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Abstract 

Otitis Media (OM) and its sub-categories of pathology are the number one 

pathology in children. Diagnosis is very difficult as it requires visual inspection the 

tympanic membrane of a child, which is in view for only a few seconds during a clinical 

exam. Improving diagnosis requires the transfer of visual insights which is a complex 

learning and training task.  

A validated method to understand visual task insights has been to use eye-tracking 

as a surrogate for neural attention. Eye tracking data can be represented in the form of a 

heat-map or a visual saliency map. Considering the power and benefits of using state-of-

the-art Machine Learning techniques in diagnosing visual pathology, our purpose is to 

derive a heat-map from a Machine Learning algorithm that acts as an "expert", and to 

provide these heat-maps for medical students with the final aim of understanding if this 

improves medical learning, specifically for OM.  

Our results indicate a significant improvement in diagnostic performance when 

showing medical students heat-maps derived from machine learning models, in 

conjunction to traditional teaching tutorials when compared to a control group not 

exposed to the heat-maps.  This research provides a simple, cost-effective proof-of- 

concept framework to enhance the diagnostic accuracy and training speed for medical 

student as well as contribute in bridging the disparity gap in diagnostic accuracy of otitis 

media amongst practitioners.  
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Chapter I. 

Introduction 

Otitis media (OM) encompasses various inflammatory processes, including acute 

otitis media (AOM) and otitis media with effusion (OME) in the middle ear, all with 

different clinical manifestations. It is a relevant pediatric disease as it represents the 

number-one infection in children (Teele et al., 1989) (Schappert, 1992), with an estimated 

80% of children experiencing one episode or more before the age of three (Auinger et al., 

2003). OM contributes to over 6 to 10 million clinic visits and is the primary indication 

for the use of antimicrobials in children (Suaya et al., 2018) (Nelson et al., 1987) 

(Owings et al., 1998).  

When undertreated, the morbidity of OM represents the leading cause of hearing 

loss and surgery in children, associated with billions of dollars annually in costs. Its 

overtreatment is equally problematic as misuse of antibiotics is a leading cause of 

increased resistance and treatment failure.  

Accurate and consistent diagnosis has been problematic. Its error and over-

diagnosis, based on symptoms and signs, is estimated at least to be one-third. 

With the advent of artificial intelligence, new machine-learning algorithms have 

been proposed as a diagnostic alternative to a physician in an effort to increase diagnostic 

consistency and accuracy. 

Several research teams have successfully applied various machine learning 

techniques to diagnose otitis media (Kuruvilla et al., 2013) (Livingstone et al., 2020) 
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(Monroy et al., 2019) (Shie et al., 2014) (Tran et al., 2018) (Wang et al., 2020) (Viscaino 

et al., 2020).  

Recently, a new clinical framework for machine learning algorithms has emerged, 

that of computer aided diagnosis (CAD), in which both physician and the algorithm 

participate in the clinical diagnosis. When evaluating a patient, the physician is presented 

with the algorithms’ prediction and its respective probability. The physician then makes a 

diagnostic decision with these additional data points.  

Several important limitations remain to the widespread utilization of machine 

learning algorithms regardless of their application method. One limitation is that 

machine-learning-based predictions are considered a “black-box” solution. The “black-

box” term refers to the inability to determine the motives to which an algorithm arrived at 

a particular prediction. This is often referred to as model explainability or interpretability.  

Several strategies have been proposed to solve this issue. A widely accepted 

solution is to utilize visual saliency maps or heat-maps which reflect the specific visual 

weights in terms of what the algorithm focuses on each time it makes a diagnostic 

decision. One of the most utilized techniques in this regard is known as Grad-CAM.  

Obtaining a Grad-CAM after a machine learning model has been created is now a 

standard procedure, which resolves in part the model interpretability concerns 

commented on earlier. We now understand the value of deriving heat-maps from a model 

once it converges into a successful algorithm. Evaluating these heat-maps provides trust 

in the specific areas of interests of the algorithm, which helps in avoiding algorithmic 

bias, especially when the data used to generate the model does not represent a 

homogenous population. The algorithm can then be deployed as a binary outcome in 
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conjunction with a physician, creating a successful computer aided diagnostic framework 

(CAD). 

The essence of the CAD method is for the algorithm to be deployed while the 

physician is providing the diagnosis. The physician ultimately decides the outcome but is 

provided with an algorithmic hint in terms of what the algorithm thinks is the correct 

diagnosis. In this context, a limitation of the CAD method is the dependance on the 

algorithm during a clinical visit. This dependance translates into the need for 

sophisticated computer hardware to be at the clinical site, or in the case of a cloud 

deployment method, for the clinic to be tethered to a high-speed internet access which 

would stream the visual findings to the cloud and obtain a predictive outcome in return.  

These limitations are considerable, more so when we consider the role of AI 

which is to provide enhanced medical diagnostics at scale; these limitations could 

increase healthcare inequalities rather than improve them.  

We could solve the deployment issues related to the CAD method by simply 

using the algorithm to train a physician, and then a physician could be deployed at scale 

without any of the above limitations. We know that when we examine the CAD method 

in the context of medical training, the data reveals an increased performance for the 

physician. Therefore, a critical question arises. Can this performance be maintained in the 

absence of the algorithm?  If we could use an algorithm to train a physician, we could not 

only increase a physicians’ diagnostic ability, but perhaps more importantly, we could 

solve the deployment issues related to the CAD method and thus improve all healthcare 

outcomes without the tethered technological dependence. 



 

4 

We have seen therefore the change in the clinical deployment strategies for 

algorithms. Initially, algorithms were deployed to replace physicians, while now they are 

being deployed to work side-by-side with physicians. The final ideal step would be to use 

algorithms to train physicians. 

Our interest therefore converges into how to effectively transfer the insights of the 

algorithm to a physician, in the hopes of improving their own clinical outcomes. Current 

CAD methods utilize binary predictions and considering current experimental setups, it is 

difficult to attribute the increase in diagnostic performance to an actual improvement in 

clinical understanding or learning. The increase performance could be intuitively 

explained by a clinician revising or double-checking their initial diagnosis when a 

mismatch with the model occurs.  

Considering the use of an algorithms predictions is a black-box model, we can 

instead use the model interpretability framework, that of deriving a heat-map, to not only 

evaluate the model when it is being created, but potentially as the key method to transfer 

an algorithms insight to a physician. 

The reason behind why a heat-map could be used as the key resource to transfer 

information relates to how we process visual information and hence neural attention. 

Although our brain sees an image in full, our sensory retina can obtain high 

quality input only via a particular region of the retina called the fovea. Therefore, our 

eyes foveate to capture a scene in high definition. The critical component in this process 

is the order in which our brains determine how to capture a visual scene; this order is not 

arbitrary. In the context of uncertainty and limited time, our brains instruct our eyes to 

first capture the most relevant aspects of a visual scene.  
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The movements of these focal points result in a scan path or attention map. As 

such, eye movements are a proxy of neural attention processing. This neural attention 

process can vary and be optimized based on the visual task at hand.  

For a visual diagnostic task, our brains must be able to guide our eyes towards the 

areas of interest that represent features and targets based on general medical knowledge 

and our prior visual experience. Thus, how we visually scan an image, meaning which 

aspects we fix our gaze on, reveal our understanding of where we think we should seek 

the relevant information for the task at hand.  

This visual scan path can be visually represented in multiple ways, such as by 

blurring out unimported regions of the image, or as in this study, by providing a gradient-

color based heat-map. Importantly, the scan-path we will provide in this experiment is 

derived not from actual human experts but from the machine learning model. 

We hypothesized that by viewing these heat-map, a non-expert can effectively 

understand, transfer, and ultimately acquire new diagnostic experience in contrast to 

traditional learning strategies based on transfer of insights via text. 

To our knowledge, these heat-maps have never been used to understand their 

impact and potential value in the context of medical training, specifically in the context 

of OM.  

Finally, this research is significant because not only can it provide a potential 

proof-of-concept solution to aid in the diagnostic disparity for otitis media amongst 

practitioners, but it can generalize for other diagnostic entities which are now being 

evaluated through the lens of machine learning and CAD strategies.  
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Furthermore, any scenario that enhances algorithmic model explainability, 

ultimately aids in decreasing bias. In an era of increasing reliance on algorithmic 

diagnostics, it is a moral and ethical duty to avoid compounding existing societal 

inequities through algorithms, but rather to utilize these fairly so that they can benefit a 

homogeneous population.
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Chapter II. 

Definition of Terms 

Otitis media (OM): Any inflammatory process of the middle ear. 

Machine learning: The use and or development of computer systems that are able to learn 

and adapt without following human derived instructions, thus obtaining insights from 

patterns and data. 

Computer aided diagnosis (CAD): Computational systems that assist a physician in the 

interpretation of a medical image. Typically, they are deployed in an existing clinical 

framework in which a machine-learning model provides a predictive output which the 

clinician can incorporate into their decision matrix. 

Model interpretability: The process through which a researcher can understand and 

interpret predictions made by a machine learning model. 

Grad-CAM: It is a heat-map derived from a machine-learning model. More specifically, 

it is a gradient-weighted activation map (Grad-CAM) of a machine-learning model. It can 

be the equivalent of a saliency map which reflect the weighted importance of each area of 

interest within a particular image for the given diagnostic model. 
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Chapter III. 

Research Methods 

Participants  

We obtained Harvard IRB approval on September 8th to conduct our 

questionnaire-based study. Data collection occurred at Universidad de los Andes and at 

Universidad de Chile during September 2022. A group of 93 randomly selected medical 

students in their last year of school were chosen and 5 were excluded due to incomplete 

questionnaire data entry. 

Students were randomly divided into two groups of 44 participants each, with an 

equal female-to-male ratio. Individuals were excluded if they reported clinical experience 

in otolaryngology, such as a clinical clerkship or rotation. Clinical experience was an 

excluding factor in order for the experiment to capture the performance change in a 

novice when exposed to the heat-maps derived from a state-of-the-art diagnostic 

algorithm. 

Instrument  

In preparation of the experiment, we utilized existing public datasets of ear 

pathology and normal otoscopic images to derive a state-of-the-art machine learning 

algorithm for diagnosing OM. We then generated a Grad-CAM visual saliency map for 

this algorithm. We inspected the visual Grad-CAM map so that it would reflect well-

known anatomical points that are significant for detecting otitis media. These Grad-CAM 

heat maps were also validated by experts. 
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In terms of the experimental setup, thirty photographs representing otoscopies 

were randomly selected from an existing public clinical archive of ear pathology using 

search terms TM, OME, and AOM. The images were then randomly selected for 

inclusion using a random sampling without replacement approach. These thirty 

photographs were subdivided into two sets of fifteen photographs. 

Each photographic set was used to construct a visual diagnostic questionnaire. 

The two visual diagnostic questionnaires contained different photographs in order to 

avoid re-sampling bias but were symmetrical in terms of the diagnostic categories. As 

such, the questionnaires were composed of five photographs of a normal otoscopy, five 

corresponding to acute otitis media, and five corresponding to otitis media with effusion. 

For each photograph presented, subjects were asked to mark the photograph either as 

normal, acute otitis media or otitis media with effusion. Each correct answer was counted 

as one point, and all 15 questions were summed to provide a final score which we then 

turned into a percentage for further analysis. Correct answers were provided by experts. 

Procedure  

After recruitment, we obtained informed consent as approved by the IRB. Prior to 

beginning the study, subjects were placed into two groups. Placement was conducted by a 

random computer algorithm. Group 1 represents the control group and Group 2 the 

experimental group. Both groups first answered a brief self-reporting knowledge 

questionnaire to ensure they met our inclusion criteria.  

Both groups began the first set of the visual questionnaire (Figure 1 – Page 10). 

The results of this questionnaire were tabulated into our pre-intervention results. This 

allowed us to have an understanding of diagnostic accuracy prior to our intervention.  
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Figure 1. Example of a test question.  

 

After the first questionnaire, both groups continued into a self-paced instructional 

tutorial on middle ear pathology. This instructional tutorial was vetted by an expert panel 

and was constructed based on a traditional teaching framework.  

After the instructional tutorial, Group 2 continued into the experimental 

intervention. We showed Group 2 participants photographs of normal, acute otitis media 

and otitis media with effusion alongside corresponding “attention” maps in the form of 

heat maps (Figures 2-4 – Pages 11-13). 
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Figure 2. Example of a normal otoscopy and derived Grad-Cam Heat-Map.  
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Figure 3. Example of a AOM otoscopy and derived Grad-Cam Heat-Map.  
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Figure 4. Example of a OME otoscopy and derived Grad-Cam Heat-Map.  

 

Both groups finalized with the second set of the photographic survey, and we 

tabulated these as our post interventional results, maintaining each groups’ data separate.  

Data analysis  

The data was maintained in an Excel spreadsheet. Statistical analysis was 

performed using Stata. Our survey results were correspondingly tabulated and listed 

based on pre (questionnaire 1) and post score (questionnaire) results as well as on group 

status. We evaluated our data for normal distribution and then followed up with unpaired 

t-tests to compare the means between both groups, pre-exposure and post-exposure in 

terms of diagnostic accuracy post intervention. Then, we continued with paired t-test to 

compare the means within each group, pre-exposure and post-exposure. 
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Chapter IV. 

Results 

In total, 88 questionnaires were successfully completed across both groups. Each 

group was comprised of 44 medical students, with an equal proportion of male-to-female 

ratio. All medical students were in their last year of medical school. Average survey 

response time was of 6 minutes and 57 seconds. Mean test scores were tabulated and 

presented as percentage ranging from 0 to 100. 

All participants prior to the experiment graded their experience and knowledge on 

OM. When asked if they knew and understood OM, 100 percent of participants 

responded yes.  

Participants were then asked to rate their own level of knowledge from 1-to-10, 

10 being very confident and knowledgeable about the pathology, and 1 having no 

information about the pathology. Average self-assessment rating was of 7-out-of 10. If 

we analyze these assessments by group, the control group average was 7.2 and the 

experimental group average was of 6.8.   

In terms of test scores, both groups averaged 64.36 percent pre-exposure. The 

average post exposure (questionnaire two) for both groups was of 75.53 percent.  

Table 1. Test Scores by Group.  
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Specifically, for the control group, questionnaire one was 66.61 percent followed 

by 71.21 for questionnaire two. For the experimental group, questionnaire one was 62.12 

percent followed by 79.85 percent for questionnaire two (Table 1 – Page 14). 

In terms of assessing the individual pathological entities, across both groups 

correct diagnosis for “Normal” was 73.3 percent, for “AOM” correct diagnosis was 83.3 

percent while for “OME”, correct diagnosis was 46.6 percent.  

We assessed for normal distribution and then proceeded to evaluate the 

differences in performance. To test our hypothesis our interest was to determine if the 

described increase in performance between each group was statistically significant. For 

this, we conducted an un-paired t-test of two tails, with equal variance, to compare the 

difference between each group.  

First, when we compare the control group with the experimental group for 

questionnaire one (pre-exposure), the difference of 4.49 percent was found too not be 

statistically significant. (p = 0.07) at an alpha of 0.05. This is important because it reflects 

equal knowledge level for both groups. 

Table 2. T-Tests Between Groups.  

 

 
 

Second, when we compare the mean test scores for questionnaire two (post-

exposure) between both groups, the difference of 8.64 was found to be statistically 

significant (p = 0.0005) at an alpha of 0.05.  
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This was the critical analysis of the experiment because we expected both groups 

to increase their performance for questionnaire two, but importantly, we expected a 

higher increase for those exposed to the experimental method being proposed. The 

difference is highly statistically significant, hence the group exposed to the novel learning 

technique increased their performance significantly more than the control group.  

We then analyzed the differences within each group. For this, we conducted a 

paired t-test of two tails, with equal variance, to compare the difference within each 

group.  

For the control group, the performance increase from 66.61 percent to 71.21 

percent of 4.60 percentage points was statistically significant (p = 0.0037). For the 

experimental group, the performance increase was from 62.12 percent to 79.85 percent, 

resulting in a delta increase of 17.73 percent. This difference was found to be statistically 

significant (p = 0.000000014). 

Table 3. T-Tests Within Groups.  

 
The statistically significant improvement within each group was expected. Both 

groups were presented with a standard online tutorial explaining the basics of otoscopy 

diagnosis and pathology. As such, our interest was not the direction of the improvement 

per se, but rather the magnitude of the improvement. This magnitude, when compared 

between the groups was also found to be statistically significant.  
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Chapter V. 

Discussion 

Otitis Media 

The ear as a sensory organ can be subdivided into outer, middle, and interior 

portions.  The external ear forms the external ear canal, and the TM divides the external 

ear from the middle ear portion. The TM can be described as a thin membrane of 

connective tissue covered by the skin on the exterior surface and mucosa on the interior 

surface. The TMs' primary function is to transfer sound waves to the middle ear, which 

can be amplified and modulated before passing to the inner ear.  

Any inflammatory process of the middle ear can be described as OM. The nature 

of the inflammation and its acuteness can give way to further sub-types of OM, such as 

otitis media with effusion (OME), adhesive OM, chronic OM, or acute OM (AOM) to 

name a few.  

In a seven-year follow-up study conducted by Teele et al. (1989), they estimated 

that by one year of age, 62% of the children had greater or equal to one episode of acute 

otitis media, and 17% had greater than or equal to 3 episodes. By three years of age, 83% 

had greater than or equal to one episode of AOM. The incidence of OM depends in part 

on climate and other factors such as pollution status and population vaccination level.  

Today, the morbidity associated with OM has decreased due to increased medical 

awareness, vaccination, and widespread adoption of antibiotics. However, given the 

magnitude and risks associated with both under and overdiagnosis of the disease, it 

remains a significant public issue.  
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Clinical Diagnosis of Otitis Media and Challenges 

Considering that the middle ear is not feasible to directly observe, most diagnostic 

criteria derive from visually inspecting a child's TM, as a clinical proxy of the middle ear, 

and inferring OMs' status and diagnostic sub-type.  

More specifically, a clinical examination involves four distinct aspects regarding 

the tympanic membrane: color, position, mobility, and perforation status. Color should be 

typically described as pale gray, while an opaque or blue TM can represent middle ear 

effusion.  

In OME, the position should be either retracted or neutral, while in AOM, the TM 

is frequently bulging. Mobility requires a pneumatic otoscopy assessment of the TM. If 

the mobility of the TM is impaired, this is more consistent with OME. Finally, 

perforations indicate chronic middle ear pathology regardless of infection and 

inflammation status. 

The most basic examination is an otoscopy to visually inspect the TM, in which 

color, position, and perforation can be evaluated. An otoscopy can also be evaluated with 

tympanometry which measures the changes in the acoustic impedance of the TM to 

changes in air pressure. Finally, acoustic reflectometry can be done, which measures the 

reflected sound from the TM. The more sound is reflected, the greater the chance of a 

middle ear effusion.  All these specific visual and tympano-metric data points can be 

accompanied by general signs and symptoms of an infection such as headache, fever, 

irritability, and loss of appetite, as well as otalgia and otorrhea. These visual signs and 

exams are then integrated with the patients’ symptoms and medical history to provide a 

diagnosis. 
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The difficulty in assessing the tympanic membrane status is due to a physical 

limitation in observing it, specifically in the context of a sick child in which observation 

can lasts a few seconds at best. Also, several different medical experts typically establish 

this diagnostic entity. Each one of these has varying degrees of expertise, specifically in 

terms of ear pathology.  

Consistent diagnostic accuracy does not surpass 70% across the wide variety of 

medical professionals who must interphase with this diagnostic entity, including but not 

limited to primary care, pediatric, emergency, and otolaryngology specialists (Pichichero 

et al., 2001) (Pichichero et al., 2002) (Jones et al., 2003) (Young et al., 2009) (Rosenfeld 

et al., 2002) (Wu et al., 2021). 

Bluestone et al. (1979) and colleagues assessed the sensitivity and specificity of 

OM diagnosis between an otolaryngologist and pediatricians. Otolaryngologists have a 

crucial learning advantage in that they routinely practice a surgical procedure called 

"myringotomy," in which the tympanic membrane is surgically incised, and the content 

of the middle ear is observed. This procedure is considered the gold standard in 

diagnosing otitis media.  

The researchers speculated that the visual link between viewing the tympanic 

membrane and the excising of it to view the contents of the middle ear played an 

important visual learning feedback loop. They found that the diagnostic specificity of two 

pediatricians were 25% and 64%, in contrast to 90% of an otolaryngologist. Naturally, 

this was a small observational study. 

There are also, as expected, differences between different physician specialties as 

well as within each group in terms of the respective training experiences. Aronzon et al. 
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(2004) compared differing experience levels between different medical specialties in 

diagnosing OM pathology against the gold standard of surgically obtaining a fluid sample 

of the middle ear. The groups were medical students, internal medicine residents, junior 

resident otolaryngologists, senior resident otolaryngologists, attending otolaryngologists 

and finally a group that provided diagnosis under microscopic evaluation prior to the 

surgical procedure.  

When considering either tympanogram, images, or a combination of both, 

sensitivity was similar between otolaryngologist residents and attendings. The specificity 

between the groups was statistically different. Notably, specificity improved significantly 

with seniority in all cases. Also, less trained physicians were more likely to over-

diagnose.  

We must also consider that an otolaryngologist does not evaluate the majority of 

OM diagnostic cases. The consequence of non-expert consultations results in a significant 

health care burden, either due to excess referrals and patient assessments, or due to 

overdiagnosis and the unwarranted use of antibiotics.  

Machine Learning Algorithms for Diagnosis of Acute Otitis Media 

Machine learning algorithms aimed at improving diagnosis have exploded in the 

past five years. These technological breakthroughs can be explained due to the 

intersection of several advancements. On one end, increased computational power and 

reduced cost have allowed anyone to run state-of-the-art machine-learning techniques. 

Machine learning is heavily reliant on the data set provided in order to provide 

good results. The increasing use of imaging capturing hardware and sensors has resulted 

in an explosion of the available data. Finally, the machine-learning ecosystem is open, 
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and new advancements quickly permeate researchers, enabling quick iterative progress of 

the methods and techniques.  

These machine learning algorithms are typically designed as predictive models 

without an expert participating in their feature design, in contrast to traditional and prior 

generation algorithms based on expert feature design and correlation frameworks. As 

such, current machine-learning algorithms are relatively simple to generate, and their 

power relies on the quality and the quantity of the imaging data to which they are 

exposed. After a model is generated, it can be tested and further perfected on untrained 

data.  

Deep learning is a subset of machine learning in which the learning and training 

process occurs in a sequence of consecutive multi-layer neural networks or nodes 

(modeled after our brain). 

In the case of Otitis Media, hundreds of algorithms have been proposed to date. 

The most advanced state-of-the-art algorithms can accurately diagnose over 90% of new 

unseen cases. Livingstone et al. (2020) published an algorithm for OM that displayed 

accuracy of 88.7%. In contrast, the mean physician accuracy in this study was 

significantly lower (58.9%). Work conducted by Viscaino et al. (2020) using a different 

machine learning technique achieved a mean accuracy of 94% using four distinct 

diagnostic sub-entities for middle ear pathology.  

Tsutsumi et al. (2021) published a novel neural network in which several 

pathological entities for middle ear were included, that of, AOM, Normal, Chronic 

Suppurative Otitis Media, Cerumen as well as Otitis Externa. They applied the technique 

of transfer learning yielding a model with robust results. The overall AUC-ROC 
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published was of 0.91 and the AUC-ROC for each category was of 0.85 for Normal, 0.89 

for AOM, 0.79 for Chronic Suppurative Otitis Media, 0.97 for Cerumen and 0.98 for 

Otitis Externa.  

Transfer learning is a specific technique in which a machine learning model can 

be generated using a fraction of the data normally required to build a robust ML 

algorithm. Typically, thousands or millions of images per category are required to train a  

machine learning model, so that it can correctly adapt its weights, learn, and ultimately 

discriminate between the categories effectively.  

In the context of creating a novel algorithm, creating a visual otoscopic database 

of millions of images each representing unique categories is very difficult to achieve if 

not impossible. Fortunately, the transfer learning technique was created to solve this 

problem.  

In transfer learning, a new algorithm can be trained using the specified weights of 

an existing algorithm. It is common to use algorithms that have already been trained in 

visual categorization tasks and which are highly effective. Some of the most popular 

algorithms for this are ResNet, MobileNet, VGG and Inception. By starting out with the 

existing weights of these models, the system is already highly skilled at visual 

categorization. When presented with the new data, in this case otoscopic images and new 

categories, it can be further fine-tuned for this task.  

In a variation of traditional studies, the authors Tsutsumi et al. (2021) created a 

live website with a drag-and-drop interphase, in which any clinician could freely use. In 

this use-case, physicians could benefit from an additional consulting reference, and the 
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researches could benefit with additional data, which can then be used further fine-tune 

and perfect the model, creating a virtuous cycle. 

In a recent meta-analysis review (Cao et al., 2022), the authors objective was to 

“systematically evaluate the development of Machine Learning Models (ML) and 

compare their diagnostic accuracy for the classification of Middle Ear Disorders (MED) 

using Tympanic Membrane (TM) images”. The authors found 16 studies, and therefore 

unique ML models, that met their inclusion criteria. These models were generated with 

an aggregate of 20254 TM images between the studies. The stated accuracy of the meta-

analysis for the studies ranged from 76 percent to 98.26 percent. Authors stated that 

aggregate sensitivity and specificity across the studies were 93 percent and 85 percent, 

respectively. As this meta-analysis revealed, the performance metrics of the included 

studies are strong and state-of-the-art. 

The above authors also noted that despite all 16 studies showing robust 

performance metrics, none of these have been deployed in a live clinical healthcare 

scenario. As such, the authors suggested prospective clinical trials in order to provide 

additional data points in terms of the true behavior in a decision-making context.  

A common difficulty across all proposed algorithm has to do with choosing 

specific labeling categories to be either included or excluded in the model. In the case of 

OM, many sub-variations such as OME in different stages or other trivial clinical 

findings such as cerumen in the ear canal or tympanostomy tubes can deeply affect the 

performance while building the algorithm as well as the potential live deployment of 

these algorithms. For example, if an author does not include tympanostomy tubes as part 

of the diagnostic categories and the algorithm is deployed live, it will be unable to 
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interpret the clinical context of a pediatric patient with tubes, which is a common 

treatment (tube placements) for patients that have experienced OME. Therefore, we must 

caution the interpretation of these results, as they must only be viewed in the context of 

the labels and data set used to construct them, and not extrapolate their potential 

effectiveness to a real clinical setting.  

It is important to consider, that in most machine-learning algorithms for otitis 

media, the labeling of the images is done by an expert panel of physicians. This labeling 

process, as we have discussed, is error prone. The diagnostic accuracy even within expert 

otolaryngologist is not perfect nor necessarily consistent, as it depends on years of 

expertise amongst many other factors.  

The gold standard in OM classification is to surgically enter the middle ear, obtain 

a fluid sample, and assess the fluid's inflammatory, bacteriological, and virological 

laboratory status. Matthew et al. (2021) took this approach in a recently published study. 

The authors built a visual database of otoscopy matched to the corresponding surgical 

evaluation of the middle ear fluid. With this dataset, the researchers achieved a mean 

image classification accuracy of 83.8% using a deep network model. These results are 

auspicious and continue to showcase the enormous potential of machine learning in 

overcoming diagnostic hurdles. 

Overall, these new state-of-the-art OM focused algorithms could provide a fast 

and potentially cost-effective solution to the diagnostic issues involved in otitis media as 

new research and further improvements prepare these models for live deployment. 
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Machine learning algorithms are now being studied not simply as clinician 

replacements but also as an enhancement to existing clinical workflows.  

In a recent study by the Stanford Machine Learning Group, Bien et al. (2018) 

developed an algorithm to predict knee pathology based on MRI exam data. They probed 

the utility of providing the algorithm's predictions to radiologists during the diagnostic 

clinical interpretation stage. Their results indicate that the performance of radiologists, 

when coupled with the algorithms assistance, significantly reduces the rate at which a 

normal MRI scan can be misclassified as abnormal. This approach of assisted diagnosis 

can be of particular value for OM given that ruling out a normal ear exam can reduce 

antibiotic use, medical consultation time, and referrals, with all its social implications 

such as parental leave from work, to mention a few.  

Existing studies in the clinical diagnostics for OM, in particular, indicate that non-

experts tend to overdiagnose; hence the utility of this proposed machine learning assisted 

method or computer aided diagnosis (CAD). 

Regarding CAD in otitis media, Byun et al. (2021) showed an increase in the 

diagnostic accuracy of medical residents, consistent with research on other medical 

domains. There is increasing data that supports the utilization of machine learning 

algorithms in an assistive diagnostic setting. 

A natural extension of CAD would be to explore its potential in enhancing 

medical training within non-expert clinicians. In a recent multi-center study by Byun et 

al. (2021), the authors conducted a controlled experiment in which they evaluated the 

diagnostic accuracy with and without the use of a computer-aided diagnosis ( CAD ) 

system within a group of young physicians without prior expert knowledge (2 years or 
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less of graduation). The diagnostic accuracy of the residents improved significantly when 

they used the computer-aided diagnosis system. 

As we continue to expand the scope of how we integrate these algorithms both as 

a clinical and learning tool, it becomes relevant to fully acknowledge both their 

limitations as well as to understand the mechanisms by which they are improving medical 

performance. 

Machine Learning Limitations and Model Interpretability 

  The significant limitation in understanding how these algorithms make their 

predictions cannot be overstated. The issue of model interpretability is even more critical 

in the medical domain, not only because it allows a physician to understand the model 

decision framework and build trust, but also because it allows all users to understand its 

implicit bias based on the nature of the original data it was fed.  

These biases can have profound ethical considerations in medical management 

when minorities or under-represented patients are evaluated using these algorithms.  

The real-world inequalities of healthcare are encrypted in a silent signature, that 

of data. Data is a mirror of the healthcare realities and inequalities. For example, if an 

algorithm is created based on a particular emergency room data, this data will represent 

the population related to that specific emergency room. This demographic cluster has its 

own unique set of healthcare attributes based on the dynamic interplay of local 

environmental factors and genetics. It is highly unlikely that this demographic is 

representative of the population at large, which is heterogenous and complex.  

With the data, regardless of the origin, predictive models can be generated. At 

first inspection, these models can seem to be very effective. The effectiveness is often 
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evaluated by separating a percentage of the data which is not exposed to the model. Once 

the model is built, it is then tested against this unseen data and graded based on 

performance. The issue in this approach is that the performance is correlated to the data 

used which as stated above, is unlikely to reflect other demographics.  

Furthermore, currently there are no agreed upon methods for assessing data 

quality. Although we have seen very promising results in terms of diagnostic 

performance metrics, these algorithms are created very differently (despite all applying 

varying methods of ML); we lack standard protocols in terms of initial data collection 

and data quality evaluation.  

Once a machine learning algorithm is created and tested, it can be readily 

deployed at a global scale. The problem is now global, in that automated diagnostic 

choices are being made without the correct interpretation of the local healthcare realities.  

These biases which are encoded in the data, are a threat to equal treatment and 

healthcare access. Instead of provided convenient cost-effective healthcare, they can in 

fact, if deployed incorrectly, increase marginalization of at-risk cohorts of patients. 

Another context of model explainability relates to inform consent. As is the case 

with any traditional medical diagnosis, a physician is required to explain the risks and 

benefits of a particular diagnostic procedure.  

Considering the opaque nature of the AI based model, this can become real 

challenge, not only due to the underlying nature of the data used to create the model, but 

more importantly in understanding how this predictive model will behave in the specific 

context of a patient.  
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The need for new algorithms has increased the need and value of healthcare data. 

High income patients can have access to healthcare that has more robust privacy 

frameworks and protections in place, while lower income patients are more vulnerable to 

their privacy rights being abused. The increasing role of algorithms in healthcare is 

substantially changing the data pipeline.  

This new emerging data pipeline is risking universal human rights of patients such 

as privacy, confidentiality, and informed consent. New players in the healthcare space 

such as tech startups and other actors are playing and increasingly important role in this 

new era of medicine, yet without the checks and regulation that traditional medical 

systems have had.  

Finally, there are also significant legal considerations that must be considered. 

When using a CAD framework, it is unclear to what extent in the diagnosis was 

influenced by the machine learning model. As such, it remains elusive if these types of 

diagnosis should be disclosed to patients in particular regarding liability. When there is 

malpractice, to what extent is the algorithm to blame versus the physician.   

Machine Learning Weights and Model Interpretability 

Several strategies have been proposed to solve these issues. A widely accepted 

solution is to analyze the models’ weights or activation layers. The weights of a visual 

machine learning model determine which areas of an image should be more important in 

determining a particular prediction or diagnosis. 

It is important to take a step back and understand the overall procedure of how a 

visual machine learning model works. This is important if we aim to trust machines with 

diagnostics. Considering machines are numerical processing entities and can’t process 
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visual information as humans, a machine learning model turns images into numbers. The 

visual data is encoded by representing each visual pixel as a number alongside the height 

and the length of the image. All these elements as well as the color scale of the image 

determine the final numerical matrix which represents an individual image.  

In the context of a predictive diagnostic model, the algorithm then multiplies this 

matrix (which represent the image or input data) with other matrixes, which can be 

represented as the weights. This multiplication will either help the model make better 

predictions or it will make the model worse.  

A cost function is introduced so that the model can evaluate its performance after 

each multiplication and understand how far or close it is from the ideal predictions. If the 

model is far, it will adjust the weights of the matrix and try again. After hundreds or 

thousands of iterations of multiplications and weight adjustments, the model will 

converge onto an accurate model (depending on the nature of the initial data provided). 

The weights thus contain the “secret” how a model arrives at its results. These 

weights as we have discussed are numbers or matrixes to be more precise, hence of little 

utility to us as such. The solution for us to interpret these weights is to do what the 

computer initially did to the image, but in reverse. We can turn the weights of a model 

into a visual gradient. This visual gradient can then be superimposed on a particular 

image by mapping the weights to the pixels of an image of interest creating a heat-map. 

We can now finally view an image and visually interpret it as the machine learning model 

is doing so. Grad-CAM is a specific method in which a heat-map can be created from an 

algorithm and is considered an industry standard.  
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Heat Maps as a Framework for Enhancing Medical Learning 

Considering algorithms can enhance our diagnostic abilities, as research has 

shown, how can we probe these in order to learn from them? The challenge in learning 

from an algorithm can be explained by how an algorithm thinks.  

As commented above, an algorithm thinks in the form of numbers and equations, 

but a clinician forms a diagnostic opinion via visual inspection. Importantly, this visual 

inspection is not random. Each time we view an image, our eyes focus on portions of the 

image or regions of interests. 

Although our brain sees an image in full, our sensory retina can obtain high 

quality input only via a particular region of the retina called the fovea. Therefore, our 

eyes constantly rotate and move through a visual scene in order to foveate or capture the 

scene in high definition.  

The critical component in this process is the order in which our brains determine 

how to capture a visual scene; this order is not arbitrary. In the context of uncertainty and 

limited time, our brains instruct our eyes to first capture the most relevant aspects of a 

visual scene.  

The movements of these focal points result in a scan path or attention map. As 

such, eye movements are a proxy of neural attention processing. This neural attention 

process can vary and be optimized based on the visual task at hand. For a visual 

diagnostic task, our brains must be able to guide our eyes towards the areas of interest 

that represent features and targets based on general medical knowledge and our prior 

visual experience. Thus, how we visually scan an image, meaning which aspects we fix 
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our gaze on, reveal our understanding of where we think we should seek the relevant 

information for the task at hand.  

As such, when observing a tympanic membrane to derive a diagnosis, our scan 

paths indicate our level of identification and comprehension of the physiology and related 

pathology of the system being evaluated. The mentioned study by Bluestone et al. (1979) 

provides the first insights into the relevance of using visual feedback loops to improve 

medical diagnosis.  

Considering otolaryngologists routinely practice a surgical procedure called 

"myringotomy," in which they can correlate and extrapolate the TM status with the actual 

content of the middle ear, the authors comment on the importance of this visual feedback 

as a driving factor which could explain the diagnostic differences between an 

otolaryngologist and pediatrician, or any other physician that does not practice 

“myringotomy” procedures.  

In other medical domains in which a visual diagnosis is required, studies have 

compared the differences between expert and novice in terms of their scan-paths and 

visual fixations, and noticed significant differences, mainly on task efficiency. In this 

study, we aim to understand the value of providing a scan-path to a novice and evaluate 

their learning ability.  

The scan-path can be visually represented in multiple ways, such as by blurring 

out unimported regions of the image, or as in this study, by providing a gradient-color 

based heat-map. Importantly, the scan-path we provide is derived not from actual human 

experts but from the machine learning model. 



 

32 

In the context of current machine learning practices, Grad-CAM derived visual 

saliency maps have been traditionally used to probe the algorithm during its development 

stage. If it is consistent with accepted medical heuristics, and the algorithm performs well 

(accurate and consistent) in new un-seen data, then Grad-CAM images are typically not 

further used during the live deployment of the algorithm, either when the algorithm 

works by itself or in conjunction with a physician (CAD method). 

As stated above, we can approximate gradient-weighted activation (Grad-CAM) 

maps to a human scan path. It reveals everything the model thinks is essential within the 

image and where it should preferentially fixate its attention on. We hypothesized that by 

viewing these heat-maps, a non-expert can effectively understand, transfer, and 

ultimately acquire new diagnostic experience in contrast to traditional learning strategies 

based on the transfer of insights via text.  

Results of Experiment as a Framework for Enhancing Medical Learning 

The overall averages we obtained as results are considered a realistic 

representation of diagnostic accuracy in the context of a medical student without 

extensive clinical practice. When comparing questionnaire 1 with questionnaire 2, both 

groups on average increased their diagnostic accuracy. This was expected as we included 

between the questionnaires, a tutorial explaining how to diagnose middle ear pathology. 

Notably, the differences between both groups were statistically significant (Table 2 – 

Page 15). The differences within the control group, although statistically significant, (an 

increase of 4.6 percent) was of a smaller magnitude when compared to the differences 

within the experimental group (an increase of 17.73 percent). As such, the net increase 

which can be attributed to the experimental setup is of 8.64 percent (experimental 
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increase minus control increase). We further analyzed this net increase, and it was found 

to be statistically significant (Table 2 – Page 15). 

When evaluating the individual pathological entities, we can see that AOM seems 

to be the easiest to correctly diagnose. This is not surprising given that AOM is an 

extreme clinical scenario with very vivid visual translations in terms of the tympanic 

membrane and the surrounding anatomical space. The difficulty in treatment regarding 

OM in general, is not so much in specifically recognizing AOM, which would require 

antibiotic treatment as standard-of-care, but rather in the false-positives which would 

under standard-of-care receive antibiotics for an OM pathology that does not require it 

(for example in OME), leading to antibiotic resistance and decreasing healthcare 

outcomes globally. 

OME was the entity with the worst diagnostic performance, on average with 46.6 

percent across both groups. This is significant because OME is a very distinct and a 

different clinical scenario from AOM.  

Not recognizing OME can lead to chronic ear pathologies which can result in 

permanent deafness and neural developmental delays. In our experiment, 81.3 percent of 

diagnostic errors for OME were selected as AOM. This again reflects the diagnostic 

difficulties in OM. Intuitively we could expect this 81.3 percent of these diagnostic errors 

to have been given antibiotics, while the other 18.7 percent would be incorrectly selected 

as normal, which could also lead to long term hearing problems. 

The authors Tarpada et al., (2017) published a systematic review outlining some 

of the main trends in digital learning for both medical students and otolaryngology 
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residents. They specifically looked at e-learning as an approach to solve the lack of 

consistent traditional training in medical school.  

Some of the advantages of e-learning are that it is adaptable, updatable, and 

perhaps more importantly, accessible. E-learning has the advantage that it can incorporate 

modern teaching techniques such as spaced repetition, which is optimized to improve 

memory retention, as well as adapt the training to the individual knowledge-set a medical 

student might already have.  

The authors included 12 studies that met inclusion criteria as established by the 

PRISMA guidelines (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses). The authors noted that in the digital learning approach, in five out of eight 

studies that included medical students as a subject group, results showed an increase in 

performance as well as improved subjective ratings of satisfaction. These results are 

significant because the proposed new learning technique we advocate could be easily 

incorporated into all existing varieties of online teaching methods, further enhancing the 

advantages of e-learning.  

Our results are in line with a landmark study commented earlier published by 

Aronzon et al. (2004). The authors compared the following groups: medical students, 

internal medicine residents, junior resident otolaryngologists, senior resident 

otolaryngologists, attending otolaryngologists and a final group that provided diagnosis 

under microscopic evaluation prior to the surgical procedure. They compared the 

diagnostic performance of OM pathology between these groups against the gold standard 

of evaluating the contents of the middle ear.  
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The authors found no statistically significant difference in the diagnostic 

sensitivity, with group performance ranging from 89 to 92 percent, which is considered a 

very good diagnostic metric. Similarly, in our experiment, both the control group as well 

as the experimental group were effective in ruling in AOM (sensitivity) with performance 

ranging from 80 to 90 percent. In the study by Aronzon et al. (2004), the authors 

comment on the statistically significant differences in diagnostic sensitivity, which 

ranged from a reported 34 to 79 percent. In our experiment, specificity was also low, with 

OME being labeled as AOM being the main sources of errors and false positives 

(specificity). The importance in low specificity cannot be understated, considering it is 

likely the main source of unwarranted antibiotic prescription, leading to increase 

healthcare costs, bacterial resistance, poor health outcomes, and overall increased patient 

burden.  

Our experiment revealed an increase of 17.73 (Table 3 – Page 16) percentage 

points in overall diagnostic performance and of 8.64 percent net increase (Table 2 – Page 

15). If this diagnostic improvement can be sustained in a real-life scenario, it would 

translate potentially to millions in healthcare cost saved, and into a significant healthcare 

improvement for the millions of children who suffer from OM pathology each year. 

An important practical consideration are the deployment strategies associated to 

this new proposed framework in contrast to current machine learning algorithms. For an 

algorithm to be deployed in a live clinical scenario, it must be able to appropriately 

handle common situations, for example ear canal cerumen. The algorithm must be trained 

in all the common varieties of clinical findings beyond the strict academic categorization 
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of OM entities, otherwise, the algorithm is at risk of being sensitive but having very low 

specificity.  

In a normal clinical scenario, it is common for a general medical practitioner, 

family medicine or junior medical resident to establish an initial screening test. If 

abnormal findings are observed, then a second opinion is typically requested in which an 

otolaryngologist can evaluate and perform a second otoscopy.  

This combination is ideal because we have learned that sensitivity tends to be 

good even within unexperienced physicians, while specificity increases considerably 

within medical specialties such as otolaryngology as well as with seniority or increased 

expertise. If we consider the replacement of this framework for an algorithm, given 

current performance metrics, we know they are highly accurate and sensitive, but we 

have no data that supports their actual performance in a live patient scenario. This is 

significant because if an algorithm cannot fully replace the above framework, it would 

only introduce increased healthcare costs and potential bias, outweighing the benefits. 

Our proposed novel training framework on the other hand, is not only simple to 

implement, but should outperform an algorithm in a live clinical scenario. This is because 

it relies on a physician, which are trained to integrate and contextualize the information 

they are observing and assessing. As such, in places where expert assessment by an 

otolaryngologist is not possible, the increase in diagnostic performance could result in 

significant improvements in terms of healthcare outcomes. 

In a study by Blomgren et al. (2003), AOM diagnosis was compared between 

general practitioners and otolaryngologists. The authors found only a 64 percent of 

diagnostic agreement. The authors also noted that general practitioners were much more 
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likely to diagnose AOM then an expert otolaryngologist, leading to a reported increase in 

incidence and antibiotic prescriptions. These reported data points align with our 

experiment, in which the non-expert medical students, when they made a diagnostic 

error, were much more likely to categorize the otoscopy as AOM than another entity.  

In an interesting experiment by Rosenfeld et al. (2002), the authors measured 

physician confidence as a self-rated survey in terms of OM diagnosis, as well as how 

close the physicians followed formal diagnostic guidelines for their patients. The authors 

reported an overall certainty of diagnosis for AOM as 90 percent (self-reported 

confidence). According to the guidelines, no more than 70 percent of the cases warranted 

AOM diagnosis. If a physician was certain of the diagnosis, regardless of if it was correct 

or not, they were 50 percent more likely to prescribe antibiotics. 

The above study highlights how valuable continual clinical education is. We must 

educate clinical practitioners to remain cognizant of the challenges for diagnosis and to 

remain vigilant in terms of further education and clinical knowledge improvement, 

otherwise, clinical practitioners are vulnerable to personal biases which can affect 

healthcare outcomes. 

Our research not only highlights the difficulties in diagnostics, but also the 

potential improvements that can be achieved with the novel heat-map technique in a short 

training session.  

A recent paper titled “Machine Learning for Accurate Intraoperative Pediatric 

Middle Ear Effusion Diagnosis” explored the challenges and potential benefits of 

applying machine learning for OME (Crowson et al., 2021). The authors used a transfer 

learning technique as stated above based on the ResNet neural architecture and they 
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presented a model with state-of-the-art performance with an Area Under the ROC stated 

at 0.93. We highlight the importance of OME in this study, as well as in our experimental 

results, because if we aim to achieve better diagnostic accuracy, and an improved 

learning framework, it is vital to fully grasp, both at the machine learning level, as well as 

at the clinical setting, the importance of distinguishing the unique states of OME. 

In our experiment, the control group was exposed to a traditional text-based 

tutorial. A medical student in their final year already understands normal physiology and 

anatomy. As such, they are able to correlate a given pathology to the corresponding 

clinical representations in the form of signs and symptoms when presented with new 

information in the form of a tutorial. 

Furthermore, they can learn new pathological entities and quickly map them onto 

known physiological responses to injury, such as inflammation. Perhaps most 

importantly, a last year medical student is able to re-create a timeline in which all the 

normal and altered states occur in, and the particular progression of each. For this 

experiment, the experimental group was, in addition to the above, able to visually 

recognize these items in a visual hierarchy.  

Visual hierarchy refers to the particular emphasis or importance of certain visual 

areas within the otoscopy image. For example, although inflammation is a key 

component to distinguish OM from a normal state, inflammation represents different 

pathological entities based on the location of the inflammation. The tympanic membrane 

with inflammation is a very different clinical and diagnostic entity than inflammation 

limited to the outer ear canal.  As such, these location-based insights can be effectively 

transferred and learned, based on the gradient heat-map method.  



 

39 

The gradient is a color-coded method of representing less to more important and 

location is represented by placing these colors on top of the areas of interest within the 

image. This color-coded method is not arbitrary, and it is built based on our 

understanding of visual saliency.  

Visual saliency is based on specific visual features to which we are neurological 

programmed to emphasize, such as color, edges, contrasts, and shapes to mention a few.  

It is important to mention the top-bottom versus bottom-up approach for saliency. 

For example, the top-down system is rendered by our frontal lobe, and it specifically 

directs our visual attention to elements we recognize as important based on past 

experiences, information, or theory we might have and is a conscience experience. For 

example, in the case of an otoscopy, intuitively, a medical student will be searching for 

areas of the tympanic membrane which are distorted, either bulging out or retracted, as 

they know from theory this is indicative of pathology. This is the top-down system 

influencing the visual search path.  

On the other hand, there might be specific colors within the otoscopy which are 

unexpected or do not match the expected color pallet. When this happens, visual attention 

will be drawn to those pixels in an effort to understand and extract information from that 

area. This is the bottom-up system and is automatic.  

When an expert otolaryngologist views an otoscopy image, the main system at 

play is the top-down system. The combination of experience and knowledge results in the 

training of how to visually scan an otoscopy image to collect the most important visual 

cues which represent the correct proxies for the underlying pathological process. An 
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expert will also be less distracted by visually salient items, which have no significance in 

the clinical physiology of the patient.  

A medical student with little experience on the other hand, we expect their visual 

scan path to be dominated by the bottom-up system. This system will scan the image 

based on salient colors, edges, and contrasts within the otoscopy, in an effort to obtain 

information from the image.  

Considering a medical student has little prior information on how and where to 

scan the image, the frontal lobe, top-down system will be in idle mode until it learns and 

can assert its preferential scan over the bottom-up system. 

In this experiment, the heat-maps used can be analogous to the visual path of an 

expert in which the top-down system is guiding the scanning of the image. Importantly, 

instead of a human expert, it was generated by a machine learning algorithm, which has 

the benefit of scale, cost, and deployment. 

The method of transferring these visual paths to a novice (medical student) is the 

following. We expect a novice to engage their bottom-up system, therefore, for their 

visual path to be determined by salient colors, edges, borders and. As such, we play to 

this fact and we transform the locations of an otoscopy, which the algorithm has 

determined is very important in containing relevant information for the diagnosis, into 

specific colors which we know will capture the attention of the novice viewer since they 

are using a bottom-up approach.  

For example, if the location is important, red will be added. If the location is not 

important, blue will be added. These colors are mapped onto the otoscopic image in the 

form of a gradient from red (more important) to blue (least important), and a transparency 
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factor is added, so that the underlying otoscopy can still be seen despite this color map 

superimposed.  

We can therefore alter the expected visual path of the medical student, by re-

directing their attention to spatially relevant areas, and through this method, transfer 

knowledge. This experiment validates this approach. 

A benefit of this training approach is consistency. Medical training is highly 

dependent on the relationship of the mentor as well as on the type and volume of patients.  

It is often the case that a particular medical center where a medical student or 

resident-in-training is rotating, receives a specific demographic of patients, which may or 

not be of interest for training purposes. The approach of using a heat-map derived form 

an algorithm, is in providing a consistent training which can complement any traditional 

live training scenario.  

Overall, our results validate our hypothesis. There are statistically significant 

differences in diagnostic performance between the two groups, and critically, the group 

exposed to the heat-maps performed better than the control group. A follow-up study 

would be required to evaluate long-term performance retention. 

Other Use Cases of Framework for Enhancing Medical Learning 

In a variation of this framework, it could easily be expanded to all current 

pathological entities which are dependent on visual diagnosis. For example, skin cancer is 

the number one cancer in the world. Melanoma, a specific type of skin cancer is the 

culprit of the majority of deaths and disease burden associated with skin cancer. 

Screening for melanoma is done through a visual inspection exam where the a-b-

c-d-e of the lesion are noted. A is for asymmetry, b is for borders, c is for color, d is for 
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diameter and e for evolution. A physician is trained to understand the normal and 

abnormal of the above 5 components.  

Today, as with OM, machine learning algorithms have been developed to replace 

the medical evaluation for melanoma screening; these are highly sensitive and specific. 

Similar to the experiment proposed, a heat-map derived from these state-of-the-art 

melanoma detection algorithms could be used to train medical students or general 

medical practitioners. This could be particularly useful in cases where deploying 

algorithms for screening is not practical nor possible. 

Radiology is another field where most of the training occurs through the mapping 

of knowledge to a visual scene. The experimental approach suggested could be of value 

not only to in-training radiologists, but to general medical practitioners who must 

interphase with basic radiological interpretations such as chest x-rays or abdominal 

imagining.  

In an emergency room setting, it is very common to practice eco-graphic live 

imaging in patients. This is particularly important for acute abdomen syndrome which 

can be caused by a multitude of life-threatening entities such as appendicitis or a ruptured 

ectopic pregnancy.  

The interpretation of the ecographical findings is key in making a correct surgical 

decision and hence potentially in saving a patients’ life. As such, a live heat-map from an 

algorithm could provide consistent and effective training for all medical practitioners in 

this context.  

The current the rate of innovation in these algorithms continues to accelerate, and 

an increasing percentage of medical practitioners are beginning to use these predictions in 
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conjunction with their existing diagnostic frameworks. For these motives, it is of 

paramount importance to fully understand how we can harness these improvements to 

boost learning and use these new breakthroughs responsibly. 

Overall, we propose a simple, cost-effective method which can be used to readily 

train and teach both medical students and junior physicians on the nuanced pathological 

varieties that affect the middle ear.  
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Chapter VI. 

Research Limitations 

There are several limitations to this study. As a proof of concept, we utilized a 

limited amount of ear pathology in terms of photographs. Therefore, the study did not 

include all the sub-type of OM or their specific diagnostic entities but instead focused on 

AOM versus OME versus normal status.  

Also, despite including a washout period of 5 minutes, it is beyond the scope of 

this study to understand the permanence of these differences, assuming they are present, 

within the groups. Differences could be attributed to simple visual memorization and not 

necessarily an increased understanding of the clinical pathology. A follow-up study 

ideally could analyze the diagnostic performance on a spaced-out approach that could 

consider long term memory retention.  

A potential follow-up experiment could repeat this setup but with eye-tracking 

technology. This could potentially provide an objective neurological proxy of how 

attention changes and hence how information is acquired, transferred, and learned by 

comparing the medical students scan path pre and post exposure. In this study, we are 

using the test grades, pre and post exposure, as a metric of information acquisition. 

Furthermore, a more complex variation of the above would be to analyze live 

magnetic resonance imaging when conducting the diagnostic test. This would provide a 

live objective neural understanding of the cognitive processes at work and the differences 

in the cognitive processing when viewing the visual heat-maps in contrast to learning 

from traditional word based medical tutorials.  
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More extensive objective analysis would be suggested as a follow-up study to 

understand further the scope and magnitude of utilizing saliency maps derived from 

machine-learning models as a framework for medical training. 
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