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Seeing Context: 

Macaque Ventral Visual Responses to Diverse Stimuli and during Natural Vision 

Abstract 

Studies of vision in the primate brain must contend with a gap between reductionist ex-

periments and the rich context of natural behaviors. I explored the selectivity of macaque ventral 

visual neurons within a broad stimulus space, leveraging contemporary developments in deep 

generative image models. Further, I analyzed detailed neuron response properties during free-

viewing behavior, developing novel statistical analysis methods and computational models. I 

found that high-level visual neurons in the inferior temporal cortex, previously thought to code 

for semantic categories, responded just as strongly to ineffable visual features. During task-free 

active viewing, neurons throughout the ventral visual pathway responded in ways that comported 

with the classical view of these neurons as reactive feature detectors. The results suggest that the 

ventral visual cortex specializes in encoding the present visual input in a category-general way, 

even during active behavior.  
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It is possible to reduce the laws of nature to simple principles[.] [T]heir simplicity, and 

the technical difficulties, form a criterion of the beauty of our theories. 

God does not care about our mathematical difficulties; He integrates empirically. 

Albert Einstein, as quoted by Leopold Infeld 



1 Introduction 

We conceive of the infinitely complex world with our finite heads by simplifying phenomena 

into concepts, categories, and principles. In the same way, neuroscience aims to explain the brain 

by categorizing its activity into sensory, motor, executive, and memory functions, parceling its 

anatomy into regions, and classifying neurons into cellular and response types. The understand-

ing of visual processing in the primate neocortex exemplifies this reductionist program. The pri-

mate visual cortex comprises two principal processing streams, the ventral ‘what’ and the dorsal 

‘where’ stream. The two streams, respectively, analyze the form and location of visual objects 

(Ungerleider & Mishkin, 1982). In the ventral stream, research has categorized neurons into re-

sponse types that fit into an overall picture of a sequential transformation of the visual input from 

low-level luminance variations to high-level representations—objects, categories, and identities. 

A hierarchy of cortical areas embodies this orderly sequence of processing. The primary visual 

cortex (V1), which serves both the dorsal and ventral pathways, contains form-analyzing neurons 

tuned to oriented edges (Hubel & Wiesel, 1962), spatial frequency (Campbell et al., 1969; De 

Valois et al., 1982), and color (Conway et al., 2002; Hubel & Wiesel, 1968). V4, an intermediate 

area in the ventral stream, contains neurons sensitive to textures and the local curvature of con-

tours (Pasupathy & Connor, 1999). The inferior temporal cortex (IT), the highest stage of ventral 

visual processing, contains neurons selective for object categories such as faces, animals, and in-

animate things (Desimone et al., 1984; Hung et al., 2005). 

Just as we perceive the world through our lens of understanding, earlier literature influ-

ences subsequent studies by primarily imparting matters of fact and secondarily impacting ways 

of thinking. Early lesion studies suggested the necessity of IT not for seeing in general but for 

‘detecting the meaning of objects on visual criteria’ (Gross, 1994; Klüver, 1951; Mishkin & 
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Pribram, 1954). This hard-won knowledge about the function of IT anchors the typical questions 

asked about the ventral stream. Studies have inquired into what categories are distinguished by 

IT: for example, faces, body parts, animacy, and tools (Desimone et al., 1984; Gross et al., 1979); 

what kind of encodings would allow for easy categorization: invariant or equivariant representa-

tions; how these representations can be derived: by hierarchical, multi-stage transformations of 

visual features (Riesenhuber & Poggio, 1999); and how feature selectivity organizes itself on the 

cortex: into modules in systematic maps that recapitulate throughout the processing hierarchy 

(Bao et al., 2020; Freiwald & Tsao, 2010). The emerging picture is that the ventral stream serves 

a transparent visual representation to higher cognitive processes for the latter to sample as re-

quired. This representation elucidates what information is latent in the pattern of light intensities 

on the retina to emphasize ethologically relevant data such as object category, shape, size, and 

identity. Incidentally, this ethological emphasis provides a boon to investigators hoping to ex-

plain IT functions using natural language. This picture paints the ventral visual stream as a spe-

cialized processing module—a reverse graphics card. Outstanding questions remain only about 

how the system develops, how it benefits (or not) from learning, and what exact computations 

interpose between pixels and invariant representations—to achieve the latter is a still open engi-

neering challenge despite the impressive advances in computer vision made by deep learning. 

Might the reverse graphics card hypothesis obscure essential aspects of ventral vision? 

Even in the primary visual cortex, arguably the best-understood cortical visual region, a tally 

reckoned that quantitative models could only capture a minority of the responses of a minority of 

neurons (Olshausen & Field, 2005). The models Olshausen and Field considered did not incorpo-

rate many then-known neuronal mechanisms, which, because they were difficult to measure 

jointly, could not be integrated fully into a computational model (Rust & Movshon, 2005). 



3 
 

Today, better quantitative models of ventral neurons incorporate deep artificial neural networks 

(Schrimpf et al., 2020; Yamins et al., 2014). Nevertheless, modern models only marginally im-

prove on the fraction explained of neuronal responses in V1 (Cadena et al., 2019). Higher visual 

areas see more improvement for lack of good previous models. Still, current models only capture 

a slight majority of the stimulus-driven response variance. Artificial networks are problematic 

models of ventral vision in other respects. Despite their stellar task performance and ability to 

predict neuronal responses, artificial networks use starkly different visual features from biologi-

cal neurons. Artificial networks are biased toward representing textures, as opposed to the shape 

bias of human perception (Geirhos et al., 2018). Moreover, this texture bias may correspond to 

an overemphasis on informative but uninterpretable speckles (Ilyas et al., 2019; Szegedy et al., 

2013). In other words, models use unnamable features, contrary to what many propose for IT. 

A second blind spot highlighted by Olshausen and Field is the lack of knowledge about 

neural responses to natural stimuli during natural behaviors. Studies of form vision usually use 

carefully controlled tasks and behaviors. An example is the rapid serial visual presentation 

(RSVP) task. In it, tens of randomly ordered images are presented per second while the animal 

maintains fixation on a spot. This task is optimal for studying the feature selectivity of neurons 

while minimizing context-, history-, and task-dependent effects. The RSVP task, like other re-

ductionist experiments, is justified by the unspoken assumption that response properties can be 

studied in isolation, then composed without modification to explain more complex natural phe-

nomena. However, the brain is a nonlinear and dynamical system. There are clues that natural 

stimuli, situations, and behaviors may reveal contextual effects that interact in nonobvious ways 

with classical properties gleaned from random images and restrictive behaviors. In the mouse, 

even the primary visual cortex hosts multimodal information such as running speed, facial 
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movements, and global brain states. These representations multiplex with stimulus selectivity on 

single trials and are only separable at the level of neuronal populations. Generations of investiga-

tors have tested primate vision during more natural viewing conditions (DiCarlo & Maunsell, 

2000; Gallant et al., 1998; Leopold & Park, 2020; Livingstone et al., 1996; Sheinberg & 

Logothetis, 2001). Most studies support, in principle, that ventral visual neurons preserve classi-

cal response properties during more natural viewing. In practice, however, studies have traded 

off between the degree of naturalism and the strength of evidence for classical properties. For in-

stance, there is no direct evidence to show that single neurons maintain fixed receptive fields and 

selectivity during the daily activities of a monkey. It seems probable that responses must be non-

classical to some degree. Perception itself does not always track physical reality. Perception dur-

ing binocular rivalry can change without any change in the physical stimulus. Perception can 

also fail conditionally, as in phenomena like intrasaccadic change blindness. Indeed, there is a 

surfeit of documented, disparate non-classical response properties in the visual system (Gilbert & 

Li, 2013). The question is one of quantification and synthesis. To what extent is visual neuronal 

activity affected by non-visual variables, i.e., information beyond the pattern of light arriving at 

the retina? How do the various non-classical response properties interact and unify to create per-

ception and guide behavior? Natural contexts have a particular explanatory interest because, after 

all, the brain evolved to control the adaptive behaviors of an organism. The practical corollary is 

that natural contexts should be more likely to recruit behaviorally relevant neural processes. 

In this thesis, I studied primate visual neuronal responses to more diverse stimuli and dur-

ing more natural viewing behaviors. Published reports have described some of the work (Bardon 

et al., 2022; Ponce et al., 2019; Xiao & Kreiman, 2020); here, I will emphasize the main ideas 

and focus on the parts of collaborative work to which I contributed most substantively. For 
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reasons of space and theme, I will not cover some of my other studies during my Ph.D. (Xiao et 

al., 2018; Yuan et al., 2020; Zhang et al., 2022). 

In Chapter 2, I helped develop an algorithm to define the stimulus preference of neurons 

independent of notions of categories, objects, or shapes. The method directly queried the target 

neuron in a closed loop and adapted the stimulus by searching in a broad and diverse generative 

model. In IT, this method enabled us to identify images that strongly activated neurons without 

clearly belonging to object categories, showing that IT neurons were selective for nonsemantic 

visual features. In Chapter 3, I examined ventral stream neuronal activity when monkeys freely 

viewed natural images. Neurons throughout the ventral stream evinced classical response proper-

ties during active vision, including feature selectivity, response latency, and spatially local recep-

tive fields, all yoked to each fixation. Unlike conscious perception, ventral visual neurons 

changed their responses with eye movements several times per second. The free-viewing behav-

ior provides a testing ground to compare and combine disparate theories of response properties 

into a unified model. 



2 An unbiased method to uncover visual neuron stimulus preference 

Introduction 

In studying the responses of visual neurons, experimenters must choose some stimulus set with 

which to probe them. It is not feasible to catalog a neuron’s responses to all stimuli, even for 

static images. At a rapid clip of seeing twenty images per second, an indefatigable monkey fixat-

ing eight hours a day for a year—provided that the same neuron can be held for so long, nontriv-

ial though possible with current techniques (McMahon et al., 2014)— can only give neuronal 

responses to just over 200 million images. That is fewer than the number of different six-by-six 

punch cards (236 = about 69 trillion) or four filled games of tic-tac-toe. 

Thus, experimenters select their stimuli based on the current understanding of neuron 

function. For example, theories positing gnostic units invite investigators to use pictures of com-

monplace objects (Gross, 2002; Konorski, 1967). Students of ‘face neurons,’ a proposed class of 

neurons specialized for processing faces in supporting social interactions, examine the contrast 

between face and nonface object responses and scrutinize face features such as gender and inter-

eye distance. Because shape helps categorize objects, researchers study contour and curvature 

variations in V4, an intermediate processing area. Likewise, studies also probe V4 and V2 with 

textures defined by the high-order statistics of light patterns. 

Since theories are built on experimental results, using the same theories to inform stimu-

lus choice leaves room for missed insights to emerge occasionally through serendipity. For ex-

ample, anecdote has it that Hubel and Wiesel first discovered V1 orientation tuning via the 

unexpectedly rigorous responses to the edges of changing projector slides after a long search of 

LGN-like center-surround tuning yielded few spikes. Similar insights might await discovery in 
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higher visual areas containing yet more sparsely coding and sharply tuned neurons. Is there a 

way to test stimulus selectivity efficiently while relying as little as possible on the experimenter’s 

preconceptions? 

One solution is adaptive stimulus search: an algorithm that iteratively samples ‘interest-

ing’ stimuli to adapt to neuronal activity recorded in a closed loop (Carlson et al., 2011; Yamane 

et al., 2008). For example, Carlson et al. (2011) studied feature tuning in V4 by optimizing the 

location and curvature of a contour feature on an object silhouette. The optimized stimuli reliably 

converged to the same features starting from different random initializations and activated the 

target neurons more strongly than the initial stimuli, showing that the search had discovered 

something tailored to the neurons. An adaptive search method depends on a stimulus parameteri-

zation to search through. The silhouette parameterization would not have been able to propose, 

for example, a face for a hypothetical face-selective neuron. Likewise, searching through the pa-

rameters of a face generator will never lead to an object silhouette with a sharp corner on the left 

if that is the preferred stimulus for a neuron. In other words, while stimulus search avoids com-

mitting to a fixed image list, using a domain-specific image parameterization nevertheless leads 

to the same problem of constraining stimuli to a theory. Image parameterization is the same prob-

lem as building generative models of images. The challenge lies in realizing a generative image 

model that can produce diverse stimuli not restricted to a particular theory. 

A breakthrough in models that can produce diverse yet naturalistic images followed the 

advent of deep artificial neural networks and generative adversarial training (Denton et al., 2015; 

Goodfellow et al., 2020). Deep image generative models can synthesize complex, naturalistic, 

and diverse images from vectors of numbers. In many models, the same continuous vector space 

can represent pictures of many kinds of objects, the background context in which they occur, as 
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well as textures that do not quite depict entire objects. This ability to capture diverse visual pat-

terns with natural statistics made deep generative models prime candidates to use in adaptive 

search methods for defining visual neuron stimulus preference. 

In this chapter, I describe my collaborative work to design an algorithm for automatically 

uncovering preferred stimuli for visual neurons. The algorithm combined deep generative neural 

networks and algorithms for high-dimensional non-gradient optimization. For brevity, I refer to 

the combined algorithm as XDream, to stand for Extending DeepDream (Mordvintsev et al., 

2015) for Real-time Activity Maximization. The work in most of this chapter already appears in 

a series of reports (Bardon et al., 2022; Ponce et al., 2019; Xiao & Kreiman, 2020). I will sum-

marize and synthesize the published results focusing on my contributions. I present results that 

XDream could find effective stimuli for visually selective neurons in both artificial neural net-

works and the primate brain. XDream operated under the realistic conditions of limited experi-

mental time and no a priori knowledge of the target neuron’s tuning. Not constrained by a 

particular theory, XDream could synthesize preferred stimuli for neurons from V1 to the inferior 

temporal cortex (IT). The synthetic images for IT neurons showed that IT stimulus preference 

was broader than object categories. For example, for face neurons, XDream-generated stimuli 

drove comparable activity to faces but were quantifiably unlike faces. 

Meanwhile, several other groups developed a related but distinct method for identifying 

optimal stimuli. Visual neuron tuning is analogous to the feature selectivity of units in artificial 

neural networks. Finding the (locally) optimal input for artificial units is a tractable problem. Be-

cause the activation of an artificial unit is a differentiable function, it can be efficiently optimized 

to find a highly activating input by following the function gradient. This procedure cannot find 

preferred stimuli for biological neurons because determining the derivatives of neuronal output 
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functions requires complete connectomics knowledge—i.e., knowing all the connections and 

strengths between the retina and the neuron under study. Currently, whole-brain connectomes are 

available in C. elegans (White et al., 1986), emerging in the fruit fly (Dorkenwald et al., 2022; 

Scheffer et al., 2020), but remain out of reach for larger brains such as those of mice, monkeys, 

and humans. Even a complete electron microscopy connectome may still not contain enough in-

formation to define the functional strength of synaptic connections. Instead of seeking the veridi-

cal weight matrix generating neuronal responses, studies have shown that artificial units can 

approximate neuron response functions (Schrimpf et al., 2020; Yamins et al., 2014). These artifi-

cial network-based models are end-to-end differentiable and can thus substitute for biological 

neurons in determining stimulus preference. The optimized image only needs to be verified with 

the neurons. 

Using substitute models to propose effective stimuli is complementary to using closed-

loop adaptive algorithms to search for the same. Comparing and potentially combining both 

methods could lead to a more thorough picture of the stimulus preference of a neuron. The sub-

stitute model and adaptive search methods, which arose contemporaneously, are superficially 

similar: Both use deep learning tools and have analogs in computer vision research (Mordvintsev 

et al., 2015; Nguyen et al., 2016). Nevertheless, key differences distinguish the two methods. The 

substitute model method depends on a good model of neuron tuning. Therefore, this method is 

only as effective as the substitute model can accurately predict neuron responses, especially to 

novel synthetic stimuli. Rather than relying on an encoding model of neuron responses, adaptive 

search directly queries the neuron in a closed loop, instead using a generative image model to 

balance stimulus diversity with search tractability. The substitute model method can also use a 

(differentiable) generative model to parametrize the image but has only used low-level image 
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regularizations in practice. In the last part of this chapter, I compare the adaptive search and sub-

stitute model methods concurrently with the same neurons. 

Results 

Development and validation of XDream in silico 

 
Figure 2.1. Overview of the XDream algorithm for uncovering preferred stimuli. 
The XDream algorithm optimized stimuli to drive selective neuronal responses. It comprised 1) a 
generative neural network, which synthesized images from a compressed representation (‘image 
codes’) and 2) a genetic algorithm, which optimized image codes given neuronal responses. 
Adapted from Ponce et al. (2019) with permission. Copyright 2019 by Elsevier Inc. 

We implemented an algorithm to find preferred stimuli for visual neurons from a large and di-

verse image space not confined by a prior theory of what features neurons should respond to. The 

algorithm used black-box optimization in a closed loop with neuron recording to search for im-

age parameters to maximize neuronal responses to the corresponding image (Figure 2.1). The 

image space was a generative adversarial network pretrained on ImageNet. We used a custom ge-

netic algorithm as the optimization algorithm. We refer to the combined algorithm as XDream, 

for Extending DeepDream (Mordvintsev et al., 2015) for Real-time Activity Maximization. 
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Figure 2.2. Testing the expressive range of the generative model underlying XDream. 
We evaluated whether the generative network underlying XDream could approximately recon-
struct diverse target images and whether XDream, guided by various fitness functions, could find 
the image codes that approximated the target images. The first row shows the target images. The 
second row shows network-synthesized images where we used ‘strong’ algorithms (see text) to 
search for image codes to reconstruct the target image. The third row shows network-synthesized 
stimuli where we used XDream to search for image codes. The ‘strong’ algorithms required ex-
plicit knowledge about the generative network, whereas XDream did not use this knowledge. 
Adapted from Ponce et al. (2019) with permission. Copyright 2019 by Elsevier Inc. 

We first validated whether the specific generative model we used, DeePSiM-fc6 

(Dosovitskiy & Brox, 2016), could synthesize assorted images from vector inputs termed ‘image 

codes.’ We first asked whether there existed image codes that could approximately reconstruct a 

variety of target images (Figure 2.2, first four columns). Because we knew the target images and 

the full definition of the generative model, we could use two strong methods to find optimal im-

age codes: first, by converting the image to a code using a forward model (Dosovitskiy & Brox, 

2016); second, by optimizing the image code using backpropagation to minimize a cost function 

(Nguyen et al., 2016), here defined as the Euclidean distance from each target image in pixel val-

ues. Between them, these two strong methods found image codes that, when converted by the 

generative model into synthetic images, closely matched target images that depicted simple filled 

2D shapes, 3D objects, or line patterns (Figure 2.2, first two rows, first four columns). 
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Having established that the generative model was expressive enough to synthesize vari-

ous images from suitable codes, we next asked whether we could find these codes by optimizing 

a loss function under neuronal recording-like conditions. Neuronal responses do not come with a 

forward model or permit gradient-based optimization. Thus, we used a non-gradient-based ge-

netic algorithm to search for image codes. We used the XDream algorithm to optimize the Eu-

clidean distance from each target image, iterating for 200 generations of 40 images each. Eight 

thousand image presentations were realistic for an RSVP experiment: With each image shown 

for 300 ms, the session would take 40 minutes of total viewing. With this number of presenta-

tions, XDream evolved synthetic images closely resembling the targets (Figure 2.2, third row, 

first four columns) and discovered solutions that were almost as good as those found by the two 

strong methods described above.  

These toy problems illustrated both the abilities and limitations of XDream. As with prior 

work on adaptive stimulus search, XDream was contingent on the image parameterization used. 

In our setting, this image parameterization was a deep generative adversarial network trained on 

diverse natural images. Although the generative network could mimic all kinds of images rang-

ing from a picture of Neptune to a painting by Monet, the network likely could not generate all 

arbitrary pixel combinations, even though this statement would be hard to prove formally. 

With the limits of the generative model in mind, we simulated a condition one step closer 

to recording neurons. We re-defined the Euclidean distance loss function in the internal represen-

tation space of AlexNet (Krizhevsky et al., 2017) instead of in pixel space. AlexNet, a convolu-

tional neural network trained to classify images, contained internal representations similar to 

ventral visual representations (Schrimpf et al., 2020). The original target image still minimizes 

this new distance function. However, unlike pixel space, a distance function in AlexNet 



13 
 

representation space no longer necessarily had a unique image as the global optimum because 

AlexNet representations were nonlinear. The loss function was also no longer convex (in pixel 

space), making the optimization harder. Both these properties—nonunique solutions and noncon-

vex landscape—were likely to characterize the tuning of biological neurons. In this case, the 

combined XDream algorithm could still approximately recover the target images using an exper-

imentally feasible number of image presentations (Figure 2.2, third row, last five columns) and 

performed nearly as well as backpropagation-based optimization (Figure 2.2, second row, last 

five columns). 

Lastly, we validated XDream by testing its ability to synthesize preferred stimuli for sin-

gle units in AlexNet. To start, we tested units in the first and last layers of AlexNet. First-layer 

units were linear filters whose global optima were well-defined. Within the valid range of input 

values, the global optimum was the image whose pixels saturated each element of the 11 × 11 × 

3 filter weights across positions and color channels. For the example units (Figure 2.3a), 

XDream-optimized stimuli resembled the expected global optimum filter and emphasized the 

more heavily weighted filter positions. 
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Figure 2.3. In silico test of XDream on AlexNet units. 
We used XDream to identify strongly activating input for units in CaffeNet, an instance of 
AlexNet and a model of visual neurons.  a, We tested five units in the first convolutional layer 
(conv1). The first row visualizes each unit's globally optimal input, an 11 × 11-pixel image patch 
containing saturated pixels (red, blue, green, cyan, magenta, yellow, white, or black). A gray 
mask was blended in to indicate the contribution of each pixel to the output. The second row 
shows one example evolved image for each unit. The figure shows the center 11 × 11 pixels 
within the unit receptive fields of images evolved at a native resolution of 256 × 256 pixels.  b, 
Summary of an example unit evolution in the classification layer. The histograms show response 
distribution to training images (ImageNet) and evolved images. The white-to-black gradient for 
evolved images indicates progress during the evolution. The images correspond to the top three 
highly activating ImageNet examples and the best evolved image; the numbers indicate activa-
tion of the target unit.  c, We calculated the activation ratio between the best evolved and 
ImageNet images. The violin plots show the distribution of this activation ratio across the 100 
units and four layers in AlexNet we tested. Adapted from Ponce et al. (2019) with permission. 
Copyright 2019 by Elsevier Inc. 



 15 

 
Figure 2.3 (Continued).
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Last-layer object-detector units were highly nonlinear functions. Their globally optimal 

images were ill-defined even though the weights of AlexNet were fully known. For these and any 

other units in an ANN, one could find strongly activating inputs using backpropagation. How-

ever, doing so naively would create unrecognizable noise, a surprising discovery termed adver-

sarial examples (Szegedy et al., 2013). There is active debate about whether adversarial 

examples reveal the insights or design failures of ANNs (Ilyas et al., 2019). We sidestepped the 

issue of adversarial examples by comparing XDream-optimized images to the best ImageNet im-

ages (Deng et al., 2009), the training set of AlexNet. For an example unit that represented the 

category, ‘honeycomb,’ XDream led to a synthetic image that activated the unit about 1.37 times 

as strongly as did the best of 1.4 million images in ImageNet (Figure 2.3b). Intriguingly, the 

synthetic image contained features reminiscent of both honeycombs and bees but not recogniza-

ble as either, whereas the most highly activating natural images only depicted honeycombs. 

XDream could synthesize super stimuli—images that drove a unit more strongly than its native 

input—for most units throughout AlexNet processing stages (Figure 2.3c) and across a range of 

classifier networks (Figure 2.4). As exemplified by the optimized images (Figure 2.4b), units 

trained to categorize nevertheless responded strongly to visual patterns that fall short of whole 

objects, even though those patterns may evoke the trained category to a human observer. 
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Figure 2.4. In silico test of XDream across diverse CNN architectures and layers. 
a, The violin plots show the distribution of relative activation for 100 example units per CNN ar-
chitecture and layer. The dashed line indicates the best ImageNet image, which had relative acti-
vation of 1 by definition. For a fairer comparison, the gray lines and rectangles indicate the 
distribution (quartiles) of the highest relative activation from 10,000 random ImageNet images, 
because XDream used 10,000 image presentations to create the evolved stimuli.  b, The best 
evolved and ImageNet images, with their activations, for units from different CNN architectures. 
Adapted from Xiao and Kreiman (2020). CC BY. 



 18 

 
Figure 2.5. In silico test of XDream combined with various image generative models. 
XDream functioned similarly well with various generative models represented by GANs. We 
compared XDream performance using a range of GANs that a, used low- to high-level represen-
tations, or b, learned on different image sets. Adapted from Xiao and Kreiman (2020). CC BY. 

We used in silico experiments as a platform for tuning XDream because in silico tests 

were higher throughput than testing with electrophysiological recordings. Since the generative 

model essentially defined an adaptive stimulus search method, we first tested variants of 

XDream that used different generative network architectures. These networks learned to use im-

age codes biased toward lower- or higher-level features (Dosovitskiy & Brox, 2016). Many gen-

erative networks that used sufficiently high-level features served comparably well as a 

component of XDream (Figure 2.5a). Thus, while we predominantly used the fc6 variant in ex-

periments with real neurons (described below), we also used the pool5 and conv4 variants. 
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Second, although the generative networks learned from a large and varied natural image dataset, 

its composition could potentially bias the generative model and, thereby, the search space of 

XDream. To evaluate this possibility, we compared the same generator architecture trained on 

two different image datasets—ImageNet and Places (Zhou et al., 2017)—as a component in 

XDream. Both image datasets primarily comprised photographs, but ImageNet emphasized ob-

jects while Places emphasized scene categories. We used the two generative models as a part of 

XDream to optimize two variants of the same classifier architecture trained on the same two im-

age sets. Both generative network variants performed almost equally well on both classifier net-

works (Figure 2.5b), suggesting that generators did not simply mirror the statistics of a specific 

image set. Third, unlike model unit activations, neuronal responses were stochastic. We verified 

that XDream could perform under realistic levels of response stochasticity and degraded perfor-

mance gracefully (Figure 2.6). These tuning experiments paved the way for applying XDream to 

define feature selectivity in real neuronal recordings. 

 
Figure 2.6. Benchmarking XDream with simulated noise. 
We benchmarked XDream performance in the face of different levels of response stochasticity 
within an experimentally relevant range. XDream performance degraded gradually with noise 
but, especially for low-level target units, remained largely above relative activation = 1. Adapted 
from Xiao and Kreiman (2020). CC BY. 
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XDream uncovered strong stimuli for visual neurons 

We adapted XDream to use with electrophysiological recording from awake, fixating monkeys. I 

worked with Carlos Ponce and Peter Schade to integrate XDream into a closed-loop experiment 

with online data collection. First, XDream produced a generation of images and waited for their 

neural responses. Then, the MATLAB-based task-control software presented the stimuli, counted 

the spikes they elicited, and formatted the results for XDream to produce the next generation, 

closing the loop. The recording equipment software provided online spike sorting and communi-

cated the spike times to the task-control software. 

 
Figure 2.7. Illustration of the progress of an example evolution. 
Each image represents one of 210 generations arranged in reading order. The image corresponds 
to the image code-space average of the population at each generation. Adapted from Ponce et al. 
(2019) with permission. Copyright 2019 by Elsevier Inc. 

In an example experimental session, XDream optimized the responses in an electrode re-

cording multi-unit activity (MUA) from posterior IT. Figure 2.7 shows an image representing 
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each generation to illustrate the progressive change in the stimuli over time. XDream started 

from 40 random grayscale patterns and gradually tweaked them over 210 generations—adding 

color, outlining a shape, filling in textures, and segregating the foreground from the background. 

Guiding the evolution, the neuronal responses to the synthetic stimuli steadily increased over 

generations (Figure 2.8a). For reference, we also interleaved synthetic images with an equal 

number of natural images. Their responses stayed stable, decreasing slightly with time due to 

repetition suppression. In three sessions over seven days, we repeatedly used XDream to evolve 

stimuli for this chronically recorded MUA site. Across the sessions, the algorithm converged 

onto similar stimuli (Figure 2.8b). In a fourth session, we compared evolved images from differ-

ent generations to a large set of 2550 natural images. The top preferred natural images resembled 

the evolved stimuli more than the non-preferred ones (Figure 2.8c). Nonetheless, late-generation 

evolved images were better stimuli than the best natural ones in this large set (Figure 2.9a). 

 
Figure 2.8. Selectivity to evolved and reference stimuli for the example neuron in Figure 2.7. 
a, Average firing rates per generation in an example evolution. Each generation had 40 evolving 
and 40 fixed reference images. Line and shading indicate mean ± s.e.m.  b, Evolved stimuli for 
the same multi-unit channel in a chronic recording array over three sessions across seven days.  
c, Selectivity in this channel as illustrated by its top and bottom ten preferred stimuli from a large 
set of 2550 natural images. Adapted from Ponce et al. (2019) with permission. Copyright 2019 
by Elsevier Inc. 



 22 

 
Figure 2.9. Selectivity to evolved images compared with natural image selectivity. 
a, b, After evolving stimuli for two neurons, in separate sessions, we recorded neuronal re-
sponses to one evolved image per generation and a large set of 2550 natural images. The histo-
grams show the distribution of neuronal responses separately for natural and synthetic images. 
The bottom row shows example (best, worst) images for each image type.  a, The same example 
neuron from Figure 2.7.  b, A multi-unit recorded in central IT (face patch ML) of a different 
monkey, Ge.  c, The maximum synthetic image response compared to the maximum reference 
image response. Each dot indicates one session; colors indicate different monkeys; the larger 
dots correspond to statistically significant differences (p < 0.03, FDR-corrected). Adapted from 
Ponce et al. (2019) with permission. Copyright 2019 by Elsevier Inc. 

Carlos, Peter, and Margaret Livingstone conducted an initial 46 evolution experiments. 

Evolved images often elicited higher responses than the top natural image in each experiment 

(Figure 2.9c). In addition to the example unit above, another one, recorded in central IT, was 

tested with evolved images and the large 2550-image natural set. The best evolved stimulus led 

to responses almost as high as the best natural one (Figure 2.9b). 

In other chronic recording sites, repeat evolutions also led to stimuli that share consistent 

features with each other and the top natural images (Figure 2.10). For example, both sites Jo-4 

and Jo-5 from central IT evolved stimuli that contained a prominent black square on a light back-

ground. This feature echoed the sites’ preferred natural pictures, all containing solid black 

blocks. However, from these pictures alone, one might consider the black blocks as coincidental 

features in the neuron’s preference for man-made objects (Konorski, 1967). 
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Figure 2.10. Evolved stimuli and preferred natural images for ten example neurons. 
Each heading on the left indicates one neuron. For each, two evolved stimuli are shown from in-
dependent optimizations, followed by the top 10 preferred natural images. Adapted from Ponce 
et al. (2019) with permission. Copyright 2019 by Elsevier Inc. 

Evolved stimuli highly activated face neurons without resembling faces 

XDream presented a unique opportunity to test whether IT neurons represented semantic catego-

ries. The paragon of category specificity in IT is the so-called ‘face neurons,’ which respond 

more strongly to images of faces than nonface objects (Tsao et al., 2006). Face neurons cluster 

on the cortex into face patches, whose locations are visible on fMRI and stereotyped across indi-

viduals. For these and other reasons, investigators have hypothesized that face neurons are spe-

cialized for processing faces, a stimulus class with particular ethological relevance. There had 

been scant evidence that face neurons can be strongly activated by anything but faces because it 

was hard to identify stimuli that strongly drive these highly selective neurons. XDream provided 

a tool to systematically ask whether there existed nonface stimuli that could activate face neurons 

as strongly as realistic faces. 
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Figure 2.11. Overview of psychophysics experiments to evaluate evolved images. 
a, In four experiments, subjects saw an image briefly, then answered a question about the image.  
b, In experiment 3, subjects chose which one of two images was more visually similar to the test 
image.  c, In experiment 4, subjects were instructed to ‘click on the mouth’ in each image.  d–e, 
The distributions show the normalized neuronal responses to face, nonface, and evolved images 
in the sessions included in the psychophysics experiments. Adapted from Bardon et al. (2022). 
CC BY-NC-ND. 

We used XDream to evolve strongly activating images for IT neurons in hundreds of ses-

sions (Figure 2.11). The experiments were done over several years by Margaret Livingstone, Pe-

ter Schade, and me. We wanted to evaluate whether the evolved images were consistent with the 

prevailing view of high-order visual neurons as selective for object categories (Kanwisher, 

2010). Cognizant of our potential implicit biases, we recruited naive subjects unaware of the 

source of the evolved images. We asked the subjects to view, describe, and categorize the 

evolved images. What words would people use to describe these images? How face-like would 

these images look? Did face neurons guide the evolution of more face-like stimuli than nonface 

neurons? A talented undergraduate student, Alex Bardon, helped design six psychophysics exper-

iments (Figure 2.11a–c; Methods) progressing from open-ended to more tailored around the face 

category. Alex conducted the experiments, initially in person but primarily on the crowd-sourc-

ing platform Amazon Mechanical Turk (MTurk), while I helped analyze the data. 
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We operationally defined a neuron as face- or nonface-selective by calculating a face se-

lectivity index (FSI) using the neuron’s mean (background-subtracted) firing rate to faces (rf) and 

nonface objects (rnf), FSI = (rf − rnf) / (rf + rnf). We defined face neurons as central IT (CIT) neu-

rons with FSI greater than 0.5, excluding neurons in the posterior lateral (PL) face patch 

(Moeller et al., 2008), which also had high FSI but were known to respond to single eyes instead 

of whole faces (Issa & DiCarlo, 2012). We defined a nonface neuron as any neuron with an FSI 

less than zero. Based on these criteria, we analyzed 39 evolved images from face neurons and 47 

from nonface neurons. 

In the first experiment, we asked the subjects to use one word to describe the evolved im-

ages. Figure 2.12a and b show example answers participants gave to a face photo and a face 

neuron-evolved image. Across face neuron-evolved images, ‘monkey’ was the most frequent an-

swer (14%), followed by ‘dog’ and ‘art’ (both 5%; Figure 2.12c). Nonface neuron-evolved im-

ages were also primarily described by words related to animals, albeit with lower frequency; the 

top three responses were ‘bird’ (7%), ‘dog’ (5%), and ‘animal’ (5%). We quantified and com-

pared the descriptions of the face and nonface evolved images, face photos, and nonface pictures. 

The subjects described face neuron-evolved images more similarly to faces than they described 

nonface neuron-evolved images or nonface object pictures. These differences reached statistical 

significance in three of four quantification methods (Figure 2.12e–h). However, the participants 

still described both evolved image groups as less face-like than face photos. Could this result 

from the limitations of the image generator (Figure 2.2)? We tested this possibility by including 

face photos restricted to the style of the generative network. The subjects described these stylized 

faces as more face-like than evolved images (Figure 2.12e–h), suggesting that the generator was 

not the limiting factor. 



 26 

 
Figure 2.12. One-word image descriptions. 
Thirty subjects saw each image and described it with one word.  a, b, Two example images are 
shown with their responses across subjects.  c, The histograms show the ten most frequent an-
swers for each category of images, including example object images and the two sets of evolved 
images, from face-selective neurons or nonface-selective neurons.  d, Word cloud visualization 
of answers given per category.  e–h, We quantified how much the word descriptions indicated the 
perception of a face using Wu-Palmer similarity (e, f) or LexVec word embeddings (g, h). We 
compared image descriptions to the answers to face images (e, g) or the word ‘face’ (f, h). Open 
contours are violin plots indicating the kernel density estimate of the distribution across images. 
The lighter dots correspond to images. The darker center dots and lines indicate means and 95%-
confidence intervals. Sloped brackets indicate one-tailed permutation tests. **, p < o.o1; n.s., not 
significant. P-values are FDR-corrected across all seven tests performed per subplot. Adapted 
from Bardon et al. (2022). CC BY-NC-ND. 
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The remaining five experiments recapitulated the same trends. In experiment 2, the sub-

jects categorized images into one of five categories randomly drawn per trial from ten total cate-

gories. They classified face neuron-evolved images as face 44% of the time when face was an 

option, significantly more than expected by chance (20%), more than nonface neuron-evolved 

images (31%), and less than faces (97%) (Figure 2.13a). In experiment 3, the subjects chose 

which one of two images looked more similar to an evolved image. The two choice images de-

picted objects from two categories, again drawn per trial from ten possibilities. The subjects 

judged face neuron-evolved images to be more similar to face images than the average alterna-

tive category (68%) and did so more than chance (50%) and with nonface neuron-evolved im-

ages (56%; Figure 2.13b). However, the favorite option for face neuron-evolved images was dog 

(70%). In experiments 4–6, we tailored the question to evaluate face semblance. In experiment 4, 

we asked the subjects to click on the mouth in each image and, if unsure, give their best guess. 

Here, we reasoned that if the participants saw a face, they would click on consistent locations. 

Therefore, we used entropy to quantify the consistency of click locations as a readout for face 

perception. In experiment 5, the subjects answered whether each image contained a face or not. 

In experiment 6, they rated the ‘faceness’ of each image on a scale from 1 to 5. In all three exper-

iments, the subjects rated face neuron-evolved images as more face-like than nonface neuron-

evolved ones but less face-like than actual face photos or face photos in the style of the image 

generator (Figure 2.13c–e). 
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Figure 2.13. Summary of results from the remaining five psychophysics experiments. 
In panels a and b, individual asterisks indicate a statistically significant difference from chance, 
FDR-corrected across all tests performed. The short lines above indicate one- or two-tailed tests 
comparing face or nonface neuron-evolved images. *, p < 0.05; **, p < 0.01; gray, not signifi-
cant. Otherwise, plot conventions follow those in Figure 2.12. Adapted from Bardon et al. 
(2022). CC BY-NC-ND. 

Experiment 6 defined a graded quantification of an image’s face-likeness to compare to 

its neuronal responses. We found face neuron responses to be dissociable from the face-likeness 

of images. On the one hand, face neuron responses were correlated with image faceness more so 

than nonface neuron responses (Figure 2.14b–d). The more face-selective a neuron, the higher 

this correlation was (Figure 2.14c). This result was not foregone. Face-selectivity was conven-

tionally defined using the binary categories of faces (containing only the whole face) or nonface 

images (containing inanimate objects). Meanwhile, response correlation to faceness accounted 

for all pictures, including whole-body photos showing a small face, pictures of non-primate ani-

mals, and inanimate objects resembling faces (such as jack-o-lanterns); these images received a 

gradient of faceness ratings (Figure 2.14a). Indeed, the correlation between face neuron re-

sponses and faceness persisted when we considered nonface objects exclusively (Figure 2.14e).  
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Figure 2.14. Comparing neuron face selectivity, responses, and image face semblance. 
a, We obtained faceness ratings for pictures for which we have collected many neuronal response 
data. Plot conventions follow those in Figure 2.12.  b, The responses of three example face neu-
rons compared with image faceness ratings. The face selectivity index and response-faceness 
correlation coefficient, r, are displayed above each plot.  c–d, More face-selective neurons had 
higher response-faceness correlation. c, All 220 neurons are displayed. The subset of neurons 
categorized as face and nonface neurons are color-coded and compared in d.  e, The relation be-
tween neuronal face-selectivity and response-faceness correlation persisted among exclusively 
nonface images.  f–g, A plot like b for each neuron normalized and summarized across neurons. 
Adapted from Bardon et al. (2022). CC BY-NC-ND. 

On the other hand, evolved images made counterexamples to face selectivity. They acti-

vated face neurons as strongly as most real faces but received faceness ratings lower than all face 

pictures (face neuron-evolved image ratings: 1.6 ± 0.3, range 1.2–2.3; human face ratings: 4.8 ± 

0.1, range 4.5–5.0; monkey face ratings: 3.9 ± 0.1, range 3.5–4.1) (Figure 2.14f). Evolved im-

ages also strongly activated nonface neurons, although the responses of these neurons did not 

correlate with faceness (Figure 2.14g). 

XDream compared to substitute model-based image synthesis 

In concurrent studies, several groups developed another family of deep learning-driven methods 

to define the preferred stimuli of visual neurons (Abbasi-Asl et al., 2018; Bashivan et al., 2019; 

Malakhova, 2018; Walker et al., 2019). These methods derived from deep net-based encoding 

models that could predict neuronal responses to novel images (Schrimpf et al., 2020; Yamins et 
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al., 2014). Encoding models, being image-computable and differentiable, permitted backpropa-

gation to create preferred inputs. Thus, the models substituted for neurons during image synthe-

sis to propose preferred stimuli that only needed verification with neuronal recordings. Substitute 

model-based methods were orthogonal to XDream in essential aspects. We compared XDream 

and encoding model-based methods to explore whether we could combine the two approaches 

synergistically. 

We started with four pilot sessions in a chronic recording array, where we showed natural 

images while running two independent evolutions for each of two neurons. Using the natural im-

age responses, we fit encoding models, i.e., linear mapping functions based on neural network 

representations (Methods). The models accurately predicted held-out reference image responses 

but underestimated evolved ones (Figure 2.15a). Using the substitute models, we optimized im-

ages to maximize model-predicted activity with standard feature visualization methods based on 

backpropagation (Olah et al., 2017). Because of the adversarial examples described above 

(Szegedy et al., 2013), feature visualization critically depended on regularization, without which 

the optimization was wont to result in high-frequency visual speckles unlikely to excite neurons. 

Thus, we compared three conditions of progressively stronger regularization: none, randomly jit-

tering the image, or restricting the image to the same generative model underlying XDream. Sub-

stitute model-optimized images evoked increasingly higher responses in the target neurons with 

higher degrees of regularization (Figure 2.15b). When the optimization was constrained to the 

same generative image space as XDream, the resulting images evoked responses comparable to 

the highest natural responses. However, the substitute model-optimized images still had lower 

responses than XDream-evolved images. The substitute models also consistently overestimated 

neuronal responses to the model-optimized stimuli, mirroring how the models underestimated 
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evolved image responses. The models predicted the least regularized stimuli to drive the highest 

activity—sometimes over 1000 spikes/s, a physiologically implausible number and five times be-

yond the highest observed response. These unregularized images received the lowest actual re-

sponses among the synthetic stimuli. 

 
Figure 2.15. Pilot experiments comparing XDream with substitute-model image synthesis. 
a, We validated the substitute model fitting procedure on the data in Figure 2.9a. A model fit on 
the neuronal responses to half of 2550 natural images accurately predicted the held-out half of 
responses (right). However, the model consistently underpredicted responses to evolved images 
and did not improve from training on all the natural images (left).  b, Comparison of neuronal 
responses to model-synthetic, evolved, and natural images. The subplots correspond to neurons; 
dots, images. The colors indicate how the image was derived. **, p < 0.001.  c, Comparison of 
model-predicted and actual neuronal responses. We fit the models on natural images only. 
Adapted from Ponce et al. (2019) with permission. Copyright 2019 by Elsevier Inc. 

The pilot experiments were preliminary, not the least because building substitute models 

involved numerous design choices and thus required considerable expertise to optimize. I was 

fortunate to collaborate with Pouya Bashivan, a lead author and modeler of the first study using a 

substitute model to define neuron stimulus preference (Bashivan et al., 2019). Pouya 
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implemented an online variant of the substitute model method (Methods) to test in parallel with 

XDream on the same neurons. We dedicated the same number of trials to guiding an evolution 

and collecting reference image responses to fit a substitute model. Thus, both methods used an 

equal amount of information about the target neuron. We collected data under this design from 

50 sessions in 2 monkeys with chronic recording arrays in central IT (30 in M1, 20 in M2; Fig-

ure 2.16). 

 
Figure 2.16. Summary of experiments comparing XDream and substitute-model synthesis. 
‘Ctl’ refers to neural population control (Bashivan et al., 2019). We tested XDream and neural 
population control side-by-side. Each dot in the plot indicates one independent synthesis. 
‘Stretch’ is the firing rate normalized by the highest reference rate; see the text. 

To summarize the results, we use the ‘stretch’ metric introduced by Bashivan et al. 

(2019). The metric was calculated as the response to a synthetic image minus the highest refer-

ence image response and divided by it. Thus, a stretch of 0% meant the best synthetic image led 

to the same response as the best natural image, while 100% indicated the former led to twice the 

latter response. Overall, the best synthetic stimulus activated the neuron more strongly than the 

top natural image in 28% of sessions (14 of 50) for XDream and 8.1% of sessions (3 of 37) for 
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model synthesis (Figure 2.16a). Comparing the methods, XDream-evolved images led to higher 

responses than model-synthetic images in 59% of sessions (22 of 37). In another 15 of the 37 

sessions, model-synthetic stimuli led to marginally higher neuronal responses. The results were 

similar in both monkeys (Figure 2.16b). In the 13 sessions remaining from the 50 total, the sub-

stitute model prediction accuracy on held-out images did not rise above the threshold required 

for proposing a synthetic stimulus. 

Aside from differences in effectiveness, the two methods produced visually different 

stimuli that both, in turn, differed from natural images, even in cases when all three types drove 

comparable responses (Figure 2.17). This result suggested that instead of having a compact set 

of optimal stimuli, individual neurons may respond similarly to a plateau of effective stimuli that 

vary along null dimensions (Chang & Tsao, 2017). 

 
Figure 2.17. Example preferred stimuli found by three methods. 
Top, the swarm plots show responses to the highest-activating image found by each method. 
Each subplot corresponds to one unit; each color, an image. Dots indicate single-trial responses. 
Numbers denote the p-value of difference from reference image responses using the two-tailed 
Mann-Whitney U test. Bottom, top-3 images found by each method. A group of three columns 
corresponds to one experiment. Numbers indicate mean ± stdev. response (spikes/s) across trials. 
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Discussion 

The stimulus preference of neurons has been a classical problem in visual neuroscience. Investi-

gators have lacked a general-purpose way to define effective stimuli outside the narrow bounda-

ries of existing knowledge about neuronal tuning. Instead, researchers have mapped neuronal 

tuning with theoretically motivated image sets and, occasionally, fortuity. XDream and substitute 

model-based image synthesis methods represent a qualitative step forward in defining neuronal 

stimulus preference with less bias in the type of images surveyed and more generality across 

stages of visual processing. 

The simultaneous advent of adaptive search and model-based synthesis was no coinci-

dence. As is the case for much scientific progress, the advancement in defining preferred stimuli 

for neurons was due to new techniques, namely tools from deep learning. Deep neural networks 

made surprisingly good models of neuronal responses, which could be queried and optimized 

more readily than recording from neurons. Deep learning also provided generative image models 

that could represent diverse images, turbocharging existing adaptive stimulus search methods 

hamstrung by restrictive image parameterizations. 

What conceptual significance preferred stimuli have is contiguous with that of the objec-

tive function they optimize, be it the activity of single neurons or some criterion defined by pop-

ulation firing patterns. Face neurons—reminiscent of the grandmother cells conceived by Jerry 

Lettvin (Gross, 2002)—have been an influential idea for explaining how the primate brain pro-

cesses a singularly important class of stimuli. Face neurons respond more than twice as strongly 

to faces than nonface objects (Tsao et al., 2006), thus providing one of the best examples of a 

sharp category selectivity easily definable in natural language. However, is this descriptive con-

venience justified by face neurons being truly selective for faces as a semantic category? 
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Alternatively, whatever their teleological functions, face neurons may functionally respond to 

visual features enriched in faces but insufficient to constitute a face. XDream-evolved stimuli 

presented strong evidence that face neurons could be activated as strongly by faces as by images 

that people perceived to be not quite faces. 

Despite the progress in methods for defining stimulus preference, an explanatory gap is 

already evident in the disparate stimuli that drive a neuron similarly strongly (Figure 2.17). The 

fact that visually dissimilar images can highly activate the same neuron may imply the existence 

of much more effective stimuli that await improved methods for discovery. A non-exclusive pos-

sibility is that the divergent images reveal neurons to be selective for a large and not obviously 

interrelated set of stimuli. Subsequent studies are already extending XDream to describe the ge-

ometry of neuron tuning landscapes, including the sharpness of tuning peaks and features of 

level sets, i.e., equally preferred stimuli (Wang & Ponce, 2022a, 2022b). Returning to the initial 

example in the introduction, suppose we could obtain the hypothetical catalog of a neuron’s re-

sponses to all possible images. Even this whole neuron catalog would not equal a theory of neu-

ronal tuning, let alone function. Understanding requires an accurate predictive model that, 

arguably, must additionally be succinct and mechanistically grounded. This understanding does 

not automatically result from finding a set of effective stimuli or fitting a statistically accurate 

encoding model. In the end, stimulus selectivity is an abstraction and probably only one facet of 

visual neuron function. Selective responses must ultimately account for the behaviors of the ani-

mal whose brain is under study. In Chapter 3, I explore the response properties of visual neurons 

during more natural behavior. 
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Methods 

Experimental subjects 

All procedures were approved by the Harvard Medical School Institutional Animal Care and Use 

Committee and conformed to NIH guidelines provided in the Guide for the Care and Use of La-

boratory Animals. Nine adult male macaca mulatta (5–13 kg; 3–17 years old) and two adult male 

macaca nemestrina (13 and 15 kg, 12 and 14 years old) were socially housed in standard quad 

cages on 12/12 hour light/dark cycles. 

Surgical procedures 

Monkeys were implanted with custom-made titanium or plastic headposts before fixation train-

ing. After several weeks of fixation training, the animals underwent subsequent surgeries for ar-

ray or chamber implantation. All surgeries were done under full surgical anesthesia using sterile 

technique. 

Behavioral task and stimulus presentation 

Monkeys fixated on a fixation spot in exchange for regular juice rewards. Eye position was mon-

itored using infrared eye trackers (ISCAN, Woburn, MA). During fixation, stimuli were pre-

sented rapidly in pseudorandom sequence on an LCD monitor 50–60 cm in front of the monkey. 

The typical presentation duration and inter-trial intervals were between 100–200 ms, depending 

on the dynamics of neuronal responses; the typical stimulus size was 4–8 degrees of visual angle. 

Experiments were controlled using the NIMH MonkeyLogic2 software (Hwang et al., 2019). 

Neuronal recording 

Single- and multi-unit activity was recorded using chronically implanted intracranial electrode 

arrays or, in one monkey, using an acute electrode inserted daily in a recording chamber. The 

chronic arrays included Utah arrays (Blackrock Microsystems, Salt Lake City, Utah), floating 
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microelectrode arrays (MicroProbes, Gaithersburg, MD), or microwire brush arrays (McMahon 

et al., 2014; Porada et al., 2000) (MicroProbes). The acute electrode was a 32-channel NeuroN-

exus vector array (Ann Arbor, Michigan). Neural signals were amplified, digitized, and recorded 

using OmniPlex (Plexon, Dallas, TX) or Blackrock (Salt Lake City, Utah) data acquisition sys-

tems. Neuronal spiking responses were counted in a stimulus onset-aligned response window 

that typically started at 50–100 ms and ended at 150–250 ms after stimulus onset. 

Generative adaptive search (XDream)  

The source code of XDream is available at https://github.com/willwx/XDream. XDream com-

prised a generative neural network and a black-box optimization algorithm in a modular process. 

Pre-trained generative networks (Dosovitskiy & Brox, 2016) were obtained from the authors’ 

website and used without further training. The generative network was originally trained with the 

Caffe library (Jia et al., 2014) in Python and subsequently ported to the PyTorch library (Paszke 

et al., 2019) for ease of use. The generative network was a function mapping from a numerical 

vector (‘image code’) to a 256 × 256 × 3 color image. In the majority of experiments, we used 

the ‘fc6’ variant of the generative network trained on ImageNet. The input image code to this 

model was a 4096-dimensional vector. We also used seven other variants in the family of genera-

tive models and an instance of the fc6 variant trained on a different image set, Places365 (Zhou 

et al., 2017). 

The optimization algorithm was a custom genetic algorithm. For concreteness, we de-

scribe the algorithm with a typical set of parameters. Each generation consisted of a population 

of 20 image codes. Their corresponding image responses were exponentially transformed into 

probability weights to determine how frequently each code was selected to produce a progeny in 

the next generation. Each progeny was produced from two parent image codes by selecting a 
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random half of the vector elements from either parent. Subsequently, a random half of the vector 

elements were mutated by adding a random value drawn from a zero-centered Gaussian with a 

standard deviation of 0.5. In in silico experiments, we compared the genetic algorithm to two 

other black-box optimization algorithms: finite difference gradient descent and natural evolution 

strategies (Wierstra et al., 2014). We found the genetic algorithm to perform better in noisy con-

ditions that were more relevant for neural recording. Subsequent extensions of XDream used an 

empirically faster algorithm based on CMA-ES (Hansen et al., 2003; Loshchilov, 2014; Wang & 

Ponce, 2021). 

Initial generation 

The initial generation of image codes was 40 achromatic textures constructed from a set of Por-

tilla and Simoncelli textures (Portilla & Simoncelli, 2000) for the initial set of 46 evolution ex-

periments. The textures were derived from randomly sampled photographs of natural objects on 

a gray background. We optimized image codes to minimize pixelwise loss between the synthe-

sized images and the target images using backpropagation through the generative network. The 

resulting image codes produced blurred versions of the target images, which was expected from 

the pixelwise loss function and accepted because the initial images were intended to be quasi-

random textures. In in silico experiments, the initialization was random vectors drawn from diag-

onal multivariate Gaussian distributions, with the parameters (mean and standard deviation) 

matched to the training distribution for the generative networks. Because the in silico experi-

ments showed that optimization did not depend strongly on the initialization (Xiao & Kreiman, 

2020) we used both initialization schemes above in further neurophysiological experiments. 
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Reference natural images 

Most of the images were from a previous study (Konkle et al., 2010). Human and monkey im-

ages were from our lab, and the rest of the images were from public-domain databases. 

Models and layers in in silico experiments 

We selected several state-of-the-art convolutional neural networks as target models. The net-

works were pre-trained on the ImageNet dataset except for PlacesCNN, which was trained on the 

Places dataset. In each model, we tested what were approximately the early, middle, and late pro-

cessing stages as well as the output layer. One hundred units were randomly selected from each 

layer. In convolutional layers, we selected the center spatial position for a feature channel. We 

used the following networks and layers: CaffeNet and PlacesCNN: conv2, conv4, fc6, fc8; Res-

Net-152-v2: res15_eletwise, res25_eletwise, res35_eletwise, classifier; ResNet-269-v2: 

res25_eletwise res45_eletwise, res60_eletwise, classifier; Inception-v3: pool2_3x3_s2 reduc-

tion_a_concat reduction_b_concat, classifier; Inception-v4: inception_stem3, reduction_a_con-

cat, reduction_b_concat, classifier; Inception-ResNet-v2: stem_concat, reduction_a_concat, 

reduction_b_concat, classifier. CaffeNet and PlacesCNN were variants of AlexNet (Jia et al., 

2014; Krizhevsky et al., 2017; Zhou et al., 2017). ResNet was developed by He et al (He et al., 

2016). Inception-v3, Inception-v4, and Inception-ResNet were developed by Szegedy et al 

(Szegedy et al., 2017; Szegedy et al., 2016). 

Stochastic neuron models 

Let y be the activation value of an artificial unit. The activation value corrupted by stochastic 

noise was drawn from Poisson(max(0, γ)), where the rate parameter γ was analogous to the num-

ber of spikes of a neuron and equaled y times a constant scaling factor. We used a scaling factor 

because the signal-to-noise ratio of a Poisson process increased with the rate of the Poisson 
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process, but different network architectures and layers produced activation values of different 

scales. We used a scaling factor of 20 / y*, where y* was the median max activation to random 

sets of 2500 ImageNet images, and 20 was a realistic number of spikes a biological neuron might 

fire to a preferred stimulus within a response time of 200 ms. 

Substitute model-based synthesis 

In the pilot experiments, we fit a substitute model using AlexNet fc6 layer representations to lin-

early predict neuronal responses. The linear model was fit using partial least squares with 25 re-

tained components (Yamins et al., 2014). We optimized the input to this substitute model using 

backpropagation. We tested three levels of regularization in the optimization process. In the 

‘pixel optimized’ condition, the pixel values in the optimized stimuli were directly updated by 

following the gradient direction maximizing model responses. With the ‘jitter’ regularization, the 

input image was shifted by a small, random amount at each iteration of optimization, to combat 

high spatial frequency features that would strongly excite the model but would be unlikely to af-

fect biological vision (Olah et al., 2017). In the ‘code optimized’ condition, backpropagation was 

extended through a GAN (the same underlying XDream) to optimize an image code instead of 

pixel values. 

In further experiments, the model was based on a pretrained ResNet-101 at the layer, 

‘mdl_block4_unit_3_bottleneck_v2.’ The linear mapping model was continually updated online 

in a closed loop with neuronal recording, using the responses collected so far. The linear map-

ping procedure followed that described by Klindt et al. (Klindt et al., 2017). Briefly, the linear 

mapping weights were factorized into a 2D spatial weight and a 1D featurewise weight to apply 

to the 3D model features per image. These weights were optimized using stochastic gradient de-

scent. The loss function was an L2 loss on the prediction error plus the following regularization 
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terms: an L2 and a Laplacian smoothness loss (Klindt et al., 2017). Image synthesis was done us-

ing the Lucid library (Lucid Authors, 2019) with the following regularizations: jitter, parameter-

izing the image by its Fourier transform, decorrelated color channels, and power spectrum decay. 

Human psychophysics 

Behavioral experiments were conducted on Amazon Mechanical Turk using psiTurk (Gureckis et 

al., 2016). Participants provided informed consent and received monetary compensation for par-

ticipation in the experiments. Experiments were conducted according to protocols approved by 

the Institutional Review Board at Boston Children’s Hospital. Each subject completed only one 

experiment. The order of image presentation was randomized in all experiments. Images were 

presented in color at a size of 256 × 256 pixels. We did not monitor eye movements on the online 

platform, but the images were flashed for 200 ms, thus minimizing the effects of eye movement 

during image presentation. There was no time limit to respond in any of the experiments. No 

feedback was provided. 

Semantic similarity 

Word similarity was quantified by Wu-Palmer (WP) semantic similarity (Wu & Palmer, 1994) or 

a metric based on LexVec word embeddings (Salle et al., 2016). Given two words w1 and w2, the 

WP similarity (WPS) was calculated as WPS = depth(LCS(w1, w2)) / (depth(w1) + depth(w2)), 

where depth corresponded to the number of nodes from the top to arrive at the word in the Word-

Net hierarchy (Miller, 1995) and LCS corresponded to the least common subsumer, i.e., the most 

specific shared category. WP similarity ranged from zero (no relation) to one (identity). In the 

WordNet hierarchy, a word could have multiple hierarchical definitions; the highest WPS over all 

definitions was used. LexVec word embedding mapped each word to a vector such that the vec-

torial dot product between two word vectors approximated the log odds (i.e., enhancement in 
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probability) on one word occurring given that the other word occurred nearby. We used precalcu-

lated word embeddings from Salle and Villavicencio (Salle & Villavicencio, 2018) that repre-

sented each word as a 300-dimensional vector. LexVec similarity between two words was 

calculated as the dot product between two word vectors; thus, the value could be interpreted as 

approximate log odds as defined above. The log odds were lower-bounded by zero, so the mini-

mum dot product value was approximately zero. 

Entropy in mouth clicks 

Entropy was calculated by putting x and y coordinates of click locations into 121 bins (11 × 11 

grid on the image). For each bin i in an image, the click probability pi was calculated as the num-

ber of clicks in the bin divided by the total number of clicks on the image. The entropy for each 

image was calculated as Sumi (−pi log pi). 

Statistical tests 

Unless otherwise noted, we used pairwise permutation tests by permuting image assignment to 

categories for 10,000 permutations. P-values associated with Pearson’s r were calculated using 

the exact distribution for the null hypothesis that the two variables were drawn from a bivariate 

normal distribution with zero covariance, as implemented in the Python library ‘scipy’ (Virtanen 

et al., 2020). One- or two-tailedness of tests and other statistical tests were noted in the text and 

were implemented using the Python library ‘scipy.stats.’ P-values for multiple comparisons were 

corrected to control the false discovery rate at the level of 0.05 using the two-stage Benjamini–

Krieger–Yekutieli procedure (Benjamini et al., 2006) as implemented in the Python library ‘stats-

models’ (Seabold & Perktold, 2010). 



3 Responses of ventral visual neurons during natural viewing 

Introduction 

Vision research typically uses tightly controlled experiments to isolate aspects of visual pro-

cessing for detailed study. For example, a common way to study visual selectivity is the rapid se-

rial visual presentation (RSVP) task described in Chapter 2. In this task, subjects must hold 

fixation to view images shown in quick succession. The stimuli are usually simple patterns or ob-

jects, and the presentations are typically brief and randomly ordered to focus the investigation on 

the first pass of feedforward processing isolated from history and context (DiCarlo et al., 2012). 

Controlled experiments imply trade-offs between, on the one hand, the simplicity of the 

visual processes involved, the tractability of forming hypotheses, and the intuitiveness of inter-

preting results and, on the other hand, the applicability of the results to real-life behavior. Natural 

vision contrasts starkly with conventional, controlled studies in many ways. Animals use their 

eyes to extract behaviorally relevant information from scenes dense in information. It is likely 

that only select aspects of the entire scene image shone onto the retina are analyzed at each mo-

ment, contingent on the task at hand or the prevailing mental state. That we do not see—i.e., we 

cannot report or act on—everything projected into the eyes is evident in perceptual phenomena 

such as change blindness and inattentional blindness. Natural vision is further active, dynamic, 

and recurrent. We sample the visual scene over many eye movements in an interactive process 

unfolding over time. The history and context of viewing affect processing; adaptation alone can 

impact processing over seconds (Solomon & Kohn, 2014). This embodied nature of vision chal-

lenges the premise that there is a well-defined ‘the first hundred milliseconds of visual pro-

cessing’ to study, an assumption undergirding task paradigms using randomly flashed images. 
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The considerable differences between natural and laboratory vision matter because they 

increase the possibility that experimental findings may not translate well to explaining visual 

processing in its natural context. For example, neuron response properties, such as retinotopic 

spatial specificity, feature selectivity, and response dynamics, may differ under natural conditions 

from when studied under controlled viewing. An example of a gap in explanation is the phenom-

enon of visual stability. Despite frequently moving our eyes, we see the world as stable and un-

moving. Humans and monkeys alike can perform behaviors, such as the multi-step saccade task 

(Hallett & Lightstone, 1976), that need some form of eye movement-invariant information. Ac-

cording to controlled experiments, ventral neurons have retinotopically circumscribed receptive 

fields that move with the eye and thus could provide no neural basis for stable perception. 

Indeed, how we achieve stable vision in the face of constant eye movements is a long-

standing question asked since the times of von Helmholtz, Descartes, and Alhazen (Melcher, 

2011; Wurtz, 2008). Investigators usually employ another tightly controlled task—a guided sac-

cade task—to study the interaction of visual perception with eye movements. Because saccades 

take only tens of milliseconds, studies of visual responses during saccades typically use brief, 

simple stimuli such as light spots, gratings, or letters. These studies have shown that visual sta-

bility involves multiple distinct and synergistic processes (Cavanagh et al., 2010; Melcher, 2011; 

Rolls et al., 2003; Wurtz, 2008). A large part of visual stability is an illusion of absence. Follow-

ing eye movements, we perceive no gap in vision or whole field motion opposite the direction of 

eye movement. Backward masking and saccadic suppression can explain why saccades do not 

momentarily blind or disorient us. Meanwhile, efference copies of the motor signal should ex-

plain why we do not see self-motion as world motion (Matin et al., 1982; Stevens et al., 1976; 

Wurtz, 2008). 
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The positive content of visual stability—a stable representation of what is where—is 

harder to explain. One proposed mechanism for stable perception is neurons that predictively 

remap. Studies have reported frontal, parietal, and superior collicular neurons that have retino-

topic visual responses but respond to stimuli displayed in their future receptive fields before an 

impending eye movement (Duhamel et al., 1992; Umeno & Goldberg, 1997; Walker et al., 1995). 

Some have posited that predictively remapping neurons contribute to visual stability by monitor-

ing congruity between the pre- and post-saccadic scene (Wurtz, 2008). 

Predictive remapping alone is insufficient to account for visual stability. Neurons that ea-

gerly shift their RFs only decouple two changes in time. It is unknown whether or which down-

stream neurons compare the predictive responses to postdictive ones to maintain a stable 

representation. Moreover, studies have probed remapped RFs with simple, often transient stim-

uli. Thus, it is unknown whether remapped RFs exhibit any selectivity necessary for the stable 

representation of what is where. The processing of detailed visual form is specialized to the ven-

tral visual pathway (Ungerleider & Mishkin, 1982), whose output could contain a stable repre-

sentation. Ventral visual processing culminates in the inferior temporal cortex (IT). IT is only 

two to three synapses away from the entorhinal cortex, which contains non-retinotopic gaze di-

rection grid cells (Killian et al., 2012), and the hippocampus, which consolidates episodic 

memory and contains place cells, both plausibly in a gaze-invariant reference frame. 

Previous investigations in ventral visual processing during eye movements have found 

some neurons that predictively remap in V4 (Neupane et al., 2016; Tolias et al., 2001) and far 

fewer in V1 and V2 (Nakamura & Colby, 2002). Others examined the feature selectivity of neu-

rons in V1 and IT and found it to remain retinotopic (DiCarlo & Maunsell, 2000; Livingstone et 
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al., 1996). DiCarlo and Maunsell additionally showed that IT responses had identical dynamics 

during free and passive vision, providing evidence against predictive remapping in IT. 

These studies continued to use simple stimuli in a sparse display. Intuitively, our experi-

ence of the world as stable may rely on recurrent processing of a persistent scene rich in framing 

cues. Visual processing is affected by at least a few seconds of viewing history through adapta-

tion. Active natural vision may recruit additional top-down modulation of visual processing 

(Gilbert & Li, 2013). A few studies have examined visual processing during free viewing of per-

sisting, natural stimuli (McMahon et al., 2015; Podvalny et al., 2017; Rolls et al., 2003; 

Sheinberg & Logothetis, 2001) and have provided evidence for non-classical responses. How-

ever, challenges inherent in interpretating essentially single-trial neuron activity in the face of 

unrestricted eye movements, complex stimuli, and intricate feature selectivity hinder the analysis 

of free-viewing data. Sheinberg and Logothetis (2001) compared object responses during con-

trolled viewing and visual search, when the same objects were embedded into naturalistic back-

grounds. They reported similar selectivity in both conditions but, during free viewing, pre-

fixation anticipatory responses and potential dependence on conscious ‘noticing,’ both absent 

from DiCarlo and Maunsell’s results with simple stimuli. Rolls et al. (2003) used a similar visual 

search task and found differences in the distance from an effective probe at which IT neurons re-

sponded. They interpreted the responsive distance as the receptive field size of IT neurons and 

concluded that it was larger in a uniform (rather than a natural-image) background and when the 

effective stimulus was the target (rather than the distractor) of visual search. McMahon et al. 

(2015) found face neuron responses in anterior IT to be consistent across trials when monkeys 

freely viewed natural movies, although some of the consistency could be due to stereotyped fixa-

tion patterns and position-invariance of the neurons. Podvalny et al. (2017) analyzed 
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electrocorticography responses to real-life stimuli in an epilepsy patient, tracking vision using a 

head-mounted camera-eye-tracker. They found the visual cortical activity to depend on whether 

individual fixations landed near a face and further concluded that responses in the primary but 

not high-order visual cortex varied with fixation duration. None of the studies combined natural-

istic stimuli with detailed characterization of response dynamics, fine-grained feature selectivity, 

and receptive field location. 

I studied the responses of neurons throughout the ventral visual stream as monkeys freely 

viewed images, aiming to evaluate how traditional response properties manifested during free 

viewing. To this end, I designed analyses to detect and quantify retinotopic specificity, response 

latency, spatiotemporal receptive fields, and potential extra-retinotopic responses. Because the 

methods were general enough to encompass a flexible behavioral paradigm, I benefited from 

data collected in retrospective and concurrent experiments by my colleague Saloni Sharma and 

advisor Margaret Livingstone. Their help broadened the scope of the results to many more neu-

rons and areas throughout the ventral stream. 

Results 

We studied monkeys freely viewing natural images and designed analyses to interpret ventral 

visual activity during this naturalistic behavior. The analyses were flexible and robust enough to 

apply to a wide range of experimental conditions. Here we report results summarized over 679 

experimental sessions collected over three years, containing 883 hours of recording from 13 

monkeys making 4.7 million fixations on thousands of natural images. We report results while 

accounting for the heterogeneity in the data. While we recorded from chronically implanted mul-

tielectrode arrays, for simplicity of interpretation, we treated each unit and session as separate 
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and instead reported the mean and spread across monkeys using hierarchical permutation. Statis-

tical tests used non-parametric hierarchical permutation tests. (See Methods for details.) 

 
Figure 3.1. Overview of the free viewing experiment. 
a, A random image was shown in each trial for the monkey to view freely. In a small subset of 
trials, a fixation dot was displayed prior to image presentation.  b, An example eye trajectory is 
shown for one trial. Inset shows eye trajectories across trials for the same image in one experi-
mental session. Each color indicates a trial; dots indicate fixations.  c–e, The distribution of fixa-
tion durations, c, saccade durations, d, and saccade sizes, e. Each thin line indicates one monkey; 
the thick lines indicate the average across monkeys.  f, Example spike rasters and average firing 
rates aligned to stimulus onset for an example neuron. The pink shading indicates the stimulus 
presentation cadence in this session.  g, Average normalized firing rates separately for visual ar-
eas. The n values indicate the total number of neurons/monkeys. 

In each session, a sequence of natural images was presented and repeated in a pseudoran-

dom block fashion (Figure 3.1a). A trial lasted up to 1.5 s in a typical session (410 of 679; range 

0.3–60 s in remaining sessions) and was interrupted if the monkey looked away from the image. 

Images were typically 16 x 16 degrees of visual angle (dva) in size (487 of 679; range 8 × 8–26 

× 26 in remaining sessions). Monkeys performed the free-viewing behavior naturally. Across re-

peats, monkeys examined each picture in varied looking patterns. The basic statistics of the look-

ing behavior were consistent across subjects (Figure 3.1c–e) and matched previous studies on 

similar behaviors (Mitchell et al., 2014; Zhang et al., 2022). An average fixation lasted 248 ± 35 
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ms, while an average saccade took 48 ± 4 ms and subtended 4.9 ± 0.8 dva (all mean ± stdev. 

across subjects). 

While monkeys freely viewed images, we recorded extracellular single- and multi-unit 

activity throughout the ventral visual pathway using chronically implanted multielectrode arrays. 

The recordings spanned six visual areas: V1, V2, V4, and IT in its posterior, central, and anterior 

subdivisions (PIT, CIT, and AIT). Of these, V4, CIT, AIT, and V1 were represented by at least 

two monkeys. Overall, ventral visual neurons were more active during stimulus presentation than 

between trials (Figure 3.1f–g). 

Face-neuron responses were specific to each fixation 

We started to examine how IT responses interacted with eye movements and stimulus content by 

analyzing a subset of our recordings from face-selective neurons. Face neurons respond more 

strongly to face images than to nonface object images presented during passive fixation (Tsao et 

al., 2006). We annotated regions of interest (ROIs) on images to categorize each fixation as face 

or nonface (Figure 3.2a). To allow for the finite receptive field size of IT neurons, we catego-

rized fixations within 2.5 dva of a face ROI as face fixations and the rest as nonface fixations. To 

identify face neurons functionally, we used ‘the zeroth fixation,’ the period right after image on-

set and before the first eye movement on the image. In this period, the appearance of a random 

image placed either a face or a nonface near where the monkey happened to be fixating. Thus, 

vision during the zeroth fixation was comparable to conventional passive viewing experiments. 

We calculated the face selectivity indices (FSI; Methods) of neurons during zeroth fixations us-

ing the responses 0–200 ms after image onset. Face neurons were defined as units recorded from 

four face-patch arrays with FSI of at least 0.2, i.e., at least 50% higher responses to faces than 

nonface. Analogously, we calculated FSI during free viewing using responses 0–200 ms after the 
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end of saccades, i.e., the onset of non-zeroth fixations (‘fixation 1+’). Neurons were similarly se-

lective to faces during the zeroth and non-zeroth fixations (Figure 3.2b). 

 
Figure 3.2. Face-selective responses reflected whether each fixation landed near a face. 
a, Face ROIs were used to categorize fixations, illustrated here for the same example image as in 
Figure 3.1b. The dark shaded regions correspond to face ROIs; each dot indicates a fixation; 
color indicates the categorization of the fixation content (orange, face; blue, nonface).  b, Face 
selectivity was quantified by a selectivity index and compared between the zeroth and subse-
quent fixations. The dashed line is the identity line.  c, Mean responses per category aligned to 
the onset of either the zeroth or subsequent fixations. Each column corresponds to one monkey; n 
indicates the number of neurons; lines and shading indicate mean ± stdev. across neurons; hori-
zontal bars indicate time bins where responses were significantly greater for face than nonface 
responses (p < 0.01, permutation test, FDR-corrected).  d, Non-zeroth fixations were further di-
vided according to their preceding fixations in two-by-two categories. An example saccade is 
shown for each category. Open arrows indicate saccades between the same fixation category 
(blue: nonface-to-nonface; orange: face-to-face). Solid arrows indicate saccades between differ-
ent categories (blue: face-to-nonface; orange: nonface-to-face).  e, Mean responses per saccade 
category for the same neurons as in c. Each subplot shows data from one monkey. Horizontal 
bars indicate time bins where responses were significantly greater for nonface-to-face than for 
nonface-to-nonface saccades (lower bar), or for face-to-face than for face-to-nonface saccades 
(upper bar). Other plotting conventions follow those in c. 

During active vision, face-selective responses began before fixation onset (Figure 3.2c). 

However, the apparent precursory responses could be because a face fixation was often preceded 

by another face fixation. Thus, we split neighboring fixations into four conditions by the 
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categories flanking the intervening saccade (Figure 3.2d). We further restricted our analysis to 

large saccades to alleviate any imprecision arising from arbitrary ROI boundaries. Face neuron 

responses meticulously followed the category of each fixation across a saccade (Figure 3.2e). 

For example, for nonface-to-face saccades, face neuron responses switched from low to high 

within a few tens of milliseconds after fixation onset. While the fixation category explained 

broad trends in response magnitude, it also revealed fine differences. For example, face re-

sponses following another face fixation were lower than face responses following a nonface fixa-

tion (Figure 3.2e; compare dashed orange lines to solid lines in the peak after fixation onset), 

consistent with adaptation effects. Moreover, when comparing nonface-to-face saccades with 

nonface-to-nonface saccades, responses were significantly higher well before saccade onset in all 

monkeys (Figure 3.2e). We could not rule out the possibility that the unexplained differences 

were because our face ROIs were conservative, or our ROI dilation (see Methods) did not fully 

account for neuronal RFs that extended further without an abrupt cut-off. To progress, we looked 

for an analysis that depended less on a precise, binary RF delineation. Furthermore, we sought a 

metric to evaluate neuronal responses whose selectivity was less straightforward to delineate 

with ROIs. 

Ventral visual responses were specific to individual fixations 

The selectivity of ventral visual neurons did not always correspond to well-defined ROIs, and 

even when it did, it was problematic to interpret ROIs assuming binary selectivity. Instead, we 

made use of return fixations to define a self-consistency metric. Primates repeatedly foveate the 

same location above chance frequency under a variety of task contexts, including visual search 

and free viewing (Zhang et al., 2022). Figure 3.3a shows example pairs of return fixations, 

within and between trials, a monkey made during one session. Return fixation pairs should lead 
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to similar responses if neurons encode the retinotopic stimulus content at each fixation. We quan-

tified the self-consistency of responses during return fixations (Figure 3.3b) by calculating Pear-

son’s correlation of responses between every pair of return fixations, across pairs; this 

quantification is analogous to how standard response self-consistency is quantified by the corre-

lation between trials of repeated presentations, across stimuli. To assess temporal specificity, we 

calculated self-consistency for responses at different times relative to fixation onset. The first 

two subplots in Figure 3.3c, corresponding to the purple bars in Figure 3.3b, show the firing 

rates of an example neuron 200 ms before (subplot 1) and after (subplot 2) the onset of return 

fixations. The responses were more consistent after (Pearson’s r = 0.55) than before (r = 0.30) 

fixation onset. For this example neuron, self-consistency was well above zero before fixation on-

set. We realized that fixations close by in time also tended, on average, to be close by in space. 

To account for the spatial correlation between subsequent fixations, we contrasted two rules for 

pairing responses for comparison: pairing responses such that the current fixations (response 

times t ≥ 0) were return fixations (purple in Figure 3.3b), or pairing responses such that the pre-

vious fixations (t < 0) were return fixations (Figure 3.3b). The four subplots in Figure 3.3c illus-

trate responses self-consistency for the example neuron at different response windows and with 

different paring rules. While the responses were similar even before fixation onset (Figure 3.3c, 

first subplot), this similarity was better explained by the previous fixation because the responses 

were more self-consistent when the previous fixation was paired (Figure 3.3c, third subplot) in-

stead of the current one. The converse was true for responses after fixation onset.  
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Figure 3.3. Response self-consistency indicated specificity to each fixation but no stable repre-
sentation across fixations. 
a, Example pairs of return fixations are shown. A return fixation pair is two nearby fixations on 
an image, within a trial or across trials. The dots indicate fixations, color coded by trial. Black 
lines join return fixation pairs within a 1-dva threshold.  b, The schematic illustrates two pairing 
rules for calculating response self-consistency based on return fixations. Orange and blue indi-
cate two fixation sequences. The second fixation in each sequence (denoted i and j, respectively) 
make up a return pair. Neuronal responses aligned to the second fixation onset (purple) are paired 
based on the rule, ‘the current fixation is a return fixation.’ Responses aligned to the third fixa-
tion onset (green) are paired based on the rule, ‘the previous fixation was a return fixation.’  c–e, 
Example data illustrate how we quantified self-consistency.  c, Each dot indicates the firing rates 
(FR) of an example neuron in a return fixation pair. The four subplots correspond to two re-
sponse time bins: 200 ms before (columns 1 and 3) or after (columns 2 and 4) fixation onset; and 
two response pairing rules: paired by the previous or current fixation. Self-consistency was quan-
tified as Pearson’s correlation of paired firing rates across pairs. A small amount of random noise 
was added for visualization purposes only because firing rates were discrete and often over-
lapped.  d, Self-consistency for all neurons in this example session. The x- and y-axes corre-
spond to the two response time bins. Color indicates the response pairing rule (previous or 
current; see b). Within a color, each dot indicates one neuron. The example neuron in c is indi-
cated by square markers. The dashed line is the identity line.  e, Self-consistency time courses 
were calculated using 50 ms sliding response time bins. The lines indicate averages over neurons 
in the example session. Dashed lines correspond to all return pairs (‘default’); solid lines corre-
spond to ‘decorrelated’ return pairs (see text).  f, Decorrelated self-consistency time courses sum-
marized over monkeys and neurons.  g, Self-consistency as a function of the threshold for pairing 
return fixations, separately for visual areas.  h, Cumulative distribution of response latency fol-
lowing fixation onset, separately for visual areas.  i, Comparison of response latency following 
stimulus onset (x-axis) and fixation onset (x-axis). Each dot indicates one neuron; error bars indi-
cate bootstrap stdev. of the latency estimates; color indicates visual area. Grey diagonal shading 
indicates 25 ms, the threshold bootstrap stdev. of latency estimates.  j, Schematics of prediction 
by the null hypothesis of purely retinotopic responses (H0, top) and the alternative hypotheses of 
stable representation (H1, bottom; see text). Colors indicate various measures of response simi-
larity, or self-consistency.  k, Mean self-consistency as a function of time from stimulus onset, to 
compare against the predictions in j. In f, g, h, and k, lines and shading indicate hierarchical 
mean ± bootstrap 95%-CI, first over neurons, then over monkeys. The n values indicate the total 
number of neurons/monkeys. 
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Figure 3.3 (Continued). 
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Most neurons in this example experimental session showed higher self-consistency in the 

response time window corresponding to the paired fixation than in the complementary time win-

dow (Figure 3.3d). This temporal specificity can be revealed in higher resolution by using slid-

ing 50 ms time bins (Figure 3.3e, dashed lines). We devised a further control for the baseline 

self-consistency by decorrelating the non-paired fixation. For each pairing rule (previous or cur-

rent), we sub-selected return fixation pairs such that the fixation during the complementary, non-

paired time period must be separated by more than 4 dva. This decorrelation procedure further 

reduced self-consistency in the unpaired time period (solid lines in Figure 3.3e), but barely af-

fected self-consistency values within the paired time period. We used the decorrelated variant of 

self-consistency in further analyses. The decorrelated self-consistency time course is summarized 

in Figure 3.3f, showing robust specificity to each fixation across monkeys and neurons. 

Return fixation self-consistency furnished a measure for the spatial specificity of neu-

ronal responses during free viewing. We asked how self-consistency depended on the distance 

threshold for defining return fixations. Self-consistency increased with smaller, more stringent 

thresholds, plateauing at 1 dva for anterior IT (AIT) neurons and continuing to increase in central 

IT (CIT), V4, V2, and V1 down to 1/4 dva, the resolution of our eye trackers (Figure 3.3g). 

Thus, ventral visual responses were exceedingly retinotopically precise, despite the relatively 

large sizes of IT receptive fields (Gross & Mishkin, 1977). 

The time course of self-consistency also supplied a measure of response latency during 

free viewing. We estimated the latency of fixation-specific responses as the time point at which 

responses became better explained by the current than the previous fixation, i.e., the crossing 

point between the previous- and current-return self-consistency curves. This latency estimate re-

sulted in typical values that, as expected, increased along the processing hierarchy in the ventral 
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pathway (Figure 3.3h). We could further compare, in the same neurons, the fixation-onset la-

tency and the classical, stimulus-onset latency, using zeroth fixation responses to estimate the lat-

ter (see Methods). For a small subset of neurons, we could estimate both metrics reliably 

(bootstrap stdev. < 25 ms; Methods). The two measures of response latency were similar for the 

same neurons and showed consistent differences across neurons (Figure 3.3i). 

The results so far indicate that ventral visual responses were yoked to individual fixations 

during free viewing. It remains possible that some subtle aspect of responses may integrate 

across fixations to build up a stable representation. We hypothesized that a stable representation 

would manifest as reduced retinotopic specificity over the course of image presentation after 

multiple saccades and that this reduced retinotopic specificity would result in a narrowing gap 

between different measures of response similarity: self-consistency between return fixations, as 

above; response similarity between any two fixations on the same image; and response similarity 

between distant fixations > 8 dva apart (Figure 3.3j, bottom, alternative hypothesis H1). In com-

parison, in the null scenario, responses should remain retinotopic. The null model would predict 

the same retinotopic gap to persist throughout the trial (Figure 3.3j, top, null hypothesis H0). We 

evaluated the three measures of response similarity (i.e., self-consistency) and summarized them 

across all trials lasting 1.5 s (Figure 3.3k; Methods). A roughly constant retinotopic gap per-

sisted among the three self-consistency measures, contradicting the alternative hypothesis of a 

steadily accumulating stable representation. Meanwhile, self-consistency decreased overall 

throughout the trial, an observation not accounted for by the null hypothesis. We speculate that 

this decrease is due to the general decrease in firing rate as the monkeys continued to view the 

same image (Figure 3.3g), consistent with adaptation. 
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Computational models predicted neuronal responses from fixation-aligned stimulus content 

The classical response properties exhibited so far encouraged us to test whether the same image-

computable models applicable to passive viewing (Schrimpf et al., 2020; Yamins et al., 2014) 

could also predict visual responses during free viewing. We fit models to predict fixation-aligned 

responses from a 4 × 4 dva image patch (i.e., 1/16th the area of a 16 × 16 dva stimulus) centered 

on each fixation (Figure 3.4a). A pretrained artificial neural network (vision transformer) 

(Dosovitskiy et al., 2020) converted each image patch into a 1024-D feature vector. From these 

feature vectors, we fit a linear model (Ridge regression) to predict neuronal responses. Model 

performance was evaluated using cross-validation across images. The models explained a large 

fraction of the explainable (i.e., self-consistent) responses, both during the passive viewing-like 

zeroth fixation (Figure 3.4b) and during free viewing (Figure 3.4c). The fraction of responses 

explained peaked at 50% ± 15% during free viewing (median ± stdev. across monkeys). This is 

in line with the performance of related models in passive viewing studies, despite the fact that we 

evaluated models on single trial responses, whereas passive viewing studies typically evaluate 

models with trial-averaged responses over multiple repetitions of the same stimulus. 
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Figure 3.4. Computational models captured neuronal selectivity to individual fixations and re-
vealed the spatiotemporal structure of receptive fields. 
a, We adapted computational encoding models of visual neuronal responses to free viewing data. 
The model comprised a pretrained, fixed neural network (NN) feature extractor (vision trans-
former; Methods) and a linear mapping fit to neuronal responses. The model inputs were fixa-
tion-centered image patches of size 4 dva in panels b, c or 2 dva (illustrated) in panels d–g.  b, c, 
Cross-validated model performance was quantified by Pearson’s r and compared to the ceiling of 
return fixation self-consistency, separately for fixation 0, b, or subsequent fixations 1+, c.  d, Il-
lustration of model-based inference of neuronal receptive fields (RFs) during free viewing. At the 
fixation indicated by a cross (also in a), the retinotopic image was partitioned into 2-dva small 
image patches. The same partitioning was done for different fixations using the same grid of off-
sets from fixation. The model NN converted each patch to a feature vector. Feature vectors at 
every offset from fixation were evaluated for their fit to neuronal responses (see text). This pro-
cess derived a map of local stimulus ‘correlation’ to neuronal responses.  e, Example RF inferred 
from the zeroth-fixation responses of one neuron, represented as a map of model-based, cross-
validated reverse correlation and quantified by Pearson’s r.  f, Example spatiotemporal RFs in-
ferred from the responses of the same example neuron in e for rolling time bins aligned to sac-
cade onset. The two rows correspond to RFs centered on the starting (RF 1) or ending fixation 
(RF 2) of the saccades.  g, Quantification of RF presence over time and coordinate frames (color 
indicates RF 1, RF 2, or the counterfactual midpoint control; see text), separately for visual ar-
eas. Horizontal bars indicate statistically significant differences from the midpoint control (p < 
0.01, permutation test, FDR-corrected). In b and g, lines and shading indicate hierarchical mean 
± bootstrap 95%-CI, first over neurons, then over monkeys. The n values indicate the total num-
ber of neurons / monkeys. 
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Stimulus-selectivity implied retinotopic receptive fields that shifted with each fixation 

Insofar as the computational models could capture neuronal stimulus selectivity, they provided a 

means to reveal the structure of neuronal receptive fields (RFs) during natural vision. The RF 

corresponds to a spatiotemporal section in the visual input that explains a neuron’s responses. To 

localize this explanatory section, we reasoned that stimulus contents within the RF should allow 

a model to predict neuronal responses, whereas stimulus contents outside the RF should not al-

low for significant prediction. Therefore, we partitioned the visual scene centered on each fixa-

tion into a grid of small, overlapping image patches 2 × 2 dva in size and separated by 1 dva 

intervals (Figure 3.4d). The small patch at a fixed offset from each fixation provided the input to 

a computational model for predicting neuronal responses. Each different offset corresponded to a 

different model that competed in predicting the same responses. The resulting map of model per-

formance at different offsets from fixation would indicate the spatial extent of a neuron’s RF. 

Empirically, we found it helpful to further regularize this process by sharing model coefficients 

across offset locations (see Methods for details), resulting in a metric reminiscent of reverse cor-

relation. Using simulated responses, we validated that this model-based, cross-validated reverse 

correlation procedure for inferring RF structure could recover the location, size, and shape of 

ground truth RFs generating simulated responses (Figure 3.5). 
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Figure 3.5. Validation of model-inferred RFs using simulated activity. 
Stimulus-selective activity was simulated using the behavior data from one example session, 
then submitted to the model-based RF inference analysis. The simulated responses represented 
purely retinotopic RFs, a different one per row. The simulation used a weighted combination of 
the model representation of 2 × 2 image patches. The first column illustrates the image patches 
and weights underlying each set of simulated responses. Response simulation and RF inference 
used different models (ResNet-50 and Vision Transformer). The responses were simulated to 
have zero latency relative to eye position. See Methods for details. The second column corre-
sponds to Figure 3.4e. The third column corresponds to Figure 3.4f, with two extra rows visual-
izing two counterfactual controls. Row 3 corresponds to evaluating the RF at a point equidistant 
to the pre- and post-saccadic fixation point. Row 4 corresponds to the midpoint control described 
in the main text. 

Figure 3.4e shows the RF inferred from responses 0–200 ms following zeroth fixations 

for an example neuron recorded in central IT. The map showed a focal region of high correlation; 

the location and extent of this region were consistent with traditionally mapped RFs from dedi-

cated mapping experiments with this chronically recorded site. Across recording arrays, our RF 

inference method recovered zeroth-fixation RFs that matched traditionally mapped RFs. The 

model-based RF mapping procedure allowed us to examine the dynamics of RF remapping 
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directly during free-viewing behavior with naturalistic stimuli. We evaluated RFs for rolling re-

sponse time bins aligned to saccade onset. The RF was centered alternatively on the fixation 

point before or after the saccade (FP 1 or FP 2). To aid in disambiguating the RF in the two coor-

dinate frames: RF 1 or RF 2, we included only large saccades (> 5 dva) in this analysis. Figure 

3.4f shows the two sets of inferred spatiotemporal RFs for the same example neuron in Figure 

3.4e. When a clear RF was present, it was focal in one of the two fixation-centered coordinate 

frames. The RF evidently shifted from FP 1 to FP 2 in the response time bin 75–125 ms follow-

ing saccade onset, consistent with the typical latency in central IT and an average saccade dura-

tion of around 50 ms. 

To summarize the time course of RF shifts across sessions, we quantified the clear pres-

ence of an RF using its consistency across cross-validation splits, regularized via 2D Gaussian 

fits (Figure 3.4g; Methods). We quantified each time bin and RF coordinate frame independently 

to capture any potential shifts in the RF that could be non-parallel to the saccade (Neupane et al., 

2016; Tolias et al., 2001; Zirnsak et al., 2014). The conclusions did not change if we quantified 

saccadic RFs by their consistency to RFs from the zeroth fixation. Across visual areas, RF pres-

ence was clearest in the time period corresponding to the anchoring fixation, i.e., before the sac-

cade for RF 1 (green in Figure 3.4g) and after the saccade for RF 2 (purple in Figure 3.4g). 

Evidence for the two RFs crossed over at times broadly consistent with classical response laten-

cies that increased along the processing hierarchy. Nonetheless, in some visual areas, there was 

an above-zero baseline before the saccade (RF 2) or after it (RF 1), reminiscent of the above-zero 

baseline in the self-consistency time course (Figure 3.3). The baseline could indicate predictive 

RF remapping; alternatively, the baseline could reflect correlations in stimulus features that the 

saccade size criterion did not eliminate. To distinguish these two possibilities, we included a 
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control by inferring counterfactual RFs anchored on the midpoint between FPs 1 and 2. The mid-

point control would capture any stimulus features that were shared near FPs 1 and 2 as well as 

between them. Across visual areas, the evidence for RF 1 and RF 2 significantly exceeded the 

evidence for the counterfactual midpoint RF only in the time period of the corresponding fixation 

(Figure 3.4g; one-tailed permutation test results indicated as horizontal bars). Thus, our results 

did not indicate predictive remapping of stimulus-selective RFs along the ventral visual pathway. 

Discussion 

We studied neurons along the ventral visual cortex, one of two major cortical visual pathways in 

primates, while monkeys freely viewed natural images. We aimed to design robust analyses that 

could uncover the general principles governing visual responses during this unconstrained be-

havior. We found that neurons in the ventral visual pathway maintained their feature selectivity, 

yoked their responses to eye movements, and responded with classical latencies following fixa-

tion shifts. When monkeys viewed images containing faces, face neurons responded more 

strongly when the monkey fixated near faces than further away, and the responses refreshed after 

each gaze shift (Figure 3.2). Neurons responded consistently during fixations on similar loca-

tions (Figure 3.3a–d). This consistency evinced high spatial precision (Figure 3.3g) and classi-

cal response latencies (Figure 3.3e, f) that increased along the ventral processing hierarchy 

(Figure 3.3h, i). Throughout the 1.5 seconds an image remained on screen, neuronal responses 

remained tightly linked to the present fixation and did not become invariant to gaze (Figure 3.3j, 

k). Synthesizing these principles in computational models, we could explain a significant frac-

tion of single-trial, stimulus-selective neuronal responses (Figure 3.4a, b). Using these models 

as a pivot, we factorized out stimulus selectivity to reveal the detailed spatiotemporal structure of 

neuronal receptive fields (RFs) during free viewing (Figure 3.4c–g). The inferred RFs 
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corroborated response self-consistency to show that ventral neurons responded to a local part of 

the retinotopic space with classical dynamics and spatial scale. 

Our results accord with the textbook model of ventral visual neurons as retinotopic fea-

ture detectors. Studies have established this model through controlled experiments that deliber-

ately limit spatial and temporal context and exclude eye movements. This simplifying model also 

accounted for our data during more natural viewing conditions. Indeed, there was no fundamen-

tal mismatch between our results and the conventional understanding of ventral vision as long as 

we invoked adaptation to explain the general drop in firing rates and selectivity during the trial 

(Figure 3.1g, Figure 3.3k). Prior studies reached the same conclusion but used minimalist stim-

uli (DiCarlo & Maunsell, 2000) or coarser analyses (Livingstone et al., 1996). Others who stud-

ied more natural viewing conditions (Gallant et al., 1998; McMahon et al., 2015; Podvalny et al., 

2017; Sheinberg & Logothetis, 2001) often hint at non-classical responses but did not decisively 

challenge or revise the conventional view of visual processing. 

We closely examined one candidate non-classical response property, that of predictive re-

mapping. Predictive remapping refers to the anticipatory updating of retinotopic receptive fields 

before the eye moves. Studies have reported predictive RFs primarily in dorsal cortical and sub-

cortical areas such as the lateral intraparietal area (Duhamel et al., 1992), frontal eye field 

(Umeno & Goldberg, 1997; Zirnsak et al., 2014), superior colliculus (Walker et al., 1995), area 

MST (Inaba & Kawano, 2014), and area V3A (Nakamura & Colby, 2002). By comparison, evi-

dence for predictive remapping is limited in the ventral visual cortex. Primarily, studies in V4, a 

mid-tier region in the ventral stream, have reported transient non-retinotopic visual responses 

during eye movements consistent with predictive remapping (Neupane et al., 2016; Tolias et al., 

2001). These findings appear to conflict with our conclusions that there was no evidence of 
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anticipatory remapping of feature-selective responses throughout the ventral visual pathway. 

However, we think our results are reconcilable with previous evidence in V4. Our study differs in 

several aspects from studies reporting remapping in V4. Neupane et al. (2016) used a flashed 

probe—a square light spot on a black background. Tolias et al. (2001) used a persistent, cell-spe-

cific stimulus such as an oriented bar. Both studies showed the probe on an otherwise empty dis-

play and varied the stimulus location but not the identity. Instead, we studied vision in dense, 

persistent visual scenes that continuously stimulated neurons in their classical RFs. Thus, we 

quantified how neuronal responses corresponded to stimulus content instead of evaluating the 

presence or absence of responses as a function of stimulus location. It is unknown whether the 

predictively shifting RFs in previous studies show the same feature selectivity as the classical 

RF. Alternatively, shifting RFs could solely indicate the presence of a salient stimulus independ-

ent from its content, consistent with their interpretation as a remapped attention pointer (Rolfs, 

2015). Attentional remapping could explain why superior collicular remapping diminishes when 

probed with multiple simultaneous stimuli (Churan et al., 2011), a stimulation condition closer to 

free viewing of dense natural images. The potential interplay among attention, selectivity, and 

stimulation conditions suggests caution when extrapolating from highly controlled experiments 

to explaining vision during natural behavior. 

Indeed, there is no reason to expect that seeing involves a detailed, stable map of visual 

objects. Conscious perception probably does not include a veridical image of the world, with idi-

oms like ‘out of sight, out of mind’ giving voice to this near-truism. Empirical support for the ab-

sence of perfect visual stability comes from findings of change or inattentional blindness (Mack 

& Rock, 1998), memoryless visual search (Horowitz & Wolfe, 1998), and perisaccadic mislocal-

ization (Matin & Pearce, 1965; Ross et al., 2001). Across saccades, people can miss even 
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relatively large object displacements (Bridgeman et al., 1975). However, behaviors like the 

multi-step saccade task (Hallett & Lightstone, 1976) require the subject to maintain some infor-

mation across eye movements. While the nature and content of stable visual perception are un-

clear, existing evidence suggests that the brain may not stabilize the rich representations of 

ventral vision but only maintains some heuristics necessary for performing actions. 

Our analyses have focused on visually driven, stimulus-selective activity. As quantified 

by the average self-consistency for responses in 50 ms bins, the visual stimulus only accounted 

for Pearson’s r between 0.1 and 0.2, or 1–4 % of the variance across trials. These numbers may 

seem small, but to fairly compare them to other studies, it is necessary to control for trial-averag-

ing and response window sizes. More averaging leads to monotonically increasing self-con-

sistency for both averaging across trials and, to an extent, accumulating responses in wider time 

bins. Preliminary analysis controlling for these variables shows that our results are in line with 

the self-consistency values reported in another study recording multiunit extracellular activity in 

macaque V4 during passive viewing (Bashivan et al., 2019) and a published dataset of single-cell 

calcium imaging responses to natural images in mouse V1 (Stringer et al., 2019). Both studies 

still fall short of the ideals of perfectly controlled retinal stimulation and veridical recording of 

single neuron spiking activity. It is possible to do both with existing techniques. Adjusting stimu-

lus position in a closed loop with eye tracking can help closely control retinal stimulation 

(DiCarlo & Maunsell, 2000); alternatively, downstream analysis can compensate for the eye po-

sition (Yates et al., 2021). With high-density CMOS probes such as Neuropixels (Steinmetz et 

al., 2018), it is possible to detect all action potentials of a well-covered single neuron within a 

session. Thus, it is now practical to consider what we can hope to explain as the ceiling of neuron 

response variability for a reliable and objective yardstick of how much progress we have made 
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with quantitative theories of visual neurons. Studying single-trial responses is essential to reveal 

potential vision-orthogonal response dimensions, as trial-averaging implicitly removes all varia-

bility orthogonal to the stimulus identity that defines repeat trials. Instead of noise, this stimulus-

orthogonal variability may encode unexplained variables. Indeed, a recent study found orthogo-

nal dimensions of non-visual activity that multiplexed with visual activity in mouse V1 and cor-

related with uninstructed facial movements (Stringer et al., 2019). It will be interesting to 

examine if the monkey visual cortex similarly codes non-visual variables. More tentatively, a 

fuller consideration of non-visual responses in the visual cortex may lead to a more general un-

derstanding of the broader functions of neurons here. This general understanding may help unify 

existing data attributed to overloaded terms like attention and task demands.  

Finally, I wish to underscore the value of studying the brain during natural behavior. Re-

ductionist experiments can isolate and illuminate the mechanisms of cognition as long as the iso-

lated facets reflect how the brain operates during natural behavior. The brain evolved for 

behavior, with which neuroscience should start and end (Krakauer et al., 2017; Leopold & Park, 

2020). Natural behavior is a source for generating hypotheses and should be the final test for 

principles gleaned from controlled experiments. As Mark Twain famously wrote, ‘Truth is 

stranger than fiction.’ The coping strategies evolution discovers can often defy the neat theories 

preferred by the human mind. Instead, the brain’s rich natural activity may provide a starting 

point for bootstrapping answers to the twin questions: What problems is the brain solving? And, 

How? One informative analysis might be quantifying the ‘reliable information’ shared by a neu-

ral population (Stringer et al., 2019), definable even without measuring behavior. I speculate that 

it would be an informative line of inquiry to first identify shared patterns of activity in large pop-

ulations of (visual) neurons during (visual) behaviors and to subsequently find the grounding of 
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those activity patterns in external observables and eventually in a computational problem (Marr, 

1982). It may be debatable whether free viewing without an explicit task represents natural, eve-

ryday vision, but it at least forms a component of broader natural behaviors. I have developed 

flexible analyses that can be applied to unravel visual response properties across brain areas dur-

ing natural behaviors. Modern large-scale recording data may help delineate the even broader 

context of this visual activity. 

Methods 

Experimental subjects 

All procedures were approved by the Harvard Medical School Institutional Animal Care and Use 

Committee and conformed to NIH guidelines provided in the Guide for the Care and Use of La-

boratory Animals. Eleven adult Macaca mulatta (one female, ten males; 5–13 kg; 2–17 years 

old) and two adult male Macaca nemestrina (13 and 15 kg; 12 and 14 years old) were socially 

housed in standard quad cages on 12/12 hour light/dark cycles. 

Surgical procedures 

Animals were implanted with custom-made titanium or plastic headposts before fixation training. 

After several weeks of fixation training, the animals underwent secondary surgeries for array im-

plantation. All surgeries were done under full surgical anesthesia using sterile technique. 

Physiological recording 

Animals were implanted with custom floating microelectrode arrays (32 channels, MicroProbes, 

Gaithersburg, MD or 128 channels, NeuroNexus, Ann Arbor, MI) or microwire bundles (64 

channels; MicroProbes). Each animal received 1–5 arrays throughout data collection spanning 

three years. Neural signals were amplified and sampled at 40 kHz using a data acquisition system 
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(OmniPlex, Plexon, Dallas, TX). Multi-unit spiking activity was detected using a threshold-

crossing criterion. Channels containing separable waveforms were sorted online using a tem-

plate-matching algorithm. 

Behavioral task 

Monkeys performed a free viewing task with a range of parameters. Images were typically pre-

sented at a size of 16 × 16 degrees of visual angle, but some experiments used other sizes rang-

ing from 8 × 8 to 26 × 26 dva. Most experiments used a 1.5 s presentation duration, but some 

experiments used other durations ranging from 0.3 to 60 s. Image presentation was pseudoran-

domly ordered in a block design such that images were repeated when all images had been 

shown once. Image position was randomly shifted each presentation to encourage free looking 

because most monkeys have been extensively trained to fixate. Monkeys were rewarded at ran-

dom intervals with a drop of juice for maintaining their gaze within a window around the image. 

Task control was handled by a MATLAB-based toolbox, NIMH MonkeyLogic (Hwang et al., 

2019). The task-control software monitored and recorded eye position from an infrared eye 

tracker (ISCAN, Woburn, MA, or EyeLink, Ottawa, Canada). Eye tracking was calibrated before 

each session using a projective transform. 

Data preprocessing 

Neural recording was synchronized by TTL events to task control and behavior data including 

eye tracking. Stimulus onset times were refined using a photodiode signal. We measured and cor-

rected for a fixed latency per tracker in the eye signal. Using a motorized model eye attached to a 

potentiometer, we compared the eye position signal recorded as a voltage trace alongside neural 

data to the synchronized behavior data stream to obtain a constant offset. This constant offset 
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was applied before downstream analysis. Fixations and saccades were detected using ClusterFix 

(König & Buffalo, 2014) with default parameters. 

Neuron selection 

Because we recorded from chronic multi-electrode arrays, not all channels contained visually re-

sponsive signals. We elected to include only visually selective units in all analyses. Operation-

ally, we defined visually selective units as those that passed a threshold of r = 0.1 on return 

fixation self-consistency with a 250 ms response window based on either previous or current re-

turn; see the section, Self-consistency metrics below for how this metric was defined. This crite-

rion included 48 ± 23% of units (mean ± stdev.). 

Fixation selection 

Fixations were included in analyses based on the following criteria: 1) the fixation lasted at least 

100 ms; 2) the fixation landed within the image. 

Face-specific analysis 

Face regions of interest were either manually drawn for image sets containing both monkey and 

human faces or detected as bounding boxes using a pre-trained face-detection neural network 

(RetinaFace) (Deng et al., 2020) for image sets containing human faces only. Fixations were 

classified as face fixations if they landed within 5 dva of a face ROI and nonface otherwise. To 

match the face and nonface conditions more closely, we only considered nonface fixations on 

images that contained a face ROI. Face-selectivity index (FSI) was calculated using the re-

sponses 0–200 ms from stimulus onset (‘fixation 0’) or fixation onset (‘fixation 1+’) as (a – b) / 

(a + b), where a and b corresponds to face and nonface fixation responses, respectively. We re-

stricted the face-specific analysis to three monkeys with face-patch arrays and only those units 
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with an FSI > 1/3 based on fixation 0 responses. Responses were normalized per neuron to the 

95th percentile across fixation types (0 or 1+), categories (face or nonface), and time points. 

Return fixation self-consistency 

In standard controlled viewing experiments, self-consistency is typically defined using the split-

half correlation of trial-averaged responses conditioned on stimulus identity. We generalized this 

metric to free viewing. First, we relaxed trial-averaging by considering ‘single-trial’, i.e., single-

fixation, responses. Second, we considered return fixations to be analogous to repeated presenta-

tions. In the ‘default’ setting, all fixations on the same image in each session were paired based 

on a proximity threshold, typically 1 dva. Two adjacent fixations tended to be close by (Figure 

3.1e), leading to nearby locations in the non-paired fixation. To reduce this correlation in the 

non-paired fixation (i.e., the preceding fixation when the ‘current’ fixation was paired and the 

subsequent fixation when the ‘previous’ fixation was paired), we further sub-selected return fixa-

tion pairs where the non-paired fixation was separated by > 4 dva. Neuronal responses were 

aligned to fixation onset and paired based on the corresponding fixations. Responses were calcu-

lated using either the 250 ms before and after fixation onset or using rolling 50 ms time bins with 

25 ms steps. Self-consistency was quantified by Pearson’s r. 

In Figure 3k, we computed variants of self-consistency conditioned on different notions 

of repeat trials. ‘Same image’ self-consistency compared all fixation pairs within the same image, 

across images, regardless of fixation location. ‘Distant fixation’ self-consistency compared all 

fixation pairs that were > 8 dva apart. In this analysis, responses were aligned to stimulus rather 

than fixation onset and computed in 250 ms time bins with 125 ms steps. Every fixation was as-

signed by its onset time to one time bin; a time bin may contain multiple fixations. Two time bins 

were compared if they contained any fixations that matched a fixation pairing rule. 
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Estimates of response latency 

Fixation response latency was estimated as the first time point on either side of time 0 that the 

‘current’ return fixation self-consistency exceeded the ‘previous,’ both using decorrelated return 

fixation pairs. To estimate stimulus-onset response latency, we elected to use self-consistency in-

stead of the traditional average firing rate to be more comparable to the fixation-onset latency. 

Self-consistency captured stimulus selectivity, whereas average firing rate may include non-spe-

cific onset transients and indeed resulted in systematically lower latency estimates. We calculated 

return fixation self-consistency using zeroth fixations exclusively. Response latency was esti-

mated as the closest time point on either side of time 0 that the self-consistency time course 

crossed from below to above a threshold, which was in turn based on the average of the 2.5th and 

97.5th percentiles of the self-consistency time course. For all self-consistency metrics, bootstrap 

estimates were obtained by sampling fixation pairs with replacement. We estimated latency sepa-

rately for each self-consistency bootstrap sample to obtain a bootstrap distribution of latency es-

timates. In Figure 3k, we included only units that had both well-estimated latencies based on 

several quality control criteria: 1) bootstrap stdev. < 25 ms; 2) bootstrap bias < 12.5 ms; 3) peak 

self-consistency > 0.1; 4) crossing point was unique for 100 ms on either side. 

Encoding model of neuronal responses 

Image patches were embedded in model features space using a pre-trained Vision Transformer 

(ViT) (Dosovitskiy et al., 2020). We used the model instance, ‘vit_large_patch16_384’ in the Py-

thon library ‘pytorch image models’ (Wightman, 2019) and features extracted from the layer, 

‘blocks.10.norm1’. To efficiently fit encoding models, we pre-calculated and cached the model 

representation of images using a discrete sampling grid, either 4 × 4 dva patches in 1 dva steps 

for fixation-centered models (Figure 4a–b), or 2 × 2 dva patches in 0.5 dva steps for inferring 
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receptive fields (Figure 4c–f). Patches extending beyond the image extent were padded with 

gray. The feature embedding was average over the sequence dimension in the ViT layer to result 

in a 1024-dimensional feature vector. Each fixation was digitized into the closest bin to obtain 

the feature vector of the corresponding image patch. Responses were calculated per fixation us-

ing a 50 ms window aligned to fixation onset. A Ridge regression model was fit to map between 

fixation-aligned model features and neuronal responses, with the regularization parameter alpha 

= 5500. The linear mappings were fitted and evaluated using five-fold cross-validation across 

images so that no return fixations were present in both the training and testing sets. 

Model-based inference of receptive field structure 

At each fixation, a grid of 2 × 2 dva image patches was extracted on a fixation-anchored grid of 

offset locations, from -7 to 7 dva in 1 dva steps. Each image patch was converted into a 1024-D 

model embedding vector, resulting in a 15 × 15 × 1024 retinotopic stimulus representation akin 

to a multichannel image. At each of the 15 × 15 = 225 offset locations, a separate encoding 

model was fit and evaluated across fixations and cross-validated over images as described above. 

This process resulted in a 15 × 15 × 5 map of model performance per cross-validation (CV) split. 

To further regularize this map, we took the 1024-D model weights from the location of 

peak performance per CV split. The model weights were applied to held-out fixations to project 

each 15 × 15 × 1024 fixation-centered stimulus representation to a 15 × 15 scalar map, akin to a 

grayscale image, that was private to each neuron, response window, and CV split. These scalar 

maps were correlated to fixation-aligned neuronal responses, a process analogous to reverse cor-

relation. The correlation was performed either across CV splits to obtain a single map per condi-

tion, or within each split for later comparison across splits as described below. Maps were 
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clipped at 0 because negative correlation indicated over-fitting; and squared because it resulted in 

better Gaussian fits (described below). 

To quantify the clear and consistent presence of receptive fields (RFs), we fitted a Gauss-

ian distribution to the inferred RF per CV split, then evaluated the goodness-of-fit on the 15 × 15 

RF map from other splits. Goodness-of-fit was quantified with Pearson’s r and averaged over 5 × 

4 pairs of splits (the pairs were directional because only one split contributed to the Gaussian fit). 

The process above inferred the spatial structure of an RF and quantified its clear presence 

separately for each neuron and response time window. This process was repeated over neurons, 

separately per response window to allow for potential changes in stimulus selectivity and RF 

structure across time. In Figure 4d, a fixational RF was inferred for the response window 0–200 

ms following fixation onset. In Figure 4e–f, time-resolved RFs were inferred for responses 

aligned to saccade onset in 50 ms rolling response windows from -375–375 ms in 25 ms steps. 

For saccade-aligned RFs, the above process was repeated for two retinotopic coordinate 

frames, anchored on the fixation point either before (F1) or after (F2) the saccade. Saccades were 

selected that were at least 5 dva in size to reduce stimulus feature correlation. Still, there may be 

residual spurious correlations due to finite saccade sizes and autocorrelations in natural images. 

To quantify the empirical baseline RF, we calculated, as a control, a third set of RFs anchored on 

the midpoint passed by the saccade. 

The process above specifies the quantification described in the main text. In the supple-

mentary material, we show implementation detail variants, which do not change the main text 

conclusions. 
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Simulation of responses representing ground-truth RFs 

Each simulated RF was discretized into one or more offset locations in 2 dva steps, to be indexed 

into corresponding 2 × 2 image patches aligned to each eye position sample. Offset locations 

were assigned weights based on a Gaussian decay profile truncated at σ = 2. Responses were 

simulated for each eye position sample at its native 1 kHz sampling rate, although downstream 

analysis would bin responses into 50 ms time bins. A simulated response sample was the 

weighted sum of the model representations of image patches. No stochasticity was added. The 

simulated responses were entered into the same analysis pipeline as described above for real 

data. To prevent trivial generalization from the neural network representations (ViT) underlying 

the RF inference analysis, the simulated responses were based on model embeddings in ResNet-

50 (He et al., 2016) (implementation and ImageNet-pretrained weights from the Python library 

‘torchvision’) at the layer ‘layer3.15.bn2’. 

Average estimates and statistical tests 

In Figure 3.2c and e, normalized responses were averaged over neurons. In Figure 3.1c–e and g; 

Figure 3.3f–h and k; and Figure 3.4b and f, the metrics were first averaged over neurons per 

monkey, then reported as mean ± stdev. over monkeys. The statistical tests in Figure 3.2c, Fig-

ure 3.2e, and Figure 3.4f were one-tailed paired Wilcoxon tests across neurons. P-values were 

corrected to control the false discovery rate at 0.01 using the two-stage Benjamini-Krieger-

Yekutieli procedure.  
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