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Abstract

Strings are ubiquitous in computer programs. Both the correctness and the

security of programs that use Strings often rely on them not being arbitrary Strings,

but belonging to specific sets of Strings. However, this restriction is often not en-

forced, let alone clearly specified. To remediate this issue, this thesis creates a lan-

guage extension on top of the standard Java language. The language extension in-

troduces a Grammar Type that is a subtype of String but conforming to the regex

expression specified for each Grammar Type. For example, String[[“a∗b”]] is a Gram-

mar Type that represents all Strings that are any number of a’s followed by a b. When

we declare or cast a variable as String[[some regex]], the variable has to be a String

conforming to that some regex, otherwise it would be either a compile time error or

runtime error depending on the situation. This makes the Java type system more

powerful, as we can now inherently validate Strings with any pattern we define using

a regex. At the same time, since Grammar Types compile down to Strings, they

inherit all the functionality of Strings. With these advantages, Grammar Types can

be used in various types of applications that need input validation, like validating

email addresses, validating URLs, or mitigating SQL injection attacks.
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Chapter I.

Introduction

Types are a fundamental part of programming languages because they both

convey the meaning of programs, and also provide validation on programs through

type checking. When we define a variable to be a String for example, we can have

a peace of mind that the variable will always be a String throughout the program,

and avoid an entire class of errors. Because types are so useful, sometimes we find

ourselves wanting to define more types to capture the specific classes of data we want

to represent. This would provide us with both more clear and concise meaning of the

program, and also offer protection to certain unexpected harm. For this thesis, we

would focus on the Java programming language. But the same concept and techniques

are applicable for most other languages.

1.1. Motivation

One of the most commonly used types in Java is String. However, in most

cases, when a program annotates a variable as String, it really only makes sense for

the variable to take on values that are a specific subset of all possible Strings. For
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example, it would be great if all the variables that would store email addresses are

of a type that can only accept String values of valid email addresses. Similarly, an

example use case from work is that there might be certain restrictions that a redirect

URL needs to follow. It would be great if all the variables storing redirect URLs are

of a type that can only take valid redirect URLs according to specific rules.

In addition, as programmers we often need more granular String types not just

for convenience, but for security of the program. Consider for example an application

that stores user information (username, password, age, social security number) in a

users table. Table 1 shows information stored for 2 users ben and jerry.

username password age social security number
ben ben password 3 123-45-6789
jerry jerry password 5 987-65-4321

Table 1: Sample data in users table

The application allows users to query their information by first prompting

user to enter their username, and then prompting user to enter their password.

With the entered username and password, the application then constructs a SQL

query to return all the information of the user. For example, when user Ben wants

to get his information, he would type ben at the first prompt for username, and

ben password at the second prompt for password. The application would then con-

struct and execute the following SQL query to fetch user information: SELECT ∗

FROM users WHERE username = “ben” AND password = “ben password”. If

username or password was wrong, the application would return no data, otherwise

matching user data would be returned. For illustration purpose a code snippet of this
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example application is provided below.

1 // Establishing a database connection

2 final Connection connection = DriverManager.getConnection(url, mysqlUsername,

mysqlPassword);

3

4 // Creating a Scanner object to read user input

5 final Scanner scanner = new Scanner(System.in);

6

7 // Prompting the user for an SQL command

8 System.out.print("Enter username: ");

9 final String username = scanner.nextLine();

10 System.out.print("Enter password: ");

11 final String password = scanner.nextLine();

12 final String sql = "SELECT * FROM users WHERE username = \"" + username + "\"

AND password = \"" + password + "\"";

13 System.out.println(sql);

14

15 // Creating a SQL statement

16 final Statement statement = connection.createStatement();

17

18 // Executing the user’s SQL command

19 final boolean hasResultSet = statement.execute(sql);

Listing 1: Application code snippet with SQL injection vulnerability

The idea of course is that a user would only be able to query their own

information due to the username and password requirements. However, the real-

ity is that this application is susceptible to SQL injection attacks. Specifically,

consider the following input: anything” OR “1” = “1 for username field, and

anything” OR “1” = “1 for password field. The constructed SQL query would be

SELECT ∗ FROM users WHERE username = “anything” OR “1” = “1” AND

password = “anything” OR “1” = “1”. Due to the OR “1” = “1” conditions,

the query effectively becomes SELECT ∗ FROM users WHERE true AND true,

which unfortunately would return all users’ information. There are a couple of ways

one might think of to mitigate this:
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We could perform additional checks after reading users’ input. Specifically,

we can define a method private boolean isUsernameV alid(final String username)

and another method private boolean isPasswordV alid(final String password) and

call these methods after reading user’s supplied username and password. There are

a couple of drawbacks with this approach however, the first being we need to add

extra code to check the validity of user input for each field we get from the user. The

second drawback is that we have to rely on application developers to remember to

always add the input validation code for each input, which becomes error prone. The

third drawback is that we would have to write one validation method for each type

of user input.

Another thought to mitigate this vulnerability is to define a custom class

representing user input. For example, we can create a custom class Username to

represent usernames (shown in Listing 2), and another custom class Password to

represent passwords.

We would construct Username and Password objects when we read user input

by doing something like final Username u = new UserName(scanner.nextLine());.

If the username entered was invalid, we would throw IllegalArgumentException.

Otherwise, we call getUsername() on the Username object to retrieve the actual

String input, and concatenate it with the SQL query template. But with this ap-

proach, there are again some shortcomings. Firstly, with a custom class, the String

validity check can only happen at runtime. For example, if we had a new variable

4



1 public class Username {

2 private final String username;

3

4 public Username(final String username) {

5 this. username = username;

6 if (!isUsernameValid()) {

7 throw new IllegalArgumentException("invalid username");

8 }

9 };

10

11 private boolean isUsernameValid() {

12 // perform validity check on username and return whether if it’s

valid

13 }

14

15 public String getUsername() {

16 return username;

17 }

18 }

Listing 2: Example implementation of the Username custom class

declaration like final Username foo = new Username(“anything” OR “1” = “1”),

we would only catch the problem during runtime, instead of earlier during compile

time. Another shortcoming with this approach is that every time we need to use the

Username, we need to call an extra method to retrieve the String content inside the

wrapper object. Last but not least, similar to the first approach, with custom classes

we would need one custom class for each type of String we need to represent, since

the validation logic is different for different String types.

All of these leave something to be desired: another approach to address the

vulnerability (and more generally, the need for more precise String types), but at the

same time overcome the drawbacks of the aforementioned approaches.

5



1.2. Goal

The goal is to be able to define different String types based on different “gram-

mars”. For example, we can have a String type to represent passwords, a String

type to represent email addresses, a String type to represent valid SQL queries, etc.

And actually, that’s still not enough. For example, since different applications have

different password requirements (ex. different password length requirements, capital-

ization requirements), we need one String type to represent each of these different

password requirements. But we also don’t want to create a custom validation checker

method or a custom class for each “grammar”.

This is where Grammar Type for String comes into play. We would introduce

a new type called Grammar Type, in a new language called the Grammar language.

Grammar Type would compile down to vanilla Java String, so no custom classes or

methods are needed and we can use them just as we use Strings. But at the same

time, Grammar Types take custom regular expressions to represent different “gram-

mars”. To achieve this, we introduce the syntax String[[some regex]] to represent a

Grammar Type taking the regular expression some regex. For example, a Grammar

Type that takes a regex email regex would represent and only accept Strings that

are valid email addresses. To ensure this, there will be several typing related function-

alities supported in this project. (i) subtyping validity will be checked during compile

time: Firstly, Grammar Type is a subtype of String. Secondly, a String literal is a

subtype of a Grammar Type if and only if the String literal matches the regex spec-
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ified in the Grammar Type. Thirdly, between 2 Grammar Types, GrammarType1 is

a subtype of GrammarType2, if and only if the regex specified for GrammarType1

is a sublanguage of the regex specified for GrammarType2. (ii) casting validity will

be checked during compile time and also possibly runtime: For a cast of variable

from type T to a Grammar Type, during compile time, we first check if the Grammar

Type is a subtype or superset of T . If neither, we would throw a compile-time error.

Otherwise, if the cast passed compile-time check, we then rewrite the output Java

code to perform a runtime check on the cast.

1.3. Thesis Outline

In Chapter II, we discuss prior work related to analyzing String variables in

programs, approximating String values, or building pluggable type systems.

In Chapter III, we give a high level overview of the design, including the syntax

we choose for Grammar Types, how we plan to implement the language extension,

and how we plan to test our implementation.

In Chapter IV, we first provide a quick recap of a typical compilation process.

We then briefly introduce the Polyglot compiler framework (Nystrom et al., 2003),

on top of which we build our Grammar Type and the underlying Grammar language.

Finally we dive into the implementation details by explaining how we handle different

aspects of the compilation process for the Grammar language. These include lexing,

parsing, AST, types and type system, disambiguating, subtyping, and type casting.

7



In Chapter V, we zoom into the regex containment problem, which is a pre-

requisite for determining subtyping relationships between Grammar Types. We do

this in 4 phases: converting the regex to syntax tree, converting the syntax tree to

NFA, converting the NFA to DFA, and finally deciding whether one DFA “contains”

another DFA.

In Chapter VI, we validate our work by testing our implementation against

several different scenarios: validating email addresses, validating user inputs for SQL

queries, and validating whether a redirect URL is allowed for a real life application.

In Chapter VII, we conclude by summarizing the learnings and achievements

of this work, and discuss any potential future work.

8



Chapter II.

Related Work

Due to the omnipresence of Strings (and String-related bugs) in programs, a

multitude of work has been devoted into finding or preventing such problems.

One stream of work was to run empirical study to categorize these bugs (Barlas

et al., 2022; Eghbali & Pradel, 2021). Specifically, Eghbali and Pradel (Eghbali &

Pradel, 2021) performed an empirical study of String-related software bugs. They

investigated 204 String-related bugs and found that the majority of them were due

to incorrect String literals or incorrect regular expressions. Although most of them

only required minor fixes, they found that a popular static checker missed 203 of the

total 204 bugs. This work is useful for highlighting the vulnerability of String-related

programs and the difficulty of enforcing correctness on such programs. However it is

simply an empirical study and does not systematically modify or improve the type

system.

Another stream of work performs static analysis to evaluate the correctness of

programs (Costantini et al., 2015; Kim et al., 2013; Costantini et al., 2011; Christensen

et al., 2003; Wassermann & Su, 2007). Specifically, Christensen et al. (Christensen
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et al., 2003) devised a way to approximate the possible values of each String expres-

sion in a Java program. They first converted a Java program to a flow graph, then

converted the flow graph to a context free grammar, then constructed a multi-level

automaton from the CFG, and finally deduced regexes to approximate possible values

of String expressions in the original Java program. This is useful, however it differs

from the current thesis in that it is doing static analysis on a given program, instead

of modifying the type system of the language directly and preventing invalid String

expressions from the source.

In similar veins, Wassermann and Su (Wassermann & Su, 2007) also used

static analysis to find SQL injection attacks in the PHP language. The authors used

CFGs to approximate the set of possible SQL queries, and tracked information flow

from the source (user input) to the end query.

Another approach was to approximate or limit the values String variables can

take (Kim et al., 2014; Minamide, 2005; Kiezun et al., 2009; Tabuchi et al., 2003;

Thiemann, 2005; Cook & Rai, 2005). For example, Tabuchi et al. (Tabuchi et al.,

2003), presented a new lambda calculus language λre that typed Strings by regular

expressions. Even though the authors provided some type inferencing rules, there was

no algorithm provided. In addition, using lambda calculus isn’t very useful in real

world applications. In contrast, the proposal in this thesis uses the Java programming

language, which is one of the most commonly used programming languages.

In the same spirit, Thiemann (Thiemann, 2005) created a polymorphic type

10



system such that String constraints are modeled as context free grammar contain-

ment. The type system guarantees that the value of a String expression belongs

to the given context-free language. However, even though the solutions are sound,

they are incomplete due to the inherent undecidability of the broader problem of

context-free language inclusion.

In a somewhat novel approach, Cook and Rai (Cook & Rai, 2005) proposed to

write database queries using object-oriented classes and methods instead of Strings.

These statically typed objects enable compile-time type checking, but only works for

typed languages, and are not very intuitive for developers who are used to writing

String queries.

Last but not least, one other branch of research was to enhance or modify

the programming language’s type system (Andreae et al., 2006; Greenfieldboyce &

Foster, 2007; Ali et al., 2008; Santino, 2016; Papi et al., 2008). The most notable

one of them is the Checker Framework (Papi et al., 2008). It was developped as a

pluggable type system for Java. Users of the Checker Framework can use predefined or

define custom checkers using annotations (ex. @NonNull, @Nullable, etc), and the

framework would enhance the Java type system by running respective compile-time

checks. This is very useful and like this paper, it also modifies the Java type system.

The difference is that the Checker Framework can only perform compile-time checks,

so it won’t be able to catch runtime exceptions, ex. if a String that’s supposed to be

a phone number got assigned to an email address during runtime.

11



Chapter III.

Design Overview

We will define a new language extension in Polyglot called Grammar in order to

support Grammar Type for String. The added syntax would be String[[some regex]]

to represent a Grammar Type that represents Strings conforming to the specified

regular expression some regex. Grammar Type would still be a subtype of String,

but with added functionality and type checks. Below is the typing rule for Grammar

Type:

x : String ϵ E matches(regex foo, x)

E ⊢ x : String[[regex foo]]

The rule says: if the variable x is a String in the typing environment E,

and the String value of the variable x matches regex foo, then, the variable x is of

Grammar Type String[[regex foo]].

In order to type check Grammar Types when assigning or casting variables,

we also need to define subtyping relationships for Grammar Types. Below are the

subtyping rules:

12



String[[any regex]] <: String

regex1 <: regex2

String[[regex1]] <: String[[regex2]]

The first rule says that Grammar Types are always subtypes of String. The

second rule says that a Grammar Type is a subtype of another Grammar Type, if

and only if the regex specified for the first Grammar Type is a sublanguage of the

regex specified for the second Grammar Type.

With these typing and subtyping guidelines, we will extend the Polyglot com-

piler to build our Grammar language by implementing lexing, parsing, AST, types

and type system, disambiguating, subtyping and type casting.

Finally, we will test our Grammar language by writing programs utilizing

Grammar Types, and see if they are able to realize the benefits we were hoping

for, such as addressing the vulnerability concerns from SQL injection attacks, or

generalizing input “grammar” validation.

13



Chapter IV.

Implementation

Compilation is the process of translating a target language to a source lan-

guage. Figure 1 below depicts a typical compilation process (Chong, 2019). The

source code first goes through lexing to become tokens, then we parse the tokens into

abstract syntax trees. The next step is elaboration which performs type checking,

and the last step is code generation, that’s when we write out the code in the target

language.

Figure 1: Compilation process overview

Specifically for this project, we want to introduce a new Grammar language
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and compile it down to plain Java code by extending the Polyglot compiler. Polyglot

is a highly extensible compiler frontend for the Java programming language. The

architecture of Polyglot can be simplified as Figure 2.

Figure 2: Polyglot architecture overview

https://www.cs.cornell.edu/Projects/polyglot/pldi14/tutorial/architecture/

First, the input to Polyglot is the source code in the extension language. Then,

Polyglot uses an extended version of the CUP parser called PPG to parse the source

code into ASTs. Each node in the AST also might have a doubly linked list of Exts

(extension objects) attached to it. These Exts contain the states and operations for

each corresponding extension layer. After building the Ext AST, Polyglot runs a

series of compiler passes. Each compiler passes is run on the AST to transform it

into a new AST. The compiler passes are run to satisfy “goal”s. Figure 3 shows the

list of standard goals in Polyglot for Java 1.4. Written in parentheses are the passes

to satisfy each goal.

We see that goals have dependencies on each other. The end goal is CodeGen-

erated, which means producing vanilla Java code. And to achieve that goal, we need

to first achieve a series of other goals starting from Parsed which parses the source

code into AST, and including TypeChecked, which performs static type checking on

the AST.
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Figure 3: Dependency between goals

https://www.cs.cornell.edu/Projects/polyglot/pldi14/tutorial/architecture/

4.1. Lexing

Lexing is the first step in the compilation process. In this step, we need to

convert the sequence of characters in the Grammar language into a sequence of tokens

for the parser to parse. For example, the characters i and f would be converted to the

token IF . Polyglot uses the JFlex lexical analyzer generator to generate the lexer.

The default grammar.flex file already lexes the regular Java language, so we just need

to add support for lexing our extension. To avoid any ambiguity with the existing

Java grammar, we decided to choose [[ and ]] characters as delimiters for Grammar

Types. We will call [[ DBLBRACK (for double left bracket) and call ]] DBRBRACK

(for double right bracket).
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1 "[[" { return op(sym.DBLBRACK); }

2 "]]" { return op(sym.DBRBRACK); }

Listing 3: Added lexing rules in grammar.flex

To add it to the lexer, we simply add the lines in Listing 3 to the

<Y Y INITIAL> section of grammar.flex. Now the lexer will translate [[ to the token

DBLBRACK and translate ]] to the token DBRBRACK.

4.2. Parsing

After the lexer converts the sequence of characters in the Grammar language

into a sequence of tokens, we are ready to parse the sequence of tokens into abstract

syntax trees (ASTs) using PPG (Polyglot Parser Generator). PPG is extensible in the

sense that it contains the parser for regular Java (java12.cup), so for our extension we

only need to add the additional rules for parsing Grammar Types. We decided to use

the syntax String[[regex]] to highlight the fact that Grammar Type is an extension

of String, and to allow Grammar Type to take in a regex. We first add definitions

for the DBLBRACK and DBRBRACK tokens (shown in Listing 4).

1 terminal Token DBLBRACK;

2 terminal Token DBRBRACK;

Listing 4: Definitions of DBLBRACK and DBRBRACK in grammar.ppg

Then, because we are modifying the syntax for class types, we first look at

the regular Java parser for rules regarding class types. Listing 5 shows that the lexer

defines class or interface type to be a name, where name is just an identifier.

We need to extend the syntax for class or interface type to include String[[regex]].
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1 class_or_interface_type ::=

2 // TypeNode

3 name:a

4 {: RESULT = a.toType(); :}

Listing 5: Definition of class or interface type in grammar.ppg

To do this, we first add a new method grammar (shown in Listing 6).

1 public TypeNode grammar(TypeNode n, String s) throws Exception {

2 return nf.GrammarTypeNode(n.position(), (AmbTypeNode) n, s);

3 }

Listing 6: Definition of grammar method in grammar.ppg

The grammar method takes in a TypeNode and a String (will be the regex),

and returns a GrammarTypeNode. With the grammar method in place, we are

now ready to extend the syntax for the parser by adding the following rule (shown in

Listing 7).

1 extend class_or_interface_type ::=

2 // TypeNode

3 class_or_interface_type:a DBLBRACK STRING_LITERAL:s DBRBRACK

4 {: RESULT = parser.grammar(a, s.getValue()); :}

5 ;

Listing 7: New rule for class or interface type in grammar.ppg

This extends the existing definition of class or interface type to include a new

syntax. Namely, if the sequence of tokens are: class or interface type, DBLBRACK,

STRING LITERAL (the regex), DBRBRACK, then it’s also a class or interface type,

and the result is a TypeNode obtained by calling the grammar method defined ear-

lier. However, as a counter example, if the input program was int[[“a∗b”]] i;, this

would fail the parsing step with the error “unexpected operator [[”. This is because

int is not a class or interface type, and so the sequence of tokens doesn’t match any
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of the rules defined.

class or interface type is not the only thing we are modifying however. This

is because the Grammar language also supports casting, namely, expressions like

(String[[regex]]) var. If we dig through the existing definition of cast expression in

java12.cup, this case is not covered. So similar to class or interface type, we extend

cast expression by adding the following rule (shown in Listing 8).

1 extend cast_expression ::=

2 LPAREN:p class_or_interface_type:a DBLBRACK STRING_LITERAL:s

DBRBRACK RPAREN unary_expression_not_plus_minus:b

3 {: RESULT = parser.nf.Cast(parser.pos(p, b, a),

4 parser.grammar(a, s.getValue()), b); :}

5 ;

Listing 8: New rule for cast expression in grammar.ppg

The Cast method in the node factory takes in a position, a TypeNode, and an

expression. The TypeNode is the type we are casting to, so in this case we call our

grammar method to get a TypeNode representing Grammar Type. The expression is

the expression being casted, so we pass along b, the unary expression not plus minus.

4.3. AST

As alluded to in the previous section, the output of the parsing phase is an

AST. The AST in Polyglot is composed of AST Nodes, which are created by the

NodeFactory object associated with the current language extension. The Node in-

terface is extended by several interfaces to represent different constructs in an AST.

Figure 4 shows the types of AST Nodes represented in Polyglot.
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Figure 4: Types of AST Nodes in Polyglot

https://www.cs.cornell.edu/Projects/polyglot/pldi14/tutorial/slides/Polyglot Tutorial.pdf

Each Node can also have a chain of extension objects (Exts) that contain

states and operations associated with each particular extension layer. Each Ext has

a pointer to the root Node object, a pointer to the previous Ext, and a pointer to

the next Ext. Figure 5 illustrates the extension chaining for Java 7 extension on top

of Java 5 extension on top of Java 1.4 base compiler.

Figure 5: Extension chaining (Java 1.4 → Java 5 → Java 7)

https://www.cs.cornell.edu/Projects/polyglot/pldi14/tutorial/architecture/

For our Grammar Type extension, we will define a GrammarExt class as the

Ext for Grammar Types. GrammarExt is extended by 3 classes to represent 3 dif-

ferent cases of Exts in the Grammar language. The first is StringLitExt to represent
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String literals. The second is GrammarCastExt to represent cast operations. The

third is GrammarTypeNodeExt to represent Grammar TypeNodes. In order to do

that, GrammarTypeNodeExt stores an additional state, namely the regex of the

Grammar Type. We create these GrammarExts in a GrammarExtFactory (that

extends from polyglot.ast.ExtFactory). We also create a GrammarNodeFactory

(that extends from polyglot.ast.NodeFactory) to create AST Nodes corresponding

to Grammar Types. So analogous to the Java 1.4 → Java 5 → Java 7 example above,

for Grammar Types the root node would be an AmbTypeNode, and it will have a

GrammarExt chained to it. Listing 9 is a code snippet of GrammarNodeFactory

to give an overview of the process.

1 /**

2 * NodeFactory for grammar extension.

3 */

4 public class GrammarNodeFactory_c extends NodeFactory_c implements

5 GrammarNodeFactory {

6 public GrammarNodeFactory_c(GrammarLang lang, GrammarExtFactory

extFactory) {

7 super(lang, extFactory);

8 }

9

10 @Override

11 public GrammarExtFactory extFactory() {

12 return (GrammarExtFactory) super.extFactory();

13 }

14

15 @Override

16 public AmbTypeNode GrammarTypeNode(Position pos, AmbTypeNode base, String

regex_str) {

17 final Ext ext = extFactory().extGrammarTypeNode(regex_str);

18 return new AmbTypeNode_c(pos, base.qual(), base.id(), ext);

19 }

20 }

Listing 9: GrammarNodeFactory c.java

We can see that theGrammarNodeFactory can create aGrammarExtFactory
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to create GrammarExts. And in the GrammarTypeNode method (which was the

method called from the parser in the previous section), we create an AmbTypeNode,

and compose it with a GrammarTypeNodeExt.

4.4. Types and Type System

In order to perform passes such as type checking and disambiguation, we need

to establish the types and type system of the Grammar language. In particular,

we will create a new GrammarType interface (shown in Listing 10) to represent

Grammar Type.

1 public interface GrammarType extends ClassType {

2 String getRegexString();

3 }

Listing 10: GrammarType.java

We can see from the definition of GrammarType above that we make it in-

herit from ClassType so it behaves like a ClassType, and inherits all the attributes

and methods of ClassType. The only additional method we need to define that’s

specific to GrammarType is getRegexString(). This allows us to retrieve the (only)

additional state of a GrammarType, namely the regex specified when declaring the

GrammarType. We then create a concrete GrammarType c class to implement

GrammarType. Listing 11 shows the important parts of the GrammarType c class.

Each GrammarType c has an instance variable regexStr, which stores the

regex specified for theGrammarType. It also has another instance variable isStringLiteral,

which indicates whether this GrammarType is a String literal. This is because
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1 public class GrammarType_c extends ClassType_c implements GrammarType {

2 private final String regexStr;

3 private final boolean isStringLiteral;

4

5 public GrammarType_c(TypeSystem ts, String regexStr, boolean

isStringLiteral) {

6 super(ts);

7 this.regexStr = regexStr;

8 this.isStringLiteral = isStringLiteral;

9 }

10

11 @Override

12 public List<? extends MethodInstance> methods() {

13 return this.ts.String().methods();

14 }

15

16 @Override

17 public List<? extends FieldInstance> fields() {

18 return this.ts.String().fields();

19 }

20

21 @Override

22 public List<? extends ReferenceType> interfaces() {

23 return this.ts.String().interfaces();

24 }

25

26 @Override

27 public Type superType() {

28 return this.ts.String().superType();

29 }

30

31 @Override

32 public String getRegexString() {

33 return regexStr;

34 }

35

36 @Override

37 public boolean isSubtypeImpl(Type ancestor) {

38 ...to be covered in Subtyping section

39 }

40

41 @Override

42 public String toString() {

43 return super.toString() + "[[" + this.regexStr + "]]";

44 }

45 }

Listing 11: Excerpt from GrammarType c.java
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we create GrammarType c instances for both GrammarTypes and String liter-

als (to enable subtyping/type checking). Because GrammarType is a ClassType,

GrammarType c needs to extend ClassType c and implement all the abstract meth-

ods defined in ClassType c. However, we can see from Listing 11 that most methods

we override we simply borrow from String, since we want GrammarType to behave

just like String. The only methods of note are: getRegexString() which returns back

the regex specified for the GrammarType, toString() which ensures when printing

GrammarTypes look like String[[regex]], and isSubtypeImpl(Type ancestor) which

will be covered in the next section.

Using types, type system implements methods for semantic checking, such

as isSubtype, isCastV alid, methodCallV alid, etc. In addition, type system also

serves as the factory for creating type objects. For the Grammar language, we

define a GrammarTypeSystem interface (shown in Listing 12) that inherits from

polyglot.types.TypeSystem.

1 public interface GrammarTypeSystem extends TypeSystem {

2 GrammarType grammarOf(Position pos, String regex, boolean isStringLiteral

);

3 }

Listing 12: GrammarTypeSystem.java

The only additional method we define is grammarOf , which constructs a

GrammarType. We then create a concrete GrammarTypeSystem c class to imple-

ment GrammarTypeSystem (shown in Listing 13).

Because GrammarTypeSystem is a TypeSystem, GrammarTypeSystem c
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1 public class GrammarTypeSystem_c extends TypeSystem_c implements

GrammarTypeSystem {

2 @Override

3 public boolean isCastValid(Type fromType, Type toType) {

4 ...to be covered in Type Casting section

5 }

6

7 @Override

8 public grammar.types.GrammarType grammarOf(Position pos, String regex,

boolean isStringLiteral) {=

9 return new grammar.types.GrammarType(this, regex, isStringLiteral);

10 }

11 }

Listing 13: Excerpt from GrammarTypeSystem c.java

needs to extend TypeSystem c. However, the only method GrammarTypeSystem c

overrides from TypeSystem c is isCastV alid, which will be covered in the Type Cast-

ing section. GrammarTypeSystem c also overrides the abstract method grammarOf

defined in GrammarTypeSystem. It takes in a position, the regex String, and

whether if this is a String literal, and constructs a GrammarType object.

4.5. Disambiguating

With the types and type system in place, we are almost ready to perform

type checking. As mentioned in the Polyglot chapter, the compilation process of

Polyglot composes of several passes. And before the TypeChecker pass we first need

to go through the AmbiguityRemover pass. This is to remove ambiguity of any

AmbTypeNode, and validate if the resolved type is actually valid. For example,

program 1 and 2 in Table 2 are invalid, whereas program 3 is valid.

Recall during the parsing step we built an AST, in particular we created

GrammarTypeNodeExts for Grammar Types. Now is a good time to show the code
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# Program
1 Integer[[“a∗b”]] i = Integer.valueOf(42); // compile-time error
2 Integer[[“a∗b”]] i; // compile-time error
3 String[[“a∗b”]] s = “aaab”;

Table 2: Example programs to showcase ambiguity removing

of GrammarTypeNodeExt (in Listing 14)

1 public class GrammarTypeNodeExt extends GrammarExt {

2 private String regex_str;

3 public GrammarTypeNodeExt(String regex_str) {

4 super();

5 this.regex_str = regex_str;

6 }

7

8 @Override

9 public Node disambiguate(AmbiguityRemover ar) throws SemanticException {

10 AmbTypeNode n = (AmbTypeNode) this.node();

11 GrammarTypeSystem ts = (GrammarTypeSystem) ar.typeSystem();

12 NodeFactory nf = ar.nodeFactory();

13

14 TypeNode n2 = (TypeNode)n.disambiguate(ar);

15 if (!n2.isDisambiguated()) {

16 return n2;

17 }

18 Type t = n2.type();

19

20 if (!t.isCanonical()) {

21 return n2;

22 }

23

24 // t is canonical. Check that it is String.

25 if (!ts.typeEquals(ts.String(), t)) {

26 throw new SemanticException("Grammar types must be String", n.

position());

27 }

28

29 return nf.CanonicalTypeNode(

30 n.position(),

31 ts.grammarOf(n.position(), regex_str, false)

32 );

33 }

34

35 }

Listing 14: GrammarTypeNodeExt.java

During the AmbiguityRemover pass, the compiler calls the disambiguate

26



method of the GrammarTypeNodeExt object. We overwrite the method so that

each time it is called, it first disambiguates the TypeNode once, and then checks if

it is now disambiguated or canonical. If not, then we will leave the TypeNode as

is for future invocations of disambiguate to handle. If the TypeNode is now indeed

disambiguated and canonical, we check to make sure it is a String, since Gram-

mar Types must be String. After this check, example programs 1 & 2 in Table 2

will expectedly fail with a SemanticException “Grammar types must be String”.

If the TypeNode is now indeed a String, we call the grammarOf method in the

GrammarTypeSystem to create a GrammarType object. When constructing it, we

pass in the regex and also the boolean indicating it is not a String literal. Finally,

we wrap it inside a CanonicalTypeNode whose type is the GrammarType we just

created.

4.6. Subtyping

After AmbiguityRemover pass is finished, the next pass is TypeChecker pass.

As the name suggests, in this pass we perform compile-time type checking. There are

2 main parts of type checking: subtyping and type casting. This section focuses on

subtyping.

On a high level, we need to check subtyping relationship when we try to

assign a variable of type A to type B. This assignment is valid if and only if type

A is a subtype of type B. As it pertains to Grammar Type, there are 3 scenarios of
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assignment:

(i) Assigning a variable of type String to GrammarType

(ii) Assigning a variable of GrammarType to String

(iii) Assigning a variable of GrammarType to GrammarType

It’s worth noting (and will be explained later in this section) that we will

override the Grammar type system so that before type checking, a String literal

will be converted from String type to GrammarType with a regex that’s equal

to the value of that String literal (ex. the String literal “abc” would have type

String[[“abc”]]). With that clarification out of the way, we can discuss the validity

of each of the 3 scenarios. Table 3 shows some example programs, each of which

demonstrates one of the 3 scenarios. The first scenario (example program 6) is clearly

invalid because String is not a subtype of GrammarType. The second scenario

(example program 3) is always valid because GrammarType is a subtype of String.

The third scenario (example programs 1, 2, 4, 5) is valid iff the GrammarType on

the right side of the assignment is a subtype of the GrammarType on the left side of

the assignment.

To implement the validity check for subtyping, we override the isSubtypeImpl(

Type ancestor) method on the GrammarType c object during the TypeChecker

pass. If the GrammarType c object is a subtype of ancestor, then this is a valid

assignment. Otherwise it is a compile-time error. In the Types and Type Sys-
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# Program
1 String[[“a∗b”]] s = “aaab”;
2 String[[“a∗b”]] s = “c” // compile-time exception
3 String[[“a∗b”]] s = “aaab”;

String foo = s;
4 String[[“aa∗b”]] sub = “aab”;

String[[“a∗b”]] sup = sub;
5 String[[“a∗b”]] sup = “ab”;

String[[“aa∗b”]] sub = sup; // compile-time exception
6 String foo;

String[[“abc”]] bar = foo; // compile-time exception

Table 3: Example programs to showcase subtyping

tem section we omitted the implementation of isSubtypeImpl(Type ancestor) of

GrammarType c, now is the time to look at it (in Listing 15).

1 @Override

2 public boolean isSubtypeImpl(Type ancestor) {

3 if (ancestor instanceof GrammarType) {

4 GrammarType gt = (GrammarType) ancestor;

5 // check that the regexp of this type is a superset of the regexp of

gt

6 String thisRegexString = this.getRegexString();

7 if (this.isStringLiteral) {

8 thisRegexString = escape(thisRegexString);

9 }

10 final boolean isSubType = DFAOperations.contains(gt.getRegexString(),

thisRegexString);

11 return isSubType;

12 }

13 return ts.String().isSubtype(ancestor);

14 }

Listing 15: Implementation of isSubtypeImpl in GrammarType c.java

In isSubtypeImpl, we first check if the ancestor type is GrammarType (re-

member the current type is always GrammarType because this is a method of

GrammarType c). If the ancestor type is not GrammarType, then we say the

current type (GrammarType) is subtype of ancestor type if ancestor type is a su-
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pertype of String (last line in the method). The intuition for this decision is that we

want GrammarType to be a subtype of String (and by definition any supertype of

String). This covers the second scenario described above (example program 3).

If on the other hand, the ancestor type is also a GrammarType, then we fetch

the regex String of the current type and the regex String of the ancestor type, and

utilize the regex helper method (detailed in Regex Containment Problem chapter

later) to check if the first regex is a sublanguage of the second regex. If so then

the current type is a subtype of the ancestor type, otherwise it is a compile-time

error. For example, GrammarType String[[“aa∗b”]] is a subtype of GrammarType

String[[“a∗b”]] because regex aa∗b is a sublanguage of regex a∗b. This covers the

third scenario described above (example programs 1, 2, 4, 5).

In terms of the first scenario (example program 6) where we try to assign a

String to a GrammarType, the built-in isSubtypeImpl(Type ancestor) method on

the String type would be called. When we plug in GrammarType for the ancestor

param, it would obviously return false since we never modified the isSubtypeImpl(

Type ancestor) method on the String type to say that String is a subtype of

GrammarType.

But there is one detail we have deferred to elaborate: at the beginning of

the section we mentioned that in order to check if a String literal is a subtype of a

GrammarType, we need to convert the type of the String literal to a GrammarType.

Recall in the AST section, we mentioned that during the parsing stage, we attach

30



a StringLitExt to each String Node. Now, during the TypeChecker pass, we can

override the typeCheckOverride method of the StringLitExt to convert it into a

GrammarType (shown in Listing 16).

1 @Override

2 public Node typeCheckOverride(Node parent, TypeChecker tc) throws

SemanticException {

3 if (this.node() instanceof StringLit_c) {

4 StringLit_c n = (StringLit_c)this.node();

5 GrammarTypeSystem ts = (GrammarTypeSystem) tc.typeSystem();

6 return n.type(ts.grammarOf(n.position(), n.value(), true));

7 }

8 return this.superLang().typeCheckOverride(this.node(), parent, tc);

9 }

10 }

Listing 16: Implementation of typeCheckOverride in StringLitExt.java

The essence is that in typeCheckOverride we call the grammarOf method of

the GrammarTypeSystem to override the type of the String to be a GrammarType.

When calling, we pass in the value of the String literal, and an indication that

this GrammarType is actually a wrapper around a String literal. As an example,

the String “aaab” would be converted to a GrammarType String[[“aaab”]] after

typeCheckOverride. With this conversion, we are now able to check if a String

literal is a subtype of a GrammarType by reusing the isSubtypeImpl method, just

as if we were checking the subtyping relationship between two GrammarTypes.

4.7. Type Casting

Another important aspect of type checking is type casting. Because we support

type casting in the Grammar language, we want to perform both compile-time and
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run-time checks for type casting. Similar to subtyping, there are three scenarios:

(i) Casting a String to a GrammarType

(ii) Casting a GrammarType to a String

(iii) Casting a GrammarType to a GrammarType

And like before, Table 4 shows some example programs, each of which demon-

strates one of the three scenarios above. The second scenario (example program 7 in

table 4) is the most trivial one: In this case, we are casting a subtype (GrammarType)

to a supertype (String). Therefore the cast is actually a no-op and allowed. In the

first scenario (example programs 5 & 6), since GrammarType is a subtype of String,

and since we don’t know for sure the value inside the String at compile time, we have

to defer the task of determining the validity of the cast to runtime, where we check if

the actual value inside the String variable matches the regex of the GrammarType.

The third scenario (example programs 1, 2, 3, 4) is actually either analogous to the

first scenario or to the second scenario: if the fromType GrammarType is a sub-

type of the toType GrammarType, then this cast is a no-op and allowed similar to

the second scenario; if the fromType GrammarType is a supertype of the toType

GrammarType, then we need to perform runtime cast check similar to the first sce-

nario.

To implement the validity check for type casting, we override the isCastV alid(

Type fromType, Type toType) method on the GrammarTypeSystem, which is
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# Program
1 String[[“a∗b”]] foo = “aab”;

String[[“aa∗b”]] bar = (String[[“aa∗b”]]) foo;
2 String[[“a∗b”]] foo = “aab”;

String[[“c|d”]] bar = (String[[“c|d”]]) foo; // compile-time exception
3 String[[“a∗b”]] foo = “ab”;

String[[“aaa∗b”]] bar = (String[[“aaa∗b”]]) foo; // runtime exception
4 String[[“aa∗b”]] foo = “aab”;

String[[“a∗b”]] bar = (String[[“a∗b”]]) foo;
5 String foo = “aab”;

String[[“a∗b”]] bar = (String[[“a∗b”]]) foo;
6 String foo = “xyz”;

String[[“a∗b”]] bar = (String[[“a∗b”]]) foo; // runtime exception
7 String[[“a∗b”]] sub = “aab”;

String sup = (String) sub;

Table 4: Example programs to showcase type casting

called during the TypeChecker pass. The implementation of isCastV alid was omit-

ted in the Types and Type System section. It is now shown in Listing 17.

1 @Override

2 public boolean isCastValid(Type fromType, Type toType) {

3 if (this.isSubtype(fromType, this.String())

4 && toType instanceof GrammarType

5 && (this.isSubtype(toType, fromType) || this.isSubtype(fromType,

toType))) {

6 return true;

7 }

8

9 return super.isCastValid(fromType, toType);

10 }

Listing 17: Implementation of isCastV alid in GrammarTypeSystem c.java

The first scenario where we cast a subtype to a supertype is allowed by the last

line in the isCastV alid method implementation. The gist of the remaining function

body is that it simply checks if the fromType is a subtype or supertype of the toType.

If it is neither, that means the fromType and the toType simply aren’t compatible,
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and would return false. Otherwise, either the fromType is a subtype of the toType

in which case it is trivially true, or the fromType is a supertype of the toType in

which case we cannot determine the validity of the cast at compile time. In either

case, isCastV alid would return true.

We now focus on the cases where we couldn’t determine the cast validity during

compile-time. In these cases, we run a custom library method at runtime to determine

the validity of the cast (i.e. whether the actual String value of the fromType at

runtime matches the regex defined in the toType). To invoke the runtime library

method, we would rewrite the output Java code during compile time. Specifically, if

the original code was like in Listing 18, then the output Java code would become like

in Listing 19.

1 String foo = "xyz";

2 String[["a*b"]] bar = (String[["a*b"]]) foo;

Listing 18: Original code in Grammar language

1 String foo = "xyz";

2 String bar = grammar.runtime.RuntimeCastChecker.check("a*b", foo);

Listing 19: Output code in Java language

This way, we would still catch the invalid cast during runtime. To imple-

ment the runtime check, we first create a runtime library grammar.runtime, and in

the runtime library we create a class RuntimeCastChecker (shown in Listing 20).

RuntimeCastChecker only has one static method check which takes in the regex

specified of the toType, and the actual String value of the fromType at runtime.

Then, check simply utilizes Java’s regex library to determine if the String matches
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the regex. If so, this is a valid runtime cast; if not, the program would get a

ClassCastException during execution. Now that we have this util class to check

for validity of runtime cast, we need to actually find a way to invoke it during run-

time.

1 public class RuntimeCastChecker {

2 public static String check(final String regex, final String var) {

3 if (Pattern.matches(regex, var)) {

4 return var;

5 } else {

6 throw new ClassCastException("Invalid Runtime Cast");

7 }

8 }

9 }

Listing 20: RuntimeCastChecker.java

So the task now is to rewrite a cast such as (String[[“a∗b”]]) foo to

grammar.runtime.RuntimeCastChecker.check(“a∗b”, foo), if and only if foo is a

supertype of String[[“a∗b”]]) (if not then there is no runtime cast check needed). This

kind of rewrite happens in the CodeGeneration step of Polyglot. Recall in the AST

section, we mentioned that during parsing we create a GrammarCastExt c object

for each cast operation. What we need to do is to override the translate method of

GrammarCastExt c to perform the rewrite, as shown in Listing 21.

In translate, we check if the type being casted to (ltype) is a GrammarType,

and also if ltype is a subtype of rtype (the type being casted). If both conditions

are true, then that’s the condition we are looking for to perform the rewrite. When

rewriting, we first write down the qualified name of the RuntimeCastChecker class

and “invoke” its check method. Then for the params for check we first write the
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1 public class GrammarCastExt_c extends GrammarExt {

2 @Override

3 public void translate(CodeWriter w, Translator tr) {

4 GrammarTypeSystem ts = (GrammarTypeSystem) tr.typeSystem();

5 Cast c = (Cast) node();

6 Type rtype = c.expr().type();

7 Type ltype = c.castType().type();

8 if (ts.isSubtype(ltype, rtype) && ltype instanceof GrammarType) {

9 // rewrite "(String[["a*b"]]) foo" to "grammar.runtime.

RuntimeCastChecker.check("a*b", foo)"

10 w.write("grammar.runtime.RuntimeCastChecker.check(\"");

11 w.write(((GrammarType) ltype).getRegexString());

12 w.write("\", ");

13 c.expr().translate(w, tr);

14 w.write(")");

15 } else {

16 superLang().translate(node(), w, tr);

17 }

18 }

19 }

Listing 21: Implementation of translate in GrammarCastExt c.java

regex String of the ltype, then a comma, then the translation of rtype, and finally a

right parenthesis. With the runtime cast checker in place, example programs 3 and 6

in Table 4 would pass compile-time check and generate Java code with the runtime

cast check, and would get “Invalid Runtime Cast” exception during runtime.
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Chapter V.

Regex Containment Problem

At the core of the type system for the Grammar Type language extension is

the regex containment problem. Specifically, in order to know whether a Grammar

Type String[[regex1]] is a subtype of String[[regex2]], we need to be able to deter-

mine if a regular expression regex1 is a sublanguage of another regular expression

regex2 (in other words, whether regex2 “contains” regex1). We define regex1 to be

a sublanguage of regex2 if the language (all the Strings) represented by regex1 is a

subset of the language represented by regex2. As an example, the regex aa∗b is a

sublanguage of the regex a∗b because aa∗b represents all the Strings with at least one

a followed by a b, and a∗b represents everything aa∗b represents, plus an additional

String “b”.

There is no built-in Java library for answering this regex containment question,

so we implement our own custom logic to tackle this problem. In order to determine

whether regex1 is a sublanguage of regex2, there are a couple of steps involved: (i)

we will convert each regex into a syntax tree. (ii) we will convert each syntax tree

to an NFA (non-deterministic finite automata). (iii) we will convert each NFA to a
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DFA (deterministic finite automata). (iv) solve the DFA containment problem.

5.1. Regex to Syntax Tree

In our design, a SyntaxTree for regex is a binary tree and is composed of

SyntaxTreeNodes. Each SyntaxTreeNode is either an Operator or an Operand

(shown in Listing 22). Operator is an enum that represents the operators in regular

expressions (∗, |, or concatenation). An Operand is either a normal char, or the

wildcard character(.) that matches any char.

1 public class SyntaxTreeNode {

2 // if this SyntaxTreeNode is an operator

3 private final Operator operator;

4 // if this SyntaxTreeNode is an operand (i.e. a char)

5 private final Operand operand;

6 private final SyntaxTreeNode leftChild;

7 private final SyntaxTreeNode rightChild;

8 }

9

10 enum Operator {

11 CONCAT,

12 OR, // lowest precedence

13 KLEENE // highest precedence

14 }

15

16 public static class Operand {

17 private char c;

18 private

19 }

Listing 22: Excerpt from SyntaxTree.java

Since a regex SyntaxTree is a binary tree, each SyntaxTreeNode has a left

child SyntaxTreeNode and (optionally) a right child SyntaxTreeNode. Specifically,

the right child will be present if the Operator is OR or CONCAT , and missing if

the Operator is KLEENE. To string all these together, let’s take the regex a∗b|c
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as an example. This regex has 3 operations. The 1st operation is a Kleene star

on the character a. This is represented by a SyntaxTreeNode with a KLEENE

Operator, and a left child SyntaxTreeNode with a char a Operand (Figure 6 a).

The 2nd operation is a concatenation of the previous result (a∗) with the character

b. This is represented by a SyntaxTreeNode with a CONCAT Operator, a left

child SyntaxTreeNode that was the result from the 1st operation, and a right child

SyntaxTreeNode with a char b Operand (Figure 6 b). The 3rd and final operation

is an alternation between the previous result (a∗b) and the character c. This is rep-

resented by a SyntaxTreeNode with an OR Operator, a left child SyntaxTreeNode

that was the result from the 2nd operation, and a right child SyntaxTreeNode with

a char c Operand (Figure 6 c).

Figure 6: Syntax tree for regex a∗b|c

(a) shows the syntax tree for a∗. (b) shows the syntax tree for a ∗ b. (c) shows the syntax tree for
a∗b|c

Now that we have an understanding of the structure of the regex syntax tree,
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we will talk about how to construct them from regexes. The first step is a prepro-

cessing pass. In this pass we sanity check the regex for syntactic errors and weed out

invalid regexes. We also clean up the regex by removing useless parenthesis(ex. (),

((a)), etc.). In addition, we undo any syntax sugar in the regex(ex. converting a−z

back to a|b|c . . . |y|z). After the preprocessing pass, we start the actual building of

the syntax tree using a recursive function that takes in a stream of elements, where

each element is either a char or a SyntaxTreeNode. The method runs 3 passes,

corresponding to the 3 types of Operators. The order of the passes is determined

by the precedence of the different Operators: KLEENE, then CONCAT , then

OR. Initially when buildSyntaxTree is called for the first time, all the elements in

the stream are chars. And as the passes progress, more and more elements become

SyntaxTreeNodes until there is one root SyntaxTreeNode left, and that is our result

SyntaxTree.

5.2. Syntax Tree to NFA

To help understand our goal here, let’s look back at our previous example

regex a∗b|c. Now we know what the syntax tree would look like, we look at what the

NFA will look like.

As Listing 23 shows, both NFA and DFA are graphs with nodes and edges, and

extend the abstract class FA. An FA has one start Node, and a list of accept Nodes.

Each Node stores all of its neighbors in a HashMap where the key is the edge from this
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1 public abstract class FA {

2 Node startNode; // the start node of this FA

3 List<Node> acceptNodes; // a list of accept nodes of this FA

4 List<Node> allNodes; // list of all nodes in this FA

5 }

6

7 public abstract class Node {

8 protected LinkedHashMap<Edge, Node> nextNodes;

9 boolean isStartNode;

10 boolean isAcceptNode;

11 }

12

13 public abstract class Edge {

14 }

15

16

17 public class NFAEdge extends Edge {

18 private SyntaxTree.Operand transitionChar;

19 private boolean isEpsilonTransition;

20 }

Listing 23: Definitions of FA, Node, Edge, and NFAEdge

node to the neighbor, and the value is the neighboring node. Each node also denotes

whether it is a start node and accept node. An NFAEdge represents the transition

from one NFANode to the next. The transition is either a normal transition (a

char literal or the wildcard(.)), or an epsilon transition (an epsilon transition is an

immediate jump from one NFANode to the next). To make things more concrete,

the right side of Figure 7 is a demonstration of the NFA for the example regex a∗b|c.

To construct an NFA from the syntax tree, we start from the root SyntaxTreeNode.

There are 4 main cases: (i) if the SyntaxTreeNode is an Operand instead of an

Operator (Figure 8 a), we know it’s a char. In this case, we create a start NFANode

with anNFAEdge pointing to an acceptNFANode. The edge will have its transitionChar

set to be the char in the Operand. (ii) if the SyntaxTreeNode is an OR Operator

(Figure 8 b), we create a start NFANode, and recursively build NFAs for the left
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Figure 7: NFA for regex a∗b|c

Left side shows the syntax tree for regex a∗b|c. Right side shows the NFA. Each circle represents
an NFANode. Double circle represents an accept node. 0 is always the start node. Each edge
represents an NFAEdge.

and right children of the OR Operator. The start node will have an epsilon transi-

tion to the 2 original start nodes in the sub NFAs. And the original accept nodes in

the 2 sub NFAs will continue to be accept nodes. (iii) if the SyntaxTreeNode is a

CONCAT Operator (Figure 8 c), we first build NFAs for the left and right children

of the CONCAT Operator. The original start node in the left NFA will continue to

be the start node of the result NFA, and the original accept nodes in the right NFA

will be accept nodes of the result NFA. An epsilon transition is added from each of

the original accept nodes in the left NFA to the original start node in the right NFA.

(iv) if the SyntaxTreeNode is a KLEENE Operator (Figure 8 d), we first build

an NFA for the left (and only) child of the KLEENE Operator. We also create a

new start node and a new accept node. The new start node will epsilon transition to

the new accept node as well as the original start node in the sub NFA. The original

accept nodes in the sub NFA will have epsilon transitions to the original start node
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as well as the new accept node.

Figure 8: Fundamental NFA structures for different SyntaxTreeNode types

(a) shows the NFA structure for char. (b) shows the NFA structure for OR. (c) shows the NFA
structure for CONCAT . (d) shows the NFA structure for KLEENE.

5.3. NFA to DFA

Due to the presence of epsilon transitions, NFAs are nondeterministic. There-

fore we convert NFA to DFA for a more structured and deterministic representa-

tion, enabling more efficient containment checking. The idea is to group all of the

NFANodes reachable by epsilon transition into one DFANode to eliminate nonde-

terminism. Each DFANode contains a list of NFANodes that are reachable from

each other via epsilon transitions (shown in Listing 24).

1 public class DFANode extends Node {

2 List<NFANode> nfaNodes;

3 boolean isD0;

4 }

Listing 24: Structure of DFANode

For easier understanding, right side of Figure 9 below shows the result DFA

corresponding to our example NFA.

The process for converting NFA to DFA is quite straightforward. We start
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Figure 9: DFA for regex a∗b|c

Left side shows the NFA for regex a∗b|c. Right side shows the DFA. Each rectangle represents a
DFANode. Double rectangle represents an accept node. Leftmost rectangle is always the start
node. Each edge represents a DFAEdge.

traversing the NFA from the root node and get the epsilon closure of the root node.

The epsilon closure contains every node reachable from the root node via epsilon

transition. In the example case above, it contains NFANode 0, 1, 2, 3, 4, 7. So

we create the start DFANode of our DFA and it contains the list of NFANodes in

the epsilon closure. Then, we maintain a queue of DFANodes we want to explore,

initialized with the start DFANode. While the queue is not empty, we keep popping

DFANodes from the queue. For each DFANode popped, we iterate over each of the

NFANode it contains. For each of that NFANode’s neighbors, if the NFAEdge is

not an epsilon transition (meaning it’s a normal char), then we create a new potential

DFANode with the epsilon closure of that NFANode’s neighbor. In the example

case above, when we were inspecting DFANode 0, 1, 2, 3, 4, 7 from the queue,

because NFANode 3 has an NFAEdge a to NFANode 6, we get the epsilon closure

of NFANode 6 which contains NFANode 3, 4, 6, 7, and then we create a new

DFANode containing these NFANodes. Finally we create a DFAEdge a pointing
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from the start DFANode to this new DFANode. Another way to understand this

is: at start, we could be in any of state 0, 1, 2, 3, 4, 7. And after taking in a char a,

we could be in any of the state 3, 4, 6, 7. During the process, if any NFANode inside

a DFANode is an accept node, that makes that DFANode also an accept node. In

the example in Figure 9, because the NFANode 8 is an accept node, the DFANode

8 is also an accept node. We repeat this process until the queue of DFANodes to

process is empty, and that’s when we successfully built our DFA.

5.4. DFA Containment Problem

Now that we are able to convert regexes into DFAs, the last step in determining

whether regex2 is a sublanguage of regex1 is to check if DFA1 contains DFA2 (i.e.

whether all Strings accepted by DFA2 are also accepted by DFA1). This is a 4

step process: (i) make DFA1 and DFA2 total. (ii) compute the complement of

DFA1, call if DFA3. (iii) compute the intersection of DFA2 and DFA3. (iv) if the

intersection accepts no Strings, then DFA1 contains DFA2.

A DFA is total if for every DFANode, there is a transition defined for every

possible input char. We will use the wordALPHABET as a syntax sugar to represent

the set of all possible input chars, and use ALPHABET −{char1, . . . , charN} to

represent the set of all chars in ALPHABET except char1, . . . , and charN . To

illustrate, Figure 10 shows the transition from a non-total DFA we computed in the

previous example to the corresponding total DFA.
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Figure 10: Total DFA for regex a∗b|c

Left side is the original non-total DFA. Right side is the total DFA

To make a DFA total, we first introduce a new dummy DFANode D0. We

then iterate over each DFANode in the original DFA. For each DFANode, we com-

pute the list of chars it doesn’t have a transition for, and create a DFAEdge con-

taining those chars from that DFANode to D0. For example, because the non-total

DFANode 0, 1, 2, 3, 4, 7 have transitions for a, b, and c, we created a DFAEdge

containing ALPHABET−{a, b, c} from DFANode 0, 1, 2, 3, 4, 7 to D0.

The 2nd step is computing the complement of DFA1. This is quite straight-

forward as we simply need to convert all the accept nodes in DFA1 to be non-accept

nodes, and all the non-accept nodes to be accept nodes. This matches the intuition for

the complement of a DFA: any String that was accepted before will not be accepted

now, and any String that was not accepted before will be accepted now. Figure 11

illustrates the transition of our example total DFA to its complement.

The 3rd step is to compute the intersection between DFA2 and the comple-
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Figure 11: Complement of total DFA for regex a∗b|c

Left side is the original total DFA. Right side is the complement of the total DFA

ment of DFA1 (call it DFA3 for convenience). Intuitively, the intersection between

DFA2 and DFA3 represent the set of Strings accepted by both DFAs. For illus-

tration purpose, let’s assume our regex1 is still a∗b|c, and regex2 is aab (this is the

case if we are doing type checking on a statement like String[[“a∗b|c”]] foo = “aab”).

We already have DFA3 (the complement of the total DFA for a∗ b|c), so we just

need DFA2 (the DFA of aab) before we calculate the intersection between DFA3

and DFA2. Right side of Figure 12 shows the derivation of DFA2.

To compute the intersection of two DFAs (DFA3 and DFA2 in our example),

we create a new intersection DFA composed of IntersectionDFANodes (shown in

Listing 25). Every pair of nodes (one in each DFA) creates one IntersectionDFANode

(in our case dfaNode1 would represent oneDFANode inDFA3, and dfaNode2 would

represent oneDFANode inDFA2). As a shorthand, we will write IntersectionDFANode

(a1, . . . , an ∽ b1, . . . , bm) to correspond toDFANode a1, . . . , an inDFA3 andDFANode
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Figure 12: DFA3 and DFA2

Left side is a recap of the complement of total DFA of a∗b|c. Right side is the derivation of DFA of
aab

b1, . . . , bm in DFA2.

1 public class IntersectionDFANode extends Node {

2 DFANode dfaNode1;

3 DFANode dfaNode2;

4 }

Listing 25: Structure of IntersectionDFANode

So in our example, sinceDFA3 has 5 nodes andDFA2 also has 5 nodes, the re-

sult IntersectionDFA has 25 IntersectionDFANodes. For each IntersectionDFANode,

we extract all groups of common transition chars between dfaNode1 and dfaNode2,

and create aDFAEdge from the current IntersectionDFANode to the IntersectionDFANode

whose dfaNode1 is pointed to by the common transition chars in DFA3, and whose

dfaNode2 is pointed to by the common transition chars in DFA2. In our example,

for the IntersectionDFANode (0, 1, 2, 3, 4, 7 ∽ 0), the groups of common transition

chars are: {a}, {b}, {c}, and ALPHABET–{a, b, c}. This is because: in DFA3,

DFANode 0, 1, 2, 3, 4, 7 points to DFANode 3, 4, 6, 7 if the transition char

is a, points to DFANode 8 if the transition char is b, points to DFANode 5 if
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the transition char is c, and points to DFANode D0 if the transition char is any of

ALPHABET–{a, b, c}. In DFA2, DFANode 0 points to DFANode 1, 2 if the tran-

sition char is a, points toDFANode D0 if the transition char is b or c, and also points

to DFANode D0 if the transition char is any of ALPHABET–{a, b, c}. After deter-

mining the groups of common transition chars and the DFANodes they point to in

the corresponding DFAs, we add correspondingDFAEdges for the IntersectionDFA

(in our example, for IntersectionDFANode (0, 1, 2, 3, 4, 7 ∽ 0), we add a DFAEdge

a to IntersectionDFANode (3, 4, 6, 7 ∽ 1, 2), aDFAEdge b to IntersectionDFANode

(8 ∽ D0) , a DFAEdge c to IntersectionDFANode (5 ∽ D0) , and a DFAEdge

ALPHABET–{a, b, c} to IntersectionDFANode (D0 ∽ D0). We repeat this pro-

cess to add all IntersectionDFANodes andDFAEdges to complete the IntersectionDFA.

The 4th and last step is to check if the intersection of DFA3 (the complement

of DFA1) and DFA2 accepts no Strings. If so then DFA1 contains DFA2, which

means regex1 contains regex2, which means regex2 is a sublanguage of regex1.

Figure 13 visualizes the case where DFA3 contains DFA2, and the case where DFA3

does not contain DFA2.

The intuition is this: when DFA1 contains DFA2, the set of Strings accepted

by DFA1 is a superset of the set of Strings accepted by DFA2. Therefore, DFA3,

the complement of DFA1 (the shaded area on the left side of Figure 13) has no

overlap with DFA2. However, when DFA1 does not contain DFA2, the set of

Strings accepted by DFA1 does not fully contain the set of Strings accepted by
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Figure 13: Intersection of DFA3 and DFA2

Left side depicts the intersection when DFA1 contains DFA2. Right side depicts the intersection
when DFA1 does not contain DFA2

DFA2. As a result, the complement of DFA1 (the shaded area on the right side of

Figure 13) overlaps with DFA2. Namely, the area circled in blue. To check if an FA

(in this particular case a DFA) accepts no String, we iterate over each of the accept

nodes of the FA. If none of them is reachable, then the FA accepts no String. A node

is reachable if there exists a path from the start node of the FA to that node.
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Chapter VI.

Example Use Cases

We can put our Grammar Type for String to use in many different use cases –

all we need is to define a regex to convey the type of grammar we want to enforce, and

declare variables to be of that Grammar Type. In order to enable more concise regex

writing, we implemented several enhancements/syntax sugars on top of the standard

characters and operators we support. Just to recap, in the base form of our regex

parser we supported any lower case character from a to z, any upper case character

from A to Z, any digit from 0 to 9, the left and right parentheses ( and ), the Kleene

star character ∗, and the Or character |. This works but is very cumbersome if we

want to say write a regex that allows any character. In that case our regex would

be a|b| . . . |A|B . . . |Z|0|1| . . . 9, a whopping 123 characters long. To alleviate such

inconvenience, we added the following enhancements/syntax sugars: (i) we used a−z

as a shorthand for a|b| . . . |z, A−Z as a shorthand for A|B| . . . |Z, and 0−9 as a

shorthand for 0|1| . . . |9. (ii) we added support for the dot (.) character to mean any

of the supported characters. However, just like other meta characters (| or ∗), if we

wanted it to represent its literal form, we need to be able to escape it. (iii) that is why
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we also added support for escaping meta characters using the escape character (\).

So just a single dot (.) in the regex would mean any character, but an escaped dot (\.)

would mean the literal dot (.) character. (iv) finally, we added support for specifying

the minimum and maximum number of characters using the syntax {min,max}. So

the regex (foo){1, 3} would mean 1 to 3 foos.

6.1. Valid Email Addresses

One example use case of Grammar Type is for validating email addresses. On

a fundamental level, we will consider an email to be valid if it is of the form: [between

1 and 64 lowercase or uppercase characters or digits], followed by the at sign (@),

followed by [between 1 and 255 lowercase or uppercase characters or digits], followed

by dot (.), followed by [between 2 and 63 lowercase or uppercase characters]. Based

on this, we can define the regex for valid email addresses to be:

(a−z|A−Z|0−9){1,64}@(a−z|A−Z|0−9){1,255}\.(a−z|A−Z){2,63}

With this regex defined, we can test out some example programs where we

need valid email addresses (shown in Table 5). For brevity, we will use ER (for email

regex) as shorthand for the above regex.

When we compiled and then executed the test programs in Table 5, programs

1, 3, and 5 succeeded. Program 2 failed during compile time for “type of the variable

initializer String[[abc@invalid]] does not match that of the declaration String[[ER]]”.
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# Program
1 String[[ER]] email = “abc123@gmail.com”;
2 String[[ER]] email = “abc123@invalid”; // compile-time error
3 String[[ER]] email;

email = “abc123@gmail.com”;
4 String[[ER]] email;

email = “abc123@invalid”; // compile-time error
5 String s = “abc123@gmail.com”;

String[[ER]] email = (String[[ER]]) s;
6 String s = “abc123@invalid”;

String[[ER]] email = (String[[ER]]) s; // runtime error

Table 5: Test programs to validate email addresses

Program 4 failed during compile time for “cannot assign String abc@invalid to

String[[ER]]”. Program 6 failed during runtime for “Invalid Runtime Cast”. All

of the results were as expected, which proved that the Grammar Type for String

works for validating email addresses.

6.2. Valid User Inputs

Recall form the Introduction chapter, we looked at an example program that

was prone to SQL injection attacks. The part where it reads user input and constructs

the SQL query is shown in Listing 26.

1 System.out.print("Enter username: ");

2 final String username = scanner.nextLine();

3 System.out.print("Enter password: ");

4 final String password = scanner.nextLine();

5 final String sql = "SELECT * FROM users WHERE username = \"" + username + "\"

AND password = \"" + password + "\"";

Listing 26: Original Java code with no input validation

Because the program simply stores username and password as Strings, an
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attacker can enter inputs such as anything” OR “1” = “1 for username field, and

anything” OR “1” = “1 for password field. The constructed SQL query would be

SELECT ∗ FROM users WHERE username = “anything” OR “1” = “1” AND

password = “anything” OR “1” = “1”. Due to the OR “1” = “1” conditions, the

query effectively becomes SELECT ∗ FROM users WHERE true AND true.

With our Grammar Type for String implementation, we are ready to tackle this

problem. Instead of storing username and password as Strings, we store them as

Grammar Types, where we define the appropriate regex for a valid username or valid

password. Let’s define the requirement for a username or password to be 3 to 64

lowercase or uppercase characters or digits. Then we can come up with the regex

grammar for a valid username or password:

(a−z|A−Z|0−9){3,64}

So we rewrote our program (shown in Listing 27) utilizing the regex. When

we ran our program and entered anything” OR “1” = “1 as input for username

or password, the program failed immediately at the same line for “Invalid Runtime

Cast” errors, and it never tried to execute (or even construct) the SQL query. This

is because the white space, the quotes, and the equal sign in the user input are all

illegal according to the regex defined for the Grammar Type. With this Grammar

Type for valid inputs, we can now be confident that we are protected from this type

of SQL injection attacks.
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1 System.out.print("Enter username: ");

2 final String[["(a-z|A-Z|0-9)*]] username = scanner.nextLine();

3 System.out.print("Enter password: ");

4 final String[["(a-z|A-Z|0-9)*]] password = scanner.nextLine();

5 final String sql = "SELECT * FROM users WHERE username = \"" + username + "\"

AND password = \"" + password + "\"";

Listing 27: Same code rewritten in the Grammar language

6.3. Valid URLs

Another example use case of Grammar Type comes from work. In this case,

when a web client A sends an HTTP request to service B, the query param contains a

redirect URL indicating after service B processes the request, where service B should

redirect the browser to. However, the redirect URL can only be a subset of all valid

URLs. Specifically, for each original web client subdomain.snapchat.com, the redirect

URL has the following restrictions: (i) the domain still has to be snapchat.com,

(ii) the subdomain can either remain the same as the original URL, or have −prod,

−alpha, −gold suffix (indicating whether it’s a production or internal build), (iii) the

URL can optionally end with a question mark (?) or forward slash (/) followed by

more characters. For example, if web client A was web.snapchat.com, then the regex

for valid redirect URL would be:

https ://web(−(prod|alpha|gold))?\.snapchat\.com([/?].∗)?

With this regex defined, we can test out some example programs where we

validate redirect URLs (shown in Table 6). For brevity, we will use RR (for redirect
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regex) as shorthand for the above regex.

# Program
1 String[[RR]] url = “web−prod.snapchat.com/anything”;
2 String[[RR]] url = “web3.snapchat.com”; // compile-time error
3 String[[RR]] url;

url = “web−gold.snapchat.com?anything”;
4 String[[RR]] url;

url = “web.snap.com”; // compile-time error
5 String s = “web.snapchat.com”;

String[[RR]] url = (String[[RR]]) s;
6 String s = “web3.snapchat.com”;

String[[RR]] url = (String[[RR]]) s; // runtime error

Table 6: Test programs to validate redirect URLs

When we compiled and then executed the test programs in Table 6, pro-

grams 1, 3, and 5 succeeded. Program 2 failed during compile time for “type of the

variable initializer String[[web3.snapchat.com]] does not match that of the declara-

tion String[[RR]]. Program 4 failed during compile time for “cannot assign String

web.snap.com to String[[RR]]”. Program 6 failed during runtime for “Invalid Run-

time Cast”. All of the results were as expected, which showed that the Grammar

Type for String can be useful for validating URLs.
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Chapter VII.

Conclusion

In conclusion, we designed and implemented a solution (Grammar Type for

String) that enhanced the Java language by extending the Polyglot compiler frontend.

We introduced a new Grammar Type with the syntax String[[regex]]. Grammar

Types are subtypes of Strings so they inherit all behaviors of Strings. But at the

same time, with Grammar Types, we are able to use regexes to enforce any “grammar”

we want for a String. We ensure this by implementing both compile time type

checking for subtyping and casting, and runtime type checking for casting. We also

dived deep into the regex containment problem in order to solve the Grammar Type

subtyping problem. As demonstrated in the Example Use Cases chapter, we proved

Grammar Types can be extremely useful in real life applications. Some of the reasons

include: (i) we no longer need to write validation code for different String inputs.

(ii) we won’t need to rely on application developers to always remember to validate

the String inputs. (iii) we won’t need an extra class to represent each String input

type. (iv) in many cases we can catch the problem during compile-time, instead of at

runtime.
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It’s worth mentioning that in certain scenarios, we might want to be able to

use more precise/powerful “grammars”. However, due to the limitation of regular

expressions, a lot of these are not possible. For example, if we wanted to specify a

String with equal number of 0’s followed by equal number of 1’s (i.e. 0n1n), that

is not possible to represent in regular expression. However, context free grammars

(CFGs) would be able to fill in the gap by being both more powerful than regular

expressions, but still reasonable enough that we can type check during compile time.

For the above example, we can define the production rules of the CFG to be:

S → 0S1 S → ϵ

This grammar says that a String in this CFG (represented by S) is either an

empty String (represented by the ϵ), or a 0 followed by S followed by a 1, where S is

recursively defined just above. As a result, this CFG can represent the empty String,

01, 0011, 000111, etc., satisfying our specification. We can follow the footsteps of

our regex Grammar Type and define the syntax for this new Grammar Type to be

String[[S → 0S1, S → ϵ]]. With this new enhancement, we would retain most of

the benefits of the regex Grammar Type, but also gain more capability in checking

String validity.
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