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Abstract

In this thesis, we study D-instanton contributions to supergraviton scattering ampli-

tudes in ten-dimensional type IIB superstring theory beyond the leading non-perturbative

order. Our computation is based on the Neveu-Schwarz-Ramond (NSR) formalism with

picture changing operators and vertical integration. In the first chapter, we determine

the single D-instanton contribution to maximal R-symmetry violating (MRV) amplitudes

with arbitrary momenta at the first subleading order in string coupling, as well as the

effects of a D-/anti-D-instanton pair at leading nontrivial order in the momentum expan-

sion. These results confirm a number of predictions of S-duality, and unveil some previ-

ously unknown pieces of type IIB string amplitudes.

The naive on-shell prescription for D-instanton mediated amplitudes, based on inte-

gration over the moduli space of worldsheet geometries as well as that of D-instanton

boundary conditions, suffers from potential open string divergences and regularization

ambiguities. In the second chapter, we employ the framework of open+closed superstring

field theory (SFT) to address such issues. From this, we are able to unambiguously com-

pute a part of the momentum-independent constant that appears at first subleading order

in the string coupling, which serves as a highly nontrivial consistency check on spacetime

supersymmetry and soft relations.
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0
Introduction

Critical string theories are defined at the level of the perturbative spacetime S-matrix

by a two-dimensional worldsheet conformal field theory with BRST-exact stress-energy

tensor and a prescription for integration over the moduli space of punctured Riemann sur-

faces [1–3]. The worldsheet formalism is also known to capture certain non-perturbative

effects, known as D-instantons, by including worldsheets with boundaries subject to suit-

able Dirichlet-type boundary conditions [4]. While D-instanton effects are fundamen-

tal to the dynamics of string theory [5, 6], and have been determined in some cases by

a combination of on-shell worldsheet methods and string dualities [7–27], a systematic
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framework for computing them has been lacking until recent work of Sen [28–33] based on

open+closed string field theory [34].

The goal of this work is to apply the framework of D-instanton perturbation theory to

compute D-instanton contributions to the S-matrix of type IIB superstring theory in ten-

dimensional Minkowskian spacetime, beyond the leading order results of [7, 32]. There are

two known types of non-perturbative effects in string theory: D-instanton effects of or-

der e−1/gs , and gravitational (including NS brane) instanton effects of order e−1/g2s . The

latter are analogous to instantons in quantum field theory in the sense that they corre-

spond to saddle points of the Euclidean functional integral based on an (effective) action

of spacetime fields. The D-instantons, on the other hand, cannot be understood as saddle

points of an action of closed string fields. Rather, they must be included as extra contri-

butions to a scattering amplitude through worldsheets with boundaries, or “holes”, that

are attached to the D-instanton.

As with any non-perturbative corrections, one can meaningfully speak of the D-instanton

effects only if there is a way to distinguish them from the perturbative results, or if there

is a prescription for summing up the perturbative expansion. In the 2D c = 1 string the-

ory analyzed in [24, 25], the perturbative series for closed string scattering amplitudes are

Borel-summable (assuming the conjectured matrix model dual), and the D-instanton con-

tributions were understood to be corrections on top of the Borel-resummed perturbative

results. In the present work, we will focus on D-instanton effects in type IIB string the-

ory that are either distinguished from the perturbative contributions in that the former

violate certain perturbative global symmetries, or correct a perturbative expansion that is

known to terminate at a finite order.
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The general structure of D-instanton perturbation theory

Our working hypothesis is that with a suitable prescription for summing up the perturba-

tive series, there is a well-defined contribution from each D-instanton sector, i.e. a family

of BRST-invariant boundary conditions of Dirichlet type on the worldsheet.

The boundary conformal field theory of the D-instanton gives rise to the space of open

string fields Ho in the sense of Batalin-Vilkovisky (BV) formalism [34]. For type IIB

string theory, states of Ho are subject to GSO invariance and the usual restriction on

picture number, namely (−1)-picture in the Neveu-Schwarz (NS) sector and (−1
2)- and

(−3
2)-picture in the Ramond (R) sector.

Let Hc be the space of closed string fields, as defined in [35]. We will denote by Ψc ∈

Hc a closed string field and Ψo ∈ Ho an open string field on the D-instanton. The space

of string fields is equipped with a Grassmann-odd symplectic structure defined through

the BV anti-bracket. In performing the functional integral over open string fields, one

should restrict to a Lagrangian subspace L (i.e. a BV gauge condition).1 The contribu-

tion from the D-instanton to the closed string field Euclidean 1PI effective action Γ[Ψc]

takes the schematic form

e−Γ[Ψc]
∣∣∣
D−inst

= e−
C
gs

∫
DΦo|L exp (−Soc[Ψo,Ψc]) . (1)

Here we have separated the D-instanton action C/gs from the rest of the open+closed

1For instance, one may split Ψo into the “regular” field Φo and BV anti-field Φ‡
o based on

ghost number grading, and define the subspace L by the constraint Φ‡
o = δV

δΦo
for some choice of

functional V [Φo]. Further details on the BV gauge condition for D-instanton perturbation theory
are discussed in Section 2.1.2.
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string field action Soc[Ψo,Ψc], defined “perturbatively” by integration over string vertices

[34] that are 1PI with respect to the closed string fields and Wilsonian with respect to the

open string fields.

To perform the functional integral of (1), one separates the open string modes into two

types: the “massive” modes with non-degenerate kinetic terms, and the “massless” modes

with degenerate kinetic terms. The massive modes can be integrated out perturbatively,

giving rise to Feynman diagrams with open string loops. Note that the worldsheet config-

uration corresponding to a Feynman diagram need not be connected, but rather should

be “connected modulo boundary” (e.g. in (1.1)).

The integration over massless open string modes, on the other hand, cannot be treated

perturbatively. This includes the collective modes Φm
o , whose integration is analogous

to integrating over the D-instanton moduli space, and a mode that corresponds to the

Faddeev-Popov ghost associated with fixing the U(1) gauge symmetry on the D-instanton.

A consistent treatment of the integration over massless open string fields, as explained

in [29], will be discussed in Chapter 2 for the type IIB string amplitudes of interest.

Oen+closed string field theory provides a framework for computing D-instanton effects

on the closed string amplitude, at the level of perturbation theory around a D-instanton

configuration. Such a perturbation theory may break down when open string modes on

the D-instantons become tachyonic. The latter occurs for the ZZ-instantons in c = 1

string theory [24, 25, 30], where a Wick rotation prescription for the integration contour

in the open string tachyon field has been proposed, as is anticipated from the general pre-

scription for summing over saddle point contributions based on steepest descent contours.

In type IIB superstring theory, a pair consisting of a D-instanton and an anti-D-instanton

4



that are sufficiently nearby one another gives rise to tachyonic open string modes. It is

unclear whether the string field theory formalism provides an unambiguous result in this

situation, as there may be intrinsic ambiguities in such D-instanton contributions that are

tied to the resummation prescription for string perturbation theory.
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1
On-shell methods

1.1 Introduction

Working explicitly with all components of the open string field on the D-instanton can be

exceedingly tedious. It is often possible to take a shortcut, in which one extends the rules

of on-shell string perturbation theory, based on integrating correlators of BRST-closed

string vertex operators over the moduli space of Riemann surfaces, to include worldsheets

with boundaries ending on the D-instanton. As was pointed out in [4, 7], such an on-shell

prescription is subject to ambiguities due to divergences where the worldsheet degener-
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ates. In this chapter, we view the on-shell prescription as nothing more than a compu-

tational shortcut for obtaining partial results that could be in principle recovered from

string field theory. The remaining “regularization ambiguity” may either be determined

by consideration of symmetries that are not manifest in the on-shell prescription, such as

spacetime supersymmetry (as will be the case for the results presented in this work), or a

genuine string field theoretic computation (part of which is performed in Chapter 2).

1.1.1 The (somewhat naive) on-shell prescription

For type IIB superstring theory in ten-dimensional Minkowskian spacetime, the known

D-instantons include both the “BPS” D-instanton that carries unit charge with respect to

the Ramond-Ramond axion (0-form potential), and the corresponding anti-D-instanton

that carries the opposite RR charge. One expects any closed string amplitude to receive

contributions from arbitrary configurations of n D-instantons and m anti-D-instantons,1

given schematically by

A(n,m) =

∫

M̃n,m

dµ̃ exp
(

+ + + + · · ·
)

×
[

· · · + · · · + · · · + · · ·
] (1.1)

in the on-shell prescription. Here, M̃n,m is the super-moduli space of the (n,m) D-instanton

boundary conditions, whose bosonic and fermionic collective coordinates are in correspon-

dence with the massless open string BRST cohomology in the Neveu-Schwarz and Ra-

1Here we focus only on D(−1) branes in Minkowski spacetime. Both the string field theory
and on-shell approaches generalize to D-instantons appearing in other backgrounds, such as Eu-
clidean Dp-branes wrapping non-contractible cycles in the type II string theories (see e.g. [36, 37]).
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mond sectors, respectively. The measure dµ̃, without including any of the empty discon-

nected diagrams, is the natural one determined by the Zamolodchikov metric of boundary

deformations (flat in the present example), up to a constant normalization to be specified

later. The integrand meanwhile takes the form of a sum over the topologies of (gener-

ally disconnected) Riemann surfaces Σ, whose connected components all share the same

D-instanton boundary condition, with a given number of vertex operator insertions that

correspond to closed string asymptotic states. Each diagram comes with the string cou-

pling dependence g−χ(Σ)
s , where χ is the Euler characteristic (including −1 from each

puncture/vertex operator). Of note is the sum over empty discs, each of which evaluates

to minus the D-instanton action −(n + m) Cgs , that exponentiates to give the prefactor

e−(n+m) C
gs in (1). The sum over remaining topologies is then interpreted as a perturbative

series in the (n,m) type D-instanton background.

A general deformation of the D-instanton along its super-moduli space is formally char-

acterized by a boundary deformation of the worldsheet action, which takes the form

∆SWS =

∫

∂Σ
dx U (0)

NS,m(x) +

∫

∂Σ
dxP 1

2
U

(− 1
2 )

R (x) . (1.2)

Here U (0)
NS,m is a pictured-raised unfixed vertex operator in the NS sector, constructed

purely from the matter sector of the worldsheet CFT, that is BRST invariant modulo

total derivatives. U
(− 1

2 )
R meanwhile is an unfixed Ramond sector vertex operator in the

(−1
2)-picture, which necessarily involves the ghost fields. To ensure that the deformation

has picture number 0, one introduces a formal “1
2 -picture raising” operator P 1

2
[38, 39],

defined in such a way that a pair of P 1
2

insertions amounts to that of a single picture-
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changing operator X (PCO). For instance, one may propose to replace (1.2) with the in-

sertion of [40]2

e−∆SWS ≡ exp

(
−
∫

∂Σ
dx U (0)

NS,m(x)

)

×
∞∑

j=0

1

(2j)!

[∫

∂Σ
dx U

(+ 1
2 )

R (x)

]j [∫

∂Σ
dx U

(− 1
2 )

R (x)

]j
,

(1.3)

into worldsheet correlators, where U
(+ 1

2 )
R is the picture-raised version of U (− 1

2 )
R , in the

(+1
2)-picture. Note that such a deformation leads to a non-local boundary CFT.

The deformation operators appearing on the RHS of (1.2) can be expanded in a ba-

sis of local boundary operators, with Grassmann even coefficients x in the NS sector and

Grassmann odd coefficients θ in the R sector. Together, (x, θ) comprise the collective co-

ordinates on a patch of the super-moduli space of the D-instanton, whose origin corre-

sponds to the undeformed boundary CFT. In the case of (n,m) D-instanton in flat space-

time, the supermoduli space M̃(n,m) is parameterized by 10(n+m) bosonic and 16(n+m)

fermionic collective coordinates, at least when the D-instantons and anti-D-instantons are

sufficiently far separated so that all modes of the open strings stretched between them are

“massive,” or off-shell.

Starting from the string field theory for the D-instantons, one may integrate out the

massive open string modes perturbatively, leaving only integration over the massless open

string modes. One might expect the physical massless open string degrees of freedom to

be in correspondence with the moduli of the D-instanton, and that the quantum effec-

2Note that (1.3) amounts to expanding the exponential R deformation in (1.2), and keeping
only even powers of the R sector deformation, with half of them in picture − 1

2 and the other half
in picture + 1

2 through P2
1
2
= X . This new insertion is not a local deformation of the worldsheet

CFT, but can be justified by consistent factorization of string amplitudes.
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tive action for massless open string modes to be roughly equivalent to the diagrammatic

expansion appearing on the RHS of (1.1). However, this expectation fails to hold in two

important ways.

First, the diagrammatic expansion (1.1) suffers from logarithmic divergences due to

the propagation of massless open string modes3 along a thin strip that pinches near the

boundary of the moduli space of the worldsheet geometry. One may regularize such di-

vergences by cutting off near the boundary of the moduli space; indeed, the leading di-

vergences cancel between different diagrams that contribute to on-shell closed string am-

plitudes mediated by the D-instanton [4]. Such a prescription leaves a finite regulator-

dependent ambiguity whose resolution generally requires string field theory. Nonetheless,

the on-shell prescription can still capture a meaningful part of the D-instanton amplitude,

as will be explained later in this work.

Second, not all massless, or on-shell, modes of the open string field correspond to mod-

uli of the D-instanton. This occurs for the multi-D-instanton, say of type (n, 0) where

n ≥ 2, where the open string fields carry u(n) Chan-Paton factors, whereas the moduli

space is Symn(R10|16). In this case, the integrand appearing on the RHS (1.1) is singular

along the loci where D-instantons collide, and the naive on-shell open string perturbation

theory breaks down. This is already apparent in the low energy limit, where for suitable

observables, the open string field theory reduces to the IKKT matrix model [33, 41, 42],

which does not admit a perturbative expansion [43–45].

3This should be contrasted with open strings on a Dp-brane for p ≥ 0 that generically carry
nonzero momenta along the worldvolume of the brane.

10



1.1.2 Supergraviton amplitudes in type IIB string theory

A fundamental observable of type IIB string theory is the S-matrix in asymptotically ten-

dimensional Minkowskian spacetime. At the non-perturbative level, the S-matrix elements

are expected to be well-defined for asymptotic states spanned by the Fock space of su-

pergravitons. The simplest nontrivial S-matrix element is that of 2 → 2 supergraviton

scattering, well known to be constrained by supersymmetry to be of the form [46]

A2→2 = ASUGRA
2→2 M(s, t; τ, τ̄) , (1.4)

where ASUGRA
2→2 is the corresponding amplitude in tree-level (two-derivative) type IIB su-

pergravity, and M(s, t; τ, τ̄) is a single function that approaches 1 in the low energy limit

s, t → 0. Here s and t are Mandelstam variables, and τ = τ1 + iτ2 (τ2 = 1/gs) is the

axion-dilaton expectation value parameterizing type IIB vacua, on which the low-energy

accidental SL(2,R) symmetry acts by Möbius transformation.

Note that the full function M(s, t; τ, τ̄) is exceedingly complicated, as it encapsulates

all possible resonances that are produced by scattering a pair of gravitons, including black

hole states. It can be organized in two different expansions: in energy/momentum, or in

string coupling. The momentum expansion takes the form

M(s, t; τ, τ̄) = stu

[
1

stu
+ f0(τ, τ̄) +H2(s, t) + f4(τ, τ̄)(s

2 + t2 + u2)

+ f6(τ, τ̄)(s
3 + t3 + u3) + f8(τ, τ̄)(s

4 + t4 + u4) + f0(τ, τ̄)H8(s, t) + · · ·
]

(1.5)

where the underlined notation s, t, u stands for the Mandelstam variables in units of the
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ten-dimensional Planck mass. The momentum-independent coefficients f0, f4, f6, f8, · · ·

are commonly referred to as the coefficients of R4, D4R4, D6R4, D8R4, · · · terms in the

quantum effective action of type IIB string theory. The function H2(s, t), which is inde-

pendent of the moduli τ , scales like two powers of momenta with logarithmic branch cuts

extending to zero momentum, and is determined by the supergravity 1-loop amplitude.

The function H8(s, t) similarly scales like eight powers of momenta with non-analyticity

at zero momentum, and whose discontinuity factorizes into a supergravity tree amplitude

and an R4 vertex.

The coefficients f0, f4, f6 are known to be constrained by supersymmetry [47, 48] to sat-

isfied second-order differential equations on the moduli space of IIB vacua. For instance,

f0(τ, τ̄) obeys the equation

(
τ22 ∂τ∂τ̄ −

3

16

)
f0(τ, τ̄) = 0 . (1.6)

Such equations dictate that the perturbative string contributions to f0, f4, f6 truncates

at a finite loop order, and the combination of perturbative results together with the as-

sumption of S-duality invariance fixes these functions completely. f8, on the other hand,

is not known to be constrained by supersymmetry, and is not even known in perturbation

theory starting at 3-loop order.

The string coupling expansion of M(s, t; τ, τ̄), on the other hand, is expected to take

12



the form

τ−2
2 M(s, t; τ, τ̄) =

∞∑

h=0

τ−2−2h
2 Mh(α

′s,α′t) +
∑

n,m

e2πi(nτ−mτ̄)M (n,m)(α′s,α′t; τ2) + · · · .

(1.7)

Here Mh stands for the genus h perturbative string amplitude, M (n,m) stands for the con-

tribution from n D-instantons and m anti-D-instantons, and · · · stands for possible grav-

itational instanton effects. Note that the relation between the string tension and Planck

mass is such that α′s = τ
1
2
2 s. As already alluded to, the instanton corrections are unam-

biguously defined only if there is a prescription for summing up the perturbative series, or

if the perturbative contributions of certain momentum and/or coupling dependence are

absent.

In the naive on-shell prescription, each D-instanton sector contribution M (n,m) is given

by a sum over worldsheet diagrams with D-instanton boundary conditions, integrated

over the moduli space of the D- and anti-D-instantons, with the structure

M (n,m)(α′s,α′t; τ2) = τ
− 7

2 (n+m)
2

∞∑

L=0

τ−L
2 M (n,m)

L (α′s,α′t) , (1.8)

where the “open string loop order” L is minus the Euler characteristic of the worldsheet

diagram (with closed string insertions as punctures). The overall factor τ−
7
2 (n+m)

2 comes

from the normalization of the measure on the D-instanton moduli space. (1.8) is expected

to hold when the D-instanton moduli integration is non-singular, as will be the case for

the contributions explicitly computed in this work, including M (1,0) and certain terms

in M (1,1). On the other hand, it is known to fail when there are singularities in the D-
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instanton moduli space, which occurs in M (n,0) for n ≥ 2. Such singularities are due to

the appearance of new “massless” open string modes, and may be resolved in the open+closed

string field theory approach [33].

1.1.3 Summary of results

The leading one-D-instanton contribution to the four-graviton amplitude, namely M (1,0)
0

in the notation of (1.7), (1.8) (and similarly M (0,1)
0 for the anti-D-instanton), was studied

in [7] and shown to be stu times a constant. This constant is determined to be

1

α′3stu
M (1,0)

0 (α′s,α′t) =
π

16
(1.9)

by S-duality and consideration of supersymmetry [47, 48], and was reproduced from a first

principles string field theoretic computation recently in [32].

In Section 1.2, we present the first main result of this chapter: the next-to-leading or-

der single D-instanton contribution,

1

α′3stu
M (1,0)

1 (α′s,α′t) = C1 +
∞∑

p=2

ζ(p)

22p+3
α′p(sp + tp + up) , where C1 =

3

256
. (1.10)

The momentum dependent terms on the RHS of (1.10) come from the worldsheet dia-

gram consisting of three discs with boundary on the D-instanton, where one of the discs

contains two closed string vertex operators, while the other two each contain one closed

string insertion. The constant term C1 appearing on the RHS of (1.10) cannot be com-

puted directly in the on-shell approach due to ambiguities in the regularization scheme.
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In fact, we are not aware of any simple regularization scheme based on cutting off the

worldsheet moduli integral that produces the correct answer. On the other hand, C1 has

been argued in [48] to be fixed by consideration of supersymmetry Ward identities for 6-

point amplitudes and a soft relation between the 6- and 4-point amplitudes, giving the

result of (1.10).

It is illuminating to consider a generalization of C1, namely the coefficient of the N -

point “maximal R-symmetry violating” (MRV) coupling of the schematic form (δτ)N−4R4

at order e2πiτ τ−1
2 , which is fixed by consideration of supersymmetry and soft limits in

Section 1.3.1 to be (see also [49])

C(N)
1 ≡ N(N − 1)

2
a0 +Na1 + a2 =

3

256
− (N − 4)(N − 5)

64
. (1.11)

From the SFT perspective, a0 comes entirely from the worldsheet diagram that involves a

disc with two closed string insertions, whereas a1 includes contributions from an annulus

with one closed string insertion, and the Jacobian factor due to the change of integration

variables from open string collective modes to the D-instanton moduli. The constant a2,

having the most complicated origin, includes contributions from worldsheet diagrams of

the topology of a 3-holed sphere or a 1-holed torus.

In Section 1.3, we apply our results on certain connected worldsheet diagrams (with

boundary) appearing in D-instanton perturbation theory to analyze the single D-instanton

contribution to N -point MRV amplitudes. In particular, we obtain the leading-order con-

tribution and the full momentum dependence of the next-to-leading order contribution.

This includes the 6-point 14-derivative order MRV amplitude considered in [49], pinning
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down a previously unknown coefficient.4

In Section 1.4, we analyze the contribution from a D-instanton/anti-D-instanton pair,

at leading order in the open string expansion, namely M (1,1)
0 in (1.7). The main new idea

here is the nontrivial measure on the instanton moduli space, as determined from the

annulus diagram with two boundary components on the D- and anti-D-instanton respec-

tively. We will see that the moduli space integrand is singular at finite distance from the

origin, and that the on-shell computation of M (1,1)
0 is ill-defined. This is perhaps unsur-

prising given that the precise definition of M (1,1)
0 requires a (as of yet unknown) prescrip-

tion for summing up the perturbative closed string amplitudes. Nonetheless, we will ar-

gue that the leading term in the momentum expansion of M (1,1)
0 is unambiguously deter-

mined by the integration over the instanton moduli space at asymptotically large separa-

tion between the D- and anti-D-instanton, giving the result

1

α′3stu
M (1,1)

0 (α′s,α′t) = −2−11α′3(s3 + t3 + u3) +O(α′4) . (1.12)

This confirms, in a highly nontrivial manner, a prediction of S-duality for the D6R4 effec-

tive coupling [50].

Furthermore, in Section 1.5, we perform a check of non-perturbative unitarity for D-

instanton scattering amplitudes. In particular, we demonstrate that certain terms in

the low energy expansion of M (1,1)
0 have non-analytic dependence on the momenta, and

are related to amplitudes mediated by a single D-instanton or anti-D-instanton, namely

M (1,0)
0 or M (0,1)

0 , through unitarity cuts.

4This coefficient is c1 in the notation of [49], section 6.
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1.2 Effects of a single D-instanton

Before we begin, let us outline our conventions for superamplitudes in type IIB string

theory following the spinor helicity formalism of [51]. Given a massless external particle

i, its momentum pi can be expressed in terms of auxiliary spinor helicity variables λαia

according to

pµi (γµ)
αβ = λαiaλ

βa
i , (1.13)

where α denotes an SO(1, 9) 16-dimensional chiral spinor index, and a denotes an SO(8)

little group index. Using these variables, we can also construct the supermomenta

qαi+ = λαiaη
a
i , qαi− = λαai

∂

∂ηai
, (1.14)

where ηai is a Grassmann odd object satisfying {ηai , ∂
∂ηbi

} = δab . From this, it follows that

the supercharges

Qα
+ =

∑

i

qαi+, Qα
− =

∑

i

qαi− , (1.15)

satisfy the N = (2, 0) super-Poincaré algebra

{Qα
+, Q

β
−} = −(γµ)

αβPµ , (1.16)

where Pµ =
∑

i p
µ
i is the total momentum.

The 28 = 256 one-particle states of the supergraviton multiplet can be embedded into a

superstate

Φi = Φ(0)
i + ηai Φ

(1)
ia +

1

2!
ηai η

b
iΦ

(2)
iab + · · ·+ 1

8!
ηa1i · · · ηa8i Φ(8)

ia1···a8 .
(1.17)
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Each of the components is assigned a definite weight qR under the U(1)R that acts as an

outer-automorphism of the supersymmetry algebra in (1.16), which also appears as an

accidental R-symmetry in the low energy limit. We shall take Φi to have weight qR = −1

and η to have weight qR = −1
4 , which fixes the weights of the rest of the components. Of

particular interest are the axion-dilaton δτ and its complex-conjugate δτ̄ , which appear at

the ends of the multiplet as

Φ(0)
i = |δτ, pi〉 , Φ(8)

ia1···a8 = εa1···a8 |δτ̄ , pi〉 , (1.18)

where |δτ, pi〉 and |δτ̄ , pi〉 are the associated 1-particle states. From this it follows that δτ

transforms with weight qR = −1 and δτ̄ with weight qR = +1.

Given a set of external superstates, it is meaningful to talk about the superamplitude

A(Φi), which generically takes the form

A(Φi) = i(2π)10δ10(P )Q16
+ F(λi, ηi) , (1.19)

where Q16
± is defined as

Q16
± =

1

16!
εα1···α16Q

α1
± · · ·Qα16

± . (1.20)

The superamplitude is constrained by supersymmetry to obey various Ward identities,

which can be conveniently packaged into the expression

δ10(P )Q16
+ Qα

−F(λi, ηi) = 0 . (1.21)
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Now consider the case of 2 → 2 supergraviton scattering. Here, supersymmetry con-

strains the superamplitude to take the form

A2→2(Φi) = i(2π)10δ10(P )Q16
+ F (s, t) , (1.22)

where F (s, t) is a single function of the Mandelstam variables

s = −(p1 + p2)
2, t = −(p1 + p3)

2, u = −(p1 + p4)
2 . (1.23)

1.2.1 Diagrammatic expansion

In the on-shell approach, we define the contribution of a single D-instanton to the 2→2

supergraviton scattering amplitude as5

A(1,0)
2→2 = NDe

2πiτ
∫

d10xd16θ
∞∑

L=0

τ−L
2 A(L)

2→2(x, θ) , (1.24)

where the superscript (n,m) = (1, 0) labels the number of D-instantons n and number

of anti-D-instantons m. The super-moduli space M̃1,0 = R10|16 is parameterized by ten

bosonic collective coordinates xµ and sixteen fermionic collective coordinates θα. τ is the

vacuum expectation value of the axion-dilaton field, defined in such a way that it trans-

forms in the Möbius form with respect to the low energy SL(2,R) symmetry. The overall

normalization of the measure on super-moduli space, namely the factor ND, a priori de-

pends on τ and is not fixed by consideration of unitarity alone. Note that it can be deter-

mined either in the on-shell formalism with the assumption of S-duality [7], or from first
5For a summary of our worldsheet conventions, see Appendix A.1.
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principles in the string field theory formalism [31,32].

The integrand on the RHS of (1.24) takes the form of a sum over worldsheet diagrams

with four insertions of the supergraviton vertex operators. The e2πiτ factor comes from

the exponentiated empty disc diagram.6 The sum over empty annuli exponentiates to

some constant of order τ02 , which has been absorbed into the overall normalization ND.

The function A(L)
2→2(x, θ) captures the contribution from the remaining components of

the worldsheet diagrams with Euler characteristic −L (taking into account −1 from each

puncture), including empty connected components with negative Euler characteristic.

The leading-order term of (1.24) receives contributions from four disconnected discs,

each with a single puncture:

A(1,0)
2→2

∣∣∣
LO

= NDe
2πiτ

∫
d10xd16θ . (1.25)

Here, a black cross denotes the vertex operator associated to a general state of the super-

graviton multiplet. The worldsheet diagrams have boundary conditions set by the (1, 0)

D-instanton, as represented by the blue boundary. In particular, the bosonic worldsheet

matter fields satisfy Xµ|∂Σ = xµ. The dependence on the fermionic collective coordinates

is introduced through the insertion of the R sector boundary deformation

e−∆SWS,R(θ) ≡
∞∑

j=0

1

(2j)!

[
θα(γ

µ)αβ
∫

∂Σ
dx i∂Xµ(x) e

+ 1
2φSβ

]j [
θα

∫

∂Σ
dx e−

1
2φSα(x)

]j
.

(1.26)

6The worldsheet computation is performed for τ1 = 0, whose result generalizes straightfor-
wardly to nonzero τ1.
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At next-to-leading order in τ−1
2 , the D-instanton now contributes as

A(1,0)
2→2

∣∣∣
NLO

= NDe
2πiτ

∫
d10xd16θ

{
+

+ +

}
,

(1.27)

which includes several new topologies, including the 2-punctured disc, the 1-punctured

annulus, and several empty diagrams; namely, the 1-holed torus and the 3-holed sphere.

Contributions from the empty diagrams can be interpreted as order τ−1
2 corrections to the

D-instanton action −2πiτ . However, spacetime supersymmetry implies that the action is

not renormalized, and so we expect all higher-order empty diagrams to vanish.

1.2.2 Integration over the D-instanton moduli

For the case of the single D-instanton, it is possible to handle integration over the mod-

uli before computing any worldsheet diagrams. Let us first turn tackle the effects of the

bosonic moduli xµ. Each of the closed string vertex operators depends on the zero mode

of Xµ as eipi·x, and so A(L)
2→2(x, θ) necessarily takes the form eiP ·xf(θ), where f(θ) is inde-

pendent of xµ. Integrating over xµ thus gives f(θ) multiplied by a momentum-conserving

delta function i(2π)10δ10(P ), where the factor of i arises from Wick rotation to Lorentzian

signature. In this way, integration over the bosonic moduli restores the target space trans-

lation symmetry.

Next let us turn our attention to the fermionic moduli. Performing the Berezin integral

over θα gives
∫

d16θ e−∆SWS,R(θ) = π16Q̂16
− , (1.28)
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where the operator Q̂16
− is given by a formal product over the broken supercharges

Q̂16
± ≡ 1

16!
εα1···α16 Q̂

α1

(+ 1
2 ),±

Q̂α2

(− 1
2 ),±

· · · Q̂α15

(+ 1
2 ),±

Q̂α16

(− 1
2 ),±

, (1.29)

with Q̂α
(± 1

2 ),±
taking the form of an integrated picture-(±1

2) supercurrent along the bound-

ary ∂Σ, as defined in Appendix A.1.2. (For brevity we shall drop picture subscript when-

ever both choices apply.) The RHS of (1.29) is ill-defined due to divergences arising from

operator collisions on the boundary. It can be rendered well-defined by separately de-

forming each of the contours into the bulk, while keeping them away from one another

as well as any closed string vertex operators.7 The expression in (1.29) should thus be

interpreted as an ordered product of contours in the bulk, with the contour of a given op-

erator surrounding those of its neighbors on the right, and in turn being surrounded by

those of its neighbors on the left. Note that while Q̂16
± requires a choice of ordering to be

well-defined, the individual supercharges anti-commute, and so the operator is ultimately

free of possible ordering ambiguities.

Similar to the bosonic moduli, integration over the fermionic moduli is generally ex-

pected to restore spacetime supersymmetry. This can be observed in practice by shrink-

ing the contours of Q̂16
− on the vertex operators and determining the supersymmetry

transformation of the 1-particle states. For simplicity, we shall restrict our attention to

the η81η83 component of the superamplitude, which corresponds to the axion-dilaton scat-

7To be precise, in deforming the contour of Q̂α
− from the boundary into the bulk, the operator

becomes a generic linear combination of the form Q̂α
−+aQ̂α

+ with a ∈ C. This is related to the fact
that the Q̂α

+ uniquely correspond to the supercharges preserved (annihilated) by the D-instanton
boundary condition, whereas the “broken supercharges” are a priori ambiguous. We shall find it
convenient to set a = 0, referring to Q̂α

− as the broken supercharges.
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tering process δτ̄(p1)δτ(p2) → δτ̄(p3)δτ(p4). The action of the supercharge on the axion-

dilaton vertex operators Vδτ/δτ̄(p) ≡ 1√
2
(Vδτ1(p) ± iVδτ2(p)) is given by

Q̂α
(− 1

2 ),∓
Vδτ1(p) ± iQ̂α

(+ 1
2 ),∓

Vδτ2(p) = QBΛ (1.30)

for some vertex operator Λ. In other words, the preserved supercharges Q̂α
+ annihilate

Vδτ̄(p) and the broken supercharges Q̂α
− annihilate Vδτ(p), up to the addition of BRST-

exact terms. (Such terms do not contribute to the unambiguous part of this amplitude,

and so we shall ignore them in the following discussion.) Consequently, the non-vanishing

configurations are given by eight of the broken supercharges acting on Vδτ̄(p1) and the

other eight on Vδτ̄(p3), which converts each of them to Vδτ(pi) for pi = 1, 3 together with

an overall kinematic factor proportional to (p1 · p3)4.

In order to determine its precise value, it is simplest to work in the center-of-mass

(COM) frame where the momenta of the closed strings are

pµ1 = E(1, 0, . . . , 0, 1)µ ,

pµ2 = E(1, 0, . . . , 0,−1)µ ,

pµ3 = E(−1, 0, . . . , sin θ, cos θ)µ ,

pµ4 = E(−1, 0, . . . ,− sin θ,− cos θ)µ ,

(1.31)

where 2E is the COM energy and θ is the scattering angle. In this frame, the action of
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the super-Poincaré algebra for δτ̄(p1) reduces to

{Q̂α
(± 1

2 ),−
, Q̂β

(∓ 1
2 ),−

}Vδτ̄(p1) = 2E




08×8 08×8

08×8 18×8





αβ

Vδτ̄(p1) . (1.32)

From this, we observe that Q̂9,··· ,16
− act as lowering operators on the supergraviton multi-

plet associated to δτ̄(p1), whereas Q̂1,...,8
− annihilate the entire multiplet. This implies that

there is a unique nontrivial configuration of supercharges in the COM frame, with Q̂9,··· ,16
−

acting on Vδτ̄(p1) and Q̂1,...,8
− on Vδτ̄(p3), both of which are proportional to Vδτ(p1). Using

(1.32), we find

Q̂9
(+ 1

2 ),−
Q̂10

(− 1
2 ),−

· · · Q̂15
(+ 1

2 ),−
Q̂16

(− 1
2 ),−

Vδτ̄(p1) = 16E4 Vδτ(p1) .
(1.33)

In order to determine the action of the broken supercharges on Vδτ̄(p3), we perform a θ

clockwise rotation in the 89 plane combined with a time reversal such that pµ3 → pµ
′

3 = pµ1 .

As chiral spinors, the supercharges transform under this rotation as




Q̂α

(± 1
2 ),−

Q̂α+8
(± 1

2 ),−



→




Q̂α′

(± 1
2 ),−

Q̂α′+8
(± 1

2 ),−



 =





cos( θ2) − sin( θ2)

sin( θ2) cos( θ2)








Q̂α

(± 1
2 ),−

Q̂α+8
(± 1

2 ),−



 , α = 1, . . . 8 . (1.34)

The supercharges in the rotated frame obey the same commutation relations as in (1.32)

up to an irrelevant factor of i, with δτ̄(p1) replaced by δτ̄(p3). This implies that the ro-

tated supercharges Q̂α′=9,...,16
− act as lowering operators on δτ̄(p3), while Q̂α′=1,...,8

− anni-

hilate it. The original supercharges are given by linear combinations of the rotated ones,
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and so using (the inverse of) (1.34) we have

Q̂1
(+ 1

2 ),−
Q̂2

(− 1
2 ),−

· · · Q̂7
(+ 1

2 ),−
Q̂8

(− 1
2 ),−

Vδτ̄(p3) = 16E4 cos8( θ2) Vδτ(p3) .
(1.35)

Using (1.32) and (1.34), we find the desired result for the action of Q̂16
− on the vertex

operators, namely

Q̂16
−
(
Vδτ̄(p1) Vδτ(p2) Vδτ̄(p3) Vδτ(p4)

)
= t4 Vδτ(p1) Vδτ(p2) Vδτ(p3) Vδτ(p4) ,

(1.36)

where 256E8 cos( θ2)
8 has been replaced by the manifestly Lorentz-invariant quantity t4 =

(p1 + p3)8. In arriving at this expression, we have exploited the fact that our argument

does not rely on the ordering of the supercharges; consequently, the different orderings

contribute a factor of 16! that cancels a similar factor in the numerator of (1.29). We can

identify the t4 factor in (1.36) as precisely the η81η83 component of the superamplitude

contained in the supersymmetry factor

Q16
+ = η81η

8
2s

4 + η81η
8
3t

4 + η81η
8
4u

4 + · · · , (1.37)

where · · · captures contributions from other states in the multiplet and

η8i ≡ εa1···a8η
a1
i · · · ηa8i . (1.38)

Generalizing our results from integration over the bosonic moduli and fermionic mod-

uli in (1.36), we find that the D-instanton contribution to the superamplitude in (1.24)
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reduces to8

A(1,0)
2→2 = i(2π)10δ10(P )Q16

+ π16ND e2πiτ
∞∑

L=0

τ−L
2 A(L)

2→2 . (1.39)

Here, A(L)
2→2 captures D-instanton contributions to the axion-dilaton amplitude from world-

sheet diagrams with Euler characteristic −L (with the empty disc and annulus excluded),

and with fixed boundary conditions for Xµ such that xµ = 0. In other words, the D-

instanton contribution to the entire superamplitude is captured by diagrams involving

only the axion-dilaton states δτ(pi) with vertex operators Vδτ(pi), supplemented by the

momentum-conserving delta function i(2π)10δ10(P ) as well as an overall kinematic factor

Q16
+ corresponding to conservation of super-momentum.

1.2.3 Leading order contribution

We now compute the leading order contribution from a single D-instanton to the 2 → 2

scattering amplitude. Unless otherwise specified, we work in units where α′ = 1. Follow-

ing (1.39) with L = 0, it is given by

A(1,0)
2→2

∣∣∣
LO

= i(2π)10δ10(P )Q16
+ e2πiτND . (1.40)

Consider the disc 1-point amplitude AD2

δτ for δτ with boundary lying on the D-instanton.

The PSL(2,R) gauge redundancy can be used to fix the closed string puncture to z = i.

Without any additional closed/open string insertions, there is a residual U(1) that rotates

8We emphasize that although this result was derived for a specific component of the 4-point
superamplitude, the appearance of Q̂16

− indicates that the same type of argument should hold for
any choice of asymptotic states. That is, all of the vertex operators are converted to Vδτ(pi), with
the kinematic factor t4 corresponding to the η81η83 component replaced by the analogous quantity
in Q16

+ (1.37).
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D2 around its origin, i.e. leaves the closed string puncture at z = i invariant. It can be

accounted for by dividing by the volume of the gauge group Vol(U(1)) = 2π, whose nor-

malization is unambiguous with respect to the open-closed disc 2-point amplitude. It is

also necessary to insert c0 to soak up the remaining zero mode of c(z) in the bc path in-

tegral. Finally, due to the picture anomaly of the disc, the open/closed insertions must

have a total picture of −2 (holomorphic and antiholomorphic picture are not separately

conserved).

First consider the contribution of the dilaton. We shall work with the NSNS vertex

operator in picture (−1,−1). Using the doubling trick, we can replace all of the antiholo-

morphic operators in the upper half plane with their holomorphic counterparts at the

reflected point in the lower half plane. In doing so, we must also include any phase fac-

tors present in the boundary conditions relating the holomorphic and antiholomorphic

operators. For the NSNS vertex operator, this gives an overall factor of −1 from the re-

placement ψ̃µ(−i) → −ψµ(−i). It follows that disc diagram is

−gcCD2

2π
eµν(p)

〈
∂cce−φψµeip·XL(i) ce−φψνe−ip·XL(−i)

〉

chiral
=

√
2gcCD2

π
, (1.41)

where gc is the closed string coupling, and CD2 is a constant multiplying all disc correla-

tors that cannot be fixed purely from CFT considerations. Here, 〈·〉chiral stands for the S2

correlator evaluated in the chiral sector of the CFT, i.e. only for holomorphic operators.

It is normalized such that

〈c(z1)c(z2)c(z3)e−2φ(z)〉chiral = z12z13z23 . (1.42)
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where Xµ
L is defined as the holomorphic part of Xµ with the zero mode removed. In writ-

ing the above expression, we have used ηµνeµν(p) = 2
√
2, which follows from our normal-

ization conventions for the dilaton polarization tensor in (A.28).

Next we turn our attention to the contribution of the axion. Strictly speaking, it is ill-

defined since the RR vertex operator appears in the (−1
2 ,−

1
2) picture; even so, there are

various ways to assign it a definitive value. For instance, in certain circumstances one can

define an “inverse” PCO that carries picture −1. We shall take a more natural approach

from the on-shell perspective as follows. Consider the disc 2-point diagram for one closed

string insertion with momentum pµ as well as a bosonic collective coordinate δxµ. The

vertex operator for δxµ is proportional to c∂Xµ in the 0-picture, and so the 2-point dia-

gram necessarily factorizes into a product of the closed string 1-point diagram together

with a universal kinematic factor proportional to pµ. The axion 1-point diagram can then

be defined as the 2-point diagram for δτ1(p) divided by this factor.

For instance, consider the 2-point diagram for δτ2(p). The results do not depend on the

choice of picture, and so we work with the NSNS vertex operator in the (0,−1) picture

and δxµ in the (−1)-picture, given by ce−φψµ. The residual PSL(2,R) gauge redundancy

can be used to fix the closed string vertex operator to z = i and the open string vertex

operator to z = 0. The doubling trick in this case gives the same factor of −1 from the

antiholomorphic fermion. It follows that the diagram reads

√
2gcCD2eσρ(p)

〈
ce−φψµ(0) c(i∂Xσ

L + 1
2p · ψψ

σ)eip·XL(i) ce−φψρe−ip·XL(−i)
〉

chiral

= 2gcCD2pµ .

(1.43)
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In evaluating the correlator, we made use of the fact that transversality pµeµν(p) = 0 to-

gether with the mass-shell constraint p2 = 0 imply that the Xµ CFT does not contribute.

Comparing this to 1-point diagram in (1.41), we find that the kinematic factor is

√
2πpµ . (1.44)

Now let us return to the case of the axion, which we take to be in the (−1
2 ,−

1
2)-picture.

The vertex operator insertions are arranged in the same fashion as before. Here, the dou-

bling trick gives a factor of −i from the replacement S̃β(i) → −iSβ(−i), and so the dia-

gram yields

igcCD2fαβ(p)
〈
ce−φψµ(0) ce−

1
2φSαeip·XL(i) ce−

1
2φSβe−ip·XL(−i)

〉

chiral

= 2igcCD2pµ .

(1.45)

Note that the axion polarization tensor contributes through tr (/pγµ) = 16pµ. From this,

we can divide by
√
2πpµ to extract the desired disc 1-point diagram

i

√
2gcCD2

π
. (1.46)

The disc 1-point diagram for the axion-dilaton can be determined from Vδτ = 1√
2
(Vδτ1 +

iVδτ2). Using the disc 1-point results from (1.41) and (1.46), we find that the diagram

takes the form

AD2

δτ = i
2
√
2gcCD2

π
. (1.47)

The leading contribution of a single D-instanton to the 4-point amplitude follows from
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a straightforward application of (1.39) together with four copies of the disc 1-point dia-

gram (1.47). This involves several constants, which can be related to Newton’s coupling

κ as well as the dilaton expectation value τ−1
2 . The disc constant CD2 , which is propor-

tional to the tension of the D-instanton, can be fixed by unitarity of the perturbative

string S-matrix. In our conventions, it reads [3, 52]

CD2 = 4π3τ2 . (1.48)

Meanwhile, Newton’s constant and the dilaton VEV are related to the closed string cou-

pling by [52]

κ2 = (2πgc)
2 =

1

2
(2π)7α′4τ−2

2 . (1.49)

Finally, we need the value of the moduli space measure

ND = 2−18π−26α′−1τ
− 7

2
2 , (1.50)

as formally determined by the exponential of the empty annulus diagram. While inacces-

sible to the on-shell approach, it can be derived from first principles in the string field

theory formalism. (This was first done in [32] and was shown to be consistent with the

expectation from S-duality.) It follows that the contribution to the 2→2 amplitude is

A(1,0)
2→2

∣∣∣
LO

= i(2π)10δ10(P )Q16
+
πα′3κ2

16
e2πiτ τ

− 3
2

2 . (1.51)
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Vδτ(p)(i)

Vδτ(k)(iy)

0

By

z

Figure 1.1: The two-punctured disc represented as the upper half plane with global coordinate
z. One vertex operator Vδτ(p) is fixed at position z = i while the second vertex operator Vδτ(k) is
fixed at position z = iy, integrating over the modulus y ∈ [0, 1]. The b ghost contour By surrounds
the integrated vertex operator as drawn.

1.2.4 Next-to-leading order contribution

The next-to-leading order contribution from a single D-instanton to the 2 → 2 scattering

amplitude consists of the following worldsheet diagrams,

A(1,0)
2→2

∣∣∣
NLO

= i(2π)10δ10(P )Q16
+ e2πiτND

{
+

+ +

}
,

(1.52)

which includes a sum over distinct permutations of the on-shell closed string vertex opera-

tor insertions Vδτ(pi) with i = 1, . . . , 4. Out of these new topologies, only the disc 2-point

diagram AD2

δτδτ gives nonvanishing contribution. (This is demonstrated explicitly for the

annulus 1-point diagram in Appendix A.3).

Consider the disc diagram containing two insertions of δτ . The residual PSL(2,R)
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gauge redundancy can be used to fix one closed string puncture to z = i and the other

to z = iy with 0 ≤ y ≤ 1, as shown in Figure 1.1. Under this choice, the diagram reads

AD2

δτ(p)δτ(k) =

∫ 1

0
dy
〈
By V

(−1)
δτ(p)(i,−i)V (−1)

δτ(k)(iy,−iy)
〉D2

xµ=0
. (1.53)

where each vertex operator is taken to have total picture −1. In particular, we work

with the NSNS vertex operator in picture (0,−1) and the RR vertex operator in picture

(−1
2 ,−

1
2). The b ghost insertion By accompanying the modulus y takes the form

By =
1

2π

∮

Ciy

(
dz b(z) + dz̄ b̃(z̄)

)
, (1.54)

where the contour Ciy surrounds the puncture at z = iy. Each vertex operator takes the

form Vδτ(p) = cc̃ Uδτ(p) plus terms with nonzero η, ξ charge that do not contribute to the

amplitude. It follows that the contribution of the b,c ghost system is

〈By cc̃(i,−i) cc̃(iy,−iy)〉D
2

0 = −4(1− y2) , (1.55)

and so the amplitude reduces to

AD2

δτ(p)δτ(k) = −4

∫ 1

0
dy (1− y2) 〈c−1c0c1 Uδτ (i,−i)Uδτ (iy,−iy)〉D

2

xµ=0 , (1.56)

where the inclusion of c−1c0c1 ensures that the correlator evaluated in the full matter+ghost

CFT is nonzero.
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We first evaluate the amplitude for two axions, which contribute to (1.56) as

4g2cf
(0)
αβ (p)f

(0)
γδ (k)

∫ 1

0
dy (1− y2)

〈
c−1c0c1 e

− 1
2φSαeip·XL(i) e−

1
2φSβe−ip·XL(−i)

e−
1
2φSγeik·XL(iy) e−

1
2φSδe−ik·XL(−iy)

〉

chiral
,

(1.57)

where the doubling trick provides an overall factor of −1 from the two antiholomorphic

spin fields (A.42). This correlator can be evaluated using (A.53) together with Wick con-

tractions for the free fields in the Xµ CFT, which gives

− 1

2
g2cCD2

∫ 1

0
dy

(
1− y

1 + y

)p·k [tr {f(p)γµ} tr {f (0)(k)γµ}
y

+
2 tr

{
f (0)(p)γµ[f (0)(k) + f (0)(k)T ]γµ

}

y(1− y2)

+
2 tr

{
f (0)(p)γµ[f (0)(k)− f (0)(k)T ]γµ

}

(1− y2)

]
.

(1.58)

After specializing to the axion polarization tensor (A.29), we are left with

− 1

64
g2cCD2

∫ 1

0
dy

(
1− y

1 + y

)p·k (4 tr (/pγµ/kγµ)

y(1− y2)
+

tr (/pγµ) tr (/kγµ)

y

)

= 4g2cCD2I(p · k) ,

(1.59)

where we have introduced the worldsheet integral

I(s) ≡ s

∫ 1

0
dy

(1 + y2)(1− y)s−1

y(1 + y)s+1
. (1.60)

33



Next consider the contribution from one axion and one dilaton to (1.56), as given by

4
√
2g2cCD2eµν(p)f

(0)
αβ (k)

∫ 1

0
dy (1− y)2

〈
c−1c0c1

(
i∂Xµ

L +
1

2
p · ψψµ

)
eip·XL(i)

× e−φψνe−ip·XL(−i) e−
1
2φSαeik·XL(iy) e−

1
2φSβe−ik·XL(−iy)

〉

chiral
.

(1.61)

The correlator can be simplified by applying the Ward identities for the translation cur-

rent ∂Xµ
L and the Lorentz current ψµψν , which give

4
√
2g2cCD2eµν(p)f

(0)
αβ (k)

∫ 1

0
dy (1− y)2

(
Mµν
σ δαγ δ

β
δ + δνσN

µ;αβ
γδ

)

×
〈
c−1c0c1 e

ip·XL(i) e−φψσe−ip·XL(−i)

e−
1
2φSγeik·XL(iy) e−

1
2φSδe−ik·X(−iy)

〉

chiral
,

(1.62)

where M and N are c-number tensor structures arising from the Poincaré algebra,

Mµν
σ =

1

2

(
kµδνσ
i− iy

+
−kµδνσ
i+ iy

+
ηµνpσ − pνδµσ

2i

)
,

Nµ;αβ
γδ = −1

4

(
pσ(γσµ)αγδ

β
δ

i− iy
+

pσ(γσµ)
β
δδ
α
γ

i+ iy

)
.

(1.63)

The resulting correlator in (1.62) is readily evaluated using (A.52), from which it follows

that the tensor structures simply to give

2
√
2g2cCD2eµν(p)f

(0)
αβ (k)

∫ 1

0
dy

(
1− y

1 + y

)p·k (
/p
αβηµν

1 + y2

y − y3
− 4kµ(γν)αβ

1

1− y2

)
. (1.64)
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Specializing to the axion and dilaton polarization tensors, we are left with

4g2cCD2

(
I(p · k)− eµν(p)kµkν√

2p · k

)
. (1.65)

Lastly, consider the contribution of two dilatons to (1.56)

−8g2cCD2eµν(p)eσρ(k)

×
∫ 1

0
dy (1− y)2

〈
c−1c0c1 (i∂X

µ
L + 1

2p · ψψ
µ)eip·XL(i) e−φψνe−ip·XL(−i)

(i∂Xρ
L + 1

2k · ψψρ)eik·XL(iy) e−φψσe−ik·XL(−iy)

〉

chiral
.

(1.66)

Carrying out the appropriate Wick contractions gives

− 4g2cCD2 (p · k)
∫ 1

0
dy

1

y

(
1− y

1 + y

)p·k−1

+ 4
√
2g2cCD2 (eµν(p)k

µkν + eσρ(k)p
σpρ)

∫ 1

0
dy

(1− y)p·k−1

(1 + y)p·k+1

+ 4g2cCD2eµν(p)e
µν(k)

∫ 1

0
dy

∂

∂y

(
y(1 + y)p·k−2

(1− y)p·k

)
.

(1.67)

The form of the integral in the first line can be massaged to give I(p · k) + 1, while the

other integrals can be evaluated directly, with the one in the third line vanishing alto-

gether. After specializing to the dilaton polarization tensor, the contribution reduces to

−4g2cCD2

(
I(p · k) + 1− eσρ(p)kσkρ + eσρ(k)pσpρ√

2p · k

)
. (1.68)

Using (1.59), (1.68), and (1.65), it follows that the axion-dilaton disc 2-point amplitude
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Figure 1.2: The limit y → 0, where the 2-punctured disc degenerates into two 1-punctured discs
glued together by an infinitely long strip.

is

AD2

δτ(p)δτ(k) = 2g2cCD2

(
4I(p · k) + 1− 2

eσρ(p)kσkρ + eσρ(k)pσpρ√
2p · k

)
. (1.69)

The integral I(p · k) as defined in (1.60) diverges logarithmically near the boundary of

moduli space y = 0 as

p · k
∫

0

dy

y
, (1.70)

which occurs when the disc with two bulk punctures degenerates into two separate discs,

each with a single bulk puncture, connected via an infinitely long strip, as shown in Fig-

ure 1.2. As mentioned in the Introduction, this limit corresponds to intermediate “mass-

less” open string states with L0 = 0, which formally contribute ∞ to the amplitude. In

the SFT approach, such massless states are forbidden from propagating, and so the ampli-

tude is manifestly finite. In the naive on-shell prescription, such divergences can be tamed

by implementing a cutoff ε > 0. The regularized integral then evaluates to

I(p · k) → p · k
∫ 1

ε
dy

(1 + y2)(1− y)p·k−1

y(1 + y)p·k+1

= −p · k
(
ψ(1 + 1

2p · k) + γ + log(4ε)
)
+ 1,

(1.71)

where γ = 0.577 . . . is the Euler–Mascheroni constant and ψ(z) = ∂z logΓ(z) is the
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digamma function. From this, it follows that the disc 2-point amplitude is

AD2

δτ(p)δτ(k) = 2g2cCD2

[
5−

√
2
eσρ(p)kσkρ + eσρ(k)pσpρ

p · k

− 4α′(p · k)
(
ψ(1 + 1

2p · k) + γ + log(4ε)
) ]

.

(1.72)

We now have all the ingredients necessary to assemble the next-to-leading order D-

instanton contribution to the 4-point amplitude. To find the contribution of the disc 2-

point diagram, we are instructed to sum over distinct pairs of vertex operators Vδτ(pi)Vδτ(pj)

with 1 ≤ i < j ≤ 4 and multiply the result by two copies of the disc 1-point diagram

(1.47). Using momentum conservation, it follows that

∑

1≤i<j≤4

pi · pj = 0 ,

∑

1≤i<j≤4

eµν(pi)p
µ
j p

ν
j + eµν(pj)p

µ
i p

ν
i

pi · pj
=

√
8 .

(1.73)

and so the final amplitude is independent of the dilaton polarization tensor, as expected.

The annulus 1-point diagram vanishes, as do the contributions from the 1-holed torus and

3-holed sphere. Consequently, the 4-point amplitude is given by

A(1,0)
2→2

∣∣∣
NLO

= i(2π)10δ10(P )Q16
+
α′3κ2

32
F (α′s,α′t) e2πiτ τ

− 5
2

2 , (1.74)

where

F (α′s,α′t) ≡ 32C1 − α′sψ(1− α′s
4 )− α′tψ(1− α′t

4 )− α′uψ(1− α′u
4 ) . (1.75)
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In writing this result, we have grouped the constant terms which contribute at leading

order in the momentum expansion into 32C1. As we will discuss in the next section, such

terms are ambiguous in the on-shell approach.

1.2.5 An ambiguity and its tension with supersymmetry

In general, D-instanton amplitudes as computed from the on-shell prescription suffer

from ambiguities related to the choice of regularization scheme. This is to be contrasted

with perturbative string amplitudes for on-shell external states which, barring any spuri-

ous singularities, are independent of such data. For our choice of regularization scheme,

these ambiguities partially manifest themselves in the choice of PCO locations. Normally,

amplitudes with different arrangement of PCOs can differ by at most a boundary term

in the worldsheet moduli space. However, it is precisely these types of boundary terms

which are divergent in the naive formulation of D-instanton perturbation theory, and so

can lead to regulator-dependent discrepancies.

For the specific amplitudes under consideration, this ambiguity manifests itself as an

unknown momentum-independent constant at next-to-leading order in τ−1
2 , as denoted

by C1. As we shall soon see, this ambiguity is in tension with spacetime supersymmetry.

One approach to mend this issue is to abandon the on-shell prescription altogether, as

string field theory is free of such ambiguities. Instead of computing any off-shell quanti-

ties directly, we shall take a slightly more modest approach and simply demand that the

physical amplitude respects supersymmetry. This turns out to be sufficient to pin down

the exact value of C1.
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The relevant object of study here is the coefficient f0(τ, τ̄) multiplying the R4 vertex.9

As mentioned in the Introduction, this coefficient, as well as those of D4R4 and D6R4, is

constrained by supersymmetry to obey a second order differential equation on the moduli

space of vacua. A particularly elegant method of deriving these constraints can be found

in [48], whose logic we briefly summarize as follows. The basic idea is to analyze the con-

straints imposed by supersymmetry and unitarity on the factorization of supergraviton

scattering amplitudes. For the R4 coefficient, the relevant object of study is the 6-point

amplitude. Dimensional analysis implies that it can only factorize through a single R4

vertex and a pair of cubic supergravity vertices. The δτδτ̄R4 coupling can then be ex-

tracted by taking the soft limit where the momenta of δτ and δτ̄ are taken to zero. From

this it follows that the coupling is necessarily proportional to τ22 ∂τ∂τ̄f0, where the factor

of τ22 arises from the normalization of the axion-dilaton kinetic term. Supersymmetry dic-

tates that there is no independent δτδτ̄R4 coupling, and so it must be proportional to f0

itself. The constant of proportionality can then be fixed by comparing with the R4 cou-

pling in any supersymmetric theory, such as type IIB string theory, which results in the

differential equation [48]
(
τ22 ∂τ∂τ̄ −

3

16

)
f0(τ, τ̄) = 0 . (1.76)

In order to understand the implications of (1.76) for our D-instanton results, it is first

necessary to recast the amplitudes in a manifestly SL(2,Z) invariant form, which can be

9Recall that fi(τ, τ̄) enter into the expansion of M(s, t; τ, τ̄), defined as the ratio of A2→2 to
the supergravity contribution ASUGRA

2→2 .
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accomplished by factoring out the type IIB supergravity contribution

ASUGRA
2→2 = i(2π)10δ10(P )Q16

+
κ2

stu
τ
− 3

2
2

(1.77)

and working with the Mandelstam variables in units of the ten-dimensional Planck mass

α′s = sτ
1
2
2 , α′t = tτ

1
2
2 , α′u = uτ

1
2
2 . (1.78)

Upon inspecting (1.51), we find that the leading-order contribution of a single D-instanton

is

1

α′3stu
e2πiτM (1,0)

0 (α′s,α′t) =
π

16
. (1.79)

Similarly, from (1.74) we have that the next-to-leading order contribution is given by

1

α′3stu
M (1,0)

1 (α′s,α′t) =
1

32
F (α′s,α′t) . (1.80)

Together, the D-instanton amplitudes contribute to f0 via the momentum-independent

terms in (1.79) and (1.80), i.e.

e2πiτ
( π
16

+ C1τ
−1
2

)
. (1.81)

Plugging this into (1.76) then fixes the value of the constant to

C1 =
3

256
. (1.82)
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Comparison against S-duality

The next-to-leading D-instanton amplitude in (1.80) admits an expansion in powers of

momenta given by

1

α′3stu
M (1,0)

1 (α′s,α′t) =
3

256
+

∞∑

p=2

ζ(p)

23+2p
τ

p
2
2 (sp + tp + up) , (1.83)

where we have used the value of C1 = 3
256 , as determined by supersymmetry. Unlike the

constant term, the momentum-dependent terms in the sum are unambiguous and repre-

sent the leading-order single D-instanton contribution to higher-order vertices of the form

D2pR4, thus serving as a nontrivial test of S-duality. We can carry out such a test explic-

itly for the supersymmetry-protected terms, namely D4R4 and D6R4, whose coefficients

admit weak-coupling expansions of the form

211f4(τ, τ̄) = 2ζ(5)τ
3
2
2 +

4π4

135
τ
− 3

2
2 + (e2πiτ + e−2πiτ )

(
16ζ(2) +O(τ−1

2 )
)
+O(e−4πτ2),

212f6(τ, τ̄) =
2ζ(3)2

3
τ32 +

4ζ(2)ζ(3)

3
τ2 +

8ζ(2)2

5
τ−1
2 +

4ζ(6)

28
τ−3
2

+ (e2πiτ + e−2πiτ )(8ζ(3)τ
1
2
2 +O(1))− e−4πτ2

(
2τ−2

2 +O(τ−3
2 )
)

+O(e−6πτ2) .

(1.84)

The leading order D-instanton contribution to these vertices, which arises at next-to-

leading order in the open string loop expansion, can be identified as the leading terms

multiplying e2πiτ , i.e.

f (1,0)
4 (τ, τ̄)

∣∣∣
NLO

=
ζ(2)

128
e2πiτ , f (1,0)

6 (τ, τ̄)
∣∣∣
NLO

=
ζ(3)

512
e2πiτ τ

1
2
2 . (1.85)
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which precisely match with our results in (1.83) for p = 2, 3!

1.3 Higher-point MRV amplitudes

In this section, we generalize our results for the 2 → 2 scattering amplitude in Section 1.2

to higher-point supergraviton amplitudes. Recall that each component of the multiplet

has a definite weight qR under the U(1)R outer-automorphism group of the supersymme-

try algebra, which serves as an accidental global symmetry in the low energy limit. Even

though this symmetry is broken explicitly by superstring amplitudes, the degree to which

it is violated is controlled by supersymmetric Ward identities. In particular, a given N -

point amplitude is non-vanishing only if its net charge lies in the range |qR| ≤ |N − 4| [53].

We shall restrict our attention to the so-called “maximal R-symmetry violating” (MRV)

amplitudes that saturate this bound with qR = 4−N , since these share the most similari-

ties with the 4-point amplitude. In particular, they are constrained by supersymmetry to

take the form

RN (Φi) = i(2π)10δ10(P )Q16
+ RN (α′sij) , (1.86)

where R(α′sij) is a single function of the Mandelstam variables sij ≡ −(pi+pj)2. We have

labeled the amplitude by R instead of A to distinguish it from more general R-charge

assignments. Note that the η8i η8j component of RN , which corresponds to (N − 2) δτ

particles and two δτ̄ particles, can be related the same component of RN−k in the soft

limit where k copies of δτ are taken to have vanishing momentum. Consequently, these
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amplitudes admit a low energy expansion of the schematic form

RN (α′sij) = r(N)
0 (τ, τ̄) + r(N)

4 (τ, τ̄)
∑

1≤i<j≤N

s2ij

+ r(N)
6 (τ, τ̄)

∑

1≤i<j≤N

s3ij +O(s4ij) ,

(1.87)

Here, the coefficient r(N)
2p (τ, τ̄) is a weight (N − 4, 4 − N) non-holomorphic modular form

under the SL(2,Z) duality group that multiplies the (δτ)N−4D2pR4 vertex in the quan-

tum effective action. To be precise, there can be several such coefficients for each value

of p, which corresponds to the set of independent kinematic structures at each order in

the momentum expansion. Due to the aforementioned soft theorems, the coefficients for

a given value of p but different N are then related by certain differential equations in

τ . [49].10

1.3.1 D-instanton effects

Consider the contribution of a single D-instanton to the N -point MRV amplitude. For

a single D-instanton, the diagrammatics of the N -point case mirror those of the 4-point

amplitude in Section 1.2.1, with

R(1,0)
N = NDe

2πiτ
∫

d10xd16θ
∞∑

L=0

τ−L
2 R(L)

N (x, θ) , (1.88)

10As a minor note of caution, f2p is not strictly the same as r(N)
2p for N=4, since the former is

defined as a coefficient in the low energy expansion of M(s, t; τ, τ̄), with the supergravity piece
factored out, whereas the latter appears in that of the full amplitude R4(s, t).
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where R(L)
N (x, θ) captures the contributions of worldsheet diagrams of Euler characteristic

−L with D-instanton boundary conditions (x, θ). The factor of ND as well as the moduli

(x, θ) are identical to the 4-point case since they are universal to any process mediated by

a single D-instanton. It follows that integration over the xµ restores momentum conser-

vation via i(2π)10δ10(P ). Similarly, integration over the θα acts to replace δτ̄(pi)δτ̄(pj)

by δτ(pi)δτ(pj) while picking up an overall kinematic factor proportional to s2ij . This can

be explained by the fact that the δτ insertions, as the lowest components of the super-

graviton multiplet, are blind to the broken supercharges Q̂α
−. The net result is that the

amplitude takes on a familiar form

R(1,0)
N = i(2π)10δ10(P )Q16

+ π16ND e2πiτ
∞∑

L=0

τ−L
2 R(L)

N , (1.89)

where R(L)
N is a sum over worldsheet diagrams of Euler characteristic −L with fixed bound-

ary conditions xµ = 0, and with N insertions of δτ .

At leading order, the superamplitude is given by

R(1,0)
N

∣∣∣
LO

= i(2π)10δ10(P )Q16
+ e2πiτND · · ·

= i(2π)10δ10(P )Q16
+ iN

π

16
(4π)N−4 α′3κN−2 e2πiτ τ

N− 11
2

2 ,

(1.90)

which consists of N copies of the disc 1-point diagram for δτ (1.47).
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At next-to-leading order, the amplitude receives contributions from

R(1,0)
N

∣∣∣
NLO

= i(2π)10δ10(P )Q16
+ e2πiτND

{
· · · + · · ·

+ · · · + · · ·
}

= −i(2π)10δ10(P )Q16
+ iN

1

32
(4π)N−4 α′3κN−2G(α′sij) e

2πiτ τ
N− 13

2
2

(1.91)

which includes the disc 2-point diagram and the annulus 1-point diagram, as well as

the 3-holed sphere and 1-holed torus. Recall that only the disc 2-point diagram is non-

vanishing. Its contribution has been determined by summing over 1 ≤ i < j ≤ N in

(1.72) and multiplying the result by N − 2 copies of the disc 1-point diagram (1.47). In

the above expression, we have also introduced

G(α′sij) = 32C1(N)−
∑

1≤i<j≤N

α′sijψ(1− α′

4 sij) , (1.92)

where C1(N) is a momentum-independent constant that is ambiguous in the on-shell ap-

proach. It is related to the unknown constant in the 4-point amplitude by C1(4) = C1. In

the low energy expansion, the amplitude (1.91) decomposes as

R(1,0)
N

∣∣∣
NLO

= i(2π)10δ10(P )Q16
+ iN

1

32
(4π)N−4 α′3κN−2 e2πiτ τ

N− 13
2

2

×



32C1(N) +
∞∑

p=2

ζ(p)τ
p
2
2

22p−3
O(p)

N



 ,

(1.93)

where we have introduced the kinematic structures

O(p)
N ≡ 1

2

∑

1≤i<j≤N

spij . (1.94)
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For the case of 4-point scattering, they reduce to the familiar structures O(p)
4 = sp+tp+up.

Consequences of soft relations

Amplitudes in type IIB string theory have well-known soft behavior that relates ampli-

tudes in the limit where the momenta of several of the external particles are taken to

zero [54–56]. For instance, the (N + 1)-point MRV amplitude with a soft δτ(pi) is related

to the N -point MRV amplitude without this particle by

RN+1(X, δτ(pi))|pi→0 = −2iκDN−4RN (X) , (1.95)

where Dw is the modular covariant derivative that takes modular forms of weight (w, w̃)

to those of weight (w+1, w̃−1), as defined in Appendix A.2, and X denotes the remaining

N particles with finite momenta. Given the leading-order (1.90) and next-to-leading order

(1.93) D-instanton contributions, the soft theorem implies that the unknown constant

satisfies a recursion relation given by

C1(N + 1) = C1(N) +
4−N

32
. (1.96)

By inputting the boundary value C1(4) = C1 in (1.10), as fixed by supersymmetry, we

find the solution

C1(N) =
3

256
− (N − 4)(N − 5)

64
. (1.97)
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1.3.2 Implications for higher-point effective couplings

In the previous section, we found that D-instanton amplitudes have relatively simple de-

pendence on the momenta, at least for low orders in the open string loop expansion. For

instance, the leading-order contribution, which consists of a product of disc 1-point di-

agrams, has no momentum dependence whatsoever. Similarly, at next-to-leading order

the disc 2-point diagram, which involves the kinematic structures O(p)
N , entirely captures

the momentum dependence at this order. The fact that only a few kinematic structures

enter at low orders can be seen as a consequence of the diagrammatics of D-instanton per-

turbation theory, i.e. that disconnected diagrams contribute to the connected amplitude.

The structure of the diagrammatics in turn has implications for the higher-point effective

couplings, ruling out D-instanton contributions to certain kinematic structures.

For instance, consider the 6-point MRV amplitude. Using (1.86), the tree-level contri-

bution to the low-energy expansion of the amplitude takes the form [49]11

N−1
6 Rtree

6 (sij) =
15ζ(3)

2
τ

3
2
3 +

35ζ(5)

64
τ

5
2
2 O

(2)
6 +

ζ(3)2

512
τ32O

(3)
6,1 + · · · , (1.98)

where the overall normalization N6 of the amplitude is irrelevant for the following analy-

sis. In the above expression, the kinematic structure O(3)
6,1 is given by

O(3)
6,1 ≡ 1

32



10
∑

1≤i<j≤6

s3ij + 3
∑

1≤i<j<k≤6

s3ijk



 , (1.99)

where sijk = −(pi + pj + pk)2, with the underlined quantities written in Planck units.

11Our conventions for Newton’s constant are related to the ones in [49] by κours = 16κtheirs.
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Similar to the 4-point case, the first few terms in the momentum expansion of the 6-point

amplitude are protected by supersymmetry and can be determined by SL(2,Z) covari-

ance [49]. That is, the momentum expansion of the 6-point amplitude takes the form

N−1
6 R6(sij)

∣∣
analytic = r(6)0 (τ, τ̄) + r(6)4 (τ, τ̄)O(2)

6 + r(6)6,1(τ, τ̄)O
(3)
6,1 + r(6)6,2(τ, τ̄)O

(3)
6,2 + · · · ,

(1.100)

where r(6)0 , r(6)4 , r(6)6,1, r
(6)
6,2, · · · are weight (2,−2) modular forms which multiply the δτ2R4,

δτ2D4R4, δτ2D6R4,· · · terms in the quantum effective action (see Appendix A.2 for more

details). To be precise, there are two kinematic structures O(3)
6,i with i = 1, 2 that appear

in the six-point amplitude, which we refer to as (δτ)2D6
iR

4. The structure with i = 1 is

given by (1.99), while the structure with i = 2 takes the form

O(3)
6,2 ≡ 2

∑

1≤i<j≤6

s3ij −
∑

1≤i<j<k≤6

s3ijk . (1.101)

Note that the functional form of r(6)6,2(τ, τ̄) is only determined up to an overall multiplica-

tive constant c1 which cannot be fixed by the tree-level contribution and SL(2,Z)-covariance

alone.

The unknown constant can be determined using the D-instanton diagrammatics, as

discussed in the previous section, without appealing to the precise value of the amplitude.

According to (1.100) and (A.68), the single D-instanton is expected to contribute up to
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eighth order in the momentum expansion, and up to next-to-leading order in τ−1
2 as

N−1
6 R(1,0)

6 (sij) = e2πiτ
[
π3τ22 − 5π2

16
τ2 +O(1)

+

(
π2ζ(2)

8
τ22 +O(τ2)

)
O(2)

6

+
π2ζ(3)

32
τ

5
2
2 O

(3)
6,1 +

π2ζ(3)c1
96

τ
5
2
2 O

(3)
6,2 +O(τ

3
2
2 )

+O(s4ij)

]
.

(1.102)

The disc 2-point diagram is solely responsible for the nontrivial momentum dependence

at these orders, and so O(p)
6 = 1

2

∑
i<j s

p
ij is the only kinematic structure which can ap-

pear in the expression above. The two kinematic structures
∑

i<j s
3
ij and

∑
i<j<k s

3
ijk that

enter into O(3)
6,i are linearly independent, and thus the coefficient of the latter in (1.102) is

necessarily zero. This immediately implies

c1 =
9

32
. (1.103)

Note that this result does not rely on the specific value of the disc 2-point diagram, nor

any other diagrams which enter at this order. Nevertheless, as a consistency check we

can substitute in this value in (1.102), which yields a prediction that agrees with our D-

instanton calculations in (1.90) and (1.91) for N = 6. Furthermore, it was mentioned

in [49] that c1 is independently determined by the one-loop amplitude, which would serve

as a nontrivial test of the D-instanton diagrammatics.
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1.4 Effects of a D-instanton/anti-D-instanton pair

In this section we analyze the contribution of a D-instanton and an anti-D-instanton pair,

or D-D pair for short, to the 4-point supergraviton scattering amplitude, at leading order

in both the open string loop and low energy expansions. The final result is presented in

(1.124) and matches precisely with the coefficient of D6R4, as expected from supersymme-

try and S-duality.

1.4.1 Diagrammatic expansion

The contribution of a D-D pair to the 2 → 2 supergraviton scattering amplitude is given

by the formal expression

A(1,1)
2→2 = NDND̄e

−4πτ2

∫
d10x1d

16θ1d
10x2d

16θ2

∞∑

L=0

τ−L
2 A(L)

2→2(x1, x2, θ1, θ2) , (1.104)

where the supermoduli space M̃1,1 = R20|32 is parameterized by 10+16 collective coor-

dinates (xµ1 , θ1α) for the D-instanton and 10+16 collective coordinates (xµ2 , θ2α) for the

anti-D-instanton. The notation here follows that of Section 1.2, with the sum over L de-

noting the open string loop expansion. The normalization of the supermoduli space mea-

sure factorizes into a product NDND̄, where ND̄ = ND is the normalization for that of

the anti-D-instanton.

The integrand on the RHS takes the form of a sum over (disconnected) worldsheet di-

agrams with boundary ending on either the D-instanton or anti-D-instanton. The empty

disc diagrams, which come in pairs with net zero τ1 charge, exponentiate to give an over-
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all factor of e−4πτ2 . The contributions from empty annuli with both ends on the same

(anti-)D-instanton have been absorbed into the overall normalization (ND̄) ND.

A new feature of scattering amplitudes mediated by the D-D pair is the contribution

from empty annuli whose boundaries lie on different D-instantons. In particular, we de-

note the annulus diagram with one boundary on the D-instanton and the other on the

anti-D-instanton by CD1D̄2
. In the sum over Riemann surfaces, such diagrams exponenti-

ate to give an overall factor of e2CD1D̄2 , thereby providing a nontrivial measure on M̃1,1
12.

While in principle there are other empty diagrams which can correct the super-moduli

space measure, these appear at subleading orders in τ−1
2 and hence will not be considered

in our analysis.

As in (1.26), the fermionic moduli contribute through an insertion of the form

e−∆SWS,R(θ1)−∆SWS,R(θ2) , (1.105)

where the R-sector vertex operators in SWS,R(θ1) correspond to open strings with end-

points on the D-instanton, and analogously for SWS,R(θ2) and the anti-D-instanton.

The leading order contribution A(0)
2→2(x1, x2, θ1, θ2) comes from the diagram consisting

of four disconnected discs, each with one bulk puncture, together with the exponentiated

annulus diagram for the D-D pair. It contributes to the amplitude as

A(1,1)
2→2

∣∣
LO = NDND̄e

−4πτ2

∫
d10x1d

10x2 d
16θ1d

16θ2 exp

( )

×
(

+ + · · ·
)
,

(1.106)

12The factor of 2 accounts for the two opposite orientations of open strings stretched between
the D-D pair.
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where · · · includes the other distinct ways to color the boundary. Here, a blue boundary

corresponds to the D-instanton at position x1 with fermionic insertion e−∆SWS,R(θ1), while

a red boundary corresponds to the anti-D-instanton at position x2 with e−∆SWS,R(θ2). As

before, the black crosses indicate supergraviton states represented on the worldsheet as

vertex operators.

1.4.2 Integration over the fermionic moduli

We shall first discuss how to perform the integral over the θi coordinates. The Berezin

integral on the RHS of (1.106) gives

∫
d16θ1d

16θ2 e
−∆SWS,R(θ1)−∆SWS,R(θ2) = π32Q̂16

+ Q̂16
− , (1.107)

where the supercharge operators are given in (1.29). We identify Q̂α
s as the spacetime

supercharges broken by the D-instanton (s = −1) and anti-D-instanton (s = +1), respec-

tively, which as before are defined modulo additive contributions from the preserved su-

percharges. They are topological in the sense that they can be deformed in a worldsheet

diagram so long as they do not cross any bulk closed string insertions.

We proceed to evaluate the amplitude using the approach of Section 1.2, where the

supercharge contours are taken to surround the closed string vertex operators, acting as

supersymmetry transformations on the 1-particle states. As was the case for the single

D-instanton, after restricting to the η81η83 component of the superamplitude, the super-

charges Q̂16
− act only on the Vδτ̄(pi), converting the two vertex operators to Vδτ(pi) with an

overall factor of t4. What remains are four Vδτ(pi) insertions surrounded by the sixteen
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supercharges broken by the anti-D-instanton, namely Q̂16
+ . Here we need to appeal to the

details of the D-instanton/anti-D-instanton boundary conditions. In particular, the disc 1-

point diagram vanishes for all massless insertions except for δτ and δτ̄ . Consequently, the

only nontrivial configurations are given by two δτ insertions and two δτ̄ insertions, where

the latter correspond to eight supercharges acting on Vδτ(pi). Using the same type of ar-

gument in the COM frame, it is straightforward to show that the remaining supercharges

convert Vδτ(pi), Vδτ(pj) into Vδτ̄(pi), Vδτ̄(pj) with an overall factor of (pi + pj)8. There are

a total of 6 =
(4
2

)
such configurations, which naturally decompose into s, t, u channels

corresponding to which particles are paired. Overall, we find that the leading-order D-D

contribution takes the form

A(1,1)
2→2

∣∣∣
LO

= Q16
+ 2π32NDND̄ e−4πτ2

[
s4A(0),s

2→2 + t4A(0),t
2→2 + u4A(0),u

2→2

]
, (1.108)

where the contribution from each of the three channels is given by

A(0),s
2→2 =

∫
d10x1d

10x2 e
2CD1,D̄2 〈c0Vδτ̄(p1)〉

D2

x2
〈c0Vδτ̄(p2)〉

D2

x2
〈c0Vδτ(p3)〉

D2

x1
〈c0Vδτ(p4)〉

D2

x1
,

A(0),t
2→2 =

∫
d10x1d

10x2 e
2CD1,D̄2 〈c0Vδτ̄(p1)〉

D2

x2
〈c0Vδτ(p2)〉

D2

x1
〈c0Vδτ̄(p3)〉

D2

x2
〈c0Vδτ(p4)〉

D2

x1
,

A(0),u
2→2 =

∫
d10x1d

10x2 e
2CD1,D̄2 〈c0Vδτ̄(p1)〉

D2

x2
〈c0Vδτ(p2)〉

D2

x1
〈c0Vδτ(p3)〉

D2

x1
〈c0Vδτ̄(p4)〉

D2

x2
.

(1.109)

which consists of the exponentiated annulus diagram with mixed boundary conditions

CD1,D̄2
, together with four 1-punctured discs, where the vertex operators are distributed

such that the discs with D-instanton boundary conditions contain Vδτ(pi), while those

with anti-D-instanton boundary conditions contain Vδτ̄(pj). For the disc topology the anti-
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D-instanton boundary conditions are identical to those of the D-instanton other than a

sign flip relating the spin fields, and so the disc 1-point diagrams are given by

〈c0Vδτ(p)〉D
2

x1
= AD2

δτ e
ip·x1 , 〈c0Vδτ 〉D

2

x2
= 0 ,

〈c0Vδτ̄(p)〉D
2

x1
= 0 , 〈c0Vδτ̄(p)〉D

2

x2
= AD2

δτ e
ip·x2 ,

(1.110)

where x1 denotes the boundary condition for the D-instanton at x1, and similarly for the

anti-D-instanton at x2. Here, AD2

δτ is given by the δτ disc 1-point diagram (1.47) with

boundary condition xµ = 0.

1.4.3 The measure on moduli space

We now discuss how to compute the annulus diagram CD1D̄2
, which contributes nontriv-

ially to the measure on the moduli space for the D-D pair.

The boundary conditions for the D-instanton with bosonic modulus x can be embed-

ded in a GSO-even boundary state of the form

|Dx〉 =
1√
2
(|NSNS;x〉+ |RR;x〉) , (1.111)

where |NSNS;x〉 and |RR;x〉 denote the contribution to the boundary state coming from

closed strings in the NSNS and RR sectors, respectively. For simplicity, we have set the

fermionic modulus θ = 0. The anti-D-instanton has opposite charge with respect to the

RR axion field, and therefore its boundary state is given by

∣∣D̄x
〉
=

1√
2
(|NSNS;x〉 − |RR;x〉) . (1.112)
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Let us first consider the cylinder diagram between two D-instantons with bosonic col-

lective coordinates x1, x2. In the closed string channel, this is given by the overlap of two

D-instanton boundary states, which takes the form13

ZD1D2(t) = 〈D1| e−
π
t (L0+L̃0)b0c0 |D2〉 , (1.113)

where Di labels the D-instanton with collective coordinate xi. In (1.113), we are work-

ing with a cylinder of length 1/(2t) and circumference 2π. The ghost insertion b0c0 is

required for a nonzero result, acting as the projector onto the ghost ground state anni-

hilated by b0. Here, L0 (L̃0) denotes the zero Fourier mode of the stress tensor T (T̃ ).

Under a modular transformation of the cylinder, (1.113) is related to the open string par-

tition function for a cylinder of length π and circumference 2πt, i.e.

ZD1D2(t) =
(
TrHNS

0
− TrHR

0

) 1 + (−1)F

2
(−)Nbc+Nβγb0c0e

−2πtL0 . (1.114)

In the above expression, the trace is taken with respect to the NS and R sectors of the

Hilbert space of open strings stretched between two D-instantons at positions x1, x2, and

the factor (1 + (−)F )/2 implements the type IIB GSO projection. The minus sign in front

of the Ramond sector contribution has the usual interpretation of spacetime fermions

running in the loop. The insertion (−)Nbc+Nβγb0c0 projects onto the ghost ground state,

and is needed to obtain a non-zero result.

In (1.114), the terms with the (−)F insertion map under the inverse modular trans-

13We take the RR sector component of the D-instanton boundary state |Di〉 to have picture
number

(
− 1

2 ,−
3
2

)
, while its bra 〈Di| has picture number

(
− 3

2 ,−
1
2

)
. This ensures that the overlap

(1.113) has total picture number (−2,−2), as required for a non-zero result [32].
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formation to closed string states with periodic boundary conditions along the circle, and

therefore correspond to the RR sector contributions to the boundary state (1.111). On

the other hand, the terms without the (−)F insertion map to closed string states in the

NSNS component of the boundary state.

For now, we focus on the contribution coming from the exchange of closed strings in

the NSNS sector, which corresponds to open strings with anti-periodic boundary condi-

tion in the time direction. The ghosts give a contribution that cancel one pair of oscilla-

tors as usual. It follows that [57]

ZNS
D1D2

(t) =
1

2

(
TrHNS

0
− TrHR

0

)
(−)Nbc+Nβγb0c0e

−2πτL0

=
1

2
e−t

(x12)
2

2π (η(it))−8

([
ϑ3(it)

η(it)

]4
−
[
ϑ2(it)

η(it)

]4)
,

(1.115)

where x12 ≡ x1 − x2 is the relative position between the D-instantons. Note that there is

no overall factor of i since each D-instanton is localized in Euclidean target space. Over-

all, we find the NSNS contribution to the amplitude between two D-instantons is

CNS
D1D2

=

∫ ∞

0

dt

2t
ZNS
D1,D2

(t)

=

∫ ∞

0

dt

4t
e−t

(x12)
2

2π (η(it))−8

([
ϑ3(it)

η(it)

]4
−
[
ϑ2(it)

η(it)

]4)
.

=
1

4

∫ ∞

0
dt t3e−t

(x12)
2

2π

[
16 +O

(
e−

2π
t

)]

=
24(2π)4

(x12)
8 +O

(
e−2|x12|

(x12)
4

)
.

(1.116)

In the second line we performed a modular transformation of the cylinder on (1.114). The

first term in the last line of (1.116) gives the contribution to the amplitude due to mass-
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less closed strings in the NSNS sector. The other terms are exponentially suppressed at

large x12 and can be interpreted as the contribution of massive closed strings. As we will

see, it is only the massless exchange which is relevant for our analysis.

The contribution to (1.114) coming from the RR closed strings must cancel that of the

NSNS closed strings, since the potential between the D-instantons vanishes by supersym-

metry, and so

CNS
D1D2

+ CR
D1D2

= 0 . (1.117)

The anti-D-instanton boundary state differs from the D-instanton boundary state by a

minus sign multiplying the RR component, which implies that the annulus amplitude for

the D-D pair is given by twice the NSNS contribution (1.116), i.e.

CD1D̄2
= 2

∫ ∞

0

dt

4t
e−t

(x12)
2

2π (η(it))−8

([
ϑ3(it)

η(it)

]4
−
[
ϑ2(it)

η(it)

]4)

=
48(2π)4

(x12)
8 +O

(
e−2|x12|

(x12)
4

)
.

(1.118)

The measure on moduli space is given by the exponential of this diagram, which thus

takes the form

exp

[
96(2π)4

(x12)
8 +O

(
e−2|x12|

(x12)
4

)]
=

∞∑

n=1

1

n!

[
96(2π)4

(x12)
8

]n
+O

(
e−2|x12|

(x12)
4

)
, (1.119)

where we continue to ignore the contribution of massive closed strings.
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1.4.4 Integration over the bosonic moduli

At leading order in τ−1
2 , the moduli space measure is given by the exponentiated annulus

diagram e2CD1D̄2 , where CD1D̄2
is given by (1.118). From (1.118), we observe that the

integral over t develops a logarithmic divergence when the D-D pair is separated by a

distance

(x12)
2 = 2π2 . (1.120)

This has the interpretation of an open string stretched between the D-D pair going on-

shell. Furthermore, this divergent behavior becomes tachyonic for (x12)
2 < 2π2. Thus,

the integration over the full range of x1, x2 in (1.109) is only well-defined for a choice of

contour avoiding these singularities.

Instead of worrying about the choice of contour, we shall focus only on the part of

(1.118) corresponding to asymptotic separation of the D-D pair. As we shall see, such

contributions are unambiguous. Using (1.119), we find that the contribution of massless

closed string states to the s-channel amplitude is given by

A(0),s
2→2 = (AD2

δτ )
4
∫

|x12|>a
d10x1d

10x2

∞∑

n=0

1

n!

[
96(2π)4

(x12)
8

]n
ei(p1+p2)·x2+i(p3+p4)·x1 , (1.121)

where we have cut out a finite domain of the moduli space. In the above expression, higher-

order terms in the sum over n contribute only to the higher-order terms in the low energy

expansion of the scattering amplitude. The lowest order term, n = 0, contributes only to

the disconnected part of the amplitude, and can be neglected.
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The next term in the sum, n = 1, is given by

i(2π)10δ10(P )

∫

|x12|>a
d10x12

96(2π)4

(x12)
8 e−ix12·(p1+p2)

= −i(2π)10δ10(P )

[
210π9

s
+ analytic

]
,

(1.122)

where on the LHS we have integrated over the center-of-mass collective coordinates x1 +

x2, which restores momentum conservation. On the RHS, we omitted terms that are an-

alytic in momenta at s = 0, which is part of the “analytic ambiguity” of the amplitude

that involves the integration over a finite domain of the moduli space with a yet unspeci-

fied contour prescription. Meanwhile, the s−1 term captures the contribution of massless

closed string exchange at large relative separation x12 of the D-D pair. Crucially, it is

independent of a, and so this contribution [58], at leading order in both the open string

loop expansion and low energy expansion, is unambiguously defined.

A similar analysis in the t- and u-channels yields analogous results, with s replaced

by t and u, respectively. Using (1.121) and (1.122), we find that the leading contribution

(both in the open string loop expansion, and in momentum) from the D-D pair to the

superamplitude is

A(1,1)
2→2

∣∣∣
LO

= −i(2π)10δ10(P )Q16
+ 2−11 α′3κ2 e−4πτ2τ−5

2

[
α′3(s3 + t3 + u3) +O(α′4)

]
, (1.123)

where we have used our results for AD2

δτ in (1.47) and ND in (1.50), and have restored the

value of α′.
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1.4.5 Comparison against S-duality

We now test our results for the D-D amplitude in (1.123) against the D6R4 coefficient

f6(τ, τ̄) expected from supersymmetry and S-duality. Extracting the SUGRA piece of the

former gives

1

α′3stu
M (1,1)

0 (α′s,α′t) = −2−11 α′3(s3 + t3 + u3) +O(α′4) . (1.124)

The D-D contributions to the latter can be identified as the as the terms multiplying

e−4πτ2 in (1.84), which at leading-order reads

f (1,1)
6 (τ, τ̄) = −2−11 e−4πτ2τ−2

2 +O(e−4πτ2τ−3
2 ) . (1.125)

This matches precisely with our results in (1.124)! Before moving on, we note that in ret-

rospect it seems somewhat surprising that the D6R4 vertex, which is protected by super-

symmetry by virtue of being 1
8 -BPS, receives contributions from the non-supersymmetric

D-D instanton configuration.

1.5 A test of non-perturbative unitarity

As discussed in Section 1.4, the measure on the supermoduli space is singular due to open

strings going on-shell, which in turn implies that the integration over the bosonic moduli

suffers from ambiguities. So far, we have investigated D-D contributions to the 2 → 2

scattering amplitude which are insensitive to these ambiguities, which were found to be

consistent with supersymmetry and SL(2,Z) duality.
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This leads us to ask whether there are other D-D contributions which are unambigu-

ous in the on-shell approach. From the expression in (1.119) for the moduli space mea-

sure, and following the steps leading to (1.123), it is clear that arbitrarily massive closed

strings will contribute to the scattering amplitude at higher orders in the low energy ex-

pansion. Although this would seem to suggest that all such higher order terms are am-

biguous, it turns out that certain contributions are unambiguous owing to the fact that

they have non-polynomial dependence on the external momenta. This is related to the

idea that such amplitudes can be obtained from lower-point amplitudes by unitarity cuts.

In this section, we analyze the simplest example of this phenomenon from the worldsheet

perspective, thereby providing a nontrivial check of non-perturbative unitarity in type IIB

scattering amplitudes.

1.5.1 A discontinuity in the D-D amplitude

We begin by returning to the D-D contribution to the 2 → 2 amplitude coming from the

next term in the expansion of (1.121), i.e. the term with n = 2. This corresponds to two

copies of the annulus diagram (or more precisely, of the contribution from the massless

closed strings to the annulus diagram). In the s-channel, this can be written as

A(0),s
2→2 ⊃ 1

2
(AD2

δτ )
4α′8

∫

|x12|>a
d10x12

[
96(2π)4

]2

(x12)
16 e−ix12·(p1+p2)

= 9 · 217π8S8 (A
D2

δτ )
4 α′8

∫ ∞

a
dr r9

∫ π

0
dθ sin8 θ

1

r16
eipr cos θ ,

(1.126)

where r = −|x12|, p = |p1 + p2|, and S8 = 32π4

105 is the area of the 8-sphere. We can

directly evaluate the regularized expression in (1.126), with the understanding that the
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terms analytic in s are ambiguous, as they are sensitive to the cutoff a. The non-analytic

piece receives contributions from

∫ ∞

a
dr r9

∫ π

0
dθ sin8 θ

1

r16
eipr cos θ =

πs3 ln(−s)

9 · 216 + · · · , (1.127)

where · · · indicates terms analytic in s = −(p1 + p2)2. It follows that the leading-order

contribution from the D-D pair to the non-analytic part of the amplitude goes like

A(1,1)
2→2

∣∣∣
non-analytic

LO
= −i(2π)10δ10(P )Q16

+ 2−26π−7S8 α
′6κ4 e−4πτ2τ−3

2 H(s, t) . (1.128)

The momentum dependence has been relegated to the function

H(s, t) = s7 ln(−s) + t7 ln(−t) + u7 ln(−u) , (1.129)

where the extra terms come from a similar analysis in the t- and u-channels.

Let T (n,m)
2→2 be the (n,m) D-instanton contribution to the η81η82 component of the re-

duced amplitude with the delta function stripped away, such that

Ã(n,m)
2→2

∣∣∣
η81η

8
2

= i(2π)10δ(P )T (n,m)
2→2 . (1.130)

In each of the s, t, u channels, the logarithmic dependence gives rise to a branch cut in the

corresponding complex plane. For instance, the discontinuity across the s-cut is given by

2Re
(
T (1,1)
2→2

∣∣∣
s

LO

)
= 2−25π−6S8 α

′6κ4 τ−3
2 e−4πτ2 s11 , (1.131)
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p1

p2

p3

p4

q1

q2

Figure 1.3: Spacetime Feynman diagram that contributes to the unitarity cut. After cutting
the internal propagators to put the intermediate particles on-shell, the vertices are given by either
the D-instanton or anti-D-instanton mediated contributions to R4. Ingoing arrows denote δτ and
outgoing arrows denote δτ̄ .

where the superscript s indicates that we keep the terms multiplying the s-channel contri-

bution A(0),s
2→2 in (1.108). Furthermore, we are ignoring contributions from higher particle

cuts to A(0),s
2→2 (e.g. 3-particle cuts or higher), which come from higher order terms in the

expansion of (1.121) (i.e. n ≥ 3). The discontinuity across the branch cut in (1.131) has

the interpretation of massless closed strings exchanged between the D-instanton and anti

D-instanton being on-shell. In the next subsection, we shall verify this explicitly through

a worldsheet calculation that relies only on scattering amplitudes mediated by a single

D-instanton. This provides a nontrivial check of (1.131) and verifies that (1.128) is insen-

sitive to the analytic ambiguities present in the bosonic moduli integration.

1.5.2 Verification of unitarity

In search of unitarity, we will focus on the s-channel cut contribution to the 2 → 2 axion-

dilaton scattering amplitude, as represented by the diagram in Figure 1.3. Note that to

extract the original axion-dilaton amplitude from the new one, we must make the replace-

ment t → s in (1.131). In principle, there are also t- and u-channel cuts, which can be
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obtained in an analogous fashion.

We now proceed to evaluate the contribution from the diagram in Figure 1.3 with the

internal lines cut, as given by14

− 2Re
(
T (1,1)
2→2

∣∣∣
s

LO

)
=

1

2

∫
d10q1
(2π)10

d10q1
(2π)10

(−2πi)2δ(q21)δ(q
2
2)

×
[
T (1,0)
2→2

∣∣∣
LO

(p1, p2, q1, q2) T (0,1)
2→2

∣∣∣
LO

(q1, q2, p3, p4) + (pi ↔ qi)
]
,

(1.132)

The subscript LO reminds us that the D-instanton and anti-D-instanton contributions to

the R4 vertex appear at leading order in the open string loop expansion. The quantity

T (0,1)
2→2 in the above expression captures the anti-D-instanton contributions to the scatter-

ing amplitude, which at leading order agrees with that of the D-instanton, i.e.

e−2πiτ T (0,1)
2→2

∣∣∣
LO

= e2πiτ̄ T (1,0)
2→2

∣∣∣
LO

. (1.133)

Using our results for these amplitudes as presented in (1.51), we find

2Re
(
T (1,1)
2→2

∣∣∣
s

LO

)
=

π12 α′6κ4 e−4πτ2τ−3
2 s8

∫
d93q1
(2π)9

d93q2
(2π)9

1

|3q1||3q2|
δ10(p1 + p2 + q1 + q2) ,

(1.134)

where we have stripped off an overall factor of i(2π)10δ(P ) from the RHS of (1.132). To

14The δτδτ̄ propagator at momentum pµ is given by i
−p2+iε .
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evaluate this integral, we find it helpful to work in the COM frame (1.31), where we find

∫
d93q1
(2π)9

d93q2
(2π)9

1

|3q1||3q2|
δ(10)(p1 + p2 + q1 + q2)

=
1

(2π)18

∫
d93q1
|q1|2

δ(2E − 2|3q1|)

=
S8

225π18
s3 ,

(1.135)

In the first line of the above expression, we used the δ-functions to set 3q2 = −3q1, and

in the second we substituted out E using s = 4E2. Plugging (1.135) into (1.134), we

immediately find

2Im
(
T (1,1)
2→2

∣∣∣
s

LO

)
= 2−25π−6S8 α

′6κ4 e−4πτ2τ−3
2 s11 , (1.136)

which exactly reproduces the discontinuity found in the worldsheet calculation, after re-

placing t → s in (1.131). This is a non-trivial test of the interpretation of the discontinu-

ity in the D-instanton/anti-D-instanton mediated scattering amplitude, and of unitarity

of non-perturbative scattering amplitudes in type IIB string theory.

1.6 Discussion

Let us recap the logic of the determination of D-instanton effects in this chapter. Our

working assumption has been that D-instanton contributions to closed string scattering

amplitudes should be computed by the SFT of bulk closed strings and open strings on

the D-instanton, to the extent in which the D-instanton effects are unambiguously de-

fined. Certain aspects of the SFT formulation of D-instanton perturbation theory are
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analogous to that of the naive on-shell formulation. For instance, the integration over D-

instanton moduli space is taken into account in SFT as part of the functional integration

over open string fields. A priori, the on-shell approach to D-instanton amplitudes is sub-

ject to open string divergences and regularization ambiguities, which are resolved in SFT.

On the other hand, the naive on-shell computation often captures the SFT result up to

ambiguities of a simple form, which may be fixed by either indirect arguments or genuine

SFT computations.

Indeed, most of our explicit computations, particularly concerning MRV amplitudes,

are carried out in the naive on-shell formalism. As we will see in the next chapter, the

naive on-shell results necessarily agree with the string field theoretic computation up to

terms that can be fixed indirectly by considerations of spacetime supersymmetry and soft

theorems concerning moduli of type IIB string vacua. This has allowed us to obtain un-

ambiguous D-instanton contributions to MRV amplitudes.

Nonetheless, there is value in carrying out a first-principles SFT computation of the

amplitudes considered in this work, specifically the constant coefficients a0, a1, a2 (1.11)

appearing in the NLO one-D-instanton contribution to the N -point MRV amplitude. This

would serve to verify that the closed string vacuum preserves Poincaré supersymmetry,

which is certainly expected for the Minkowskian vacuum of type IIB string theory at the

non-perturbative level, but is not at all manifest in the string field theoretic formulation

of D-instanton perturbation theory.

A few other comments are in order. From the on-shell perspective, the moduli space

of multiple D-instantons typically admits singularities where new massless open string

modes appear. This difficulty was evaded in the analyses of [25, 27] in c = 1 and type
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0B string theory due to the simplicity of the moduli space of ZZ-instantons. In the set-

ting of the D-instanton/anti-D-instanton pair analyzed in Section 1.4, it so happens that

the contribution to the D6R4 effective coupling comes from only the integration over the

asymptotic region of the moduli space, which is well-defined. Generally, the integral over

multi-D-instanton moduli spaces is expected to be singular, and should be replaced by an

integral over non-Abelian open string fields in the SFT framework. This was carried out

to leading order in D-instanton perturbation theory in [33], and it would be very interest-

ing to extend the analysis to subleading orders.

Finally, let us remark that the D-instanton amplitudes of the sort computed in this

work may provide useful input for the program of bootstrapping the non-perturbative

string S-matrix [59,60].
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2
String field theoretic effects

2.1 Introduction

It has been emphasized recently that closed SFT is a rigorous framework for string per-

turbation theory. In particular, it provides a fully consistent regularization of possible

divergences near the boundary of the moduli space in the on-shell worldsheet formulation

of scattering amplitudes [61]. The situation is more dramatic in D-instanton perturbation

theory, where the open+closed SFT is necessary to fix ambiguities of the naive on-shell

formalism [28–33, 36, 37, 61, 62]. In this chapter, we carry out (most of) the full string
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field theoretic computation of (1.10). The main purpose here is to explain why such a

computation is free of divergences, and that it agrees with the naive on-shell computation

apart from the constant term appearing on the RHS of (1.10). We also demonstrate ex-

plicitly how SFT unambiguously computes C1 in (1.11). Whether SFT in fact produces

the correct value of C1 amounts to the dynamical question of whether the super-Poincaré

symmetry is preserved by the Minkowskian vacua of type IIB string theory at the non-

perturbative level. While the latter is certainly expected, it is not manifest in the SFT

formulation of D-instanton perturbation theory, where the closed string field vacuum is

determined by extremizing the quantum effective action Γ[Ψc] with all open string fields

integrated out. A similar problem in the context of the c < 1 and c = 1 string theories

was examined in detail in [28–30, 62]. The extension of this analysis to type IIB string

theory requires taking into account the additional ingredients of PCOs and vertical inte-

gration [63].

2.1.1 General strategy of the string field theoretic computation

The amplitudes of interest are extracted from the path integral (1) over the open string

fields, while the closed string fields are taken to be on-shell. The open+closed SFT ac-

tion Soc[Ψo,Ψc] consists of the kinetic terms for open string fields and the string vertices

for open+closed string fields. Here we briefly recap the logic of how this action is con-

structed.

In SFT, the worldsheet moduli space is divided into domains that correspond to dis-

tinct Feynman diagrams, each of which is formed by gluing string vertices with propaga-

tors. To specify the string vertices further requires choosing local coordinates around each
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of the punctures on the worldsheet surface where the string fields are inserted, as well as

the loci of PCO insertions. As the closed string field insertions are on-shell in D-instanton

perturbation theory, one only needs to keep track of the local coordinates around the

boundary points of the worldsheet where the open string fields are inserted.

A propagator amounts to the plumbing construction that identifies the neighborhoods

of a pair of punctures, on either one or two connected surfaces in the vertex region. The

moduli domain corresponding to a Feynman diagram with a single propagator, referred

to as the ‘propagator region,’ meets the vertex region along a codimension 1 wall in the

moduli space where the propagator shrinks to zero length. It is important that at the

wall separating the propagator and vertex regions, the choices of coordinate charts around

the punctures on the worldsheet, as well as the PCO locations (possibly with vertical in-

tegration), agree with one another. This requirement amounts to the so-called geometric

master equation, which ensures that the SFT action constructed from the string vertices

is gauge invariant. The explicit construction of the relevant string vertices in the bosonic

string case is described for example in section 4 of [30]. For the case of the superstring

D-instanton, we will need to extend their definition to include the placement of PCOs.

The vertex region, by design, resides away from the boundary of the moduli space

where the worldsheet surface degenerates, and thus the moduli integration over the ver-

tex region is finite, modulo potential spurious singularities in the PCO locations which

can be circumvented through the vertical integration prescription of [63]. A string ver-

tex V[Ψo,Ψc] is a term in the SFT action obtained by integrating a worldsheet correlator

with Ψo,Ψc insertions over the corresponding vertex region of the moduli space. A prop-

agator region, on the other hand, corresponds to a Feynman diagram in which the string
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vertices are connected through the string field propagator.

2.1.2 BV gauge condition and massless open string modes

The open SFT path integral (1) is defined subject to a choice of the BV gauge condition

L. It is important to make sure that this gauge condition is non-singular. As was pointed

out in [29], the commonly adopted Siegel gauge, in which the open string fields are annihi-

lated by b0, is singular for D-instantons and must be modified.

To see this, we begin by inspecting the kinetic terms in the action and their corre-

sponding propagators. The propagator for an open string field Ψo in NS sector is ob-

tained by inverting its kinetic term 1
2〈Ψo|QB|Ψo〉. In the Siegel gauge, this propagator

is b0
L0

, where L0 is proportional to the “mass squared” of the open string field. A simi-

lar propagator that involves picture changing can be derived in the R sector. The mas-

sive open string fields have well-defined propagators; they can be integrated out pertur-

batively, and their propagators appear in Feynman diagrams. The massless open string

fields do not have well-defined propagators in the Siegel gauge, and require special treat-

ment.

One class of massless open string fields correspond to the collective coordinates of the

D-instanton. Namely, there are ten bosonic modes φµ associated with the vertex opera-

tors ce−φψµ, and sixteen fermionic modes θα associated with the vertex operators ce−
φ
2 Sα.

The integration over these modes amounts to the integration over the D-instanton (super)

moduli space. However, there is a subtle but important difference between these open

string fields and the deformation parameters for D-instanton boundary conditions in the

worldsheet CFT, which we discuss in Sections 2.1.5 and 2.1.6.
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There is another class of massless open string fields that cannot be interpreted as col-

lective coordinates, of the form

κ1β−1/2c0c1|− 1〉+ ζ2β−1/2c1|− 1〉+ ζ1γ−1/2c1|− 1〉+ κ2γ−1/2c0c1|− 1〉 , (2.1)

where | − 1〉 stands for the state corresponding to the vertex operator e−φ. The coeffi-

cients κ1 and κ2 are Grassmann even, whereas ζ1 and ζ2 are Grassmann odd. They will

be referred to as “ghost zero modes.” In Siegel gauge, κ1 and κ2 are set to zero, while the

propagating modes ζ1 and ζ2 have vanishing kinetic term. The latter leads to a vanishing

path integral, which seems problematic. However, it was pointed out in [29] that this in-

dicates not the breakdown of D-instanton perturbation theory, but rather that the Siegel

gauge condition is singular.

Instead, [29] adopts a different BV gauge condition for the ghost zero mode sector,

which we refer to as Sen gauge, defined by setting ζ1 and κ2 to zero. In this gauge, the

propagator for κ1 is finite. We can see this explicitly by analyzing the kinetic term

1

2
〈κ1|QB|κ1〉 = −(κ1)2 , (2.2)

where |κ1〉 has been defined as the first term of (2.1). By inverting this expression, we

can read off the propagator for κ1,1

Pκ1 =
1

2
. (2.3)

The propagator for ζ2 is still ill-defined. Naively, consideration of ghost number symme-

1A highly nontrivial consistency check of the propagation of κ1 is seen in the computation of
the effective potential for the bosonic open string collective modes in Appendix A.4.
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try indicates that ζ2 decouples from the effective action of massless open string fields, and

if one simply omits the integration over ζ2, the open string path integral would appear

to be well-defined. However, ζ2 in fact has the interpretation of the Faddeev-Popov ghost

associated with fixing the U(1) gauge symmetry on the D-instanton, and would be cou-

pled to non-Abelian open string modes in the presence of other D-instantons. Integrating

out ζ2 would then lead to a correction to the measure in the open string fields, which is

present even in the absence of other D-instantons. This extremely subtle analysis is dis-

cussed in Section 2.1.4.

Following [29], we will work in Siegel gauge for all sectors except for the ghost zero

modes (2.1), where we impose Sen gauge instead. Among the open string fields, we de-

note by Ψf
o the modes with finite propagators, namely κ1 in addition to all the massive

modes. The remaining open string field components that require special treatment are

the collective modes φµ, θα, and ζ2. This leads us to consider the path integral (1) in the

form

e−Γ[Ψc]
∣∣∣
D−inst

= NDe
− 2π

gs

∫
d10φd16θdζ2 exp

(
Wf [φ

µ, θα, ζ
2,Ψc]

)
. (2.4)

Here, the overall normalization ND, which recall arises from the exponential of the empty

annulus, has been set to the value in (1.50). It can be derived from the SFT of open

string modes, as was done in [32]. The factor e−2πτ2 , meanwhile, comes from the exponen-

tial of the empty disc. From the perspective of SFT, it is a factor we must add by hand.

The remaining term on the RHS involves the effective action Wf , defined by

exp
(
Wf [φ

µ, θα, ζ
2,Ψc]

)
=

∫
DΨf

o exp
(
−Soc[φ

µ, θα, ζ
2,Ψf

o ,Ψc]
)
, (2.5)
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which can be calculated perturbatively by Feynman diagrams with well-defined propaga-

tors.

2.1.3 Validity and extension of the on-shell results

Of concern to the amplitudes considered in this work are the order gs terms in Wf . These

involve worldsheets of the following topologies: a disc with two closed string insertions, an

annulus with one closed string insertion, a sphere with three holes, and a torus with one

hole, as already described in (1.52). Each worldsheet topology corresponds to several SFT

Feynman diagrams, which are manifestly finite by design.

Except for the disc with two closed string insertions, the remaining worldsheet topolo-

gies mentioned above involve either one or fewer closed string insertions. As the closed

string field is taken to be that of an on-shell axion-dilaton state, the corresponding SFT

Feynman diagrams evaluate to constants, independent of the closed string momentum,

as a simple consequence of Lorentz invariance. In other words, nontrivial momentum de-

pendence arises only from the disc with two closed string insertions. As we show in the

main text, the SFT Feynman diagrams contributing to this amplitude disagree with the

on-shell results by at most a constant, or a total derivative that vanishes once momentum

conservation is restored.

In addition to the Feynman diagrams for Wf , we must also integrate over the zero

modes φµ, θα, and ζ2. As shown in the following sections, these only contribute to the

constant C1, which implies that the on-shell analysis of the previous chapter completely

determines the momentum-dependence of the amplitude at order gs. It should be noted

that this is a fortunate coincidence which will no longer apply at higher orders, where

74



even the momentum-dependent terms will suffer from ambiguities in the on-shell prescrip-

tion.

2.1.4 Integration over ζ2

We shall now spend some time discussing the integration over the open string zero modes.

The Grassmann-odd ghost zero mode ζ2, as already mentioned, has the interpretation

as the Faddeev-Popov ghost associated with gauge fixing the U(1) symmetry on the D-

instanton. However, there are no charged open strings on a single D-instanton, and so

ζ2 is absent in the effective action Wf (2.5). Formally, the integration over ζ2 in (2.4)

gives zero, and one may be tempted to simply drop the ζ2-integral, but this leaves an

ambiguous (possibly background field dependent) normalization.

A more careful treatment that fixes the normalization requires introducing a spectator

D-instanton [29] (which we refer to as the Ds-instanton), so that there are charged open

string modes with respect to the U(1) gauge symmetry on the original D-instanton. At

leading order in gs, Wf now contains couplings between ζ2, D-Ds open string fields χ, and

Ds-D open string fields χ∗, of the form

AD2

ζ2χχ∗ζ2χχ∗ (2.6)

as computed by the χ,χ∗, ζ2 disc amplitude AD2

ζ2χχ∗ . One can then calculate the ζ2-integral,

which is now nonzero, and move the spectator Ds-instanton to infinity in the end.2

At the first subleading order in gs, there is a contribution to Wf from the analogous

2In [29], the integration over ζ2 is interpreted as the division by the volume of the U(1) gauge
group.
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disc diagram with an extra closed string field insertion. Such a coupling that is relevant

to the amplitude considered in this work is of the form

gsAD2

δτζ2χχ∗ζ2χχ∗
[
δτ(x) + · · ·

]
, (2.7)

where AD2

δτζ2χχ∗ is a momentum-independent constant, as computed from the disc am-

plitude for δτ , ζ2, χ, and χ∗, that depends on the string field theoretic parameters that

enter into the definition of the string vertices. In the above expression, δτ(x) is the axion-

dilaton field at the D-instanton location xµ, and · · · represents terms involving θα and

other components of the supergraviton multiplet. As we will discuss in Section 2.1.6, to

leading order in gs, the insertion of a fermionic open string field θα on the boundary can

be replaced by that of a supercharge Q̂α
(± 1

2 ),−
. In the axion-dilaton background, the linear

combination of δτ and δτ̄ that appear in (2.7) is determined by the nonlinearly realized

super-Poincaré symmetry to be
(
eiθαQ

α
−δτ

)
(x), which contains a term of order θ8 that

involves δτ̄ . Here, Qα
− is the supercharge acting as a raising operator on the spacetime

fields, which can be regarded as a dual of the supercharge Q̂α
− acting as a lowering op-

erator on the one-particle states. As we will see, the computation of Y is nontrivial and

requires considering contributions from multiple Feynman diagrams.

After integrating over χ and χ∗, the remaining ζ2 integral is now nonzero. Performing

the integration corrects (2.4) by the factor

∑

χ

AD2

ζ2χχ∗

[
1 + gsY

(
eiθαQ

α
−δτ

)
(x)
]
, Y = Aδτζ2χχ∗(AD2

ζ2χχ∗)−1 , (2.8)
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∫
dΦm

o

[
· · · + · · ·

+ · · · + · · ·
]

=

∫
d10x

[
· · · +

(
+ gs∆B

)
· · ·

+ · · · + · · ·
]

Figure 2.1: Diagrams contributing to the D-instanton amplitude for N closed strings at order
gs. Each comes with an arbitrary number of insertions of open string field collective modes Φm

o

as represented by the blue boundaries. Black crosses are linear combinations of closed string ver-
tex operators for δτ and δτ̄ , while red crosses are vertex operators for δτ . ∆B is a momentum-
independent constant that depends on the string field theory parameters. All the diagrams are at
the D-instanton location xµ.

where the sum is taken over all of the open string fields χ stretched between D and Ds.

The subleading coefficient Y is universal in the sense that it takes the same value for all

choices of χ. Consequently, the sum takes on a factorized form, and so we can choose

to absorb
∑

χAD2

ζ2χχ∗ into the overall normalization of the D-instanton path integral, for

which (2.8) reduces to

1 + gsY
(
eiθαQ

α
−δτ

)
(x) . (2.9)

2.1.5 Integration over φµ

After integrating out ζ2 in (2.4) according to the prescription in the previous subsection,

we are left with

e2πiτ
∫

d10φd16θ eW [φ,θ,x;Ψc] , (2.10)
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where we have indicated the explicit dependence of the integrand on the D-instanton

moduli xµ. W [φ, θ, x;Ψc] includes diagrams with an arbitrary number of φµ and θα inser-

tions even at a given order in gs (Figure 2.1). Even though the integration over θα picks

out only the terms proportional to θ16 in W [φ, θ, x;Ψc], they still include arbitrarily many

powers of φµ. In this section, we discuss how to carry out the sum over infinitely many

such terms by an appropriate change of variables for φµ. We then discuss the effects of θα

insertions in the next section.

Heuristically, the integration in φ should be equivalent to an integration over the D-

instanton moduli space. One way to understand their relation is through the background

independence of SFT [64–66]: a deformation of the boundary moduli δxµ can be absorbed

by an open string field redefinition (φµ, θα) → (φµ + δφµ, θα + δθα), where

δφµ = δxνfµ
ν [φ, θ, x;Ψc] , δθα = δxνgαν [φ, θ, x;Ψc] . (2.11)

In other words, different points on a hypersurface obtained by integrating the equation

(2.11) represent equivalent string field configurations. Transporting along this hypersur-

face from x to x′, (φ, θ) turn into (φ′, θ′), while the integration measure (2.10) is invariant,

namely

d10φd16θ eW [φ,θ,x;Ψc] = d10φ′d16θ′ eW [φ′,θ′,x′;Ψc] . (2.12)

Now we can transport along the hypersurface to φ = 0, and write the integral in (2.10)

equivalently as

∫
d10φd16θ eW [φ,θ,x;Ψc] =

∫
d10xd16θ det

(
fµ

ν [0, θ, x;Ψc]
)
eW [0,θ,x;Ψc] . (2.13)
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where the dependence on the bosonic open string field has now been eliminated from the

integrand on the RHS.3

For the purpose of extracting the Jacobian factor det f to first order in gs, we can re-

place θα insertions with that of the supercharges, which amounts to viewing θ as fermionic

moduli rather than open string fields. This eliminates the need for considering the shift

δθ in (2.11). Expanding

f [0, θ, x;Ψc] = 1 + gsf1[θ, x;Ψc] , (2.14)

we expect the θ-dependence of f1 to be dictated by the nonlinearly realized super-Poincaré

symmetry, similar to (2.9). We can determine f1[0, x;Ψc] from the equation4

(
fµ

ν [0, 0, x;Ψc]
∂

∂φµ
− ∂

∂xν

)
W [φ, 0, x;Ψc]

∣∣∣∣
φ=0

= 0 . (2.15)

Expanding W =
∑∞

n=0 g
n
sW

(n), we have at order gs the relation

(f1)
µ
ν [0, x;Ψc]

∂

∂φµ
W (0)[φ, 0, x;Ψc]

∣∣∣∣
φ=0

=
∂

∂xν
W (1)[0, 0, x;Ψc]−

∂

∂φν
W (1)[φ, 0, x;Ψc]

∣∣∣∣
φ=0

.

(2.16)

In a closed string background where only supergraviton modes are turned on, the order

g0s term in the effective action is expected to give

W (0)[φ, 0, x;Ψc] = AD2

δτ δτ(x+ φ) . (2.17)

3This in particular implies that W [φ, θ, x;Ψc] does not include terms consisting of only φµ’s.
In Appendix A.4, we perform an explicit computation of the φ4 term in W [φ, θ, x;Ψc] and show
that it is indeed zero.

4This is a special case of the analog of (4.12) of [65] for open string field theory, restricted to
φ = 0. Here we also assumed ∂φfµ

ν

∣∣
φ=0

= 0, which follows from the general construction of [65].
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To be precise, the dependence on φ will come multiplied by a factor Nφ corresponding to

the normalization of φµce−φψµ. For instance, such a factor enters into the amplitude for

δτ with one insertion of φ,

AD2

δτ(p)φµ = ipµNφAD2

δτ . (2.18)

In order to arrive at (2.17), we must first perform a field redefinition φ 0→ N−1
φ φ.

At first order in gs, the effective action now receives contributions from the disc ampli-

tude for two axion-dilatons together with φµ, of the form

∂

∂xν
W (1)[0, 0, x;Ψc]−

∂

∂φν
W (1)[φ, 0, x;Ψc]

∣∣∣∣
φ=0

= AD2

δτ

[
∆Uδτ(x)∂νδτ(x) +∆U ′∂µδτ(x)∂µ∂νδτ(x) +∆U ′′∂µδτ(x)Dµνδτ(x)

] (2.19)

where ∆U , ∆U ′, and ∆U ′′ are constants that depend on SFT parameters. Here, Dµνδτ(x)

is a nonlocal term in the effective action. In momentum space it takes the form

Dµνδτ(x) =

∫
d10p eipxeµν(p)δ̃τ(p) , (2.20)

where eµν is a symmetric polarization tensor obeying pµeµν = 0 with eµµ = 1. Such

a term is an artifact from working with the closed string fields in Siegel gauge. Indeed,

there exist other suitable gauge choices where ∆U ′′ = 0. The fact that the analysis is

sensitive to the gauge reflects the fact that W and Wf are not gauge invariant objects, as

compared to Γ. Regardless, such nonlocal terms do not pose any serious conceptual issues,
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and from (2.16) we solve

(f1)
µ
ν [0, x;Ψc] = ∆Uδµν δτ(x) +∆U ′∂µ∂νδτ(x) +∆U ′′Dµ

νδτ(x) , (2.21)

where we have included the effect of renormalizing φ. After restoring the θ-dependence by

super-Poincaré symmetry, we obtain the Jacobian factor

det f [0, θ, x,Ψc] = 1 + gs
(
10∆U +∆U ′′)

(
eiθαQ

α
−δτ

)
(x) (2.22)

that appears on the RHS of (2.13). Note that ∆U ′ drops out due to the on-shell condi-

tion of the background field δτ(x). Furthermore, the above expression only involves the

local, gauge-invariant operator Dµ
µ = 1. Similar to the correction factor (2.9), the Jaco-

bian factor (2.22) contributes only to the constant term in (1.83).

2.1.6 Integration over θα

In this section, we shall integrate over the fermionic open string collective modes θα. As

previously mentioned, this is similar to inserting the spacetime supercharge Q̂α
(± 1

2 ),−
rep-

resented as a contour integral of the spin field along the boundary of the worldsheet, but

they are not the same beyond leading order in gs. In particular, while the former is un-

ambiguously defined in SFT, the latter is subject to an ambiguity in the location of the

PCOs that accompany the supercharge insertion, as already encountered in the on-shell

computation of Section 1.2.

The goal of this section is to find some field redefinition of θ, say θ̂, whose integration
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implements the associated supersymmetry transformations, at least to first order in gs.

Under an infinitesimal change of variables

δθα
β = hα

β [φ, x;Ψc]δθ̂β (2.23)

the integral in (2.10) becomes

∫
d10xd16θ eW [φ,θ,x;Ψc] =

∫
d10φd16θ̂ det

(
hα[φ, x;Ψc]

)−1
eŴ [φ,θ̂,x;Ψc] , (2.24)

where the effective action Ŵ is defined as mentioned above. Since we are only after first

order corrections in gs, we can safely set φ = 0 and work with the expansion

h[0, x;Ψc] = θ̂α + gsh1[x;Ψc] +O(g2s) . (2.25)

We can determine h from the analogue of (2.15),

hα
β [0, x;Ψc]

∂

∂θα
W [0, θ, x;Ψc]

∣∣∣∣
θ=θ̂

− ∂

∂θ̂β
W [0, θ̂, x;Ψc] = 0 . (2.26)

Expanding to first order in gs gives

(h1)α
β [x;Ψc]

∂

∂θα
W (0)[0, θ, x;Ψc]

∣∣∣∣
θ=θ̂

=
∂

∂θ̂β
Ŵ (1)[0, θ̂, x;Ψc]

∣∣∣∣
θ=θ̂

− ∂

∂θβ
W (1)[0, θ, x;Ψc]

∣∣∣∣
θ=θ̂

.

(2.27)

At leading order in gs, W contains an effective string vertex that couples θ to the di-
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latino λ. Restoring θ dependence in (2.17) gives

W (0)[0, θ, x;Ψc] = AD2

δτ δτ(x) +NθAD2

δτ θαλ
α(x) +O(θ2) , (2.28)

where the coefficient of the second term, computed by the disc amplitude for the dilatino

together with θ, is equal to the axion-dilaton disc amplitude up to a multiplicative con-

stant Nθ that similarly reflects the normalization of θαe−
1
2φSα.

At the next order in gs, the effective action receives contributions from several Feyn-

man diagrams leading to

∂

∂θ̂β
Ŵ (1)[0, θ̂, x;Ψc]

∣∣∣∣
θ=θ̂

− ∂

∂θβ
W (1)[0, θ, x;Ψc]

∣∣∣∣
θ=θ̂

= NθAD2

δτ

[
∆V λβ(x)δτ(x) +∆V ′∂µλ

β(x)∂µδτ(x)
]
+O(θ) .

(2.29)

Similar to the bosonic case, the coefficients ∆V,∆V ′ are constants depending on the SFT

parameters that represent the mismatch between θ and the SUSY parameter θ̂. They

can be determined from the disc amplitude for an axion-dilaton, dilatino, and fermionic

collective coordinate after subtracting off the contribution from the axion-dilaton two-

point amplitude.

Plugging (2.28) and (2.29) into (2.27) gives

(h1)α
β [x;Ψc] = δα

β∆V δτ(x) + δα
β∆V ′∂µ∂µδτ(x) . (2.30)

The term containing ∆V ′ is proportional to the equation of motion for δτ . Since the

closed string fields are on-shell, it vanishes in the effective action. This leads to the Ja-
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cobian factor

det
(
hα

β [0, x;Ψc]
)−1

= 1 + 16gs∆V δτ(x) +O(g2s) . (2.31)

At leading order in gs, this does not mix with the factors arising from integration over ζ2

and φµ, and so (2.4) reduces to the desired form

e−Γ[Ψc]
∣∣∣
D−inst

= NDe
− 2π

gs

∫
d10xd16θ̂

{
1 + gsZ

(
eiθ̂αQ

α
−δτ

)
(x)

}
eŴf [θ̂,x;Ψc] . (2.32)

In this expression, the coefficient

Z = Y + 10∆U +∆U ′′ +∆V (2.33)

represents integration over the open string zero modes, save for θ̂, which implements the

standard SUSY transformation. The effective action Ŵf on the RHS involves only Feyn-

man diagrams with massive open string propagators.

2.2 Results and discussion

In this section, we present our results for the Feynman diagrams that contribute to the

RHS of (2.32), delegating their construction and computation to subsequent sections in

the chapter. Using (2.32), we find that the single D-instanton contribution to the MRV
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0

w1 1

0

w2 1

0

w3 1

z

0

1

∞

Figure 2.2: Disc 3-point vertex for open strings, described by the UHP with complex coordinate
z. The three open string punctures are located at z = 0, 1,∞ , where they reside at the origin of
their respective local coordinate patches wi. The vertex is defined such that a half-disc of radius 1
in the wi coordinate corresponds to a half-disc of radius O(α−1) in z. There is also a PCO in the
bulk at z = pooo.

supergraviton amplitude at NLO reads

R(1,0)
N

∣∣∣
NLO

= i(2π)10δ10(P )Q16
+ π16NDg

N
c CN−1

D2 e2πiτ

×
{
(AD2

δτ )
N−2

N∑

i<j

AD2

δτ(pi)δτ(pj)

+N(AD2

δτ )
N−1

(
AA2

δτ + Y + 10∆U +∆U ′′ +∆V
)

+ CD2(AD2

δτ )
N
(
AΣ1,1 +AΣ0,3

)}
.

(2.34)

Note that we have pulled out a factor of gc from each vertex operator as well as CD2

from the disc, in order to simply the calculations in this chapter. We have also rescaled

the terms arising from integration over the massless open string fields by a factor of g−1
s .

Other than the corrections from integration over the massless open string modes, this ex-

pression involves the same topologies as the on-shell amplitude. However, it is important

to remember that these amplitudes are defined in terms of SFT Feynman diagrams. Un-

like those computed in the on-shell approach, these are manifestly finite and free from

ambiguities. The price we pay is that they will generally depend on the definition of the
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0

w 1

z
0

Figure 2.3: Open-closed disc vertex, described by the UHP with complex coordinate z. The
closed string puncture is located at z = i together with the PCO, the latter of which is averaged
over a contour surrounding the closed string. The open string puncture, which sits at z = 0, is
equipped with local coordinate w. The vertex is defined such that a half-disc of radius 1 in the w
coordinate corresponds to a half-disc of radius λ−1 in z.

Feynman vertices, which amounts to the choice of local coordinates for the open string

punctures as well the PCO loci. This boils down to a functional dependence on the SFT

parameters, the two most prominent of which are α and λ. The former is associated with

the open string disc 3-point vertex, shown in Figure 2.2, and the latter with the open-

closed disc vertex, in Figure 2.3. Both roughly translate to the inverse radii for the local

coordinate patches surrounding each of the open string punctures.

In order to simply the Feynman diagram computations, we shall take the SFT param-

eters α and λ to be arbitrarily large, say by by rescaling the local coordinates. As a con-

sequence, all of the open string modes in Ψf
o , save for κ1, will become infinitely massive

and no longer contribute to the propagator regions. To be precise, a mode of conformal

weight h > 0 will have a propagator proportional to λ−h or α−h which vanishes in the

limit λ,α → ∞. On the other hand, the κ1 propagator is independent of the SFT param-

eters since its associated vertex operator c∂ce−2φ∂ξ is a weight zero conformal primary.

With these points in mind, we shall provide a term-by-term analysis of the MRV ampli-

tude in (2.34). Along the way, we shall determine the values of a0 and a1 in (1.11).
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0 λ−2 1
y

Figure 2.4: Feynman diagrams and the corresponding moduli domains for the disc with two
NSNS insertions. Dotted circles correspond to averaged PCO insertions. On the worldsheet repre-
sented as the UHP, the closed strings (indicated by crosses) are inserted at z = i and z = iy. In
the moduli space parameterized by y, the domain (0,λ−2) is the propagator region (red region),
while (λ−2, 1) is the vertex region (blue region).

2.2.1 Determination of a0

We first direct our efforts towards determining the disc 2-point amplitude AD2

δτ(p)δτ(k), as

computed from SFT Feynman diagrams in Section 2.3. This consists of two δτ insertions

on the worldsheet, located at z = i and z = iy on the UHP, whose moduli space is param-

eterized by y ∈ (0, 1). The amplitude decomposes into two types of Feynman diagrams, as

as depicted in Figure 2.4. In the limit λ→ ∞, there are two such diagrams, namely

AD2

δτ(p)δτ(k)(λ) = AD2

δτ(p)δτ(k) +AD2

δτκ1Pκ1AD2

δτκ1 . (2.35)

The LHS of the above expression emphasizes the expected dependence of the amplitude

on λ. In other words, it will contain terms that do not vanish in the large λ limit. Here

and throughout the rest of the chapter, the label A is reserved for a vertex entering into

the Feynman rules as opposed to the associated term V in the effective action, although

the two are always related by a possible symmetry factor. Note that for well-defined

quantities in the on-shell formalism, A exactly agrees with the full amplitude in the limit

where certain SFT parameters are taken to be large.
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The first diagram in (2.35) is the Feynman 2-point closed string vertex, which con-

sists of moduli integration over the vertex region y ∈ (λ−2, 1). As the integrand exactly

matches that of the on-shell computation, the diagram assumes a similar form

AD2

δτ(p)δτ(k) = 10− 2
√
2
eσρ(p)kσkρ + eσρ(k)pσpρ

p · k

− 8α′(p · k)
(
ψ(1 + α′p·k

2 ) + γ + log(4λ−2)
)
.

(2.36)

Notice that the ad hoc cutoff ε of the on-shell amplitude has been replaced by an unam-

biguous expression involving λ. Coincidentally, this λ dependence will drop out of the

full N -point scattering amplitude once we sum over different permutations of the external

states and momentum conservation is restored. This should not be so surprising, since

this fact is a part of what allows us to trust the results for the momentum dependence of

amplitude computed in the naive approach.

Importantly, in Sen gauge, SFT prescribes an additional contribution, namely the prop-

agation of the ghost zero mode κ1 in the second Feynman diagram of (2.35). This in-

volves two open-closed string vertices AD2

δτκ1 contracted by an open string propagator.

Each takes the form of a disc with one δτ insertion and one κ1 insertion. The resulting

Feynman diagram reads

AD2

δτκ1Pκ1AD2

δτκ1 = −2 , (2.37)

and so κ1 exchange contributes a nontrivial constant to the scattering amplitude.
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Together, the two Feynman diagrams give rise to the SFT disc 2-point amplitude

AD2

δτ(p)δτ(k)(λ) = 8− 2
√
2
eσρ(p)kσkρ + eσρ(k)pσpρ

p · k

− 8α′(p · k)
(
ψ(1 + α′p·k

2 ) + γ + log(4λ−2)
)
,

(2.38)

where the constant “8” in the first line differs with the factor of “10” appearing in the the

Feynman vertex (as well as the on-shell amplitude). Multiplying this by (N − 2) copies

of disc 1-point amplitude (1.47) and summing over distinct permutations of the momenta,

we find this topology contributes to the constant C(N)
1 in the N -point MRV amplitude as

− 1

256

∑

1≤i<j≤N

(8 + 24i · pj + 4j · pi) = − 1

32
· N(N − 1)

2
+

1

128
·N . (2.39)

Here, the vector 4i, which appears in the polarization tensor eµν(pi) as in (A.28), satis-

fies 4i · pi = 1. In the above expression, we have also used momentum conservation to

replace
∑

j *=i p
µ
j with −pµi . As already mentioned, while C(N)

1 also receives contributions

from other worldsheet topologies as well as from the corrections that arise in the integra-

tion over the open string zero modes, (2.39) is solely responsible for the N2 term in C(N)
1 .

This unambiguously determines

a0 = − 1

32
(2.40)

in (1.11), in perfect agreement with the expected result (1.97)! We emphasize that the

inclusion of the Feynman diagram where κ1 propagates was essential in obtaining the

correct result, which would not have been possible in the naive on-shell approach.
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2.2.2 Determination of a1

We now focus on the constant a1, which receives contributions from the disc 2-point am-

plitude as well as the annulus 1-point amplitude. It also depends on several new topolo-

gies arising from integration over the open string collective modes.

Annulus 1-point amplitude

In Section 2.4, we shall employ the SFT framework to recompute the annulus 1-point am-

plitude AA2

δτ . Recall that the amplitude corresponds to a family of worldsheets depending

on the location of the closed string puncture w = u on the annulus together with its mod-

ulus t, and so there is a 2d moduli space parametrized by (2πt, u) ∈ R × (0,π). Each

worldsheet can also take on one of four spin structures ν. The amplitude receives contri-

butions from multiple Feynman diagrams, as shown in Figure 2.5. These depend on sev-

eral different SFT parameters, including both λ and α. In the large λ and α limits, the

amplitude takes the form

AA2

δτ (α,λ) = AA2

δτ +AD2

δτ Pκ1AA2

κ1 +
1

2
AD2

δτκ1κ1Pκ1

+
1

2
AD2

δτκ1Pκ1AD2

κ1κ1κ1Pκ1 .

(2.41)

The first term in (2.41) is the annulus 1-point vertex for the axion-dilaton. It is com-

puted in part by moduli integration over the vertex region, indicated by the blue region

in Figure 2.5. For our choice of PCO locations, the integrand is identical to that of the

on-shell computation, and so gives zero once we sum over the spin structures. This is not

the end of the story, since there is a mismatch in the PCO locations along the wall sepa-
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u

v

α−2

1

λ̃−1 π − λ̃−1 π

Figure 2.5: Feynman diagrams and the corresponding moduli domains for the annulus with one
NSNS insertion. Here, a cross indicates a closed string puncture, while a wavy line indicates an
open string propagator with two open string punctures at the endpoints. Dotted circles are PCO
insertions averaged over a small contour enclosing the closed string. The worldsheet is given by
the annulus, represented as a strip w ∈ (0,π) × iR with w ∼ w + 2πit and v = e−2πt, with the
closed string located at w = u. The vertex region is shaded blue. Vertical integration is required
along the walls u = λ̃−1,π − λ̃−1 for v ∈ (0, 1).

rating the vertex region and the red propagator region, corresponding to the purple seg-

ments in the fifgure. In order to close the gap, we must perform vertical integration along

these segments, which yields a rather nontrivial expression of the form

AA2

δτ = −2π
4∑

ν=2

(−)ν
∫ ln(α2)/2π

0
dt
ϑν(it)4

η(it)12
∂

∂po
log ϑν(po|it) . (2.42)

Here, po is the (fixed) location of the PCO for an annulus 1-point vertex with an open

string insertion.

The second term in (2.41), is given by the Feynman diagram consisting of an open-

closed disc vertex AD2

δτκ1 contracted with the annulus 1-point vertex AA2

κ1 for κ1. This dia-

gram corresponds to the red propagator region in Figure 2.5. The annulus 1-point vertex
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can be computed by integrating the correlation function involving a κ1 insertion on the

boundary over the vertex region t ∈ (lnα2,∞) of the 1d moduli space. Including the

closed-open vertex and the open string propagator then gives the Feynman diagram

AD2

δτ Pκ1AA2

κ1 = 2π
4∑

ν=2

(−)ν
∫ ln(α2)/2π

0
dt
ϑν(it)4

η(it)12
∂

∂po
log ϑν(po|it) , (2.43)

which exactly cancels with the contribution of the closed string annulus vertex in (2.42),

ensuring that the final amplitude is independent of α and po! This exemplifies the deli-

cate interplay between vertical integration and κ1 propagation in string field theory.

The third term in (2.41) is a Feynman loop diagram consisting of the open-closed disc

vertex AD2

δτ(p)κ1κ1 with the two open string punctures contracted, as depicted by the green

propagator region in Figure 2.5. The associated disc amplitude corresponds to a family of

worldsheets with a closed string at z = i together with two open strings at z = ±β, and

so has a 1d moduli space parametrized by β ∈ (0,∞). The disc vertex is then defined as

moduli integration over the vertex region ((2λ̃)−1, 2λ̃), where λ̃ = λα. Including the ghost

propagator as well as the symmetry factor of 1
2 common to all loop diagrams yields

1

2
AD2

δτκ1κ1Pκ1 = −π + 2λ̃ . (2.44)

The last Feynman diagram of (2.41) consists of vertices AD2

δτκ1 and AD2

κ1κ1κ1 with all

of the open strings contracted. This corresponds to the yellow propagator region of Fig-

ure 2.5. Due to the ghost structure of κ1, the 3-point vertex vanishes and so the diagram

does not contribute. Summing all the Feynman diagrams, it follows that the annulus am-
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plitude is

AA2

δτ = −π + 2λ̃ . (2.45)

Notice that unlike the naive on-shell amplitude, which is zero, the SFT amplitude receives

a constant, λ̃-dependent correction that contributes to the value of a1.

Integration over ζ2

We now focus on the SFT corrections which result from integration over the open string

zero modes. First, let us consider the constant Y corresponding to integration in ζ2. Its

value can be determined by computing the disc amplitude with a δτ insertion together

with the open string insertions χ, χ∗, and ζ2. In Section 2.5, we compute this amplitude

with χ and χ∗ chosen such that their vertex operators agree with those of ζ2 and κ2 other

than the Chan-Patton factors. On the UHP, we shall take the closed string position to be

z = i, while the open string insertions reside on the real line at z = zi for i = 1, 2, 3.

Since all three open string states belong to different Hilbert spaces, the amplitude in-

volves only a single cyclic ordering of z1, z2, z3, which itself corresponds to three linear

orderings given by z1 < z2 < z3, z2 < z3 < z3, and z3 < z1 < z2. Fixing one of the

open string positions, say z1 = 0, parametrizes the 2d moduli space in terms of (z2, z3).

In the large λ,α limits, the amplitude receives contributions from only a finite number of

Feynman diagrams, namely

Aδτχχ∗ζ2 = AD2

δτχχ∗ζ2 +AD2

δτκ1Pκ1AD2

κ1χχ∗ζ2 +AD2

δτχκ1Pκ1AD2

κ1χ∗ζ2

+AD2

δτκ1Pκ1AD2

κ1χκ1Pκ1AD2

κ1χ∗ζ2 + cyclic perm.
(2.46)
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(a) (b) (c) (d)

Figure 2.6: Feynman diagrams for the disc with one NSNS insertion and three NS insertions.
The closed and open string punctures are represented by crosses. Black dots represent a PCO in-
sertion in the bulk, while dotted (semi-)circles indicate a PCO averaged over a contour surround-
ing the (open) closed string puncture. Diagram (a) is the Feynman vertex corresponding to the
vertex region of the 2d moduli space, while diagrams (b-d) each cover a propagator region.

The first diagram of (2.46) is given by the Feynman disc vertex AD2

δτχχ∗ζ2 , as shown in

Figure 2.6(a). It receives contributions from moduli integration over the vertex region

together with vertical integration at the 1d wall that meets with the propagator region

corresponding to the Feynman diagram in Figure 2.6(c). For our choice of PCO loci, the

former vanishes, and so we never need to explicitly integrate over any regions of the 2d

moduli space. Meanwhile the later gives

AD2

δτχχ∗ζ2 = −2λ̃ . (2.47)

The second Feynman diagram in (2.46) corresponds to κ1 exchange. It is given by an

open-closed vertex AD2

δτκ1 contracted with a 4-point vertex AD2

χχ∗ζ2κ1 , as shown in Fig-

ure 2.6(b). Consider the disc 4-point amplitude, which can computed by inserting all

three external open strings together with κ1 on the disc. We fix the location of the ver-

tex operators to z = 0, 1,∞ for the external states and take κ1 to be at z = x. The 1d

moduli space is completely covered by x ∈ R since we must keep the cyclic ordering of

the external states fixed. The Feynman 4-point vertex AD2

χχ∗ζ2κ1 , which contributes to this

amplitude, corresponds to moduli integration over the vertex region x ∈ ROOOO, the

details of which we postpone to Section 2.5. (In this case, vertical integration does not

94



contribute due to the ghost structures of the vertex operators). Together with the other

vertex and the ghost propagator, it gives

AD2

δτκ1Pκ1AD2

χχ∗ζ2κ1 = −2π . (2.48)

The remaining Feynman diagrams in (2.46) all involve 3-point disc vertices of the open

string fields including κ1, corresponding to Figures 2.6(c-d). In practice, we find that

these all vanish due to their ghost structures, and so the Feynman diagrams do not con-

tribute.

Summing all the Feynman diagrams in (2.46) leads to the amplitude

AD2

δτχχ∗ζ2(λ̃) = −2π − 2λ̃ . (2.49)

In order to extract the value of Y , we must also compute the normalization factor in

(2.8). This is given by the disc amplitude for the open strings, which we determine to be

AD2

χχ∗ζ2 = −1 . (2.50)

Using (2.8) then gives

Y = 2π + 2λ̃ . (2.51)

Integration over φµ

We now determine the corrections ∆U and ∆U ′′ arising from integration in φµ. These

can be extracted from the disc amplitude with two δτ insertions and one φµ insertion, the
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x

y

λ̃−1−λ̃−1

λ̃−2

Figure 2.7: Feynman diagrams and the corresponding moduli domains for the disc with two
NSNS insertions and one NS insertion. Here, a cross indicates a closed/open string puncture,
while a wavy line indicates an open string propagator with two open string punctures at the
endpoints. Dotted circles are PCO insertions averaged over a small contour enclosing the closed
string, while points are PCO insertions. The worldsheet is given by the disc, represented as the
UHP, with the closed strings located at z = i and z = iy, and the open string at z = x. The
vertex region is shaded blue. Vertical integration is required along each 1d segment separating ad-
jacent diagrams.

computation of which is carried out in Section 2.6. On the UHP, the closed strings are

placed at z = i and z = iy, respectively, while the open string is located at z = x, leading

to a 2d moduli space parametrized by (x, y) ∈ R × (0, 1). The amplitude decomposes into

Feynman diagrams according to Figure 2.7. In the large λ̃ limit, the only contributions

are

AD2

δτ(p)δτ(k)φµ(λ̃) = AD2

δτ(p)δτ(k)φµ +AD2

δτ(p)κ1Pκ1AD2

δτ(k)κ1φµ

+AD2

δτ(k)κ1Pκ1AD2

δτ(p)κ1φµ +AD2

δτ(p)κ1Pκ1AD2

κ1κ1φµPκ1AD2

δτ(k)κ1 ,

(2.52)

The first diagram in (2.52) is the Feynman vertex AD2

δτ(p)κ1 itself, which corresponds to

96



integration over the vertex region R × (λ̃−2, 1), displayed in blue in Figure 2.7. Vertical

integration is also necessary at y = λ̃−1, indicated by the purple and teal segments, which

corresponds to the boundary meeting two separate propagator regions (red and green).

Together, the moduli and vertical integration contribute

AD2

δτ(p)δτ(k)φµ =
√
2πAD2

δτ(p)δτ(k)(λ̃)(ip
µ + ikµ)− 4

√
2(12π + λ̃)(ipµ + ikµ)

+ 4π(ipνe
µν(k) + ikνe

µν(p)) .

(2.53)

Here AD2

δτ(p)δτ(k)(λ̃) is the 2-point vertex in (2.36) with λ replaced by λ̃.

The next two Feynman vertices in (2.52) consist of a 2-point vertex AD2

δτ(p)κ1 contracted

with a 3-point vertex AD2

δτ(p)κ1φµ , including exchanging the closed string states. The dia-

grams separately correspond to the red and green propagator regions of Figure 2.7. They

contribute as

AD2

δτ(p)κ1Pκ1AD2

δτ(k)κ1φµ = −2
√
2π(ipµ + ikµ) (2.54)

and similarly for p ↔ k.

The last Feynman diagram in (2.52) involves two open-closed vertices as well as an

open 3-point vertex, depicted by the yellow propagator region in Figure 2.7. The 3-point

vertex AD2

κ1κ1φµ = 0, and so does the diagram does not contribute to the amplitude.

In total, the Feynman diagrams in (2.52) give

AD2

δτ(p)δτ(k)φµ =
√
2πAD2

δτ(p)δτ(k)(λ̃)(ip
µ + ikµ)− 4

√
2(π + λ̃)(ipµ + ikµ)

+ 4π(ipνe
µν(k) + ikνe

µν(p)) ,

(2.55)

where this expression has been written in terms of the full 2-point amplitude in (2.38)
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with λ replaced by λ̃. Recall the definition of ∆U , ∆U ′ and ∆U ′′ in the SFT effective

action. From (2.19), it follows that the coefficients enter into the amplitude as

AD2

δτ(p)δτ(k)φµ(λ̃) = NφAD2

δτ

{
(AD2

δτ )
−1AD2

δτ(p)δτ(k)(ip
µ + ikµ)− 2∆U(ipµ + ikµ)

− 2∆U ′(ip · ik)(ipµ + ikµ)− 2
√
2∆U ′′(ipνe

µν(k) + ikνe
µν(p))

}
.

(2.56)

The coefficients ∆U and ∆U ′ come multiplied by a symmetry factor of 2 corresponding

to the two copies of δτ in the effective action. Note that eµν in this expression satisfies

eµν(p)eµν(p) = 1. The normalization factor for φµ is given by

NφAD2

δτ = −2
√
2 , (2.57)

as computed from the disc amplitude with one insertion of δτ and φµ each. Comparing

(2.56) with (2.55) thus determines

10∆U +∆U ′′ = −π − 10λ̃ . (2.58)

Integration over θα

Finally, we determine the correction ∆V that arises from integration over θα. This in-

volves computing the amplitude for a δτ insertion together with a dilatino λ and fermionic

zero mode θα, whose details can be found in Section 2.7. The vertex operators are ar-

ranged on the UHP such that δτ is at z = i, λ at z = iy, and θα at z = x. In line with

the closed-closed-open amplitude of the previous section, the moduli space is parameter-

ized by (x, y) ∈ R × (0, 1), with the amplitude admitting a similar Feynman diagram
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x

y

λ̃−1−λ̃−1

λ̃−2

Figure 2.8: Feynman diagrams and the corresponding moduli domains for the disc with an
NSNS, NSR/RNS, and R insertion. Here, a cross indicates a closed/open string puncture, while
a wavy line indicates an open string propagator with two open string punctures at the endpoints.
Dotted circles are PCO insertions averaged over a small contour enclosing the closed string, while
points are PCO insertions. The worldsheet is given by the disc, represented as the UHP, with the
closed strings located at z = i and z = iy, and the open string at z = x. The vertex region is
shaded blue. Vertical integration is indicated by the purple, teal, and orange segments.

decomposition, as shown in Figure 2.7. One key difference is that the external states be-

long to different spacetime sectors, which in turn affects the PCO structure. In particular,

in the λ̃ limit, only two diagrams contribute, namely

AD2

δτ(p)λ(k)θα(λ̃) = AD2

δτ(p)δτ(k)θα +AD2

δτ(p)κ1Pκ1AD2

λ(k)κ1θα
. (2.59)

The first diagram in (2.59) is the Feynman vertex AD2

δτ(p)δτ(k)θα
, corresponding to the

blue region in Figure 2.7. In addition to moduli integration, it receives contributions from

vertical integration at the boundary y = λ̃−1, indicated by the teal and purple segments.
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Together, the two forms of integration contribute

AD2

δτ(p)λ(k)θα = −iπuα(k)

{
AD2

δτ(p)δτ(k)(λ̃) + 2(p · k)
}
. (2.60)

where uα is the polarization spinor of the dilatino. In writing this expression, we have

used the 2-point amplitude in (2.38) with λ̃ replacing λ. The second Feynman diagram in

(2.59) consists of the vertices AD2

δτ(p)κ1 and AD2

λ(k)κ1θα
contracted together, corresponding to

the red propagator region in Figure 2.7. Computation of this diagram gives

AD2

λ(p)κ1θα
Pκ1AD2

δτ(k)κ1 = iπuα . (2.61)

The two Feynman diagrams in (2.59) sum together to yield

AD2

δτ(p)λ(k)θα = −iπuα(k)

{
AD2

δτ(p)δτ(k)(λ̃)− 1 + 2(p · k)
}
. (2.62)

From (2.29) it follows that the SFT coefficients ∆V and ∆V ′ enter into the amplitude as

AD2

δτ(p)λ(k)θα = NθAD2

δτ u
α(k)

{
(AD2

δτ )
−1AD2

δτ(p)δτ(k) −∆V −∆V ′(ip · ik)
}
. (2.63)

The normalization coefficient can be read off from the δτ , θα disc amplitude with uα

stripped away. This gives

NθAD2

δτ = −i . (2.64)

Comparing (2.62) with (2.63), we find that the correction to (2.34) from integration in θα
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is

16∆V = 16π . (2.65)

We now have all the ingredients necessary to compute the a1. Using (2.38), (2.45),

(2.51), (2.58), and (2.65) gives

AA2

δτ + Y + 10∆U +∆U ′′ + 16∆V = 16π − 6 .λ̃ (2.66)

Multiplying this by N − 1 copies of disc 1-point amplitude (1.47), we find that this con-

tributes to C(N)
1 in the N -point MRV amplitude (2.34) as

1

128

(
16− 6

λ̃

π

)
. (2.67)

Together with the result for the disc 2-point amplitude in (2.39), we find

a1 =
17

128
− 3

64π
λ̃ . (2.68)

This comes very close to value 1
8 predicted by supersymmetry and the soft relations. How-

ever, it also depends on the SFT parameter λ̃.

2.2.3 Discussion

In this chapter, we have employed the framework of open+closed string field theory in

order to carry out a first principles computation of D-instanton effects in type IIB string

theory. We have derived the single D-instanton contribution to the N -point MRV super-
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graviton scattering amplitude at next-to-leading non-perturbative order in the string cou-

pling.

Let us briefly review the logical components necessary for the computation. In a D-

instanton background, closed string amplitudes are defined through an effective action

that is 1PI with respect to the closed string fields and Wilsonian with respect to the open

string fields. The action takes the form of an open string path integral, which receives

contributions from “massless” strings corresponding to BRST-exact states in the open

string Hilbert space, as well as “massive” open strings with finite propagator. We chose

to work with Siegel gauge for modes of nonzero weight and Sen gauge for those of zero

weight, since the former is singular. Doing so introduced a new massive open string field

κ1 whose vertex operator has zero weight but is not BRST-closed. The massive open

string fields in the gauge-fixed path integral were handled perturbatively, where they

enter as intermediate states in Feynman diagrams contributing to the different world-

sheet topologies. Such diagrams are constructed from SFT vertices, given by correlators

integrated over subdomains of the worldsheet moduli space of Riemann surfaces with

boundary. Their definition necessitated the introduction of several string field theoretic

parameters that are expected to drop out of on-shell amplitudes. On the other hand,

perturbation theory breaks down for the massless open string fields. These consist of

the D-instanton collective modes φµ, θα as well as a fermionic field ζ2 corresponding to

the U(1) gauge symmetry on the D-instanton worldvolume. We carried out the full non-

perturbative path integral for such fields, first performing a field redefinition involving the

closed string fields, which reproduced integration over the D-instanton supermoduli space

R10|16. As a consequence of the field redefinition, the effective action receives contribu-
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tions from new Feynman diagrams that cannot be attributed to the standard sum over

worldsheet topologies.

The first result of this work was to show that the naive on-shell formalism, which gen-

erally suffers from divergences and ambiguities, correctly captures the momentum depen-

dence of the MRV amplitude to the desired order in the string coupling. This relied on

an argument involving various worldsheet topologies, and in particular the SFT construc-

tion of the disc 2-point amplitude. This was shown to agree with the on-shell result up to

a momentum-independent constant. The remaining topologies involve at most one open

closed string, and so do not play a part in this analysis. Note that this behavior is not

expected to generalize at higher orders, where now Feynman diagrams with open string

propagation can contribute to the momentum-dependent terms.

We also studied the momentum-independent constant coefficients a0, a1, a2, which are

ambiguous from the perspective of the on-shell formalism. The computation for a0 in-

volved the disc 2-point amplitude, which in the SFT approach included a Feynman di-

agram corresponding to κ1 propagation. Its final value agrees with the expectation of

supersymmetry and soft limits, and so serves as a highly nontrivial test of D-instanton

perturbation theory within superstring field theory.

The SFT computation of a1 was more delicate, as it receives contributions from several

Feynman diagrams spanning amplitudes of different topologies. Complicating the com-

putation is the fact that it also depends on the corrections arising from integration over

the massless open string fields. After evaluating all of the relevant Feynman diagrams,

we found a value for a1 that is very close to the predicted value from supersymmetry and

soft limits, but does not quite match. Even so, we have still laid out many of the logical
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and computational ingredients necessary for determining the correct value of a1. Further-

more, many of the amplitudes we computed pass various consistency checks, such as the

fact that most of the SFT parameters entering into intermediate Feynman diagrams drop

out of the final calculation.

A more serious issue is that our result for a1 still depends on a single SFT parame-

ter, which implies that the amplitude is not field redefinition invariant at the level of the

open string path integral. Whether this is due to a mistake in our calculations or a sign

of some missing logical piece is at the present time unclear. This uncertainty can be at-

tributed to the fact that our approach is somewhat piecemeal, which makes determining

the source of the error difficult. One subtlety in our analysis, which could contribute to

this issue, is that in performing the open string path integral over the collective modes,

we had to rely on open string background independence in a somewhat indirect manner.

It would therefore be very interesting to analyze the D-instanton path integral and its in-

variance under field redefinitions in a more systematic way. For now, we shall postpone

this issue to future work.5

We also hope to report on the SFT computation of a2 in the near future, which de-

pends on the disc 2-point amplitude as well as certain empty topologies we have not stud-

ied in this work. Due to spacetime supersymmetry, it is expected that the bosonic and

fermionic open string contributions to the latter cancel pairwise except for those from the

zero mode sector. Their computation is only somewhat more involved than that of this

5Previously, a next-to-leading order SFT D-instanton computation was performed in the con-
text of c = 1 string theory in [30]. While there was highly non-trivial agreement with predictions
of the duality with the matrix model, a mismatch in a single constant coefficient was found, which
was latter fixed by a more careful analysis in [62]. This constant of concern in [30] is analogous to
a1 in (1.11).
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work, since these topologies have three-dimensional moduli spaces.

A more intriguing question is to what extent the SFT framework captures D-instanton

and anti D-instanton contributions. In this case, there are regions of the moduli space

where tachyonic open string modes appear, and the integration over open string fields

may be ill-defined. In simple situations such as ZZ-instantons in c = 1 string theory, this

problem appears to be remedied by a Wick rotation prescription on the open string field

integration contour [24, 28, 29]. In type IIB string theory, on the other hand, it is unclear

whether the contribution from a D-instanton/anti-D-instanton pair to certain observables,

such as the D8R4 effective coupling, is even well-defined, as we do not understand the

asymptotic properties of the perturbative contribution to the D8R4 coupling nor how to

separate it from the D-instanton effects. Furthermore, the understanding of open+closed

SFT in the presence of both D-instantons and anti-D-instantons seems to be crucial in

connecting D-instanton perturbation theory in different instanton charge sectors, which

are thus far treated separately, via open string tachyon condensation [67].

2.3 Disc 2-point amplitude

In this section, we shall calculate the disc 2-point amplitude with two δτ insertions, as

constructed from SFT Feynman diagrams. In order to proceed, it is necessary to first

specify the string vertices that contribute to such diagrams. We begin with the string ver-

tex V1NSNS ,1NS

D2 that corresponds to a disc with one NSNS dilaton and one NS open string

field insertion. Representing the disc as the upper-half plane (UHP), we place the closed

string at z = i and open string at z = 0. We must further specify a local coordinate w

on the chart that contains the open string insertion, with the transition map fCO(z). We
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shall take fCO(z) = λ−1w with inverse

wCO(z) = λz , (2.69)

where λ ∈ R+ is an SFT parameter. Moreover, we need to place one PCO at some point

on the UHP. For convenience, we shall take the PCO to be holomorphic and coincident

with the closed string.6 These data completely determine V1NSNS ,1NS

D2 , as shown in Fig-

ure 2.3.

Next, we contract a pair of the vertices V1NSNS ,1NS

D2 with an NS open string propagator

to form a Feynman diagram. The corresponding family of worldsheet configurations is

constructed by gluing together a pair of discs, parameterized by z and z′ respectively, and

identifying a pair of annuli around each of the open string insertions with the plumbing

map

wCO(z)wCO(z′) = −q , q ∈ (0, 1) . (2.70)

This results in a single disc with two dilaton insertions and two PCOs. Representing the

latter as the UHP, up to a PSL(2,R) transformation, we can place one closed string at

z = i and another at z = iy with 0 < y < 1. The plumbing construction determines y =

y(q) as a function of q, as well as the locations of the two PCOs, p1(q) and p2(q). The

family of configurations obtained via plumbing covers a domain (0, y(q = 1)) = (0,λ−2) of

the moduli space parameterized by y ∈ (0, 1), as displayed in Figure 2.4.

There is a second Feynman diagram that is the string vertex V1NSNS ,2NSNS

D2 itself. The

6The D-instanton boundary does not separately conserve holomorphic or antiholomorphic pic-
ture, but rather their total. This allows us to freely interchange holomorphic and antiholomorphic
PCOs, which satisfy X (u) = X̃ (u) on the boundary parameterized by u.
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corresponding worldsheet configurations are that of a disc with two NSNS closed string

insertions as above, but with the modulus y restricted to the domain (λ−2, 1). In defin-

ing this string vertex, we must also choose the locations of the two PCOs such that they

agree with p1(q = 1) and p2(q = 1) at the boundary of the vertex region, namely y =

y(q = 1) = λ−2. If we simply place one holomorphic PCO on top of each of the closed

string insertions, then V1NSNS ,2NSNS

D2 is essentially what we computed in (1.66) where the

lower cutoff for the integration over y is taken to be λ−2, and the locations of the two

PCOs are continuous at y = λ−2 so that there is no need for the vertical integration.

A similar analysis applies to the diagrams involving RR axions. Each additional RR

insertion removes one PCO, and so all of the vertices can be defined by placing each PCO

coincident with one NSNS insertion, should any be present.

2.3.1 Vertex diagram

We shall first compute the Feyman vertex AD2

δτ(p)δτ(k), where again note that this the ver-

tex that enters into the Feynman rules as opposed to the associated term Vδτ(p)δτ(k)D2 in

the string field effective action. It is given by

AD2

δτ(p)δτ(k) =

∫ 1

λ−2
dy
〈
By V

(−1)
δτ(p)(i,−i)V (−1)

δτ(k)(iy,−iy)
〉D2

xµ=0
. (2.71)

We are only concerned with terms that survive in the λ → ∞ limit, and so the diagram is

given by (1.72) with the singular part replaced by a term proportional to

∫ 1

λ−2

dy

y
= log λ2 . (2.72)
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We stress that this computation is manifestly non-singular, since throughout the SFT cal-

culation we work with finite λ, and only take λ → ∞ at the end, where it has presumably

dropped out of the final result. In any case, it follows that the vertex diagram evaluates

to
AD2

δτ(p)δτ(k) = 10− 2
√
2
eσρ(p)kσkρ + eσρ(k)pσpρ

p · k

− 8α′(p · k)
[
ψ

(
1 +

α′p · k
2

)
+ γ + log(4λ−2)

]
.

(2.73)

The RHS of this expression is given by the on-shell amplitude computed in (1.72) with

the arbitrary cutoff ε replaced by a constant that depends on the SFT parameters.

2.3.2 κ1 exchange diagram

Next we consider the effect of κ1 exchange, which contributes to the propagator region.

This involves the open-closed vertex, which reads

AD2

δτκ1 =
〈
V (−1)
δτ (i,−i)V (−1)

κ1 (0)
〉D2

xµ=0
. (2.74)

According to our definition of the vertex, the single holomorphic PCO is coincident with

the closed string. In writing the above expression, we have also taken for granted that the

local coordinates do not enter since both the closed string vertex operator and that of κ1

are (boundary and bulk, respectively) conformal primaries of zero weight. Recall that the

latter is given by

V (−1)
κ1 (z) = c∂ce−2φ∂ξ(z) . (2.75)
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Due to the unusual ghost structure of (2.75), only the dilaton contributes. The relevant

terms in its picture-raised vertex operator are

V (0,−1)
δτ2

(z, z̄) = −eµν ηe
φψµ c̃e−φ̃ψ̃ν eip·X(z, z̄) + · · · , (2.76)

where the omitted terms do not contribute to vertex. The resulting open-closed string

vertex is

AD2

δτκ1 = − i√
2
eµν(p)

〈
ηeφψµc̃e−φ̃ψ̃νeip·X(i,−i) e−2φ∂ξc∂c(0)

〉D2

xµ=0

= 2i .

(2.77)

Here, the doubling trick has contributed a factor of −1 due to the antiholomorphic fermion.

The first Feynman diagram of Figure 2.4 with a κ1-propagator thus evaluates to

AD2

δτκ1Pκ1AD2

δτκ1 = −2 . (2.78)

We now assemble the full disc 2-point amplitude, which for the large λ limit consists of

the Feynman diagrams

AD2

δτ(p)δτ(k) = AD2

δτ(p)δτ(k) +AD2

δτκ1Pκ1AD2

δτκ1 . (2.79)

Plugging in our results for (2.73) and (2.78), we find

AD2

δτ(p)δτ(k) = 8− 2
√
2
eσρ(p)kσkρ + eσρ(k)pσpρ

p · k

− 8(p · k)
[
ψ(1 + p·k

2 ) + γ + log(4λ−2)
]
.

(2.80)
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2.4 Annulus 1-point amplitude

Next we consider the annulus with one closed string insertion. Although this amplitude

is formally zero in the on-shell prescription, it receives nontrivial corrections in the SFT

framework that depend on the string field theoretic parameters.

2.4.1 Feynman diagrams

We begin by specifying several new vertices that enter into the Feynman diagrams asso-

ciated with the propagator regions. Our definitions mostly agree with those of [29], ex-

cept we must also specify the PCO loci. Consider the disc 3-point vertex V1NS ,2NS ,3NS

D2 for

open strings, as shown in Figure 2.2. We shall employ the set of transition maps given by

fOOO
1 (w1) =

2w1

2α+ w1
, fOOO

2 (w2) =
2α+ w2

2α− w2
, fOOO

3 (w3) =
w3 − 2α

2w3
, (2.81)

where wi labels the coordinates on three half-discs corresponding to the open string punc-

tures, and α ∈ R is an SFT parameter. These functions map wi = 0 to the points

z = 0, 1,∞ on the UHP, and are cyclically permuted under z → (1 − z)−1. Their inverses

are given by

wOOO
1 (z) =

2αz

2− z
, wOOO

2 (z) =
2α(z − 1)

z + 1
, wOOO

3 (z) =
2α

1− 2z
. (2.82)

With this choice of coordinates, we take the PCO to be located at the permutation-invariant

point z = pooo with

pooo = e±
iπ
3 , (2.83)
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although the precise choice of sign does not matter. By doing so, we avoid having to av-

erage over the PCO location. However, the local coordinates are not symmetric under the

full permutation symmetry generated by z 0→ (1 − z)−1 together with z 0→ −1/z, and so

we must include the other cyclic ordering, e.g. 1 ↔ 2 exchanged, while leaving the PCO

location pooo fixed.

The next vertex we shall need is the disc vertex V1NSNS ,1NS ,2NS

D2 that corresponds to

a disc with one NSNS insertion and two NS insertions. This vertex can be determined

by first considering the Feynman diagram consisting of V1NS ,2NS ,3NS

D2 contracted with

V1NSNS ,1NS

D2 . The associated worldsheet family consists of two discs, parametrized by

UHPs z and z′ respectively, sewn together via

wCO(z)wOOO
1 (z′) = −q , q ∈ (0, 1) . (2.84)

The closed string puncture is located at z = i and external open string punctures at z =

±β, where

β =
q

2λ̃
, λ̃ ≡ αλ . (2.85)

The plumbing construction thus covers the range β < (2λ̃)−1 for one choice of cyclic

ordering and β > 2λ̃ for the other. According to the plumbing map, one PCO will be

coincident with the closed string and the other located at z = p(β), whose precise form is

unnecessary for our computation.

Now let us return to the vertex V1NSNS ,1NS ,2NS

D2 . This covers the remainder of moduli

space consisting of β ∈ ((2λ̃)−1, 2λ̃). We shall take the local coordinates around the open
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string punctures to be

wCOO
1 (z) =

αλ̃(z + β)

(1− βz)− λ̃f(β)(z + β)
, wCOO

2 (z) =
αλ̃(z − β)

(1 + βz) + λ̃f(β)(z − β)
. (2.86)

These must be compatible with those of the other Feynman diagram, which is to say that

the two must agree at the boundary β = (2λ̃)−1 separating the vertex and propagator

regions of moduli space. For this to be the case, the function f(β) necessarily satisfies

f(−β) = f(1/β) = −f(β), f(2λ̃) =
3− 4λ̃2

8λ̃2
. (2.87)

We shall take the PCOs to be separately holomorphic/antiholomorphic and coincident

with the closed string. This choice disagrees with the locations of the PCOs for the Feyn-

man diagram of the propagator region, and thus vertical integration will be required.

The next vertex we shall need is the annulus open vertex V1NS
A2 corresponding to an an-

nulus with a single NS open string insertion. Take the annulus to be the strip with global

coordinate w ∈ (0,π) identified under w ' w + 2πit, with the open string at w = 0.

There is a single PCO, which we take holomorphic and located at w = po, independent

of t.7 The diagram covers the vertex region 2πt ∈ (0, lnα2) of the annulus open string

amplitude. We must also sum over the spin structures ν. In principle, it is also neces-

sary to introduce local coordinates for the open string puncture that agrees with those of

the Feynman diagram covering the propagator region, i.e. V1NS ,2NS ,3NS

D2 , at the boundary

2πt = lnα2.

Now that the elementary vertices have been specified, we turn our attention to the

7After performing the doubling trick, the now holomorphic PCO is located at w = y′0.
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Feynman diagrams that contribute to the propagator regions of the annulus amplitude.

In the discussion which follows, we shall not need the local coordinate data for the exter-

nal open string punctures.8

CO-O(OO) diagram

The first Feynman diagram of consideration consists of the vertices V1NSNS ,1NS

D2 and V1NS ,2NS ,3NS

D2 ,

with both pairs of open strings contracted together. The associated family of worldsheet

configurations is constructed by joining together a pair of discs, parametrized by z and z′

respectively, via the plumbing maps

wCO(z)wOOO
1 (z′) = −q1, q1 ∈ (0, 1) ,

wOOO
2 (z′)wOOO

3 (z′) = −q2, q2 ∈ (0, 1) .

(2.88)

The first line corresponds to NS open string exchange, whereas the second corresponds to

an NS open string loop. This leads to an annulus, represented by the strip, with a single

closed string insertion and two PCOs. Up to a PSL(2,R) transformation, we can place

the closed string at w = u with u real, where w = −i ln z. The plumbing construction

determines u = u(q1, q2) and t = t(q1, q2) as a function of the gluing parameters q1, q2.

Such a construction also fixes the locations of the PCOs, with one coincident with the

closed string and the one at z′ = po now located at w = p(u, t; po), which varies with

the moduli. In determining the propagator region corresponding to the range of q1, q2, we

must also sum over the two cyclically inequivalent permutations of the open string punc-

8For the curious reader, detailed local coordinate data for the open strings punctures in the
annulus 1-point amplitude can be found in [29].
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tures. To leading order in the SFT parameters, it consists of two disconnected regions

2πt ∈ (lnα2,∞) and u ∈ (0, λ̃−1) ∪ (π − λ̃−1,π), where each component corresponds to

a separate boundary of the annulus, as shown in Figure 2.5. There is a similar construc-

tion for R-sector open string loops, corresponding to replacing the 3-point vertex with

V1NS ,2R,3R
D2 , that gives rise to different spin structures of the annulus.

CO-(O) diagram

The next Feynman diagram of consideration consists of the closed-open vertex V1NSNS ,1NS

D2

contracted with V2NS
A2 . Here, the worldsheet configurations correspond to a disc glued to

an annulus of modulus t, parametrized by the UHP z and strip w, respectively, via the

plumbing map

wCO
1 (z)wO

1 (w) = −q1 , q1 ∈ (0, 1) (2.89)

This leads to the desired annulus with a single closed string and two PCOs. After per-

forming the appropriate PSL(2,R) transformation, the closed string and PCO from the

disc are located at w = u with u = u(q1) real. The other PCO gets mapped to w =

p(u; po) in the bulk, which at leading order in λ̃ is given by p(u; po) = po. Furthermore,

the corresponding propagator region is given by (2πt, u) ∈ (lnα2,∞) × (λ̃−1,π − λ̃−1), as

shown in Figure 2.5.

C(OO) diagram

The third and final Feynman diagram contributing to a propagator region consists of

V1NSNS ,1NS ,2NS

D2 with the two open strings contracted. Here, the worldsheet configurations
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arise from a disc with UHP coordinate z, with the two open string punctures at z = ±β

glued together via

wCOO
1 (z)wCOO

2 (z) = −q2 , q2 ∈ (0, 1) . (2.90)

Transforming to the strip coordinate w = −i ln z, we can use the PSL(2,R) symmetry to

place the closed string puncture at w = u, where both PCOs remain coincident with the

closed string. Note that u = u(β) varies with the modulus β. The range (2λ̃)−1 < β < 2λ̃

together with that of the plumbing parameter fixes the subdomain of moduli space to

take the form of two disconnected components, with

(2πt, u) ∈ (0, lnα2)× (0, λ̃−1) ∪ (π − λ̃−1,π) , (2.91)

as shown in Figure 2.5. Vertical integration is required along the walls u = λ̃,π − λ̃ sepa-

rating the C(OO) propagator region from the CO-O(OO) propagator region. Once again,

we can replace the vertex with V1NSNS ,1R,2R
D2 and carry out the same sewing procedure to

get the contributions of the other spin structures.

Vertex diagram

Finally, we are in a position to analyze the Feynman diagram that contributes to the ver-

tex region, which is just the annulus vertex V1NSNS
A2 itself. As usual, we shall take the

annulus with modulus t to be represented by the strip with coordinate w, and place the

closed string puncture at w = u. Both PCOs, one holomorphic and the other antiholomor-

phic, are taken coincident with the closed string. The vertex region corresponds to range

of u and t that covers the remainder of moduli space, i.e. (2πt, u) ∈ (0, lnα) × (λ̃−1,π −
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λ̃−1), as shown in Figure 2.5. It is also necessary to sum over the spin structures ν.

There is an analogous construction of Feynman diagrams for an RR-sector closed string.

In practice, we find that all such Feynman diagrams vanish, and so we shall not discuss

them here.

2.4.2 Vertex region

In this section we compute the closed string annulus 1-point vertex. The contribution of

moduli integration over the vertex region is given by

1

4

4∑

ν=1

(−1)ν
∫ ln(α2)/2π

0
dt

∫ π−λ̃−1

λ̃−1
du
〈
BtBuV

(0)
δτ (u)

〉A2(t),ν

xµ=0
. (2.92)

Here, Bt,u are the same b-ghost insertions as in (A.70). The integrand matches that of the

on-shell calculation in (A.69), and so from (A.76) it is proportional to

∫ ln(α2)/2π

0
dt

4∑

ν=1

(−1)ν
ϑν(it)4

η(it)12

∫ π−λ̃−1

λ̃−1
du

∂2

∂u2
ϑ1(2u|it) = 0 , (2.93)

which vanishes by the Jacobi quartic identity.

Next we turn our attention to the contributions from vertical integration. The vertex

region shares a boundary with several propagator regions. The PCO placement is iden-

tical for the vertex and propagator region corresponding to the C(OO) diagrams, where

the PCOs are located at w = u and w̄ = u, respectively. However, for the propagator

region corresponding to the CO-(O) diagram, one of the PCOs resides at w = po. From

this we see that the two sets of PCO locations disagree along the walls u = λ̃−1,π− λ̃ and
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V (−1)
δτ (λ̃−1)

∂̄ξ̃(p̄)

p̄o

Bt

2πit

0 π

w

Figure 2.9: A family of 1-punctured annuli, parametrized by the metric modulus 0 < t < lnα2

2π

and antiholomorphic PCO location p̄. On the w strip, the closed string is located at w = λ̃−1,
depicted by a black cross. The ∂̄ξ̃ insertion at w = p̄ is represented by a purple cross. As p̄ varies,
it traces out a purple “vertical segment” corresponding to vertical integration.

2πt ∈ (0, lnα2), where vertical integration is necessary to close the gap. Carrying out the

vertical integration in Figure 2.9 gives

1

2

4∑

ν=1

(−1)ν
∫ ln(α2)/2π

0
dt
〈
Bt

(
ξ̃(u0)− ξ(po)

)
V (−1)
δτ (u0)

〉A2(t),ν

xµ=0
, (2.94)

where we have used the symmetry u 0→ π − u to write the expression in terms of a single

boundary u0 = λ̃−1. Note that the holomorphic and antiholomorphic parts of the η factor

takes into account first moving the antiholomorphic PCO from u0 to the boundary, where

it is exchanged for a holomorphic PCO, and subsequently moved to po. Given that u0 is

small, we can utilize the bulk-boundary OPE to write

V (−1)
δτ (u0) = 2i cη(0) + · · ·+O(u0) , (2.95)

where · · · includes ghost structures that give vanishing contribution to (2.94). The contri-
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bution of the b, c ghosts is

〈
Bt c(0)

〉A2(t),ν
xµ=0

= 2πiη(it)2 , (2.96)

whereas the fermionic ghosts give

〈(
ξ̃(u0)− ξ(po)

)
η(0)

〉A2(t),ν

xµ=0

=
1

η(it)9ϑν(it)

(
2λ̃+

∂

∂po
log ϑν(po|it)−

∂

∂po
logE(po)

)
+O(λ̃−1) .

(2.97)

In the above expression, we have introduced the function E(z|it) = ϑ1(z|it)
ϑ′1(it)

. Including the

ϑν(it)5/η(it)5 contribution of the free fermion CFT, we find

AA2

δτ = −2π
4∑

ν=2

(−)ν
∫ ln(α2)/2π

0
dt
ϑν(it)4

η(it)12
∂

∂po
log ϑν(po|it) +O(λ̃−1) , (2.98)

where we have used the Jacobi quartic identity to discard any terms of the form
∑

ν(−)νϑ4ν .

2.4.3 Propagator regions

We now consider the the Feynman diagrams that contribute to the propagator regions of

moduli space, where α and λ̃ are large such that only κ1 propagates.

CO-O(OO) diagram

There is only a single CO-O(OO) diagram, which corresponds to contractions of the disc

diagrams AD2

δτκ1 and AD2

κ1κ1κ1 . Due to the ghost structure of κ1, the 3-point vertex van-

ishes

AD2

κ1κ1κ1 = 0 (2.99)
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and hence so does the CO-O(OO) diagram

1

2
AD2

δτκ1Pκ1AD2

κ1κ1κ1 = 0 , (2.100)

where we have included a symmetry factor of 1/2 that accounts for contracting a pair of

open strings on the same vertex.

CO-(O) diagram

The relevant CO-(O) diagram consists of the vertices AD2

δτκ1 and AA2

κ1 contracted together.

The annulus 1-point vertex reads

AA2

κ1 =
1

2

4∑

ν=1

(−1)ν
∫ ln(α2)/2π

0
dt
〈
BtX (po)V

(−1)
κ1 (0)

〉A2(t),ν

xµ=0
, (2.101)

where the details of the local coordinate chart are unimportant since Vκ1 is a weight

zero conformal primary. As was the case for the annulus 1-point amplitude, the factor

of
∑

ν
1
2(−)ν arises from the type IIB GSO projection.

In order to compute the diagram, we can consider the ghost and matter CFTs sepa-

rately. In particular, there is a b, c contribution that involves two copies of each ghost

field, which can be determined by one’s favorite free field technique. Consider the ghost

oscillators bm and cm for m ∈ Z satisfying {bm, cn} = δm,n. Writing the annulus correlator
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as a trace over the strip Hilbert space gives

〈b(z)c(0)b0c0〉A
2(t) = Tr

[
(−)NbcvL0−c/24b(z)c(0)b0c0

]

=
∞∑

r=−∞
eirz Tr

[
(−)NbcvL0−c/24brc−rb0c0

]

= η(it)2
[ ∞∑

r=0

eirz +
∞∑

r=1

vr
eirz − e−irz

1− vr

]
.

(2.102)

In the above expression, Nbc is the bc ghost number and v = e−2πt. The third line follows

from the fact that brc−r (crb−r) for r > 0 annihilates states containing c−r (b−r) and

gives 1 otherwise. Using the identities

∞∑

r=1

1

r
xr = − log(1− x),

xr

1− vr
= −

∞∑

p=0

log(1− xvp) (2.103)

it follows that

〈b(z)c(0)b0c0〉A
2(t) =

1

i
η(it)2

∂

∂z

[ ∞∑

r=1

1

r
eirz +

∞∑

r=1

vr

r

eirz + e−irz

1− vr

]

= iη(it)2
∂

∂z
log



(1− eiz)
∞∏

p=1

(1− vpeirz)(1− vpe−irz)





= iη(it)2
[
i

2
+

∂

∂z
logE(z|it)

]
,

(2.104)

where in going from the second to the third lines we have used

∂

∂z
log(1− e−iz) =

∂

∂z
log sin(z/2) +

i

2
. (2.105)
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Returning to the annulus amplitude of interest, we can use the above result to get

〈
Bt b(po) c∂c(0)

〉A2(t),ν

xµ=0

= 2πiη(it)2
∂2

∂p2o
lnE(po|it) . (2.106)

It follows that for all of the spin structures except ν 2= 1, correlation function in the full

matter+ghost CFT is

〈
Bt

[
b∂ηe2φ + ∂(bηe2φ)

]
(po) c∂ce

−2φ∂ξ(0)

〉A2(t),ν

xµ=0

= 2πi
1

η(it)12
ϑν(it)6

ϑν(po|it)2
E(po|it)

∂3

∂p3o
lnE(po|it) ,

(2.107)

while it vanishes for ν = 1. The annulus 1-point vertex thus gives

AA2

κ1 = iπ
4∑

ν=2

(−1)ν
∫ ln(α2)/2π

0
dt

ϑν(it)6

η(it)12ϑν(po|it)2
E(po|it)

∂3

∂p3o
lnE(po|it) . (2.108)

We can further simplify this expression using the following identity9

4∑

ν=2

(−)ν
ϑν(it)6

ϑν(w|it)2
E(w|it) ∂

3

∂w3
lnE(w|it) = 2

4∑

ν=2

(−)νϑν(it)
4 ∂

∂w
log ϑν(w|it) . (2.109)

Multiplying by Pκ1 = 1/2 and AD2

κ1δτ = −2i, we find that the contribution of the CO-(O)

diagram is

AD2

δτκ1Pκ1AA2

κ1 = 2π
4∑

ν=2

(−1)ν
∫ ln(α2)/2π

0
dt
ϑν(it)4

η(it)12
∂

∂po
log ϑν(po|it) . (2.110)

9The two modular forms share the same pole structure, and so their equivalence can be
proved by equating terms order-by-order in a series expansion around v = e−2πt = 0. Using
Mathematica, we have verified that the equality holds to arbitrarily high order.
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Comparing the with the 1-point vertex in (2.98), we find that the two exactly cancel such

that

AA2

δτ +AD2

δτκ1Pκ1AA2

κ1 = 0 . (2.111)

Crucially, this ensures that the final amplitude is independent of the PCO location po for

the annulus open string vertex, which is to be expected since there are no other Feynman

diagrams that involve this vertex. It also serves as a highly nontrivial consistency check

for the SFT annulus amplitude.

C(OO) diagram

The relevant C(OO) diagram consists of the disc vertex diagram AD2

δτκ1κ1 stitched to-

gether by an open string propagator Pκ1 . The vertex is given by the moduli integral

AD2

δτκ1κ1 =

∫ 2λ̃

(2λ̃)−1
dβ
〈
Bβ Vκ1(−β)Vκ1(β)V

(0)
δτ (i,−i)

〉D2

xµ=0
, (2.112)

as pictured in Figure 2.10. The form of the b-ghost insertion is fixed by the definition of

the local coordinates in (2.86), namely

Bβ = − 1

1 + β2

∫

S−β

dz

πi

[
λ̃(z + β)2f ′(β) + z2 + 1

]
b(z)

+
1

1 + β2

∫

Sβ

dz

πi

[
λ̃(z − β)2f ′(β) + z2 + 1

]
b(z) .

(2.113)

Although vertical integration is in principle required, we find that it does not contribute

in practice due to the ghost structure of the κ1. A similar argument implies that the ax-
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i

− 1
2λ̃

1
2λ̃−2λ̃ 2λ̃Vκ1(β)Vκ1(−β)

z

Figure 2.10: A family of open-closed 3-punctured discs, expressed in terms of the UHP with co-
ordinate z, as parametrized by the modulus β ∈ ((2λ̃)−1, 2λ̃). There is one closed string puncture
located at z = i corresponding to the black cross, while there are two open string punctures at
z = ±β corresponding to the blue crosses. The b-ghost contour Bβ surrounds the two open string
punctures, as represented by the dotted counterclockwise curves. As β varies, the blue crosses
trace out the two blue segments, corresponding to moduli integration over the vertex region.

ion does not participate either. For the dilaton, we find

AD2

δτκ1κ1 = 2

∫ 2λ̃

(2λ̃)−1
dβ

(1− β2)2

β2(1 + β2)

= −4π + 8λ̃+O(λ̃−1)

(2.114)

and so the C(OO) diagram contributes as

1

2
AD2

δτκ1κ1Pκ1 = −π + 2λ̃ . (2.115)

In the limit of large λ̃, the annulus 1-point amplitude is fully captured by the Feynman

diagrams

AA2

δτ = AA2

δτ +
1

2
AD2

δτκ1Pκ1AD2

κ1κ1κ1Pκ1

+AD2

δτκ1Pκ1AA2

κ1 +
1

2
AD2

δτκ1κ1Pκ1 .

(2.116)
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Plugging in (2.98), (2.100), (2.110), and (2.115), we find that all of the contributions van-

ish or cancel except for the C(OO) diagram,

AA2

δτ = −π + 2λ̃ . (2.117)

A few comments are in order. First and most important, unlike the naive on-shell result

(A.76), we can see that the SFT annulus amplitude is nonzero, and so contributes to the

constant a1. Second, it also depends linearly on the SFT parameter λ̃, which suggests

that other Feynman diagrams must come into play in order to guarantee a result for a1

free of SFT parameters. As we argued for previously, such diagrams arise from the inte-

gration over the open string collective modes, which we consider in the next few sections.

2.5 δτ , χ, χ∗, ζ2 disc amplitude

In this section, we shall consider the disc amplitude an axion-dilaton together with χ, χ∗,

and ζ2. This amplitude determines the order gs correction Y to the SFT effective action

arising from integration over the U(1) ghost field ζ2.

2.5.1 Feynman diagrams

We begin with a discussion of the Feynman diagrams that contribute to disc amplitudes

with one NSNS insertion, one D-Ds NS insertion, one Ds-D NS insertion, and one D-D

NS insertion. (The axion does not contribute due to its ghost structure).
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CO-OOO-OOO diagrams

The first Feynman diagram we shall consider, the CO-OO1O-OO2O3 diagram, consists of

three vertices contracted together, namely V1NSNS ,1NS with two copies of V1NS ,2NS ,3NS , as

shown in Figure 2.6(d). This corresponds to a family of worldsheets given by three discs,

parametrized by UHP coordinates z, z′, z′′ respectively, that are sewn together via

wCO(z)wOOO
1 (z′) = −q1 , q1 ∈ (0, 1) ,

wOOO
1 (z′)wOOO

3 (z′′) = −q2 , q2 ∈ (0, 1) .

(2.118)

The resulting topology is that of a disc, with the closed string puncture located at z = i

and the open string punctures at z = za for za = za(q1, q2) and a = 1, 2, 3. One PCO

is coincident with the closed string, while the two others at z′ = pooo and z′′ = pooo are

located on the z-disc at z = p1(q1, q2; pooo) and z = p2(q1, q2; pooo), respectively. Due

to the different boundary conditions for the D- and Ds-instantons, only a single cyclic

ordering of the external open strings contributes to the Feynman diagrams. This corre-

sponds to taking one cyclic ordering for the open string punctures on the z′ disc, and the

two cyclically inequivalent orderings for those of the z′′ disc, which together make up the

CO-OO1O-OO2O3 diagram. There are also two other Feynman diagrams that contribute

to the amplitude, labeled by CO-OO3O-OO1O2 and CO-OO2O-OO3O1, which consist of

cyclically permuting the external open strings while leaving the PCO locations fixed. The

three diagrams each separately cover a disjoint propagator region in the 2d moduli space.
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COO-OOO diagrams

The next Feynman diagram of interest appears in Figure 2.6(c). It consists of the vertices

V1NSNS ,1NS ,2NS and V1NS ,2NS ,3NS contracted together, and will be referred to as the O1O-

OO2O3 diagram. The corresponding family of worldsheet configurations is given by two

discs, parametrized by UHP coordinates z and z′ respectively, sewn together via

wCOO
1 (z)wOOO

1 (z′) = −q1 , q1 ∈ (0, 1) . (2.119)

On the resulting z disc, the closed string puncture is located at z = i and the open string

punctures at z = za(u,β) with

z1 = β, z2 = −β , z3 = −β +
u(1 + β2)

−1 + uβ + uλ̃f(β)
. (2.120)

Here, β is the modulus of the COO vertex, while u is a new parameter given by

u =
2λ̃

α2(1 + 4λ̃2)
q1 . (2.121)

From the plumbing construction, we find that this diagram covers a propagator region

given by β ∈ ((2λ̃)−1, 2λ̃) and u ∈ (0, u0) with u0 = u(q1 = 1). Furthermore, there is a

holomorphic/antiholomorphic pair of PCOs coincident with the closed string at z = i as

well as a third PCO located at z = p(β, u; pooo) with

p = β +

(
pooo − 2

pooo

)
(1 + β2)u+O(u2) . (2.122)
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To first subleading order in u, the transition maps for the open string punctures take the

form
fCO1O-OO2O3
1 (w1) = −β +

1 + β2

αλ̃
w1 +O(w2

1) ,

fCO1O-OO2O3
2 (w2) = β − (1 + β2)u+

2(1 + β2)u

α
w2 +O(w2

2) ,

fCO1O-OO2O3
3 (w3) = β + (1 + β2)u+

2(1 + β2)u

α
w3 +O(w2

3) ,

(2.123)

where wa are the coordinates of the respective local patches for the three open string

punctures. Once again, the full CO1O-OO2O3 diagram consists of a single cyclic order-

ing of the open 3-point vertex. There are two other diagrams, CO3O-OO1O2 and CO2O-

OO3O1, which consist of permuting the external open strings and leaving the PCOs un-

touched.

CO-OO1O2O3 diagram

Next we turn our attention to the Feynman diagram described by contracting the ver-

tices V1NSNS ,1NS and V1NS ,2NS ,3NS ,4NS , displayed in Figure 2.6(b). We must first describe

the details of the open 4-point vertex with three open strings taken to have fixed cyclic

ordering. In order to do so, consider the Feynman diagram consisting of two vertices

V1NS ,2NS ,3NS contracted together. The family of worldsheet configurations can be found

by gluing together two discs, parametrized by UHP coordinates z′ and z′′ respectively, via

the map

wOOO
2 (z′)wOOO

2 (z′′) = −q1 , q1 ∈ (0, 1) . (2.124)

After performing an appropriate PSL(2,R) transformation z = z(z′), the resulting

topology is that of a disc with four open string punctures located at z = 0, 1,∞, x with
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x = x(q1). There are several such transformations, one of which takes the form

z = 1− 1

z

4α2 − q1
4α2 + q1

. (2.125)

From the plumbing construction, this implies that the open string at z′′ = 0 now resides

at z = x(q1) with

x = α−2q1 +
1

2
α−4q21 +O(α−6) . (2.126)

The two PCOs meanwhile are located away from the real axis at z = p1(x; pooo) and

z = p2(x; pooo), respectively; the precise forms of p1 and p2 are irrelevant for our discus-

sion. We must also take into account the other cyclic ordering of one of the 3-punctured

discs (the other contains two of the external open strings, and so is left alone). This can

be achieved by extending the range of q1 to (−1, 1), which effectively maps x 0→ −x. To-

gether, the plumbing construction and its reflection cover x ∈ Rs with Rs =
(
−α−2,α−2

)
.

The subscript s refers to the fact that this diagram is often called the s-channel exchange

diagram for 4-string scattering. For computational purposes, we only need the transition

maps around the open string puncture at x as well as one other insertion, say the punc-

ture at z = 1. Using the plumbing construction in (2.124) together with (2.125), we find

that the two transition maps are given by

f (s)
2 (w2) = 1 +

√
1− x

α
w2 +O(w2

2) ,

f (s)
4 (w4) = x+

x
√
1− x

α
w4 +O(w2

4) ,

(2.127)
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where w2 and w4 are the local coordinates for the punctures at z = 1 and z = x, respec-

tively.

There are two other diagrams, the t- and u-channel diagrams, that correspond to cycli-

cally permuting the external open strings at z = 0, 1,∞ while leaving the PCOs at their

original locations (“external” being from the perspective of the COOO amplitude). This

can be accomplished via the map z 0→ (1 − z)−1. One application gives the t-channel

diagram covering x ∈ Rt, with Rt =
(
1− α−2, 1 + α−2

)
and transition functions

f (t)
2 (w2) = 1− w√

xα
+O(w2

2) ,

f (t)
4 (w4) = x−

√
x

α
w4 +O(w2

4) .

(2.128)

Similarly, another application gives the u-channel diagram, which covers x ∈ Ru with

Ru =
(
−∞,−α2

)
∪
(
α2,∞

)
and transition functions

f (u)
2 (w2) = 1−

√
x2 − x

xα
w2 +O(w2

2) ,

f (u)
4 (w4) = x+

√
x2 − x

α
w4 +O(w2

4) .

(2.129)

The 4-point vertex V1NS ,2NS ,3NS ,4NS can now be defined in reference to the s, t, u-channel

diagrams and the associated propagator regions of the 4-point amplitude, as described

above. The open strings are taken to reside at the same locations, with x now assuming

values in the vertex region ROOOO = R\(Rs ∪Rt ∪Ru). We arrange the two PCOs to be

coincident with the two open strings at z = 0 and z = ∞, which avoids spurious singular-
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ities associated with PCO collision. 10 The transition functions will generally depend on

the local coordinates wa of the open string punctures as

fOOOO
a (wa) = za + ga(x)wa +O(w2

a) (2.130)

for za ∈ {0, 1, x}, with an analogous expression for the puncture za = ∞. They must

agree at the wall separating the vertex region and the propagator region, which in turn

imposes constraints on the boundary values of ga. Comparing with (2.127), (2.128), (2.129),

we find
(s-channel) g2

(
−α−2

)
= α−1 , g2

(
α−2

)
= α−1 ,

g4
(
−α−2

)
= α−3 , g4

(
α−2

)
= α−3 ,

(t-channel) g2
(
1− α−2

)
= α−3 , g2

(
1 + α−2

)
= −α−3 ,

g4
(
1− α−2

)
= α−3 , g4

(
1 + α−2

)
= −α−3 ,

(u-channel) g2
(
−α2

)
= α−1 , g4

(
α2
)
= α−1 ,

g4
(
−α2

)
= α, g4

(
α2
)
= α .

(2.131)

Finally, we can return to the construction of the CO-OO1O2O3 diagram, which consists

of V1NSNS ,1NS contracted with V1NS ,2NS ,3NS ,4NS . While this is not strictly speaking well-

defined, we can define these diagrams in terms of the plumbing procedure. In particular,

we take two discs, parametrized by UHP coordinates z and z′ respectively, and sew them

10Due to the PCO placement, our definition of the 4-point vertex is not symmetric under cyclic
permutations of the external open string punctures. This implies that we cannot assign it the
usual Feynman vertex interpretation in the field theoretic sense. Even so, as long as we are cog-
nizant of this point, we can use the 4-point vertex in building more complicated diagrams. These
diagrams are not defined not in terms of contracting field theoretic vertices, but rather only as
integration over a subdomain of moduli space. In terms of this definition, such diagrams and the
resulting string amplitudes are unambiguous.
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together via

wCO(z)wOOOO
4 (z′) = −q2 , q2 ∈ (0, 1) . (2.132)

This corresponds to a family of worldsheets parametrized by (r, x), where r = λ−1q2, with

the closed string at z = i and the open strings at z = za(r, x) for a = 1, 2, 3. (We do not

need the explicit form of these functions, nor the transition maps). This ‘diagram’ thus

corresponds to a part of the propagator region of moduli space given by x ∈ ROOOO and

r ∈ (0,λ−1). Regarding the PCO locations, one is coincident with the closed string at

z = i, while the other two are separately coincident with the open strings at z = z1 and

z = z3.

CO1O2O3 diagram

The only remaining diagram consists of the vertex V1NSNS ,1NS ,2NS ,3NS with one closed

string and three open strings, as shown in Figure 2.6(a). On the disc parametrized by the

UHP z, we take closed string to reside at z = i and the open strings at z = za, where

za = za(t1, t2) depends on the two real moduli t1, t2, which generally differ from the mod-

uli used for the propagator regions. For instance, one choice involves setting z1 = 0 and

letting z2 and z3 parametrize the vertex region. This region covers the remainder of mod-

uli space, which we denote by RCOOO, although its explicit form is unnecessary for our

purposes.

In order to have maximal agreement for PCO locations with the propagator region,

we shall take one PCO coincident with the closed string and two PCOs coincident with

open string punctures at z1 and z3. While vertical integration is still needed, our choice of
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PCOs renders it not too severe. Indeed, the only mismatch among PCO locations occurs

at the wall separating the vertex region from the propagator regions corresponding to the

COO-OOO diagrams.

With all of the requisite Feynman diagrams, we now set out to compute their contribu-

tions to the amplitude.

2.5.2 Vertex diagram

In this section, we compute the Feynman vertex for the χ, χ∗, ζ2, δτ amplitude. The ver-

tex operators for the strings stretching between the the D- and Ds-instantons, χ and χ∗,

are given by e12Vζ2 and e21Vκ2 , respectively. Here, e12 and e21 are the Chan-Patton fac-

tors mentioned previously, where eij = δij span C2×2. The vertex operator for ζ2, which

lives on the D-instanton, is e11Vζ2 . It follows that the contribution of moduli integration

over the vertex region takes the form11

∫

RCOOO

dt1dt2

〈
Bt1 Bt2 V

(0)
ζ2 (z1)V

(−1)
κ2

(z2)V
(0)
ζ2 (z3)V

(−1)
δτ (i,−i)

〉D2

xµ=0

, (2.133)

where the Chan-Patton factors give tr (e12e21e11) = 1. Here, Bt1 and Bt2 are integrated

b-ghost insertions whose precise forms are unnecessary for our purposes. As before, the

transition maps do not play a role since the vertex operators are all weight zero conformal

primaries. In order to avoid singularities, the picture-raised vertex operators for χ and ζ2

11Strictly speaking, there is an overall sign factor that depends on the orientation of dt1∧dt2 as
compared with the global orientation of the moduli space.
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are defined by averaging the PCO over a semicircle surrounding the open string, i.e.

V (0)
ζ2 (z) =

1

πi

∫

Sz

dz′

z′ − z
X (z′)V (−1)

κ1
(z) = −1 . (2.134)

Note that this is equivalent to the conformal normal ordering procedure of throwing away

all of the singular terms in the OPE before taking the coincident limit. From this, we find

that (2.133) reduces to

∫

RCOOO

dt1dt2

〈
Bt1 Bt2 ηc∂c(z2)V

(−1)
δτ (i,−i)

〉D2

xµ=0

= 0 , (2.135)

which vanishes since V (−1)
δτ (i,−i) does not contain any ξ ghosts to compensate for the η

insertions. Thus, moduli integration does not contribute to the vertex diagram.

However, the vertex diagram does receive contributions from vertical integration due to

the mismatch between the PCO placement in the vertex region as compared to the propa-

gator regions corresponding to the COO-OOO diagrams, as discussed in the previous sec-

tion. Consider the boundary between the vertex region and the CO1O-OO2O3 propaga-

tor region. Here we are free to use the moduli (β, u) of the propagator region, where the

boundary is described by u = u0 and β ∈ ((2λ̃)−1, 2λ̃). From the definition of the vertex,

there is an antiholomorphic PCO located at p̄1 = z1 and a holomorphic one at p2 = z3.

In the propagator region, they are instead located at p̄1 = −i and p2 = p(β, u0; pooo), as

specified in (2.122). In order to fill in the gap, we must therefore perform vertical integra-

tion along the two PCO directions p̄1, p2. The procedure to do this was outlined in [35],

where we are instructed to simply integrate in one direction at a time. For each, vertical
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integration consists of replacing the b-ghost insertion associated to u as well as the PCO

at p̄1 (p2) with a ξ insertion of the form ξ̃(z̄1)− ξ̃(−i), and similarly for p2.

We first consider vertical integration in the p̄1 direction, as shown in Figure 2.11(a).

This is given by12

∫ 2λ̃

(2λ̃)−1
dβ

〈
Bβ

(
ξ̃(z1)− ξ̃(−i)

)
V (−1)
ζ2 (z1)V

(−1)
κ2

(z2)V
(0)
ζ2 (z3)V

(−1)
δτ (i,−i)

〉D2

xµ=0

(2.136)

where the open strings positions za = za(β) can be found by setting w = 0 and u = u0 in

the transition maps found in (2.123). Doing so gives

z1(β) = −β, z2(β) = ∆−β , z3(β) = ∆+β
(2.137)

where

∆±β = β ± (1 + β2)u0 . (2.138)

Following a similar vein of reasoning, the b-ghost insertion associated to β takes the form

Bβ =
3∑

a=1

1

πi

∫

Sza

dz
∂fCO1O-OO2O3

a

∂β
(z)b(z)

= −
∫

Sz1

dz

πi

1 + z2 + (z + β)2λ̃f ′(β)

1 + β2
+

∫

Sz2∪Sz2

dz

2πi

1 + z2 + (z − β)2λ̃f ′(β)

1 + β2
.

(2.139)

After determining the correlation function and performing the contour integration in

(2.136), we are left with

− 1

2

∫ 2λ̃

(2λ̃)−1
dβ

1 + β2

β2
. (2.140)

12Strictly speaking, we should replace the expression ξ̃(z1)V
(−1)
ζ2 (z1) with the regularized form

ξ̃0V
(−1)
ζ2 (z1) inherited from the averaged PCO.
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− 1
2λ̃

1
2λ̃

(
1− 1

α2

)
−2λ̃ 2λ̃

(
1 + 1

α2

)

V (−1)
δτ (i)

V (−1)
κ2 (∆−β) V (−1)

ζ2 (∆+β)V (0)
ζ2 (−β)

∂̄ξ̃(p̄1)

z

(a) VI between the vertex region and the CO1O-OO2O3 region (p1 direction).

V (0)
δτ (i)

− 1
2λ̃

1
2λ̃

(
1− 1

α2

)
−2λ̃ 2λ̃

(
1 + 1

α2

)

V (−1)
κ2 (∆−β) V (−1)

ζ2 (∆+β)

p(β, u0; pooo)

V (−1)
ζ2 (−β)

∂ξ(p2)

z

(b) VI between the vertex region and the CO1O-OO2O3 region (p2 direction).

Figure 2.11: A family of discs with 1 bulk puncture and 3 boundary punctures parametrized by
the modulus β ∈ ((2λ̃)−1, 2λ̃) and PCO coordinate p1 (p2). On the UHP z, the closed string is
located at z = i, shown by the black cross, and the open strings at z = −β,∆−β ,∆+β , represented
by blue crosses. The b-ghost insertion Bβ surrounds all three punctures, as indicated by the dot-
ted counterclockwise contours. The ∂ξ insertion is located at p̄1 (p2), as represented by the purple
cross. As β varies, the open string insertions trace out blue curves corresponding to moduli inte-
gration (none of the punctures collide, since ∆β −∆−β > α−2λ̃−1). Meanwhile as p̄1 (p2) varies, it
traces out a purple “vertical segment” corresponding to vertical integration (VI).
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Next consider vertical integration in the p2 direction. This is given by

∫ 2λ̃

(2λ̃)−1
dβ

〈
Bβ

(
ξ(z3)− ξ(p(β, u0; pooo))

)

V (−1)
ζ2 (z1)V

(−1)
κ2

(z2) V
(−1)
ζ2 (z3)V

(0)
δτ (i,−i)

〉D2

xµ=0

= O(α−2) ,

(2.141)

which we find to be subleading in α−1. Thus, vertical integration near the CO1O-OO2O3

region is simply given by (2.140).

Recall that there are three disconnected components of the boundary where vertical

integration takes place, corresponding to CO1O-OO2O3 and its cyclic permutations. We

shall handle these by assigning different cyclical permutations of the transition maps in

(2.123) to the points z1, z2, z3. From this perspective, the above expressions correspond

to the identity permutation. Performing the vertical integration for the other two compo-

nents proceeds in a similar fashion, giving

+
1

2

∫ 2λ̃

(2λ̃)−1
dβ

1 + β2

β2
, −1

2

∫ 2λ̃

(2λ̃)−1
dβ

1 + β2

β2
. (2.142)

Summing all three contributions in (2.140) and (2.142) together, we find that the disc

vertex is thus

AD2

χχ∗ζ2δτ = −1

2

∫ 2λ̃

(2λ̃)−1
dβ

1 + β2

β2
= −2gcCD2 λ̃ . (2.143)

2.5.3 Propagator regions

In this section, we discuss the contributions from the Feynman diagrams corresponding to

the propagator regions. In the λ̃ and α limits, only the κ1 propagator participates.
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CO-OOO-OOO diagrams

The CO-OO1O-OO2O3 diagram consist of the Feynman vertices AD2

δτκ1 , AD2

κ1χκ1 , and

AD2

κ1χ∗ζ2 contracted together via two κ1 propagators. The other diagrams CO-OO3O-

OO1O2 and CO-OO3O-OO3O1 correspond to cyclically permuting the external open

string fields. Due to the ghost structures of their vertex operators, all of the relevant 3-

point vertices are zero. For instance, consider AD2

κ1χ∗ζ2 , which involves the vertex opera-

tors

c∂ce−2φ∂ξ, c∂cη, ce−2φ∂ξ (2.144)

as well as a single PCO. The operators above contain a total of five copies of the c ghost,

while the PCO can contribute at most one b ghost, and so the vertex vanishes.

COO-OOO diagrams

The COO-OOO diagrams consist of Feynman vertices AD2

δτχκ1 and AD2

κ1χ∗ζ2 contracted to-

gether, together with cyclic permutations of the external open strings. In the previous

section, we noted that all the relevant 3-point vertices vanish, and so the COO-OOO dia-

grams do not contribute either.

CO-OO1O2O3 diagram

The only remaining Feynman diagram is given by the Feynman vertices AD2

δτκ1 and AD2

κ1χχ∗ζ2

contracted together. We shall first compute the 4-point vertex, as depicted in Figure 2.12.
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−α−1 α−1 1− α−1 1 + α−1 α2−α2

V (0)
ζ2 (0) V (−1)

κ2 (1) V (−1)
κ1 (x) V (0)

ζ2 (∞)

z

Figure 2.12: A family of 4-punctured discs, expressed in terms of the UHP with coordinate z,
parametrized by the modulus x ∈ ROOOO. The open string punctures at z = 0, 1,∞ are indicated
by black crosses, while the open string puncture at z = x is represented by a blue cross. The con-
tour of the b-ghost insertion Bx surrounds all four punctures, as indicated by the counterclockwise
contours. As x varies, the blue cross traces out three blue segments, corresponding to moduli inte-
gration over the vertex region.

Under our choice of local coordinates and PCO locations, it takes the form

AD2

κ1χχ∗ζ2 =

∫

ROOOO

dx
〈
Bx V

(0)
ζ2 (0)V (−1)

κ2
(1)V (0)

ζ2 (∞)V (−1)
κ1 (x)

〉D2

xµ=0
. (2.145)

From (2.130) it follows that the b-ghost insertion is given by

Bx =

∫

S1

dz

πi

g′2(x)

g2(x)
(z − x)b(z) +

∫

Sx

dz

πi

(
1 +

g′4(x)

g4(x)
(z − x)

)
b(z) + · · · , (2.146)

where we exclude terms that give vanishing contribution. Although vertical integration is

in principle required, the η, ξ, φ dependence of the vertex operators involved imply that it

does contribute in practice. Shrinking the b-ghost contour on the second punctures gives

∫

S1

dz

πi

g′2(x)

g2(x)
(z − x)b(z)c∂cη(1) = −g′2(x)

g2(x)
cη(1) , (2.147)

and so it contributes to (2.145) as

∫

ROOOO

dx
g′2(x)

g2(x)

〈
cη(1) c∂ce−2φ∂ξ(x)

〉D2

xµ=0
=

∫

ROOOO

dx
g′2(x)

g2(x)
. (2.148)

138



Similarly, Bx acts on κ1 to give

∫

Sx

dz

πi

(
1 +

g′4(x)

g4(x)
(z − x)

)
b(z) c∂ce−2φ∂ξ(x) =

(
∂c(x)− g′4(x)

g4(x)
c(x)

)
e−2φ∂ξ(x) ,

(2.149)

which then contributes to (2.145) as

−
∫

ROOOO

dx

〈
c∂cη(1)

(
∂c(x)− g′4(x)

g4(x)
c(x)

)
e−2φ∂ξ(x)

〉D2

xµ=0

=

∫

ROOOO

dx

(
2

1− x
+

g′4(x)

g4(x)

)
.

(2.150)

Together, these sum to

AD2

κ1χχ∗ζ2 =

∫

ROOOO

dx

(
2

1− x
+

g′4(x)

g4(x)
+

g′2(x)

g2(x)

)

= (−2 ln(x− 1) + ln g4 + ln g2)

∣∣∣∣
∂ROOOO

.

(2.151)

This can be evaluated using the values x and ga at the boundary of the vertex region,

which recall are constrained by their values in the s, t, u-channel regions to (2.131). As

usual, there is an additional minus sign if the outward direction of the boundary faces to

the left. In total, the six boundary components yield

AD2

κ1χχ∗ζ2 = −2πi . (2.152)

From this, we find that the CO-OO1O2O3 Feynman diagram evaluates to

AD2

δτκ1Pκ1AD2

κ1χχ∗ζ2 = −2π . (2.153)
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We now construct the full δτ , χ, χ∗, ζ2 amplitude, which is given by a sum over the

Feynman diagrams

Aδτχχ∗ζ2 = AD2

δτχχ∗ζ2 +
(
AD2

δτκ1Pκ1AD2

κ1χκ1Pκ1AD2

κ1χ∗ζ2 + cyclic perm.
)

+
(
AD2

δτχκ1Pκ1AD2

κ1χ∗ζ2 + cyclic perm.
)
+AD2

δτκ1Pκ1AD2

κ1χχ∗ζ2 ,

(2.154)

including cyclic permutations of the external open strings. As we found in the previous

sections, all of the Feynman diagrams vanish besides the vertex diagram as well as the

CO-OO1O2O3 diagram. Plugging in their values (2.153) and (2.153) gives

AD2

δτζ2κ2ζ2
= −π − 2λ̃ . (2.155)

2.6 δτ , δτ , φ disc amplitude

In this section, we compute the SFT disc amplitude with two δτ insertions and one φµ

insertion, which enters into the MRV amplitude due to integration over φµ in the effective

action.

2.6.1 Feynman diagrams

We begin by enumerating the Feynman diagrams that contribute to the propagator re-

gion. Since all of the external vertex operators are weight zero conformal primaries, we

shall not need the explicit forms of the local coordinate charts.

The first Feynman diagram, referred to as the C1O-OOO-C2O diagram, consists of

two open-closed vertices V1NSNS ,1NS

D2 contracted with an open 3-point vertex V1NS ,2NS ,3NS

D2 .
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The corresponding family of worldsheet configurations is constructed by joining together

three discs, represented by UHPs parametrized by z, z′, z′′′ respectively, via the plumbing

maps

wCO(z)wOOO
1 (z′) = −q1 , q1 ∈ (0, 1) ,

wOOO
3 (z′)wCO(z′′′) = −q2 , q2 ∈ (0, 1) .

(2.156)

The resulting topology is that of a single disc with two open string punctures and one

closed string puncture. Up to a PSL(2,R) transformation, the closed strings are taken to

be located at z = i and z = iy, and the open string at z = x. Together, the two moduli

are given by functions x = x(q1, q2) and y = y(q1, q2) of the plumbing parameters, whose

explicit forms do not matter for the computation. From the sewing procedure, it follows

that two PCOs are located coincident with each of the closed strings, and the remaining

PCO resides at some generic location p = p(x, y; pooo) depending on the moduli as well

as its location pooo on the 3-punctured disc. Furthermore, the C1O-OOO-C2O diagram

covers a propagator region in moduli space bounded by the curves y = 0, x = λ−1, and

y = λ̃−1x. It is also necessary to include the other cyclic ordering of the 3-point vertex,

which corresponds to the reflected region x 0→ −x. These two disjoint regions are shaded

yellow in Figure 2.7.

The second Feynman diagram, referred to as the C1O-C2OO diagram, consists of the

vertices V1NSNS ,1NS

D2 and V1NSNS ,1NS ,2NS

D2 contracted together. The associated worldsheet

configurations are given by joining two discs, parametrized by UHPs z, z′, via

wCO(z)wCOO
1 (z′) = −q1 , q1 ∈ (0, 1) . (2.157)
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The plumbing parameter q1 matches that of the C1O-OOO-C2O diagram. Once again

the closed strings can be placed at z = i, iy and the open string at z = x, where now

the moduli are functions of q1 and β. Two of the three PCOs are coincident with the first

closed string, while the third PCO is coincident with the second. Ranging over q1 ∈ (0, 1)

and β ∈ ((2λ̃)−1, 2λ̃) corresponds to x ∈ (−λ̃−1, λ̃−1) and |x| < y < λ̃−2, given by the

green propagator region in Figure 2.7. There is another Feynman diagram, referred to as

the C2O-C1OO diagram, which consists of exchanging the two closed string punctures. It

covers |x| > λ̃−1 and 0 < y < λ̃−2, which corresponds to the red propagator region in

Figure 2.7. There is a mismatch between the PCO locations at the walls separating both

propagator regions from the C1O-OOO-C2O diagram, and so vertical integration is in

principle required.

The last Feynman diagram is given by the 3-point vertex V1NSNS ,2NSNS ,1NS . The dia-

gram covers the remainder of (x, y) moduli space, i.e. the blue vertex region in Figure 2.7,

which consists of x ∈ R and |y| > λ̃−2. The PCOs are arranged such that each is coin-

cident with one of the vertex operators. Vertical integration is needed at the two bound-

aries shared with the C1O-C2OO and C2O-C1OO propagator regions. There is also the

prospect of vertical integration at the codimension 2 boundary involving the C1O-OOO-

C2O region.

The elementary vertices are defined in a similar fashion for RR insertions, where for

each RR insertion one PCO is removed.
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2.6.2 Vertex diagram

First consider the vertex diagram. The contribution of moduli integration takes the form

∫ ∞

−∞
dx

∫ 1

λ̃−2
dy
〈
BxBy V

(0)
φµ (x)V (−1)

δτ(p)(i,−i)V (−1)
δτ(k)(iy,−iy)

〉D2

xµ=0
, (2.158)

as shown in Figure 2.13. The b-ghost insertions are given by

Bx =

∫

Sx

dz

πi
b(z), By =

∮

Ciy

dz

2π

(
dzb(z) + dz̄b̃(z̄)

)
. (2.159)

Shrinking the contour of Bx around φµ gives

∫ ∞

−∞
dx

∫

Sx

dz

πi
b(z)

(√
2ic∂Xµ(x) + ηeφψµ(x)

)
=

√
2

∫ ∞

−∞
dx i∂Xµ(x) . (2.160)

In the above expression, there is an additional minus sign that comes from exchanging the

ordering of Bx and By. Up to normalization, this operators acts as the translation charge

on the closed strings. The moduli integral thus reduces to

π
√
2(ipµ + ikµ)

∫ 1

λ̃−2
dy
〈
By V

(−1)
δτ(p)(i,−i)V (−1)

δτ(k)(iy,−iy)
〉D2

xµ=0

= π
√
2(ipµ + ikµ)AD2

δτ(p)δτ(k)(λ̃) ,

(2.161)

where AD2

δτ(p)δτ(k)(λ̃) is given by the disc 2-point vertex in (2.73) with λ replaced by λ̃.

We next consider the effects of vertical integration. Since it does not contribute to the

axion-axion amplitude, we shall first focus on the case of two dilatons. At the boundary

y = y0 = λ̃−2 of the vertex region there is a mismatch between PCO loci. In particular,
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Vδτ(k)(iy)

Vδτ(p)(i)

iλ̃−2

Vφµ(x)

z

Figure 2.13: A family of open-closed 3-punctured discs parametrized by the moduli (x, y). On
the UHP, the closed strings are at z = i, iy and the open string at z = x, as indicated by the
different crosses. The b-ghost insertions Bx and By separately surround the open/closed string
punctures, as indicated by the contours. As x, y vary, the integrated vertex operators, represented
by blue crosses, trace out two blue segments corresponding to the vertex region.

the PCO is coincident with φµ in the vertex region, while it is coincident with the dila-

ton at z̄ = −iy in the C1O-C2OO propagator region. In order to close the gap, we must

vertically integrate along the PCO direction for |x| < λ̃−1, as depicted by Figure 2.14(a),

which gives

(
i√
2

)2 ∫ λ̃−1

−λ̃−1
dx
〈
Bx

[
ξ̃(x)− ξ̃(−iy0)

]
V (−1)
φµ (x) V (−1)

δτ2(p)
(i,−i)V (−1)

δτ2(k)
(iy0,−iy0)

〉D2

xµ=0

= −2
√
2(ipµλ̃+ πikµ) + 4πeµν(k)pν .

(2.162)

Similarly, the same PCO is coincident with the other NSNS insertion at z̄ = −i in the

C2O-C1OO propagator region. Vertical integration is thus needed for |x| > λ̃−1, as de-

picted in Figure 2.14(b). Due to the symmetry of the two closed strings, it can be found
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by simply exchanging their momenta.13 In total, vertical integration for two dilatons

gives

− 2
√
2(λ̃+ π)(ipµ + ikµ) + 2π(eµν(p)ikν + eµν(k)ipν) . (2.163)

A similar story holds for one dilaton and one axion, where vertical integration contributes

− 2
√
2λ̃(ipµ + ikµ) + 2π(eµν(p)ikν + eµν(k)ipν) . (2.164)

Together with moduli integration, the Feynman vertex is thus

AD2

δτ(p)δτ(k)φµ = π
√
2(ipµ + ikµ)AD2

δτ(p)δτ(k)(λ̃)− 2
√
2(2λ̃+ π)(ipµ + ikµ)

− 4
√
2(ikµλ̃+ ipµ) + 4π(eµν(p)ikν + eµν(k)ipν) .

(2.165)

2.6.3 Propagator regions

We now consider the Feynman diagrams corresponding to the propagator regions of mod-

uli space. Recall that we are working in the large λ̃ limit, and so only diagrams with in-

termediate κ1 states can contribute.

C1O-OOO-C2O

The relevant C1O-OOO-C2O diagram consists of the two copies of AD2

δτκ1 together with

AD2

κ1κ1φµ contracted together. The unusual ghost structure of κ1 implies that the 3-point

13We have performed vertical integration explicitly for both regions and verified that this is
true.
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∂ξ(p)

V (−1)
δτ(p)(i)

V (−1)
δτ(k)(iy0)

-λ̃−1 λ̃−1V (−1)
φµ (x)

z

(a) VI between the vertex region and the C1O-C2OO propagator region.

∂̄ξ̃(p)

V (−1)
δτ(p)(i)

V (−1)
δτ(k)(iy0)

-λ̃−1 λ̃−1 V (−1)
φµ (x)

z

(b) VI between the vertex region and the C2O-C1OO propagator region.

Figure 2.14: A family of discs with 2 closed string punctures and 1 open string puncture,
parametrized by the modulus |x| < λ̃−1 (|x| > λ̃−1) and PCO location p. Representing the disc
as the UHP z, the closed strings are at z = i and z = iy0, depicted by black crosses, and the open
string puncture at z = x, with a blue cross. The b-ghost insertion Bx surrounds the open string,
as indicated by the dotted counterclockwise contour. The ∂̄ξ̃ insertion at z = p is represented by a
purple cross. As x varies, the open string insertion traces out a blue curve corresponding to mod-
uli integration. Meanwhile as p varies, ∂ξ traces out a purple “vertical segment” corresponding to
vertical integration.
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vertex is zero, and so the Feynman diagram vanishes

AD2

δτκ1Pκ1AD2

κ1κ1φµPκ1AD2

δτκ1 = 0 . (2.166)

CO-COO diagrams

The C1O-C2OO Feynman diagram consists of the vertex AD2

δτκ1 contracted with AD2

δτ(p)κ1φµ

by an open string propagator Pκ1 . Consider first the open-closed 3-point vertex for the

dilaton, as depicted in Figure 2.10. It gives

AD2

δτ2(p)κ1φµ =

∫ 2λ̃

(2λ̃)−1
dβ
〈
Bβ V

(−1)
κ1 (−β) V (−1)

φµ (β) V (0)
δτ2(p)

(i,−i)
〉D2

xµ=0

=
√
2ipµ

∫ 2λ̃

(2λ̃)−1
dβ

(
β2 − 1

β + β3

)

= O(λ̃−2) ,

(2.167)

and so does not contribute in the large λ̃ limit. While vertical integration is required in

principle, it vanishes in practice due to the ghost structure of κ1. On the other hand, the

axion gives

AD2

δτ1(p)κ1φµ =

∫ 2λ̃

(2λ̃)−1
dβ
〈
Bβ V

(−1)
κ1 (−β) V (−1)

φµ (β) V (0)
δτ1(p)

(i,−i)
〉D2

xµ=0

= 2
√
2ipµ

∫ 2λ̃

(2λ̃)−1
dβ

(
(β − i)2

β + β3

)

= 2
√
2πpµ .

(2.168)
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The same analysis applies for when the closed strings are exchanged. It follows that

AD2

δτ(p)κ1Pκ1AD2

δτ(p)κ1φµ +AD2

δτ(k)κ1Pκ1AD2

δτ(p)κ1φµ = −2
√
2πipµ . (2.169)

We are now in a position to assemble the full closed-closed-open amplitude, which de-

composes into constituent Feynman diagrams as

Aδτ(p)δτ(k)φµ = AD2

δτ(p)δτ(k)φµ + 2AD2

δτκ1Pκ1AD2

κ1κ1φµPκ1AD2

δτκ1

+AD2

δτ(p)κ1Pκ1AD2

δτ(p)κ1φµ +AD2

δτ(k)κ1Pκ1AD2

δτ(p)κ1φµ .

(2.170)

Plugging in (2.165), (2.166), and (2.169), we find

AD2

δτ(p)δτ(k)φµ = π
√
2(ipµ + ikµ)AD2

δτ(p)δτ(k)(λ̃)− 4
√
2(λ̃+ π)(ipµ + ikµ)

+ 4π(eµν(p)ikµ + eµν(k)ipµ) .

(2.171)

Using (2.78), this can be massaged into the form

AD2

δτ(p)δτ(k)φµ = π
√
2(ipµ + ikµ)AD2

δτ(p)δτ(k)(λ̃)− 4
√
2(λ̃+ 1

2π)(ip
µ + ikµ)

+ 4π(eµν(p)ikµ + eµν(k)ipµ) .

(2.172)

2.7 δτ , λ, θα disc amplitude

In this section, we compute the δτ , λ, θα disc amplitude, which corrects the MRV ampli-

tude through integration over θα.
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2.7.1 Feynman diagrams

We begin with an overview of the Feynman diagrams that contribute the disc amplitude

with one NSNS insertion, one NSR insertion, and one RR insertion. All of the diagrams

share the same local coordinates and moduli with those of Section 2.6.1. A key difference

between the two is that several diagrams now involve intermediate open strings in the R

sector, which slightly modifies the PCO analysis. In particular, the R-sector propagator

naturally comes paired with the PCO insertion

X0 =
1

πi

∫

S0

dw

w
X (w) =

1

πi

∫

S0

dw′

w′ X (w′) (2.173)

whose contour surrounds the sewn open string punctures, located at w,w′ = 0 on their

respective local coordinate patches.

First consider the C1O-OOO-C2O diagram consisting of the vertices V1NSNS ,1NS

D2 , V1NSR,1R
D2 ,

V1NS ,1R,2R
D2 contracted together. Place the NSNS insertion at z = i, NSR insertion at

z = iy, and the open string at z = x. The propagator region is the same as in Sec-

tion 2.6.1, shaded yellow in Figure 2.7. There are two PCOs, both which are taken to be

holomorphic. As prescribed by the plumbing procedure, one is coincident with the NSNS

puncture, while the other is averaged over a contour whose details do not matter for our

computation.

The next Feynman diagram, the C1OO-C2O diagram, consists of the vertices V1NSNS ,1NS

D2

and V1NSR,1NS ,1R
D2 contracted together. As before, the moduli range over y < λ̃−2 and

|x| < λ̃−1. This corresponds to the red propagator region in Figure 2.7. The 3-point ver-
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tex has a single PCO, taken to be holomorphic and coincident with the NSR insertion.

Both PCOs are thus separately coincident with the closed strings for the resulting Feyn-

man diagram.

The last Feynman diagram contributing to a propagator region is the C2OO-C1O dia-

gram, which consists of the vertices V1NSR,1R
D2 and V1NSNS ,1R,2R

D2 contracted together, cover-

ing y < λ̃−2 and |x| > λ̃−1, shown by the green propagator region in Figure 2.7. Note that

it is not related to the C1OO-C2O diagram by closed string exchange, since it contains

vertices involving different open string states. For the 3-point vertex at hand, we take the

PCO to be coincident with the NSNS puncture. The R-sector propagator contributes an

additional PCO. Following the plumbing procedure, it is averaged over a counterclockwise

contour that surrounds only the NSR puncture. Shrinking the contour is thus equivalent

to taking the PCO coincident with the NSR insertion.

Finally, consider the Feynman vertex V1NSNS ,1NSR,1R
D2 , which covers x ∈ R and y >

λ̃−2. This corresponds to the blue region of Figure 2.7. For ease of computation, both

PCOs, which are separately holomorphic and antiholomorphic, are taken to be coincident

with the NSNS insertion. This choice disagrees with the PCO locations at the boundary

meeting the C1OO-C2O and C2OO-C1O propagator regions, and so vertical integration

will be required.

The analysis for RNS and RR insertions proceeds in a similar fashion. For the former,

we shall assume the same PCO placement as for the NSR insertion, but exchange holo-

morphic and antiholomorphic PCOs that are coincident with the RNS insertion. For the

latter, the analysis is even simpler: there is only a single PCO, which is taken to be coin-

cident with the NSR/RNS insertions, unless the sewing procedure indicates otherwise. It
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follows that there is no vertical integration needed for the V1RR,1NSR,1R vertex.

2.7.2 Vertex diagram

We shall now determine the vertex diagram as outlined in the previous section. First con-

sider the contribution from moduli integration over the vertex region. Since the PCO

placement differs for the NSNS and RR vertex operators, we shall consider their contri-

butions separately. For the former, the two PCOs are coincident with the dilaton, which

gives

i√
2

∫ ∞

−∞
dx

∫ 1

λ̃−2
dy

〈
BxBy V

(− 1
2 )

θα
(x)V (0,0)

δτ2(p)
(i,−i)V

(− 3
2 )

λ(k) (iy,−iy)

〉D2

xµ=0

= iπuα(k)

∫ 1

λ̃−2
dy

(
1− y

1 + y

)p·k
(
1− y2

y2
+

2
√
2

1− y2
eµν(p)k

µkν
)

,

(2.174)

where the vertex operator associated to θα is

V
(− 1

2 )
θα

(x) = ce−
1
2φSα . (2.175)

Note that the b-ghost insertions Bx and By are identical to those in (2.159), and the fac-

tor of i/
√
2 corresponds to our normalization for the 1-particle state. For the the latter,

we have that one PCO is coincident with the axion and the other with λ(k). This con-

tributes as

1√
2

∫ ∞

−∞
dx

∫ 1

λ̃−2
dy

〈
BxBy V

(− 1
2 )

θα
(x)V

(− 1
2 ,−

1
2 )

δτ1(p)
(i,−i)V

(− 1
2 )

λ(k) (iy,−iy)

〉D2

xµ=0

= −iπuα(k)(p · k)
∫ 1

λ̃−2
dy

(
1− y

1 + y

)p·k (2− y + 2y2

y − y3

)
.

(2.176)
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Vδτ (i)

Vλ(k)(iy0)

∂ξ(p)

Vθα(x)

z

Figure 2.15: Vertical integration along the boundary x ∈ R and y0 = λ̃−2 between the vertex
and propagator regions of (x, y) moduli space for the δτ(p), λ(k), θα amplitude on the disc. The
fixed closed string punctures are depicted by black crosses. The integrated open string puncture
is depicted by a blue cross, as surrounded by a Bx ghost contour indicated by a dotted counter-
clockwise semicircle. The operator ∂ξ, depicted by an orange cross, is integrated along the PCO
direction p, corresponding to the purple vertical segment, in order to fill in the gap. The blue seg-
ment corresponds to moduli integration in x ∈ R.

Integration over the vertex region thus gives

Iδτ(p)λ(k)θα = −iπuα(k)

{
λ̃2 − 2(p · k) + 4(p · k)

∫ 1

λ̃−2
dy

1 + y2

y − y3

(
1− y

1 + y

)p·k

−
(
p · k + 2

√
2eµν(p)k

µkν
)∫ 1

λ̃−2
dy

1

1− y2

(
1− y

1 + y

)p·k }

= −iπuα(k)

{
λ̃2 + 4Iλ̃(p · k)− 1−

√
2
eµν(p)kµkν

p · k

}
,

(2.177)

where in writing the first line, we have performed an integration by parts on the divergent

piece of the dilaton contribution. As was the case for the δτ(p)δτ(k)φµ amplitude, the

integral Iλ̃(p · k) is given by (1.71) with ε replaced by λ̃−2.

Now consider the effects of vertical integration, which takes place at the boundary

y = y0, as shown in Figure 2.15. Since the C1O-C2OO and C2O-C1OO diagrams both
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share the same PCO placement, their contributions can be bundled together. In partic-

ular, in the vertex region the PCO is coincident with the NSNS puncture, while in the

propagator region it is coincident with the NSR/RNS punctures. Strictly speaking, it is

also important to take into account that it is antiholomorphic for the NSNS and RNS in-

sertions, while it is holomorphic for the NSR insertion. The contribution of the former

is

i√
2

∫ ∞

−∞
dx

〈
Bx

[
ξ̃(−i)− ξ̃(−iy0)

]
V

(− 1
2 )

θα
(x)V (−1)

δτ(p)(i,−i)V
(− 1

2 ,−1)

λ2(k)
(iy0,−iy0)

〉D2

xµ=0

= iπuα(k)

(
1

2
λ̃2 − (p · k)

)
+O(λ̃−2)

(2.178)

while for the latter we have

1√
2

∫ ∞

−∞
dx

〈
Bx

[
ξ̃(−i)− ξ̃(−iy0)

]
V

(− 1
2 )

θα
(x)V (−1)

δτ(p)(i,−i)V
(−1,− 1

2 )

λ1(k)
(iy0,−iy0)

〉D2

xµ=0

= iπuα(k)

(
1

2
λ̃2 − (p · k)− 1

)
+O(λ̃−2) .

(2.179)

In total, vertical integration contributes as

VID2

δτ(p)λ(k)θα = −iπuα(k)
(
−λ̃2 + 2(p · k) + 1

)
, (2.180)

which, together with the moduli integration, implies that the disc vertex evaluates to

AD2

δτ(p)λ(k)θα = ID
2

δτ(p)λ(k)θα + VID2

δτ(p)λ(k)θα

= −iπuα(k)

{
4Iλ̃(p · k)−

√
2
eµν(p)kµkν

p · k + 2(p · k)
}
.

(2.181)
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2.7.3 Propagator regions

Now consider the contributions of the propagator regions. In the large λ̃ limit, only κ1

exchange contributes. Only the C1O-C2OO diagram involves an NS-sector propagator,

which consists of the Feynman vertices AD2

λ(p)κ1θα
and AD2

δτ(k)κ1 contracted via Pκ1 . The

3-point vertex is given by

AD2

λ(p)κ1θα
=

∫ 2λ̃

(2λ̃)−1
dβ

〈
Bβ V

(−1)
κ1 (−β)V (− 1

2 )
θα

(β)V
(− 1

2 )

λ(p) (i,−i)

〉D2

xµ=0

= −2uα
∫ 2λ̃

1/2λ̃

dβ

1 + β2

= −πuα +O(λ̃−1)

(2.182)

where we used the fact that Bβ is identical to that of (2.113). Note that the picture-

raised vertex operator for the dilatino is

V
(− 1

2 )
λ =

1√
2

(
V

(0,− 1
2 )

λ1
+ iV

(− 1
2 ,0)

λ2

)
. (2.183)

Evaluating the remainder of the Feynman diagram gives

AD2

λ(p)κ1θα
Pκ1AD2

δτ(k)κ1 = iπuα . (2.184)

We now construct the full amplitude, which in the large λ̃ limit receives consists only

of the Feynman diagrams

Aδτ(p)λ(k)θα = Aδτ(p)λ(k)θα +AD2

δτ(p)κ1Pκ1AD2

λ(p)κ1θα
. (2.185)
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Plugging in (2.181), (2.182), (2.184), we find

AD2

δτ(p)λ(k)θα = −iπuα(k)

{
4Iλ̃(p · k)−

√
2
eµν(p)kµkν

p · k + 2(p · k)− 1

}
. (2.186)
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A
Appendix

A.1 Conventions

In this appendix, we lay out our conventions for calculating scattering amplitudes for the

type IIB superstring.
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A.1.1 Target space spinors

The SO(1, 9) gamma matrices Γµ obey the Clifford algebra

{Γµ,Γν} = 2ηµν . (A.1)

In Lorentzian signature, we can work with purely real matrices with the off-diagonal form

(Γµ) B
A =




0 (γµ)αβ

(γµ)αβ 0



 , (A.2)

where A,B = 1, . . . , 32, and α,β = 1, . . . , 16. In this basis, the chirality matrix reads

(Γ) B
A ≡ (Γ0 · · ·Γ9) B

A =




δαβ 0

0 −δαβ



 . (A.3)

The chiral matrices (γµ)αβ and (γµ)αβ satisfy the Clifford algebra

{γµ, γν} = 2ηµν , (A.4)

and have the following properties:

(γµ)αβ = (γµ)βα, (γi)αβ = (γi)αβ , (γ0)αβ = −(γ0)αβ = δαβ . (A.5)

Products of such matrices have a natural index structure, i.e. (γµγν) β
α = (γµ)αδ(γν)δβ

and (γµγν)αβ = (γµ)αδ(γν)δβ .
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In certain instances we will work with an explicit representation of the gamma matri-

ces, where

(γ0)αβ =




18×8 08×8

08×8 18×8



 , (γ9)αβ =




18×8 08×8

08×8 −18×8



 . (A.6)

In Euclidean signature, we perform a Wick rotation and replace γ0 with iγ0 in all of the

pertinent formulas. Note that in this case the spinors are now in general complex-valued.

A.1.2 Worldsheet theory

The worldsheet of the type II superstring is described by a 2d N = (1, 1) superconformal

field theory (SCFT) with vanishing central charge c = 0, consisting of a unitary “mat-

ter” SCFT with c = 15 that sets the background, together with a universal ghost SCFT

consisting of the b, c diffeomorphism ghosts and their superpartners β, γ. The theory is

invariant under a BRST symmetry generated by Grassmann odd operators QB and Q̃B,

with

QB =

∮
dz

2πi

[
cTm − 1

2
c∂φ2 − c∂2φ− cη∂ξ + ηeφGm + bc∂c− η∂ηbe2φ

]
(z) . (A.7)

The operators Tm and Gm are the stress tensor and supercurrent of the matter CFT, re-

spectively. The β, γ ghosts meanwhile are expressed in their rebosonized forms

γ = ηeφ, β = e−φ∂ξ , (A.8)

where the ghosts η and ξ are bc-like Grassmann odd fields, while φ is a linear dilaton. In

order to be consistent with the statistics of the β,γ ghosts, eqφ is taken to be Grassmann
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even/odd for q even/odd. Furthermore, all products are taken to be conformally normal

ordered with respect to the operator product expansion (OPE). The main OPEs of inter-

est are
b(z)c(w) ∼ c(z)b(w) ∼ 1

z − w
, η(z)ξ(w) ∼ ξ(z)η(w) ∼ 1

z − w

φ(z)φ(w) ∼ − ln(z − w) , eq1φ(z)eq2φ(w) ∼ (z − w)−q1q2

(A.9)

where ∼ denotes the singular part of the OPE, and similarly for their antiholomorphic

counterparts.

The full matter+ghost SCFT enjoys several global bosonic symmetries, including a

U(1)F fermion number symmetry, a U(1)ghost ghost number symmetry, and a U(1)picture

picture number symmetry. The type IIB string is specified by the chiral GSO projection

(−1)F = (−1)F̃ = +1 , (A.10)

where (−1)F and (−1)F̃ are the holomorphic and antiholomorphic worldsheet fermion

numbers, i.e. charges of U(1)F .

In order to formulate string scattering amplitudes, it is necessary to introduce the so-

called picture changing operator

X (y) ≡ {QB, ξ(z)} = c∂ξ + eφGm + be2φ∂η + ∂(be2φη). (A.11)

as well as its antiholomorphic counterpart X̃ . These are operators which have unit charge

under U(1)picture.

In this work, we consider the type IIB theory in 10d Minkowski space. For this back-
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ground, the matter CFT consists of ten free noncompact bosons Xµ and ten free Majo-

rana fermions ψµ, ψ̃µ with µ = 0, . . . , 9. The elementary fields obey

Xµ(z, z̄)Xν(w, w̄) ∼ −α
′

2
ηµν log |z − w|2, ψµ(z)ψν(w) ∼ ηµν

z − w
, (A.12)

where ηµν = diag(−1,+1, · · · ,+1) is the Minkowski metric in mostly plus signature. The

stress tensor and supercurrent take the respective forms

Tm = − 1

α′∂Xµ∂X
µ − 1

2
ψµ∂ψ

µ ,

Gm = i

√
2

α′ψµ∂X
µ .

(A.13)

The Hilbert space of the free fermion decomposes into different sectors based on the peri-

odicities of ψµ and ψ̃µ on the cylinder, with the NS sector corresponding to antiperiodic

boundary conditions and the R sector to periodic boundary conditions. Operators in the

NS sector correspond to products of derivative of ψµ, while operators in the R sector in-

clude contributions from a pair of conjugate Weyl spinors Sα and Sα. Since the ghost

field φ is periodic, its Hilbert space admits a similar decomposition, with enφ in the NS

sector and e
1
2nφ in the R sector for n ∈ Z. By pairing these operators with the matter

fields, one can construct operators with matching worldsheet and spacetime statistics.

This corresponds to taking the R-sector ground states e−
1
2φSα and e+

1
2φSα to both be

Grassmann odd and GSO even. We also have that the NS sector ground state e−φψµ is

Grassmann even. Fixing the conventions for these operators then fully specifies the world-

sheet statistics of all of the remaining operators in the theory. A brief list of several oper-

ators and their properties in Figure A.1.
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Operator Weight GSO Worldsheet parity U(1)ghost U(1)pic

b 2 + − −1 0

c −1 + − +1 0

ξ 2 + − −1 +1

η −1 + − +1 −1

e(n−
1
2 )φSα 1

2(n− 1)(n+ 2) (−)n (−)n+1 0 n− 1
2

e(n+
1
2 )φSα

1
2n(n+ 3) (−)n (−)n+1 0 n+ 1

2

e(n−1)φψµ 1− 1
2n

2 (−)n (−)n 0 n

∂Xµ 1 + + 0 0

Figure A.1: Properties of the basic holomorphic operators in the free worldsheet theory, where
n ∈ Z.

The type IIB string also has 10d N = (2, 0) target space supersymmetry generated by

32 chiral supercharges, Q̂α
(− 1

2 )
and ̂̃Qα

(− 1
2 )

, where the hat indicates a worldsheet operator.

In the (−1
2)-picture they are given by

Q̂α
(− 1

2 )
≡
∮

dz

2πi

1

α′1/4
e−

1
2φSα(z) , (A.14)

and similarly for ̂̃Qα
(− 1

2 )
. We also work with the supercharges in the (+1

2)-picture as given

by

Q̂α
(+ 1

2 )
≡ −

∮
dz

2πi

1

α′3/4
(γµ)

αβ i∂Xµe+
1
2φSβ(z) , (A.15)
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where γµ are the gamma matrices. Together they satisfy the super-Poincaré algebra

{Q̂α
(− 1

2 )
, Q̂β

(+ 1
2 )
} = −1

2
(γµ)

αβPµ
(0) ,

{ ̂̃Qα
(− 1

2 )
,
̂̃
Qβ

(+ 1
2 )
} = −1

2
(γµ)

αβP̃µ
(0),

{Q̂α
(± 1

2 )
,
̂̃
Qβ

(∓ 1
2 )
} = 0 ,

(A.16)

where Pµ
(0) and P̃µ

(0) generate target space translations as

Pµ
(0) ≡

∮
dz

2πi

2

α′ i∂X
µ(z) . (A.17)

Note that in a noncompact target space Pµ
(0) and P̃µ

(0) act identically on momentum eigen-

states as Pµeip·X = pµeip·X .

A.1.3 Asymptotic closed string states

The asymptotic closed string states correspond to on-shell closed string fields Ψc ∈ Hc, as

defined in [35], which obey the Siegel gauge constraints b0Ψc = b̃0Ψc = 0. Of particular in-

terest are the massless closed strings, which comprise the 128 states of the supergraviton

multiplet. The bosonic states arise from the NSNS and RR sectors. In the NSNS sector,

we work with the BRST representative

V (−1,−1)
NSNS = gc cc̃ εµν(p)e

−φψµe−φ̃ψ̃νeip·X , p2 = 0 , (A.18)
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where gc is the closed string coupling. The polarization tensor εµν obeys

εµν(p)p
µ = εµν(p)p

ν = 0, εµν(p)ε
µν(p) = 1 , (A.19)

where the first condition ensures that the vertex operator is BRST-closed, and the second

corresponds to the canonical normalization of one-particle states. The polarization tensor

decomposes into irreducible representations of the SO(8) little group as

εµν = hµν + bµν + eµν (A.20)

corresponding to a symmetric, traceless tensor (the graviton), an antisymmetric tensor

(the Kalb-Ramond B-field), and a scalar (the dilaton δτ2).

In the RR sector, there is a unique choice of BRST representative given by

V
(− 1

2 ,−
1
2 )

RR = gc cc̃ fαβe
− 1

2φSα e−
1
2 φ̃S̃βeip·X , p2 = 0 , (A.21)

where the polarization tensor fαβ = fαβ(p) obeys

fαβ(p)/p
βγ = fαβ(p)/p

αγ = 0, /p ≡ pµγ
µ . (A.22)

As a bispinor, fαβ decomposes into odd-rank forms according to

f (r)
αβ (p) =

i

r!
F (r)
µ1···µr(p)(γ

µ1···µr)αβ , (A.23)

where F (r) is related to F (10−r) by Hodge duality, with the 5-form F (5) naturally being
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self-dual. For these coefficients, the transversality constraints (A.22) reduce to

p[νF
(r)
µ1···µr]

(p) = 0 . (A.24)

The F (r)
µ1···µr thus serve as field strengths associated to the RR gauge potentials, which

consist of a 4-form, a 2-form, and a scalar (the axion δτ1).

The axion-dilaton δτ , which plays a dominant role in the analysis, is specified by the

vertex operator

Vδτ(p) =
1√
2

(
Vδτ1(p) + iVδτ2(p)

)
. (A.25)

The dilaton vertex operator corresponds to (A.18) with the polarization tensor1

eµν(p) =
1√
8
(ηµν − 4µpν − 4νpµ) , 42 = 0, 4 · p = 1 , (A.28)

which relies on the introduction of a spacelike vector 4µ = 4µ(p). The axion vertex oper-

ator Vδτ2 corresponds to (A.21). Lorentz invariance and supersymmetry fixes its polariza-

1Being a scalar, the dilaton should have a polarization tensor with only a single degree of
freedom. The freedom to choose 4µ, which superficially contradicts this statement, is merely an
artifact from our choice of BRST representative. In particular, 4 is expected to drop out of any
on-shell amplitudes calculated using (A.28). It can also be removed once and for all by adding to
(A.18) a BRST-exact term

gccc̃
(
(4µpν + 4νpµ)e

−φψµe−φ̃ψ̃ν + (e−2φ∂ξη̃ + e−2φ̃∂̄ξ̃η)
)
eip·X , (A.26)

in which case the scalar nature of the dilaton is manifest in the vertex operator

gccc̃
(
e−φψµe−φ̃ψ̃µ + e−2φ∂ξη̃ + e−2φ̃∂̄ξ̃η

)
eip·X . (A.27)

Both this vertex operator and (A.18) should produce identical on-shell amplitudes, although inter-
mediate diagrams will in general differ from one another. In practice, we shall stick with the latter
since it is easier to use in our computations.
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tion tensor to

f (0)
αβ (p) = −

/pαβ√
32α′

. (A.29)

Note that the vertex operator for δτ̄ takes a similar form, with the factor multiplying the

NSNS vertex operator replaced by i → −i.

Next consider the fermions, which are constructed from states in the NSR and RNS

sectors. Here, we shall work with BRST representatives of the form

V
(−1,− 1

2 )
NSR = gccc̃ uµα e−φψµ e−

1
2 φ̃S̃α eip·X

V
(− 1

2 ,−1)
RNS = gccc̃ vµα e−

1
2φSα e−φ̃ψ̃µ eip·X

(A.30)

with p2 = 0, and where the polarization tensors satisfy

pµuµ(p) = uµ(p)/p = 0 , (A.31)

and similarly for vµα. Each admits a decomposition into SO(8) representations of the

form

uµα(p) = (γµ)αβλ
β(p) + ψµα(p) , /ψ(p) = 0 , (A.32)

which obey (A.31)

/pλ(p) = 0 , γµνρpνψiρ(p) = 0 . (A.33)

These are the momentum-space Dirac and Rarita-Schwinger equations, respectively. In

other words, the RNS and NSR states comprise two massless spin 1/2 fermions λi (the

dilatini), and two massless spin 3/2 fermions ψi (the gravitini).
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In this work, we shall consider a certain complex combination of the dilatinos, λ, with

associated vertex operator

V
(− 3

2 )

λ(p) =
gc√
2
(γµ)αβλ

β(p) cc̃
(
e−

1
2φSα e−φ̃ψ̃µ + ie−φψµ e−

1
2 φ̃S̃α

)
eip·X . (A.34)

which is related to that of δτ by a single application of Q̂−.

A.1.4 Picture-raised vertex operators

By taking the PCOs coincident with the vertex operators, one can define their raised

counterparts. The picture (0,−1) NSNS vertex operator is given by

V (0,−1)
NSNS (z, z̄) = lim

p→z
X (p)V (−1,−1)

NSNS (z, z̄)

= gc εµν

(√
2

α′ c i∂X
µ +

√
α′

2
c p · ψψµ + ηeφψµ

)
c̃e−φ̃ψ̃νeip·X(z, z̄) .

(A.35)

Similarly, the picture (0, 0) NSNS vertex operator reads

V (0,0)
NSNS = lim

p→z
lim
p̄→z̄

X (p)X̃ (p̄)V (−1,−1)
NSNS (z, z̄)

= gcεµν

(√
2

α′ c i∂X
µ +

√
α′

2
c p · ψψµ + ηeφψµ

)

×
(√

2

α′ c̃ i∂̄X
ν +

√
α′

2
c̃ p · ψ̃ψ̃ν + η̃eφ̃ψ̃µ

)
eip·X(z, z̄) .

(A.36)

The picture (+1
2 ,−

1
2) RR vertex operator is

V
( 12 ,−

1
2 )

RR (z, z̄) = lim
p→z

X (p)V
(− 1

2 ,−
1
2 )

RR (z, z̄)

= gc fαβ(γ
µ)αγ

(
1√
α′

c i∂Xµ e
1
2φSγ

)
c̃e−

1
2 φ̃S̃βeip·X(z, z̄) + · · · ,

(A.37)
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where we have neglected terms that contain the momentum or the ghost structure e
1
2φη.

Using these, it is natural to define the picture-raised axion-dilaton vertex operators

V (−1)
δτ(p) =

1√
2

(
V (0,−1)
δτ1(p)

+ iV
(− 1

2 ,−
1
2 )

δτ2(p)

)
,

V (0)
δτ(p) =

1√
2

(
V (0,0)
δτ1(p)

+ iV
(+ 1

2 ,−
1
2 )

δτ2(p)

)
.

(A.38)

A.1.5 D-instanton boundary conditions

The single D-instanton solution is characterized by a family of BRST-invariant boundary

conditions parametrized by ten bosonic moduli xµ and sixteen fermionic moduli θα. For

simplicity, we restrict to the subset satisfying θα = 0, since those with nonzero θα can

be described in terms of massless R-sector boundary deformations. To be concrete, take

the worldsheet to be the disc D2 represented by the upper half plane Im(z) > 0 with

boundary parametrized by u = Re(z). Compatibility with BRST invariance implies that

the ghosts obey the boundary conditions

b(u) = b̃(u), c(u) = c̃(u),

η(u) = η̃(u), ξ(u) = ξ̃(u), φ(u) = φ̃(u) .

(A.39)

In the matter sector, the D-instanton imposes Dirichlet boundary conditions in all ten

(Euclidean) spacetime directions such that

∂Xµ(u) = −∂̄Xµ(u), ψµ(u) = −ψ̃µ(u) . (A.40)
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This implies that there is a family of boundary conditions with θα = 0 parametrized by

xµ ∈ R10 given by

Xµ(u) = xµ . (A.41)

Furthermore, consistency of the boundary conditions for ψµ in (A.40) with the ψµSα

OPE (A.52) imply that the spin fields necessarily obey

e−
1
2φSα(u) = ise−

1
2 φ̃S̃α(u), s = ±1 , (A.42)

where the factor of i arises from Wick rotation to Euclidean signature. We shall take s =

+1 to correspond with the D-instanton, and s = −1 with the anti-D-instanton. Note that

this choice is merely a matter of convention in backgrounds with a vanishing RR zero-

form potential.

In general, the D-instanton boundary conditions (xµ, θα) preserve half of the target

space supersymmetries. The associated preserved supercharges are given by

Q̂α
(± 1

2 ),+
= Q̂α

(± 1
2 )

+ i
̂̃
Qα

(± 1
2 )
. (A.43)

It is convenient to organize the remaining supercharges into

Q̂α
(± 1

2 ),−
= Q̂α

(± 1
2 )

− i
̂̃
Qα

(± 1
2 )
. (A.44)

168



With respect to this basis, the super-Poincaré algebra takes the form

{
Q̂α

(± 1
2 ),+

, Q̂α
(∓ 1

2 ),−

}
= −(γµ)

αβ(Pµ
(0) + P̃µ

(0)),

{
Q̂α

(± 1
2 ),+

, Q̂α
(± 1

2 ),+

}
= 0 ,

{
Q̂α

(± 1
2 ),−

, Q̂α
(± 1

2 ),−

}
= 0 .

(A.45)

A.1.6 D-instanton scattering amplitudes

Consider the scattering amplitude of nc closed strings in a general D-instanton back-

ground. In general, this involves several disconnected worldsheet diagrams whose inser-

tions include the closed string vertex operators V c
i corresponding to the asymptotic states,

as well as several open string vertex operators V o
j coming from deformations of the D-

instanton boundary conditions. The contribution from a given connected topology takes

the form

Ag,b[V c
1 , · · · , V c

nc
;V o

1 , · · · , V o
no
] =

∫

M
Ω[V c

1 , · · · , V c
nc
;V o

1 , · · · , V o
no
] , (A.46)

where M is the moduli space of bordered Riemann surfaces Σg,b with g handles and b

boundaries, nc bulk punctures, and no boundary punctures. It can be parameterized by

m = −3χ(Σg,b) + 2nc + no real worldsheet moduli tk ∈ R. The integrand is given by a

k-dimensional form

Ω =

〈
m∧

k=1

Btkdt
k

Np∏

l=1

X (yl)
nc∏

i=1

V c
i (zi, z̄i)

no∏

j=1

V o
j (zj)

〉Σg,b

BC

, (A.47)
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which takes the form of a correlation function on Σg,b with the vertex operators inserted

at arbitrary moduli dependent points zi = zi(t). The boundary conditions on the world-

sheet fields, denoted by BC, correspond to a particular position in D-instanton moduli

space. In order to saturate the picture anomaly, there are Np PCO insertions at yl =

yl(t), where

Np = −χ(Σg,b)

+ 2nc
NSNS + nc

RR +
3

2
nc

RNS +
3

2
nc

NSR

+ 2no
NS +

1

2
no

R .

(A.48)

Here, nc and no denote the number of closed and open string vertex operators, respec-

tively, with the subscript referring to the NS/R sectors.

In general, the punctured Riemann surface can be defined as a union of local patches

separated by a set of circles Ca and semi-circles Sb. The local coordinates in neighboring

patches are required to agree on their overlap Ca or Sb, where they take the form za =

za(t) and zb = zb(t), respectively. The b-ghost insertions are then defined with respect to

this parameterization as

Btk =
∑

Ca

(∮

a

dz

2πi

∂za
∂tk

b(z)−
∮

a

dz̄

2πi

∂z̄a
∂tk

b̃(z̄)

)

+
∑

b

(∫

Sb

dz

πi

∂zb
∂tk

b(z)−
∑

b

∫

Sb

dz̄

πi

∂z̄b
∂tk

b̃(z̄)

)
.

(A.49)

In order for Ω to be a well-defined form on the fiber bundle of local coordinates and PCO

locations over M, these insertions must be modified to

Btk = Btk +

Np∑

l=1

1

X (yl)

∂yl
∂tk

∂ξ(yl) . (A.50)
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A.1.7 OPEs and correlation functions

In this part of the appendix, we collect various OPEs relevant for the disc amplitudes

considered in this work:

e−φψµ(z)e−
1
2φSα(w) ∼ − (γµ)αβ√

2(z − w)
e−

1
2φSβ(w),

e−φψµ(z)e−
1
2φSα(w) ∼ −

(γµ)αβ√
2(z − w)

e−
1
2φSβ(w),

e−
1
2φSα(z)e−

1
2φSβ(w) ∼ (γµ)αβ√

2(z − w)
e−φψµ(w),

e−
3
2φSα(z)e

− 1
2φSβ(w) ∼ δβα

(z − w)2
e−2φ(w)− 3

2(z − w)
e−2φ∂φ(w)

− (γµν)
β

α

2(z − w)
e−2φψµψν(w),

ψµψν(z)e−φψρ(w) ∼ ηνρδµσ − ηµρδνσ
z − w

e−φψσ(w),

ψµψν(z)e−
1
2φSα(w) ∼ −1

2

(γµν)αβ
z − w

e−
1
2φSβ(w) .

(A.51)

These OPEs subsequently determine various correlators, such as the 3-point function

〈
e−φψµ(z1)e

− 1
2φSα(z2)e

− 1
2φSβ(z3)

〉S2

chiral
= − (γµ)αβ√

2z12z13z23
, (A.52)

as well as the 4-point function

〈
e−

1
2φSα1(z1)e

− 1
2φSα2(z2)e

− 1
2φSα3(z3)e

− 1
2φSα4(z4)

〉S2

chiral

= −(γµ)α1α2(γµ)α3α4

2z12z23z24z34
+

(γµ)α1α3(γµ)α2α4

2z13z32z34z24
− (γµ)α1α4(γµ)α2α3

2z14z42z43z23
.

(A.53)
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A.2 Modular forms and SL(2,Z) covariance

In this appendix, we collect various results for the vertices appearing in the low-energy

expansion of the quantum effective action of type IIB string theory. Their coefficients

transform under the SL(2,Z) duality group as non-holomorphic forms of weight (w, w̃),

i.e.

f (w,w̃)

(
aτ + b

cτ + d

)
= (cτ + d)w(cτ̄ + d)w̃f (w,w̃)(τ), a, b, c, d ∈ Z, ad− bc = 1 . (A.54)

We shall also need the (holomorphic) modular covariant derivative on the upper-half τ -

plane,

Dw = iτ2∂τ +
w

2
, (A.55)

which takes non-holomorphic forms of weight (w, w̃) to those of weight (w + 1, w̃ − 1).

We first consider the 1
2 -BPS R4 and 1

4 -BPS D4R4 vertices. Their coefficients take the

form of modular functions, i.e. non-holomorphic modular forms of weight (0, 0), which

satisfy a homogenous Laplace equation on the upper half plane

(
τ22 ∂τ∂τ̄ −

1

4
s(s− 1)

)
f(τ, τ̄) = 0, s ∈ C , (A.56)

subject to the boundary condition f(τ, τ̄) = O(τp2 ) for p ∈ R. Its solution is given by the
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non-holomorphic Eisenstein series

Es(τ, τ̄) =
∑

(m,n) *=(0,0)

τ s2
|m+ nτ |2s

= 2ζ(2s)τ s2 + 2
√
π
Γ(s− 1/2)ζ(2s− 1)

Γ(s)
τ1−s
2

+
4πs

Γ(s)
τ1/22

∑

n *=0

|n|s−
1
2σ1−2s(|n|)e2πinτ1Ks− 1

2
(2π|n|τ2) ,

(A.57)

where Kα(z) is the K-Bessel function, and σz(n) is the divisor function

σz(n) =
∑

d|n

d2z, σ−z(n) = n−zσz(n) . (A.58)

In the weak-coupling limit, Es admits an expansion in τ−1
2 given by

Es(τ, τ̄) = 2ζ(2s)τ s2 + 2
√
π
Γ(s− 1/2)ζ(2s− 1)

Γ(s)
τ1−s
2

+ (e2πiτ + e−2πiτ )

(
2πs

Γ(s)
+

s(s− 1)

2Γ(s)
τ−1
2 +O(τ−2

2 )

)
+O(e−4πτ2) .

(A.59)

The R4 and D4R4 coefficients f0 and f4 correspond to s = 3/2 and s = 5/2, respectively,

f0 =
1

26
E 3

2
(τ, τ̄), f4 =

1

211
E 5

2
(τ, τ̄) . (A.60)

The coefficient of the 1
8 -BPS D6R4 interaction meanwhile satisfies an inhomogeneous

Laplace equation of the form

(
τ22 ∂τ∂τ̄ − 12

)
E3(τ, τ̄) = −E 3

2
(τ, τ̄)2 , (A.61)
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together with the weak-coupling boundary condition f6(τ, τ̄) = O(τ32 ) as τ2 → ∞. Its

solution takes the form of a modular function that can be written in the weak-coupling

limit (τ2 → ∞) as [58]

E3(τ, τ̄) =
2ζ(3)2

3
τ32 +

4ζ(2)ζ(3)

3
τ2 +

8ζ(2)2

5
τ−1
2 +

4ζ(6)

28
τ−3
2

+ (e2πiτ + e−2πiτ2)(8ζ(3)τ
1
2
2 +O(1))− e−4πτ2

(
2τ−2

2 +O(τ−3
2 )
)

+O(e−6πτ2) .

(A.62)

Under our conventions, the D6R4 coefficient appearing in the main text is given by

f6 =
1

212
E3(τ, τ̄). (A.63)

In our discussion on higher-point amplitudes, we will also need the coefficients of the

N -point MRV vertices, which transform as weight (N − 4, 4 − N) non-holomorphic mod-

ular forms. To describe such forms, we introduce the generalized Eisenstein series E(w)
s as

given by

E(w)
s (τ, τ̄) =

∑

(m,n) *=(0,0)

(
m+ nτ̄

m+ nτ

)w τ s2
|m+ nτ |2s

=
2wΓ(s)

Γ(s+ w)
Dw−1 · · · D0Es(τ, τ̄).

(A.64)

Following [49], the δτ2R4 and δτ2D4R4 coefficients are proportional to

r(6)0 =
15

28
E(2)

3
2

(τ, τ̄), r(6)4 =
35

213
E(2)

5
2

(τ, τ̄), (A.65)

where the overall choice of normalization does not factor into our analysis in the main

text.
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It was shown in [49] that the coefficients multiplying δτ2D6
iR

4, with the associated

kinematic structures O(3)
6,i in (1.99) and (1.101), satisfy inhomogeneous Laplace equations

of the form
(
τ22 ∂τ∂τ̄ − 10

)
E2,1 = −15

2

(
E(0)

3
2

E(2)
3
2

+
3

5
E(1)

3
2

E(1)
3
2

)
,

(
τ22 ∂τ∂τ̄ − 10

)
E2,2 = −5

2
c1

(
E(0)

3
2

E(2)
3
2

− E(1)
3
2

E(1)
3
2

)
,

(A.66)

where c1 is not determined by supersymmetry and SL(2,Z)-covariance alone. Their solu-

tions can be written in terms of the D6R4 coefficient as

E2,1 = 4D1D0E3,

E2,2 =
c1
5

(
E2,1 −

1

2
E(1)

3
2

E(1)
3
2

)
.

(A.67)

In our conventions, the δτ2D6
iR

4 coefficients r(6)6,i are proportional to

r(6)6,1 =
1

212
E2,1(τ, τ̄), r(6)6,2 =

1

212
E2,2(τ, τ̄), (A.68)

where only the relative factors between these and the lower-order coefficients is of rele-

vance.

A.3 Annulus 1-point diagram

In this section we compute the annulus amplitude with a single δτ insertion. Similar to

the empty topologies, this diagram is also expected to vanish in the on-shell approach due

to supersymmetry, which we demonstrate explicitly.

The annulus A2 with modulus t ∈ (0,∞) can be parametrized by the strip with coordi-
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V (0)
δτ(p)(u)

Bt

Bu

0

2πit

π

w

Figure A.2: The annulus A2(t) represented by a rectangle w ∈ [0,π] × [0, 2πit] with opposite
sides w ' w + 2πit identified. There is a single closed string puncture at w = u for u ∈ R, which
has been drawn off the real axis for clarity. The b ghost contour Bu surrounds the (picture zero)
integrated vertex operator V (0)

δτ(p), while Bt runs along a horizontal line segment.

nate w satisfying 0 ≤ Re(w) ≤ π with the identification w ' w+2πit. Alternatively, it can

be described in terms of the torus T 2 with modulus it under the identification w ' −w̄.

We take both boundaries to lie on the same D-instanton. The residual conformal symme-

try S1×Z2 acts by periodic translations Im(w) 0→ Im(w)+v for v ∈ (0, 2π) and reflections

Re(w) → π − Re(w) that exchange the two boundaries. The annulus admits four spin

structures corresponding to the choice of boundary conditions for the fermionic fields as

well as their periodicity under w 0→ w + 2πit. It is convenient to label the spin structures

in terms of those on the torus, with ν = 1 denoting the odd spin structure and ν = 2, 3, 4

the even spin structures.

Now consider the annulus with a single closed string puncture. We use the residual

conformal symmetry to fix its location to w = u with 0 ≤ u ≤ π. The Z2 reflection sym-

metry can be accounted for multiplying the amplitude by a factor of 1
2 . We implement
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the type IIB GSO projection by inserting 1
2(−1)ν into the annulus correlator and sum-

ming over spin structures ν. The amplitude requires a single PCO for an RR insertion

and two PCOs for an NSNS insertion, which we take to be coincident with the vertex op-

erators., such that they are in the (+1
2 ,−

1
2)- and (0, 0)-pictures, respectively. With these

preliminaries in mind, the amplitude takes the form

AA2

δτ =
1

4

4∑

ν=1

(−1)ν
∫ ∞

0
dt

∫ π

0
du
〈
BtBu Vδτ(p)(u)

〉A2(t),ν

xµ=0
, (A.69)

where as usual the choice of picture is kept implicit. Here, the b contours associated to

the moduli u, t are given by

Bu =
1

2πi

∮

Cu

(
dw b(w)− dw̄ b̃(w̄)

)
,

Bt =

∫

S

(
dw b(w) + dw̄ b̃(w̄)

)
,

(A.70)

where Cu is a counterclockwise contour surrounding Vδτ(p)(u), and S is a line segment at

some fixed vertical position that runs horizontally from Re(w) = 0 to Re(w) = π.

Both the NSNS and RR vertex operators take the form cc̃eqφe−qφ̃Oδτ1/2(p) modulo ex-

tra operators which have vanishing correlator, where Oδτ1/2(p) is a conformal primary in

the RR/NSNS sector of the matter SCFT corresponding to the axion/dilaton. It follows

that the contribution of the b, c ghosts is

〈
BtBu cc̃(u)

〉A2(t),ν
bc

= 2πiη(it)2 . (A.71)
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Similarly, the contribution of the φ,η,ξ system is

〈
eqφe−qφ̃(u)

〉A2(t),ν

φηξ
=

η(it)

ϑν(2qu|it)

(
ϑ1(2u|it)
ϑ′1(it)

)q2

, (A.72)

where ϑν(w|τ) are the Jacobi theta functions with characteristics, with ϑ1(w|τ) being the

unique odd function in w, and ϑν(τ) ≡ ϑν(0|τ). Up to an overall phase, the contribu-

tion of δτ1/2 to the amplitude thus reduces to an integrated correlator in the matter CFT

given by

π

2

4∑

ν=1

(−1)ν+1
∫ ∞

0
dt

η(it)3

ϑ′1(it)
q2

∫ π

0
du

ϑ1(2u|it)q
2

ϑν(2qu|it)

〈
Oδτ1/2(p)(u)

〉A2(t),ν

Xµψν , xµ=0
. (A.73)

First consider the annulus 1-point amplitude for the dilaton. We strip off the matter

part of the vertex operator Vδτ2(p) in picture (0, 0), which contributes to the amplitude as

Oδτ2(p)(u) = eµν(p) (i∂X
µ + 1

2p · ψψ
µ)(i∂̄Xν + 1

2p · ψ̃ψ̃
ν)eip·X(u) . (A.74)

Using the doubling trick on the annulus, we can trade all of antiholomorphic operators

at w̄ = u with their holomorphic counterparts at the reflected point −w̄ = −u on the

torus T 2 with complex modulus it. By Lorentz invariance, the four-fermion correlator can

only involve kinematic structures of the form p2eµν(p)ηµν or eµν(p)pµpν , which vanish

due to the mass-shell and transversality constraints, respectively. The mixed correlators

involving both ψµ and ∂Xµ vanish since the fermion fields have nothing to contract with.
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The only remaining term involves both copies of ∂Xµ, contributing

〈
eµν∂X

µ∂̄Xνeip·X(u)

〉A2(t),ν

Xµψµ,xµ=0

∝ ϑν(it)5

η(it)15
∂2

∂u2
log ϑ1(2u|it) . (A.75)

In the above expression, we have evaluated the torus correlator in the matter CFT, which

in particular receives a contribution [ϑν(it)/η(it)]5 from the path integral over ψµ.

Next consider the annulus 1-point amplitude for the axion. In the (+1
2 ,−

1
2) picture,

the matter field content of Oδτ1(p) consists of (/pγµ)αβSαS̃β∂Xµeip·X . It follows that the

correlator appearing in the moduli integrand for each spin structure is proportional to p2,

which vanishes by the mass-shell constraint, and so the amplitude is zero.

Since the axion correlator vanishes identically, the annulus amplitude reduces to the

contribution of the NSNS matter fields (A.75). Using (A.73), we find

AA2

δτ ∝
4∑

ν=1

(−1)ν
∫ ∞

0
dt
ϑν(it)4

η(it)12

∫ π

0
du

∂2

∂u2
ϑ1(2u|it) = 0 , (A.76)

which vanishes by the quartic Jacobi identity ϑ42 − ϑ43 + ϑ44 = 0.

A.4 Open string background independence and Sen gauge

As discussed in Section 2.1.5, in order to integrate over the massless bosonic open string

fields φµ, we perform a field redefinition trading the φµ for the bosonic moduli xµ (2.13).

The existence of such a field redefinition relies on the fact that Wf [φµ, θα, ζ2,Ψc] vanishes

upon setting the other fields to zero, i.e. it does not contain a potential for φµ. Although

this result is anticipated from open string background independence, it is by no means

179



obvious in the SFT framework.2

In this appendix, we shall explicitly demonstrate the vanishing of such terms in the

massless open string effective action. In particular, we set our sights on the tree-level

quartic coupling appearing in Wf , whose contribution is fixed by Lorentz invariance to

take the form

1

4
gtree(φ

2)2 ⊂ Wf [φ
µ, θα, ζ

2,Ψc] . (A.77)

In the standard perturbative framework, we know that gtree enters into the 4-point ampli-

tude as

AD2

φµφνφσφρ = 2gtreeS
µνσρ, Sµνσρ = ηµνησρ + ηµσηνρ + ηµρησν . (A.78)

In the EFT analysis, this amplitude receives contributions from the elementary 4-point

Feynman vertex together with a set of Feynman diagrams consisting of 3-point Feynman

vertices AD2

φµφνψ for two φµ fields and one massive field ψ ∈ Ψf
o , stitched together by an

open string propagator Pψ, i.e.

AD2

φµφνφσφρ = AD2

φµφνφσφρ

∣∣∣∣
vertex

+
∑

ψ∈Ψf
o

(
AD2

φµφνψPψA
D2

ψφσφρ + 5 permutations of µ, ν,σ, ρ
) ∣∣∣∣

propagator
.

(A.79)

From the perspective of the moduli space integration, the first term on the RHS of (A.80)

contributes to the “vertex region” of the amplitude, and the terms in the sum to the

“propagator region.” The 6 permutations of the Lorentz indices reflects the decomposition

of the propagator region into three disconnected components, each with two boundaries.

2We stress that φµ is not the same as a moduli deformation of xµ, and so the fact that the
potential vanishes is not simply a consequence of conformal perturbation theory.
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By a judicious choice of 3-point vertex, we can completely integrate out all of the mas-

sive open strings with nonzero weight. This leaves the ghost zero mode κ1, for which the

amplitude becomes

AD2

φµφνφσφρ = AD2

φµφνφσφρ

∣∣∣∣
vertex

+
(
V D2

φµφνκ1Pκ1V D2

κ1φσφρ + 5 permutations of µ, ν,σ, ρ
) ∣∣∣∣

propagator
.

(A.80)

Our goal is thus to show that this expression vanishes.3

3-point vertex

In the following sections, we review the construction of the 3-point and 4-point Feynman

vertices so that this appendix is self-contained. In order to define the elementary 3-point

Feynman vertex for NS-sector string fields, we need to specify a set of local coordinate

charts around the punctures as well as the location of the PCO. As before, we take the

disc to be parameterized by global coordinate z in the UHP. We shall employ the same

set of coordinate maps as in [29] and the main text, with

f0(w0) =
2w0

2α+ w0
, f1(w1) =

2α+ w1

2α− w1
, f∞(w∞) =

w∞ − 2α

2w∞
, (A.81)

3The 4-point amplitude has been previously confirmed to vanish, albeit for a choice of vertices
where the ghost zero mode does not contribute. [68, 69]

181



where wza labels the local coordinate for the patch surrounding the open string puncture

at z = za. Recall that such transition maps have inverses given by

w0(z) =
2αz

2− z
, w1(z) =

2α(z − 1)

z + 1
, w∞(z) =

2α

1− 2z
. (A.82)

With this choice of coordinates, we take the PCO to be located at the permutation-invariant

point z = pooo with

pooo = e±
iπ
3 . (A.83)

In practice, we take the SFT parameter α to be arbitrarily large so that the massive

open string modes other than κ1 do not contribute to the effective vertex.4 Using our

choice of local coordinates and PCO location, its 3-point Feynman vertex is given by the

amplitude

AD2

φµφνκ1 =
〈
X (pooo) ce

−φψµ(0) ce−φψν(1) c∂ce−2φ∂ξ(∞)
〉D2

. (A.84)

By direct computation, we find

AD2

φµφνκ1 = ηµν
1 + pooo
1− pooo

, (A.85)

and so the contribution of κ1 to the propagator region of the 4-point amplitude in (A.80)

is

Sµνσρ

(
1 + pooo
1− pooo

)2

, (A.86)

4We have also repeated the calculation of this appendix at finite α, in which case all of the
massive open string fields contribute, with the same conclusion (A.102), but will not present its
lengthy details here.
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0 1 ∞z′ = ∞ z′ = 0

pooo

z′ = pooo

z

Figure A.3: Plumbing configuration of the 4-point propagator region for a finite choice of the
SFT parameter α. Vertex operator insertions are marked with black crosses, while PCO insertions
are marked with blue dots.

where we have used the ghost propagator Pκ1 = 1/2.

4-point vertex

In order to define the 4-point vertex, we must first introduce the family of worldsheet

configurations corresponding to two 3-point vertices joined together by an open string

propagator. That is to say that the range of integration for the vertex region is given by

the complement of the propagator region. The aforementioned configurations consist of

two discs, parametrized by global coordinates z, z′ in the UHP, sewn together by plumb-

ing maps involving the local coordinates in (A.82). Since the 3-point vertex is defined by

summing over permutations of identical open string fields, we need only consider a single

plumbing configuration, e.g. (see Figure A.3)

w1(z)w1(z
′) = −q , 0 < q < 1 . (A.87)
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We subsequently perform an SL(2,R) transformation that maps three of the punctures on

the z-disc to 0, 1,∞. This transformation maps the fourth puncture to some function x(q)

of the gluing parameter q, which can be identified with the modulus of the 4-punctured

disc. Similarly, the PCO locations are mapped to p1(q), p2(q), which depend explicitly on

the gluing parameter and hence implicitly on the modulus. Depending on the SL(2,R)

transformation, x(q) is mapped to one of three disconnected regions, conventionally re-

ferred to as the s, t, u-channel contributions to the disc 4-point amplitude. Up to order

O(α−4), the propagator region consists of the components

s-channel : x ∈ (−α−2,α−2) ,

t-channel : x ∈ (1− α−2, 1 + α−2) ,

u-channel : x ∈ (−∞,−α2) ∪ (α2,∞) .

(A.88)

For instance, in the s-channel the fourth puncture is arranged to be located at

x = xs(q), xs(q) =
q

α2
+O(α−4) , (A.89)

while the two PCOs are located at

p1 = p1s(q), p1s(q) = pooo −
poooq

2α2
+O(α−4) ,

p2 = p2s(q), p2s(q) =
pooo − 1

pooo
+

q

2poooα2
+O(α−4) .

(A.90)

Similarly, in the t-channel, the fourth puncture is located at

x = xt(q), xt(q) = 1− q

α2
+O(α−4) , (A.91)
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and the PCOs reside at

p1 = p1t(q), p1t(q) = 1− poooq

α2(pooo − 1)
+O(α−4) ,

p2 = p2t(q), p2t(q) = pooo −
poooq

2α2
+O(α−4) .

(A.92)

Strictly speaking, the range 0 < q < 1 only covers half of the s, t, u regions, and so we

must also consider the same SL(2,R) transformations under q → −q.

We now return to the construction of the 4-point elementary vertex. Using Lorentz

invariance, we can write the contribution of the vertex region as5

AD2

φµφνφσφρ

∣∣∣∣
vertex

= 3

[∫ 1−α−2

α−2
Ωxdx+ VIs + VIt

]
. (A.93)

Let us briefly unpack this expression. The first term takes the form of an integrated corre-

lator with integrand

Ωx =
1

24

∑

perm of µ, ν,σ, ρ

〈
BxX (p1)X (p2) ce

−φψµ(0) ce−φψν(x)ce−φψσ(1) ce−φψρ(∞)
〉D2

.

(A.94)

By averaging over the 24 permutations of the spacetime Lorentz indices in (A.94), we can

restrict the vertex region to lie between the s- and t-channels, i.e. xs(1) < x < xt(1),

where xs(q) and xt(q) are the local coordinates covering half of the s- and t-channel re-

gions, as defined in (A.89) and (A.91). We have chosen the PCOs to reside at fixed loca-

5In principle, we must specify a set of local coordinates around the open string punctures to-
gether as well as the two PCO locations which are necessarily compatible with those of the 3-point
vertex. However, since the 4-point vertex involves only on-shell fields, it is insensitive to the choice
of coordinate maps.
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tions

p1 = pooo −
pooo
2α2

, p2 = 1 +
pooo

α2(1− pooo)
, (A.95)

which are precisely p1s(q = 1) and p1t(q = 1), respectively. This ensures that the loca-

tion of one PCO agrees on the boundary between the s-channel region and the vertex re-

gion, and similarly for PCO 2 with the t-channel. Note that this choice of PCO locations

differs with that of the 4-point vertex of the main text. Finally, Bxdx is the Beltrami dif-

ferential associated to the modulus x. For two PCOs on the disc, it generically takes the

form

Bx =

∫

x

dz

2πi
b(z) +

1

X (p1)

∂p1
∂x

∂ξ(p1) +
1

X (p2)

∂p2
∂x

∂ξ(p2) , (A.96)

where recall that 1/X (p) should be understood as a formal operator which removes the

corresponding PCO X (p). However, we have chosen PCO locations in (A.95) that do not

depend on the moduli, and so the ∂ξ terms in the above expression drop out.

Following a straightforward application of Wick contractions, we find

Ωx =
1

3
Sµνσρ

[
F0(p1, p2)

x2
+

F1(p1, p2)

(1− x)2
+ F∞(p1, p2)

]
,

F0(p1, p2) = −CD2
p1p2 (p1 + p2 − 2)

(p1 − p2) 2
,

F1(p1, p2) = CD2
(p1 − 1) (p2 − 1) (p1 + p2)

(p1 − p2) 2
,

F∞(p1, p2) = CD2
p1 (2p2 − 1)− p2

(p1 − p2) 2
.

(A.97)

Integrating this expression gives a contribution that is subleading in α, namely

∫ 1−α−2

α−2
Ωxdx = O(α−2) . (A.98)

186



At each of the boundaries between the propagator and vertex regions there is a single

PCO whose location assumes some value p on one side and p′ on the other. This issue of

non-agreement can be fixed following [63], where one closes the gap by integrating along

the PCO direction. This amounts to integrating ∂ξ in (A.96), leading to ξ(p) − ξ(p′).

For the vertex under consideration, we must perform such a vertical integration at the

s-channel boundary, which contributes as

VIs =
1

24

∑

perm of µ, ν,σ, ρ
〈X (p1)

(
ξ(p1t(q = 1))− ξ(p2s(q = 1))

)

× ce−φψµ(0) ce−φψν(x) ce−φψσ(1) ce−φψρ(∞)〉D2

= −1

3
CD2Sµνσρ 1 + pooo

(1− pooo)2
+O(α−2) ,

(A.99)

as well as the t-channel boundary, which contributes as

VIt =
1

24

∑

perm of µ, ν,σ, ρ
〈
(
ξ(p1s(q = 1))− ξ(p2t(q = 1))

)
X (p2)

× ce−φψµ(0) ce−φψν(x)ce−φψσ(1) ce−φψρ(∞)〉D2

= −1

3
CD2Sµνσρ pooo(1 + pooo)

(1− pooo)2
+O(α−2) .

(A.100)

From this it follows that the vertex region contributes as

AD2

φµφνφσφρ

∣∣∣∣
vertex

= −CD2Sµνσρ

(
1 + pooo
1− pooo

)2

. (A.101)

Comparing this with (A.86), we find that the vertex region exactly cancels that of the
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propagator region to give

AD2

φµφνφσφρ = 0 , (A.102)

and so the 4-point vertex in the massless open string effective action vanishes, as promised.
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