 
(0.090) 

0.270/-1.309 
(0.089) 

University affiliation (flag) 1.093/0.089 
(0.055) 

1.094/0.089 
(0.055) 

1.101/0.097 
(0.055) 

1.101/0.096 
(0.055) 

1.093/0.089 
(0.055) 

1.094/0.090 
(0.055) 

LL -12,488.84 -12,467.13 -12,527.51 -12,516.69 -12,494.90 -12,474.94 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table 4. Diversification and the propensity to write top-cited Kinect papers 

DV = 1 if author published at least one Kinect paper in the top 10th percentile of the citation distribution of all papers published between 2011 and 2014, and 
0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 1.066/0.064 
(0.012) 

1.077/0.074 
(0.014) 

2.320/0.841 
(0.130) 

2.480/0.909 
(0.142) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    1.257/0.229 
(0.227) 

1.330/0.285 
(0.249) 

Diversification before Kinect in 50th to 75th 
percentiles 

    2.091/0.738 
(0.204) 

2.025/0.706 
(0.230) 

Diversification before Kinect in 75th to 
100th percentiles 

    3.166/1.152 
(0.196) 

3.768/1.326 
(0.213) 

Motion-sensing author 6.077/1.805 
(0.131) 

166.64/5.116 
(1.502) 

6.290/1.839 
(0.128) 

8.528/2.143 
(0.299) 

5.985/1.789 
(0.131) 

11.222/2.418 
(0.468) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.953/-0.048 
(0.022) 

 0.696/-0.362 
(0.329) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.629/-0.464 
(0.605) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.848/-0.164 
(0.525) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.404/-0.907 
(0.497) 

Total citation-weighted publications before 
(2007–2010) 

1.013/0.013 
(0.003) 

1.013/0.013 
(0.003) 

1.012/0.012 
(0.003) 

1.012/0.012 
(0.003) 

1.013/0.013 
(0.003) 

1.013/0.013 
(0.002) 

Total co-authors before 
(2007–2010) 

0.987/-0.013 
(0.004) 

0.988/-0.013 
(0.004) 

0.989/-0.011 
(0.003) 

0.989/-0.011 
(0.003) 

0.987/-0.013 
(0.003) 

0.987/-0.013 
(0.003) 

Author age 0.774/-0.257 
(0.164) 

0.761/-0.272 
(0.164) 

0.768/-0.265 
(0.164) 

0.766/-0.266 
(0.164) 

0.764/-0.269 
(0.165) 

0.752/-0.286 
(0.165) 

Author age sq 1.012/0.012 
(0.009) 

1.013/0.013 
(0.009) 

1.013/0.012 
(0.009) 

1.013/0.013 
(0.009) 

1.013/0.013 
(0.009) 

1.014/0.013 
(0.009) 

Unable to obtain affiliation (flag) 0.227/-1.484 
(0.249) 

0.225/-1.492 
(0.249) 

0.225/-1.492 
(0.249) 

0.224/-1.496 
(0.249) 

0.226/-1.489 
(0.250) 

0.222/-1.503 
(0.250) 

University affiliation (flag) 1.005/0.005 
(0.133) 

1.004/0.004 
(0.133) 

1.012/0.012 
(0.133) 

1.010/0.010 
(0.133) 

1.001/0.001 
(0.133) 

0.999/-0.001 
(0.132) 

LL -2,348.54 -2,346.21 -2,347.46 -2,346.81 -2,341.52 -2,336.93 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table 5. Diversification and propensity to write more top than bottom cited Kinect papers 

DV = 1 if author published more Kinect papers in the top than the bottom 10th percentile of the citation distribution of all papers published between 2011 and 
2014, and 0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 1.077/0.075 
(0.014) 

1.082/0.079 
(0.016) 

2.458/0.899 
(0.163) 

2.600/0.955 
(0.177) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    0.966/-0.034 
(0.286) 

0.962/-0.039 
(0.309) 

Diversification before Kinect in 50th to 75th 
percentiles 

    1.642/0.496 
(0.252) 

1.644/0.497 
(0.274) 

Diversification before Kinect in 75th to 
100th percentiles 

    3.135/1.142 
(0.234) 

3.441/1.236 
(0.248) 

Motion-sensing author 4.779/1.564 
(0.171) 

25.426/3.236 
(2.236) 

5.030/1.615 
(0.168) 

6.835/1.922 
(0.403) 

4.683/1.544 
(0.172) 

7.471/2.011 
(0.631) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.976/-0.024 
(0.032) 

 0.698/-0.360 
(0.439) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.874/-0.134 
(0.819) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.798/-0.226 
(0.724) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.535/-0.625 
(0.665) 

Total citation-weighted publications before 
(2007–2010) 

1.013/0.013 
(0.003) 

1.013/0.013 
(0.003) 

1.012/0.012 
(0.003) 

1.012/0.012 
(0.003) 

1.013/0.013 
(0.003) 

1.014/0.013 
(0.003) 

Total co-authors before 
(2007–2010) 

0.985/-0.016 
(0.004) 

0.985/-0.015 
(0.004) 

0.987/-0.013 
(0.004) 

0.987/-0.013 
(0.004) 

0.985/-0.016 
(0.004) 

0.985/-0.015 
(0.004) 

Author age 0.712/-0.340 
(0.230) 

0.707/-0.347 
(0.230) 

0.712/-0.341 
(0.230) 

0.710/-0.343 
(0.230) 

0.706/-0.348 
(0.231) 

0.699/-0.357 
(0.230) 

Author age sq 1.018/0.018 
(0.012) 

1.018/0.018 
(0.012) 

1.018/0.018 
(0.012) 

1.018/0.018 
(0.012) 

1.018/0.018 
(0.012) 

1.019/0.019 
(0.012) 

Unable to obtain affiliation (flag) 0.278/-1.280 
(0.282) 

0.277/-1.284 
(0.282) 

0.275/-1.293 
(0.282) 

0.273/-1.297 
(0.282) 

0.275/-1.293 
(0.282) 

0.272/-1.301 
(0.282) 

University affiliation (flag) 0.866/-0.144 
(0.163) 

0.866/-0.144 
(0.162) 

0.875/-0.134 
(0.162) 

0.873/-0.135 
(0.162) 

0.861/-0.149 
(0.163) 

0.859/-0.151 
(0.162) 

LL -1,549.68 -1,549.39 -1,551.67 -1,551.33 -1,543.88 -1,542.85 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table 6. Diversification and propensity to write more cited Kinect papers than Kinect papers without citations  

DV = 1 if author published more cited Kinect papers than Kinect paper with zero citations, and 0 otherwise;  
Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 1.071/0.069 
(0.009) 

1.081/0.078 
(0.010) 

2.209/0.793 
(0.097) 

2.360/0.859 
(0.106) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    1.445/0.368 
(0.171) 

1.411/0.344 
(0.185) 

Diversification before Kinect in 50th to 75th 
percentiles 

    2.148/0.765 
(0.158) 

2.017/0.702 
(0.173) 

Diversification before Kinect in 75th to 
100th percentiles 

    3.306/1.196 
(0.151) 

3.696/1.307 
(0.160) 

Motion-sensing author 5.546/1.713 
(0.107) 

140.94/4.948 
(1.275) 

5.799/1.758 
(0.105) 

8.050/2.086 
(0.228) 

5.517/1.708 
(0.107) 

7.650/2.035 
(0.416) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.954/-0.047 
(0.019) 

 0.674/-0.394 
(0.255) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

1.013/0.013 
(0.500) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

1.094/0.090 
(0.459) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.550/-0.598 
(0.439) 

Total citation-weighted publications before 
(2007–2010) 

1.007/0.007 
(0.002) 

1.007/0.007 
(0.002) 

1.006/0.006 
(0.002) 

1.006/0.006 
(0.002) 

1.007/0.007 
(0.002) 

1.007/0.007 
(0.002) 

Total co-authors before 
(2007–2010) 

0.984/-0.016 
(0.003) 

0.985/-0.015 
(0.003) 

0.987/-0.013 
(0.003) 

0.987/-0.013 
(0.003) 

0.985/-0.015 
(0.003) 

0.985/-0.015 
(0.003) 

Author age 0.809/-0.213 
(0.127) 

0.797/-0.227 
(0.126) 

0.809/-0.212 
(0.126) 

0.807/-0.214 
(0.126) 

0.805/-0.217 
(0.127) 

0.796/-0.229 
(0.127) 

Author age sq 1.011/0.011 
(0.007) 

1.012/0.011 
(0.007) 

1.011/0.011 
(0.007) 

1.011/0.011 
(0.007) 

1.011/0.011 
(0.007) 

1.011/0.012 
(0.008) 

Unable to obtain affiliation (flag) 0.309/-1.178 
(0.170) 

0.306/-1.183 
(0.170) 

0.303/-1.194 
(0.170) 

0.302/-1.197 
(0.170) 

0.305/-1.187 
(0.170) 

0.303/-1.194 
(0.170) 

University affiliation (flag) 0.919/-0.084 
(0.103) 

0.920/-0.084 
(0.102) 

0.928/-0.075 
(0.103) 

0.927/-0.076 
(0.102) 

0.918/-0.085 
(0.103) 

0.919/-0.084 
(0.103) 

LL -3,609.61 -3,606.30 -3,617.65 -3,616.40 -3,605.74 -3,599.81 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table 7. Broadness and diversity of author networks before Kinect   
 Sample without matching 

 DV=Collaboration frequency DV=Combined coauthor diversification 
Continuous Above median  Quartiles Continuous Above median  Quartiles 

Diversification before Kinect (2007–2010) 1.390/0.329 
(0.014) 

1.055/0.054 
(0.002) 

 0.281 
(0.002) 

0.035 
(0.000) 

 

Diversification before Kinect in bottom 25th to 
50th percentiles 

  1.004/0.004 
(0.003) 

  0.023 
(0.000) 

Diversification before Kinect in 50th to 75th 
percentiles 

  1.026/0.026 
(0.003) 

  0.038 
(0.000) 

Diversification before Kinect in 75th to 100th 
percentiles 

  1.082/0.079 
(0.003) 

  0.055 
(0.000) 

Motion-sensing author 1.038/0.037 
(0.004) 

1.038/0.038 
(0.004) 

1.032/0.032 
(0.004) 

0.005 
(0.000) 

0.008 
(0.000) 

0.006 
(0.000) 

Total citation-weighted publications before 
(2007–2010) 

0.999/-0.000 
(0.000) 

0.999/-0.000 
(0.000) 

0.999/-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Total co-authors before 
(2007–2010) 

1.015/0.014 
(0.000) 

1.015/0.014 
(0.000) 

1.015/0.014 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Author age 1.124/0.117 
(0.003) 

1.124/0.117 
(0.003) 

1.123/0.116 
(0.003) 

-0.001 
(0.001) 

-0.001 
(0.000) 

-0.001 
(0.001) 

Author age sq 0.995/-0.005 
(0.000) 

0.995/-0.005 
(0.000) 

0.995/-0.005 
(0.000) 

0.001 
(0.000) 

0.001 
(0.000) 

0.000 
(0.000) 

Unable to obtain affiliation (flag) 1.361/0.307 
(0.004) 

1.361/0.308 
(0.004) 

1.361/0.308 
(0.004) 

0.006 
(0.000) 

0.006 
(0.000) 

0.006 
(0.000) 

University affiliation (flag) 0.952/-0.050 
(0.004) 

0.952/-0.050 
(0.004) 

0.951/-0.051 
(0.004) 

0.002 
(0.000) 

0.002 
(0.000) 

0.002 
(0.000) 

LL 652,118.51 652,065.22 651,876.43    
R-squared    0.202 0.202 0.202 
Observations 176,233 176,233 176,233 175,350 175,350 175,350 

The data is a cross-section at the author level. The models in the first three columns are negative binomial. The models in the last three columns are OLS. All models are estimated 
with robust standard errors. Estimations in the negative binomial models are presented as Incidence Ratio/Coefficient (st. error). 
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Appendix 
 
 
Table A1: IEEE Taxonomy

 Research Area IEEE code 
1 Aerospace and electronic systems 104 
2 Antennas and propagation 218 
3 Broadcast technology 600 
4 Circuits and systems 803 
5 Communications technology 916 
6 Components, packaging, and manufacturing 

technology 
926 

7 Computational and artificial intelligence 937 
8 Computers and information processing 992 
9 Consumer electronics 1019 
10 Control systems 1059 
11 Dielectrics and electrical insulation 1288 
12 Education 1457 
13 Electromagnetic compatibility and interference 1527 
14 Electron devices 1566 
15 Electronic design automation and methodology 1584 
16 Engineering - general 1691 
17 Engineering in medicine and biology 1695 
18 Engineering management 1697 
19 Geoscience and remote sensing 2085 
20 IEEE organizational topics 2400 
21 Imaging 2543 
22 Industrial electronics 2587 
23 Industry applications 2625 
24 Information theory 2652 
25 Instrumentation and measurement 2699 
26 Intelligent transportation systems 2892 
27 Lasers and electrooptics 3110 
28 Magnetics 3202 
29 Materials, elements, and compounds 3206 
30 Mathematics 3397 

31 Microwave theory and techniques 3397 
32 Nanotechnology 3599 
33 Nuclear and plasma sciences 3731 
34 Oceanic engineering and marine technology 3771 
35 Organizational communication 4410 
36 Power electronics 4279 
37 Power engineering and energy 4283 
38 Product safety engineering 4394 
39 Reliability 4695 
40 Resonance 4729 
41 Robotics and automation 4787 
42 Science - general 4856 
43 Sensors 4938 
44 Signal processing 4981 
45 Social implications of technology 5053 
46 Solid state circuits 5113 
47 Superconductivity 5346 
48 Systems engineering and theory 5435 
49 Systems, man, and cybernetics 5438 
50 Ultrasonics, ferroelectrics, and frequency control 5773 
51 Vehicular and wireless technologies 5849 
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Table A2: Diversification and the propensity to write Kinect papers - split sample 

DV = 1 if author published at least one Kinect paper and 0 otherwise; Matched sample 

 Non-motion-sensing authors Motion-sensing authors 
Continuous Above median 

dummy 
Quartiles Continuous Above median 

dummy 
Quartiles 

Diversification before Kinect 
(2007–2010) 

1.070/0.068 
(0.004) 

2.081/0.733 
(0.050) 

 1.013/0.012 
(0.011) 

1.260/0.231 
(0.134) 

 

Diversification before Kinect in 
bottom 25th to 50th percentiles 

  1.511/0.413 
(0.084) 

  1.269/0.238 
(0.236) 

Diversification before Kinect in 
50th to 75th percentiles 

  2.130/0.756 
(0.080) 

  1.568/0.450 
(0.225) 

Diversification before Kinect in 
75th to 100th percentiles 

  3.139/1.144 
(0.075) 

  1.437/0.363 
(0.217) 

Total citation-weighted 
publications before 
(2007–2010) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.002) 

0.999/-0.001 
(0.005) 

0.999/-0.001 
(0.005) 

0.999/-0.001 
(0.005) 

Total co-authors before 
(2007–2010) 

0.992/-0.008 
(0.002) 

0.995/-0.005 
(0.002) 

0.993/-0.007 
(0.002) 

0.996/-0.004 
(0.005) 

0.996/-0.004 
(0.005) 

0.996/-0.004 
(0.005) 

Author age 0.933/-0.070 
(0.068) 

0.953/-0.049 
(0.068) 

0.941/-0.061 
(0.068) 

0.911/-0.093 
(0.181) 

0.900/-0.105 
(0.182) 

0.903/-0.102 
(0.183) 

Author age sq 1.004/0.004 
(0.004) 

1.003/0.003 
(0.004) 

1.004/0.004 
(0.004) 

1.002/0.002 
(0.010) 

1.003/0.003 
(0.010) 

1.003/0.003 
(0.010) 

Unable to obtain affiliation 
(flag) 

0.288/-1.245 
(0.097) 

0.282/-1.265 
(0.097) 

0.284/-1.260 
(0.097) 

0.225/-1.490 
(0.220) 

0.225/-1.490 
(0.220) 

0.226/-1.487 
(0.220) 

University affiliation (flag) 1.130/0.122 
(0.058) 

1.142/0.133 
(0.058) 

1.130/0.123 
(0.058) 

0.984/-0.016 
(0.145) 

0.984/-0.016 
(0.146) 

0.988/-0.013 
(0.145) 

LL -10,437.81 -10,488.17 -10,448.16 -2,022.91 -2,021.70 -2,020.60 
Observations 100,807 100,807 100,807 3,780 3,780 3,780 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table A3: Diversification and the propensity to write Kinect papers - linear probability model 

DV = 1 if author published at least one Kinect paper and 0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 0.113 
(0.007) 

0.114 
(0.007) 

0.015 
(0.001) 

0.015 
(0.001) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    0.006 
(0.001) 

0.006 
(0.001) 

Diversification before Kinect in 50th to 75th 
percentiles 

    0.014 
(0.001) 

0.012 
(0.001) 

Diversification before Kinect in 75th to 
100th percentiles 

    0.023 
(0.002) 

0.023 
(0.001) 

Motion-sensing author 0.111 
(0.007) 

0.123 
(0.081) 

0.112 
(0.007) 

0.106 
(0.012) 

0.111 
(0.007) 

0.090 
(0.018) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 -0.017 
(0.121) 

 0.008 
(0.015) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.024 
(0.024) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.039 
(0.024) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.016 
(0.021) 

Total citation-weighted publications before 
(2007–2010) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

Total co-authors before 
(2007–2010) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Author age -0.001 
(0.001) 

-0.001 
(0.002) 

-0.001 
(0.002) 

-0.001 
(0.002) 

-0.001 
(0.002) 

-0.001 
(0.002) 

Author age sq 0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

Unable to obtain affiliation (flag) -0.021 
(0.002) 

-0.021 
(0.002) 

-0.021 
(0.002) 

-0.021 
(0.002) 

-0.021 
(0.002) 

-0.021 
(0.002) 

University affiliation (flag) 0.003 
(0.002) 

0.003 
(0.002) 

0.003 
(0.002) 

0.003 
(0.002) 

0.003 
(0.002) 

0.003 
(0.002) 

R-squared 0.164 0.164 0.164 0.164 0.164 0.164 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are OLS with robust standard errors. Estimations presented as Coefficient (st. error). 
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Table A4. Diversification and the propensity to write Kinect papers – Kinect paper defined using metadata keywords only 

DV = 1 if author published at least one Kinect paper and 0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 1.058/0.056 
(0.006) 

1.067/0.065 
(0.006) 

1.911/0.647 
(0.073) 

2.027/0.707 
(0.078) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    1.760/0.565 
(0.128) 

1.769/0.570 
(0.138) 

Diversification before Kinect in 50th to 75th 
percentiles 

    2.404/0.877 
(0.121) 

2.288/0.828 
(0.132) 

Diversification before Kinect in 75th to 
100th percentiles 

    2.982/1.093 
(0.117) 

3.359/1.212 
(0.125) 

Motion-sensing author 5.620/1.726 
(0.085) 

191.2/5.253 
(0.888) 

5.829/1.763 
(0.084) 

7.895/2.066 
(0.172) 

5.653/1.732 
(0.084) 

8.332/2.120 
(0.326) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.950/-0.052 
(0.013) 

 0.692/-0.369 
(0.195) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.854/-0.158 
(0.384) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

1.007/0.007 
(0.360) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.514/-0.665 
(0.346) 

Total citation-weighted publications before 
(2007–2010) 

0.996/-0.004 
(0.003) 

0.996/-0.004 
(0.003) 

0.996/-0.004 
(0.003) 

0.996/-0.004 
(0.003) 

0.996/-0.004 
(0.003) 

0.996/-0.004 
(0.003) 

Total co-authors before 
(2007–2010) 

0.994/-0.006 
(0.002) 

0.994/-0.006 
(0.002) 

0.996/-0.004 
(0.002) 

0.996/-0.004 
(0.002) 

0.995/-0.005 
(0.002) 

0.995/-0.005 
(0.002) 

Author age 0.916/-0.087 
(0.099) 

0.902/-0.103 
(0.098) 

0.919/-0.084 
(0.098) 

0.917/-0.087 
(0.098) 

0.914/-0.090 
(0.099) 

0.903/-0.102 
(0.099) 

Author age sq 1.005/0.005 
(0.005) 

1.006/0.006 
(0.005) 

1.005/0.005 
(0.005) 

1.005/0.005 
(0.005) 

1.005/0.005 
(0.005) 

1.006/0.006 
(0.005) 

Unable to obtain affiliation (flag) 0.236/-1.444 
(0.152) 

0.235/-1.448 
(0.152) 

0.232/-1.462 
(0.005) 

0.231/-1.463 
(0.152) 

0.234/-1.452 
(0.152) 

0.233/-1.458 
(0.152) 

University affiliation (flag) 1.184/0.169 
(0.082) 

1.185/0.170 
(0.081) 

1.193/0.176 
(0.082) 

1.192/0.176 
(0.082) 

1.185/0.170 
(0.082) 

1.188/0.172 
(0.081) 

LL -5,800.23 -5,792.83 -5,811.79 -5,809.82 -5,797.22 -5,787.64 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table A5: Diversification and the propensity to write Kinect papers - year by year analysis 

 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error) 

	  

DV	=	1	if	author	published	at	least	one	Kinect	paper	for	the	first	time	in	the	respective	year,	and	0	otherwise	
Matched	sample	

	 2011	 2012	 2013	 2014	
Diversification before Kinect (2007–2010) 1.071/0.069 

(0.012) 
1.075/0.073 

(0.009) 
1.068/0.066 

(0.007) 
1.067/0.065 

(0.007) 
Motion-sensing author 686.9/6.532 

(1.791) 
260.8/5.564 

(1.061) 
227.7/5.428 

(1.025) 
180.8/5.197 

(1.188) 

Diversification before Kinect (2007–2010) x Motion-
sensing author 

0.939/-0.063 
(0.026) 

0.949/-0.052 
(0.016) 

0.946/-0.056 
(0.015) 

0.946/-0.056 
(0.018) 

Total citation-weighted publications before 
(2007–2010) 

0.997/-0.003 
(0.004) 

1.002/0.002 
(0.003) 

0.999/-0.001 
(0.002) 

0.998/-0.002 
(0.003) 

Total co-authors before 
(2007–2010) 

0.994/-0.006 
(0.004) 

0.989/-0.011 
(0.003) 

0.995/-0.005 
(0.002) 

0.995/-0.005 
(0.003) 

Author age 0.741/-0.300 
(0.164) 

0.907/-0.098 
(0.116) 

0.959/-0.042 
(0.101) 

1.075/0.072 
(0.117) 

Author age sq 1.013/0.013 
(0.009) 

1.005/0.005 
(0.006) 

1.002/0.002 
(0.005) 

0.996/-0.004 
(0.006) 

Unable to obtain affiliation (flag) 0.244/-1.409 
(0.256) 

0.220/-1.514 
(0.185) 

0.277/-1.285 
(0.140) 

0.344/-1.067 
(0.153) 

University affiliation (flag) 0.956/-0.014 
(0.139) 

1.216/0.195 
(0.097) 

1.033/0.033 
(0.082) 

1.102/0.097 
(0.095) 

LL -2,078.58 -4,335.92 -5,560.91 -4,398.73 
Observations 104,587 104,248 103,437 102,377 
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Table A6. Diversification and the propensity to write top-cited Kinect papers - split sample 

DV = 1 if author published at least one Kinect paper in the top 10th percentile of the citation distribution of all papers published between 2011 and 2014, and 
0 otherwise; Matched sample 

 Non-motion-sensing authors Motion-sensing authors 
Continuous Above median 

dummy 
Quartiles Continuous Above median 

dummy 
Quartiles 

Diversification before Kinect 
(2007–2010) 

1.077/0.074 
(0.014) 

2.458/0.899 
(0.142) 

 1.029/0.028 
(0.019) 

1.961/0.673 
(0.318) 

 

Diversification before Kinect in 
bottom 25th to 50th percentiles 

  1.320/0.278 
(0.249) 

  0.778/-0.250 
(0.572) 

Diversification before Kinect in 
50th to 75th percentiles 

  2.017/0.702 
(0.229) 

  1.819/0.598 
(0.477) 

Diversification before Kinect in 
75th to 100th percentiles 

  3.738/1.319 
(0.213) 

  1.583/0.459 
(0.463) 

Total citation-weighted 
publications before 
(2007–2010) 

1.011/0.011 
(0.003) 

1.011/0.011 
(0.003) 

1.012/0.012 
(0.003) 

1.018/0.018 
(0.006) 

1.019/0.019 
(0.006) 

1.020/0.019 
(0.006) 

Total co-authors before 
(2007–2010) 

0.985/-0.015 
(0.004) 

0.987/-0.013 
(0.004) 

0.984/-0.016 
(0.004) 

0.993/-0.007 
(0.007) 

0.992/-0.008 
(0.007) 

0.993/-0.007 
(0.007) 

Author age 0.952/-0.049 
(0.190) 

0.966/-0.035 
(0.190) 

0.952/-0.049 
(0.191) 

0.391/-0.939 
(0.333) 

0.373/-0.986 
(0.334) 

0.368/-0.999 
(0.334) 

Author age sq 1.003/0.003 
(0.010) 

1.003/0.003 
(0.010) 

1.003/0.003 
(0.010) 

1.043/0.042 
(0.018) 

1.045/0.044 
(0.018) 

1.046/0.045 
(0.018) 

Unable to obtain affiliation 
(flag) 

0.232/-1.460 
(0.285) 

0.229/-1.474 
(0.285) 

0.228/-1.478 
(0.285) 

0.204/-1.590 
(0.520) 

0.209/-1.565 
(0.520) 

0.205/-1.583 
(0.525) 

University affiliation (flag) 1.053/0.051 
(0.153) 

1.059/0.058 
(0.153) 

1.041/0.041 
(0.153) 

0.920/-0.083 
(0.272) 

0.934/-0.068 
(0.274) 

0.937/-0.063 
(0.274) 

LL -1,843.55 -1,845.37 -1,835.95 -493.31 -491.22 -490.95 
Observations 100,807 100,807 100,807 3,780 3,780 3,780 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table A7. Diversification and the propensity to write top-cited Kinect papers – linear probability model 

DV = 1 if author published at least one Kinect paper in the top 10th percentile of the citation distribution of all papers published between 2011 and 2014, and 
0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 0.015 
(0.002) 

0.014 
(0.002) 

0.002 
(0.000) 

0.002 
(0.000) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    0.000 
(0.000) 

0.000 
(0.000) 

Diversification before Kinect in 50th to 75th 
percentiles 

    0.002 
(0.000) 

0.001 
(0.000) 

Diversification before Kinect in 75th to 
100th percentiles 

    0.003 
(0.001) 

0.003 
(0.000) 

Motion-sensing author 0.017 
(0.002) 

0.003 
(0.020) 

0.017 
(0.002) 

0.012 
(0.004) 

0.017 
(0.002) 

0.013 
(0.006) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.021 
(0.030) 

 0.006 
(0.004) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

-0.002 
(0.008) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.009 
(0.008) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.004 
(0.007) 

Total citation-weighted publications before 
(2007–2010) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Total co-authors before 
(2007–2010) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Author age -0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

Author age sq 0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

Unable to obtain affiliation (flag) -0.003 
(0.001) 

-0.003 
(0.001) 

-0.003 
(0.001) 

-0.003 
(0.001) 

-0.003 
(0.001) 

-0.003 
(0.001) 

University affiliation (flag) 0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

LL 0.060 0.060 0.060 0.060 0.060 0.060 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are OLS with robust standard errors. Estimations presented as Coefficient (st. error). 
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Table A8. Diversification and propensity to write more top than bottom cited Kinect papers - split sample 

DV = 1 if author published more Kinect papers in the top than the bottom 10th percentile of the citation distribution of all papers published between 2011 and 
2014, and 0 otherwise; Matched sample 

 Non-motion-sensing authors Motion-sensing authors 
Continuous Above median 

dummy 
Quartiles Continuous Above median 

dummy 
Quartiles 

Diversification before Kinect 
(2007–2010) 

1.079/0.076 
(0.016) 

2.539/0.932 
(0.176) 

 1.072/0.069 
(0.030) 

2.109/0.746 
(0.419) 

 

Diversification before Kinect in 
bottom 25th to 50th percentiles 

  0.946/-0.055 
(0.309) 

  0.815/-0.204 
(0.773) 

Diversification before Kinect in 
50th to 75th percentiles 

  1.604/0.472 
(0.274) 

  1.411/0.344 
(0.684) 

Diversification before Kinect in 
75th to 100th percentiles 

  3.319/1.200 
(0.247) 

  2.109/0.746 
(0.650) 

Total citation-weighted 
publications before 
(2007–2010) 

1.013/0.012 
(0.003) 

1.012/0.012 
(0.003) 

1.013/0.013 
(0.003) 

1.016/0.016 
(0.008) 

1.016/0.016 
(0.008) 

1.016/0.016 
(0.008) 

Total co-authors before 
(2007–2010) 

0.984/-0.016 
(0.005) 

0.986/-0.014 
(0.005) 

0.983/-0.017 
(0.005) 

0.988/-0.012 
(0.009) 

0.991/-0.009 
(0.008) 

0.990/-0.010 
(0.008) 

Author age 0.935/-0.067 
(0.266) 

0.949/-0.053 
(0.267) 

0.935/-0.068 
(0.268) 

0.309/-1.198 
(0.459) 

0.290/-1.238 
(0.461) 

0.291/1.234 
(0.458) 

Author age sq 1.006/0.006 
(0.014) 

1.005/0.005 
(0.014) 

1.006/0.006 
(0.014) 

1.057/0.056 
(0.024) 

1.060/0.058 
(0.024) 

1.060/0.058 
(0.024) 

Unable to obtain affiliation 
(flag) 

0.270/-1.311 
(0.322) 

0.266/-1.324 
(0.322) 

0.264/-1.333 
(0.321) 

0.299/-1.207 
(0.178) 

0.294/-1.223 
(0.595) 

0.299/-1.207 
(0.600) 

University affiliation (flag) 0.910/-0.095 
(0.185) 

0.916/-0.0.88 
(0.185) 

0.898/-0.108 
(0.185) 

0.794/-0.231 
(0.346) 

0.808/-0.213 
(0.347) 

0.804/-0.218 
(0.350) 

LL -1,250.99 -1,252.12 -1,244.42 -290.59 -291.27 -290.55 
Observations 100,807 100,807 100,807 3,780 3,780 3,780 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table A9. Diversification and propensity to write more cited Kinect papers than Kinect papers without citations - split sample 

DV = 1 if author published more cited Kinect papers than Kinect paper with zero citations, and 0 otherwise;  
Matched sample 

 Non-motion-sensing authors Motion-sensing authors 
Continuous Above median 

dummy 
Quartiles Continuous Above median 

dummy 
Quartiles 

Diversification before Kinect 
(2007–2010) 

1.080/0.077 
(0.010) 

2.330/0.846 
(0.105) 

 1.037/0.036 
(0.017) 

1.729/0.548 
(0.240) 

 

Diversification before Kinect in 
bottom 25th to 50th percentiles 

  1.404/0.340 
(0.185) 

  1.416/0.348 
(0.471) 

Diversification before Kinect in 
50th to 75th percentiles 

  2.004/0.695 
(0.173) 

  2.295/0.831 
(0.427) 

Diversification before Kinect in 
75th to 100th percentiles 

  3.650/1.295 
(0.159) 

  2.151/0.766 
(0.414) 

Total citation-weighted 
publications before 
(2007–2010) 

1.006/0.006 
(0.003) 

1.005/0.005 
(0.003) 

1.006/0.006 
(0.003) 

1.010/0.010 
(0.006) 

1.010/0.010 
(0.006) 

1.010/0.010 
(0.006) 

Total co-authors before 
(2007–2010) 

0.985/-0.016 
(0.003) 

0.987/-0.013 
(0.003) 

0.985/-0.015 
(0.003) 

0.985/-0.015 
(0.006) 

0.986/-0.014 
(0.006) 

0.986/-0.014 
(0.006) 

Author age 0.860/-0.151 
(0.140) 

0.877/-0131 
(0.140) 

0.864/-0.146 
(0.141) 

0.582/-0.541 
(0.291) 

0.564/-0.572 
(0.292) 

0.569/-0.564 
(0.293) 

Author age sq 1.008/0.008 
(0.008) 

1.007/0.008 
(0.008) 

1.008/0.008 
(0.008) 

1.025/0.025 
(0.015) 

1.027/0.026 
(0.016) 

1.026/0.026 
(0.016) 

Unable to obtain affiliation 
(flag) 

0.303/-1.195 
(0.191) 

0.297/-1.214 
(0.191) 

0.297/-1.212 
(0.191) 

0.323/-1.131 
(0.367) 

0.323/-1.130 
(0.367) 

0.325/-1.123 
(0.368) 

University affiliation (flag) 0.921/-0.082 
(0.115) 

0.931/-0.072 
(0.115) 

0.917/-0.087 
(0.115) 

0.942/-0.059 
(0.225) 

0.951/-0.050 
(0.225) 

0.952/-0.904 
(1.279) 

LL -2,914.12 -2,924.49 -2,908.83 -688.92 -688.03 -687.66 
Observations 100,807 100,807 100,807 3,780 3,780 3,780 

The data is a cross-section at the author level. All models are logit with robust standard errors. Estimations presented as Odds Ratio/Coefficient (st. error). 
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Table A10. Diversification and propensity to write more top than bottom cited Kinect papers – linear probability model 

DV = 1 if author published more Kinect papers in the top than the bottom 10th percentile of the citation distribution of all papers published between 2011 and 
2014, and 0 otherwise; Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 0.011 
(0.002) 

0.010 
(0.002) 

0.002 
(0.000) 

0.001 
(0.000) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    -0.000 
(0.000) 

-0.000 
(0.000) 

Diversification before Kinect in 50th to 75th 
percentiles 

    0.001 
(0.000) 

0.001 
(0.000) 

Diversification before Kinect in 75th to 
100th percentiles 

    0.002 
(0.000) 

0.002 
(0.000) 

Motion-sensing author 0.008 
(0.001) 

-0.012 
(0.014) 

0.008 
(0.001) 

0.006 
(0.002) 

0.008 
(0.001) 

0.006 
(0.004) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.030 
(0.021) 

 0.003 
(0.003) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

-0.001 
(0.005) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.002 
(0.005) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.003 
(0.005) 

Total citation-weighted publications before 
(2007–2010) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Total co-authors before 
(2007–2010) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Author age -0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

Author age sq 0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

Unable to obtain affiliation (flag) -0.002 
(0.001) 

-0.002 
(0.001) 

-0.002 
(0.001) 

-0.002 
(0.001) 

-0.002 
(0.001) 

-0.002 
(0.001) 

University affiliation (flag) -0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

-0.000 
(0.001) 

LL 0.047 0.047 0.047 0.047 0.047 0.047 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are OLS with robust standard errors. Estimations presented as Coefficient (st. error). 
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Table A11. Diversification and propensity to write more cited Kinect papers than Kinect papers without citations – linear probability model 

DV = 1 if author published more cited Kinect papers than Kinect paper with zero citations, and 0 otherwise;  
Matched sample 

 Continuous diversification Above median dummy diversification  Quartiles of diversification 

Diversification before Kinect (2007–2010) 0.027 
(0.003) 

0.027 
(0.003) 

0.004 
(0.000) 

0.004 
(0.000) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles 

    0.001 
(0.001) 

0.001 
(0.001) 

Diversification before Kinect in 50th to 75th 
percentiles 

    0.003 
(0.001) 

0.002 
(0.001) 

Diversification before Kinect in 75th to 
100th percentiles 

    0.006 
(0.001) 

0.006 
(0.001) 

Motion-sensing author 0.025 
(0.003) 

0.008 
(0.027) 

0.025 
(0.003) 

0.020 
(0.005) 

0.024 
(0.003) 

0.015 
(0.007) 

Diversification before Kinect (2007–2010) x 
Motion-sensing author 

 0.025 
(0.040) 

 0.007 
(0.006) 

  

Diversification before Kinect in bottom 25th 
to 50th percentiles x Motion-sensing author 

     
 

0.007 
(0.009) 

Diversification before Kinect in 50th to 75th 
percentiles x Motion-sensing author 

     
 

0.017 
(0.009) 

Diversification before Kinect in 75th to 
100th percentiles x Motion-sensing author 

     
 

0.009 
(0.008) 

Total citation-weighted publications before 
(2007–2010) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Total co-authors before 
(2007–2010) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

Author age -0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

Author age sq 0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

0.000 
(0.001) 

Unable to obtain affiliation (flag) -0.005 
(0.001) 

-0.005 
(0.001) 

-0.005 
(0.001) 

-0.005 
(0.001) 

-0.005 
(0.001) 

-0.005 
(0.001) 

University affiliation (flag) -0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

-0.001 
(0.001) 

LL 0.077 0.077 0.077 0.077 0.077 0.077 
Observations 104,587 104,587 104,587 104,587 104,587 104,587 

The data is a cross-section at the author level. All models are OLS with robust standard errors. Estimations presented as Coefficient (st. error). 
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