
GPU-accelerated Perfect Hash Construction:
Parallel Implementation of the BDZ Algorithm and
Application to Xor Filters

Citation
Chua, Lu Sien. 2023. GPU-accelerated Perfect Hash Construction: Parallel Implementation of
the BDZ Algorithm and Application to Xor Filters. Master's thesis, Harvard University Division of
Continuing Education.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375028

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37375028
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=GPU-accelerated%20Perfect%20Hash%20Construction:%20Parallel%20Implementation%20of%20the%20BDZ%20Algorithm%20and%20Application%20to%20Xor%20Filters&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=f56e79d5423bcede990a98bc919e370d&department
https://dash.harvard.edu/pages/accessibility

GPU-accelerated Perfect Hash Construction:

Parallel Implementation of the BDZ Algorithm and Application to Xor Filters

Lu Sien Chua

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2023

Copyright 2023 Lu Sien Chua

Abstract

A perfect hash function (PHF) is an injection on a set of n keys S, mapping

every key in S to integers in the interval [0,m − 1] with no collisions, m ≥ n. The

BDZ algorithm constructs PHFs using peeling processes on random hypergraphs,

and is an algorithm suited for key set sizes where the induced hypergraph fits in

internal memory. In this work, we exploit the inherent parallelism present in the

BDZ algorithm to introduce a GPU-accelerated construction algorithm, and show

how it can be applied to a new type of approximate membership query (AMQ) data

structure called the xor filter. We compare construction performance with sequential

implementations, where our results show discernible improvements in construction

time.

Acknowledgements

I would like to thank Professor Michael Mitzenmacher for inspiring the ideas

in this thesis when I attended his class CS 222 “Algorithms at the End of the Wire”

in fall of 2020, and for his guidance throughout my research journey.

I would also like to express gratitude to Professor Hongming Wang for her

dedicated assistance, and valuable feedback throughout the thesis process.

iv

Contents

Table of Contents

List of Figures

List of Tables

List of Algorithms

Chapter I: Introduction

1.1 Overview . 1

1.2 Contribution . 2

1.3 Thesis outline . 3

Chapter II: Background

2.1 Peeling processes . 4

2.1.1 Peeling order . 5

2.1.2 Parallelism in peeling . 6

2.2 The MWHC construction technique 7

2.2.1 Application: AMQ filters . 9

2.3 Data parallel primitives . 10

v

Chapter III: Algorithm Design and Analysis

3.1 The BDZ algorithm . 14

3.1.1 Mapping step . 15

3.1.2 Assigning step . 16

3.2 Analysis . 18

Chapter IV: Implementation

4.1 Data structures . 22

4.2 GPU-based implementation . 24

4.2.1 Adding edges . 24

4.2.2 Peeling edges . 25

4.2.3 Assigning values to vertices 27

4.3 Using the GPU-based implementation in applications 29

4.3.1 Xor filter . 29

4.3.2 Fuse filter . 34

Chapter V: Evaluation

5.1 Results . 43

Chapter VI: Conclusions

6.1 Summary . 51

Appendix A: Source code

References

vi

List of Figures

1 The mapping step . 16

2 Algorithm to test if a r-graph is acyclic 16

3 The assigning step . 17

4 Layer-wise parallel assigning . 21

5 Pseudocode example using the parfor construct 24

6 Adding edges in parallel . 25

7 Algorithm to pack interesting elements into a dense array 36

8 Construction time. Sequential and GPU-accelerated implementations 44

9 Count of layers generated by parallel peeling 48

vii

List of Tables

1 Key steps in fuse filter construction 35

2 GPU profiling statistics for xor filter, 10M keys 45

3 GPU profiling statistics for xor filter, 100M keys 46

4 GPU profiling statistics for fuse filter, 10M keys 46

5 GPU profiling statistics for fuse filter, 100M keys 47

viii

List of Algorithms

1 Xor filter construction, using GPU-accelerated BDZ 30

2 Parallel Mapping, xor filter . 31

3 Add to sets, xor filter . 32

4 Remove from sets, xor filter . 32

5 Assign, xor filter . 33

6 Fuse filter construction, using GPU-accelerated BDZ 39

7 Parallel Mapping, fuse filter . 40

8 Add edge, fuse filter . 41

9 Remove edge, fuse filter . 41

10 Assign, fuse filter . 42

ix

Chapter I.

Introduction

1.1. Overview

A perfect hash function (PHF) is an injection on a set S of n keys, mapping

each key in S to integers in the interval [0,m− 1] with no collisions1, m ≥ n. When

m = n, the PHF is a bijective, minimal perfect hash function (MPHF).

PHFs can be useful ingredients for building space-efficient data structures; we

describe an implementation example. When building a hash table for an immutable

input collection of key-value pairs, a core issue is the non-negligible likelihood2 of a

hash collision between any two keys. To resolve potential collisions, the keys must

be stored along with the values in the hash table. However, if the application only

needs to look up keys which are in S, or that false positives3 can be tolerated, then

we can use a PHF on S to implement the hash table, and skip storing the keys

altogether. This yields savings in space, which can be significant when the values

1A collision occurs when the hash function produces the same hash value for two distinct keys.
2By the birthday paradox, which states that the probability p of two people sharing a birthday

within a small group is surprisingly high. Only 23 randomly chosen individuals is needed for p to
exceed 0.5

3Reporting an arbitrary value for a key which is not in the set

take up relatively less space compared to the keys.

Efficient techniques (Majewski et al., 1996; Chazelle et al., 2004; Botelho et al.,

2007) have been proposed that find PHFs by construction, and these advances have

led to interesting new possibilities in applications. For instance, the PHF construc-

tion of Botelho et al. (2007), also called the BDZ algorithm, was used to implement a

new approximate membership query4 (AMQ) data structure called the xor filter (Graf

& Lemire, 2020). The filter inherits the compact representation and constant-time

evaluation properties of the underlying PHF, and in practical tests, outperforms the

classical Bloom and cuckoo filters in space and evaluation time. However, the con-

struction time (i.e. the BDZ algorithm runtime) is comparatively slow, empirically

observed to be approximately 2x slower than a Bloom filter construction.

1.2. Contribution

In this thesis, we focus on implementing an accelerated BDZ algorithm for ex-

ecution on modern parallel hardware. Our basis stems from theoretical and practical

results in hypergraph peeling processes (Jiang et al., 2013): these indicate that core

construction steps of the BDZ algorithm contain untapped parallelism which could

yield concrete speedups. At the time of writing, we do not know of a parallel im-

plementation of the BDZ algorithm. We create new parallel algorithms, implement

these on GPUs and evaluate performance in applications: the xor filter and a newer

variant known as the fuse filter.

4An AMQ answers if an element is in a set or not with some false positive rate ϵ

2

1.3. Thesis outline

Outline. In Chapter 2 we review related work, including foundations to

the BDZ algorithm, as well as theoretical and practical results in parallel peeling

processes. Chapter 3 introduces the classical algorithm, providing an overview of the

BDZ algorithm and a discussion of its inherent parallelism. In Chapter 4, we present

our implementation of the new parallel algorithms, and detail use of these algorithms

in applications: the xor and fuse filters. In Chapter 5, we describe our experiments

and results. Finally, in Chapter 6, we summarize our work and conclude the thesis.

3

Chapter II.

Background

2.1. Peeling processes

Given a random r-uniform hypergraph1 as input, a peeling process repeatedly

removes vertices with degree less than k, along with edges incident to these vertices.

At termination, it returns the k-core of the hypergraph, defined as the largest sub-

graph where every vertex is of degree at least k. The peeling process is efficient:

algorithms using peeling techniques generally have runtimes linear in the size of the

hypergraph, and hence seem adequate for handling problems with large input data

sizes. In fact, there exists a varied range of peeling-based applications, including low-

density parity check-codes (Luby et al., 2001), hash-based sketches (Chazelle et al.,

2004; Goodrich & Mitzenmacher, 2011), cuckoo hashing (Pagh & Rodler, 2004) and

satisfiability of random Boolean formulae (Broder & Mitzenmacher, 2003; Molloy,

2005).

Data structures and algorithms that use a peeling process often aim to find an

1A hypergraph is a generalization of an undirected graph, such that every edge connects r ≥ 2
vertices. A r-uniform hypergraph is a hypergraph where every edge consists of r distinct vertices.

4

empty k-core, i.e. to peel away the whole hypergraph. It is known that asymptotically,

this condition occurs with high probability if the edge density (number of edges over

vertices) c of the hypergraph is below a threshold value c∗k,r (Molloy, 2005); above

this threshold, the k-core is non-empty with high probability. Applications frequently

employ this fact as part of initial configuration before creating the hypergraph. The

particular configuration of k = 2, r = 3 and c < c∗2,3 ≈ 0.818 appears to be common

(Graf & Lemire, 2020; Goodrich & Mitzenmacher, 2011; Botelho et al., 2007). In

later sections where we discuss specific algorithmic examples, we state why this case

is used in context.

2.1.1 Peeling order

When a random r-uniform hypergraph has an empty 2-core, it is possible to

define a peeling order: it is an ordering of the edges such that each edge is incident

to at least one degree-1 vertex in the subgraph as previous edges in the order are

peeled away. A peeling order appears particularly useful when a hypergraph is used

to model a system of linear equations: a vertex corresponds to a variable, and an

edge corresponds to an equation binding variables together. By arranging the system

equations according to this order, each equation is guaranteed to have at least one

variable which does not appear in any subsequent equation in the order. The system

becomes triangular, and would be solvable by backward substitution. The BDZ al-

gorithm, a focus of this thesis, is a known technique for constructing PHFs using a

peeling order; we discuss further details in section 2.2.

5

2.1.2 Parallelism in peeling

Jiang et al. (2013) analyzed parallelism in the peeling process, considering the

simple round-based algorithm: in each round, all vertices of degree less than k and

their associated edges are removed in parallel from the hypergraph. The authors show

that with high probability, when c < c∗k,r, only
1

log((k−1)(r−1))
log logm + O(1) rounds

of peeling are required to complete the peeling process (Logarithms are to the base

2 in this thesis unless otherwise specified). This is possible as the analysis reveals

that the fraction of vertices remaining after each round falls doubly exponentially.

We state the original theorem (Jiang et al., 2013) for clarity:

Theorem 1. Let k, r ≥ 2 with k + r ≥ 5, let c be a constant, and let Gr
m,cm denote

a r-uniform random hypergraph with m vertices and cm edges. With probability

1 − o(1), the parallel peeling process for the k-core in Gr
m,cm with edge density c

terminates after 1
log((k−1)(r−1))

log logm+O(1) rounds when c < c∗k,r.

Theorem 1 translates well into fast practical performance, which Jiang et al.

(2013) demonstrates using the algorithmic example of Invertible Bloom Lookup Ta-

bles (IBLTs) (Goodrich & Mitzenmacher, 2011). An IBLT — represented as an array

— stores a set S of keys, and every key is hashed to r random locations in the array.

When multiple keys hash to the same location, the keys are XOR-ed2. The IBLT is

modeled by a random r-uniform hypergraph, where the set keys correspond to edges,

and array cells correspond to vertices. The goal is to recover the set S from the IBLT,

2With the XOR trick, the same operation can be used to add or remove a key from the array.

6

and this is achieved by peeling3 the hypergraph. The authors implemented in parallel

the core steps of IBLT construction (creating the hypergraph) and set recovery (peel-

ing the hypergraph) on the GPU. Encouragingly, they observe speedups of 10-12x

and 20x respectively over the sequential algorithm.

2.2. The MWHC construction technique

The work of Majewski et al. (1996) proposed the first known technique that

uses a peeling process on a random r-uniform hypergraph to construct a MPHF. For a

set of n keys S ⊆ U , the technique generates a special, compact array g for computing

a function f : S → {0, 1, ..., n− 1}.

We describe the construction of g based on 3-uniform hypergraphs4, i.e. r = 3.

Three random hash functions h0, h1, h2 : U → {0, 1, ..., λn − 1} are chosen, where

λ = 1.23. Then a hypergraph of λn vertices and n edges is created by mapping each

key x ∈ S to the edge {h0(x), h1(x), h2(x)}. The hypergraph models a linear system:

a vertex corresponds to a variable, and an edge corresponds to an equation binding

three variables. The goal is to solve the system, i.e. find an array of variables gi, such

that for every key x ∈ S,

gh0(x) + gh1(x) + gh2(x) = f(x) mod n

3A peeling step proceeds as follows: find a cell containing a single key (we refer to as a “pure”
cell), and place the key into the result set. Then remove the key from the r locations of the array.

4The construction works for r-uniform hypergraphs, r ≥ 2, but space usage is minimized at r = 3
(Molloy, 2005)

7

If the hypergraph is peelable, then it is possible to traverse all the edges in reverse

peeling order. For each edge, the algorithm associates it with a unique integer a ∈

{0, 1, . . . , n−1}. The considered edge has one or more unassigned5 vertices; we denote

the set of such vertices as {v0, v1, . . . , vj}. Then the algorithm sets the value zero to

g[v1], . . . , g[vj], and assigns g[v0] = a−
∑r

i=1 g[vi] mod n.

The algorithm almost always succeeds, and is fast. First, there is a strong

probabilistic guarantee that the hypergraph is peelable (and thus lead to a solvable

system). With λ = 1.23, the hypergraph created has an edge-over-vertices ratio

(edge density) of 1/1.23 ≈ 0.813 that is slightly below the critical threshold c∗2,3 ≈

0.818, hence ensuring it is peelable with probability 1− o(1) (Molloy, 2005). Second,

peeling processes have runtimes linear in the size of the hypergraph, leading to efficient

construction times.

The function f(x) is stored using λn⌈log n⌉ bits for the array of variables gi.

Assuming the hash functions h0, h1 and h2 compute in O(1) time, evaluating the

function f(x) would also take O(1) time, with three hash computations using the

chosen hash functions and three memory probes into the array.

The construction can be easily modified to store a PHF in reduced O(n) space.

This is because a peelable hypergraph is also orientable6: we can associate (orient)

each edge e to a vertex v ∈ e where v and e were peeled together in a particular peel

5These vertices are termed unassigned to indicate they are not yet associated with a value;
unassigned vertices are guaranteed to exist due to edge traversal by peeling order, which we described
in section 2.1.1

6The orientation of a hypergraph G = (V,E) is an injection f : E → V with f(e) ∈ e for all
e ∈ E.

8

operation. Since every edge (equation) is associated with a unique vertex (variable),

it implies every input key can be injectively assigned an integer in {0, 1, ..., λn− 1}.

Chazelle et al. (2004) were first to exploit orientability: their proposed technique7

stores the function f : S → {0, 1, ..., r− 1}, and the goal differs slightly from MWHC

in that it tries to find an array of variables gi, such that for every key x ∈ S,

gh0(x) + gh1(x) + gh2(x) = f(x) mod r

The function f stores the index j ∈ {0, 1, ..., r − 1} of the hash function hj where

hj(x) identifies which of the r associated vertices is the one assigned to the edge. This

gives rise to a PHF of the form hf(x)(x) : S → [λn]; the construction can be stored

in λn⌈log r⌉ bits. Botelho et al. (2007) subsequently proposed the BDZ algorithm,

which additionally uses a ranking structure to make the PHF minimal.

2.2.1 Application: AMQ filters

An xor filter, represented as an array g, is designed for queries over an im-

mutable set S ⊆ U . The membership test for some key x calculates the fingerprint

of the key F (x), then computes three hash function values h0(x), h1(x), h2(x), and

finally checks if the expected fingerprint of x equals F (x), i.e.

g[h0(x)]⊕ g[h1(x)]⊕ g[h2(x)] = F (x)

7Interestingly, although the technique is fundamentally the same as MWHC, its presentation in
(Chazelle et al., 2004, section 3.3) makes no connection to random hypergraphs and PHFs

9

An xor filter construction follows the BDZ algorithm, which builds peelable, 3-

uniform, random hypergraphs. As described in section 2.1, to ensure the hypergraph

is peelable with high probability, it is necessary to configure an edge-density below

the critical threshold. In the xor filter context, this is achieved by ensuring the filter

is stored in an array with capacity larger than the number of keys n in S; in this case

it is set to 1.23n.

Interestingly, by changing the type of hypergraph used in the BDZ algorithm

to what is known as a fuse graph (Dietzfelbinger & Walzer, 2019), it is possible to

reduce the space overhead from 1.23n to 1.12n. Graf & Lemire (2022) subsequently

introduced a variant of the xor filter, called binary fuse filters, which exploits this

fact.

2.3. Data parallel primitives

Data parallel primitives (DPPs) were systematically conceptualized in Blelloch

(1990). Exploring the power of data-parallel programming, the work defined a small

set of parallel primitives which operate on vectors8 of data, and are used as build-

ing blocks for expressing parallel algorithms. Each primitive satisfies two efficiency

criteria: First, it must run in O(n) time on a serial random access machine. Second

it belongs to class NC1 (Cook, 1985), i.e. on vectors of length n, the primitive is

computable by a Boolean circuit of O(log n) depth and of polynomial size. Examples

of primitive operations include 1. summing the elements of a vector, 2. re-arranging

8The term “vector” denotes a one-dimensional array

10

the elements of a vector by a second vector of indices, and 3. merging elements of two

sorted vectors. Essentially, a DPP captures a particular pattern of how input data in

a dense array is processed in parallel to produce output.

DPPs have influenced the development of high-level application programming

interfaces (APIs). The Thrust (Bell & Hoberock, 2012) library abstracts primitive

parallel operations such as scan and reduce as generic interfaces, while programmers

specify the concrete operation (“user-defined functor”) to perform. At compile-time,

the generic data-parallel algorithm and functor are expanded, then optimized to yield

performance. The Many-core Visualization Tool Kit (VTK-m) project (Moreland

et al., 2016) — a scientific visualization library — builds its APIs on top of Thrust

library methods, and has in turn fueled considerable study of DPPs in parallel visu-

alization applications.

Here we list and describe fundamental primitives which serve as building blocks

for some of the the parallel algorithms introduced in this thesis.

Map. For every input element in a vector, map applies a single operation, then

stores the computed result in an output vector of the same length at the same index.

In Thrust, the transform and for each APIs perform the parallel map.

Scan. Scan (Blelloch, 1990) — also known as the all-prefix-sums operation —

takes a binary associative operator⊕ with identity i, and an ordered set [a0, a1, . . . , an−1]

of n elements, and returns the ordered set [i, a0, (a⊕ a1), . . . , (a0 ⊕ a1 ⊕ · · · ⊕ an−2)].

There are two versions of scan: The above refers to an exclusive scan, because each

11

element j in the result is the sum of all elements up to but not including j in the

input array; for an inclusive scan, all elements including j are summed (Harris et al.,

2007).

Uses of scan include 1. stream compaction — an important parallel primitive

in many general-purpose applications — and 2. radix sort. The Thrust APIs copy if

and sort by key encapsulate stream compaction and radix sort routines respectively.

Reduce. Reduce is a generalization of summation: it takes an input vector

of values and combines all elements of the vector using some binary operator. In

(Blelloch, 1990), the binary operators are one of +, maximum, minimum, or, or and.

Implementations such as Thrust allow other user-defined sum operators, but requires

the operator to be associative for parallelizability.

Stream compaction. Stream compaction is a filtering operation: Given an input

vector v and a predicate p, the operation selects only elements in v for which p(vi), i ∈

[|v|) is true, and packs the result into a dense output vector. The output preserves

the ordering of input elements (Harris et al., 2007). In known implementations, the

operation requires a scan followed by a scatter (Horn, 2005).

Radix sort. Radix sort assumes input keys as d-digit numbers, and sorts keys

over iterations, one digit per iteration, from least to most significant. For each of

the d passes, the routine performs a stable counting sort: Given the current digit of

each key, the number of keys with smaller digits plus the number of keys with same

digits but occurring earlier in the input sequence is computed. This yields the rank,

12

or the output index where the key should be relocated. Each pass completes with

relocation of keys to the computed indices. The final sort order is output when all

passes are complete. In known implementations, the inherent parallelism of radix

sort is exploited by reducing the counting sort in each iteration to the all-prefix-sums

operation (i.e. scan) (Harris et al., 2007; Satish et al., 2009)

13

Chapter III.

Algorithm Design and Analysis

3.1. The BDZ algorithm

The BDZ algorithm constructs PHFs on key set sizes that fit in internal mem-

ory. It is a randomized algorithm that succeeds when a random, acyclic, r-partite1,

r-uniform hypergraph can be generated from the input set of keys ∈ S. We state the

definition of an acyclic hypergraph.

Definition 1. An r-graph (i.e. r-uniform hypergraph) is acyclic if and only if some

sequence of repeated deletions of edges containing vertices of degree 1 yields a graph

with no edges (Czech et al., 1997).

The goal of BDZ is to solve an assignment problem, defined here for r = 3:

For a 3-uniform hypergraph G = (V,E), |V | = m, |E| = n, m > n, construct an

array g so that the following function f : E → [0,m − 1] is a perfect hash function

1Botelho et al. (2012) prove that r-partite hypergraphs constructed using random hash functions

hi with codomain
[i|V |

r , (i+1)|V |
r

)
retain the same peelability thresholds as r-hypergraphs using hash

functions with codomain
[
0, |V |

)
.

14

on E:

f(e = (v0, v1, v2) ∈ E) =



v0, if (g[v0] + g[v1] + g[v2]) mod r = 0

v1, if (g[v0] + g[v1] + g[v2]) mod r = 1

v2, if (g[v0] + g[v1] + g[v2]) mod r = 2

(III.1)

The algorithm aims to assign to each vertex a value ∈ {0, 1, 2, 3}, so that for each

edge e ∈ E where e is a 3-subset of V , the sum of values associated with its three

vertices modulo r = 3 is a unique value in [0,m− 1]. This assignment can be found,

if G is acyclic. The value 3 is a special value to indicate an unassigned vertex.

BDZ consists of three steps: mapping, assigning and ranking. Only the first

two steps are required to output a PHF. When the ranking step is included, the

output is a MPHF. We focus on details of the mapping and assigning steps, which

are sufficient to solve the assignment problem.

3.1.1 Mapping step

Figure 1 shows the pseudocode of the mapping step. The mapping step re-

quires a set of keys S, and a set H of hash functions which map U into disjoint

partitions2 of V . BDZ uses an edge-oriented structure to represent hypergraphs:

each edge is represented as an array of r vertices, and each vertex v has a list of edges

incident to v. Line 3 initializes an empty set of edges E for the hypergraph Gr. Line

2From H, the algorithm selects r hash functions hi with ranges
[i|V |

r , (i+1)|V |
r

)
, i ∈ [0, r]

15

1: procedure Mapping(S,H, Gr,L)
2: repeat
3: E(Gr) = ∅
4: Select h0, h1, · · · , hr−1 uniformly at random from H
5: for each x ∈ S do
6: e = {h0(x), h1(x), . . . , hr−1(x)}
7: addEdge(Gr, e)
8: end for
9: L = isAcyclic(Gr)

10: until E(Gr) is empty
11: end procedure

Figure 1: The mapping step. Adapted from Botelho et al. (2013)

9 tests if Gr is acyclic: edges which contain vertices of degree 1 are iteratively deleted,

and the order of deletion is stored in L. In BDZ, this test is done with an iterative

peeling process on Gr, as described in step 2 of figure 2.

1. Initialize an empty queue Q, and traverse Gr. For any edge containing a vertex of
degree one, store the edge in Q.

2. While Q is not empty, dequeue an edge e from Q, remove e from Gr, and store e in
L. When removing e from Gr, check if any of the associated vertices now become
degree one. If true, enqueue the edge which contains the degree one vertex.

Figure 2: Algorithm to test if a r-graph is acyclic. Adapted from Botelho et al. (2013)

The list of edges L, obtained at the end of the peeling process, stores the

removed edges in order of removal, i.e. the first edge in L is the first one removed,

the second edge is the second one removed, and so on.

3.1.2 Assigning step

Figure 3 shows the pseudocode of the assigning step. This step requires the

list of edges L as input, and returns an assignment of values to the vertices of Gr,

16

1: procedure Assigning(Gr,L, g)
2: for u = 0 to m− 1 do
3: V isited[u] = false
4: g[u] = r
5: end for
6: for i = |L| − 1 to 0 do
7: e = L[i]
8: sum = 0
9: for k = r − 1 to 0 do

10: if not V isited[e[k]] then
11: V isited[e[k]] = true
12: u = e[k]
13: j = k ▷ j is the index of u in e
14: else
15: sum += g[e[k]]
16: end if
17: end for
18: g[u] = (j − sum) mod r
19: end for
20: end procedure

Figure 3: The assigning step. Adapted from Botelho et al. (2013)

represented as an array g containing values in the range [0, r].

The algorithm first initializes g[i] = r, and a boolean array V isited[i] = false

for i ∈ {0,m− 1}. The value r marks every vertex of Gr as unassigned, and V isited

flags which vertices have been visited. The list of edges L is then traversed in reverse3

from the last peeled edge to the first. For each e ∈ L, the algorithm finds the first

vertex u of e that is not yet visited, and stores in j the index of u in e, where

0 ≤ j ≤ r−1. Line 18 performs assignment, setting g[u] = (j−
∑

v∈e∧V isited[v]=true g[v])

mod r. Also, whenever an edge e is considered, the algorithm passes through every

vertex u in e, and any u not yet visited is set to V isited[u] = true.

3The traversal of edges ∈ L in reverse order (of removal from Gr) ensures every edge contains at
least one vertex that is visited for the first time.

17

3.2. Analysis

In this section, we analyze the BDZ algorithm for sources of parallelism, specif-

ically in the mapping and assigning steps.

Edge insertion. When a key from the input set S is considered, r hash com-

putations are performed to yield the edge {h0, h1, . . . , hr−1}, and the edge is added

to some hypergraph representation. Since the corresponding edge of each key can

be independently computed in memory, edge creation appears to be parallelizable.

However, when adding edges to the hypergraph, resource contention is likely to occur;

this is because any two edges being added may contain overlapping vertices. A hy-

pergraph representation that stores the associations between edges and vertices will

likely be required to handle concurrent access to the same vertices, so that parallel in-

sertions can be supported. We note the idea (of adding hypergraph edges in parallel)

is feasible in practice and not new; it was proposed and implemented for execution

on a GPU by Jiang et al. (2013) to build the hypergraph associated with an IBLT

(this data structure was described previously in section 2.1.2).

Peeling. In the BDZ algorithm, the generated hypergraph is r-partite: ran-

dom hash functions hi with codomain
[i|V |

r
, (i+1)|V |

r

)
— instead of [0, V) — are used

to create the hypergraph edges h0(x), h1(x), . . . , hr−1(x). This structural difference

from uniformly random hypergraphs appears to be negligible, as Botelho et al. (2012)

prove that r-partite random hypergraphs share the same peelability thresholds. An

advantage of the r-partite property is that by construction, hi(x) ̸= hj(x) for i ̸= j,

18

and so degenerate edges (edge joining a vertex to itself) cannot be created. This

appears to reduce the number of trials needed to find a peelable hypergraph and in

practice, experiments indicate only one trial is needed (Belazzougui et al., 2014).

The acyclicity test in the BDZ algorithm executes a peeling operation that

finds the 2-core of the associated hypergraph. This peeling operation is shown to be

parallelizable, but the naive round-based algorithm (i.e. in each round, all vertices

of degree one and their incident edges are removed in parallel from the hypergraph)

is known to negatively affect peeling algorithm correctness. Jiang et al. (2013) point

out that in the naive case, since an edge e is associated with r vertices, r ≥ 2,

there can be more than one degree-1 vertex among the r vertices. With each vertex

processed in parallel, these degree-1 vertices and their associated edge e would be

peeled simultaneously, leading to e being peeled multiple times from the hypergraph.

To solve this issue, the authors proposed a technique called “parallel peeling with

subtables”, where the hypergraph is split r partitions, and for every edge e, exactly

one of its vertices exists in each partition. Each peeling round is split into sequential

iteration through r subrounds, and in each subround i, the ith subtable is processed

in parallel. This ensures that every edge e is peeled from the hypergraph at most

once: when a degree-1 vertex is found in some partition, the other vertices associated

with e are removed from the other partitions. Hence, it seems fortuitous that the

hypergraph generated in the BDZ algorithm is also r-partite; it is possible to employ

the same technique by Jiang et al. (2013) to achieve a correct, and parallel peeling

19

algorithm for the acyclicity test.

Layers. The round-based parallel peeling algorithm described so far would

partition the edge set E into groups of edges that we refer to as layers (borrowing the

same term from Belazzougui et al. (2014)). A layer is produced for each subround,

and all edges which were peeled in the same subround belong to the same layer. When

peeling terminates, a sequence of layers is obtained. As noted by Bellazzougui et al

(Belazzougui et al., 2014, section 4.2), concatenating this sequence of layers produces

a valid peeling order (i.e. L) as required for the assigning step. This is due to the

fact that 1. multiple valid peeling orders exist, and 2., the ordering of edges within a

layer is irrelevant towards obtaining a valid peeling order.

Assignment. We first state how behaviors in the assigning step (figure 3)

ensures correctness: 1. the list of edges L obtained from the mapping step is traversed

in the reverse peeling order, and 2. when the algorithm passes through a vertex

u from some edge e being processed, if u is unvisited, then it is marked visited.

The first behavior ensures that when some edge is considered, there exists some

vertex v of degree-1 at the point when its associated edge was peeled (i.e. v is

assignable). The second behavior ensures that when a vertex has been visited, it

is never modified again, since only unvisited vertices are considered for assignment.

Consider a proposed parallel assigning step (figure 4):

We claim that this parallel algorithm ensures the two conditions for correctness

described. First, by construction, all edges belonging to a layer were peeled away

20

1. Assume a list of peeled edges L ordered layer-wise, i.e. the first layer of edges
are the edges peeled in the first subround, the second layer of edges are the edges
peeled in the second subround, and so on. Also assume a mappingM exists such
that for every edge e, it is possible to lookup the vertex u of degree-1 which marked
the edge for peeling in a particular subround.

2. Iterate through L one layer at a time, from the last layer to the first. In each
iteration, process all edges belonging to the layer in parallel. When processing an
edge e, queryM to determine the degree-1 vertex u, and assign g[u] = (j − sum)
mod r, where j is the index such that hj(e) = u, and sum =

∑
v∈e∧v ̸=u g[v]

Figure 4: Layer-wise parallel assigning

because one degree-1 vertex for each of these edges was found in the same partition

of the r-partite hypergraph in a particular peeling subround. This satisfies the first

condition. Second, by using the mapping M, the vertex u assigned is the same,

globally unique vertex which marked the associated edge for peeling in a particular

subround. Since u is unique, and we apply the same operation to all edges, the second

condition is satisfied for every edge processed. The sequential assigning step lacks this

guarantee due to the loop in figure 3, line 9 which finds the first unvisited vertex u

for assignment, and so needs an additional V isited boolean array to mark vertices as

visited.

Note that when values are gathered for assignment to vertices in parallel,

multiple threads may gather values from the same vertex v, v ̸= u. We claim that

this case of concurrent access is safe: since vertex v belongs to a different partition

of the hypergraph from u, v will never be assigned in the current and subsequent

iterations (i.e. immutable), and hence we do not expect any additional handling for

concurrency needed in a parallel implementation.

21

Chapter IV.

Implementation

In this chapter, we describe a GPU-accelerated construction in the case of

r = 3, i.e. 3-partite random hypergraphs are used in the construction.

4.1. Data structures

Hypergraph representation. Given a set S of n keys, we initialize a rep-

resentation of a 3-partite, random hypergraph G of m vertices by storing it as an

array of size m, where each cell location corresponds to a unique vertex. Each cell

consists of a key field, a counter field, and a layer field. We assume it is possible to

find three random hash functions h0, h1, h2 which map elements in U to integers in

[0, ⌊m
3
⌋), [⌊m

3
⌋, ⌊2m

3
⌋), [⌊2m

3
⌋,m) respectively. These hash functions will be used to

add or remove edges from the G.

Add and remove operations. The add or remove operation1 for an edge e =

{h0(e), h1(e), h2(e)} looks up the cell locations h0(e), h1(e), h2(e), and XORs the key

field of the r corresponding cells with e. This XOR technique is used in Belazzougui

1With the XOR technique, the add and remove operations are identical in implementation

22

et al. (2014), and is advantageous for several reasons: to store an incidence list for

each vertex (i.e. the edges incident to the vertex), the typical conventional approach

is to use linked lists storing incident edges. With the XOR technique, only a single

fixed-size key field is required, and therefore translates to space-savings. Furthermore,

experiments (Belazzougui et al., 2014) show that for input key sizes where the induced

hypergraph fits in available internal memory 2, peeling algorithms using this technique

execute substantially faster.

Vertex degree. The degree of each vertex is represented throughout the

algorithm execution by the counter field of each cell. An insert or remove operation

for an edge e looks up the cell locations h0(e), h1(e), . . . , hr−1(e), and increments or

decrements respectively the counter field of the r corresponding cells. We refer to a

cell with a counter field value of one as a “pure” cell, borrowing the term from Jiang

et al. (2013).

Vertex layer. We count the number of peeling subrounds completed so far in

the Mapping step, and since each subround induces a new logical layer (of edges), the

count corresponds to the cumulative number of layers produced so far in the execution.

When an edge is removed from the hypergraph (during peeling), the count of peeling

rounds completed is stored in the layer field of the single cell representing a degree-1

vertex found by the peeling process. The value of the layer field acts as a grouping

variable, so that in the Assigning step, the algorithm is able to find all cells with the

same value (belonging to the same layer), and execute the assignment operation for

2The BDZ algorithm, is designed for computations within internal memory

23

these cells in parallel.

4.2. GPU-based implementation

Note on notation. The pseudocode we use to describe the parallel algorithms

comprise of standard sequential code constructs, except for the parfor construct to

express parallelism. This construct is based on a draft document by Blelloch et al.

(2021). We give an example: in figure 5, all n elements of the array A are incremented

by one, and written back to the same location. Assuming an unbounded number of

processors, each array element ∈ A is allocated to a processor, which executes the

body of the parfor iteration in parallel with all other processors.

parfor i from 0 to |A| − 1 do
A[i]← A[i] + 1

end parfor

Figure 5: Pseudocode example using the parfor construct

Overview. From our analysis in the preceding chapter, there are three com-

ponents in the algorithm which appear to have inherent parallelism: adding edges

to the hypergraph, peeling edges from the hypergraph, and assigning each edge to

a unique vertex. We describe how these components are implemented for parallel

execution, under the practical constraints of what GPUs can achieve.

4.2.1 Adding edges

To add edges to the hypergraph in parallel, as in figure 6, we allocate a GPU

thread for every key x ∈ S to be added. Each GPU thread independently computes

24

1: parfor each x ∈ S do
2: e← {h0(x), h1(x), . . . , hr−1(x)}
3: addEdge(G, e)
4: end parfor

Figure 6: Adding edges in parallel

the corresponding edge {h0(x), h1(x), h2(x)}. The addEdge operation then XORs

the key field of the corresponding cells with x. Since multiple threads may try to

update the same cell, we use atomic XOR operations in addEdge to handle concurrent

updates. Each time the key field is updated in a cell, the degree field of that cell is

incremented by one.

We note that the potential amount of resource contention due to parallel op-

erations appears feasible in practice: in the r = 3 case, where there are n input keys

(edges) and m = 1.23n vertices, on average, about 3/1.23 ≈ 2.4 keys are hashed to

the same vertex.

Note on duplicate keys. A caveat here is that our implementation does

not support duplicate keys in the input. For example, suppose some key x appears

twice in the input, then x ⊕ x = 0, effectively deleting the edge representing x from

the hypergraph. Some preprocessing is therefore needed to remove duplicates prior

to running the algorithm.

4.2.2 Peeling edges

Partitions. Due to the non-overlapping ranges of the hash functions used

to map every key to an edge, the associated vertices of each edge being added are

25

located in three physical partitions, with exactly one vertex per partition. Peeling

proceeds by iterating sequentially over the partitions, and each partition is processed

in parallel. A full peeling round therefore consists of three sequential subrounds.

Peeling operations. Throughout the peeling process, we track the cumula-

tive number of subrounds via a global counter . In the ith subround, the ith partition

is processed in parallel and the global counter is incremented. We allocate a GPU

thread to process each array cell in the partition. Each thread tests if the cell is pure

(i.e. degree field value equals 1); if true, then occurrences of the key is XOR-removed

from the other two partitions, leaving exactly one occurrence in the current partition.

The layer field of the cell containing this only occurrence of the key is updated with

the global counter (of the number of subrounds). In all three partitions, the degree

fields of the cells corresponding to vertices of the key are decremented by one.

We note an atomic operation is required when removing occurrences of a key

from the hypergraph, and when decrementing the degree fields. This is because two

threads removing distinct edges x, y from G may try to update the same vertex

hi(x) = hi(y) for some 0 ≤ i ≤ r − 1.

Verification. The peeling algorithm terminates when no pure cells are found

in a full round. To verify if the peeling process succeeded (i.e. every edge in G was

peeled away), we count the number of cells containing a layer field with a non-zero

value and assert if it equals n. If this test fails, the current execution is discarded,

and the algorithm restarts from the point when a new set of hash functions h0, h1, h2

26

is chosen, and a new hypergraph is created. Otherwise, in the success scenario, we

have obtained an array where the n cells with non-zero layer field value also stores

(in the key field) the value of the original input key. Taken together, such cells store

the mapping M described in section 3.2, i.e. the mapping of the edge (key) to the

degree-1 vertex which marked the edge for peeling in a particular subround.

Work efficiency. Our implementation of the parallel peeling algorithm will

be less work efficient than sequential implementations. This is because every cell is

examined in every round to capitalize on an expected large number of pure cells (i.e.

cells with degree = 1) in each round. A sequential implementation only needs to

scan the whole array once in the first round to get a starting collection of pure cells;

remaining keys would be peeled by peeling from the starting collection to uncover

more pure cells.

4.2.3 Assigning values to vertices

We create an integer array g of size m (equivalent to the number of vertices in

G). Each element of g corresponds one-one with the cells of the array representing

G, and g is intended as the output array containing values assigned to vertices.

Iteration in reverse. We iterate from the last peel layer to the first, i.e. a

traversal in reverse peel layer order. We process G in parallel in each round, allocating

a thread to process each array cell. Each thread tests if the cell’s layer field matches

the current iteration’s counter value. If true, the thread obtains the key field of the

cell, denoted x, and computes the three hash values h0(x), h1(x), h2(x). This yields

27

the three array locations in G associated with the edge corresponding to x. Exactly

one of these locations equals the cell’s array location, denoted u. With at most three

comparisons, we can determine the index j of the hash function hj, where hj(x) = u,

and assign a value to g[u] such that

g[u] = j −
∑

v∈{h0(x),h1(x),h2(x)}∧v ̸=u

g[v] mod 3

The assigning step is complete when all layers are processed, and we obtain a PHF

of the form

hf(x)(x) : S → [0,m)

where f(x) = g[h0(x)] + g[h1(x)] + g[h2(x)] mod 3.

Extensibility. The assigning step can be easily extended to support other

application use cases, such as xor filters (an approximate membership query filter over

immutable sets). In xor filter construction, Graf & Lemire (2020) used the Mapping

and Assigning steps of the BDZ algorithm, and introduced a simple modification in

the Assigning step to store a different function as follows:

g[u] = F (x)⊕ g[v]⊕ g[w]

where u, v, w ∈ {h0(x), h1(x), h2(x)}, and v ̸= u,w ̸= u, v ̸= w, and F (x) is a

fingerprint value3. The membership test for some key x then requires evaluating

3A fingerprint is the result of a hash function h which maps a arbitrarily large input key to a
much smaller bit string representation, typically a word with fixed number of bits.

28

whether

g[h0(x)]⊕ g[h1(x)]⊕ g[h2(x)]

equals F (x).

Work efficiency. Our implementation of the parallel assignment algorithm

will be less work efficient than sequential implementations. Every cell is examined

in every round for a matching peel layer, in order to exploit an expected large num-

ber assignable vertices (cells) in each layer. In contrast, a sequential implementation

might store the list of peeled edges using a stack; popping items from the stack

achieves processing of edges in reverse peeling order, and the work required is opti-

mally linear in the number of input keys.

4.3. Using the GPU-based implementation in applications

4.3.1 Xor filter

Xor filter construction is based on the BDZ algorithm, but as Graf & Lemire

(2020) observe, the speed of construction is relatively slow. Motivated by this obser-

vation, we introduce an xor filter construction that uses our GPU-accelerated BDZ

algorithm. We present the pseudocode.

29

Algorithm 1 Xor filter construction, using GPU-accelerated BDZ

Require: set of keys S from universe U
Require: fingerprint function f
repeat

Pick three hash functions h0, h1, h2 at random, independent of f
until map(S, h0, h1, h2) returns success with arrays H,L and integer z ▷ See
algorithm 2
B ← array of size ⌊1.23 · |S|⌋+ 32, of type k-bit values, uninitialized
for i← z to 1 do

parfor j from 0 to |H| − 1 do
assign(i, j, B,H, L, h0, h1, h2, f) ▷ See algorithm 5

end parfor
end for
return B and hash functions h0, h1, h2

30

Algorithm 2 Parallel Mapping, xor filter

Require: set of keys S
Require: hash functions h0, h1, h2

function map(S, h0, h1, h2)
Let N be 1.23 · |S|+ 32
H ← array of sets, size N
L← array of grouping variables, size N ▷ See usage in algorithm 4
parfor x in S do

add to sets(x,H, h0, h1, h2) ▷ See algorithm 3
end parfor
z ← 1
prev ← 0
while prev ̸= z do

prev ← z
parfor i from 0 to N/3− 1 do

remove from sets(i,H, L, h0, h1, h2, z) ▷ See algorithm 4
end parfor
if any element in H updated then z ← z + 1
parfor i from N/3 to 2N/3− 1 do

remove from sets(i,H, L, h0, h1, h2, z)
end parfor
if any element in H updated then z ← z + 1
parfor i from 2N/3 to N − 1 do

remove from sets(i,H, L, h0, h1, h2, z)
end parfor
if any element in H updated then z ← z + 1

end while
count← 0
parfor x in H do

if x contains single key then count← count+ 1
end parfor
return success with H, L and z if count = |S| else failure

end function

31

Algorithm 3 Add to sets, xor filter

Require: key x from input keys S
Require: array H of sets
Require: hash functions h0, h1, h2

procedure add to sets(x,H, h0, h1, h2)
append x to H[h0(x)]
append x to H[h1(x)]
append x to H[h2(x)]

end procedure

Algorithm 4 Remove from sets, xor filter

Require: array H of sets
Require: index i in H
Require: array L of grouping variables; L[i] is the logical group assigned to H[i]
Require: hash functions h0, h1, h2

Require: integer z, a group value assigned to L[i] if H[i] contains single key

procedure remove edge(i,H, L, h0, h1, h2, z)
if H[i] contains single key then

Let x be the single key value
L[i]← z
for i from 0 to 2 do

if H[hi(x)] ̸= x then
remove x from H[hi(x)]

end if
end for

end if
end procedure

32

Algorithm 5 Assign, xor filter

Require: integer i, grouping variable for the current procedure call
Require: array B of k-bit values
Require: array H of sets
Require: index j in H
Require: array L of integers, corresponding to elements in H
Require: hash functions h0, h1, h2

Require: fingerprint function f

procedure assign(i, j, B,H, L, h0, h1, h2, f)
if L[j] = i then

Let x be the single key value in H[j]
B[j]← 0
B[j]← f(x)⊕B[h0(x)]⊕B[h1(x)]⊕B[h2(x)]

end if
end procedure

33

4.3.2 Fuse filter

Structure. The fuse filter (Graf & Lemire, 2022) is a variation on the xor

filter. It differs from the xor filter only in the choice of the hash functions used

to map input keys to edges in the generated hypergraph. In the xor filter, the three

hash functions each map to a distinct partition of the 3-partitioned array representing

vertices of the hypergraph. In the fuse filter, the hash function first chooses a starting

segment, then picks three distinct locations, one in each of three consecutive segments

(a segment in this case is much smaller than a partition in the xor filter). This induces

what is known as a fuse graph (Dietzfelbinger & Walzer (2019)). Consequently,

the array is physically divided into many smaller, disjoint equal-sized segments —

typically hundreds of segments. Intuitively, this choice of hash functions increases

the locality of a key’s hash locations and makes it less likely any key is hashed to

locations at extreme ends of the array.

Tradeoffs. Since the generated hypergraph is now a fuse graph, and not a

standard 3-uniform random hypergraph, the edge-density threshold for peelability is

increased such that for n input keys, the required array size for successful construction

with high probability improves to 1.125n (Graf & Lemire, 2022) compared to 1.23n

in the xor filter, i.e. a reduced space overhead. However the peeling process takes

a longer time: keys hashed toward the extreme locations tend to be peeled first,

while those in the middle survive more rounds of peeling. This is disadvantageous for

efficiency in two ways: one, more peeling rounds incur more communication overhead

34

between the CPU and GPU (the GPU only accelerates per-loop parallel processing,

while the CPU orchestrates the loop iteration). Two, with edges peeled over more

rounds, the number of edges peeled per round must decrease, which reduces per-loop

parallel processing efficiency.

Challenges. The change to the number of segments (partitions) in the array

presents interesting challenges for a parallel implementation. We present a strategy

for a GPU-accelerated implementation, based on use of data-parallel primitives in

various processing stages. We provide an outline in table 1, and proceed to describe

the use of parallel primitives in the implementation.

Stages Parallel primitive/s used
1 Mapping step Stream compaction
2 Reduction by peel layer Sorting (radix sort), Reduce
3 Assigning step n.a.

Table 1: Key steps in fuse filter construction

Stream compaction. Given the segmentation of the array into hundreds of

segments, it is inefficient to iterate sequentially by segment (and process each segment

in parallel) since the iterations become a significant sequential bottleneck.

We claim the proportion of cells which could be peeled in parallel is equivalent

to the xor filter, i.e. ≈ 1 in 3. This follows because for any given segment s, we risk

peeling the same key twice4 only if the algorithm tries to examine (and perform the

XOR-remove operation on) cells simultaneously from any two consecutive neighbor

segments of s. Hence if we build a partition consisting of every third segment, then

4This problem was discussed previously in section 3.2

35

all cells in this partition can be processed in parallel, just as in the xor filter case.

We frame the following problem:

Given a sparse array, select only interesting elements and pack these into a

dense output array.

The goal in our case is to obtain three partitions p0, p1, p2 such that the con-

catenation of these partitions is a copy of the full array (elements not necessarily in

the original order). We describe an algorithm to build each partition pj:

1. With the array as input, treat segments as elements

2. While there are elements to iterate: for each element we apply the predicate i
mod 3 = j, where i denotes the element index

3. Copy the element to pj only if predicate returns true.

Figure 7: Algorithm to pack interesting elements into a dense array

As it turns out, such problems are amenable to GPU-acceleration with stream

compaction, an important parallel primitive in applications such as collision detection

and sparse matrix compression (Harris et al., 2007). For implementation, we use the

copy if method from CUDA Thrust library, which also preserves the relative order

of input elements in the output partitions. This order-preserving property ensures

we can work backwards with simple arithmetic to derive the position of the element

in the original array.

Note that these partitions become inputs to the peeling algorithm, and a GPU

thread is allocated to each cell in the partition (instead of the original array). When

a pure cell is found in the partition, we peel the edge from the cell in the partition,

36

and from the cell in the original array so as to maintain same information in both

copies of data. When peeling is complete, the partitions are discarded.

MapReduce use-case. In our parallel peeling algorithm, when a pure cell

is encountered, the thread updates the layer field of the cell with the current layer

value (the current layer corresponds to the number of peeling subrounds so far in the

program execution). On successful completion of peeling (i.e. all |S| = n edges were

peeled away), n cells in the array contain some non-zero value in the layer field, but

these cells are scattered across the array in non-contiguous locations. Suppose we

wanted to process cells having the same layer field value in parallel, then the entire

array has to be processed, a GPU thread is allocated for every cell in the array, and

the thread must test if the layer field value of the cell matches the targeted layer

value.

We see a natural use case for the MapReduce paradigm to reduce the com-

putational working set. Informally, MapReduce algorithms take as input a set of

key-value pairs, and operations consist of three stages: map, shuffle and reduce.

We can think of the BDZ algorithm’s Mapping step as analogous to the map stage:

the hypergraph peeling algorithm on successful termination, yields a set of key-value

pairs ⟨k, v⟩ where k is the value of a cell layer field and v is the corresponding cell. For

the shuffle stage, we sort the set of key-value pairs by key (i.e. layer) descending

(since we want to iterate by reverse peel layer order), and output the sorted array. In

the reduce stage, for each key k in the sorted array, we return the count of the num-

37

ber of cells that has layer field value equal to k. Note that this is in fact a histogram

that shows the frequency count of cells mapped per layer.

In shuffle, we can exploit two features in the data: (1) the number of layers

is small5 in relation to the input size n and (2) peel layers are naturally represented as

positive integers. Thus we can make use of faster non-comparative sorting algorithms,

i.e. radix sort by peel layer to achieve asymptotic O(ωn) complexity, where ω denotes

number of digits in the largest peel layer. In our implementations of shuffle and

reduce, we use the CUDA Thrust library methods sort by key and reduce by key

respectively.

Work-efficient Assigning step. A parallel assigning step that is work-

efficient performs work linear in the number of input keys n. To do this, we use (1)

the array sorted by descending value of the layer field value, and (2) the histogram of

frequency of cells per layer in the following way: construct a processing loop where

in every iteration (layer), the collection of contiguous cells in the sorted array to be

processed is found by looking up the histogram value, and the sorted array is marked

with start and end indices corresponding to the collection size. The CPU only sends

to the GPU the specified collection of cells, which the GPU then processes in parallel.

We present the pseudocode of parallel fuse filter construction in the following

pages. Names of key methods are suffixed with “v2” to distinguish the names from

the previously-introduced xor filter construction.

5In our tests, the number of peel layers totaled 1000-1100 for an input size between 107 and 108

keys.

38

Algorithm 6 Fuse filter construction, using GPU-accelerated BDZ

Require: set of n keys S from universe U
Require: fingerprint function f
Let B ← an array of size approx. 1.125n of k-bit values, initialized to 0, divided
into 2⌊log3.33 n+2.25⌋ segments
repeat

Pick three hash functions h0, h1, h2 at random, independent of f such that
h0(x), h1(x), h2(x) occupy locations in three distinct consecutive segments of B
until map v2(S, h0, h1, h2) returns success with array H, array L and integer z ▷
See algorithm 7

Sort H by key, where key(H[i]) = L[i]

Reduce H by key, where key(H[i]) = L[i]. Reduce operation counts number of keys
in each group of consecutive equal keys. Return array of (key, value) pairs T

Let d← 0 ▷ offset index from start of V
for i← 0 to z − 1 do

Let (k, v)← T [i]
parfor j ← d to v − 1 do

assign v2(j, B,H, L, h0, h1, h2, f) ▷ See algorithm 10
end parfor
d← d+ v

end for
return B and hash functions h0,h1,h2

39

Algorithm 7 Parallel Mapping, fuse filter

Require: set of keys S
Require: hash functions h0, h1, h2

function map v2(S, h0, h1, h2)
Let N be 1.125 · |S|
H ← array of sets, size N
L← array of grouping variables, size N ▷ See usage in algorithm 9
parfor x in S do

add edge(x,H, h0, h1, h2) ▷ See algorithm 8
end parfor
Let A0, A1, A2 be arrays of sets, each array of size ≈ N/3, initially empty
Do stream compaction of H into three arrays: For each element H[i], if i

mod 3 = p, pack the element into Ap

z ← 1
prev ← 0
while prev ̸= z do

prev ← z
parfor i from 0 to |A0| − 1 do

remove edge(i, A0, H, L, h0, h1, h2, z, A1, A2) ▷ See algorithm 9
end parfor
if any element in H updated then z ← z + 1
parfor i from 0 to |A1| − 1 do

remove edge(i, A1, H, L, h0, h1, h2, z, A0, A2)
end parfor
if any element in H updated then z ← z + 1
parfor i from 0 to |A2| − 1 do

remove edge(i, A2, H, L, h0, h1, h2, z, A0, A1)
end parfor
if any element in H updated then z ← z + 1

end while
count← 0
parfor x in H do

if x contains single key then count← count+ 1
end parfor
return success with H, L and z if count = |S| else failure

end function

40

Algorithm 8 Add edge, fuse filter

Require: key x from input keys S
Require: array H of sets
Require: hash functions h0, h1, h2

procedure add edge v2(x,H, h0, h1, h2)
append x to H[h0(x)]
append x to H[h1(x)]
append x to H[h2(x)]

end procedure

Algorithm 9 Remove edge, fuse filter

Require: arrays A,A′, A′′ containing sets. Derived from H by stream compaction
Require: array H containing sets
Require: index i in A
Require: array L of grouping variables. Each element in L and its corresponding
element in H constitute (key, value) pairs

Require: hash functions h0, h1, h2

Require: integer z, a group value

procedure remove edge v2(i, A,H, L, h0, h1, h2, z, A
′, A′′)

if A[i] contains single key then
Let x be the single key value
Let b be the corresponding index in H where H[b] = x
L[b]← z
for j from 0 to 2 do

if H[hi(x)] ̸= x then
remove x from H[hi(x)]

end if
end for
Let u, v be the two other indexes in A′, A′′ respectively where x is located
Remove x from A′[u], A′′[v] ▷ Keep data in sync with H
Remove x from A[i]

end if
end procedure

41

Algorithm 10 Assign, fuse filter

Require: integer i, group value
Require: array B of k-bit values
Require: array H of sets
Require: index j in H
Require: array L of grouping variables. Each element in L and its corresponding
element in H constitute a (key, value) pair

Require: hash functions h0, h1, h2

Require: fingerprint function f

procedure assign v2(i, j, B,H, L, h0, h1, h2, f)
if L[j] = i then

Let x be the single key value in H[j]
B[j]← 0
B[j]← f(x)⊕B[h0(x)]⊕B[h1(x)]⊕B[h2(x)]

end if
end procedure

42

Chapter V.

Evaluation

In this chapter, we benchmark the construction times of two applications which

we modified to use our proposed parallel BDZ algorithms: 1. the xor filter, modified

to use the GPU-accelerated BDZ algorithm, and 2. the fuse filter, modified to use

the GPU-accelerated BDZ algorithm variant1. We compare against the sequential,

reference implementations (Graf & Lemire, 2020, 2019) of these filters to gauge the

amount of speedup obtained by our parallel implementations.

5.1. Results

Setup. We implemented GPU code with CUDA version 10.1. and ran all

implementations on an Amazon EC2 g3s.xlarge instance equipped with a Nvidia

Tesla M60 GPU having 8GB of device memory. This GPU unfortunately did not

support 64-bit xor atomic operations, so we split up 64-bit data fields into two 32-bit

fields. While this adds some computational overhead, we do not expect significant

1We state for clarity that the BDZ algorithm variant peels a fuse hypergraph instead of the
standard 3-uniform random hypergraph.

43

Figure 8: Construction time. Sequential and GPU-accelerated implementations

impact on the results. We used 64-bit integers as input key data type. Key set sizes2

range between 107 to 108.

Speedup. We ran the filter constructions and recorded the time taken, aver-

aged over five trials. Figure 8 shows that at the largest input sizes, xor filter construc-

tion with GPU acceleration attains speedup exceeding 4x; for fuse filter construction

with GPU acceleration, the speedup is between 2x to 3x, depending on configuration

(we discuss this point later in this chapter). The Amdahl effect was observed here,

i.e. with increasing input size for a fixed number of processors, the maximum possible

speedup increases.

2We note that fuse filter construction fails for key set sizes in the region of 105 keys, hence we
set the minimum at 107 keys. This (higher) minimum key set size requirement seems to be a known
property of fuse filter implementations (Docs.rs, 2020).

44

Type Time(%) Time Calls Avg Min Max Name
GPU 45.36% 149.77ms 93 1.6104ms 1.4737ms 2.6316ms assign
activities: 27.66% 91.345ms 1 91.345ms 91.345ms 91.345ms insertKeys

9.04% 29.856ms 32 933.00us 487.14us 4.1888ms peelSet0
9.04% 29.852ms 32 932.87us 489.06us 4.7560ms peelSet1
8.90% 29.380ms 32 918.13us 488.93us 5.3278ms peelSet2

API calls: 50.71% 330.33ms 98 3.3708ms 494.44us 149.18ms cudaDeviceSynchronize
38.34% 249.77ms 6 41.628ms 21.862us 225.05ms cudaMallocManaged
7.04% 45.850ms 190 241.32us 6.2190us 25.369ms cudaLaunchKernel
3.82% 24.869ms 6 4.1449ms 27.889us 16.125ms cudaFree
0.05% 347.59us 1 347.59us 347.59us 347.59us cuDeviceTotalMem
0.04% 231.66us 96 2.4130us 733ns 74.589us cuDeviceGetAttribute
0.00% 27.343us 1 27.343us 27.343us 27.343us cuDeviceGetName
0.00% 3.7330us 3 1.2440us 756ns 1.8610us cuDeviceGetCount
0.00% 3.7010us 1 3.7010us 3.7010us 3.7010us cuDeviceGetPCIBusId
0.00% 2.4800us 2 1.2400us 779ns 1.7010us cuDeviceGet
0.00% 874ns 1 874ns 874ns 874ns cuDeviceGetUuid

Table 2: GPU profiling statistics for xor filter, 10M keys
.

We utilized Nvidia’s nvprof utility to obtain a breakdown of the running

times in the parallel algorithms in Tables 2-5. We provide some explanations of

these details. In the “GPU activities” section, the insertKeys, peelSet0, peelSet1,

peelSet2 methods correspond to hypergraph instantiation and peeling activities of

the mapping step. The assign method corresponds to the assigning step, and is

invoked for every layer in the peel ordering. We note that:

(i) Fuse filter construction time is affected by larger number of API calls to the GPU

compared to its xor filter counterpart. The total number of cudaDeviceSynchronize3

and cudaLaunchKernel4 calls is above 3000, but for the xor filter case, this num-

ber is slightly below 300. These numbers stay relatively constant despite key

set size

3blocking API that waits for the results of GPU computations to complete before resuming CPU
code execution

4asynchronous API that launches kernel functions in the GPU

45

Type Time(%) Time Calls Avg Min Max Name
GPU 45.63% 1.52587s 94 16.233ms 14.723ms 27.662ms assign
activities: 27.73% 927.20ms 1 927.20ms 927.20ms 927.20ms insertKeys

8.92% 298.22ms 32 9.3193ms 4.8646ms 49.907ms peelSet1
8.91% 297.81ms 32 9.3064ms 4.8500ms 43.827ms peelSet0
8.82% 294.82ms 32 9.2132ms 4.8685ms 56.707ms peelSet2

API calls: 73.82% 3.34405s 98 34.123ms 4.8575ms 1.52524s cudaDeviceSynchronize
12.48% 565.23ms 6 94.204ms 17.123us 235.82ms cudaMallocManaged
7.11% 322.23ms 191 1.6871ms 6.3290us 262.55ms cudaLaunchKernel
6.57% 297.72ms 6 49.620ms 34.910us 149.90ms cudaFree
0.01% 375.70us 1 375.70us 375.70us 375.70us cuDeviceTotalMem
0.01% 364.16us 96 3.7930us 735ns 179.55us cuDeviceGetAttribute
0.00% 29.409us 1 29.409us 29.409us 29.409us cuDeviceGetName
0.00% 3.7580us 1 3.7580us 3.7580us 3.7580us cuDeviceGetPCIBusId
0.00% 3.6810us 3 1.2270us 751ns 1.9680us cuDeviceGetCount
0.00% 2.3500us 2 1.1750us 771ns 1.5790us cuDeviceGet
0.00% 893ns 1 893ns 893ns 893ns cuDeviceGetUuid

Table 3: GPU profiling statistics for xor filter, 100M keys

Type Time(%) Time Calls Avg Min Max Name
GPU 67.37% 1.51532s 1053 1.4391ms 1.4012ms 1.9433ms assign
activities: 9.25% 208.03ms 352 590.98us 474.40us 8.3381ms peel set0

9.24% 207.74ms 352 590.16us 472.38us 9.3225ms peel set1
9.19% 206.63ms 352 587.03us 472.54us 10.132ms peel set2
4.96% 111.66ms 1 111.66ms 111.66ms 111.66ms insert keys

API calls: 78.23% 2.21457s 1058 2.0932ms 479.04us 1.47226s cudaDeviceSynchronize
10.56% 299.02ms 9 33.225ms 18.586us 237.00ms cudaMallocManaged
9.84% 278.55ms 2110 132.01us 5.9250us 35.276ms cudaLaunchKernel
1.33% 37.775ms 9 4.1973ms 45.092us 13.827ms cudaFree
0.01% 366.26us 96 3.8150us 734ns 183.13us cuDeviceGetAttribute
0.01% 355.67us 1 355.67us 355.67us 355.67us cuDeviceTotalMem
0.00% 60.099us 1 60.099us 60.099us 60.099us cuDeviceGetName
0.00% 3.6190us 3 1.2060us 752ns 2.0190us cuDeviceGetCount
0.00% 3.5940us 1 3.5940us 3.5940us 3.5940us cuDeviceGetPCIBusId
0.00% 2.1930us 2 1.0960us 759ns 1.4340us cuDeviceGet
0.00% 889ns 1 889ns 889ns 889ns cuDeviceGetUuid

Table 4: GPU profiling statistics for fuse filter, 10M keys

46

Type Time(%) Time Calls Avg Min Max Name
GPU 68.98% 15.7027s 1094 14.353ms 13.999ms 23.593ms assign
activities: 9.00% 2.04795s 366 5.5955ms 4.7045ms 71.332ms peel set0

8.97% 2.04201s 366 5.5793ms 4.7058ms 79.196ms peel set1
8.92% 2.03022s 366 5.5471ms 4.7023ms 87.973ms peel set2
4.13% 941.23ms 1 941.23ms 941.23ms 941.23ms insert keys

API calls: 88.57% 21.7459s 1100 19.769ms 4.7107ms 14.6756s cudaDeviceSynchronize
6.80% 1.67015s 2193 761.58us 6.0140us 248.56ms cudaLaunchKernel
2.90% 712.40ms 9 79.155ms 18.652us 249.73ms cudaMallocManaged
1.73% 423.56ms 9 47.062ms 39.729us 138.33ms cudaFree
0.00% 369.07us 96 3.8440us 730ns 184.43us cuDeviceGetAttribute
0.00% 353.23us 1 353.23us 353.23us 353.23us cuDeviceTotalMem
0.00% 35.017us 1 35.017us 35.017us 35.017us cuDeviceGetName
0.00% 4.3660us 1 4.3660us 4.3660us 4.3660us cuDeviceGetPCIBusId
0.00% 3.8490us 3 1.2830us 802ns 2.1730us cuDeviceGetCount
0.00% 2.2420us 2 1.1210us 747ns 1.4950us cuDeviceGet
0.00% 897ns 1 897ns 897ns 897ns cuDeviceGetUuid

Table 5: GPU profiling statistics for fuse filter, 100M keys

Peeling complexity. In every peeling subround, if at least one pure cell

was found (therefore marking its associated edge for peeling), we increment the layer

count once per subround. The observed number of calls to assign (> 1000) in figure

5 for the fuse filter case indicated a large number of subrounds involved in the peeling

process (calls to the peel set∗ methods). We further note in Figure 9 that the

number of layers stays remarkably constant with increasing key set size.

47

Figure 9: Count of layers generated by parallel peeling

We appeal to the following theorem introduced in Jiang et al. (2013), for our analysis:

Theorem 2. Let r ≥ 3 and k ≥ 2. Let ϕr−1 = limk→∞ F
1/k
r−1(k) be the asymptotic

growth rate for the Fibonacci sequence of order r − 1. Let G be a hypergraph over

n nodes with cn edges generated according to the following random process. The

vertices of G are partitioned into r subsets of equal size, and the edges are generated

at random subject to the constraint that each edge contains exactly one vertex from

each set. With probability 1− o(1), the peeling process for the k-core in G that uses

r subrounds in each round terminates after 1
r log ϕr−1+log(k−1)

log log n + O(1) rounds

when c < c∗k,r.

In the xor filter case (“BDZ standard, m = 1.23n” in figure 9), the standard

48

3-uniform hypergraph constructed in the mapping step follows the random process

described in Theorem 1. Given r = 3, we have ϕr−1 ≈ 1.61. We peel to an empty 2-

core, so k = 2. Therefore the number of subrounds is given by 1
log ϕr−1

log log n+O(1) ≈

4.36 + O(1) for n = 100 million keys, and the hidden additive constant for our

hypergraph instances is estimated to be between 92-94 for our current configuration

(r = 3, k = 2).

Hidden values. While Theorem 1 is not directly applicable to the fuse fil-

ter’s fuse graph, the results suggests the presence of a hidden additive constant (or

slow-growing component) for fuse graphs, with a value exceeding 1000 for our current

configuration (r = 3, number of segments = 100, k = 2). An analysis of the rela-

tionship between the magnitude of these constants and the associated hypergraph’s

edge distribution is beyond the scope of this thesis. The work of Dietzfelbinger &

Walzer (2019) provides ample theoretical analysis, and already anticipates that fuse

graphs will require more rounds of peeling. What we do observe from these experi-

mental runs are that these values appears to have a substantial impact on inherent

parallelism.

49

Tuning the gap. For the fuse graph, given n vertices and m edges, we

observe that if the vertices-to-edges ratio is adjusted from 1.13 to 1.18, then the

number of layers induced by the peeling process drops from 1000 to less than 400

(figure 9). This has a positive effect on parallel processing efficiency: by trading off

some space savings, we observe the speedup improves from 2x to 3x over sequential

implementations.

50

Chapter VI.

Conclusions

6.1. Summary

In this thesis, we have designed a GPU-accelerated version of the BDZ algo-

rithm, specifically by exploiting inherent parallelism in the Mapping and Assigning

steps. We provide an implementation of this parallel algorithm, using it to speed up

the construction of an AMQ data structure known as the xor filter. Our results show

that the construction time of xor filters can be improved by a factor of at least 3-4x.

This helps to mitigate the problem that the typical xor filter construction is twice as

slow as a Bloom filter construction.

We have also investigated a BDZ algorithm variant, which peels a fuse graph

instead of the standard 3-uniform hypergraph. The fuse graph is a new family of

hypergraphs proposed by Dietzfelbinger & Walzer (2019). We find that this variant

appears to have less inherent parallelism; in our attempt to design a GPU-accelerated

algorithm, we found it necessary to employ data-parallel primitives such as stream

compaction, sort and reduce to gain some parallel processing efficiency.

We see our parallel implementation of the BDZ algorithm as an experiment

51

with impact beyond the original problem the algorithm set out to solve (i.e. PHF

construction). Since the BDZ algorithm is extensible to application contexts such as

xor filter construction, performance gains from parallelism easily translate to such

applications, as we have shown. In further work, we think it may be worthwhile to

explore additional application scenarios where the BDZ algorithm can be extended

in unique ways.

52

Appendix A.

Source code

The source code for this project can be found in the github repository .

53

https://github.com/chuals/xorfilter-p/tree/stream-compaction

References

Belazzougui, D., Boldi, P., Ottaviano, G., Venturini, R., & Vigna, S. (2014). Cache-

oblivious peeling of random hypergraphs. In 2014 Data Compression Conference

(pp. 352–361).

Bell, N. & Hoberock, J. (2012). Chapter 26 - thrust: A productivity-oriented library

for cuda. Applications of GPU Computing Series, (pp. 359–371).

Blelloch, G. E. (1990). Vector Models for Data-Parallel Computing. MIT Press.

Blelloch, G. E., Dhulipala, L., & Sun, Y. (2021). Introduction to parallel algorithms.

Botelho, F. C., Pagh, R., & Ziviani, N. (2007). Simple and space-efficient minimal

perfect hash functions. Algorithms and Data Structures (pp. 139–150).: Springer

Berlin Heidelberg.

Botelho, F. C., Pagh, R., & Ziviani, N. (2013). Practical perfect hashing in nearly

optimal space. Information Systems, 38(1), 108–131.

Botelho, F. C., Wormald, N., & Ziviani, N. (2012). Cores of random r-partite hyper-

graphs. Information Processing Letters, 112(8), 314–319.

54

Broder, A. & Mitzenmacher, M. (2003). Survey: Network applications of bloom

filters: A survey. Internet Mathematics, 1.

Chazelle, B., Kilian, J., Rubinfeld, R., & Tal, A. (2004). The bloomier filter: An

efficient data structure for static support lookup tables. Soda ’04, (pp. 30–39).

Cook, S. A. (1985). A taxonomy of problems with fast parallel algorithms. In-

formation and Control, 64(1), 2–22. International Conference on Foundations of

Computation Theory.

Czech, Z. J., Havas, G., & Majewski, B. S. (1997). Perfect hashing. Theoretical

Computer Science, 182(1), 1–143.

Dietzfelbinger, M. & Walzer, S. (2019). Dense peelable random uniform hypergraphs.

In ESA.

Docs.rs (2020). xorf::fuse8 - rust. https://docs.rs/xorf/0.6.0/xorf/struct.

Fuse8.html.

Goodrich, M. & Mitzenmacher, M. (2011). Invertible bloom lookup tables. In 2011

49th Annual Allerton Conference on Communication, Control, and Computing,

Allerton 2011 (pp. 792–799).

Graf, T. & Lemire, D. (2020). Xor filters: Faster and smaller than bloom and cuckoo

filters. Journal of Experimental Algorithmics, 25, 1–16.

55

https://docs.rs/xorf/0.6.0/xorf/struct.Fuse8.html
https://docs.rs/xorf/0.6.0/xorf/struct.Fuse8.html

Graf, T. M. & Lemire, D. (2019). Header-only xor filter li-

brary. https://github.com/FastFilter/xor_singleheader commit:

a6068bc75665f5bccb1b4f89b8918ecdb50af624.

Graf, T. M. & Lemire, D. (2022). Binary fuse filters: Fast and smaller than xor filters.

arXiv preprint arXiv:2201.01174.

Harris, M., Sengupta, S., & Owens, J. (2007). Parallel prefix sum (scan) with cuda.

In GPU Gems 3. Addison-Wesley, 39, 851–.

Horn, D. (2005). Stream reduction operations for gpgpu applications. GPU Gems, 2.

Jiang, J., Mitzenmacher, M., & Thaler, J. (2013). Parallel peeling algorithms. CoRR,

abs/1302.7014.

Luby, M. G. Mitzenmacher, M., Shokrollahi, M. A., & Spielman, D. A. (2001). Ef-

ficient erasure correcting codes. IEEE Transactions on Information Theory, 47,

569–584.

Majewski, B. S., Wormald, N. C., Havas, G., & Czech, Z. J. (1996). A family of

perfect hashing methods. The Computer Journal, 39(6), 547–554.

Molloy, M. (2005). Cores in random hypergraphs and boolean formulas. Random

Structures & Algorithms, 27(1), 124–135.

Moreland, K., Sewell, C., Usher, W., Lo, L.-t., Meredith, J., Pugmire, D., Kress,

J., Schroots, H., Ma, K.-L., Childs, H., Larsen, M., Chen, C.-M., Maynard, R.,

56

https://github.com/FastFilter/xor_singleheader

& Geveci, B. (2016). Vtk-m: Accelerating the visualization toolkit for massively

threaded architectures. IEEE Computer Graphics and Applications, 36(3), 48–58.

Pagh, R. & Rodler, F. F. (2004). Cuckoo hashing. Journal of Algorithms, 51(2),

122–144.

Satish, N., Harris, M., & Garland, M. (2009). Designing efficient sorting algorithms for

manycore gpus. 2009 IEEE International Symposium on Parallel and Distributed

Processing, 23, 1–10.

57

	Titlepage
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	I Introduction
	1.1 Overview
	1.2 Contribution
	1.3 Thesis outline

	II Background
	2.1 Peeling processes
	2.1.1 Peeling order
	2.1.2 Parallelism in peeling

	2.2 The MWHC construction technique
	2.2.1 Application: AMQ filters

	2.3 Data parallel primitives

	III Algorithm Design and Analysis
	3.1 The BDZ algorithm
	3.1.1 Mapping step
	3.1.2 Assigning step

	3.2 Analysis

	IV Implementation
	4.1 Data structures
	4.2 GPU-based implementation
	4.2.1 Adding edges
	4.2.2 Peeling edges
	4.2.3 Assigning values to vertices

	4.3 Using the GPU-based implementation in applications
	4.3.1 Xor filter
	4.3.2 Fuse filter

	V Evaluation
	5.1 Results

	VI Conclusions
	6.1 Summary

	A Source code
	References

