
Dynamical.JS: A composable framework for online
exploratory visualization of arbitrarily-complex
multivariate networks

Citation
Dotson, Robert Lee. 2022. Dynamical.JS: A composable framework for online exploratory
visualization of arbitrarily-complex multivariate networks. Master's thesis, Harvard University
Division of Continuing Education.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37374002

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37374002
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Dynamical.JS:%20A%20composable%20framework%20for%20online%20exploratory%20visualization%20of%20arbitrarily-complex%20multivariate%20networks&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=29422337de6c2e056202792c2f6b7e66&department
https://dash.harvard.edu/pages/accessibility

Dynamical.JS: A composable framework for online exploratory visualization of

arbitrarily-complex multivariate networks

Robert Lee Dotson

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

March 2023

Copyright 2023 Robert Lee Dotson

Abstract

Multivariate networks (henceforth, graphs) represent entities (vertices or

nodes), their relationships to each other (edges), and manifest or derived data about

both (attributes). Graphs easily map onto real-world entities and relationships.

Therefore the visual analysis of such provide a valuable proxy for the analysis of

concrete entities. Because graphs are so effective in modeling, they are ubiquitous:

graphs are used in the design and construction of complex circuitry, GIS (Geographic

Information Systems), database modeling, social networking, and neuroscience,

among other fields. Graph visualization is challenging, and domain-specific require-

ments further complicate the production of intelligible visual representations. The

datasets underlying modern graphs have grown exponentially, complicating visualiza-

tion tasks, whether static, such as in a printed scientific paper or poster, or dynamic,

where the graph, the visualization, or both evolve. Exploratory visualization of

dynamical graphs requires the visualizations to evolve due to externally-generated

events in realtime while preserving the contents of the analyst’s “mental map.”

This thesis presents a novel, modular, composable Javascript API (Applica-

tion Programming Interface) for organizing and applying the algorithmic operations

and data structures required at each step of visualizing large, arbitrarily complex

graphs while allowing the extensions and constraints required by specific application

domains. To do so, we abstract quintessential graph layout tasks into EGOs (Ex-

ploratory Graph Operations), design an API exposing these operations, and demon-

strate the synthesis of well-documented layout algorithms. Finally, we introduce a

reference implementation in Javascript and WebGPU (GPU Computing for the Web)

to visualize complex graphs in realtime and facilitate future research and development

of novel approaches to these problems.

Acknowledgements

I want to thank Dr. Stratos Idreos for his guidance and encouragement as

my professor in Data Systems and Big Data Systems and as my thesis director.

Without his encouragement to carefully consider the meaning of success, I would

not have been able to finish this process. I also want to thank my professor and

mentor, Dr. Zona Kostic. This is not only for helping me formulate and explore the

concepts underlying this thesis but also for allowing me to teach alongside her in The

Art and Design of Information and Building Interactive Web Applications for Data

Analysis. This experience will shape my professional and academic life for years to

come. I want to thank Dr. Hongming Wang, my research advisor, for her guidance

and encouragement while shepherding me through the thesis process. I would also

like to thank my husband, Paul Lordan, for his endless patience while listening to me

scream at my computer screen every day and night for a year. And finally, I would

like to thank Pancakes, my brave rescue pup, without whom I wouldn’t have survived

the COVID-19 pandemic.

i

Table of Contents

List of Figures . x

List of Tables . xii

List of Equations . xiii

List of Algorithms . xiv

List of Code . xv

Chapter 1. Introduction . 1

1.1 Background . 2

1.2 The Problem: Interactivity . 4

1.3 The Solution: Dynamical.JS . 6

1.4 Prior Work . 7

1.5 Terminology . 8

Chapter 2. Design & Methodology . 11

2.1 Key Qualities . 11

2.2 System Agnosticism . 14

2.3 Modularity . 14

2.3.1 Data Module . 15

2.3.2 Layout Module . 16

2.3.3 Drawing Module . 17

2.3.4 Testing & Performance Module 17

2.4 Graph & Layout Types . 18

2.4.1 Static Graph Layouts . 19

2.4.2 Dynamic (Offline) Graph Layouts 21

2.4.3 Dynamical (Online) Graph Layouts 23

2.4.4 Context Aware Layouts . 24

ii

2.5 Aesthetics and the Mental Map . 25

2.5.1 Preserving the Mental Map 26

2.5.2 Multiple Representation . 26

2.5.3 Small Multiples . 27

2.6 Cache Consciousness . 28

2.6.1 GPU Memory . 29

2.7 Exploratory Graph Operations (EGOs) 31

2.8 Graph Data Operations (GDOs) . 33

2.8.1 Load Graph . 33

2.8.2 Store Graph . 34

2.8.3 Clone Graph . 34

2.8.4 Subgraph . 35

2.8.5 Merge Graphs . 35

2.8.6 Retrieve Element(s) . 35

2.8.7 Filter Elements . 35

2.8.8 Add Element(s) . 36

2.8.9 Remove Element(s) . 36

2.8.10 Update Element(s) . 36

2.8.11 Merge Element(s) . 37

2.8.12 Materialize . 37

2.8.13 Key Frame . 37

2.8.14 Coalesce . 37

2.8.15 Calculate Graph Statistics . 38

2.8.16 Find Path . 38

2.8.17 Neighbors . 38

2.9 Graph Layout Operations (GLOs) . 38

iii

2.9.1 Layout . 38

2.9.2 Initial Layout . 39

2.9.3 Merge Layouts . 39

2.9.4 Calculate Layout Statistics 39

2.9.5 Simplify . 40

2.9.6 Elaborate . 40

2.9.7 Partition . 40

2.9.8 Merge Partitions . 40

2.9.9 Calculate Forces . 41

2.9.10 Calculate Repulsive Forces 41

2.9.11 Calculate Attractive Forces 41

2.9.12 Calculate Offsets . 41

2.9.13 Centroid . 41

2.9.14 Place Node(s) . 42

2.9.15 Quality . 42

2.9.16 Finesse . 42

2.10 Graph Rendering Operations (GROs) 42

2.10.1 Update Dimensions . 43

2.10.2 Apply Transform . 43

2.10.3 Render Layout . 43

2.10.4 Render Region . 43

2.10.5 Overlay . 44

2.10.6 Show Element(s) . 44

2.10.7 Hide Element(s) . 44

2.10.8 Apply Visual Mark to Element(s) 44

2.10.9 Apply Visual Channel to Element(s) 44

iv

2.10.10 Interpolate . 45

2.11 Graph Analysis Operations (GAOs) 46

2.11.1 Find Element(s) by Position 46

2.11.2 Find Bounded Element(s) . 46

2.11.3 Select Element(s) . 46

2.11.4 Deselect Element(s) . 47

2.11.5 Filter Element(s) . 47

2.11.6 Highlight Element(s) of Interest 47

2.11.7 Export Image . 47

2.11.8 Step Backward and Forward through GRO History 47

2.12 Tunability . 48

2.12.1 Environmental Constraints 48

2.12.2 Layout Constraints . 49

2.12.3 Quality Metrics . 50

Chapter 3. Layout Algorithm Decomposition 51

3.1 Algorithm Stages . 52

3.1.1 Initial Placement . 54

3.1.2 Statistics Calculation . 54

3.1.3 Partition . 55

3.1.4 Placement Loop . 56

3.1.5 Merge Partitions . 56

3.1.6 Finesse . 56

3.2 Basic Algorithms . 57

3.2.1 Random Placement . 58

3.2.2 Geometric . 58

3.2.3 Fixed & Free . 60

v

3.3 Force-Directed Layouts . 60

3.3.1 The Barycentric Method . 63

3.4 Spring Systems . 66

3.4.1 Fruchterman-Reingold . 69

3.4.2 Edge-Edge Repulsion . 71

3.5 Other Algorithms . 75

Chapter 4. Computational Development . 80

4.1 External Requirements . 80

4.2 Publishing . 80

4.3 Hardware Configuration . 81

4.4 Tools . 82

4.5 Javascript . 83

4.5.1 Runtime & Concurrency . 84

4.5.2 Asynchronous Execution . 86

4.6 Computer Graphics . 87

4.6.1 History . 87

4.6.2 OpenGL . 88

4.7 Graphical Object Models . 89

4.8 Rendering Pipeline(s) . 92

4.8.1 The Geometry Pipeline . 93

4.8.2 The Pixel Pipeline . 96

4.9 Programmable Pipelines . 97

4.9.1 Shaders . 98

4.9.2 Shading Languages . 101

4.10 General-Purpose GPU Computing (GPGPU) 103

4.10.1 GPGPU Memory & Concurrency 104

vi

4.11 GPGPU Frameworks . 106

4.12 Web Graphics . 107

4.12.1 WebGL & GLSL . 107

4.12.2 GPU for the Web (WebGPU) 108

Chapter 5. Implementation & Results . 110

5.1 Code Syntax & Documentation . 110

5.2 Environment . 111

5.3 Code organization . 112

5.4 The DGBase Object . 113

5.4.1 Extensibility . 113

5.5 Asynchronous Interfaces . 115

5.5.1 Asynchronous Initialization 115

5.5.2 Asynchronous Loops . 116

5.6 Mathematical Operations . 117

5.6.1 Vectors & Matrices . 117

5.6.2 (Pseudo) Random Number Generators (PRNGs) 119

5.7 Data Structures . 122

5.7.1 Graph ADT . 123

5.7.2 Index Structures . 125

5.7.2.1 Bit Vectors & Matrices 126

5.7.2.2 Bloom Filters . 126

5.8 Data Module . 126

5.8.1 Materialization . 127

5.8.2 GPU Materialization . 129

5.8.3 Materialization Data Structures 130

5.8.3.1 Adjacency Lists . 132

vii

5.8.3.2 Adjacency Matrices 133

5.8.4 Graph Traversal . 134

5.8.5 Graph Updates . 135

5.8.5.1 Key Graphs . 135

5.8.5.2 Change Sets . 135

5.8.6 File Formats . 136

5.9 Layout Module . 138

5.9.1 Layout Execution . 139

5.10 Drawing Module . 142

5.10.1 Rendering & Animation . 142

Chapter 6. Conclusion . 145

6.1 Summary . 145

6.2 Challenges . 146

6.2.1 Multithreading . 146

6.2.2 Memory Limits . 147

6.2.3 Limited Optimization . 147

6.2.4 Timeslicing . 148

6.3 Future Work . 148

6.3.1 Architectural Changes . 148

6.3.2 Optimization Changes . 149

Appendix A. Glossary . 151

Appendix B. Acronyms . 159

Appendix C. Code . 164

C.1 Javascript Code . 164

C.1.1 DGBase . 164

C.1.2 DGTestRig . 174

viii

C.1.3 DGGPUEngineTestRig . 178

C.1.4 DGAsyncLoop . 180

C.1.5 DGBitVector & DGBitMatrix 182

C.1.6 DGGraphBase . 191

C.1.7 DGGraph . 194

C.1.8 DGQuickBloom . 214

C.1.9 DGLayoutEngineBase . 220

C.2 WebGPU Code . 229

C.2.1 DGWebGPUBase . 229

C.2.2 DGComputeEngine . 236

C.3 WGSL Code . 263

C.3.1 XOR128 . 263

References . 266

ix

List of Figures

1.1 A node-link diagram with both on-node/on-edge encoding. 1

1.2 A Unified Markup Language (UML) network diagram, utilizing com-

plex nodes and edges. 2

1.3 A network diagram of Barcelona’s subway system encoding the dis-

tance between stations in 5-minute intervals, utilizing on-node/on-edge

encodings. 7

2.1 A UML (Unified Modeling Language) block diagram of Dynamical.JS

modules. 15

2.2 A block diagram of the Dynamical.JS Data Module. 16

2.3 A block diagram of the Dynamical.JS Layout Module. 17

2.4 A block diagram of the Dynamical.JS Drawing Module. 18

2.5 Graph edge classification. 20

2.6 A comparison of CPU (Central Processing Unit) and GPU (Graphics

Processing Unit) memory layouts. 30

4.1 Graphics rendering pipeline stages. 92

4.2 The "classic" rendering pipelines. 93

5.1 A high-level UML package diagram of the Dynamical.JS framework. . 112

5.2 A UML package diagram for the Dynamical.JS common package. . . . 113

5.3 A UML class diagram of the Dynamical.JS DGAsyncLoop interface. . . 117

5.4 A UML class diagram of the Dynamical.JS matrix sub-package. . . . 118

5.5 A UML class diagram of the Dynamical.JS random sub-package. . . . 121

5.6 A UML class diagram of the Dynamical.JS ADT sub-package. 122

x

5.7 A UML class diagram of the Dynamical.JS graph ADT (Abstract Data

Type) sub-package. 124

5.8 A UML class diagram of the Dynamical.JS Data Module. 127

5.9 A UML class diagram of the Dynamical.JS Layout Module. 138

5.10 A UML class diagram of the Dynamical.JS Drawing Module. 143

xi

List of Tables

2.1 Common symbol notation for GDOs (Graph Data Operations). . . . 34

2.2 Common symbol notation for Layout GLOs (Graph Layout Operations). 39

2.3 Common symbol notation for GROs (Graph Rendering Operations). . 42

2.4 Environmental constraint parameters. 48

2.5 Layout constraint parameters. 49

2.6 Layout quality metrics. 50

3.1 Common symbol notation for force-directed algorithms. 63

3.2 Common symbol notation for spring algorithms. 66

5.1 Time complexity cost of operations on graph ADTs implemented as

adjacency lists . 132

5.2 Time complexity cost of lookup operations on adjacency lists imple-

mented with Array or Map. 133

xii

List of Equations

2.1 Undirected edge . 19

2.2 Directed edge . 20

2.3 Mixed edge . 20

2.4 Mixed, multiple edges . 20

2.5 Simple linear interpolation . 45

2.6 Linear interpolation of homogeneous coordinates 45

2.7 Perspective interpolation of homogeneous coordinates 46

3.1 Barycenter force . 64

3.4 Log-spring force . 67

3.4 Inverse-square log-spring force . 67

3.4 Alternate inverse-square log-spring force 67

3.5 Spring length . 67

3.6 The force-directed energy function 67

3.7 Ideal distance between two nodes 68

3.8 Spring strength . 68

3.11 Fruchterman-Reingold Repulsive Force 71

3.11 Fruchterman-Reingold attractive force 71

3.11 Fruchterman-Reingold optimal distance 71

xiii

List of Algorithms

3.1 The layout algorithm . 53

3.2 The basic layout algorithm . 57

3.3 The random layout algorithm . 58

3.4 The polygon layout algorithm . 59

3.5 The fixed-free layout algorithm . 59

3.6 The force-directed algorithm . 62

3.7 The barycentric layout algorithm by Tutte (1963). Pseudocode from

Di Battista et al. (1999) . 64

3.8 The barycenter layout algorithm with EGOs. 65

3.9 The spring embedder layout algorithm by Eades (1984). Pseudocode

from Kobourov (2013) . 69

3.10 The spring layout algorithm with EGOs. 70

3.11 Pseudocode for the force-directed layout algorithm by Fruchterman &

Reingold (1991) . 72

3.12 The fruchterman-reingold layout algorithm with EGOs. 73

3.13 The edge-edge repulsion algorithm by Lin & Yen (2005) 77

3.14 The edge-edge-repulsion algorithm with EGOs 78

4.1 Javascript event loop . 85

xiv

List of Code

5.1 The HTML development "rig" for Dynamical.JS 111

5.2 The DGExtensibleBase interface. 114

5.3 Concrete subclass registering with a class cluster. 114

5.4 Example code demonstrating asynchronous initialization. 115

5.5 The basic Javascript interface for DGGraph 125

5.6 An example graph serialized into the JSON (JavaScript Object Nota-

tion) file format . 137

5.7 An example graph serialized in the JSON (indexed) file format 138

5.8 The DGLayoutEngineBase implementation of the layout GLO. . . . 140

C.1 Javascript code for DGBase. 164

C.2 Javascript code for DGTestRig. 174

C.3 Javascript code for DGGPUEngineTestRig. 178

C.4 Javascript code for the DGAsyncLoop Interface. 180

C.5 Javascript code for DGBitVector & DGBitMatrix. 182

C.6 Javascript code for DGGraphBase. 191

C.7 Javascript code for DGGraph. 194

C.8 Javascript code for DGBloomFilterBase & DGQuickBloom. 214

C.9 Javascript code for DGLayoutEngineBase. 220

C.10 Javascript code for DGWebGPUBase. 229

C.11 Javascript code for DGComputeEngine. 236

C.12 WGSL code for the XOR128 pseudo-random number generator. 263

xv

Chapter I.

Introduction

Figure 1.1. A node-link network diagram with both on-node and on-edge encoding1.

Arbitrarily-complex multivariate network (henceforth, graph) drawings are vi-

sual representations of relational datasets (Tutte, 1963). Graph drawing is a standard

means of visualizing relational data in many fields, including social networking, soft-

ware engineering (Figure 1.2), bioinformatics, telecommunications, logistics, trans-

portation (Figure 1.3), and hierarchical taxonomy (Nobre et al., 2019). Most data

presentation problems posed by these analysis domains involve drawing n-dimensional

graphs on 2D (two-dimensional) surfaces such as a page or screen (Di Battista et al.,

1994; Beck et al., 2013). Graph drawings’ ultimate utility is conveying salient domain-

specific information to the analyst (Nobre et al., 2019, 2020); therefore, these draw-

ings must emphasize pertinent features and minimize extraneous details. Aesthetic

optimization of graph drawings for visual emphasis and analytical insight imposes

domain-specific constraints on algorithm designers (Tutte, 1963); exploratory opti-
1 The author created this graph with a prototype of Dynamical.JS, but it was drawn using Canvas2D
as a final project for CSCI E14A at the Harvard Extension School.

mization imposes additional constraints, further complicating implementation (Du

et al., 2017). Proposing an exploratory graph visualization framework design that

successfully navigates these constraints is the primary goal of this thesis.

1.1. Background

MetaObject

-id: String
-name: String
-description: String

+MetaObject(id: String, name: String, description: String)
+MetaObject(id: String, name: String)
+MetaObject(id: String)
+valueForKey(key: String): T
+setValueForKey(key: String, value: T): void
+setValuesForKeys(keys: Array<String>, values: Array<String>): void

ResourceUpdateNotifier

+willUpdateResource(id: String): void
+didUpdateResource(id: String): void
+attach(observer: ResourceUpdateObserver): void

Singleton

+sharedInstance(): Service

Service

~resourceClasses: Set<Class>

~registerResourceClass(resourceClass: Class): void
+resourceCreate(authToken: String, id: String, type: String, keys: String[1..*], values: String[1..*]): Resource
+resourceRetrieve(authToken: String, id: String): Resource
+resourceRetrieve(authToken: String, ids: String[1..*]): Resource[0..*]
+resourceRetrieve(authToken: String, type: String, ids: String[0..*]): Resource[0..*]
+resourceCollectReferences(authToken: String, id: String): String[0..*]
+resourceUpdate(authToken: String, id: String, key: String, value: String): void
+resourceUpdate(authToken: String, id: String, keys: String[1..*], values: String[1..*]): void
+resourceDelete(authToken: String, id: String): void
+personCreate(authToken: String, id: String, keys: String[1..*], values: String[1..*]): Person
+personRetrieve(authToken: String, id: String): Person
+personRetrieve(authToken: String, ids: String[1..*]): String[1..*]
+personUpdate(authToken: String, id: String, key: String, value: String): void
+personUpdate(authToken: String, id: String, keys: String[1..*], values: String[1..*]): void
+personDelete(authToken: String, id: String): void
+teamCreate(authToken: String, id: String, keys: String[1..*], values: String[1..*]): Team
+teamRetrieve(authToken: String, id: String): Team
+teamRetrieve(authToken: String, ids: String[1..*]): Team[0..*]
+teamUpdate(authToken: String, id: String, key: String, value: String): void
+teamUpdate(authToken: String, id: String, keys: String[1..*], values: String[1..*]): void
+teamDelete(authToken: String, id: String): void
+teamAddPerson(authToken: String, teamID: String, personID: String): void
+teamRemovePerson(authToken: String, teamID: String, personID: String): void
+teamAddTeam(authToken: String, parentID: String, childID: String): void
+teamRemoveTeam(authToken: String, parentID: String, childID: String): void

Resource

-ipfsID: String

-register(): void
+collectReferences(): Set<String>
#encode(): Array<Byte>
#decode(bytes: Array<Byte>): void

ResourceUpdateObserver

+resourceWillUpdate(id: String): void
+resourceDidUpdate(id: String): void

Budget

-balance: Real

Document

-person: Person

TravelFolioTravelDocument

BoardingPass

-/passenger

Itinerary

-/passenger: Passenger
-/price: Real

~addTravelDocument(document: TravelDocument): void
~addFlight(flight): void
~removeFlight(flight: Flight): void
~validate(): boolean

Identification

-children

*

«enumeration»
IdentificationType

Passport
Visa

-type1

Person

HumanResource

Team

~addTeam(child: Team): void
~removeTeam(child: Team): void
~addPerson(child: Person): void
~removePerson(child: Person)

-children
*

Composite
Pattern

-observers

*

Log

+addEvent(event: Event): void

Event

-message: String
-timestamp: Timestamp

FlightStatusEvent

-speed: Real
-trajectory: Real
-flight: Flight

CustomerFeedback

-/passenger

Location

«enumeration»
FlightStatus

LaunchPrep
TakeOff
InFlight
Landing
Waypoint
FinalDestination
Emergency
Lost
Missing
Fault
Info

-status

1

DiscoveryEvent

-location

1

«enumeration»
DiscoveryType

Life
Minerals
Object

-type

1

SpaceCraft

-model: String
#capacity: Integer
#fuelCapacity: Real
#fuelLevel: Real
#crewCapacity: Real

CargoCraft

-/cargoCapacity: Integer

PassengerCraft

-/passengerCapacity: Integer

RescueCraft

Coordinate

-x: Real
-y: Real
-z: Real

-coords

1

PointOfInterest

-notes: String[0..*]

«enumeration»
POIType

Planet
Moon
Asteroid
Solar System
Space Station
Other

-type

1

Image

-images*

-events

*

Multimedia

«enumeration»
MultimediaType

Book
Movie
Music

-type

1

WelcomePackage

«enumeration»
FuelType

Ion
Hydrox
Solar

-fuelType

«enumeration»
CargoType

ConstructionEquipment
Mining
SatelliteMaintenance

-cargoType

1

«enumeration»
PassengerType

Economy
Luxury

-passengerType
1

System

+upTime: Integer

«enumeration»
SystemStatus

Offline
Online

1
-status

CommunicationSystem ComputerSystem

«Role»
Passenger

-account: Account
-email: String
-credentials: Credential[1..3]

«Role»
CrewMember

«Role»
Employee

«Role»
FlightController«Role»

Administrator

Flight

-origin: PointOfInterest
-destination: PointOfInterest
-waypoints: PointOfInterest[0..*]
-ticketPrice: Real
-departureTime: Date
-duration: Interval

~passengerCount(): Integer

-ship

1

-flights

-flight

-crew

1

-passengers

1

LaunchPad

-launchPads

SystemStatusEvent

-status1

-boardedPassengers

1

-resources

*

Figure 1.2. A UML (Unified Modeling Language) network diagram, utilizing
complex nodes and edges2.

Understanding large and growing relational datasets is a defining feature of

the current computational landscape. Users, analysts, and artificial intelligentsia

(AI) must increasingly understand the relationships within these datasets as their

data evolve in realtime (Lin & Yen, 2005). As data volume and growth accelerate,

the urgency and difficulty of exploring these relationships accelerate concomitantly

(Idreos et al., 2018a,b). Algorithmic and aesthetic methods for displaying large and

growing networks have diverged, lagging far behind current technological capabilities

(Nobre et al., 2019). New algorithms, metrics, and implementation strategies must be
2 This graph was created by the author as part of an assignment for CSCI E97 at the Harvard
Extension School.

2

developed to meet this challenge (Namata et al., 2007; Idreos et al., 2018b). While AI

has achieved prominence in the mind-space for data analysis, visual exploration using

human intelligence remains a clear requirement (Stolper et al., 2014). There are many

domain-specific tools for exploring datasets with specific properties. As a class, these

tools are expensive, poorly maintained, infrequently updated, and platform-bound

(Mockus, 2019). Generalized, freely-available tools and techniques for exploratory

graph exploration present an open opportunity (Nobre et al., 2019).

Graph-theoretical analysis of relational datasets is a robust field and is well-

documented in the literature (Tutte, 1963; Di Battista et al., 1994; Nobre et al., 2019).

The field of graph visualization is likewise very mature (Tutte, 1963; Di Battista et al.,

1994); thousands of visualization techniques for small graphs (|G| ⩽ 103) are well

understood. Several graph drawing algorithms capable of drawing large (|G| ⩾ 104)

and very large (|G| ⩾ 105) domain-specific graphs, such as VLSI (Very Large Silicon

Integrated circuit) design, taxonomy, or bioinformatics research (Nobre et al., 2019)

have also been published. Nevertheless, few are appropriate for rendering to computer

screens or printed pages.

As datasets and their resultant graph drawings grow arbitrarily large and

complex, most graph layout algorithms falter due to computational constraints. Even

low-complexity algorithms have a time complexity of ⪆ O(|V |3), or more precisely,

O(|V |3 × ℓ), where ℓ is the number of inner loops that must be performed on each

node for optimal placement (Kamada & Kawai, 1989). To facilitate the creation of

effective drawings within a bounded time frame, algorithms must employ specialized

data structures tuned to available resources (Idreos et al., 2018b), exploit GPUs

(Graphics Processing Units) or other specialized hardware (Bleiweiss, 2008; Jeowicz

et al., 2013), or simplify the underlying graph to maintain “readability” (Dunne &

Shneiderman, 2013). The final output medium also imposes a resolution constraint,

3

imposing an upper bound on any potential insights gathered from densely-connected

graphs (Dunne & Shneiderman, 2013).

To circumvent these constraints, the structure and temporality of any dataset

must be considered, and many dynamic algorithms have been invented to do so (Nobre

et al., 2019). Successful visualization of evolving datasets is wholly dependent on

maintaining readability in the face of (un)expected changes. During the presentation

of any dynamical graph visualization (Section 1.5), maintaining an analyst’s ability

to gain insight from exploratory tasks is paramount (Di Battista et al., 1994), second

only to increasing the quantity of salient data presented (Tutte, 1963). The selection

of graph drawing algorithms that maintain insights within an analyst’s “mental map”

and maximize the information density remains an open problem (Misue et al., 1995;

Archambault et al., 2011; Nobre et al., 2020).

1.2. The Problem: Interactivity

As indicated above, devising optimal visualization techniques for arbitrarily

complex graphs is an NP-hard problem, even when limited to static datasets (Nobre

et al., 2019). However, there are well-defined exact solutions for specific classes of

small graphs using eigenvectors or spectral analysis (Koren, 2005). Several methods

for animating interpolations between static graph drawings are also extant in the

literature (Cohen et al., 1992; Du et al., 2017). The theoretical usefulness of such an-

imations has been explored in depth (Misue et al., 1995), but these examinations fail

to consider realtime performance. Thus, their interactive utility remains equivocal

(Archambault et al., 2011). The analyses that take performance into account opti-

mize over precomputed, serialized representations of past graph morphology (Section

2.4.2) and are, therefore, inappropriate for interactive exploration due to expensive

rematerialization of the underlying data structures (Smith, 1984; Beck et al., 2012).

4

New, GPU-accelerated algorithms have been developed to generate layouts of huge

(|G| ⩾ 106) graphs but are limited to sparse graphs with many nodes and few edges

(Mi et al., 2016).

Interactivity with dynamical (progressively evolving) relational datasets is a

poorly defined, nascent field of study (Hadlak et al., 2011; Sheng et al., 2019; No-

bre et al., 2019). However, in recent years, new techniques for generating interactive

graph visualization from dynamic, generalized graphs have appeared (Frishman & Tal,

2008; Wei et al., 2018; Simonetto et al., 2020). Unfortunately, these techniques are

both highly domain-specific and unwieldy; dataset evolution is limited to retrogressive

changes, and animated meta-visualizations incur enormous computational costs due

to precomputed transitions and data amplification (Koren, 2005; Lin & Yen, 2005;

Sheng et al., 2019). Progressively evolving datasets grow and shrink by arbitrary

numbers of entities as time moves forward, necessitating novel structural and oper-

ational approaches (Idreos et al., 2018b) to (re)visualize a graph in response (Nobre

et al., 2019). When dynamic visualization techniques are employed, rapid and un-

expected changes to entity relationships may introduce unnoticed errors and obscure

ephemeral insights (Simonetto et al., 2020). Online visualizations entail processing

an event stream and incorporating arbitrary modifications in realtime (Udupa et al.,

2009). Such changes necessitate adaptive dynamic graph layout algorithms that cap-

ture changes in morphology due to “normal” temporal evolution simultaneously with

changes due to unpredictable asynchronous events (Hadlak et al., 2011; Simonetto

et al., 2020). Extant methods use interpolation to animate between two completed

graph layouts smoothly; unfortunately, expensive data amplification costs (Smith,

1984) may lead to UI (User Interface) lock-up, animation stutter, or lost frames if the

number of graph elements differs between layouts (Archambault & Purchase, 2013;

Simonetto et al., 2020).

5

1.3. The Solution: Dynamical.JS

This thesis seeks to determine whether an extensible, multi-platform, real-time

exploratory graph visualization is feasible on commodity hardware. In addition to

validating this feasibility hypothesis, this thesis aims to produce a useful and robust

framework for application development and facilitate new expansion in the field of

exploratory data visualization. To address the need for online-interactive graph explo-

ration tools, we present a novel design for a standalone, embedded graph visualization

framework runnable on any system hosting a modern web browser: Dynamical.JS.

Our initial framework design enables the exploration of dynamical-relational datasets,

visually represented as animated 2D graph drawings. Both the design and reference

code presented in this thesis was developed using three substrate-agnostic, standards-

based technologies: the Javascript platform (European Association for Standardizing

Information and Communication Systems, 2020), WebGPU (GPU Computing for the

Web) framework (World Wide Web Consortium, 2022b) and WGSL (WebGPU Shad-

ing Language) (World Wide Web Consortium, 2022c). As this development approach

relies on yet-to-be-finalized technologies and standards, the reference code implemen-

tation included with this work is necessarily incomplete; further, any performance

metrics presented below are purely analytical. The relevant standards bodies (World

Wide Web Consortium, 2022d; European Association for Standardizing Information

and Communication Systems, 2020; Apple Inc., 2021) have indicated these standards

are nearing completion, and we intend to publish the completed framework publicly

once the standards’ implementation is generally available.

This thesis is structured as follows: Chapter 1 explores previous work in the

field of exploratory graph visualization and exposes potential pitfalls and opportu-

nities presented in the literature (Nobre et al., 2019; Di Battista et al., 1994; Ar-

6

chambault et al., 2011). Chapter 2 describes key qualities a successful dynamical

graph visualization system must possess, defines a set of required EGOs (Exploratory

Graph Operations) manifesting these qualities, and outlines the modular structure of

Dynamical.JS, which incorporates these EGOs. In Chapter 3, we decompose several

graph drawing algorithms, both classical and modern, and recompose them using the

EGOs defined in Chapter 2. Chapter 4 describes our development methodology and

design choices. Chapter 5 demonstrates the exploitation of modern software pro-

gramming techniques and technologies to achieve our design goals using Javascript

and WebGPU. Finally, Chapter 6 concludes and discusses future work.

1.4. Prior Work

Mas Blau

Parc Nou

Centric Les Moreres

Mercabama

Parc Logistic

Fira

Europa / Fira

Con Tries / Gomal

Torrassa

Collblanc

Zona Universitária

Magòria La Campana

Ildefons Cerda

Gornal

Sant Josep

L’Hospitalet / Av. Carriet

Almeda

Corneilià Riera

Sant Boi

Molí Nou Ciutat Cooperativa

Espanya

Clot

Glòries

Marina

Arc de Triomf

Urquinaona

Catalunya

Universitat

Urgell

La Sagrera

Navas

Gavarra

Cornelià

FondoBarò de Viver

Trinitat Vella

Torras i Bages

Sant Andreu

Fabra i Puig

Can Boixeres

Sant Ildefons

Placa de Sants

Mercat Nou

Sta. EluàliaFlorida

Can Serra

Rbla Just Oliveras

Bellvitge

Hospital de Bellvitge

Rocafort

Hostafrancs

Can Vidalet

Publia Casess

Badal

Camp de l’Arpa

Sant Pau Dos de MaigSagrada Familia

Verdaguer

Diagonal

Hospital Clinic

Entença

Saints Estació

Vall d’Hebron

El Coll La Teixonera

El Carmel

Horta

Vilapicina

Virrei Amat

Maragall

Congrès

Gorg

La Salut

Llefià

Bon Pastor

Onze de Septembre

Penitents

Valicarca

Can Zam

Singuerlin

Església Major

Santa Rosa

Can Peixauet

Lesseps

Fontana

Passeig de Gràcia

Liceu

Drassanes

Paral-lel

Poble Sec

Tarragona

Placa del Centre

Les Corts

Maria Cristina

Pius XII

Palau Reial

Trinitat Nova

Roquetes

Canyelles

Validura

Mundet

Montbau

Can Cuiàs

Ciutat Meridiana

Torre Baró / Valibona

Casa del l’Aigua

Llucmajor

Via Júlia

Girona

Joanic

Alfons X

Guinardó Hptal de St Pau

Llacuna

Bogatell

Ciutadelila Vila Olimpica

Barceloneta

Jaume I

Besòs

Besòs Mar

El Maresme / Fòrum

Selva de Mar

Poblenou

La Pau

Provençana

Foneria

Ciutat de la Justica

Foc

Bac de RodaEncantsMonumental

Tetuan

Sant Antoni

Sant Roc

Artigues Sant Adrià

Verneda

San Marti

Badalona Pompeu Fabra

Pep Ventura

Santa Coloma

Reina Elisenda

Muntaner

La Bonanova

Les Tres Torres

Sarrià

St Gervasi / Pl. Molina

Muntaner

Provença

Av. Tibidabo

Pàdua

El Putxet

Aeroport T1

Aeroport T2

El Prat Estació

5

8

1

3
9

6
3
4
11

7

5

11

9

1

2

10

4

2

7

10

9

2
4

2

5

Estación Tren

Estación Tren alta Velocidad

Aeropuerto

Passarel·la per a Vianants

Estació de Trasllats

Estación

Terminal1

Llegenda

Fond de dades: https://opendata-ajuntament.barcelona.cat/data/en/dataset/transports

6
7

Figure 1.3. A network diagram of Barcelona’s subway system encoding distance
between stations in 5-minute intervals, utilizing various on-node and on-edge
encodings3.

,

3 This graph was created by the author as part of an assignment for CSCI E79 at the Harvard
Extension School.

7

Software packages capable of realtime updates to graph visualizations exist,

yet few are well-documented open-source packages (Nobre et al., 2019, 2020). While

D3 (Bostok, 2021) and NetworkX (NetworkX Developers, 2020) are powerful and

capable of presenting small dynamic graphs, both have severe limitations, rendering

them inappropriate for large, interactive dynamical graph visualizations. D3 is limited

to relatively small graphs due to its reliance on the DOM (Document Object Model),

SVG (Scalable Vector Graphics), and the need to function as a generalized data vi-

sualization package. NetworkX is a powerful tool specifically designed for network

analysis but not drawing (Hagberg et al., 2022); it relies on many external packages

to perform the layout and rendering. NetworkX also requires a relatively complex

server-side installation which may be out of reach for many client-side developers,

limiting its availability and usefulness for interactive dynamical graph visualizations.

Other packages which run in a web browser, such as Sigma.js (Jacomy & Plique, 2022)

and Graphology (Plique, 2022), are fully synchronous. Without extensive modifica-

tions, both can lock up the browser for extended lengths of time when processing

large graphs or require running node.js (OpenJS Foundation, 2022) as a background

service.

1.5. Terminology

This thesis uses several non-standard terms to disambiguate certain concepts

and terms with multiple, interchangeable definitions within the literature or where

the same term is used for different concepts in the same or different fields. The most

important of these are the following:

Substrate This non-standard term always refers to the collection of CPU (Central

Processing Unit), GPU, and ASIC (Application-Specific Integrated Circuit) re-

8

sources provided by a given hardware configuration. This includes instruction

sets, compute cores, co-processors, memory configurations, or other control

hardware to facilitate computation. Substrates may be monolithic (confined

to a single host), distributed (shared among multiple hosts), or virtual (logical

partitions of the above resources which may operate concurrently on the same

host).

System Unless qualified, this refers specifically to the OS (Operating System) run-

ning on a given substrate. Windows, macOS, and Linux are examples of

systems.

Framework A collection of software functions, APIs (Application Programming

Interfaces), code libraries, or other technologies a given system provides to

perform related computational tasks. OpenGL (Open Graphics Library), Di-

rectX, WebGPU, and Dynamical.JS are examples of frameworks.

Platform A specific collection of frameworks, execution environments, or program-

ming languages one or more applications require for execution. The Javascript

and Python runtimes are examples of platforms.

Application An interactive program or process that runs on a specific platform to

produce output useful to the analyst. Adobe Photoshop, Microsoft Word, and

OmniGraffle are examples of applications.

Analyst A human who interacts with an application to solve a problem or to gain

insight by analyzing its output.

Dynamic Any object, structure, or concept that changes in a predefined or pre-

dictable manner or has a known retrogressive evolution.

Dynamical Any object, structure, or concept that evolves progressively or changes

in an unstructured or unpredictable manner in response to external events.

A cloud computing service that reallocates resources due to fluctuations in

9

current client demand is an example of a dynamical substrate.

Node The fundamental graph-theoretical unit from which all graphs are formed.

Vertex A data structure that describes a point in two or 3D (three-dimensional)

space and is the fundamental unit from which all graphical primitives are

derived in a given computer graphics framework. This term also refers to a

graph node that has been materialized for layout and rendering.

Additional terms will be defined when they are used or listed in the glossary.

10

Chapter II.

Design & Methodology

Designing software is complex; designing reusable software is even more so.

Software engineers must not attempt to solve every problem from first principles;

instead, they should reuse solutions that have worked in the past (Gamma et al.,

1995). A framework acts as an isolation layer to shield the application developer

from the implementation details; the framework’s design must collect prior solutions

into a standard format the developer can apply immediately and, in turn, provide

these solutions to the analyst. The framework should abstract and encapsulate many

recurring tasks so the developer need not rediscover or reimplement them (Jargstorff,

2004). To do so, the framework architect must isolate pertinent concepts, factor them

into classes at the right granularity, define interfaces and inheritance hierarchies, and

establish key relationships among them (Gamma et al., 1995). The framework must

be specific to the existing problem of exploratory graph visualization but remain

general enough to address future issues and requirements.

In the following sections, we describe the basic design of an exploratory graph

visualization framework: Dynamical.JS. This framework demonstrates exploratory

graph visualization’s most important design and implementation aspects. However,

it does not address many of the more complicated schemes necessary for an industrial-

strength library, which is reserved for future work.

2.1. Key Qualities

A practical exploratory graph visualization framework must possess several key

qualities and express these qualities through its architectural design. The framework

must:

11

1. Run on as many systems as possible. System agnosticism (Section 2.2) allows

a developer to write the framework once and an analyst to run framework-

dependent applications on various systems without modification.

2. Incorporate asynchronous operation throughout. Dynamical graph visualization

is by nature extemporaneous; changes to graph morphology are unpredictable

(Udupa et al., 2009). Therefore, any graph exploration framework must respond

in realtime to unexpected events without blocking the UI (User Interface) or

otherwise capturing resources unnecessarily (Section 4.5.2).

3. Organize functionality into logical modules. Modules separate related compu-

tational tasks into self-contained units organized by functional responsibility

(Section 2.3). Modules are further divided into submodules and provide stan-

dardized interfaces using common design patterns (Gamma et al., 1995). En-

capsulation ensures application developers are exposed only to functionality

appropriate to execute an analytical task; framework developers remain free to

define and install new modules without modifying the framework structure.

4. Support the drawing of a large number of different graph types. At a minimum,

the framework must lay out and draw directed, undirected, and weighted graphs

(Di Battista et al., 1994). The framework must also be extensible enough to

support special layouts for (a)cyclic, hierarchical, and domain-specific graph

types (Section 2.4).

5. Retain the aesthetic qualities and preserve the mental map whenever possi-

ble. During exploratory tasks, the graph structure may be unknown until af-

ter the exploration task has commenced (Kreylos & Hamann, 2001); post hoc

(re)interpretation of attributes may change the target graph’s connectivity or

12

classification (Simonetto et al., 2020). (Re)applying a particular graph layout

algorithm to an externally modified graph may destroy the analyst’s mental map

(Section 2.5.1). It is necessary to provide alternatives that adapt appropriately

to a graph’s current state (Misue et al., 1995; Archambault et al., 2011).

6. Leverage cache-conscious memory layouts, avoid re-materializing inputs, and

minimize memory copies between GPU (Graphics Processing Unit) and CPU

(Central Processing Unit). This minimizes stalls due to cache misses (Section

2.6) and reuses intermediate values wherever possible (Beck et al., 2012; Idreos

et al., 2018b; Tan et al., 2020).

7. Define an extensible library of composable EGOs (Exploratory Graph Opera-

tions) and mathematical functions. A standard EGO library (Section 2.7)

enables the replication of extant layout strategies and the synthesis of novel

techniques from pre-defined components (Stolper et al., 2014). Extensibility

empowers the programmer to provide novel or proprietary EGOs without mod-

ifying the underlying framework (Section 5.4.1).

8. Record and expose tunable parameters as a transparent interface. Analysis do-

mains, presentation requirements, and performance goals impose functional con-

straints on algorithm execution and control graph evolution (Du et al., 2017).

If exposed through a consistent interface, these constraint parameters can be

shared among a suite of EGOs or saved as profiles to automatically apply appro-

priate resources to a particular EGO regardless of the underlying computational

substrate (Section 2.12) (Beck et al., 2013).

The following sections describe how Dynamical.JS manifests these qualities in

its design. Individual optimization of these key qualities could quickly expand into

13

independent projects outside this document’s scope, as is our intent. However, due

to time and platform constraints, we have prioritized a naive implementation of these

key qualities for demonstration purposes, reserving optimizations for future work.

2.2. System Agnosticism

The primary design goal of Dynamical.JS is a self-contained, dependency-free,

standards-based framework. This may seem like “reinventing the wheel,” however, it

is essential to realize that the open-source supply chain is fragile and is littered with

abandoned or poorly maintained projects (Mockus, 2019). By taking a standards-

only approach, Dynamical.JS is built on a foundation that is relatively immune to

unpredictable dependency changes and unburdened by onerous licensing restrictions.

2.3. Modularity

A successful framework for exploratory graph visualization must be modular,

divide responsibility among various components, and provide programmers with log-

ical groupings of functionality when using or extending the framework. Modularity

extends from the framework level down to base functionality, using object-oriented de-

sign patterns and standardized programming interfaces (Gamma et al., 1995). Object

orientation encapsulates both data and the procedures which operate on that data;

entities encapsulated in this manner cannot be modified without interacting with the

appropriate interface. Dynamical.JS is organized into the following three discrete

modules and one distributed virtual module: (1) Data, (2) Layout, (3) Drawing, and

(4) Testing/Performance.

14

Dynamical.JS Webkit

Analyst

Data

Layout

Drawing

Javascript

WebGPU

Canvas

Figure 2.1. A UML (Unified Modeling Language) block diagram of Dynamical.JS
modules.

2.3.1 Data Module

The Data Module is responsible for retrieving input data and assembling

graphs sourced via standard methods: file importation, remote API (Application

Programming Interface) calls, and database connections. This module parses the in-

put data and performs the graph-theoretical and statistical operations required for

analysis. Once the data are parsed, they reside in appropriate data structures for

indexing, retrieval, and modification. The Data Module then transforms, or materi-

alizes, the current graph state into a format suitable for layout on either CPU or GPU

via hints provided by the Layout Module. The Data Module also predefines hints to

determine the best memory layout strategy to optimize the locality of reference (Ward

& Halstead Jr., 1999) and directs the Layout Module to (re)apply layout algorithms

as the underlying graph data change. Future plans for this project include recording

15

Dynamical.JS Webkit

Analyst

Data

Layout

Drawing

Javascript

WebGPU

Canvas

Figure 2.2. A block diagram of the Dynamical.JS Data Module.

and tuning such strategies to increase performance.

2.3.2 Layout Module

The Layout Module is responsible for placing nodes within a coordinate sys-

tem independent of the analyst’s UI, called layout space. Using composable GLOs

(Graph Layout Operations), this module encapsulates the algorithmic logic required

to initialize and calculate a graph layout and reflect the target graph’s morphological

changes as necessary for animation. This module works in tandem with the Data

Module to index and retrieve graph elements and their attributes by generating and

responding to appropriate events. The Layout Module then notifies the Drawing

Module when the intermediate or final layout stages are ready for rendering and an-

imation. This module also listens for events generated by the Drawing Module to

effect changes in morphology due to user interaction, such as selection or filtering.

16

Dynamical.JS Webkit

Analyst

Data

Layout

Drawing

Javascript

WebGPU

Canvas

Figure 2.3. A block diagram of the Dynamical.JS Layout Module.

2.3.3 Drawing Module

The Drawing Module has two primary responsibilities: rendering graph lay-

outs to the UI and responding to events generated by the analyst. All drawing

functionality is controlled by exchanging asynchronous events with the UI and sis-

ter modules: (1) responding to layout change events from the Layout Module; (2)

exchanging graph selection and query events with the Data Module; (3) mediating

user input events from HIDs (Human Interface Devices) such as mice or keyboards

via the Javascript runtime. This module also determines the animation framerate,

view-coordinate transformations, and image texture creation.

2.3.4 Testing & Performance Module

Unlike the other modules described above, the Testing & Performance module

is not a segregated package. Still, it is a logical grouping of components for measuring,

17

Dynamical.JS Webkit

Analyst

Data

Layout

Drawing

Javascript

WebGPU

Canvas

Figure 2.4. A block diagram of the Dynamical.JS Drawing Module.

validating, and tuning the other modules. This is useful during development and

allows for building performance profiles the analyst can use as they switch between

systems. This module supports regression/fuzz testing of each code package and

child sub-packages during framework development and will form the basis of a yet-

to-be-designed benchmarking suite. Not all components of the Testing/Performance

Module accompany the published Dynamical.JS package.

2.4. Graph & Layout Types

The problem of visualizing large graphs consists of two significant aspects that

must be considered: (1) structure, the inter-relations between graph elements and

their attributes, and (2) temporality, the dynamics of the graph and its morphology

(Hadlak et al., 2011).

18

2.4.1 Static Graph Layouts

A static graph G ← (V, E, A), is defined as a set of nodes v ∈ V , a set of

edges e ∈ E ⊆ V × V , and a set of attributes a ∈ A (Tutte, 1963; Eades, 1984).

Attributes may be variables or functions that encode characteristics such as position,

weight, labels, &c. For example, the node position attribute p⃗v ← PG(v) maps a

node v onto its coordinate in the n-dimensional layout space PG(v) : v ∈ V → Rn,

e.g., p⃗v = PG(v) = ⟨1, 3, . . .⟩, and is the core attribute used to compute and store the

graph layouts (Simonetto et al., 2020). Graphs may be sparse, with few edges (|E| ≪

|V |2), or dense, where the number of edges approaches the maximum (|E| ≈ |V |2)

(Cormen et al., 2009). Weighted graphs are graphs where each edge has an associated

weight attribute w, typically given by a weight function w : E → R (Cormen et al.,

2009). In all cases, static layout algorithms are step-wise local refinements of suitable

initial node positions subject to an arbitrary combination of aesthetic (Section 2.5),

environmental, and domain-specific constraints (Section 2.12).

Many graph types are defined in the literature and classified by edge type into

four broad categories:

Undirected Graphs Each pair of nodes ⟨u, v⟩ may have at most one linking edge

(|Euv| ≤ 1); edges can be traversed in either direction (Figure 2.5a).

euv = Euv ← {u↔ v} (2.1)

Directed Graphs Each pair of nodes ⟨u, v⟩ may have at most one linking edge

(|Euv| ≤ 1); edges can be traversed in one direction only (Figure 2.5b). Di-

19

rected graphs may also allow self-loops, where an edge connects a node to itself

(u ⟲ u).

euv = Euv ← {u← v ⊕ u→ v} (2.2)

Mixed Graphs Each pair of nodes ⟨u, v⟩may have at most one linking edge (|Euv| ≤

1); edges can be either directed or undirected (Figure 2.5c).

euv = Euv ← {u← v ⊕ u→ v ⊕ u↔ v} (2.3)

Multigraphs Multiple edges can be defined between each pair of nodes (|Euv| ≥ 0).

Multigraphs can also be directed, undirected, or mixed (Figure 2.5c).

euv ∈ Euv ⊆ {u← v, u→ v, u↔ v} (2.4)

u v

(a) Undirected edge

u v

(b) Directed edge

u v

(c) Mixed, multiple edges

Figure 2.5. Graph edge classification.

The graph taxonomy further classifies graphs by connectivity, e.g., (a)cyclic

graphs, trees, or other hierarchical structures. In general, these are special cases of

the above graph types and are excluded from this text for the sake of brevity.

20

2.4.2 Dynamic (Offline) Graph Layouts

A dynamic graph D ← (G, T) ← (V, E, A, T) is defined as a graph whose

attributes are functions of time, where T is the time domain defined as an interval

in R (Cohen et al., 1992). Attributes are functions defined in the domain V × T

for nodes and E × T for edges. Dynamic graphs can be thought of as a map that

links each node and edge to a sequence of functions that describe graph behavior in

disjoint intervals of time Ti, with a default value returned for t /∈ T (Simonetto et al.,

2020). For example, the dynamic node position attribute PD : V × T → Rn is the

function that describes the position p⃗v for each time t ∈ T . A timeslice Dt ← (G, t)

or Gt ← (VG, EG, AG, t) of graph D represents its current state at time t. Static graph

G can therefore be reframed as a dynamic graph where |T | = 0, or G = (V, E, A, ∅).

Offline dynamic graph drawing entails a variety of techniques: (1) aggregat-

ing all morphological changes into a single super-graph, (2) linking the same node in

consecutive timeslices together with inter-timeslice edges, (3) providing support for

animation and small multiples, (4) and metric evaluations of the above (Simonetto

et al., 2020). Offline dynamic graph layout algorithms pre-compute the graph’s tem-

poral evolution for global optimization. These algorithms have the advantage they

are supplied with all relevant information for the relevant period and can optimize

across it; however, these approaches require all graph permutations to be known be-

forehand, potentially wasting computational resources if portions of the graph are

never viewed by an analyst (Simonetto et al., 2020; Hadlak et al., 2011).

As implied above, most dynamic graph drawing techniques are designed to

animate a sequence of static graph layouts (Du et al., 2017). Conceptually, the

dynamic graph D is embedded within an n + 1-dimensional spacetime cube, and

a timeslice is a hyperplane through this cube. Timeslicing is integral to dynamic

21

graph visualization, and temporal visualization in general for several reasons: (1)

dynamic algorithms that use a timeslice model can be designed by a simple extension

of existing static graph layout algorithms, (2) if input data is naturally structured into

timeslices, it is also natural to think of a dynamic graph as a series of snapshots that

encode graph evolution, and (3) to look at the graph structure between timeslices,

one may retroject or interpolate the graph onto an intermediate timeslice and redraw

the entire dataset (Simonetto et al., 2020).

Because offline approaches only consider the totality of past changes, dynamic

graphs must be rebuilt from the beginning to incorporate new data into the layout.

This ensures the graph’s structural and temporal continuity is maintained (Hadlak

et al., 2011). To encourage layout stability, inter-timeslice edges connect nodes in

the current timeslice to the same nodes in immediately antecedent and subsequent

timeslices (if present), allowing for easy identification of nodes across time without

special highlighting (Archambault & Purchase, 2013). If node sets remain congruent

between timeslices, the inter-timeslice graph layouts required for animation can be

generated simply by linearly interpolating visible nodes’ position attributes. Each

animation frame presumptively corresponds to a single timeslice, but that need not

be the case. If an element is present in the current timeslice Gt but not in the

following timeslice (Gt+1), it must be deleted; likewise, if it is not present in the

previous timeslice (Gt−1), it must be added (Simonetto et al., 2020). Otherwise,

either or both layouts must be expanded with the set difference of the other via data

amplification (Smith, 1984). This renders interpolated inter-timeslice impracticable.

This demonstrates an unfortunate caveat of data amplification: optimizing over the

entire dynamic graph requires each timeslice to reserve enough memory to lay out

every element, even if some elements are only present in a single frame!

A common method to overcome this issue is to resample the graph over the

22

time axis and aggregate or delete frames where only “minor” changes occur (Ar-

chambault & Purchase, 2013; Simonetto et al., 2020). How many timeslices should

be deleted? If too few, computational resources are wasted. If too many, informa-

tion is lost through aggregation across time. The Nyquist frequency states that to

prevent information loss, we must sample timeslices at a rate equal to the smallest

gap between events (Nyquist, 1928). Either a method of using continuous time with

arbitrarily fine or nonuniform sampling rates is required (Landau, 1967), or a novel

(re)materialization method must be employed (Frishman & Tal, 2008; Wang et al.,

2017; Qu et al., 2017).

2.4.3 Dynamical (Online) Graph Layouts

Often, graph data manifests as a series of events where graph elements have

real-valued time coordinates (Simonetto et al., 2020). To view these data using offline

methods, regular timeslices must be imposed on the data and projected down onto

the nearest timeslice (Simonetto et al., 2020). Such limitations of timeslice-based

drawing methods serve as good motivation to pursue a model for dynamic graph

drawing that is not based on timeslices. This adds another layer of complexity: as

the focus changes throughout an analytical task, the layout techniques must also vary

(Hadlak et al., 2011); therefore, flexibility is critical.

Simonetto et al. (2020) describe a method where a node’s position attribute

p⃗v ∈ PV are defined as piecewise functions PV (v, t) describing a trajectory through

the spacetime cube represented by polylines with a given start point, endpoint, and

any bends (the junctions of consecutive line segments within the polyline). Edges

are then defined in the spacetime cube as a plane that connects the two trajectories.

Nodes removed (i.e., the trajectory does not intersect a timeslice) cannot affect the

resulting graph layout and can be discarded. Layouts only need to be generated when

23

new node trajectories are created or extant trajectories bend; intermediate layouts are

again generated as simple linear interpolations between these non-uniformly spaced

pseudo-timeslices by appropriately scaling the time parameter t.

An alternate approach from Beck et al. (2013) simplifies the graph via a rules-

based filtering approach and aggregating salient temporal changes into change sets

which are re-integrated into bounded spacetime cubes lazily to minimize the modifi-

cations applied to subsequent layouts without sacrificing quality or wasting memory

space. A third time-space mapping method (Tufte, 1990; Archambault et al., 2011; Si-

monetto et al., 2020) presents disjoint volumes of the spacetime cube simultaneously

via multiple representation (Section 2.5.2) or small multiples visualization (Section

2.5.3).

Dynamical.JS facilitates all three graph drawing techniques by separating the

underlying data structures from the operations (EGOs) applied. Graphs can be visu-

alized statically, as timeslices through the spacetime cube, or as a sequence of events,

by caching and retrieving materializations (Section 5.8.1) of graphs and subgraphs,

only generating layout frames when requested via lazy evaluation (Smith, 1984).

2.4.4 Context Aware Layouts

Though counter-intuitive, for the vast majority of graph visualizations de-

scribed in the literature, a node’s position attribute conveys no specific meaning to

the analyst, relying exclusively on the connectivity and proximity gestalt principles

(Ware, 2013) to prompt semantic inference. Further, the inherent complexity of

encoded relationships and limited display resolution limit many graph drawings to

simple node-link diagrams with trivial on-node and on-edge encodings using circles

and lines as visual marks (Bertin, 2011) encoding nodes and edges respectively (Fig-

ure 1.1). Context-aware algorithms may apply appropriate weighting functions or

24

specific visual encodings to imbue layouts with semantic meaning or morph a pre-

existing layout (such as a map) into a new task-specific coordinate space. Dunne &

Shneiderman (2013) apply a technique, motif simplification, to reduce the complexity

of a graph drawing and increase its information density. This method aggregates

common graph structures and subgraphs into motifs, represented in the drawing as

complex visual marks or glyphs. Algorithmic methods of drawing these information-

rich and aesthetically pleasing node-link diagrams is an active field of current research;

the creation and optimization of context-aware, semantic visualizations require hu-

man studies (Nobre et al., 2019) beyond the scope of this thesis; however, these

visualization types are supported via appropriate EGOs (Section 2.7).

2.5. Aesthetics and the Mental Map

“Attractive” drawing of arbitrary static graph diagrams is an NP-hard problem

due to seven general visual constraints (Section 2.12.2): (1) display symmetry, (2)

edge crossing minimization, (3) edge bend minimization, (4) uniform edge lengths, (6)

uniform node distribution, and (7) angular resolution (Tutte, 1963; Argyriou et al.,

2012). Unfortunately, each of these constraints is “competitive:” the optimality of one

prevents the optimality of the others (Tutte, 1963; Di Battista et al., 1994). Gaining

insights is a key requirement of any graph visualization (Ware, 2013). The analyst’s

application domain may signify these requirements differently to ensure readability or

performance (Cohen et al., 1992; Beck et al., 2013). Graph-theoretical characteristics

may also limit the number of layout approaches and impose additional requirements

on the output. For example, not every aesthetic approach can represent weighted,

hierarchical, or bipartite graphs (Beck et al., 2009).

25

2.5.1 Preserving the Mental Map

The “mental map” refers to graph morphology represented within the ana-

lyst’s mind (Misue et al., 1995). Mental map preservation facilitates readability and

minimizes the analyst’s cognitive load while keeping track of nodes over time (Beck

et al., 2009; Archambault et al., 2011; Archambault & Purchase, 2013). Mental map

preservation requires maintenance of the overall shape of the layout by reducing node

movements between successive frames (Frishman & Tal, 2008). As the number of

graph elements grows, the analyst’s ability to interact and analyze the data decrease

significantly, exacerbated as the analysis proceeds over long periods (Dunne & Shnei-

derman, 2013; Nobre et al., 2020). Hadlak et al. (2011) conceptualize this problem

as a visual entity budget: the upper limit for the number of graph elements that

can be displayed due to limited screen space, processing capability, and the limits of

human perception and understanding. These limits can be addressed by limiting the

structural or temporal components of the graph or abstracting and clustering these

components into comprehensible meta-structures generated via algorithmic merging

or splitting elements from the parent graph (Dunne & Shneiderman, 2013), filtering

or querying nodes with particular properties, or explicit manual selection of salient

graph elements by the analyst (Namata et al., 2007).

2.5.2 Multiple Representation

Analysis of large graphs can be made more efficient via multiple representation.

The increase in efficiency is due to size reduction: selecting and aggregating significant

subnetworks and presenting each aggregate to the analyst separately (Namata et al.,

2007; Simonetto et al., 2020). This facilitates manual control and highlighting of client

graph elements at the analyst’s discretion: rendering multiple coordinated layouts

26

across separate views, coarse layouts overlaid with transient, detailed sub-layouts, or

embedding graph layouts within a more extensive visualization (Hadlak et al., 2011).

Thus, the analyst can focus on two sections of the same network by zooming into

one while simultaneously filtering another or interacting with an overview layout to

control background evolution. Dynamical.JS allows any combination of subnetworks

or graph sequences to be represented as distinct interactive visualizations where each

can be manipulated with the appropriate representation and controls (Namata et al.,

2007). This allows a hierarchical subgraph to be visualized using an appropriate

TreeMap. In contrast, a larger subgraph (or the entire graph) could be represented

as a node-link diagram using a force-directed layout (Section 3.3) (Namata et al.,

2007).

2.5.3 Small Multiples

Graph layout animations require the analyst to rely heavily on memory to gain

insight from a dataset. Animated visualizations of long dynamic graph sequences are

often ineffective because analysts must compare events from the beginning of the ani-

mation with events that occur at the end (Simonetto et al., 2020). Small multiples, a

special case of multiple representation, are sets of complex visual marks which depict

salient structural differences between coincident graph layouts in a single visualiza-

tion (Bertin, 2011; Simonetto et al., 2020). Small multiples are employed to maximize

the readability and memorability of dynamically evolving data (Ware, 2013). Visu-

alization of dynamic graphs with small multiples can be a more effective means of

displaying dynamical data because it abstracts structure and temporality using ana-

lyst-specified criteria (Tufte, 1990). For example, in the approach of Simonetto et al.

(2020), using screen space constraints (Section 2.12), several regions in the spacetime

cube containing highly dynamic node trajectories are selected. Each small multiple in

27

this set represents the structural state of graph elements for a particular timeslice, en-

abling the analyst to simultaneously compare many (or all) timeslices (Archambault

et al., 2011).

2.6. Cache Consciousness

As RAM (Random Access Memory) gets cheaper, substrates with large main

memories become increasingly affordable. Cache memories are small, fast, hierarchi-

cal memories that bridge main memory and compute cores, improving performance

by holding recently referenced data and instructions. Caches are parameterized by

capacity, block (cache line) size, and associativity. Capacity is the overall size of the

cache, block size is the fundamental transfer unit between the cache and main mem-

ory, and associativity determines how many cache slots are destinations for a given

memory reference. A facile assumption that memory references have uniform cost is

invalid, given the widening gap between cache and main memory access speeds and

associated inter-memory transfer costs. Memory latency can only be reduced when

the requested data is resident in the cache. The programmer must keep useful data

within or as close to the cache as possible.

Memory references satisfied by the cache, called hits, proceed at processor

speed; unsatisfied references, called misses, incur cache miss penalties and must be

fetched into the corresponding cache block from lower (and slower) levels of the mem-

ory hierarchy. Consequently, a significant portion of execution time is wasted on data

and instruction cache misses (Idreos et al., 2018b). To ensure requested data is acces-

sible to the processor as quickly as possible, the programmer must use data structures

that prioritize the locality of reference, both temporal (repeated references to the same

memory location) and spatial (repeated references to different but nearby memory lo-

cations) (Ward & Halstead Jr., 1999). The converse, cache underutilization, must also

28

be prioritized. When caches remain empty or contain “useless,” rarely-accessed data,

cache misses incur additional write-stall penalties when pre-cached data is pushed

back down the memory hierarchy (Patterson & Hennessy, 2017). If these priorities

are ignored, memory latency becomes an acute performance bottleneck that prevents

the application from fully exploiting the power of modern computing substrates.

2.6.1 GPU Memory

CPUs and attached GPUs have distinct memory circuitry, even if the under-

lying substrate is built upon a UMA (Unified Memory Architecture) (Patterson &

Hennessy, 2017; N & Murali, 2019). The intricacies of the CPU memory hierarchy

hide behind a virtual memory system that pages RAM to and from non-volatile sec-

ondary storage (Patterson & Hennessy, 2017). Like CPU memories, GPU memories

are also hierarchical, divided into four or more levels (Figure 2.6): registers reside

within each compute core, “local” (L1) caches are shared between groups of compute

cores (known as workgroups), shared (L2) caches are shared among all cores, and

VRAM (Video RAM) (Jeowicz et al., 2013; Patterson & Hennessy, 2017).

Unlike the CPU memory hierarchy, all GPU memory is “wired:” its hierarchy

does not have a virtual memory system. L1 data caches are typically write-evict

and write-no-allocate, whereas L2 caches are write-back with write-allocate (Patter-

son & Hennessy, 2017; Tan et al., 2020). To simplify their design, GPU caches are

non-inclusive and non-exclusive, lacking the hardware coherence necessary to execute

programs written in high-level languages such as C++ or Java (Singh et al., 2014;

Patterson & Hennessy, 2017). Instead, the developer must write GPU-specific pro-

grams called kernels (Section 4.10) with substrate-specific limits in mind. L1 caches

are restricted to kernel “threads” executing within the same workgroup, whereas L2

caches are available to all executing threads.

29

CONTROL

ALU ALU

ALU ALU

CACHE

DRAM

CONTROL

ALU

CACHE

DRAM

REGISTER

(a) CPU memory layout

VRAM

(b) GPU memory layout

Figure 2.6. A comparison of CPU and GPU memory layouts.

Like CPU programs, kernels must also use cache-conscious data structures

wherever possible to ensure efficient cache usage, maximize hits in the cache, and

reduce overall bandwidth requirements (Cebenoyan, 2004). Data must also be pre-

sorted and streamed in L2 cache-sized blocks, aligned to the L1 cache boundaries

to ensure sequential scans (Patterson & Hennessy, 2017; Idreos et al., 2018b; Tan

et al., 2020). Due to the massive thread-level parallelism and the limited capacity,

GPU caches are rarely idle but often underutilized. Experiments suggest GPU L2

cache lines spend 95.6% of their time storing data referenced only once, obviating

the purpose of the cache (Li et al., 2019; Tan et al., 2020). Underutilization can be

ameliorated by exploiting texture memory. Texture memory lookups are incredibly

efficient: one-, two-, or three-dimensional texture scans can be used as lookup tables

for complex functions or index values without requiring costly CPU memory mapping,

even when executing divergent algorithms with irregular access patterns (Marshall,

2004; Bleiweiss, 2008; Qu et al., 2017; Li et al., 2019; Tan et al., 2020). In both cases,

the workgroups must be sized to prioritize local (intra-workgroup) interactions over

global (inter-workgroup) interactions (Patterson & Hennessy, 2017; Sorensen et al.,

30

2021).

Memory copies are generally the most significant performance bottleneck in

graphical programs, even when the CPU interface uses specialized hardware to trans-

fer data in bulk. This bulk transfer of data is known as mapping: segments of VRAM

are mapped into the CPU’s virtual address space, data is copied in or out, and the

segments are then unmapped. The CPU exclusively “owns” mapped VRAM seg-

ments; control is not returned to the GPU until the segments are unmapped (Singh

et al., 2014; Patterson & Hennessy, 2017). The inverse is never true: CPU memory

cannot be mapped into the GPU’s address space, and the GPU never gains con-

trol over CPU memory. Mapping is a relatively wasteful, synchronous operation:

the CPU must cycle while waiting for the (very deep) GPU pipeline to idle before

it can take control of requested memory segments, and the GPU must cycle when

pipelines (Section 4.8) sit idle waiting for buffers to refill (Cebenoyan, 2004; Patterson

& Hennessy, 2017). Data structures and access patterns must be designed to avoid

unnecessary mapping of GPU memory into CPU space wherever possible. Otherwise,

the GPU will stall, waiting for requested data to ascend the CPU memory hierar-

chy. To minimize these costs, cross-architecture data access primitives should always

be sequential scans (Idreos et al., 2018b) to avoid stalling the GPU; random reads

(probes) of dereferenced pointers to CPU memory must be avoided wherever possible

(Patterson & Hennessy, 2017; Kester et al., 2017).

2.7. Exploratory Graph Operations (EGOs)

Most graph visualization techniques and all transitions between them can be

decomposed into simple procedures called Graph Level Operations (Cohen et al., 1992;

Lee et al., 2006; Stolper et al., 2014; Bach et al., 2017). The recomposition of these

simple operations (and their underlying data structures) enables the straightforward

31

synthesis of existing algorithms using preexisting code components (Idreos et al., 2019,

2018a). One of the essential features of composition reflects a core framework design

concept: abstraction. Abstraction de-emphasizes the differences between algorithms

and highlights their commonalities. Common code patterns are re-expressed as id-

iomatic procedures, combined, reordered, or substituted as required. Storage details

are no longer explicitly specified but implicit; detailed specifications and performance

requirements are delegated to the framework by the application.

Another feature of idiomatic composition is parametric control: a parameter

is assigned to a meaningful concept (e.g., the desired distance between nodes or limits

of inter-frame movement) and adjusted to tune an algorithmic sequence to analyst-

specified or environmental constraints (Ioannidis & Wong, 1987a). Parametric control

amplifies the analyst’s efforts: combining a few parameters may yield large amounts

of detail without burdening the analyst with low-level details. Smith (1984) concep-

tualizes this phenomenon as data(base) amplification. Algorithmic synthesis through

idiomatic composition also offers flexibility. An algorithm can capture the essence of

the graph layout and its evolution without being constrained by the complex rules

of mathematics, and allow the graph layout to express any desired amount of “ac-

curacy:” the analyst may prioritize readability, information density, or the inclusion

of purely artistic effects (Jargstorff, 2004). The analyst may also gain serendipitous

insights through novel combinations of these procedures, particularly stochastic ones

(Ebert et al., 2003).

Below, we augment, rename, and reorganize these graph level operations into

a taxonomy of four sequentially dependent classes of EGOs (Exploratory Graph Op-

erations): (1) GDOs (Graph Data Operations), graph-theoretical methods which ma-

nipulate a graph and its data; (2) GLOs (Graph Layout Operations), which operate

on materializations (Section 5.8.1) to arrange graph elements within an n-dimensional

32

layout space; (3) GROs (Graph Rendering Operations), which render a graph layout

onto a 2D (two-dimensional) canvas for display and animation; and (4) GAOs (Graph

Analysis Operations), which permit the analyst to interactively explore a graph visu-

alization and gain insight (Lee et al., 2006; Hadlak et al., 2011). Some of the defined

EGOs are atomic, meaning they cannot be subdivided into other EGOs, while oth-

ers are composites of other EGOs. These operations form the core functionality of

the Dynamical.JS framework design and provide hints to control the underlying data

structure layouts needed for execution. Each EGO and relevant control parame-

ters (henceforth, attributes) defined in Dynamical.JS are scoped to particular entities

(graphs, layouts, or views) and are inherited by dependent EGOs where applicable.

Chapter 3 demonstrates graph layout algorithm synthesis methods using composable

EGOs, and Chapter 5 describes how we implement these EGOs using object-oriented

design patterns (Gamma et al., 1995).

2.8. Graph Data Operations (GDOs)

Graph Data Operations are methods which manipulate a graph ADT

(Abstract Data Type) and its elements in memory. These operations are common

throughout the literature (Cormen et al., 2009), this document will not contain an

exhaustive list. Specifically, the taxonomy described by Lee et al. (2006) is excluded,

as they refer to graph-theoretical operations familiar to the reader and outside the

scope of this thesis. GDOs (Graph Data Operations) are implemented in the Data

Module’s abstract DGGDOInterface within the DGGraph object (Listing C.7).

2.8.1 Load Graph

Return new graph G by deserializing a stored or transmitted representation

GS using the function fload.

33

Table 2.1. Common symbol notation for GDOs.

Symbol Definition
G A graph G← (V, E, A)
GS A serialized representation of graph G
D A dynamic(al) graph D ← (G, T)
Gt A timeslice of D at time t
V A set of nodes (vertices)
VG The set of nodes in G
E A set of edges
EG The set of edges in G
X The set of elements1 in G, x ∈ X ← G ∪ VG ∪ EG

XG The set of elements in G
A A set of attributes
Ax The set of attributes of element x ∈ X
kx The identifying key k for element x ∈ X
K A set of keys, K ← {kx : x ∈ X}
MG The materialization of G
MGt The materialization of G at time t

G← load-graph(GS, fload)

2.8.2 Store Graph

Serialize graph G into a representation GS appropriate for storage or trans-

mission using the function fstore.

GS ← store-graph(G, fstore)

2.8.3 Clone Graph

Copy graph G and all of its elements into a new graph G′.

G′ ← clone-graph(G)
1 The shorthand for graph “elements,” x, refers to nodes, edges, and subgraphs.

34

2.8.4 Subgraph

Return a subset of elements X ⊂ XG from graph G as a new graph instance

G′. Modifications to this subgraph also apply to the “parent” graph (Mi et al., 2016).

Alias of filter-elements.

G′ ← subgraph(G)

2.8.5 Merge Graphs

Merge two graphs GA, GB together, merging all intersecting elements (xAB ←

{xA, xB} : xA ∈ XA, xB ∈ XB, kxA
≡ kxB

), and adding the symmetric difference

(GA△GB) (Wei et al., 2018).

GAB ← merge-graph(GA, GB)← XAB ∪ (GA△GB)

2.8.6 Retrieve Element(s)

Retrieve one or more elements XK ⊂ XG from graph G as identified by key k.

XK ← retrieve-elements(G, KX)

VK ← retrieve-nodes(G, KV)

EK ← retrieve-edges(G, KE)

xk ← retrieve-element(G, kx)

vk ← retrieve-node(G, kv)

ek ← retrieve-edge(G, ke)

2.8.7 Filter Elements

Retrieve a collection of elements X ⊂ XG in graph G with filter criteria ffilter.

Alias of retrieve-elements.

Xffilter
← filter-elements(G, ffilter)

35

2.8.8 Add Element(s)

Add one or more elements X to a graph G. Inverse of remove-elements.

G← add-elements(G, X)← GX ∪X

G← add-nodes(G, V)← GV ∪ V

G← add-edges(G, E)← GE ∪ E

G← add-element(G, x)← GX + x

G← add-node(G, x)← GV + v

G← add-edge(G, e)← GE + e

2.8.9 Remove Element(s)

Remove one or more elements X ⊂ XG from graph G. Inverse of add-

elements..

G← remove-elements(G, X)← GX \ (GX ∩X)

G← remove-nodes(G, V)← GV \ (GV ∩ V)

G← remove-edges(G, E)← GE \ (GE ∩ E)

G← remove-element(G, x)← GX \ x

G← remove-node(G, x)← GV \ v

G← remove-edge(G, e)← GE \ e

2.8.10 Update Element(s)

Update attribute a of one or more elements X ⊂ XG of graph G.

XG ← update-elements(G, XG, a)

VG ← update-nodes(G, V, a)

EG ← update-edges(G, E, a)

x← update-element(G, x, a)

36

v ← update-node(G, x, a)

e← update-edge(G, e, a)

2.8.11 Merge Element(s)

Combine the attributes of two or more elements x ∈ X ⊂ XG into a new

element x′.

x′ ← merge-elements(G, X)

v′ ← merge-nodes(G, V)

e′ ← merge-edges(G, E)

2.8.12 Materialize

Take a “snapshot” of the current state of the graph G at time t, and store it in

a format that allows for cache-conscious processing of layout and rendering operations

(Section 5.8.1).

MGt ← materialize(G, t)

2.8.13 Key Frame

Clone a graph G at time t. Alias of clone.

G′
t ← keyframe(Gt)

2.8.14 Coalesce

Combine all sequential Key Frames Gt0 , . . . , Gtn into a new graph G′. Alias of

merge-graphs..

G′ ← coalesce(Gt0 , . . . , Gtn)

37

2.8.15 Calculate Graph Statistics

Calculate relevant graph-theoretical statistics of graph G (centrality, size, or-

der, &c).

SG ← calculate-statistics(G)

2.8.16 Find Path

Find a path P between source node u ∈ VG and target node v ∈ VG (Cormen

et al., 2009).

P ← find-path(G, vs, vt)

2.8.17 Neighbors

Collect all nodes Vv adjacent to node v in graph G. Alias of filter-nodes.

Vv ← neighbors(G, v)

2.9. Graph Layout Operations (GLOs)

Graph Layout Operations position nodes VG of graph G within an abstract n-

dimensional layout space, independent of the viewing coordinate system. Generally,

all GLOs operate on graph materializations MGt , not the graphs themselves, to enable

multiple representation (Section 2.5.2) of the same graph data. When drawing static

graphs, the time attribute is assumed to be zero (t = 0). These GLO methods are

defined in the Layout Module’s abstract DGGLOInterface interface and the abstract

DGLayoutEngineBase superclass (Listing C.9).

2.9.1 Layout

Apply layout algorithm flayout to the graph Gt.

38

Table 2.2. Common symbol notation for Layout GLOs.

Symbol Definition
Lt A layout of graph Gt

L0 The layout of graph Gt at time t = 0
F⃗Σ(v) The sum of all forces acting on node v

F⃗+(v) The sum of repulsive forces acting on node v

F⃗−(v) The sum of attractive forces acting on node v

F⃗a(v) The sum of forces due to attribute a
p⃗v The position attribute of node v
PV A set of position attributes of nodes V ← {p⃗v : v ∈ V }

Lt ← layout(Gt, flayout)

2.9.2 Initial Layout

Apply layout algorithm finit to the graph Gt. Alias of layout..

L0 ← init-layout(MGt , finit)

2.9.3 Merge Layouts

Generate a new layout by merging the previous layout Lt−1 with the current

layout Lt, or generate an initial layout L0.

Lt ← merge-layouts(Lt−1, Lt)← (∃Lt−1, otherwise init-layout(MGt , finit))

2.9.4 Calculate Layout Statistics

Calculate relevant statistics LSt and set tunable parameters to optimize layout

Lt. Layout statistics such as layout quality, temperature, and total energy are used

to determine when a layout algorithm should terminate, or impose constraints on

inter-frame node movements. Alias of calculate-graph-statistics.

LSt ← calculate-statistics(Lt, MGt)

39

2.9.5 Simplify

Simplify the graph’s materialization or aggregate elements MGt via merge func-

tion fmotif . By breaking the large graph into smaller subgraphs, the motion of clusters

of nodes may be calculated in concurrently (Qu et al., 2017; Bleiweiss, 2008). Com-

mon subgraph structures or edge groups may be consolidated into motifs to enhance

readability or to simplify presentation (Dunne & Shneiderman, 2013). Inverse of

elaborate.

L′ ← simplify(L, fmotif)

2.9.6 Elaborate

Extract previously aggregated graph elements to facilitate multiple represen-

tation (Section 2.5.2), transformation, or animation. Inverse of simplify.

L← elaborate(L′, fmotif
−1)

2.9.7 Partition

Slice graph materialization MGt into partitions m0, . . . , mn using partition

function fscatter to facilitate parallel computation (Lu & Si, 2020; Kreylos & Hamann,

2001; Mi et al., 2016). Inverse of merge-partitions.

m0, . . . , mn ← partition(MGt , fscatter)

2.9.8 Merge Partitions

Merge materialization partitions m0, . . . , mn together using function fgather for

rendering. Inverse of partition.

MGt ← merge-partitions(m0, . . . , mn, fgather)

40

2.9.9 Calculate Forces

Calculate cumulative force(s) on node v by nodes VG \ v in graph materializa-

tion MGt (Godiyal et al., 2009; Mi et al., 2016). Alias of calculate-offsets.

F⃗Σ(V)← calculate-forces(MGt , v)← Σ|VG|
i=0 F⃗a(v)i

2.9.10 Calculate Repulsive Forces

Calculate repulsive force(s) on node v by nodes VG \v in graph materialization

MGt . Alias of calculate-forces.

F⃗+(v)← repulse(MGt , v)

2.9.11 Calculate Attractive Forces

Calculate attractive force(s) on node v by nodes VG\v in graph materialization

MGt . Alias of calculate-forces.

F⃗−(v)← attract(MGt , v)

2.9.12 Calculate Offsets

Calculate position offsets ∆PV for nodes VG in graph materialization MGt

based on an arbitrary combination of attributes (weight, mark size, force, &c.). Alias

of calculate-forces.

∆PV ← calculate-offsets(MGt , v)

2.9.13 Centroid

Determine the layout space coordinate ⟨x, y, . . .⟩ ∈ S of the geometrical center

of nodes V ⊂ VG in graph materialization MGt .

p⃗⊙ = centroid(MGt , V)

41

2.9.14 Place Node(s)

Modify the layout space position attribute of nodes p⃗v ∈ PV in graph materi-

alization MGt .

PV ← place(MGt , VG)← PV + calculate-offsets(MGt , v)

2.9.15 Quality

Determine the quality metric σ for graph layout LGt using function ffitness.

Alias of calculate-statistics.

σ ← quality(Lt, ffitness, ω)

2.9.16 Finesse

Refine the layout Lt to meet requirements defined by the analytical domain or

output medium.

L← finesse(MGt)

2.10. Graph Rendering Operations (GROs)

Table 2.3. Common symbol notation for GROs (Graph Rendering Operations).

Symbol Definition
S A viewing surface.
Sview The visible area of viewing surface S
Rt A rendered graph layout Lt

GROs render a graph materialization MGt into a specified viewing surface S.

Viewing surfaces may be the view canvas, a texture, or other memory buffer. GROs

are implemented in the Drawing Module’s abstract DGGROInterface interface.

42

2.10.1 Update Dimensions

Update the dimension attributes (width, height, depth) of the viewing surface

S.

S ← update-dimensions(S)

2.10.2 Apply Transform

Apply transform function ftransform to surface Sview. Transforms include, but

are not limited to, linear-algebraic operations known as affine-transformations, which

map both geometric position and color attributes within/between coordinate systems

or color spaces respectively (Bailey & Cunningham, 2009). These affine-transforms

include: rotation, scaling, translation, shearing, perspective, reflection, and ortho-

graphic projection (Foley et al., 1996; Akenine-Möller et al., 2008).

S ← transform(S, ftransform)

2.10.3 Render Layout

Render graph layout Lt to surface S, applying the surface’s projection trans-

form attribute to map layout positions PV into the view coordinate space.

Rt ← render(Lt, S)

2.10.4 Render Region

Render only the parts of a graph layout Lt bounded by a viewing rectangle

Sview. Alias of render-layout.

Rview, t ← render-region(Lt, Sview)

43

2.10.5 Overlay

Render layout L′
t of subgraph G′ over the previously rendered graph Rt.

R′
t ← overlay(Rt, L′

t)

2.10.6 Show Element(s)

Add one or more graph elements XG to the final output rendering Rt. Alias

of update-elements. Inverse of hide-elements.

Rt ← show-elements(Rt, XG)

2.10.7 Hide Element(s)

Remove one or more graph elements XG to the final output rendering Rt. Alias

of update-elements. Inverse of show-elements.

Rt ← hide-elements(Rt, XG)

2.10.8 Apply Visual Mark to Element(s)

Update one or more graph elements XG with a specific visual mark m. Alias

of update-elements.

XG ← apply-mark(XG, m)

2.10.9 Apply Visual Channel to Element(s)

Update one or more graph elements XG with a specific visual channel c. Alias

of update-elements.

XG ← apply-channel(XG, c)

44

2.10.10 Interpolate

Interpolate between two (possibly non-adjacent) graph layouts L0, . . . , L1, at

intermediate time t. Simple linear interpolation is a familiar technique (Foley et al.,

1996): given a general data value f with values fa and fb at two endpoints a and b of

a line segment, interpolation with parameter t is shown in Equation 2.5. If the data

are in homogeneous coordinates f ← ⟨r, s, t, q⟩ : q ̸= 1, the coordinates are converted

into standard form by dividing each f by q and interpolate f/q as shown in Equation

2.6. Simple linear interpolation is only effective for interpolating simple values such

as position or color in layout space S. However, to interpolate complex values such as

texture coordinates, we must defer this interpolation until we reach clip space (Section

4.8.1). Instead of linear interpolation, we must perform perspective interpolation,

which reduces to linear interpolation if clip and layout space are congruent. The

perspective interpolation function is shown in Equation 2.7, where α = 1 unless

interpolating texture coordinates, and wa and wb are the fourth coordinates of the

endpoints a and b in homogeneous clip space as in Equation 2.7.

Lt ← interpolate(L0, L1, t)

(1− t)fa + tfb (2.5)

(1− t)fa/qa + tfb/qb (2.6)

(1− t)fa/wa + tfb/wb

(1− t)αa/wa + tαb/wb

(2.7)

45

2.11. Graph Analysis Operations (GAOs)

GAOs (Graph Analysis Operations) manipulate the clipped view space Sview

and current render state Rt of the current graph layout Lt, by reshaping the canvas,

manually adding and removing graph elements from a “focus set” X ⊂ XG, and initi-

ating animations or other graph transformations. Like the GDOs listed above (Section

2.8), this list concerns itself only with the general computational tasks required to

facilitate graph exploration by the analyst. Analytical tasks, such as those described

Ahn et al. (2014) are excluded, as they are apropos to the application-domain not

the computational frameworks which underlie them. GAOs are implemented in the

Drawing Module’s abstract DGGAOInterface interface.

2.11.1 Find Element(s) by Position

Return the element x rendered at a specified view coordinate p⃗x,y ∈ Sview.

Alias of filter-elements.

x← find-element(Rt, p⃗x,y)

2.11.2 Find Bounded Element(s)

Return the set of elements X ⊂ XG bounded by a rectangle defined by the view

space Sview positions p⃗0 (bottom left) and p⃗1 (top right). Alias of filter-elements.

X ← find-bounded-elements(Rt, (p⃗0, p⃗1))

2.11.3 Select Element(s)

Add selected graph elements X ⊂ XG to a collection Xselect. Alias of add-

elements. Inverse of deselect.

46

Xselect ← select(Xselect, XG)

2.11.4 Deselect Element(s)

Remove selected elements X ⊂ XG from a collection Xselect. Alias of remove-

elements. Inverse of select.

Xselect ← deselect(Xselect, XG)

2.11.5 Filter Element(s)

Create a collection of elements X ⊂ XG which meet some analyst-defined

criteria ffilter. Alias of filter-elements.

X ← filter(MGt , ffilter)

2.11.6 Highlight Element(s) of Interest

Render elements of interest X ⊂ XG with distinguishing visual marks and

visual channels to aid in visual analysis. Alias of apply-mark and apply-channel.

Rt ← highlight(Rt, X)

2.11.7 Export Image

Serialize the rendered image Rt using a specified graphics format function

fformat, such as SVG (Scalable Vector Graphics), PDF (Portable Document Format)

or JPEG (Joint Photographic Experts Group).

RS ← export(Rt, fformat)

2.11.8 Step Backward and Forward through GRO History

Retrieve and display image Rt and/or (re)render a specific materialization

MGt at time t ± ∆. Combined with interpolate, this method forms the basis of

47

animation in Dynamical.JS.

R← step(Rt, ∆t)

2.12. Tunability

Several algorithms define tunable constraint parameters, some favoring mental

map preservation (Du et al., 2017; Wei et al., 2018) or analyst-specified aesthetic

qualities (Sheng et al., 2019). Others control the number of successive timeslices

presented or change the animation framerate to reveal or obscure temporal features

(Simonetto et al., 2020). Each parameter is expressed as a constant or functional

attribute a ∈ XA, enabling the developer and the analyst to customize applications

to optimize domain-specific criteria (Beck et al., 2013).

2.12.1 Environmental Constraints

Substrate-defined environmental constraint parameters are attributes that

form the basis of optimization procedures. Generally, these constraints are not

mutable by the analyst.

Table 2.4. Environmental constraint parameters.

Constraint Definition
Max. Threads The maximum number of parallel thread con-

texts available.
Max. GPU Workgroup Size The maximum of threads per GPU workgroup.
Max. Buffer Size The maximum CPU buffer size. Defaults to

4GiB.
Max. GPU Buffer Size The maximum GPU buffer size.
Memory Page Size The substrate-dependent memory page size.
L1 & L2 Cache Size The width of the L1 & L2 caches.
Output Resolution The pixel dimensions of view space Sview.

48

2.12.2 Layout Constraints

Table 2.5. Layout constraint parameters.

Constraint Definition
Max. Intermediate Offset The maximum node displacement per itera-

tion.
Max. Temporal Offset The maximum node displacement per times-

lice.
Movement Acceleration A cost function that rewards consistent inter-

timeslice movement and penalizes opposing
movements.

Min. Sampling Frequency The minimum sampling interval between
timeslices.

Avg. Sampling Frequency The mean time sampling frequency across an
optimized spacetime cube.

Desired Edge Length The ideal edge length between any two nodes
in view space Sview. Dependent on the size of
the graph |G| and the resolution of the output
medium.

Max. Edge Length In layout space S, the distance between any
pair of connected nodes or between any pair of
disconnected nodes where their respective posi-
tions have no effect upon the movement of the
other.

Adding or removing a small number of critical elements may have a dramatic

impact on subsequent layouts, thus breaking the analyst’s mental map (Du et al.,

2017). Layout constraints limit the distance between nodes and their movement

throughout layout space S. Node movement constraints apply to static graph layout

algorithms to prevent undesirable translations within layout space, and to ensure

smooth animation of both event-driven dynamic graph layout algorithms and offline

dynamic graph layout algorithms over a range of the spacetime cube (Simonetto

et al., 2020). Dynamic(al) constraint methods vary widely by algorithm, including

“swarm” methods (Du et al., 2017), geometric methods (Xu et al., 2018), node aging

49

methods, or adaptive, multilevel approaches (Du et al., 2017); therefore the list shown

in Table 2.5 is inclusive but not exhaustive.

2.12.3 Quality Metrics

In addition to standard graph-theoretical metrics (connectedness, structural

integrity, &c.), there are several other quality (Section 2.9.15) metrics that determine

the “fitness” of a particular graph layout by comparing the output of a fitness function

ffitness with an associated threshold attribute Ω = ffitness(LGt).

Table 2.6. Layout quality metrics.

Metric Definition
Temperature The average inter- and intra-frame movement of all

nodes within a graph layout (Fruchterman & Reingold,
1991).

Stress A measure of how well the average node position re-
flects the shortest path (Euclidean) distance within the
graph layout. Stress values are averaged across the en-
tire graph for static layouts. For dynamic and dynam-
ical layouts, the stress is computed per timeslice and
then averaged across the spacetime cube. Stress may be
calculated over an arbitrary subset of graph elements,
such as a neighborhood, cluster, or the entire graph (Si-
monetto et al., 2020).

Crowding The total number of times nodes pass very close to each
other (desired edge length ≥∥ p⃗v − p⃗u ∥) in an anima-
tion of the dynamic graph. Crowding adversely affects
the identification of nodes and negatively influences ob-
ject tracing. Multiple overlaps of any two nodes during
a dynamic(al) graph sequence are counted as a single
crowding event (Simonetto et al., 2020).

50

Chapter III.

Layout Algorithm Decomposition

Research on the production of aesthetically pleasing graph drawings appears

throughout the broad spectrum of computer science, and the literature documents

thousands of techniques (Di Battista et al., 1994; Nobre et al., 2019). Graph lay-

out algorithms read as input a combinatorial description of a graph G and produce

as output a layout LG of G according to a given aesthetic standard (Section 2.5).

For example, orthogonal layouts are restricted to grids (Valiant, 1981), symmetrical

layouts are restricted to concentric circles (Lin & Yen, 2005; Xu et al., 2018), and

hierarchical layouts are restricted to parallel lines (Sugiyama et al., 1981). Graph

drawing algorithms take these layouts as input and produce drawings (or renderings)

R according to relevant domain-specific standards (Tutte, 1963). This section will

use these terms interchangeably, as is common in the literature.

Nodes may be drawn using arbitrary visual marks; edges may likewise be

drawn using straight, polygonal, or curved line visual marks, with line style, thickness,

length, or curvature as visual channels that encode relational information (Kamada

& Kawai, 1989). Choosing appropriate marks and channels relevant to a particular

dataset or application domain remains an open problem (Beck et al., 2013) we do

not address here. Instead, this section surveys several standard algorithms applied to

node-link diagrams, analyzes their shared features, and describes their decomposition

into the GLOs (Graph Layout Operations) defined in Section 2.7. This discussion is

limited to graph layouts within a 2D (two-dimensional) layout space but is generally

applicable to higher-dimensional layout spaces.

51

3.1. Algorithm Stages

Most graph layout algorithms are expressed as iterative-convergent processes

(Kamada & Kawai, 1989; Wang et al., 2017). Iterative operations repeatedly run a

sequence of steps; convergent iterations approach the “correct” answer and terminate

when that answer is reached. Mathematically, an iterative-convergent process is a se-

ries of operations f0, f1, . . . , fn−1 that operate on graph data G, where Gi = f(Gi−1),

until at iteration i, the terminal condition function fstop(Gi, i) returns true. However

intuitive, these processes are not standalone; the number of iterations is only one

of many factors affecting convergence. Aesthetic, heuristic, and computational con-

straints (Section 2.12) require setup before and refinement after the iteration process.

Following the main themes of this document, abstraction and composition, we

derive a staged layout strategy by analyzing well-documented algorithms from the

literature, abstracting common procedures into GLOs (Graph Layout Operations),

and composing these operations into a general algorithmic structure. We expand

on the multi-scale strategy of Hadany & Harel (2001), which should be familiar to

electrical engineers as a PID (Proportional Integral Derivative) loop: (re)position

nodes to yield a locally organized configuration, perform coarse-scale relocations,

then perform fine-scale relocations that correct local disorders introduced by the

previous step. We add extra setup and tear-down stages to increase the strategy’s

flexibility. Algorithm 3.1 presents the staged layout structure, and Listing 5.8 shows

the default implementation. Each algorithm stage corresponds to one or more of the

GLOs identified in Section 2.9:

1. Initial placement (init-layout, Section 2.9.2)

2. Statistics calculation (calculate-statistics, Section 2.9.4)

3. Partitioning (partition, Section 2.9.7; simplify, Section 2.9.5)

52

4. Iterative placement (place, Section 2.9.14)

5. Merge (merge-partitions, Section 2.9.8; elaborate, Section 2.9.6)

6. Finesse (finesse, Section 2.9.16).

While this sequence generally applies to most graph layouts, specific imple-

mentations require additional refinements. Several layout algorithms extend, replace,

re-order, or skip stages altogether. Most use the output of a “basic” layout algorithm

(Section 3.2) for initial node placement. Others refine prior layouts using additional

aesthetic criteria (Section 3.4.2) or generate a long sequence of “final” layouts as

timeslices in the spacetime cube (Section 2.4.2).

Algorithm 3.1 The layout algorithm
Input:

Gt ← (V, E, A, t)
finit ← the initial layout function
fstop ← the terminal condition function

Output:
LGt ← a nice layout of Gt

procedure Layout(G,finit)
MGt ← materialize(Gt) ▷ Stage 0
LGt ← init-layout(MGt , finit) ▷ Stage 1
emit(layout_begin)
LSt ← calculate-statistics(LGt , MGt) ▷ Stage 2
MGt ← partition(MGt , fscatter) ▷ Stage 3
repeat ▷ Stage 4

for all m ∈MGt do
∆PV ← calculate-offsets(m) ▷ Stage 4a
PV ← place(m) ▷ Stage 4b

emit(layout_step)
until fstop = true
MGt ← merge-partitions(m ∈MGt , fgather) ▷ Stage 5
LGt ← finesse(Lt) ▷ Stage 6
emit(layout_end)

return LGt

53

3.1.1 Initial Placement

The rough initial placement of nodes in the high-dimensional layout space re-

duces the number of iterations required to minimize the energy function and move

nodes to their final positions. Experiments suggest that initial node placement does

not significantly influence the resultant graph layouts for static graphs, except for

special cases, such as when all nodes lie on a single line (Kamada & Kawai, 1989;

Kobourov, 2013). Therefore, an initial placement algorithm need only exclude these

special cases from consideration, and any other input, such as randomly-generated

node positions or precomputed positions from prior graph layouts (to preserve the

mental map), is sufficient (Di Battista et al., 1994). The algorithms defined in Sec-

tion 3.3 use variants of randomized node placement; however, complex and dynamic

versions of these algorithms routinely take the output of simpler algorithms as input

for fine-tuning (Di Battista et al., 1994).

3.1.2 Statistics Calculation

This stage calculates relevant statistics such as the number of layout iterations,

the width of partitions, or the maximum allowed neighborhood size using tunable

aesthetic and performance constraints. Statistics derived from the underlying graph-

theoretical structure (connectedness, structure, or degree), neighborhood count, or

relevant path lengths are used to calculate a “metric of similarity” and may limit the

number of possible drawings to those “easiest” to achieve (Harish & Narayanan, 2007;

Xu et al., 2018). This stage allows for optimizing the partition stage and intermediate

rendering of the placement stage, as described below.

54

3.1.3 Partition

Graphs are considered very large if the number of constituent elements is in

the order of 100, 000 (|G| = (|V | × |VA| + |E| × |EA| × t) ≥ 105 where |VA| and

|EA| are the number of node and edge attributes respectively). Both processing and

analysis of large graphs are inefficient; serial computation of positional fitness values

is computationally expensive (Qu et al., 2017) and screen resolution limits the number

of discriminable elements, obscuring the inherent complexity of encoded relationships

between salient elements (Dunne & Shneiderman, 2013). To effectively process or

present very large graphs, this stage decreases the computational task by reducing

the graph size, the number of timeslices, or both (Hadlak et al., 2011).

The monolithic partitioning (partition, Section 2.9.7) task reduction tech-

nique groups graph elements into logical blocks or subgraphs for parallel processing.

Multi-level coarsification techniques (simplify, Section 2.9.5) reduce the task via

selective filtering of elements or interpreting graphs as a hierarchy of progressively

simpler structures laid out in reverse order of complexity (Walshaw, 2003; Kobourov,

2012; Tamassia & Rosen, 2013). Motif simplification aggregates common subgraph

structures into motifs to enhance readability and simplify presentation (Dunne &

Shneiderman, 2013), while clustering and neighborhood beautification techniques fo-

cus temporal development of graph morphology and optimizing information density,

respectively (Galán & Mengshoel, 2018). The graph’s combinatorial structure is sig-

nificantly simplified, but essential visualization features are preserved (Hadany &

Harel, 2001).

55

3.1.4 Placement Loop

This is the iterative-convergent stage of the layout sequence, which refines

node positions until they approximate “ideal” positions compatible with the aesthetic

criteria (Hadany & Harel, 2001). During each iteration, relative offset vectors are

calculated for each node (calculate-offsets, Section 2.9.12). The force-directed

methods calculate inter-node attractive and repulsive forces, calculate weights for

weighted graphs, and additional offsets due to custom attributes. Computed offsets

and node positions are summed element-wise to “correct” node placement within the

layout space (place, Section 2.9.14). This stage iterates until reaching some terminal

condition fstop. The iteration may terminate after a fixed number of iterations M ,

when the aggregate node movement converges to some threshold, or after some other

quality metric is achieved (quality, Section 2.9.15).

3.1.5 Merge Partitions

This stage is the inverse of the partition stage (Section 3.1.3). Merging re-

combines the position values in the materialization with the underlying graph data

structure (merge-partitions, Section 2.9.8), extracts the results of previous coar-

sification steps back into the parent graph (elaborate, Section 2.9.6), modifies

element attributes, or scales relevant weighting factors.

3.1.6 Finesse

Fine-scale revision of node positions occurs in the final stage (elaborate,

Section 2.9.6) to facilitate the addition or removal of individual nodes or modification

of edges or their attributes and prevent visual artifacts such as pixel anti-aliasing.

This stage finally prepares the graph layout for view space interpolation to ensure

56

smooth animation, an essential quality for maintaining the analyst’s mental map.

This stage may also leave laid-out positions intact yet declutter the graph by hiding

or revealing any number of elements (e.g., setting an element’s visibility attribute) as

required for subsequent analytical tasks.

3.2. Basic Algorithms

Algorithm 3.2 The basic layout algorithm
Input:

Gt ← (V, E, A, t)
finit ← ∅

function fstop

return true

function place(MGt)
▷ Clear the position and offset vectors to zero.
for all v ∈ VG ⊂MGt do

p⃗v ← ⟨0, 0⟩
δ⃗v ← ⟨0, 0⟩

procedure basic(Gt,∅)
MGt ← materialize(Gt)
emit(layout_begin)
place(MGt)
emit(layout_end)

return LGt

Basic graph layout algorithms comprise only a single iteration of the placement

stage (Section 3.1.4). All other stages and sub-stages are redefined to no-ops (Null-

Operations) with no computational cost or effect, reducing the algorithm as shown

in Algorithm 3.2. With few exceptions, these algorithms require only a single linear

scan over the materialization data to set the position vector p⃗v and simultaneously

reset the offset vector δ⃗v, therefore having a computational complexity of O(|VG|).

57

All future algorithms described below build on this structure, gradually (re)defining

new stages as required.

3.2.1 Random Placement

Algorithm 3.3 The random layout algorithm
Input:

Gt ← (V, E, A, t)

▷ Randomize node positions
function randomize(V)

for all v ∈ V do
p⃗v ← ⟨random(), random()⟩
δ⃗v ← ⟨0, 0⟩

▷ Override basic
function place(MGt)

randomize(VG ⊂MGt)

procedure layout-random(G,∅)
return basic(G,∅)

Many graph layout algorithms, especially force-directed layouts (Section 3.3),

begin with a random placement stage to generate the initial layout. This distributes

nodes evenly throughout the layout space and forces the nodes into a maximal energy

state (Algorithm 3.3).

3.2.2 Geometric

A “geometric” layout places nodes around a strictly convex polygon P with |V |

vertices. In practice, this reduces to evenly spacing nodes around a circle inscribed

within the bounds of layout space S (Algorithm 3.4).

58

Algorithm 3.4 The polygon layout algorithm
Input:

Gt ← (V, E, A, t)
r ← min(S.width, S.height)/2

▷ Place nodes v ∈ V around the circle inscribed in S
function circumscribe(V)

for all vi ∈ V do
θ ← i× 2π

|V |
p⃗v ← ⟨cos θ, sin θ⟩ × r

δ⃗v ← ⟨0, 0⟩

▷ Override basic
function place(MGt)

circumscribe(VG ⊂MGt)

procedure layout-polygon(G,∅)
return basic(G,∅)

Algorithm 3.5 The fixed-free layout algorithm
Input:

Gt ← (V, E, A, t)

▷ Filter nodes by their fixed attribute
function ffilter(v)

return v.fixed = true

▷ Override basic
function place(MGt)

V0 ← filter-elements(VG ⊂MGt , ffilter)
V1 ← VG \ V0
circumscribe(V0)
randomize(V1)

procedure fixed-free(G,∅)
return basic(G,∅)

59

3.2.3 Fixed & Free

The "Fixed/Free" layout mixes the random and geometric methods above. Un-

like the previous methods, this method introduces the filter function ffilter, which di-

vides the nodes into those which are fixed (position attributes are immutable) and free

using the filter-elements GDO (Graph Data Operation) (Section 2.8.7). Nodes

are partitioned V = V0∪V1 of V into a set V0 of at least three fixed nodes and a set of

V1 free nodes. The fixed nodes are placed at the vertices of strictly convex polygon P

and remain fixed throughout the layout algorithm. Free nodes are placed randomly

throughout the layout space or allowed to remain zero (Algorithm 3.5).

3.3. Force-Directed Layouts

This thesis focuses on physical model-based heuristics, the most frequently

documented in the literature. These heuristics are natural physical metaphors bal-

ancing the listed general requirements for aesthetic drawings and their analytical cost

calculations (Nobre et al., 2019, 2020) and are more easily decomposed for optimiza-

tion of a specific quality. Some of the most flexible physical models for calculating

undirected graph layouts belong to a class known as force-directed layout algorithms.

Graphs drawn with these algorithms tend to be aesthetically pleasing, exhibit sym-

metries, and produce crossing-free layouts for planar graphs (Tutte, 1963; Tamassia

& Rosen, 2013).

Spring Embedders are “mechanical” systems that model edges as springs with

forces that behave similarly to Hooke’s law (Eades, 1984; Fruchterman & Reingold,

1991). Strong repulsive forces exist between all nodes, but springs attract the nodes

together if they are too far apart and repel them if they are too close (Di Battista

et al., 1994). Spring embedders calculate the graph layout using only information

60

contained within the structure of the graph itself rather than relying on domain-

specific knowledge (Tamassia & Rosen, 2013).

Electrical Field Potential algorithms are “electrical” systems where all nodes

have identical “polarity,” thus repelling each other and establishing a minimum inter-

node distance. Edges are modeled as virtual “nodes” of the opposite polarity, which

attract the connected nodes to the center of each edge. A variant of this algorithm

refines the final graph by adding a step where the edges repel each other and attract

the nodes (Tamassia & Rosen, 2013).

Gravitational Field Potential algorithms are “gravitational” systems where

massless nodes move randomly throughout the layout space. However, they are con-

nected by multiple “weighted” edges, which attract the nodes, decelerating them to

their final positions. The initial random motion prevents overcrowding of nodes while

summing the “heavy” weighted edges draws strongly-connected nodes close together

(Tutte, 1963).

Each of these models has the same goal and results: the minimization of the

total “energy” contained within the system of nodes and edges in a graph as rep-

resented by an energy function (Tutte, 1963). These energy minimization methods

produce graphs with balanced aspect ratios, high degrees of display symmetry, few

edge bends, and uniform node distributions. This energy function is a natural target

for understanding and optimization, but it is quite challenging to implement in prac-

tice. Once done, however, extending these algorithms to high-dimensional spaces is

trivial (Nobre et al., 2019).

Traditional force-directed approaches are generally poor for graphs with more

than a few hundred nodes (Tamassia & Rosen, 2013). As these models have many

local minima, they lack scalability and cannot consistently produce good layouts

for large graphs (Tamassia & Rosen, 2013). Additionally, except for Tutte (1963)’s

61

Algorithm 3.6 The force-directed algorithm
Input:

Gt ← (V, E, A, t)
finit ← the initial layout function

Output:
LGt ← a nice layout of Gt

▷ override calculate-offsets
function calculate-offsets(MGt)

return calculate-forces(MGt)

▷ define calculate-forces
function calculate-forces(MGt)

for all v ∈ VM do
▷ calculate repulsive forces
δ⃗v ← repulse(MGt , v)
▷ calculate attractive forces
δ⃗v ← δ⃗v + attract(MGt , v)
▷ calculate forces due to attributes of v
δ⃗v ← δ⃗v + Σa∈Av F⃗a(v)

return ∆PV

procedure force-directed(Gt, finit)
return layout(Gt, finit)

barycentric method (Section 3.3.1) and the edge-repellent variant of the electrical field

potential algorithm (Section 3.4.2), force-directed layouts can lead to unpredictable

edge crossings and collapse (Lin & Yen, 2005).

Modern versions of these algorithms alleviate these problems through par-

titioning, coarsification, or filtration (Section 3.1.3). Newer variants use Laplacian

eigenvectors to simultaneously compute the “weighted” centroids of all nodes utiliz-

ing a method known as power iteration. This method constructs a high-dimensional

graph representation, which is then, with minimal effort, projected into a lower-

dimensional space (Koren, 2005). Alternatively, the algorithms described by Kamada

& Kawai (1989) compute forces between nodes based on their graph-theoretic dis-

62

Table 3.1. Common symbol notation for force-directed algorithms.

Symbol Definition
p⃗v The position vector of node v ∈ V .
δ⃗uv The difference vector between two nodes u and v (p⃗v − p⃗u).
δ̂uv The unit vector pointing from p⃗u to p⃗v (δ⃗uv/|δ⃗uv|).

tances proportional to the shortest path lengths between them.

Exploratory graph visualizations mitigate these problems by simply focusing

on regions of interest and zooming and translating the viewing surface appropriately;

combined, all extend the usefulness of force-directed methods to graphs of thousands

or even hundreds of thousands of nodes (Tamassia & Rosen, 2013).

3.3.1 The Barycentric Method

Tutte (1963)’s barycentric method is one of the first force-directed graph layout

algorithms for obtaining straight-line, crossing-free layouts for any given 3-connected

planar graph. Moreover, this method guarantees that all faces contained in the draw-

ing are convex.

The basic idea of the barycentric algorithm is as follows: affix a single face of

the planar graph in the layout space and place the remaining nodes by solving a system

of linear equations, where the final position of each node is a convex combination of

the positions of its neighbors (Tutte, 1963)—setting the partial derivatives of the force

function to zero results in independent systems of linear equations for the x-coordinate

and the y-coordinate (Tutte, 1963; Tamassia & Rosen, 2013).

Di Battista et al. (1994) transformed Tutte (1963)’s method from a planar

into a force-directed layout algorithm (Algorithm 3.7) wherein the force due to an

edge is proportional to the distance between nodes u and v and edges have an ideal

length of zero; there are no explicit repulsive forces (Equation 3.1). The algorithm

63

terminates when it converges, i.e., when the movement of all nodes is below some

threshold ϵ ≊ 0.

F (t) =
∑

⟨u,v⟩∈E

δ⃗uv (3.1)

Equation 3.1 describes the force at a given node v ∈ V , where p⃗u and p⃗v are

the positions of nodes u and v, respectively. Partitioning the node set into fixed and

free nodes guarantees this function has a trivial minimum with all free nodes placed

in the same location.

Algorithm 3.7 The barycentric layout algorithm by Tutte (1963). Pseudocode from
Di Battista et al. (1999)

▷ Input: G← (V, E) with V = V0 ∩ V1 with fixed vertices V0 and free nodes V1; a
strictly convex polygon P with |V0| vertices.

▷ Output: a position p⃗v for each nodes of V , such that the fixed vertices form a
convex polygon P.

V0: place fixed nodes u ∈ V0 at vertices of P
V1: place free nodes v ∈ V1 at the origin.

repeat
for all free vertices v ∈ V1 do

xv ← 1
deg(v)

∑
⟨u,v⟩∈E xu

yv ← 1
deg(v)

∑
⟨u,v⟩∈E yu

until xv and yv converge for all free nodes v ∈ V1

The equations in the for loop are linear, and the number of equations equals

the number of unknowns, which in turn equals the number of free nodes |V1|. Solving

these equations results in placing each free node at the barycenter of its neighbors.

The solution is unique when solved using the Newton-Raphson method (Tamassia &

Rosen, 2013). This for loop is trivially converted into linear scan-based operations,

costing at most 4|V | scans (Algorithm 3.8).

Barycentric methods are generally considered inappropriate for large graphs;

64

Algorithm 3.8 The barycenter layout algorithm with EGOs.
Input:

Gt ← (V, E, A, t)
finit ← fixed-free ▷ Partition the vertices into fixed V0 and free V1

Output:
LGt ← a reasonably nice layout of Gt

▷ Get all connected nodes U , equivalent to the neighbors GDO
function ffilter(MGt , v)

E ← ∀⟨v, u⟩ ∈ EG ⊂MGt

U ← map(u← e.u)
return U

▷ Vector-sum and scale positions of all nodes u ∈ U
function sum-scale(U , s)

return s×∑
u∈U p⃗u

▷ Test convergence for all free nodes v ∈ V1
function converged(∆PV)

for all δ⃗v ∈ ∆PV do
if δ⃗v > ϵ then

return false
return true

function fstop(∆PV)
return converged(∆PV)

▷ Override layout
function calculate-offsets(MGt)

for all v ∈ V1 do
U ← filter-elements(MGt , ffilter)
s← 1

deg(v)

δ⃗uv ← sum-scale(U, s)
δ⃗v ← p⃗v − δ⃗uv

return ∆PV

procedure barycenter(G, finit)
return force-directed(G, finit)

65

the minimal node and edge separation tends to be very small, leading to resolution

problems and unreadable drawings (Tamassia & Rosen, 2013). Currently, the biggest

drawback to this method is the lack of constraint: for every |V | > 1, there exists a

graph G such that the barycenter method computes a drawing with an exponential

area (Tamassia & Rosen, 2013).

3.4. Spring Systems

In Eades (1984)’s spring model, the forces acting along each edge are modeled

on coiled springs connecting nodes u and v.

Table 3.2. Common symbol notation for spring algorithms.

Constant Definition
cϱ The repulsion constant.
c⃗δ The maximum translation offset vector for time t.
ℓspring The natural spring length constant.
ℓuv The length of the spring connecting u and v.
duv The distance between nodes u and v (|δ⃗uv|).

Generally, the following assumptions are made: (1) spring strength is logarith-

mic, according to the spring Equation 3.2, where ℓuv is the length of the spring and

cϱ and ℓspring are constants indicating the tensile force and the natural length of the

spring, respectively; and (2) non-adjacent nodes repel each other using the inverse

square law force, according to Equation 3.3 or Equation 3.4, where duv is the distance

between the nodes.

66

Fspring = cϱ × log(ℓuv/ℓspring) (3.2)

Fr = ℓspring/d2
uv (3.3)

Fr = ℓspring/
√

duv (3.4)

The length ℓuv of the spring between nodes u, v ∈ V corresponds to the desir-

able or ideal distance between any two nodes in the final layout:

ℓuv = L× duv (3.5)

As mentioned earlier, aesthetically pleasing graph layouts are generated by

minimizing the total energy E in the system as defined by some energy function

(Equation 3.6). The optimal layout is where E is minimized for a particular algorithm

(Kamada & Kawai, 1989).

E =
m−1∑
i=1

m∑
j=i+1

1
2kuv(duv − ℓuv)2 (3.6)

The distance duv between u and v is defined as the shortest path length between

them; therefore, the length ℓuv is defined using Equation 3.5, where L is the desired

length of any given edge in the layout space (Kamada & Kawai, 1989). As L is based

on the distance between the farthest pair of nodes in a given graph, as shown in

Equation 3.7, where L0 is the minimum of the width and height of the layout space

L0 = min(S.width, S.height).

67

L = L0/ max
|p⃗u|,|p⃗v |

duv (3.7)

The parameter kuv is the strength of the spring between u and v and is regarded

as the square summation of the differences between the desirable distance and the

actual distances for all pairs of nodes. According to Kamada & Kawai (1989), we wish

to calculate these differences per unit length, defining kuv using an approximation of

Hooke’s law thus:

kuv = cϱ

d2
uv

× δ̂uv (3.8)

The parameters ℓuv and kuv are symmetric, thus ℓuv = ℓvu, kuv = kvu | (p⃗u ̸=

p⃗v). Node positions not at equilibrium indicate a system with positive internal stress.

As shown in Algorithm 3.9, node positions are randomized to ensure the stresses are at

a maximum. The system is lowered into a minimal energy state via iteratively moving

nodes at time t according to the net force vector F⃗Σ(v), the sum of all attractive and

repulsive spring forces acting on v. After computing F⃗Σ(v), each node is moved a

constant cδ times this vector. This constant corresponds to the constrained maximum

displacement per iteration to prevent excessive movement. By iteratively computing

the forces on all nodes and updating positions accordingly, the system approaches a

stable state where no further local improvements are possible. However, (Eades, 1984;

Kobourov, 2013; Kamada & Kawai, 1989). Jeowicz et al. (2013) note that Equation

3.8 can cause undesirable scaling of either large or small graphs.

Eades (1984) further stipulates that the values cϱ = 2, ℓspring = 1, and cδ = 0.1

are appropriate for most graphs, which approach their minimum energy state when

68

Algorithm 3.9 The spring embedder layout algorithm by Eades (1984). Pseudocode
from Kobourov (2013)

▷ initial placement
for all v ∈ V do

p⃗v = random-position
▷ repeat the placement process M times
for i = 1, . . . , M do

for all v ∈ V do
F ← ∑

forces acting on v
p⃗v ← |c⃗δ| × F⃗Σ(v)

M = 100. This algorithm succinctly demonstrates the elegance and natural intuition

for all spring algorithms, with a compute cost of O(M × |V |2 + |V |). Building on

Algorithm 3.6, we reimplement the spring layout algorithm using O(3(|V | ×M))

scan operations. However, Eades’ limit of 30 nodes (Eades, 1984) is insufficient for

dynamic graphs where arbitrary numbers of nodes are added or removed; further

refinements are required.

3.4.1 Fruchterman-Reingold

Fruchterman & Reingold (1991) redefined the attractive and repulsive forces

on springs using Equation 3.10 and Equation 3.9, respectively, in terms of the distance

duv between the nodes and the ideal distance between nodes to eliminate the cost of

calculating the square root. ℓspring is likewise redefined using Equation 3.11. The cost

of this algorithm is O(M × (|V |2 + |V |+ |E|)).

Fr =
ℓ2

spring

duv

× δ̂uv (3.9)

Fa = d2
uv

ℓspring

× δ̂uv (3.10)

ℓspring =
√

area

|V |
(3.11)

69

Algorithm 3.10 The spring layout algorithm with EGOs.
Input:

Gt ← (V, E, A, t)
finit ← random
ffilter ← neighbors

Output:
LGt ← a reasonably nice layout of Gt

▷ calculate repulsive forces
function repulse(V ,v)

return ∑
u∈V

cϱ

d2
uv
× δ̂uv

▷ calculate attractive forces
function attract(U ,v)

return ∑
u∈U cϱ × log duv

ℓspring
× δ̂uv

function fstop(i)
return i < M

▷ Override layout
function calculate-forces(MGt)

for all v ∈ V do
V ← VM \ v
▷ find connected nodes
U ← filter-nodes(V, ffilter)
▷ calculate repulsive forces
δ⃗v ← repulse(V, v)
▷ calculate attractive forces
δ⃗v ← δ⃗v + attract(U, v)
▷ constrain movement
δ⃗v ← δ⃗v × cδ

return ∆PV

procedure spring(G, finit)
return force-directed(G, finit)

70

For sparse graphs with uniform distributions of nodes, this can shrink to ap-

proximately O(M × (|V |+ |V |+ |E|)). Jeowicz et al. (2013) further optimize this

algorithm by swapping the calculation order in Equation 3.9 and Equation 3.10 to

minimize the number of floating point calculations. Fruchterman & Reingold (1991)

also introduce the concept of temperature, which steadily lowers the maximum dis-

placement cδ as the layout approaches the ideal configuration. The temperature

cooling method (cool(t)) is not described but can be any monotonically decreasing

function. The final positions p⃗v ∈ PG are also refined, so nodes are not displaced

beyond the frame.

With appropriate materialization, the cost of attract is reduced to |V | se-

quential scans but at the cost of |V | equality conditionals which can cause threads

to get out of sync, inducing contention (Jeowicz et al., 2013). For repulse, if nodes

are unsorted, this devolves to |E| random probes, a potentially undesirable outcome.

3.4.2 Edge-Edge Repulsion

Generally speaking, the notions of repulsion in the setting of conventional

force-directed layouts fall into two categories: (1) vertex-vertex repulsion, where nodes

repel each other, or (2) vertex-edge repulsion, where both nodes and edges repel each

other (Lin & Yen, 2005). Theoretical and experimental results indicate both methods

usually enjoy the merit of producing graph layouts with a high degree of symmetry

and uniform edge length (Eades, 1984).

Angular resolution is an aesthetic quality of a graph layout, which refers to the

smallest angle formed by two adjacent edges incident to a common node in a straight

line drawing (Tutte, 1963; Formann et al., 1993). Both vertex-vertex and vertex-edge

repulsion methods optimize the inter-node distance and the distance between nodes

71

Algorithm 3.11 Pseudocode for the force-directed layout algorithm by Fruchterman
& Reingold (1991)

area← W × L ▷ width and length of a frame
G← (V, E) ▷ random initial positions for the vertices
k ←

√
area/|V | ▷ the natural length of a spring

t ▷ temperature, max displacement
M ▷ the number of iterations

function Fa(x)
return x2/k

function Fr(x)
return k2/x

for i← 1 to M do
▷ calculate repulsive forces
for all v ∈ V do ▷ cost: O(|V |2)

▷ each vertex has two vectors: .pos and .disp
v.disp← 0
for all u ∈ V do

if u ̸= v then
δ ← v.pos− u.pos ▷ δ is the difference vector between u, v
v.disp← v.disp− (δ/|δ|)× Fr(|δ|)

▷ calculate attractive forces
for all e ∈ E do ▷ cost: O(|E|)

▷ each edge e is an ordered pair of vertices ⟨u, v⟩
δ ← e.v.pos− e.u.pos
e.v.disp← e.v.disp− (δ/|δ|)× Fa(|δ|)
e.u.disp← e.u.disp + (δ/|δ|)× Fa(|δ|)

▷ limit max displacement to the temperature t
for all v ∈ V do ▷ cost: O(|V |)

v.pos← v.pos + (v.disp/|v.disp|)×min(v.disp, t)
v.pos.x← min(W/2, max(−W/2, v.pos.x))
v.pos.y ← min(L/2, max(−L/2, v.pos.y))

▷ reduce the temperature as the layout condition improves
t← cool(t)

72

Algorithm 3.12 The fruchterman-reingold layout algorithm with EGOs.
Input:
Gt ← (V, E, A, t)
area← S.width× S.height

ℓspring ←
√

area/|VG|
finit ← random
ffilter ← neighbors

▷ calculate repulsive forces
function repulse(V ,v)

return ∑
u∈V

ℓ2
spring

δ⃗uv
× δ̂uv

▷ calculate attractive forces
function attract(U ,v)

for all u ∈ U do
δ ← (|δ⃗uv|2/ℓspring)× δ̂uv

δ⃗u ← δ⃗u − δ
δ⃗v ← δ⃗v + δ

return ∆p⃗v

function fstop(i)
cδ ← cδ × .9 ▷ lower the temperature
return i < M

▷ Override layout
function calculate-forces(MGt)

V ← VM \ v
for all v ∈ V do

▷ find connected nodes
U ← filter-nodes(V, ffilter)
▷ calculate repulsive forces
∆p⃗v ← repulse(V, v)
▷ calculate attractive forces
∆p⃗v ← ∆p⃗v + attract(U, v)
▷ constrain movement
∆p⃗v ← ∆p⃗v × cδ

return ∆PV

from edges. Still, they do not prevent edges from being drawn co-linearly, a phe-

nomenon known as “edge collapse” due to zero angular resolution, which indicates

73

function place(MGt)
for all v ∈ VG do

▷ set the position
p⃗v ← p⃗v + δ̂v ×min(|δ⃗v|, cδ)
▷ fit within bounds
w ← S.width/2
h← S.height/2
p⃗v.x← min(w, max(−w, p⃗v.x))
p⃗v.y ← min(h, max(−h, p⃗v.y))

procedure fruchterman-reingold(G, finit)
return spring(G, finit)

at least two co-incident edges overlap, resulting in a bad drawing with simultane-

ous edge-edge and node-edge crossings (Chuang & Ahuja, 1998; Lin & Yen, 2005).

The simulated annealing method considering an angular resolution term (Ioannidis &

Wong, 1987b; Fruchterman & Reingold, 1991) can be applied, but it is not regarded

as efficient (Lin & Yen, 2005).

Drawing graphs without zero angular momentum is found in various computer

science and engineering applications. Still, it is essential in exploratory graph visu-

alizations, mainly when rendering graphs with non-uniform nodes (i.e., nodes with

differing visual marks or whose visual channels vary considerably across the graph)

(Lin & Yen, 2005). Analytically derived formulas of repulsive forces between two

charged edges are unnecessarily complicated to implement practically; therefore Lin

& Yen (2005) describes useful approximations which are straightforward to implement

(Algorithm 3.13).

Lin & Yen (2005) describe a novel repulsion mechanism where edges are re-

placed with charged springs (Lin & Yen, 2005), instead of adding charges to nodes

(Eades, 1984). This maximizes the angular resolution of the drawing but still mini-

mizes the energy at any given node. This edge-edge repulsion algorithm (Algorithm

3.13) is based on the theory of potential fields to draw graphs without zero angular

74

resolution. The main aesthetic criteria (Section 2.5) addressed by the edge-edge re-

pulsion algorithm are symmetry, uniform edge length, and maximization of angular

resolution (Lin & Yen, 2005).

A drawback to this method is that it creates a more symmetrical drawing at the

expense of allowing node-node overlap in the final output, which may, in turn, obscure

features necessary to preserve the mental map (Lin & Yen, 2005; Argyriou et al., 2012).

The attractive force function is identical to Equation 3.2. However, the repulsive force

differs significantly, being defined in terms of the lengths of the two edges and the

included angle between them: The magnitude of the repulsive force due to any pair of

edges is positively correlated with their respective lengths, and negatively correlated

with the angle (Lin & Yen, 2005). Calculation of this force requires a local sorting

of nodes via a vector cross product, which may be expensive in both memory space

(|E|2) and random probes (|V |) for highly-connected graphs. repulse is trivially

implemented with 6|V | linear filter scans, but we believe this could be reduced to

5|V |, using four map and one reduce scan. Testing this hypothesis is reserved for

future work.

3.5. Other Algorithms

Most force-directed layout algorithms restrict graph layouts to Euclidean ge-

ometry, typically R2, R3, and more recently, Rn for larger values of n. However, are

cases where Euclidean geometry may not be the best option, such as when graphs

are embedded on a torus and must be laid out without edge crossings (Tamassia &

Rosen, 2013). In general, these algorithms take as input a force-directed layout and

apply non-linear modifications in the finesse stage to adjust node positions post hoc.

Such drawings are out of the scope of this thesis and will not be discussed further,

although Dynamical.JS is capable of extension to support non-Euclidean and spectral

75

algorithms.

76

Algorithm 3.13 The edge-edge repulsion algorithm by Lin & Yen (2005)
Input

Gt A reasonably nice layout of graph G← (V, E, A, t)

function fa(d)
return C1 × log(d/C2)

function f1(f ,u)
return |f |uf1

Ftmp[|V |] ▷ Temporary forces ∀v ∈ V
Pnew ▷ Record new positions ∀v ∈ V
Pold ▷ Record old positions ∀v ∈ V
C6 ▷ Magnitude of movement in each iteration

▷ Assign initial locations of vertices
▷ Determine the neighboring order of adjacency edges of each vertex using outer

product
while converged ̸= 1 do ▷ Convergence loop

converged← 1
oldPosn← newPosn
tempForce[|V |]← zeros matrix
for all v ∈ V do

if ∃ at least two edges incident to v then
for all pair (ei,ej) where ei = (v, vi), ej = (v, vj) are neighboring edges
incident to v, and ei is the right edge of their included angle with smaller
degree do

▷ calculate the repulsive force f1 at ei due to ej according to (8)
tmpForce[vi]← tmpForce[vi] + f1
tmpForce[vj]← tmpForce[vj]− f1

for all e = (vi, vj) ∈ E do
tmpForce[vi]← tmpForce[vi] + fa

tmpForce[vj]← tmpForce[vj]− fa

▷ Draw graph and simultaneously save new positions to newPosn according to C6×
tmpForce[|V |] where C6 is a constant to control the magnitude of movement in
each iteration

if ||newPosn− oldPosn|| > ϵ then
converged← 0

return ▷ A nice drawing of G without zero angular resolution

77

Algorithm 3.14 The edge-edge-repulsion algorithm with EGOs (Exploratory
Graph Operations)

Input:
Gt ← (V, E, A, t)
W ← S.width
H ← S.height
finit ← layout(Gt) ▷ a prior layout algorithm

Output:
LGt ← a nice layout of Gt without zero angular resolution

▷ get the cross product of E × E as a 5-tuple
▷ f : E × E → Q
▷ q ← ⟨v0, v1, δ⃗0, δ⃗1, f0, f1, θ⟩ ∈ Q
function fmap(E)

for all ⟨e0, e1⟩ ∈ E × E do
δ⃗0 ← e0.p⃗v − e0.p⃗u ▷ the difference vector for e0
δ⃗1 ← e1.p⃗v − e1.p⃗u ▷ the difference vector for e1

θ ← tan−1(|δ⃗0|
W

) + tan−1(|δ⃗1|
W

) ▷ the angle between e0 and e1

q ← ⟨e0, e1, δ⃗0, δ⃗1, |θ|⟩
return Q

▷ filter out nodes with degree less than 2
function fdegree(v)

return u.degree > 1

▷ filter out edges with tiny magnitudes
function fϵ(q)

return |q.δ⃗0| > ϵ ∧ |q.δ⃗1| > ϵ

78

▷ Override force-directed
function repulse(Q,v)

R ← [0 1
−1 0] ▷ rotation matrix −π

2
θ ← 2π/v.degree

Ql ← filter(Q, q.e0.v = v) ▷ lhs
for all q ∈ Ql do

δ̂ ← q.δ⃗0/|q.δ⃗0|
δ⃗v ← δ̂ × sin((θ − q.θ)/2)
∆p⃗v ← ∆p⃗v + cδRδ⃗v

Qr ← filter(Q, q.e1.v = v) ▷ rhs
for all q ∈ Qr do

δ̂ ← q.δ⃗1/|q.δ⃗1|
δ⃗v ← δ̂ × sin((θ − q.θ)/2)
∆p⃗v ← ∆p⃗v − cδRδ⃗v

return ∆p⃗v

function calculate-statistics(MGt)
Q← map(E, fmap)
Q← sort(Q, q.θ)
Q← filter(Q, fϵ)
return Q

function calculate-forces(MGt)
▷ only repulsive forces for nodes with degree > 1
V ← filter-nodes(fdegree)
for all v ∈ V do

∆p⃗v ← repulse(Q, v)

▷ attractive forces on all nodes
for all v ∈ VG do

∆p⃗v ← ∆p⃗v + attract(VG, v)
return ∆PV

procedure edge-edge-repulsion(Gt,finit)
return force-directed(Gt, finit)

79

Chapter IV.

Computational Development

The following section outlines our development process, the strengths and

weaknesses of our development platform, and rationales for each of our design choices

ultimately implemented in Dynamical.JS.

4.1. External Requirements

To support our core design goal of self-containment, the Dynamical.JS frame-

work neither embeds nor includes any software, libraries, plugins, or other code to

function. The thesis author wrote all code included with Dynamical.JS. Consequently,

Dynamical.JS does not require the acquisition of any external software licenses. Only

publicly defined and generally-available Javascript APIs (European Association for

Standardizing Information and Communication Systems, 2020) were used, and only

those algorithms made public by standards organizations such as the W3C (World

Wide Web Consortium) (World Wide Web Consortium, 2022d) or in the published

literature are implemented. Citations for these organizations, their standards, and

reference documents are listed in the References section of this thesis and are doc-

umented in the project source code using JSDoc (Mathews, 2011) @cite directives.

Therefore, all code distributed within the Dynamical.JS framework can be run on

any system running a modern Javascript engine with or without support for We-

bGPU (World Wide Web Consortium, 2022b).

4.2. Publishing

The reference implementation of the Dynamical.JS framework is published on

GitHub. The final publication license has not been finalized. However, we intend that

80

https://github.com/robdotson/dynamical.js

the published license be fully compatible with the licenses released by the previously-

mentioned standards bodies, specifically, the licenses for WebGPU (GPU Computing

for the Web) (World Wide Web Consortium, 2022b) and WGSL (WebGPU Shading

Language) (World Wide Web Consortium, 2022c), which are unavailable at the time

of this writing.

4.3. Hardware Configuration

All code developed for Dynamical.JS was developed and tested on our own

hardware, using the most current publicly-available versions of the following Webkit-

based (Apple Inc., 2021) browsers: Google Chrome Canary (Google Inc., 2022), Apple

Safari (Apple Inc., 2022b), and Microsoft Edge (Microsoft Inc., 2021). The Firefox

(Mozilla Corp., 2021) web browser, which is not based on Webkit was also tested for

completeness. All code was written in Javascript and WGSL and on the full suite of

browsers before publication.

Code was run on an Apple MacBook Air (M2, 2022) running macOS Monterey

version 12.6 and macOS Ventura version 14.0.1 with an Apple M2 SOC (System-

On-a-Chip) containing an 8-core (four performance cores running at 3.5GHz, four

efficiency cores running at 2.4GHz) CPU (Central Processing Unit) and a 10-core

integrated GPU (Graphics Processing Unit) and sharing 16GiB of unified LPDDR5-

6400 memory. Storage consisted of a single 512GiB SSD (Solid State Drive) formatted

as a single APFS (APple File System) volume with a block size of 4096B. The memory

cache sizes for the performance cores were 192KiB (L1i), 128Kib (L1d) 256KiB, 16MiB

(L2); cache sizes for the efficiency cores were 128KiB (L1i), 64Kib (L1d) 256KiB, 4MiB

(L2), with a page size of 16384KiB (65535B). Each GPU core contains 32 execution

units, containing eight ALUs (Arithmetic Logic Units). The M2 GPU contains 320

execution units and 2560 ALUs, with a maximum floating point (FP32) performance

81

of 3.6TFLOPs (Tera- Floating Point Operations s−1).

Although GPU hardware is ubiquitous in modern computing systems, there

are several well-known memory transfer and caching caveats (Tan et al., 2020; Qu

et al., 2017; Xiao et al., 2015), which Dynamical.JS aims to address in code. However,

our substrate packages several CPU and GPU cores and a UMA (Unified Memory

Architecture) (N & Murali, 2019) within a single SOC that ameliorates several of these

problems and masks potential issues that plague substrates with discrete CPU and

GPU cores. Dynamical.JS includes system-agnostic code wherever possible, and we

intend to profile this code on multiple substrates in future iterations of this project.

4.4. Tools

Due to browser security constraints, Javascript programming requires code to

be run via a local web server, as local file access is not possible in most cases due

to browser security constraints (European Association for Standardizing Information

and Communication Systems, 2020). Therefore, an IDE (Integrated Development

Environment) which includes an embedded web server, is required. These embedded

web servers facilitate local Javascript debugging yet are still quite limited when de-

bugging new graphical frameworks such as WebGPU. The Nova (Panic, 2021) IDE

was used exclusively to program Dynamical.JS. There is no particular motivation

behind the choice except familiarity, ease of use, and convenience. From experience,

most Javascript IDEs have comparable features. Node.js (OpenJS Foundation, 2022)

was used to compile or ‘minify’ the project into a distribution package during testing

but is not used otherwise and is not required to use, embed, or extend Dynamical.JS

on any system. Superstatic (Firebase, 2022) is a minimal web server used during

development to support testing over our LAN (Local Area Network). The Web In-

spector built into all Webkit browsers (Apple Inc., 2021; Google Inc., 2021, 2022) was

82

used for realtime debugging and testing. Google Chrome Canary (Google Inc., 2022)

is the browser with the most current and robust implementation of the WebGPU

framework and was, therefore, the main development browser for Dynamical.JS. Sa-

fari Technology Preview (Apple Inc., 2021) is the primary Webkit implementation

upon which several other browsers (Chrome, Edge) are based. As of the publication

of this thesis, the initial WebGPU implementation is absent from compiled distri-

bution. A complete replacement implementation is included in the Webkit source

code but is not fully integrated into any currently available browser. It is expected

to be re-integrated by the end of 2022 or early 2023. Firefox Nightly also supports

WebGPU, but the implementation hasn’t been updated in several months and no

longer conforms to either the WebGPU or WGSL specifications. Development and

testing on Firefox and Safari have been suspended until standards-conformance tests

are complete.

4.5. Javascript

The Dynamical.JS framework is written in ECMAScript (European Associa-

tion for Standardizing Information and Communication Systems, 2020), better known

as Javascript, due to the increased usage of web-based systems and the ubiquity and

power of modern web browsers. These browsers contain JIT (Just-in-Time) com-

pilers, which generate bytecode representations of Javascript programs which run

nearly as fast as their assembly-language counterparts. ECMAScript 6+ (European

Association for Standardizing Information and Communication Systems, 2015) has

a simplified object-oriented syntax similar to C, C++, and Swift, allowing Dynam-

ical.JS to be more easily ported to these languages in the future should the need

arise. Additionally, web-based multivariate network exploration applications will en-

able analysts to quickly and effortlessly filter and analyze networks on demand (No-

83

bre et al., 2019) without requiring specialized library code, compilers, or systems

knowledge. The system-agnostic nature of the Javascript platform, which requires

only a modern web browser, makes Javascript an ideal implementation language for

this project. The current Javascript standard exposes a variety of computational

substrate configurations, including SMP (Symmetric MultiProcessing), AMP (Asym-

metric MultiProcessing), (limited) multi-threading, and direct GPU access through

both WebGL (Web Graphics Library) (Khronos® Group, 2014, 2017) and WebGPU

(Dakkak et al., 2016) interfaces. Lower-level programming languages such as C or

C++ were considered and rejected for this project. These languages are robust and

well-supported, but their need for external compilers and system-specific libraries

rendered them unsuitable.

The intricacies of the Javascript runtime are beyond the scope of this doc-

ument. Therefore the following section only discusses components relevant to the

implementation of graph layout algorithms and Dynamical.JS.

4.5.1 Runtime & Concurrency

Unlike many development platforms, the Javascript runtime (also known as a

user agent, agent, or browser) uses an event loop concurrency model in lieu of threads

(European Association for Standardizing Information and Communication Systems,

2015). Each agent is a monolithic execution context consisting of a call stack and

an event loop. At its core, an event loop simply waits for messages (disambiguated

from events) indicating computational jobs have been submitted into one or more job

queues. As messages are received, jobs are dequeued and executed in FIFO (First In,

First Out) order: the job is removed from the queue, and its corresponding function is

called with the message as input (European Association for Standardizing Information

and Communication Systems, 2021). Each function call creates a new stack frame

84

Algorithm 4.1 Javascript event loop
while 1 do

while jobQueue.empty = false do ▷ Empty the job queue.
execute(jobQueue.dequeue())
if isRenderingOpportunity = true then ▷ Update the screen.

render-screen()
if asyncJobQueue.empty = false then ▷ Enqueue the next async job.

jobQueue.enqueue(asyncJobQueue.dequeue())

for that function’s use (Mozilla Developer Network, 2022).

The above term “queue” is a logical misnomer: job queues are implemented as

sets, not queues, and the event loop processing model grabs the oldest runnable job

from the chosen queue instead of dequeuing the first job (Web Hypertext Application

Technology Working Group, 2021a). Jobs are only runnable if they are neither waiting

for another job to complete, e.g., an unresolved promise (Section 4.5.2), nor for a

system resource to become available, e.g., a file handle or network data packet. All

global functions and events triggered by a webpage or analyst, such as page loading,

scrolling, or click events, are enqueued as jobs. Each job must empty its stack before

any other jobs can be executed and cannot be preempted (European Association for

Standardizing Information and Communication Systems, 2021). This is problematic

because long-running jobs, such as graph layout algorithms, will delay the execution

of salient tasks (such as screen rendering) until execution completes (Algorithm 4.1).

Screen rendering is only available when rendering opportunities arise: if the

user agent attempts to achieve a 60Hz refresh rate, rendering opportunities occur at

most every 60fs−1 or ≈ 16.7ms. If this rate is unsustainable, the user agent may drop

to a more sustainable 30fs−1 rate or even lower rather than occasionally dropping

frames. The sustainability threshold is implementation-defined and, therefore, unpre-

dictable (Web Hypertext Application Technology Working Group, 2021b). Abrupt

changes in refresh rate and frame-dropping result in stuttered animation, leading to

85

negative analyst experiences and disrupted mental maps.

Newer versions of the Javascript runtime implement a concurrent execution

model but do not implement “true” threads. Instead, the runtime has the con-

cept of a worker, a subordinate execution context with a separate event loop and

job queue (European Association for Standardizing Information and Communication

Systems, 2021). Unlike threads defined in languages like C or C++, these worker

contexts do not share memory and cannot be synchronized. Worker interaction con-

sists of exchanging messages containing serialized objects or special memory buffer

references, so graph layout algorithms that rely on the multithreaded scatter-gather

design pattern cannot be directly ported to Javascript. Instead, such algorithms

must be adapted to work in a purely asynchronous environment; serialization is time-

consuming for graphs with hundreds or thousands of nodes and may result in stuttered

animations or unresponsive screens if large graphs must be [re/de]serialized during

each message.

4.5.2 Asynchronous Execution

The async/await system introduced in ES7 (ECMAScript 7) is neither

truly asynchronous nor concurrent; these execution models are emulated by issuing

promises that execution will be completed sometime in the future. This allows long-

running jobs to execute without blocking the main event loop by deferring execution

until enough processing time is available. In practice, jobs labeled async are deferred

until the current job queue is empty. When an async function awaits the completion

of another async function, it is simply re-queued so that its execution completes at

some point after the awaited function returns, allowing other tasks (such as UI (User

Interface) updates) to complete before resuming execution. Consequently, timers

created by setTimeout(delay) are not executed until at least delay milliseconds

86

have elapsed. Therefore, they cannot ensure smooth animation because they cannot

synchronize with the main event loop’s rendering opportunities.

Section 5.5, Section 5.9, and Section 5.10 below describe how the Dynamical.JS

framework modifies graph layout and rendering algorithms to take advantage of the

Javascript event loop.

4.6. Computer Graphics

The creation of a real-time graph layout framework requires a holistic un-

derstanding of the computer graphics pipeline, and how optimizations targeting one

component may introduce bottlenecks in another. This section examines the con-

cepts and technologies which underlie the graphics pipeline, how they are employed

to create images on the screen, and how they can be repurposed to perform useful

general-purpose computing.

4.6.1 History

In the early days of computer graphics, there were no standard programming

models. Each hardware vendor developed proprietary interfaces for rendering ge-

ometry onto graphical displays (Bailey & Cunningham, 2009). Primitive systems

and substrates, such as the Macintosh or Amiga, had either a separate, monolithic

VRAM (Video RAM) or a dedicated segment of DRAM (Dynamic RAM), which

held the contents of a single framebuffer. Drawing commands submitted to the sys-

tem renderer queue would “trap” the CPU, i.e., interrupt normal CPU operations,

and execute functions hard-coded in ROM (Read Only Memory) to render graphi-

cal primitives into the framebuffer (Foley et al., 1996; Apple Computer, Inc., 1985).

The contents of this framebuffer were then transferred to the display during the VBL

(Vertical BLanking interval)—the interval during which no screen drawing is taking

87

place (Apple Computer, Inc., 1984). Systems running on other substrates, such as

Windows/X86, would perform similar operations on code stored in SRAM (Static

RAM) using specialized hardware (Foley et al., 1996). A few substrates improved

to support multiple output displays, each with distinct framebuffers and graphical

pipelines, while others focused on improving single-display performance (Foley et al.,

1996). This divergence was neither efficient nor portable: each system required spe-

cialized software and hardware to perform even simple graphical rendering tasks,

preventing code written for one system from being easily ported to another without

enormous cost.

4.6.2 OpenGL

OpenGL (Open Graphics Library) (Segal & Akeley, 2022) was developed to

create a standard, stable API (Application Programming Interface) for vendors to

implement on top of their proprietary graphics platforms. The OpenGL API be-

came the “gold standard” API because it does not assume hardware support; the

standard only specifies supported graphical operations and calling conventions; the

standard includes neither implementation details nor performance targets. OpenGL

was designed primarily to provide convenient access to all of the capabilities of

the underlying substrate rather than facilitate any particular use of the hardware

(Ebert et al., 2003; Segal & Akeley, 2022). Compliant systems will therefore run

any OpenGL-linked application, including those running on low-power devices (i.e.,

mobile phones) without dedicated graphics processing hardware (Bailey & Cunning-

ham, 2009). However, realtime applications like games or physics simulations need

to create images at interactive speeds, necessitating specialized high-speed circuitry.

Simple VRAM/framebuffer-based substrates were replaced by “graphics cards” con-

taining ASICs (Application-Specific Integrated Circuits), which included hardware-

88

optimized graphical operations and dedicated VRAM (Bailey & Cunningham, 2009).

These ASICs became increasingly sophisticated, with performance many orders of

magnitude higher than CPUs while supporting the same graphical operations origi-

nally defined initially in the OpenGL specification. Though it remains the “standard”

graphics API, OpenGL often requires the use of vendor-specific GPU extensions to

access the latest hardware features (Ebert et al., 2003); therefore, several new graph-

ics frameworks, such as Vulkan (Khronos® Group, 2022b), Metal (Apple Inc., 2022a),

and CUDA (Compute Unified Device Architecture) (NVIDIA Corp., 2022b) have been

developed to supplement or supplant it. One such framework, WebGPU, underlies

the core functionality of Dynamical.JS and is discussed in Section 4.12.2.

4.7. Graphical Object Models

Graphical scenes are conceptual arrangements of geometric objects to be ren-

dered to a display. In order for an application to render these scenes, it must first

articulate its requirements using graphical primitives and applicable operations into

a graphical model (Bailey & Cunningham, 2009). Geometric objects are modeled by

the application and stored in a local, display-independent coordinate system known

as model space. These objects may be placed into a scene by transforming them

into a shared “world” coordinate system shared by all objects in the scene known

as world space. The placement of a model into a scene is called instancing: the

modeled object is known as the master, and the transformed copy placed in a scene

is called an instance (Ebert et al., 2003). Individual models can be combined into

composite objects, and composite objects subsequently instanced into a scene, thus

building up an object hierarchy known as a scenegraph, which arranges the logical and

spatial organization of the graphical objects to be rendered. Each node of the scene-

graph corresponds to an instance, composite, or transformational process. Simple

89

scenegraphs may be structured as trees, but those with many instances are generally

directed acyclic graphs, such that any node may have more than one parent in the

hierarchy (Ebert et al., 2003). Scenegraphs are designed to be spatially coherent,

easily serialized for storage and retrieval, and efficiently processed into the graphi-

cal primitives required for rendering. Scenegraphs can also be queried or “pruned,”

thereby restricting processing to instances that lie on a particular path between two

arbitrary nodes or fall within a specified bounding region (Ebert et al., 2003).

As a scenegraph is traversed, type-specific operations on each node are dis-

patched into a rendering queue or pipeline for execution. These operations transform

model instances into geometrical primitives that are subsequently enqueued with ap-

propriate rendering commands. Additionally, many graphical operations produce no

output, only side effects: their only purpose is to modify or query the current con-

textual state. For example, when a transformation node is processed, an operational

command to accumulate an affine transformation onto the current model-view matrix

(Section 4.8.1) is issued, which then applies to all descendants of that node unless

another transformational command is issued (Akenine-Möller et al., 2008).

Most graphical operations are beyond the scope of this document but can

be categorized as operations that: (1) define and manipulate the current graphical

context; (2) define and manipulate the drawing area, canvas, or surface; (3) define

geometry; and (4) modify appearance properties of specified geometry.

1. Graphical contexts are defined by the current computational substrate’s facil-

ities, such as available CPUs and GPUs, memory size and layout, pixel for-

mat, and blending functions. Each context controls a set of memory segments–

framebuffers, where interim data and final rendered output are stored. Contexts

also maintain several auxiliary computational and storage buffers for transfer-

ring data between CPU and GPU and rules for inter-converting data as they

90

move through the pixel pipeline.

2. A graphical surface (also known as a view, viewing area, or canvas) is a bounded

region of framebuffer memory containing rendered pixels. Each surface maps

directly to a visible region on a display, a texture, or an off-screen buffer. The

surface’s contents may then be drawn directly to the display, mapped to new

geometry, or returned to the application for further processing.

3. Element geometry is defined by vertices (e.g., spatial coordinates p⃗v ←

⟨x, y, . . . , n⟩ ∈ Rn), graphical primitives, and normal vectors (vectors orthog-

onal to the primitive plane n⃗ ← v⃗ × u⃗). Graphical primitives may be points,

lines, polygons, groups of primitives, or functions that generate primitives pro-

cedurally (Bailey & Cunningham, 2009). A sequence of viewing and projection

matrices, collectively known as the model-view matrix, map geometry from the

initial model space into a bounded, two-dimensional view space defined by a

surface Mn : Mn
0 · · ·Mn

i → V2 ⊂ R2. Geometry that falls outside the bounds

of view space or whose mapped normals point away from the screen may be

culled or clipped to prevent further processing, saving computational resources.

4. Geometrical primitives have appearance properties such as color, shading, ma-

terials, and lighting. Pre-defined and procedurally-generated images may be

mapped as complex appearance properties, called textures, which are then

mapped directly onto geometrical primitives. Output rendered to a particu-

lar surface may also be reprocessed by the application and re-used as a texture

before being remapped onto new geometry, using a technique known as multi-

pass rendering.

91

4.8. Rendering Pipeline(s)

Traversing the scenegraph and generating the model is known as the applica-

tion stage. This stage is generally executed in software running on general-purpose

CPUs and is typically the slowest component of graphics processing. Some of the

tasks traditionally performed in this stage include collision detection, global acceler-

ation algorithms, and physics simulation, among others. It is within this stage that

GPU-enabled graph layout algorithms spend most of their time and where the most

aggressive optimization tactics are employed.

CPU GPU

Application Geometry Pixel

Figure 4.1. Graphics rendering pipeline stages.

At the end of the application stage, the model is streamed to the GPU ren-

dering interface as a sequence of commands. The renderer then dispatches these

commands to specialized queues called pipelines. Basic GPU renderers are a pair of

linked pipelines corresponding to subsequent rendering stages: the geometry pipeline

and the pixel pipeline (Figure 4.1). Each pipeline has a fixed set of functions and oper-

ates as a “true” queue: operations are always performed serially in FIFO order. Even

though pipelined operations are executed sequentially, when dequeued for execution

mid-stage, certain operations run simultaneously on many (hundreds to thousands)

GPU ALUs (Akenine-Möller et al., 2008).

Further, each pipeline operates concurrently with the other: while the geome-

try pipeline processes modeled geometry recently submitted by the application stage

(Figure 4.2, M), the pixel pipeline processes the transformed vertex output from the

geometry pipeline (Figure 4.2, V). The final output of the pixel pipeline is an array

92

of pixels containing a rendered image (Figure 4.2, P), which is finally copied to the

target surface’s framebuffer for display. Render pipeline output may also be fed back

into the input of either pipeline, facilitating multipass rendering, used by a significant

number of graphical operations such as “picking” and selection, color filtering, edge

detection, and smoothing (Bailey & Cunningham, 2009). Multipass rendering also

forms the basis of several of the EGOs (Exploratory Graph Operations) defined in

Section 2.7.

CPU GPU

S M V t

Application ModelView
Transformation Triangle Setup

M Vertex Shading Triangle
Traversal

Projection Pixel Shading

Clipping Merging

Screen Mapping

V P

Figure 4.2. The "classic" rendering pipelines.

4.8.1 The Geometry Pipeline

The geometry pipeline processes most per-polygon and per-vertex operations

submitted to the GPU (Ebert et al., 2003). This pipeline stage is divided into five

basic sub-stages: (1) model-view transform, (2) vertex shading, (3) projection, (4)

93

clipping, and (5) screen mapping (Figure 4.2). However, some of these stages are

combined in certain implementations, while others are further subdivided into more

granular stages.

1. The first stage of the geometry pipeline is the model-view transform stage. Be-

fore a graphical element is displayed on a screen, the primitives contained within

its model have transformed through several spaces or coordinate systems. Ini-

tially, the model resides in its own model space and has not yet been transformed.

The model can then be associated with a model transform to be positioned and

oriented. It is possible to have several model transforms associated with a sin-

gle model. Each transform is a sequence of 4 × 4 matrix multiplications that

may scale, rotate, reflect, or otherwise alter all vertices and normals within

the model. This allows several instances of the same model to have different

locations, orientations, and sizes within a scene without replicating the basic

geometry. Once the transform has been applied, the model is located in a global

coordinate system known as world space (Akenine-Möller et al., 2008). Option-

ally, there is an intermediate vertex generation stage, where new vertices are

added or removed from a model to synthesize complex geometry such as curves

or spheres or to deform the geometry of existing model instances. Only models

visible to the “observer” (i.e., the camera) within world space are rendered. The

camera has a location and orientation in world space used for placement and

aiming. To facilitate projection and clipping, the camera and all visible models

are then transformed with the view transform into what is known as camera

space, eye space, or view space (Akenine-Möller et al., 2008). Some applications

define more than one camera, allowing the same scene to be rendered from dif-

ferent perspectives or with other properties (Bailey & Cunningham, 2009; Segal

& Akeley, 2022). This stage ends with vertex transformation, which takes the

94

set of vertex attributes (eye space coordinates, normals, texture coordinates,

&c.) and produces a new set of attributes suitable for clipping and rasteriza-

tion (such as homogeneous clip-space position, vertex lighting, sampled texture

coordinates, &c.) (Cebenoyan, 2004).

2. Once the model’s geometry has been transformed relative to the camera in

view space, the vertex shading stage determines which pixels must be filled to

represent it (Cebenoyan, 2004). Basic vertex coloring is determined during a

process known as shading: specified appearance properties (such as lighting or

materials) are combined using a shading equation and are stored along with the

vertex attributes. Only primary color values are assigned to each vertex; final

pixel output coloring is deferred to later stages (Segal & Akeley, 2022).

3. In the projection stage, the coordinates of all models in the view space are

transformed again. They are projected into a unit cube bounded by coordinates

⟨−1,−1,−1⟩ and ⟨1, 1, 1⟩ known as the canonical view volume. This trans-

form may be orthographic or parallel, and the final coordinates are said to be

in normalized device coordinates (Akenine-Möller et al., 2008). While the pro-

jection matrix transforms one space into another, the z-coordinate is ignored,

“projecting” the volume onto a two-dimensional surface.

4. Only primitives that fit within the canonical view volume need to be passed on

to the following stages, therefore any primitives that fall outside are discarded

(e.g., culled) or subdivided (e.g., clipped) during the clipping stage (Bailey &

Cunningham, 2009).

5. All remaining primitives are passed on to the screen-mapping stage and are

finally mapped into the two-dimensional window or screen coordinates corre-

sponding to display pixels (Akenine-Möller et al., 2008; Segal & Akeley, 2022).

95

4.8.2 The Pixel Pipeline

Output from the geometry pipeline (vertex position, depth, color, texture co-

ordinates, &c.) defines the set of pixels to be rendered. The pixel pipeline stages

combine the input vertex specifications, appearance properties, and processing in-

structions to fill the output framebuffer with colored pixels (Akenine-Möller et al.,

2008). A key concept in rendering is triangulation: GPUs use triangular polygons as

their primary geometric primitives. All primitives, including points, lines, and other

polygons, are reinterpreted as either triangle strips (e.g., lines, complex shapes) or tri-

angle fans (e.g., points, convex polygons). Any convex polygon can be triangulated by

choosing an arbitrary vertex and constructing a triangle fan or strip by processing the

following vertices sequentially. All subsequent shading computations are performed

by interpolating (Section 2.10.10) between the vertices of these triangles (Ebert et al.,

2003).

The pixel pipeline stage is also subdivided into distinct sub-stages: (1) triangle

setup, (2) triangle traversal, (3) pixel shading, and (4) merging.

1. The triangle setup stage first tessellates all geometry into triangles and deter-

mines the colors and other vertex parameters of those pixels that are touched

by those triangles (Segal & Akeley, 2022). In some contemporary systems, the

triangle setup stage only determines the edge equations for these pixels, leav-

ing the next stage to perform the actual interpolations (Akenine-Möller et al.,

2008).

2. Next, interpolation is used between each triangle’s bounding edges to fill in

the interior during the triangle traversal stage. All of the properties applied to

a triangle’s defining vertices (e.g., color, depth, texture, perspective &c.) are

interpolated at once to produce a sequence of samples, named fragments, which

96

correspond to the set of pixels bounded by the triangle (Ebert et al., 2003).

3. During the pixel shading stage, illumination for each fragment is calculated.

This results in a better-quality image than one shaded using interpolation.

Many modern video games and graphics frameworks use this technique for in-

creased realism and level of detail. Apart from interpolations, several other

operations are performed at this stage, including texture mapping, per-pixel

lighting, and reflections (Segal & Akeley, 2022).

4. The final merging stage is used to perform the final rasterization steps on the

fragment data, such as blending the color of overlapping fragments for trans-

parency or anti-aliasing effects (Akenine-Möller et al., 2008). This stage also

determines which fragments are occluded. Fragments are occluded when they

share view space coordinates with other fragments. An occluded fragment may

be replaced or blended with the overlapping fragment or discarded (Segal &

Akeley, 2022). Finally, the fragments are merged into pixels, and this pixel data

is copied into the framebuffer.

Once the final stage is complete, the framebuffer is said to be filled with pixels,

and the rendering is complete.

4.9. Programmable Pipelines

Fixed-function pipelines were common in the early days of GPU graphics but

are rare in today’s graphics substrates. They are constrained precisely as the name

suggests: pipeline functionality is fixed and cannot be modified. For example, sup-

pose the pipeline supports a set of methods to rasterize geometry and shade pixels

once commands are committed to the pipeline. In that case, they will be executed in

97

order without further input from the application. The programmer cannot add op-

erations or alter data once submitted (Bailey & Cunningham, 2009). Fixed-function

pipelines are limited in their capabilities but are easy to design and use, especially in

low-performance IoT (Internet-of-Things) devices. Although fixed-function pipelines

are sufficient to render basic scenes, their inflexibility exposes severe deficiencies, es-

pecially when input data may change unexpectedly, as necessitated by exploratory

graph visualizations.

In modern GPUs, all the pipelines are programmable (or generic), replacing

certain shading stages of each pipeline with programmable shader units. In many

cases, code developed to run on fixed-function pipelines can still run on programmable

pipelines either by issuing commands making the programmable stages optional or

through an intermediate compatibility framework that emulates the older, fixed-

function pipeline (Segal & Akeley, 2022). The basic functionality of the pipelines

remains the same: vertex mapping, tessellation, pixel color calculations, &c. are all

supported as before, but the programmer now has control over whether and how

these stages are executed. The programs that perform programmable-pipeline cal-

culations are called shaders (Section 4.9.1) because they were initially created to

perform customized “shading” (e.g., coloring, lighting, and blending) operations on

3D (three-dimensional) geometry, but have since evolved to perform many other tasks

(Akenine-Möller et al., 2008).

4.9.1 Shaders

Shaders are special programs that run directly on GPUs, similar to the pro-

cedural programs even novice programmers are familiar with. Each shader has one

or more entry points (akin to a main() function), static global constants (known as

uniforms), functions, variables, and return values (Ebert et al., 2003). Due to the

98

vectorized nature of GPUs, shaders diverge from general-purpose programs in their

scope and range of effect (Ebert et al., 2003; Marshall, 2004).

CPUs and GPUs are designed with very different goals: CPUs are designed to

provide high performance on general-purpose sequential programs. Parallel program-

ming on CPUs is complicated because most algorithms designed for CPU execution

have data dependencies requiring communication and synchronization between pro-

cessors to function (Ebert et al., 2003). Resource availability, context switching, and

lock mitigation strategies further complicate parallel programming and tend to reduce

overall processor utilization on the few CPU cores available (Ebert et al., 2003).

In contrast, GPUs are not serial processors but are stream processors organized

around two concepts: specialization and parallelization (Ebert et al., 2003; Buck &

Purcell, 2004). A stream processor works by executing a kernel function (e.g., a frag-

ment program) on a stream of pipeline-specific input records (e.g., fragments) and

producing a set of output records (e.g., shaded pixels) in parallel. Each input record

passed to the kernel function is processed independently, and no data dependencies

exist between them. GPUs have hundreds or thousands of compute cores working in

concert and lack the extensive hardware support needed for locking and synchroniza-

tion. Data independence permits the architecture to execute the kernel in parallel

in any order without exposing any parallel constructs to the programmer, and no

inter-core communication is required (Buck & Purcell, 2004).

Generally, there are four types of shaders defined for GPUs: (1) vertex shaders,

(2) fragment shaders, (3) geometry shaders, and (4) compute shaders:

1. Vertex shaders perform calculations on individual vertices. Vertex shaders com-

pute or modify the properties of their assigned vertex, such as the position in

the n-dimensional model space, such as color, blending, clipping, position, or

normal vector. These shaders have no access to neighboring vertices and have no

99

way of accessing them. Vertex shaders may also abort programming or discard

vertices based on specified criteria. Vertex shaders may replace or supplement

the vertex shading stage of a fixed geometry pipeline (Section 4.8.1).

2. Fragment shaders calculate color values for individual pixels. These shaders

interpolate between a set of vertex properties defined by previously run vertex

shaders to compute the color of their assigned fragment. This can mean linearly-

interpolating color values between two vertices, or mapping texture coordinates

to a polygon’s vertices. Like vertex shaders, fragment shaders cannot operate

on neighboring fragments and have no access to other fragments’ properties or

values. Fragment shaders may also choose to discard fragments if their values

exceed some threshold, fall outside of the clipping area, or are transparent. All

concurrent fragment shaders share a single program counter and operate in a

synchronous, lock-step manner, known as SIMT (Single-Instruction, Multiple

Thread). Fragment shaders may replace or supplement the fragment shading

stage of a fixed pixel pipeline (Section 4.8.2).

3. Geometry Shaders generate new geometry from individual vertices output from

vertex shaders. They can be used to generate simple geometry (e.g., spheres)

from a single vertex or to create realistic 3D textures using procedural “noise”

to roughen a smooth surface. Where available, geometry shaders are executed

between the model-view transformation and vertex mapping stages of the fixed

geometry pipeline (Section 4.8.1), as described above. A geometry shader may

generate hundreds or thousands of new vertices from a single vertex, which

are subsequently passed back to vertex and fragment shaders for rendering.

Because of this performance degrading data amplification, geometry shaders

are not well-supported in most platforms. Instead, much of this functionality

100

has been transferred to compute shaders, defined below.

4. Compute Shaders, also known as kernels, are general-purpose programs that are

far more flexible than any of the other shader types and are neither limited to

operating on single inputs nor generating single outputs. Instead, they may

access any bound GPU memory and support limited synchronization and com-

munication via shared L1 and L2 caches. Compute shaders execute exclusively

through distinct compute pipelines, which offer no fixed functionality, and each

thread has an independent program counter. Due to this flexibility, compute

pipelines cannot interleave operations with geometry or pixel pipelines. How-

ever, if properly formatted, the output of a compute pipeline can be used as

the input of the pipelines, and the output of a render pipeline can be passed

back into a compute pipeline for further processing. In Section 4.10, we explore

compute shaders in depth.

4.9.2 Shading Languages

Unlike fragment or vertex shader programs, GPGPU (General-Purpose Graph-

ics Processing Unit) kernels are intended to run on heterogeneous substrates, using

all available resources and executing on both CPUs and GPUs concurrently. Pro-

grammers concerned about performance on a particular substrate must understand

these resource limits and the performance characteristics of that hardware. Computa-

tional substrates have vendor-specific limits on resources of various types: memory for

storing instructions, registers for storing temporary variables, vertex-to-fragment in-

terpolants, texture units, texture memory, and internal framebuffers. Most GPU ven-

dors support one or more low-level programming interfaces for programming shaders,

generally at the ASM (Assembly Language) level, but do not fully document imple-

mentation details. To exploit the execution substrates’s potential using ASM, the

101

programmer must employ proprietary design information that vendors are unwilling

to disclose publicly (Marshall, 2004). Given access, a clever programmer or algorithm

designer can use vendor-specific ASM code interfaces to direct hardware components

to perform novel tasks. However, we will not be discussing such interfaces here. In-

stead, we will focus on high-level GPGPU programming languages that provide some

degree of hardware independence, virtualizing the hardware behind a HAL (Hard-

ware Abstraction Layer) and selectively exposing the limits described above through

a unified interface regardless of the underlying the substrate (Ebert et al., 2003).

High-level languages have the potential to provide better performance than

typical handwritten ASM code. Like high-level programs written in C for CPUs,

these languages must be compiled into substrate-specific ASM before being executed.

The compiler can optimize shaders using detailed information about the substrate

that would be too tedious to exploit when writing ASM code by hand. Even with

proprietary information, small code changes may cause nonlinear performance im-

pacts that are specifically large to be of concern to the programmer; adding a single

ASM statement to a shader or kernel can cause its performance to drop by half on

some GPUs. In general, GPUs can perform sets of four arithmetic instructions at the

same time they perform a set of one, two, or three; rewriting code to benefit from

optimizations like these can be a tedious and error-prone task for the programmer.

Compilers, however, analyze and organize source code into idioms that recognize and

exploit these optimization opportunities automatically (Marshall, 2004). High-level

languages also make it easy for the programmer to create “libraries” of shaders orga-

nized by function. More importantly, shaders composed of library functions can be

easily modified or combined to meet specific needs (Ebert et al., 2003).

102

4.10. General-Purpose GPU Computing (GPGPU)

Unlike CPUs, millions of concurrent threads can be launched on modern GPUs;

GPU parallelism is limited only by the total number of cores and memory access times

(Jeowicz et al., 2013). For example, per-pixel lighting is a highly parallel and data-

intensive task. Because pixel processing is independent, all pixels can be processed

in parallel: each pixel mapped onto a single thread is processed in O(1) constant

time. The benefits of extending this data parallelism beyond image processing and

computer graphics to general-purpose computing are obvious (Jeowicz et al., 2013).

GPGPU platforms provide transparent, efficient access to all resources avail-

able in a heterogeneous substrate, allowing code to run on the CPU, GPU, or both

concurrently (Jeowicz et al., 2013). However, easy inter-architectural data move-

ment comes at a substantial communication cost (Section 4.10.1). Even so, many

high-performance algebra frameworks today, such as Matlab (The Mathworks, Inc.,

2022) and CU-BLAS (CUDA Basic Linear Algebra Subprograms) (NVIDIA Corp.,

2022a) harness GPGPU processing power to perform data-intensive mathematical

operations. For example, matrix multiplication has a computational complexity of

O(n3), or more specifically, to multiply two square n×n matrices, n3 multiplications

and (n − 1)n2 additions must be performed. That is, the entry cij of the product

is obtained by multiplying term-by-term the entries of the ith row of A and the jth

column of B and summing these n products. This operation is ripe for paralleliza-

tion, and many GPGPU-optimized matrix multiplication algorithms are documented

in the literature (Li et al., 2013; Dalton et al., 2015; Kelefouras et al., 2016).

GPGPU platforms are not limited to operating on linear data but are flexible

enough to work with structured data and irregular workloads graph layout optimiza-

tion tasks entail (Wang et al., 2017). Fast solutions of BFS (Breadth-First Search),

103

SSSP (Single Source Shortest Path), and APSP (All Pairs Shortest Path) are also

well-documented (Harish & Narayanan, 2007; Zhong & He, 2014; Wang et al., 2017;

Lin & Huang, 2021). However, random data access patterns and conditional control

flow requirements of graph layout algorithms continue to pose significant challenges

to developing flexible high-performance graph frameworks (Wang et al., 2017).

There are now many GPGPU programming frameworks out in the wild:

CUDA (NVIDIA Corp., 2022b), Vulkan (Khronos® Group, 2022b), OpenCL

(Khronos® Group, 2022a), and Metal (Apple Inc., 2022a). Henceforth, we use the

Vulkan terminology because Vulkan is a well-supported cross-vendor framework

descended from OpenGL.

4.10.1 GPGPU Memory & Concurrency

Like the GPU memory model, the GPGPU concurrency model is hierarchical.

GPGPU programs are called compute shaders or kernels (Section 4.9.1). Modern

GPUs support the simultaneous execution of heterogeneous kernels from different

queues within the same or even different applications (Duţu et al., 2020). Compute

shader execution generally adheres to the SPMD (Single-Program, Multiple Data)

model: a single entry point function is executed from a memory-backed queue by

many compute invocations called threads (Duţu et al., 2020). Threads are dispatched

into workgroups; workgroup size is programmer-specified, up to the maximum number

of compute cores available. Workgroups are further partitioned into thread groups.

Thread group size is substrate-dependent but ranges between eight and sixty-four.

Each thread has a workgroup id, subgroup id, and a unique, global thread id, posi-

tioning the workgroup into an execution “cube,” allowing each thread to identify the

data to act upon. Workgroups are often mapped to the same vector processing unit,

in which case they can communicate via the shared L2 cache (Figure 2.6b). Threads

104

within each thread group are generally mapped to the same compute core and may

synchronize and communicate via the shared L1 cache.

Within a thread group, execution generally follows the SPMD model. However,

because compute shaders may evaluate branch conditionals on thread ids and threads

do not share program counters, they can execute as MIMD (Multiple-Instruction,

Multiple Data) programs with trivial modifications. MIMD thread groups with con-

trol flow divergence must be sequentialized and may require expensive synchronization

methods to minimize resource contention (Sorensen et al., 2021).

Inter-workgroup execution is a critical concern, but only scant documenta-

tion for inter-workgroup synchronization exists. In particular, independent forward

progress between threads of execution is not always guaranteed on a given GPU

(Sorensen et al., 2021; Duţu et al., 2020). Many GPGPU framework specifications

do not commit to any progress guarantees (Sorensen et al., 2021). However, GPU

programmers can assume some level of forward progress support: though undocu-

mented, all current GPUs support a limited form of forward progress known as the

OBE (Object-Bound Execution) model, which states that any workgroup that starts

execution will be fairly scheduled until it finishes execution (Sorensen et al., 2016,

2019).

If the programmer creates too many workgroups or sizes workgroups incor-

rectly, they may not all execute concurrently (Sorensen et al., 2021). Barrier syn-

chronization across all workgroups will hang due to a starvation cycle on a GPU if

executed with too many workgroups (Sorensen et al., 2021). Therefore, GPUs do not

have primitive mutexes (Sorensen et al., 2021). Novel cross-vendor atomic lock-and-

set operations or other inter-workgroup barrier primitives have been invented but are

not yet standardized (Sorensen et al., 2016, 2021). This means that it is generally

unsafe to write GPU programs where one thread relies on another thread making

105

progress (Sorensen et al., 2021). If thread X waits for another thread Y , X might

wait indefinitely, causing a starvation cycle and failure to terminate (Sorensen et al.,

2021). This can lead to the classic “dining philosophers” problem where each thread

waits for the other, a cycle known as a livelock.

To avoid these problems, well-written GPGPU programs will prioritize lo-

cal interactions (e.g., subgroup-level synchronization) over global interactions (e.g.,

inter-workgroup synchronization) and exploit cache-conscious memory layouts (Sec-

tion 2.6.1) to avoid stalling out. If compute shaders are written correctly, adverse

locking behaviors are extremely rare unless executed in a noisy environment, e.g., in

the presence of other threads that cause memory stress by repeatedly accessing mem-

ory using irregular access patterns that cause cache contention (Sorensen & Donald-

son, 2016) or execution substrates perform preemptive scheduling at the kernel level

(Duţu et al., 2020).

4.11. GPGPU Frameworks

OpenGL and other graphics APIs are relatively low-level and were originally

designed to implement 3D applications. Implementing graph layout algorithms or

other general-purpose computing tasks directly using these APIs is an awkward task;

graphics shader units must be repurposed to perform tasks they were not designed

to execute. CUDA (NVIDIA Corp., 2022b) and OpenCL (Open Compute Language)

(Khronos® Group, 2022a) are general-purpose frameworks modeled on OpenGL to

provide heterogeneous GPGPU computation in C/C++ with other lower- or higher-

level APIs. Code using these frameworks is written once in C or C++ and then

cross-compiled or transpiled into CPU and GPU-specific ASM code simultaneously.

Traditional C compilers, such as GCC (GNU Compiler Collection) or Clang/LLVM

(Low-Level Virtual Machine), can compile the CPU code, but the GPU code needs a

106

particular compiler that understands the substrate-specific interfaces required. Along

with CUDA and OpenCL, several other high-level GPGPU languages and graphics

frameworks are available. However, our requirement for system-agnosticism using

Javascript renders any language requiring a separate compiler unsuitable for Dynam-

ical.JS.

4.12. Web Graphics

4.12.1 WebGL & GLSL

As mentioned in Section 1.4, other graph layout frameworks have been im-

plemented in Javascript for execution on the web, and many algorithms have been

implemented using WebGL and GLSL (OpenGL Shading Language) (Baldwin &

Rost, 2019a). However, GPU access in WebGL and GLSL is limited to vertex and

fragment shaders (Khronos® Group, 2014; Baldwin & Rost, 2019b); both require

several workarounds and complicated pipeline pathways to emulate access to node

and edge data. WebGL has no support for GLSL geometry shaders, which would

be necessary to implement the most advanced placement algorithms and to support

adding large numbers of new graph elements efficiently. This limitation has been

explored thoroughly in the literature, and several complex algorithms have been ef-

ficiently ported to GLSL, using texture memory to store vertex data and copying

that data into new vertex buffers for subsequent processing (Bleiweiss, 2008; Hadlak

et al., 2011; Silva et al., 2013). The published algorithms are completely synchronous

because WebGL access is only allowed from the main processing thread of any agent’s

web session. This is sufficient for the smooth drawing of individual graph layouts but

not for background placement or animation of large graphs. Further, the complicated

data pathways involved conflict with several of the key requirements of this thesis,

107

and therefore WebGL and GLSL are not used as a basis for Dynamical.JS.

4.12.2 GPU for the Web (WebGPU)

Like other GPGPU frameworks, WebGPU provides a standard interface to the

computation facilities present in both operating systems and their underlying sub-

strates. The WebGPU framework (World Wide Web Consortium, 2022b) is layered

upon native graphics frameworks such as Direct3D 12 from Microsoft, Metal from

Apple, and Vulkan from the Khronos Group (World Wide Web Consortium, 2022a).

The WebGPU API is implemented as a native Javascript Web API that exposes these

technologies in a performant, robust, and safe manner to web-based applications. We-

bGPU is on track to become a W3C standard, and reference implementations have

been created for all major web browsers and server-side Javascript interpreters, such

as node.js.

Using WebGPU and WGSL (Dakkak et al., 2016), many placement algorithms

that require geometry shaders and multithreaded execution can be implemented di-

rectly on the GPU (Bleiweiss, 2008; Udupa et al., 2009; Jeowicz et al., 2013). Unlike

WebGL, WebGPU is completely asynchronous and can be used by any Web Worker,

allowing for multithreaded execution using background Workers. Using textures and

wired memory buffers to store nodes, edges, and attributes in high-speed memory,

at the cost of a single memory map operation, Dynamical.JS can perform cache-

conscious and highly parallel implementations of many graph layout algorithms effi-

ciently enough to allow online exploration and smooth animation (Udupa et al., 2009;

Hadlak et al., 2011; Jeowicz et al., 2013; Silva et al., 2013; Sheng et al., 2019; Tan

et al., 2020) within the Javascript runtime.

Algorithms already ported to GPGPU frameworks or WebGL are trivially

ported to WebGPU as-is; WGSL provides a C-style coding interface familiar to most

108

GPGPU and shading languages. The most significant development challenge is the

decomposition and translation of various serialized, CPU-bound algorithms to use

WebGPU and WGSL compute shaders for placement and animation. This will limit

the algorithms which could be implemented during the writing of this thesis. However,

because many graph layout algorithms follow a well-defined evolutionary lineage,

most can be decomposed into constituent parts and commonalities can be quickly

abstracted.

WebGPU is still a nascent technology with a severe downside: the API stan-

dard and reference implementations are not yet complete. The API has evolved in

unexpected and code-breaking ways since Dynamical.JS was conceived. This, unfor-

tunately, delayed and stalled the development of critical components of Dynamical.JS,

and several desired tasks could not be completed by the time this thesis was written.

We intend to complete these tasks and reincorporate the missing functionality in a

future iteration of this project.

109

Chapter V.

Implementation & Results

The Dynamical.JS framework will be published as a consolidated, minified

Javascript module and a complete source tree, where its algorithms and methods can

be scrutinized. The project will also be released under a yet-to-be-determined open-

source license to facilitate ongoing maintenance and integration into future academic

or commercial products. Akin to other visualization frameworks, Dynamical.JS will

be extensible through the development and use of additional modules, which could

be used to modify the framework at any operational phase. For example, new layout

plugins would allow for novel placement strategies for extant algorithms or to facilitate

the development of new algorithms. Coarsification plugins to optimize the underlying

data structures, facilitate new caching strategies, or enable novel motif simplification

types. Analytic modules could be loaded to tune the system or substrate for platform

resource usages, such as on small-screen IoT (Internet-of-Things) devices or ultra-wide

workstation configurations.

5.1. Code Syntax & Documentation

Javascript code for Dynamical.JS is documented using a JSDoc-like syntax

(Mathews, 2011), which allows the automatic generation of HTML (HyperText

Markup Language) or PDF (Portable Document Format) documentation output

directly from the source code. JSDoc tags also facilitate type-checking and de-

bugging in the IDE (Integrated Development Environment). However, JSDoc is

not used during development, and the final deliverable will not contain generated

documentation until published widely on the internet. The JSDoc comments will

only be used to facilitate type-checking by the development IDE until the final

110

publication of the Dynamical.JS framework. The JSDoc comments will remain in

the uncompressed source code but will be removed from minified versions of the

library used for publication. Per standard industry practices, the Javascript code is

written in self-documenting style.

5.2. Environment

As shown in Listing 5.1, the development and test “rig” is a simple one: an

HTML5 (HyperText Markup Language, Version 5) (Web Hypertext Application Tech-

nology Working Group, 2021c) page, which embeds either the entire Dynamical.JS

framework or specific testing components as Javascript modules, and contains a single

HTMLCanvas object and a div to display error messages.

Listing 5.1. The HTML development "rig" for Dynamical.JS

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<title>DG Basic Test</title>

<link rel="icon" type="image/x-icon" href="data:," />

</head>

<body>

<!-- the graphical context where graphs will be drawn. -->

<canvas id="gfx"></canvas>

<div id="error"></div>

<!-- The Dynamical.js module -->

<script type="module" src="dynamical.js"></script>

<!-- The testing module -->

<script type="module" src="basic.test.js"></script>

</body>

</html>

Unit and component tests are created by sub-classing the DGTestRig and

111

DGPerformanceRig classes, and defining static async test*() methods containing

the functionality to test. A complete listing of the abstract DGTestRig is shown in

Listing C.2 and an example test is shown in Listing C.3. The Dynamical.JS includes

a set of test directories within each package and sub-package as described below

(Section 5.3).

5.3. Code organization

The Dynamical.JS code base is organized into four primary component pack-

ages: (1) data, (2) layout, (3) drawing, and (4) common. The first three correspond

to the modules described in Section 2.3 and the common package, including shared

code and other utility methods.

Dynamical.JS

drawingdatalayoutcommon

Figure 5.1. A high-level UML (Unified Modeling Language) package diagram of the
Dynamical.JS framework.

While the compiled framework is logically organized into these three main

packages, source code for several shared objects (including the testing/development

module code) is contained within the common directory tree.

The common package includes many useful sub-packages, encapsulating vari-

ous ADTs (Abstract Data Types), matrix and vector math, pseudorandom number

generation, error handling, GPU (Graphics Processing Unit) manipulation functions,

as well as testing, performance, and utility methods.

112

commonpkg

adt gpu

DGBase

cpu error

math performance test

Figure 5.2. A UML package diagram for the Dynamical.JS common package.

5.4. The DGBase Object

Most objects defined by Dynamical.JS are implemented as concrete subclasses

of the abstract DGBase object, as shown in Listing C.1. DGBase provides type in-

trospection, equality checking, and interface mixin capabilities. DGBase also extends

the Javascript EventTarget class to support event handling. Dynamical.JS also im-

plements several abstract DG*Base subclasses and interfaces that enable extensibility

(Section 5.4.1) via the class cluster and factory design patterns (Gamma et al., 1995).

Application developers may extend the framework by defining new concrete subclasses

or simply redefining existing classes’ methods.

5.4.1 Extensibility

Extensibility is a key quality of any exploratory graph visualization framework;

Dynamical.JS supports extensibility throughout. Class cluster factory classes extend

or mix-in the DGExtensibleBase plugin interface:

113

Listing 5.2. The DGExtensibleBase interface.

class AbstractExtensibleBase extends ... {

/**

* A registry of valid class instances.

* @type {Map<class>}

*/

static #registry = new Map();

/**

* Return an array of registered class names.

* @type {Array<string>}

*/

static get registeredClasses() {

return Array.from(AbstractExtensibleBase.#registry.keys());

}

/**

* Register a class with the registry.

* @param {string} key - A string uniquely identifying a class.

* @param {value} key - The class prototype to register.

*/

static _registerClass(key, value) {

AbstractExtensibleBase.#registry.set(key, value);

}

}

A class that wants to register with the class cluster must register its prototype

during static initialization:

Listing 5.3. Concrete subclass registering with a class cluster.

export class ConcreteSubclass extends AbstractExtensibleBase {

static #init = (() => {

super._registerClass('className', ConcreteSubclass.prototype);

})();

}

114

As soon as the class is imported as a static module or linked dynamically

via require(), the class will be added to the class cluster from any code which has

included Dynamical.JS and can be instantiated synchronously via its constructor or

asynchronously via the parent cluster’s async build() method (Section 5.5.1).

5.5. Asynchronous Interfaces

Dynamical.JS implements several asynchronous design patterns as object in-

terfaces and prototype extensions to specific classes.

5.5.1 Asynchronous Initialization

As mentioned in Section 4.5.2, async functions are only executed after the

current job queue is empty. It is impossible to extract the result of a promise within

a synchronous function, so any object that must be initialized asynchronously cannot

be used within a synchronous context. Therefore, calling async methods from object

constructors will not yield usefully instantiated objects. For example, most objects

requiring access to the GPU need significant time to initialize as resources are gath-

ered. Further, the WebGPU (GPU Computing for the Web) framework is designed

with asynchronous operation in mind; therefore, any object requiring GPU resources,

such as GPUDevice, GPUBuffer, and GPUShader, must be initialized asynchronously,

and only be accessed within purely asynchronous contexts.

Dynamical.JS supports asynchronous initialization through two methods built

into DGBase: init() and build(), which allow the programmer to “chain” operations

to these newly initialized objects once they have been initialized. Listing C.1 and

Listing C.10 demonstrate the asynchronous initialization chain for the DGBase and

DGWebGPUBase objects, and Listing 5.4 shows their usage in an example application.

115

Listing 5.4. Example code demonstrating asynchronous initialization.

(async () => {

// Initialization options

const options = { a:true, b:false };

// Allocate an uninitialized class

const first = new DGBaseSubclass();

// wait for the object to initialize,

// then perform some activities

await first.init(options)

.then(() => { /* do something */ })

.then(() => { /* do something else */ })

// A class which uses the build interface to

// allocate and initialize a particular class,

// but does not wait for initialization to occur.

// The initialization of second will not occur until after

// the enclosing function has completed.

const second = DGBaseSubclass.build(options)

.then(() => { /* do something */ })

.then(() => { /* do something else */ })

// This code runs before the second class has been initialized

doSomethingElse();

})();

5.5.2 Asynchronous Loops

Looping is a critical operation in graph layout algorithms and consumes most

of the computation time. Many algorithms partition a graph into several subgraphs,

which may then be assigned to independent threads. However, as implied in Sec-

tion 4.5.2, concurrent loop execution is not possible in Javascript but is available in

WebGPU. To emulate this behavior in Javascript without locking up the UI (User

116

Interface), Dynamical.JS defines the DGAsyncLoop Interface:

AsyncLoop

+asyncFilter(input, filterFunc: async): async
+asyncForEach(input, func: async): async
+asyncMap(input, mapFunc: async): async
+asyncReduce(input, accumFunc: async, initValue): async

Figure 5.3. A UML class diagram of the Dynamical.JS DGAsyncLoop interface.

Using the DGAsyncLoop interface, as shown in Listing C.4, we can easily

segment and parallel-process the TypedArray objects and GPUBuffers used as the

base for graph materialization in Javascript, as discussed in Section 5.8.1. The

DGAsyncLoop interface has been mixed into Javascript built-in Array class and is

used extensively to extend asynchronous execution support to create async generator

functions defined in common/util/util.js.

5.6. Mathematical Operations

Mathematical operations are critical for both graph layout and graph rendering

operations. The most important mathematical operations required for these opera-

tions are random number generation, affine transformation, and statistical methods.

To facilitate the design goal of self-sufficiency, we have implemented many of these

operations. However, Dynamical.JS should not be considered a mathematical pack-

age. Due to time constraints, only those operations directly required for this project

have been implemented.

5.6.1 Vectors & Matrices

Dynamical.JS supports a limited set of scalar-vector, vector-vector, matrix-

vector, and matrix-matrix operations on vectors of length 2, 3, and 4, and 2 × 2,

117

«builtin»
Float32Array

«builtin»
TypedArray

(from adt)

AsyncLoop
(from adt)

+asyncFilter(input, callback): async
+asyncForEach(input, callback): async
+asyncMap(input, callback: async): async
+asyncReduce(input, callback: async, initValue): async

DGMatVecBase

+iterator

+clone()
+clone()
+toString(): String

DGMatBase

+rows
+cols
+identity
+transpose
+determinant

+identity()
+row(n, v)
+setRow(n, v)
+col(n, v)
+setCol(n, v)
+transposeEq()
+translation(v)
+translateEq(x, y, z)
+translate(x, y, z)
+scaleEq(x, y, z)
+scale(x, y, z)
+scaling(v)
+rotateEq(rad, x, y, z)
+rotate(rad, x, y, z)
+rotation(rad, x, y, z)
+rotateXEq(rad)
+rotateX(rad)
+rotationX(rad)
+rotateYEq(rad)
+rotateY(rad)
+rotationY(rad)
+rotateZEq(rad)
+rotateZ(rad)
+rotationZ(rad)
+invert(m)

#data

DGVecBase

+width
+sum
+squaredLength
+magnitude
+normal
+min
+max
+inverse

+negateEq()
+negate()
+addEqVec(v)
+addVec(v)
+addEqScalar(s)
+addScalar(s)
+subEqVec(v)
+subVec(v)
+subEqScalar(s)
+subScalar(s)
+mulEqVec(v)
+mulVec(v)
+mulEqScalar(v)
+mulScalar(v)
+divEqVec(v)
+divVec(v)
+divEqScalar(s)
+divScalar(s)
+mulAddEq(v, s)
+floorEq()
+floor()
+ceilEq()
+ceil()
+roundEq()
+round()
+minVec(v)
+maxVec(v)
+normalizeEq()
+normalize()
+squaredDistance(v)
+distance(v)
+dot(v)
+lerp(v, t)
+inverseEq()

DGVec2

+x
+y

DGVec3

+z

DGVec4

+w

DGMat2

+0
+1
+2
+3

DGMat3

+4
+5
+6
+7
+8

DGMat4

+9
+a
+b
+c
+d
+e
+f

Figure 5.4. A UML class diagram of the Dynamical.JS matrix sub-package.

118

3 × 3, and 4 × 4 matrices to support affine transformations required for render-

ing (Section 2.10.2). The DGVec* and DGMat* classes extend the Javascript built-in

Uint32Array class and provide byte compatibility and alignment suitable for WGSL

(WebGPU Shading Language) shader access and basic BLAS (Basic Linear Algebra

Subprograms) support.

5.6.2 (Pseudo) Random Number Generators (PRNGs)

Graph layout algorithms frequently begin with “random” layouts, which, when

used with exploratory graph visualizations of very large graphs, can be highly taxing

on the GPU hardware. When discussing terms like “random” and “stochastic,” we

almost always mean to say “apparently random” or “pseudorandom.” True random-

ness is unusual in computer science and is often undesirable in computer graphics

(Ebert et al., 2003). The obvious stochastic source of random numbers, white noise,

is uniformly distributed without correlation between successive numbers, which is an

unattainable goal. Instead, well-designed PRNGs (Pseudo-Random Number Gen-

erators) produce fair approximations of white noise. But is white noise necessary?

We require functions that are apparently random but are, in fact, replicable func-

tions of some dynamic input; truly random functions, such as white noise, don’t have

these inputs. Effective PRNG primitives will take the current state as its input and

will always return the same value given the same state. Looking into the literature

on hashing and PRNGs, we can find several ways to convert a set of coordinates

into hashed values that can be treated as PRNs (Pseudo-Random Numbers) instead

(Smith, 1984; Ebert et al., 2003).

By default, PRNs are generated using the system’s built-in random number

generation system, usually based on /dev/random or /dev/urandom, and generate

uniform distributions of either unsigned integers or normalized floating point values

119

in the range (0, 1). All modern CPU-based (Central Processing Unit) substrates offer

PRNGs which are usually re-exported via standard interfaces in most CPU-bound

platforms, and Javascript is no exception.

Dynamical.JS wraps random number generation in a class cluster based

on the DGRNG class. By default, this method is based on the Javascript built-in

Math.random() method, which must be run |V | times across the entire vertex

buffer inside the graph’s current materialization. To prevent |V | system calls, or

switch to the Javascript built-in Crypto.getRandomValues(), which generates

cryptographically-random values in blocks with sizes up to 64KiB. Because Crypto

can only generate integer values, to transform these values into normalized floating

point values, any optimization generated by batch generation is removed, requiring

an additional O(|V |) function calls to convert these values, and O(|V |) space

to hold the intermediate unsigned integers which must be copied back into the

materialization. Further optimization is needed.

GPUs, as a rule, do not have sufficient entropy generation capability to produce

random numbers and rarely contain any other PRNG hardware or generalized PRNG

functions (Ebert et al., 2003; Couturier, 2014). Most PRNGs require “seed” values

which are transformed each time a value is generated. As each of the GPU’s ALU

(Arithmetic Logic Unit) is independent, sharing this state is impossible. Instead,

PRNs must be generated on the CPU and sent to the GPU, potentially stalling

the graphics pipeline, or they must be reimplemented on GPUs using parametrically

controlled noise functions (Ebert et al., 2003) or provided with a workgroup-sized

buffer of seed values that can be accessed concurrently (Couturier, 2014; Demchik,

2014). These functions are generally used to add depth or to model fluid dynamics

within textures or animation (Ebert et al., 2003; Salmon et al., 2011). However,

PRNGs can be well optimized: given the number of GPU threads T , the O(|V |)

120

DGExtensibleBase
(from common)

DGRNG

+/MAX_SEGMENT_WIDTH = 65535
+state

#step(state): Real
#scaleToIntRange(v, min, max)
#boxMuller(state): Real
+random(state): Real
+random(): Real
+randomInt(): Int
+randomUint(): Uint
+uniform(): Real
+uniformInt(): Int
+uniformUint(): Uint
+normal(): Number
+normalInt(): Int
+normalUint(): Uint
+getRandomValues(array, state)
+getRandomValues(array)
+getRandomValuesAsync(array, state)
+getRandomValuesAsync(array)
+getRandomValuesInRange(array, min, max, state)
+getRandomValuesInRange(array, min, max)
+getRandomValuesInRangeAsync(array, min, max, state)
+getRandomValuesInRangeAsync(array, min, max)

DGBase
(from common)

«builtin»
Math

+random()

«builtin»
Crypto

+getRandomValues(array)

DGCrypto

«dataType»
XOR128State

+x
+y
+z
+w

XOR128

XOR128GPU

«singleton»+defaultEngine: XOR128GPUComputeEngine {readOnly}
«dataType»

XOR128GPUState

+buffer
1..*

+state

+state

XOR128GPUComputeEngine
«Strategy»

DGWebGPUComputeEngine
(from gpu)

+engine
1

Figure 5.5. A UML class diagram of the Dynamical.JS random sub-package.

runtime can be reduced to O(|V |/T) and an additional O(T) storage cost to store the

seed values (Couturier, 2014).

To support random number generation that can be replicated on CPUs and

GPUs, we have chosen to implement the XOR128 algorithm from Marsaglia (2003).

XOR128 is extremely fast, generating 220 million PRNs per second, with a period of

121

2128 − 1. The XOR128 PRNG has been implemented under the DGRNG class cluster

in both Javascript and WebGPU in the concrete XOR128 and XOR128GPU classes,

respectively. This algorithm’s WGSL implementation is shown in Listing C.12.

5.7. Data Structures

«builtin»
Array

+isTypedArray: boolean

+shuffle(): Array
+clear()

«builtin»
Set

+length
+array

+isSubSet(a, b): boolean
+isSubSet(b): boolean
+isSuperSet(a, b): boolean
+isSuperSet(b): boolean
+isDisjoint(a, b): boolean
+isDisjoint(b): boolean
+union(a, b): Set
+union(b): Set
+intersection(a, b): Set
+intersection(b): Set
+difference(a, b): Set
+difference(b): Set
+symmetricDifference(a, b): Set
+symmetricDifference(b): Set

«builtin»
TypedArray

+isTypedArray: boolean
+isIntegerType: boolean
+isSignedIntegerType: boolean
+isUnsignedIntegerType: boolean
+isFloatType: boolean

+segment(byteWidth): Array<TypedArray>

AsyncLoop

+asyncFilter(input, callback): async
+asyncForEach(input, callback): async
+asyncMap(input, callback: async): async
+asyncReduce(input, callback: async, initValue): async

DGADTBase

#data
+empty: boolean

+from(adt): adt
+iterator(): Iterator
+toString()

#data

1

DGDeque

+length: number

+pushFrontArray(array)
+pushFront(obj)
+popFront(): obj
+peekFront(): obj
+pushBackArray(array)
+pushBack(obj)
+popBack(): obj
+peekBack(): obj

DGQueue

+length: number

+enqueueArray(arr)
+enqueue(obj)
+dequeue(): obj

DGStack

+depth: number

+pushArray(array)
+push(obj)
+pop(): obj
+peek(): obj

«builtin»
Map

+setOrDeleteIfNull(key, value)

DGBitVector

#bits
+BITS_PER_ELEMENT
+length: number {readOnly}

#checkIndex(index): number
#get(index): boolean
+get(index): boolean
+set(index, value): DGBitVector
+clear(index): DGBitVector

DGBitMatrix

+size: tuple {readOnly}

#checkIndex(row, col): number
+get(row, col): boolean
+set(row, col, value): DGBitVector
+clear(row, col): DGBitVector

DGTriangularBitMatrix

+upper: boolean

#cols(): number

#bits

1

DGBloomFilterBase

+DEFAULT_FPR: number
+hashCount: number
+hashes: DGHash
+width: number

+bitsPerFPR(n, fpr)
+hashesPerFPR(n, fpr, bits)
#hash(obj): number
+add(obj): DGBloomFilterBase
+mayContain(obj): boolean

DGQuickBloom

#hash_n(n, a, b, size): number
«iterator»#quickbloom(count, hashes, length)

#bitVector

DGHash
(from math)

+fnv_1: DGHashFunction
+murmur: DGHashFunction

«dataType»
DGHashFunction

(from math)

Figure 5.6. A UML class diagram of the Dynamical.JS ADT sub-package.

Graph theory and visualization define several ADTs and operations to orga-

nize and manipulate relational, informational data: graphs, nodes, edges, &c. To

implement these abstract types in code, we must define data structures to organize

our data and allow us to perform calculations using our computational substrate. In

Dynamical.JS, these data structures are implemented as concrete subclasses of the

abstract classes DGADTBase or DGGraphBase, which are, in turn, subclasses of the ab-

122

stract DGBase superclass. All DGGraphBase classes contain a Map (i.e., an associative

array) of relevant attributes. Attributes node positions and impose layout constraints

during layout, determine the visual marks and channels applied during rendering, and

perform arbitrary numerical calculations. Supplementary ADTs have also been im-

plemented to support hashing and mathematical set operations on Collection-type

objects.

5.7.1 Graph ADT

In computer science and applied mathematics, graphs are pervasive data struc-

tures, and algorithms for working with them are fundamental to the field. There are

hundreds, if not thousands, of interesting computational problems concerning graphs

(Cormen et al., 2009). Because graph theory is a well-documented field, we do not

discuss these operations in depth. Instead, we focus only on the aspects apropos to

the design and implementation of Dynamical.JS.

For the analyst to glean information from the connectivity therein, they must

use graph-theoretical operations to search or traverse the graph, i.e., systematically

follow the edges of the graph to visit the nodes within. Many graph-theoretical

operations begin by traversing the input graph to obtain structural information. Low-

level operations such as path, loop, or neighborhood discovery, along with higher-level

procedures like subgraph building and congruence testing, all require traversing the

graph to determine various levels of connectivity. In practice, searches query, scan,

or probe the graph’s data structure using methods defined in an ADT (Kester et al.,

2017). Finding a data structure that optimizes access times and storage requirements

during these search operations is an ongoing research subject (Idreos et al., 2019).

Graph ADTs can be implemented in several ways, including adjacency lists, adjacency

matrices, and incidence matrices, among others, singularly or in combination (Cormen

123

DGGraphBase

#attributes[*]
+key {id, readOnly, unique}

+makeKey()

DGGraph

+directed = false {readOnly}
+multi = false {readOnly}
+allowsSelfLoops = false
+complete
+size
+order
+density
+maxEdges
+maxNodes
+connectedNodes
+disconnectedNodes

+from(verts, edges): DGGraph
#edgeCheckAndSet(edge)
#edgeMerge(edge)
#edgeOverwrite(edge)
#clearEdges()
+edgeAdd(src, dst, attr, op)
+hasEdge(edge)
+hasEdge(src, dst)
+edgeRemove(edge)
+edgeFilter(filter)
#clearNodes()
+nodeAdd(node)
+nodeGet(key)
+nodeGet(node)
+nodeCheck(node)
+nodeRemove(node)
+nodeFilter(filter)

DGGraphEdge

+source
+target
+isSelfLoop
+directed = false {readOnly} +edges

0..*

DGGraphNode

+inDegree
+outDegree
+degree
+leaf
+fixed

+nodes

0..*
2

DGMultiGraph

+multi = true {readOnly}

DGDirectedGraph

+directed = true {readOnly}

DGMultiDirectedGraph

DGBase
(from common)

Data GLO
(from data)

DGGraphTraversal

+dfs(node, visitor)
+bfs(node, visitor)

DGGraphVisitor

+visitFunc

+visit(node)

+sources+targets

DGDirectedClassEdge

+directed = true {readOnly}

Figure 5.7. A UML class diagram of the Dynamical.JS graph ADT sub-package.

et al., 2009). While MultiMaps (maps of maps) provide the fastest access times

for most operations using key-value storage, the memory cost O(|V | × |E|) is much

greater, especially for fully connected or multi-graphs. We will discuss these data

structures further in Section 5.8.3.

The Dynamical.JS graph ADT defines several critical operations, such as load-

124

ing from disk or memory, adding and removing nodes, and querying a graph’s con-

tents. Figure 5.7 shows a UML class diagram of the graph ADT sub-package, with

auxiliary methods and type specifications omitted for clarity. Dynamical.JS sup-

ports all of the graph types described in Section 2.4. These graph types are im-

plemented using the class cluster design pattern (Gamma et al., 1995) based on the

concrete DGGraph class. When supplied with appropriate construction parameters, the

DGGraph class cluster returns an appropriate concrete subclass: DGDirectedGraph,

DGMultiGraph, or DGDirectedMultiGraph. By default, all DGGraph instances are

undirected graphs that disallow self-loops. Future implementations of Dynamical.JS

will include support for additional graph types as required.

Listing 5.5. The basic Javascript interface for DGGraph

class DGGraph extends DGGraphBase {

get allowsSelfLoops() { return this._attributes['allowsSelfLoops'] || false; }

get directed() { return this._attributes['directed'] || false; }

get multi() { return this._attributes['multi'] || false; }

get edges() { /* return the list of DGGraphEdge instances */}

get nodes() { /* return this list of DGGraphNode instances */}

from(V, E) { /* load the graph from memory/disk */ }

addVertex(v) { /* add a single vertex */ }

addEdge(e) { /* add a single edge */ }

removeVertex(v) { /* remove a vertex */ }

removeEdge(e) { /* remove an edge */ }

isAdjacent(v0, v1) { /* return true if adjacent, false otherwise */ }

neighbors(v) { /* return an array of neighboring vertices */ }

}

5.7.2 Index Structures

Indexes are data structures that organize data records within another data

structure to optimize certain search and retrieval operations (Ramakrishnan &

125

Gehrke, 2000). We disambiguate the alternate plural indices to refer to the records

contained within a given index data structure.

Bit Vectors & Matrices. DGBitVector and its subclass DGBitMatrix (List-

ing C.5) are indexed arrays of m bits where a 1 indicates inclusion in a set and 0

otherwise, and can be interpreted as described as m-bit integers. Dynamical.JS em-

ploys DGBitMatrix subclasses to implement query result sets, change sets (Section

5.8.5.2), adjacency matrices (Section 5.8.3.2), and bloom filters (Section 5.7.2.2).

Bloom Filters. Bloom filters are simple and space-efficient data structures for

fast execution of membership queries on large datasets. A bloom filter for representing

a set S ← x1, . . . , xn of n elements is implemented as a bit vector of length m

initialized to 0. When querying set membership, the filter uses a combination of k

independent hash functions to map each element to a uniform m-bit random number:

∀x ∈ S, bits h0(x), . . . , hk(x) are set to 1. To test set membership for element y, we

check if all h0(y), . . . , hk(y) bits are set to 1. If any of these bits are 0, element y is not

a member of S. Otherwise, we assume that y is a member of S, with the probability

of a false positive being ≈ (1− e−kn/m)k. Thus, bloom filters can definitively exclude

elements but may require further queries to determine actual membership (Kirsch &

Mitzenmacher, 2006).

The DGQuickBloom class (Listing C.8), a concrete subclass of DGBitMatrix,

implements bloom filters using the Quick Bloom algorithm by Kirsch & Mitzenmacher

(2006), using k = 2 hash functions, Murmur Hash (Appleby, 2016) and fnv_1 (Fowler

et al., 2019).

5.8. Data Module

The Data Module’s primary responsibility is the materialization DGGraph ob-

jects and defines several classes and class clusters to do so. The GDOs (Graph Data

126

Operations) described in Section 2.8 are defined in the DGGDOInterface.

DGGraphMaterialization

#graph
#attributes
#buffers
+birthdate
+age

+bufferForKey(key)
#setBufferForKey(key, buffer)

DGGraphMaterializationStrategy

+graph

+execute(graph)
+initMaterials(graph, options)

DGGraph
(from graph)

Data GLO

+load(graph)
+store(graph)
+merge(graph, graph2[1..*])
+subgraph(graph, node[1..*])
+retrieveElements(graph, filter)
+addElement(graph, element)
+updateElement(graph, element)
+updateElement(graph, element, attribute)
+mergeElement(graph, element, element2[1..*])
+deleteElement(graph, element)
+coalesce(graph, delta)
+keyFrame(graph, t)
+calculateStatistics(graph)
+materialize(graph, strategy)

DGGraphVisitor

+visitFunc

+visit(node)

1..*

DGGraphNode
(from graph)

+nodes

0..*

DGGraphEdge
(from graph)

+edges

0..*

2

+graph

DGBase
(from common) «signal»

graphupdate

Figure 5.8. A UML class diagram of the Dynamical.JS Data Module.

5.8.1 Materialization

As mentioned above, for a graph to be laid out or rendered into a graphics

context efficiently, it must be transformed or materialized into an appropriate format.

Rather than focusing on the sequencing steps of computation, we focus on manipu-

lating the data structures containing graph elements. Since we require a data-parallel

programming model, the challenge is devising a mapping of a naturally unstruc-

tured graph into a well-partitioned structured one (Frishman & Tal, 2007). Efficient

parallel processing on CPUs and GPUs requires uniformly structured data, such as

texture images or matrices. Graphs do not possess a uniform structure; hence, they

do not admit any intuitive and natural representation that suits parallel computation

(Frishman & Tal, 2007). For example, multi-level graph layout algorithms require

127

recursively coarsened graphs using the partition or simplify GLOs (Graph Layout

Operations). In these cases, the materialization strategy must support breaking a

large problem into smaller and similarly-sized problems that suit GPU workgroup

sizes or other data-parallel programming substrates (Frishman & Tal, 2007). Materi-

alizations should be laid out so that a graph layout algorithm may scan through the

data without following many pointers that may cause large numbers of cache misses

or disk accesses due to virtual memory paging. To alleviate these problems, we trans-

form Javascript’s reference-based object representations into cacheable, linear data

structures appropriate for data-parallel layout and rendering. These data structures

can be reused to prevent unnecessary memory copies between the CPU and GPU or

purged when memory pressure requires it. For instance, computation on the nodes

within a timeslice can be partitioned across vertices (i.e., materialized nodes). Any

updates to neighboring timeslices after identifying common vertices can be similarly

partitioned.

Materializations are “frozen” representations of graphs at a particular time as

created by the materialize GDO (Section 2.8.12) and are generated via lazy eval-

uation before layout commences. Materialization may be as simple as a read-only

deep copy of a graph, such as when creating a timeslice or a subgraph of salient ele-

ments required by an analytical task. By design, materializations are immutable by

the GLOs which operate on them. If required, GLOs (e.g., partition or simplify)

create new sub-materializations without side effects. This materialization strategy is

flexible enough to be expanded by new GLOs, so long as they operate on one or more

input materializations and generate one or more output materializations. Computa-

tionally expensive layout and rendering operations are performed on materializations

asynchronously, permitting the parent graph to update concurrently, fulfilling the

project requirements. By separating the graph’s materialization from the underlying

128

graph ADT, we can generate multiple representations of the same graph, either shar-

ing a common materialization or independently generating their own. In addition

to presenting the same timeslice with different views, the analyst may also compare

distinct timeslices to discover periodic or other temporal patterns by animating only

the subgraphs of interest. To support reuse, textures, images, or relational databases

may be used to cache serialized materializations to disk or offline storage.

5.8.2 GPU Materialization

Graph layout algorithms often require irregular data access patterns. In addi-

tion to exposing sufficient parallelism, materializations benefit from coalesced memory

access, effective use of the GPU memory hierarchy, and reduced scattered reads and

writes. We manifest these qualities in Dynamical.JS in three ways: First, graphs are

stored, whether partitioned or not, so that the nodes in each partition are geometri-

cally close and the number of nodes in each partition is similarly sized. Storing nodes

that belong to the same neighborhood within a single partition maximizes memory

access locality. Thus, we efficiently use the GPU’s memory bandwidth since infor-

mation regarding neighboring nodes will likely reside in the cache (Frishman & Tal,

2007). Second, since the number of nodes in each partition is roughly equivalent, the

computational effort expended per node is balanced. This conforms to the GPU’s

data-parallel architectural demands, which require lock-step execution. Finally, the

position vectors of all nodes are transferred to the global memory once at the start

of each iteration. Each workgroup thread reads the position vector of a single node

from the global memory to the shared memory of its block and only computes the

energy contribution of that node, which has the same index as the thread (Qu et al.,

2017).

129

5.8.3 Materialization Data Structures

Many GPU-enabled graph layout algorithms map intermediate representations

of graph elements using two-dimensional data arrays called textures. The challenge

is to map the graph and its elements onto these textures, even though graphs do

not admit any intuitive and natural representation as balanced arrays (Frishman

& Tal, 2007). Proper choice of materialization data structures helps us meet this

challenge. The design space for data structures is vast; there is currently no optimal

way to enumerate all possible designs or predict the performance impact of real-world

workloads (Idreos et al., 2019). We do not assert that any single materialization data

structure is appropriate for all algorithms; the naive materialization presented below

is meant to be a basis for expansion. It simply contains a binary representation of the

contents of the graph in a format allowing linear scans of vertex arrays and adjacency

lists.

In Dynamical.JS, DGLayoutEngineBase (Section 5.9.1) provides a con-

crete subclass instance of DGMaterializationStrategyBase to ensure mate-

rializations are created to optimize the data access patterns required by each

layout stage, ensuring the CPU and GPU can maximize performance. Concrete

DGMaterializationStrategyBase classes define the materialization data structure

and traverse the graph using the strategy design pattern (Gamma et al., 1995) to fill

the structure with data and create any index structures required to facilitate compu-

tation. The algorithms described in Chapter 3 operate on all graph elements and do

not require partitioning or special processing, a feature of force-directed layout algo-

rithms. Due to time constraints, the concrete DGMaterializationStrategyNaive

class uses adjacency lists (Section 5.8.3.1) and matrices (Section 5.8.3.2) exclusively,

but other data and index structures will be added in future iterations. We intend to

130

use the Data Calculator paradigm introduced by Idreos et al. (2018b) to facilitate

the interactive or semi-automated design of advanced materialization data structures

and integrate our results into the DGMaterializationStrategyBase class cluster in

a future version of this project. Algorithms implementing these advanced material-

ization strategies must subclass DGMaterializationStrategyBase and embed an

instance of this class within their concrete DGLayoutEngineBase subclasses.

Dynamical.JS follows the method of Qu et al. (2017): materialized graphs

consist of three linear arrays: (1) a uniform buffer containing graph-level attributes

and constants required by the algorithm, (2) a vertex array to store position, offset,

and other attribute values for each vertex, and (3) an index array containing offsets

into the vertex array to store edges.

MGt ←
{
AM

Gt
, V M

Gt
, EM

Gt

}
AM

Gt
← [ai, . . .] : ai ∈ AGt , i ∈ (0, |AGt |]

V M
Gt
← [m(vi), . . .] : vi ∈ VGt , i ∈ (0, |VGt|]

m(v)← ⟨p⃗v, δ⃗v⟩ ← ⟨pv.x, pv.y, δv.x, δv.y⟩

EM
Gt
← [⟨iu, iv⟩, . . . ,] : ⟨u, v⟩ ∈ EGt , i ∈ (0, |VGt |]

(5.1)

Each element in the naive materialized vertex array V M
Gt

is a 4-tuple of floating-

point numbers corresponding to the current position of the vertex p⃗v and the sum

of forces acting on the vertex δ⃗v. Each element in the edge array EM
Gt

is a tuple

containing the indices of the source and target vertices, respectively. V M
Gt

and EM
Gt

are laid out linearly in memory to ensure the graph data are sequentially accessed

by the GPU when processed by applicable GLOs. If WebGPU is supported on the

131

Table 5.1. Time complexity cost of operations on graph ADTs implemented as
adjacency lists

Operation Cost (Adj. List) Cost (Adj. Matrix) Cost (MultiMap)
load(G, E, V) O(|V |+ |E|) O(|V |+ |E|) O(|V |+ |E|)
add-node(G, v) O(1) O(|V |+ |E|) O(1)
add-edge(G, e) O(1) O(1) O(1)
remove-node(G, v) O(|V |) O(|V |+ |E|) O(1)
remove-edge(G, e) O(|E|) O(1) O(1)
adjacent(G, v0, v1) O(|V |) O(1) O(1)
neighbors(G, v) O(|E|) O(|V |) O(1)

current platform, the underlying data type for each buffer is a GPUBuffer mapped at

creation. Otherwise, the buffer type is ArrayBuffer.

To optimize CPU-bound lookup times for nodes and edges in Javascript, each

adjacency list is implemented using the built-in Map object. Maps are associative

arrays linking each element value with a unique key, which all DGGraphBase ob-

jects implement as instance variables. According to the ECMAScript specification,

the underlying implementation of Javascript Maps may be implemented as HashMaps,

SearchTrees, or other data structures with guaranteed sub-linear access times (Euro-

pean Association for Standardizing Information and Communication Systems, 2015).

Table 5.2 lists the lookup costs of using Javascript Arrays versus Maps.

Adjacency Lists. As shown in Listing 5.5, the basic graph ADT implemen-

tation in the DGGraph object uses an adjacency list to store edges. Adjacency lists

are highly flexible and parallelizable, as the node and edge arrays are extensible and

filterable via re-interpretation as skip lists or queues, depending on application re-

quirements. Generally, adjacency lists are preferable for sparse graphs with few edges

(|E| ≪ |V |2) as opposed to dense graphs, where the number of edges approaches the

maximum (|E| ≈ |V |2) (Cormen et al., 2009). Filters and other operations based on

the sequential scan data access primitive operate in linear time O(|V |) when applied

132

Table 5.2. Time complexity cost of lookup operations on adjacency lists
implemented with Array or Map.

Operation Cost (Array) Cost (HashMap) Cost (SearchTree)
lookup(G, e) O(|E|) O(1) O(log |E|)
lookup(G, v) O(|V |) O(1) O(log |V |)

to arrays. The time complexity for other basic operations can be easily estimated

(Table 5.1).

Adjacency Matrices. Adjacency matrices are simple and intuitive data struc-

tures useful for dense graphs due to their fast access times if used to determine

whether or not an edge exists. Adjacency matrices are 2D (two-dimensional) bool

arrays that store topology for non-weighted graphs (Bleiweiss, 2008). The most basic

form is a matrix of |V |2 bits, with each bit set to 1 if an edge exists and 0 otherwise.

Using this method, undirected graphs can be represented either as upper- or lower-

triangular bit matrices using |V |2
2 − |V | bits. Directed graphs can be represented by

combining upper and lower matrices and setting bits along the diagonal to 0. The

upper- and lower-triangular matrices are strictly triangular for graphs that disallow

self-loops (i.e., where nodes may not connect to themselves). Multigraphs can be

represented by either extending each matrix element to be n-bits wide or by creating

n 1-bit matrices. Operations for looking up, adding, or removing edges from adja-

cency matrices are exceedingly fast (O(1)) and are ideal for rendering small, static

graphs. However, adjacency matrices tend to be wasteful for large, sparse graphs.

In addition, adding or removing vertices requires the adjacency matrix to be rebuilt

anew, as all bits are stored linearly in memory. Therefore, adjacency lists are not

generally appropriate for dynamical graphs, which may update unexpectedly while

the graph is being explored. As Dynamical.JS is geared toward dynamical graphs,

support for adjacency matrices is limited. Adjacency matrices are implemented with

133

DGBitMatrix classes.

5.8.4 Graph Traversal

The DGMaterializationStrategy class cluster creates materializations via

graph traversal, combining the visitor (DGGraphVisitor), iterator, and memento de-

sign patterns (Gamma et al., 1995) to build a binary representation of the graph used

in the specified layout algorithm (Figure 5.8, Figure 5.7). Many memory access pat-

terns are described in the literature; however, most force-directed layouts use sorted,

linear access patterns to enhance data locality in GPU memory (Krüger & Wester-

mann, 2003; Lefohn et al., 2006). Sorting allows the materialization to proceed as

a series of scan operations instead of random probes Frishman & Tal (2008); Wang

et al. (2017); Qu et al. (2017). Graph traversal is supported over all graph types

using the DGGraphTraversal interface, which supports breadth-first and depth-first

search algorithms (Cormen et al., 2009) via the visitor design pattern (Gamma et al.,

1995). Listing C.7 shows the naive implementation of these algorithms. Using basic

sequential scan operations, materializations can be traversed by the CPU or the GPU.

By default, four traversal-based sorting algorithms are supported by Dynamical.JS:

1. Unsorted: The nodes and edges are materialized in the order they were inserted

into the graph ADT (Qu et al., 2017).

2. Source-First: Edges are sorted in source-target order (u → v) using Khan’s

algorithm to perform a topological sort (Kahn, 1962; Bleiweiss, 2008).

3. Destination-First: Edges are sorted by target-source order (v → u) using

breadth-first search (Lefohn et al., 2006).

4. Weighted Sort: Partitioned graph nodes are bucket-sorted by attribute values

(Frishman & Tal, 2008).

134

5.8.5 Graph Updates

Dynamism is the key feature of any exploratory graph visualization framework.

As such, a method for keeping track of changes occurring during graph exploration

tasks is an essential feature of all such frameworks. Because materializations are

immutable by the CPU, changes to a graph’s underlying ADT cannot be reflected

immediately. Re-materialization is a computationally expensive process and cannot

be performed in realtime during an exploratory graph session. Further, the layout and

rendering EGOs (Exploratory Graph Operations) require graph stability, meaning

neither nodes nor edges can be added to the graph while executing these operations.

The literature speaks of adding new nodes or manipulating old nodes’ attributes but

not of deleting nodes between intermediate visualizations (Frishman & Tal, 2008;

Wang et al., 2017; Sheng et al., 2019; Lin & Huang, 2021). Removing graph elements

from materializations is a significant problem that can lead to noticeable breaks in

animation. Dynamical.JS introduces two concepts to collect and merge changes in

the background to limit re-materialization.

Key Graphs. A key graph is an immutable clone of a graph ADT encoding the

graph state at time t and roughly corresponds to a timeslice. Key graphs may be

generated periodically or when some analyst-specified condition is met. Key graphs

are built using the clone GDO (Section 2.8.3). Each graph element has a mandatory

birthdate attribute and optional deathdate attribute to determine if the element

should be included in the current graph layout Lt or rendered frame Rt. To support

arbitrary scaling of timeslices, the birthdate and deathdate attributes are offset

from the birthdate of the parent graph, measured in milliseconds.

Change Sets. Graph elements may be added to or removed from the ADT sin-

gularly or in batches. These updates are known as temporal events, which prevent the

135

visualization algorithm from smoothly interpolating between them without wasting

large amounts of data. Each frame must store empty values for non-existent graph

elements or re-materialize the graph after each event. Change sets are aggregated

temporal events that must be merged into the previous key graph using the merge-

layout GLO. Change sets are subgraphs implemented using the basic graph ADT

and contain all changes made to the parent graph over some time interval. Change sets

are independently materialized to facilitate animation but are subsequently merged

with appropriate key graphs once layout and animation are complete (Frishman &

Tal, 2008).

5.8.6 File Formats

DGGraph objects serialize and deserialize data for the load and store GDOs

using the memento design pattern (Gamma et al., 1995), serialized as one of two JSON

(JavaScript Object Notation) file formats. JSON files are ASCII (American Standard

Code for Information Interchange) or UTF-8 (Unicode Transformation Format, 8-bit)

encoded and consist of a single graph object abstracting the formula G ← (V, E, A)

such that:

1. attributes is an associative array of key-value pairs containing graph at-

tributes.

2. nodes is an array of unique node objects, each with uniquely defined key and

an arbitrary number of other parameters, and mirror the data structure imple-

mented by DGMaterializationStrategyNaive.

3. edges is an unordered array of unique tuples e ← ⟨kv0 , kv1⟩ which meet the

following criteria:

136

e = ⟨kv0 , kv1⟩ :



kv0 ∈ KV kv0 is a key referencing a previously defined node

kv1 ∈ KV kv1 is a key referencing a previously defined node

kv0 ̸= kv1 kv0 and kv1 are not the same

An example of the JSON file format can be found in Listing 5.6.

Listing 5.6. An example graph serialized into the JSON file format
{

graph: {

attributes: { birthdate: 0, directed: false,...},

nodes: [{ key: 'key0', param: value, ...}, ...,],

edges: [['key0', 'key1'], ..., ['keym', 'keyn'],],

}

}

An index-only JSON format is also supported, where nodes are implicitly de-

fined via indices stored in the edges array. As the document is parsed, the array

of nodes V is extended by adding as many new, ‘unkeyed’ nodes until we reach the

maximum index: |G| ← MAX(|G|, MAX(iv0 , iv1)). This format consists of a single

graph object abstracting the formula G ← (E), where edges is an unordered array

of unique tuples of indices e← ⟨iv0 , iv1⟩ which meet the following criteria:

e = ⟨iv0 , iv1⟩ :



iv0 ∈ (0, |V |] iv0 is the index of a previously defined node

iv1 ∈ (0, |V |] iv1 is the index of a previously defined node

iv0 ̸= iv1 iv0 and iv1 are not the same

137

An example of the JSON (indexed) file format can be found in Listing 5.7.

Listing 5.7. An example graph serialized in the JSON (indexed) file format
{

graph: {

edges: [[0, 1], ..., [n, m],],

}

}

5.9. Layout Module

DGLayoutEngineBase

+bounds
+attributes

DGBase
(from common)

+initialLayoutEngine

0..1

Layout GLO

+layout()
+initialLayout()
+mergeLayout()
+calculateStatistics()
+coarsen()
+partition()
+mergePartitions()
+calculateForces()
+calculateOffsets()
+place()
+centroid()
+quality()
+attract()
+repulse()

«enumeration»
DGLayoutEvent

layout_begin
layout_step
layout_error
layout_end

DGLayoutEngineSpringBase

+springForce
+naturalSpringLength
+approachingLineHeight
+/width
+/height

«Strategy»
DGWebGPUComputeEngine

(from gpu)

#engine
0..1

«strategy»
DGGraphMaterializationStrategy

(from data)

DGGraphMaterialization
(from data)

DGGraph
(from graph)

0..*

DGLayoutEngineRandom

DGLayoutEngineCircular

0..1

«delegate,decorator»
DGLayout

DGLayoutEngineForce

+/desiredEdgeLength
+/maxEdgeLength

DGLayoutEngineFRDGLayoutEngineEER

«delegate»

«delegate»

DGLayoutFixedFree

DGLayoutBarycenter

+initialLayoutEngine

+initialLayoutEngine

Figure 5.9. A UML class diagram of the Dynamical.JS Layout Module.

The Layout Module consists of a class cluster based on the abstract

DGLayoutEngineBase class (Listing C.9), which utilizes the composite, pattern,

strategy, and chain of responsibility design patterns (Gamma et al., 1995). The

DGLayoutEngineBase class cluster allows the programmer to compose complex

138

layouts by chaining predefined GLO methods. DGLayoutEngineBase implements

both EventSource and DGExtensibleBase interfaces and is generally implemented

as both a default implementation that executes on the CPU, which is then subclassed

to override the CPU implementation with methods that execute GLO kernels on a

GPU via a concrete DGComputeEngineBase subclass (Listing C.11) which performs

the actual calculations.

5.9.1 Layout Execution

As described below in Section 3.1, graph layout algorithms progress through a

sequence of stages. Each stage corresponds to one or more GLOs or EGOs, each with

its own WebGPU kernel. Each algorithm is implemented as a concrete subclass of

DGLayoutEngineBase, which implements the strategy design pattern (Gamma et al.,

1995) to control the execution of these kernels. Within the Layout Module, each GLO

is a bulk-synchronous “step” that manipulates a materialization, and graph layout

algorithms are built from a sequence of these steps. Inter-stage dependencies may

exist, but individual operations within a step are processed in parallel. Each GLO

corresponds to an overridden DGLayoutEngineBase instance method implemented in

the appropriate concrete subclass.

As shown in Listing 5.8, each DGLayoutEngineBase method defaults to a

no-op (Null-Operation), i.e., an empty function returning the current layout with

no changes unless overridden. The graph layout algorithm is actually performed by

calling the layout() method on the graph ADT. This method uses layout-specific

DGComputeEngine subclasses to calculate the final positions of the nodes, generating

a layout_step event after each run through the loop. This allows the implemen-

tation to choose the stages which are appropriate for a particular algorithm, reuse

code wherever possible, and skip stages that are not required for the algorithm to

139

function. In all cases, the layout engine will work only on the graph’s materialization,

and never the graph itself. This facilitates changes to the underlying graph ADT in

response to asynchronous events while the rendering task is taking place. Once the

layout is complete, the layout() method will generate a layout_complete event.

Listing 5.8. The DGLayoutEngineBase implementation of the layout GLO.

/**

* Loop through the body of the algorithm until the stop condition is met.

* @param {DGGraph} graph - The graph to layout

* @returns {Promise}

*/

async loop(layout, stop = this.stop) {

while(!await stop(layout))

await this.calculateOffsets(layout)

.then(this.place(layout))

.then(() => { this.emit(DGLayoutEvent.LAYOUT_STEP, this) })

return layout;

}

/**

* Layout the graph asynchronously.

* @returns {Promise<DGGraph>} - A promise which will resolve when the graph is laid out

successfully or fails.

*/

async layout(graph = this.graph) {

this.emit(DGLayoutEvent.LAYOUT_BEGIN, { graph: graph });

const layout = await this.initialLayout(graph);

this.calculateStatistics(layout)

.then(layout => this.partition(layout))

.then(layout => this.loop(layout))

.then(layout => this.mergePartitions(layout))

.then(layout => this.finesse(layout))

.catch((error) => {

console.error(error);

140

this.emit(

DGLayoutEvent.LAYOUT_ERROR,

{ graph: this.graph, layout: layout, error: error }

);

})

.finally(() => {

this.emit(DGLayoutEvent.LAYOUT_END, { graph: this.graph, layout: layout });

return layout;

});

}

To facilitate the animation of intermediate vertex positions and split the lay-

out tasks among multiple threads, each layout-step event notifies the rendering

engine that the materialization may be drawn to the screen. These events may be

safely ignored if the application does not require them. Dynamical.JS may also fa-

cilitate a more traditional animation method between two final layouts by ignoring

interim layout_step events and interpolating between the values generated between

layout_complete events.

Within each GLO kernel, the relationship between materialized vertices and

compute threads is one-to-one; each thread computes the layout contribution of a

single vertex or edge. In WebGPU, adjacent threads do not share a mutable state.

Consequently, combining multiple operations on vertex attributes into a single kernel

saves significant memory bandwidth that would otherwise be wasted writing interme-

diate values to memory and reading them back again. We also avoid an unmap-remap

cycle that reloads vertex arrays for each changed attribute. After each thread in the

same block has computed the fitness of its vertex, the fitness values are summed

into the global fitness metric via parallel reduction (Qu et al., 2017) by the quality

GLO’s kernel (Section 2.9.15).

Each GLO corresponding to a layout stage requires at most two CPU-GPU

141

map-copy-unmap cycles: one to copy the materialization into GPU memory and one

to copy it back out. Adroit usage of WebGPU’s GPUBindGroupLayout objects can

reduce this to a lone cycle pair for the entire algorithm. Further, only the output

cycle is required if data can be generated solely on the GPU (e.g., the random or

circumscribed positions of the random and polygon layouts). Neither iterations

through the placement GLOs nor drawing GROs (Graph Rendering Operations)

require any memory cycles; only a single function call to switch between appropriate

GPUBindGroupLayouts is needed.

5.10. Drawing Module

The Drawing Module has two primary responsibilities: drawing graph layouts

to the UI and responding to user input. GROs are triggered via events from the

Layout Module or user events generated by HIDs (Human Interface Devices) such

as mice or keyboards. This module also determines the animation framerate and

interpolates between source and destination layouts.

5.10.1 Rendering & Animation

Graph layouts are rendered to the target canvas in response to the

layout_step and layout_complete events generated by the Layout Module (Sec-

tion 5.9). Like the Layout Module, each GRO or GAO (Graph Analysis Operation)

is a self-contained rendering step controlled by a DGWebGPURendererBase instance.

DGWebGPURendererBase is a class cluster that utilizes the same design patterns to

implement a staged, idiomatic rendering process. Because it inherits from DGCom-

puteEngine, kernel functions and shaders are loaded and executed using identical

methods. DGWebGPURendererBase is a concrete subclass of DGComputeEngine and

inherits most of its methods. However, DGWebGPURendererBase subclasses utilize a

142

GRO

+renderLayout()
+renderRegion()
+overlay()
+showElements()
+hideElements()
+applyMark()
+applyChannel()
+interpolate()

DGSurface

+handleMouseEvents()
+select()
+selectRegion()

«builtin»
HTMLCanvas

GAO

+findElements()
+findBoundedElements()
+select()
+deselect()
+filter()
+highlight()
+export()
+step()

DGCamera

+lookAt(x, y, z, w)

DGWebGPUBase
(from gpu)

DGRenderer

+swapBuffers()

DGTransform

+/buffer

DGMat4
(from matrix)

DGVec4
(from matrix) +transform

+modelViewMatrix

+transform

DGWebGPURenderEngine
(from gpu)

+position

«delegate,decorator»
DGLayout

(from layout)

+layouts
0..*

«enumeration»
DGRenderEvent

renderOpportunity
renderStart
renderStep
renderError
renderEnd

DGVec2
(from matrix)+bounds

Figure 5.10. A UML class diagram of the Dynamical.JS Drawing Module.

trio of shader programs (Section 4.9.1):

1. A compute shader to determine which materialized graph elements should be

rendered to the canvas. This set is updated with the show-elements (Section

2.10.6) and hide-elements (Section 2.10.7) GDOs. The analyst may man-

ually select these elements with the select-elements (Section 2.11.3) and

deselect-elements (Section 2.11.3) GAOs. This set is then translated into

one or more vertex buffers used by the render (Section 2.10.3) and render-

143

region (Section 2.10.4) GDOs, which are then submitted to the rendering

pipeline (Section 4.8). Concrete DGWebGPURendererBase subclasses also use

double buffering to ensure smooth animation. While the rendering pipeline

reads one buffer, the compute pipeline (Section 4.9) writes updated vertex data

to its twin. After each render cycle is complete, the buffers are swapped, and the

cycle repeats. Each buffer pair is defined, controlled, and resized by WebGPU’s

GPUBindBufferLayout object and does not require mapping; all data remains

on the GPU and is recycled or purged as needed. Animation is performed by

the interpolate (Section 2.10.10) GRO where the renderer’s current vertex

buffer and the layout materialization’s vertex buffer are the a and b interpolants,

respectively.

2. A vertex shader that maps vertices into view space using the model-view trans-

form matrix (Section 4.8.1). The canvas updates this matrix in response to

resize, scroll, and zoom events generated by the UI in response to actions

made by the analyst. This matrix can also be manually controlled via the

transform GRO (Section 2.10.2).

3. A fragment shader that renders geometry defined by the vertex shader into

fragments and merges these fragments into the output canvas’s framebuffer.

Fragment attributes corresponding to visual marks and visual channels, e.g.,

color or line thickness, are controlled via the apply-channel (Section 2.10.9)

and apply-mark (Section 2.10.8) GROs.

144

Chapter VI.

Conclusion

Employing an operation-centric programming model for graph processing and

layout allowed us to design a robust and highly extensible exploratory graph layout

framework: Dynamical.JS. The development process uncovered various interesting

yet challenging research and development opportunities.

6.1. Summary

Dynamical.JS was devised during an attempt to create an interactive visu-

alization of the worldwide wildlife trafficking networks to identify how patterns of

law enforcement actions changed the trade flows over time. The initial work was

limited to functional and procedural methods and Javascript’s Canvas2D. It quickly

became apparent that a generalized package, object orientation, an appropriate high-

level programming model, and low-level optimizations for parallel graph analytics on

GPUs (Graphics Processing Units) were needed. The current design of Dynamical.JS

demonstrates that with the proper tools, exploratory graph visualization can become

relatively simple and efficient.

Specifically, this work has achieved our high-level goals: the design and im-

plementation of Dynamical.JS meet the key qualities we defined for dynamic graph

visualization frameworks based on the twin pillars of abstraction and composition.

This Javascript framework is self-contained and takes advantage of the latest GPU

technologies for the web while providing a fallback implementation that can be used

on any modern Javascript runtime. We decomposed several well-documented graph

layout algorithms into a common, staged, and idiomatic layout strategy built of com-

posable EGOs (Exploratory Graph Operations). The stages and EGOs (Exploratory

145

Graph Operations) described above facilitate the exploration of dynamical graphs

with an overview, intermediate, or detail view, focusing on graph structure and tem-

poral changes. We demonstrated the step-wise local refinement graph layouts for

static rendering and animation. After each step, Dynamical.JS enables the analyst

to visualize intermediate renderings, select a different subset of data, and refine the

desired visual representation for their selection. By segregating the graph ADT (Ab-

stract Data Type) from its materialization, we enabled both element selection and

multiple representation, alterable at any time via analyst-triggered events or periodic

changes in the underlying graph morphology.

During the development of the Dynamical.JS framework, we kept three types

of analysts in mind: (1) algorithm designers who wish to invent or modify domain-

specific graph layout algorithms, (2) data scientists who wish to utilize GPUs to

explore large, multivariate relational networks, and (3) programmers who wish to

reproduce the results of this thesis and make improvements to its components. We

hope that Dynamical.JS will serve as a standard for exploratory graph visualization

on the web.

6.2. Challenges

6.2.1 Multithreading

The Dynamical.JS code executed by the CPU (Central Processing Unit) in

Javascript is single-threaded. Extending the asynchronous model to support splitting

work among several Web Workers remains unaddressed. Code executed via WebGPU

(GPU Computing for the Web) is currently restricted to a single GPU, even on

substrates where multiple GPUs are available.

146

6.2.2 Memory Limits

Due to the nature of Javascript, the largest individual buffer size we can create

is 4GiB, so we have limited ourselves to this size. Due to this limitation, Dynamical.JS

is restricted to graphs containing 230 vertices and 231 edges. However, graphs of this

size are far larger than we can render smoothly.

6.2.3 Limited Optimization

As of this writing, the versions of the WebGPU framework and the WGSL

(WebGPU Shading Language) language versions implemented in the various Webkit

and non-Webkit browsers are in flux, and the relevant specifications have changed

in significant ways. Therefore, full implementation of the Dynamical.JS framework

was impossible to complete before the publication of this thesis. However, we in-

clude Javascript and WGSL source code compatible as of 1 September 2022 but

have removed any code which relies on currently deprecated functionality or syntax.

Because the WebGPU specification remains incomplete at the time of this writing,

several critical performance metrics were unavailable to us: GPU memory mapping

events, performance timestamps, and configurable point sizes remain unsupported.

As neither the WebGPU nor the WGSL language specifications are complete, perfor-

mance measurements were impossible to include; however, performance testing and

measurement capabilities are incorporated into the Dynamical.JS design and refer-

ence implementation. A benchmarking suite and substrate performance analysis to

aid in tuning parameters are reserved for future work.

147

6.2.4 Timeslicing

Additional functional parameters for timeslicing and data amplification re-

main unsupported, such as a computational “budget” focus allowing prioritization of

structural integrity over animation time-step quantification to help meet environmen-

tal constraints (Hadlak et al., 2011). Simonetto et al. (2020) described an event-based

model where graph layouts exist in an n + 1-dimensional spacetime cube, where each

graph layout is an n-dimensional timeslice with arbitrarily fine time sampling rates

(Simonetto et al., 2020). This would require a stream of data and events to be

recorded in a timeline data structure to describe the temporal domain containing

the dynamics of the dynamical graph, which is currently unsupported (Hadlak et al.,

2011). The filter-element GLO (Graph Layout Operation) is a crucial analysis

task for studying dynamical graphs and is the most complex. Filtering static or dy-

namic graphs is challenging yet achievable; however, filtering these dynamical graphs

by specific morphological changes is a task beyond the current scope of Dynamical.JS.

6.3. Future Work

Moving forward, several aspects of Dynamical.JS need improvement, including

architecture, execution model, performance characterization, core graph operators,

new graph primitives, and usability changes.

6.3.1 Architectural Changes

Expansion to new graph types, layout algorithms, and complex encodings will

make Dynamical.JS a more functional framework for exploratory graph visualization.

Doing so will require the addition of several new GDOs (Graph Data Operations) and

the incorporation of GPU-enabled versions of graph-theoretical operators like APSP

148

(All Pairs Shortest Path). The load and store GDOs require support for additional

file formats and GML (Graph Modeling Language) to support the importation of

larger and more complex graph types. Support for other visualization techniques,

such as matrix or circular layouts, complex visual marks, small multiples, or spectral

energy minimization techniques, requires investigation.

The current reference implementation does not support the export of visual-

izations to textures or support multiple coordinated views in realtime. This thesis

focused on decomposing current graph layout algorithm techniques but did not focus

on methods of local in situ combinations of multiple layouts nor switching between

them interactively (Hadlak et al., 2011). As the analyst’s focus may shift during anal-

ysis, changing computational techniques with different graph foci may be necessary

(Hadlak et al., 2011).

6.3.2 Optimization Changes

Graph-theoretical operations at the GDO level will benefit from adding addi-

tional parallelism for both CPU and GPU. Doing so will also expose new opportunities

to build memory- and workload-optimizing building blocks that can be plugged into

or replace higher-level EGO implementations.

The design space for materialization data structures is vast (Lefohn et al., 2006;

Ahn et al., 2014; Idreos et al., 2019, 2018a). Until the WebGPU memory access model

is complete, it is impossible to investigate data structures capable of cache-conscious

access patterns in Javascript. Further, the current materialization format requires

large-scale GPU calculations but walking through a streaming graph or resampling

materializations on several scales to speed up filtering or coarsification strategies is

unsupported.

Complex graphs often contain rich data on nodes and edges. Because

149

Javascript lacks direct access to binary data except in specific circumstances, ma-

terializations are limited to numerical data; further research is needed to determine

optimal methods for incorporating arbitrary data. Currently, Dynamical.JS puts all

the information into linear arrays to facilitate sequential scans on the GPU, which is

not ideal—adding the capability of loading rich attribute information onto the GPU

could enable more complex graph query tasks and allow us to support several data

access primitives that require rich information during computation (Wang et al.,

2017).

Currently, there are few solutions for efficiently handling general graph mu-

tations on GPUs (Wang et al., 2017). Mutable materializations require continuous

processing of graph layout algorithms on dynamical inputs to update the graph ADT

incrementally and update materializations given the changes. Dynamical.JS needs to

provide either approximated results or expose such capabilities to future programmers

(Frishman & Tal, 2008; Qu et al., 2017).

150

Appendix I.

Glossary

Analyst A human who interacts with an application to solve a problem or to gain

insight by analyzing its output. ii, 4, 9, 11–13, 16–18, 21, 24–28, 32, 33, 46–49,

57, 83, 85, 86, 123, 135, 143, 144, 146, 149, 151, 153, 154

Application An interactive program or process that runs on a specific platform to

produce output useful to the analyst. Adobe Photoshop, Microsoft Word, and

OmniGraffle are examples of applications. 6, 9, 11, 12, 25, 29, 32, 46, 48, 83,

88, 89, 91, 94, 98, 104, 115, 132, 151, 156

Canvas The 2D (two-dimensional) drawing surface where graphs will be rendered.

Such canvases may be visible on-screen, off-screen (cached in RAM (Random

Access Memory)), or serialized to an output file. 33, 46, 90, 91, 143, 144, 157

Compute Core A single GPU, streaming multiprocessor, ALU (Arithmetic Logic

Unit), CPU, or co-processor made available by the hardware substrates. 9, 28,

29, 99, 104, 105, 156

Dynamic Any object, structure, or concept that changes in a predefined or pre-

dictable manner or has a known retrogressive evolution. ii, 5, 9, 21, 22, 27,

152

Dynamic (Online) Graph Layout Algorithm A graph layout algorithm which

works on dynamic graphs whose morphology changes due to exceptional or

periodic circumstances (Di Battista et al., 1994). Dynamic graph layout algo-

rithms are generally simple extensions of static graph layout algorithms. 4, 5,

49, 50, 54

151

Dynamic Graph A temporally dynamic yet morphologically static n + 1-

dimensional graph D ← (G, T) which changes due to exceptional cir-

cumstances or a graph whose morphological history is known or can be

retrogressively derived. For example, a connectivity diagram of a wireline

network or the electrical lines (edges) in a modern home where outlets (nodes)

are rarely added or removed. Because these graphs do not often change (if at

all), static graph drawing algorithms are generally used without modification

or special optimizations but at a high computational cost. When used in

offline graph drawing algorithms, the graph and all of its changes are encoded

as a spacetime cube, and the graph state Gt at time t is known as a timeslice

Dt ← (Gt, t) (Cohen et al., 1992). 8, 21–23, 27, 69, 145, 148, 151, see Graph

Dynamical Any object, structure, or concept that evolves progressively or changes

in an unstructured or unpredictable manner in response to external events.

A cloud computing service that reallocates resources due to fluctuations in

current client demand is an example of a dynamical substrate. 5, 6, 9, 27, 150

Dynamical (Online) Graph Layout Algorithm A graph layout algorithm

which works on dynamical graphs whose morphology evolves due to un-

predictable events such as user interactivity (Di Battista et al., 1994).

50

Dynamical Graph A graph which is always in a state of flux, progressively evolving

due to a stream of events which may add, remove or modify its node, edges

or attributes in an unpredictable manner. For example, a visualization of

a social network or a COVID-19 contact tracing program where potentially

infected patients (nodes) and their contacts (edges) are added, removed, or

filtered continuously, either one at a time or in batches. Due to these constant,

152

arbitrary changes, static graph drawing algorithms must be modified to take

the changes into account, both for performance reasons and to preserve the

analyst’s mental map of the graph, leaving unchanged subsections of the graph

intact where possible. ii, 4, 7, 8, 12, 133, 146, 148, 152, 154, see Graph

Force-Directed Layout The graph layout of a node-link diagrams based on

metaphorical “forces” which push and pull nodes to their final positions by

minimizing a global “energy” function. These layouts are frequently utilized

because they naturally lead to symmetrical and aesthetically pleasing layouts

by default (Nobre et al., 2019). 27, 58, 60, 62, 63, 71, 75, 130, 134

Framebuffer A dedicated region of VRAM (Video RAM) for storing output pixel

data. 87, 88, 90, 91, 93, 96, 97

Framework A collection of software functions, APIs (Application Programming

Interfaces), code libraries, or other technologies a given system provides to

perform related computational tasks. OpenGL (Open Graphics Library), Di-

rectX, WebGPU, and Dynamical.JS are examples of frameworks. x, 2, 6, 9–14,

18, 32, 33, 46, 80, 83, 87, 89, 97, 98, 103–108, 110–113, 115, 145–148, 156, 157

Graph A logical structure which abstracts a set of entities (called vertices or nodes),

and the relationships between these entities (called edges): G ← (V, E, A).

Just like relationships between real entities in the world, edges between the

nodes may be directed (⟨u ← v⟩, ⟨u → v⟩), undirected (⟨u ↔ v⟩), or even

self-referential (⟨u ⟲ u⟩). Large graphs are also known as networks (Tutte,

1963). ii, xi, xii, xv, 1–6, 8, 10–28, 31–38, 40, 46, 49–52, 54–57, 60–64, 66–68,

74, 75, 86, 90, 98, 104, 107, 113, 116, 117, 119, 120, 122–125, 127–140, 143,

145–157, see Multivariate Network

153

Graph Drawing Algorithm An algorithm that reads as input a graph layout L←

layout(G) of graph G and produces as output a drawing (rendering) accord-

ing to a given graphics standard, including any specified visual marks and

visual channels. A graph drawing algorithm may pass through any aesthetic

constraints to the graph layout algorithm used to generate its input. 3, 4, 7,

51, 152, 153, 155, see Graph Layout Algorithm

Graph Layout A graph layout is a graph where the nodes p⃗v ∈ PG have been

positioned within an arbitrary layout (coordinate) space. ii, 5, 16, 17, 19, 21–

23, 27, 32, 33, 43, 45, 46, 50, 51, 53, 54, 56, 60, 61, 63, 67, 71, 75, 87, 103, 107,

117, 123, 135, 142, 145, 146, 148, 153, 154

Graph Layout Algorithm An algorithm that reads as input a combinatorial de-

scription of a graph G ← (V, E, A), and produces as output a graph layout

L = layout(G). “Readability” of the resultant layout is controlled via op-

timization goals expressed as parametric aesthetic and design constraints im-

posed by the presentation medium and application domain (Di Battista et al.,

1994). 3, 13, 21, 24, 51–53, 56–58, 84–87, 92, 104, 106–109, 116, 119, 127, 129,

130, 134, 139, 145, 146, 149–152, 154, 156

Layout Space The n- or n+1-dimensional coordinate space into which graph layout

algorithms place graph elements. 16, 19, 33, 38, 41, 42, 45, 49, 51, 54, 56, 58,

60, 61

Mental Map The morphological structure of a dynamical graph as currently repre-

sented in an analyst’s mind. The analyst’s mental map remains stable across

affine transformation operations (rotation, scale, translation), while local and

global properties of the graph evolve without abrupt transitions during both

154

constructive and destructive operations (filtering, growth, pruning, simplifica-

tion) (Misue et al., 1995). ii, 4, 12, 13, 26, 48, 49, 54, 57, 75, 86, 153

Multivariate Network A complex graph where both the contained nodes and their

relational edges are arbitrarily complex. This complexity arises due to a vari-

able number of attributes each node or edge may possess. Depending on the

operation, attributes may strengthen, weaken or negate the relationship be-

tween nodes, which in turn affect the morphology of the graph as determined

by a graph drawing algorithm (Nobre et al., 2019). ii, 1, see Graph

Network . 27, 83, 145, 146, see Graph

Node The fundamental graph-theoretical unit from which all graphs are formed. ii,

x, xiii, 2, 3, 5, 10, 16, 19–27, 32, 34, 38–42, 49–56, 58–69, 71, 74, 75, 86, 89,

90, 107, 108, 122, 123, 125, 128, 129, 132–135, 137, 139, 152–155, 157, 158

Node-Link Diagram The most common graphical representation of graphs, where

nodes are represented as a point or circle visual marks, and edges are repre-

sented as line or curve visual marks connecting the nodes (Figure 1.1). These

diagrams place nodes based on intrinsic attributes of the entities themselves,

constrained by aesthetic requirements imposed by graph drawing algorithms,

which visually clarify the graph. For example, by limiting the number of edge

crossings or ensuring a minimum distance between nodes or edges (Tutte, 1963;

Nobre et al., 2019). x, 24, 25, 27, 51, 153, 155, 158

On-Node/On-Edge Encoding Refers to modifying the visual channel (size, color,

line weight, &c.) of a node or an edge or embedding complex visual marks (bar

charts, line charts, &c.) in a node or a edge in a node-link diagram (Nobre

et al., 2019; Bertin, 2011). x, 7, 24

155

Platform A specific collection of frameworks, execution environments, or program-

ming languages one or more applications require for execution. The Javascript

and Python runtimes are examples of platforms. 3, 6, 9, 84, 88, 110, 151

Small Multiple A complex visual mark, usually a complete multivariate visual-

ization in its own right, used to display different slices of a dataset. Small

multiples are commonly arranged in a grid and are indexed by category or

a label, sequenced over time like the frames of a movie or ordered by some

quantitative variable not used in the single image itself (Tufte, 1990). 21, 24,

27

Spacetime Cube An n+1-dimensional visualization space, consisting of n (normally

Euclidean) spatial dimensions and one time dimension, used to conceptualize

the dynamic properties of a dataset. A general heuristic is to decide on a

n-dimensional visual representation of the data for a given timeslice and then

extrude it over time. An entity which moves on a 2D map becomes a static

3D (three-dimensional) trajectory when visualized in a spacetime cube (Bach

et al., 2017). 21, 23, 24, 27, 49, 50, 53, 148, 152, 157

Static Graph Layout Algorithm A graph layout algorithm which works on static

graphs with no temporal attributes, where morphology is not expected to

change (Di Battista et al., 1994). 22, 49, 50, 151

Substrate This non-standard term always refers to the collection of CPU, GPU,

and ASIC (Application-Specific Integrated Circuit) resources provided by a

given hardware configuration. This includes instruction sets, compute cores,

co-processors, memory configurations, or other control hardware to facilitate

computation. Substrates may be monolithic (confined to a single host), dis-

156

tributed (shared among multiple hosts), or virtual (logical partitions of the

above resources which may operate concurrently on the same host). 8–10, 28,

29, 48, 82, 84, 87, 88, 90, 97, 101–104, 106, 110, 120, 122, 151, 152, 157

System Unless qualified, this refers specifically to the OS (Operating System) run-

ning on a given substrate. Windows, macOS, and Linux are examples of

systems. 6, 9, 12, 18, 82–85, 87, 88, 107, 110, 119, 153

Timeslice An n-dimensional hyperplane within the n + 1-dimensional Spacetime

cube, containing (non-temporal) data at a specific time t (Bach et al., 2017).

21–24, 28, 34, 48–50, 53, 55, 128, 129, 135, 148, 156

Vertex A data structure that describes a point in two or 3D space and is the funda-

mental unit from which all graphical primitives are derived in a given computer

graphics framework. This term also refers to a graph node that has been ma-

terialized for layout and rendering. 10, 34, 58, 64, 71, 91–96, 98–101, 107, 120,

128, 130, 131, 133, 141, 143, 144, 147

View Space The two-dimensional coordinate space defined by the output canvas.

46, 48, 49, 56, 91, 95, 97, 144

Visual Channel A variation or other complication of a visual mark which encodes

the current value of the represented data variable (Bertin, 2011). For example,

the size or area of a visual mark may increase as the value increases. Likewise,

the circle’s color may vary depending on the categorical type. Many channels

can be applied to visual marks, alone or in combination. For example, area,

position, connectivity, grouping, line weight, color, resolution, &c. 47, 51, 74,

123, 144, 154, 155, 158

157

Visual Mark A shape, glyph, or other graphical element used to represent data

variables in a visualization (Bertin, 2011). Simple node-link diagrams gen-

erally represent nodes as circles and edges as lines. Marks may be simple

(representing a single data variable) or complex (representing multiple data

variables simultaneously). Marks vary based on the current value of the vari-

able at the time the visualization has been drawn. This variation is known as

the mark’s visual channel. 24, 25, 27, 44, 47, 51, 74, 123, 144, 149, 154–157

158

Appendix II.

Acronyms

no-op Null-Operation. 57, 139

1D one-dimensional. 30

2D two-dimensional. 1, 6, 30, 33, 51, 133, 151, 156, 157

3D three-dimensional. 10, 30, 98, 100, 106, 156, 157

ADT Abstract Data Type. xi, xii, 33, 112, 122–125, 129, 132, 134–136, 139, 140,

146, 150

AI Artificial Intelligence. 2, 3

ALU Arithmetic Logic Unit. 81, 92, 120, 151

AMP Asymmetric MultiProcessing. 84

APFS APple File System. 81

API Application Programming Interface. ii, 9, 15, 88, 89, 106, 108, 109, 153

APSP All Pairs Shortest Path. 104, 148

ASCII American Standard Code for Information Interchange. 136

ASIC Application-Specific Integrated Circuit. 8, 88, 89, 156

ASM Assembly Language. 101, 102, 106

BFS Breadth-First Search. 103

BLAS Basic Linear Algebra Subprograms. 119

159

CPU Central Processing Unit. x, 8, 13, 15, 29–31, 48, 81, 82, 87, 89, 90, 99, 101–103,

106, 109, 120, 121, 127, 128, 130, 132, 134, 135, 139, 141, 146, 149, 151, 156

CU-BLAS CUDA Basic Linear Algebra Subprograms. 103

CUDA Compute Unified Device Architecture. 89, 104, 106, 107

DOM Document Object Model. 8

DRAM Dynamic RAM. 87

EGO Exploratory Graph Operation. ii, xiv, 7, 13, 24, 25, 33, 78, 93, 135, 139, 145,

149

ES7 ECMAScript 7. 86

FIFO First In, First Out. 84, 92

GAO Graph Analysis Operation. 46, 142, 143

GCC GNU Compiler Collection. 106

GDO Graph Data Operation. xii, 33, 34, 46, 60, 126, 128, 135, 136, 143, 144, 148,

149

GIS Geographic Information Systems. ii

GLO Graph Layout Operation. xii, xv, 16, 38, 39, 51, 52, 128, 131, 136, 139–142,

148

GLSL OpenGL Shading Language. 107, 108

GML Graph Modeling Language. 149

160

GPGPU General-Purpose Graphics Processing Unit. 101–109

GPU Graphics Processing Unit. x, 3, 5, 8, 13, 15, 29–31, 48, 81, 82, 84, 89, 90, 92,

93, 96–99, 101–108, 112, 115, 119–121, 127–131, 134, 139, 141, 142, 144–151,

156

GRO Graph Rendering Operation. xii, 42, 142, 144

HAL Hardware Abstraction Layer. 102

HID Human Interface Device. 17, 142

HTML HyperText Markup Language. 110

HTML5 HyperText Markup Language, Version 5. 111

IDE Integrated Development Environment. 82, 110

IoT Internet-of-Things. 98, 110

JIT Just-in-Time. 83

JPEG Joint Photographic Experts Group. 47

JSON JavaScript Object Notation. xv, 136–138

LAN Local Area Network. 82

LLVM Low-Level Virtual Machine. 106

MIMD Multiple-Instruction, Multiple Data. 105

OBE Object-Bound Execution. 105

161

OpenCL Open Compute Language. 106, 107

OpenGL Open Graphics Library. 9, 88, 89, 104, 106, 153

OS Operating System. 9, 157

PDF Portable Document Format. 47, 110

PID Proportional Integral Derivative. 52

PRN Pseudo-Random Number. 119–121

PRNG Pseudo-Random Number Generator. 119, 120, 122

RAM Random Access Memory. 28, 29, 151

ROM Read Only Memory. 87

SIMT Single-Instruction, Multiple Thread. 100

SMP Symmetric MultiProcessing. 84

SOC System-On-a-Chip. 81, 82

SPMD Single-Program, Multiple Data. 104, 105

SRAM Static RAM. 88

SSD Solid State Drive. 81

SSSP Single Source Shortest Path. 104

SVG Scalable Vector Graphics. 8, 47

TFLOPs Tera- Floating Point Operations s−1. 82

162

UI User Interface. 5, 12, 16, 17, 86, 116, 142, 144

UMA Unified Memory Architecture. 29, 82

UML Unified Modeling Language. x, xi, 2, 15, 112, 113, 117, 118, 121, 122, 124,

125, 127, 138, 143

UTF-8 Unicode Transformation Format, 8-bit. 136

VBL Vertical BLanking interval. 87

VLSI Very Large Silicon Integrated circuit. 3

VRAM Video RAM. 29, 31, 87–89, 153

W3C World Wide Web Consortium. 80, 108

WebGL Web Graphics Library. 84, 107, 108

WebGPU GPU Computing for the Web. ii, 6, 7, 9, 81–84, 89, 108, 109, 115, 116,

122, 131, 139, 141, 142, 144, 146, 147, 149, 153, 229

WGSL WebGPU Shading Language. 6, 81, 83, 108, 109, 119, 122, 147

163

Appendix III.

Code

C.1. Javascript Code

C.1.1 DGBase

Listing C.1. Javascript code for DGBase.

/**

* @file /src/common/base.js

* @author Rob Dotson

* @copyright 2020 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the abstract DGGraphLayoutBase class.

*

* @created 02 July 2020

*

* @todo Need to test browser for ES6 compliance (should be all webkit + firefox)

* @todo Need to fix the code for listening for all events '*'

*/

import {DGAbstractInstantiationError} from './error/error.js';

/**

* Enum for WebGPU events.

* @readonly

* @enum {string}

*/

export const DGBaseEvent = Object.freeze({

DESTROY: "destroy",

});

/**

* DGBase is an abstract base class which almost all DG objects inherit. It allows for type

reflection, cloning and printing.

* @extends EventTarget

164

*/

export default class DGBase extends EventTarget {

/**

* Should we display debug information

* @type {boolean}

* @todo Remove me.

*/

_debug = false;

/**

* A map of our event listeners.

* @type {Map}

*/

_listeners = new Map();

/**

* Return the map of event listeners.

* @type {Map} - The map of event listeners.

*/

get listeners() { return this._listeners; }

/**

* The default constructor.

* @constructor

* @param {boolean} debug - A boolean flag indicating whether or not we need to debug the

object.

* @throws DGAbstractInstantiationError

*/

constructor(debug = false) {

super(); // Initialize event target

this._debug = debug;

let name = this.constructor.name;

if(name.endsWith('Base')) throw new DGAbstractInstantiationError(name);

this._listeners.set("*", []);

}

/**

* Destroy the object and free any internal resources, notifying any listeners so they may

165

clear any references to this instance. Subclasses *must* call `super.destroy()` before

removing any used resources.

*/

destroy() {

// Tell the world I'm going away.

this.emit(DGBaseEvent.DESTROY);

}

/**

* Clone an object, making a shallow copy of the object

* @param {*} obj - The object to clone.

* @returns {*} - An object of the same type, copied shallowly.

*/

static clone(obj) {

return Object.assign(Reflect.construct(Reflect.getPrototypeOf(obj).constructor, []), obj);

}

/**

* Clone a specific instance, uses DGBase.clone()

* Subclasses should override this method to provide deep copy functionality if so required.

* @returns {*} An object of the same type, copied shallowly.

*/

clone() {

return DGBase.clone(this);

}

/**

* Determine if two objects have the same type.

* @param {*} lhs - The object to compare.

* @param {*} rhs - The object to compare against.

* @returns {boolean} - A boolean indicating whether the two objects are *exactly* the same

type.

*/

static isa(lhs, rhs) {

return lhs.constructor.name === rhs.constructor.name;

}

/**

* Test to determine if the callee is the same type as `obj`. Uses DGBase.isa(obj,this).

166

* @param {*} obj - The object to compare.

* @returns {boolean}

*/

isa(obj) {

return DGBase.isa(obj, this);

}

/**

* Returns the class constructor for the current class

* @type {Class}

*/

static get myClass() { return this; }

/**

* Returns the class constructor for the current instance.

* @type {Class} - The class constructor.

*/

get myClass() { return DGBase.myClass; }

/**

* Convert the object to JSON

* @returns {{object|*}}

*/

toJSON() { return { class: this.constructor.name }; }

/**

* Get the JSON representation as a parameter.

* @returns {string}

* @constructor

*/

get JSON() { return JSON.stringify(this); }

/**

* Is the object in debug mode?

* @return {boolean} - A boolean indicating whether the object is in debug mode.

*/

get debug() { return this._debug; }

/**

167

* Should we debug the object?

* @param {boolean} debug - A boolean indicating whether the object should be put into debug

mode.

*/

set debug(debug) { this._debug = debug; }

/**

* Does this class have a particular property?

* @return {boolean} - A boolean indicating whether or not the class has a particular property.

* @return {String} - A string containing the key for the property to be queried.

*/

static hasProperty(obj, property = '') {

//const prototype = Reflect.getPrototypeOf(obj);

return (

Object.hasOwnProperty(obj, property) ||

Object.hasOwn(obj, property) ||

property in obj

);

}

/**

* Does this object have a particular property?

* @return {String} - A string containing the key for the property to be queried.

* @return {boolean} - A boolean indicating whether or not the object has a particular

property.

*/

hasProperty(property = '') { return DGBase.hasProperty(this, property); }

/**

* Initialize the object

* @param {Object} options - A dictionary containing the options required to initialize the

context.

* @returns {Promise} - A promise indicating the class has successfully initialized.

*/

async init(options = {}) { (options);}

/**

* Determine if two objects are equal

* @param {any} x - The first object to compare

168

* @param {any} y - The second object to compare

*/

static objectEquals(x, y) {

if(typeof x !== 'object' || typeof y !== 'object') return x === y;

if(x === null || y === null) return x === y;

if(x.constructor !== y.constructor) return false;

if(x instanceof Function) return x === y;

if(x instanceof RegExp) return x === y;

if(x === y || x.valueOf() === y.valueOf()) return true;

if(Array.isArray(x) && Array.isArray(y) && x.length !== y.length) return false;

if(x instanceof Date) return false;

if(!(x instanceof Object)) return false;

if(!(y instanceof Object)) return false;

const x1 = x;

const y1 = y;

const p = Object.keys(x);

return Object.keys(y).every(i => p.indexOf(i) !== -1) && p.every(i =>

DGBase.objectEquals(x1[i], y1[i]));

}

/**

* Get listeners for a particular event, and lazily add support for new listeners.

* @param {string} event - A string describing the event to look for.

* @returns {Array<CallableFunction|EventListenerObject>}

*/

_listenersForEvent(event) {

let listeners = this.listeners;

if(!listeners.has(event)) listeners.set(event, []);

return listeners.get(event);

}

/**

* A map containing all of the objects wrapped in event handlers.

* @type {Map<Object,CallableFunction}

*/

_wrappedObjects = new Map();

169

/**

* Wrap an EventListenerObject to be used as a callback

* @param {EventListenerObject} listener - The event handler object

* @todo Do I really need to do this?

*/

_wrapObjectListener(listener) {

if(!this._wrappedObjects.has(listener)) {

this._wrappedObjects.set(listener, (e) => listener.handleEvent.call(listener, e));

}

return this._wrappedObjects.get(listener);

}

/**

* Add an event listener.

* @param {string} event - A string defining the event we're emitting.

* @param {CallableObject|EventListenerObject} listener - The event handler object or

callback.

* @param {boolean} once - true if the listener should only handle the event once.

*/

_addListener(event, listener, once = false, options = {}) {

let listeners = this._listenersForEvent(event);

let toAdd = listener;

// If we only want to call the listener once, we should wrap it.

if(once) {

let onceWrapper = null;

switch(typeof listener) {

case 'object':

onceWrapper = (e) => {

listener(e);

this.off(event, onceWrapper);

}

break;

default:

onceWrapper = (e) => {

listener(e);

this.off(event, onceWrapper);

}

170

break;

}

toAdd = onceWrapper;

options[once] = once;

}

if(!once) toAdd = listener;

// Add the listener to the list

listeners.push(toAdd);

// Add the event listener

this.addEventListener(event, toAdd, options);

// Allow for method chaining

return this;

}

/**

* Remove an event listener.

* @param {string} event - A string defining the event we're emitting.

* @param {CallableObject|EventListenerObject} listener - The event handler object or

callback.

*/

_removeListener(event, listener) {

// get all listeners for this event

let listeners = this.listeners.get(event) || [];

// Define a filter

const filter = (fn) => fn === listener;

// By default, we're not filtering

let filtered = listeners;

// Do we want to filter by callback?

if(listener) {

switch(typeof listener) {

case 'object': listener = this._wrapObjectListener(listener); break;

171

default:

filtered = listeners.filter(filter);

}

}

// Remove the (filtered) event listeners

filtered.forEach(listener => {

this.removeEventListener(event, listener);

listeners.splice(listeners.findLastIndex(filter), 1);

});

// Allow for method chaining

return this;

}

/**

* In preparation for garbage collection, clear all listeners.

*/

clearListeners() {

const self = this;

// clear all of the event listeners

self.listeners.forEach((event, listeners) => listeners.forEach((listener) =>

self.removeEventListener(event, listener)));

this._listeners.clear();

this._wrappedObjects.clear();

}

/**

* Emit an event to be handled by all listeners.

* @param {string} event - A string defining the event we're emitting.

* @param {any} info - Event details to be passed on to the listener.

* @todo Support default event types as well, so we can simulate events.

* @todo Should be async?

*/

emit(event, info = {}) {

if(event === '*') throw new TypeError("Cannot emit '*' events!");

// Emit the event

172

let custom = new CustomEvent(event, { detail:info });

this.dispatchEvent(custom);

// Emit a '*' event, including the proper details

if(this._listenersForEvent('*').length > 0) {

info['sourceType'] = event;

custom = new CustomEvent('*', { detail:info });

this.dispatchEvent(custom)

}

return this;

}

/**

* Add an event handler for when we receive events.

* @param {string} event - A string defining the event we're listening for.

* @param {CallableFunction} callback - The callback to run when the event has occurred.

* @param {boolean} once - true if we only want to handle the event once, false otherwise.

*/

on(event, listener, once = false, options = {}) {

switch(typeof listener) {

case 'object':

// Only objects which have the handleEvent property can be passed

if(!Reflect.has(listener, 'handleEvent'))

throw new TypeError(`Object ${listener.constructor.name} has no handleEvent

property!`);

this._addListener(event, this._wrapObjectListener(listener), once, options);

break;

case 'function':

this._addListener(event, listener, once);

break;

default:

throw new TypeError(`Invalid event listener type: ${typeof listener}!`);

}

return this;

173

}

/**

* Add an event handler for when we receive events. These events are only handled once, and

then removed.

* @param {string} event - A string defining the event we're listening for.

* @param {CallableFunction} callback - The callback to run when the event has occurred.

*/

once(event, listener) { return this.on(event, listener, true); }

/**

* Disable any event handlers for this event

* @param {Event} event - The event we want to stop listening for.

* @param {CallableFunction} callback - A callback we'd like to filter out.

*/

off(event, listener) { return this._removeListener(event, listener); }

/**

* A basic event handler.

* @param {Event} event - The event to handle.

*/

handleEvent(event) {

// Get the key, or the source event, if we're a '*' event.

const key = (event.type === '*' && event.detail.sourceType) ? event.detail.sourceType :

event.type;

try {

this['on' + key](event);

} catch(e) {

console.error(`Received unhandled ${key} event!`, event)

console.info(e)

}

}

}

C.1.2 DGTestRig

Listing C.2. Javascript code for DGTestRig.

174

/**

* @file /src/common/test/test.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the GPU test rig for Dynamical Graph.

*

* @created 28 July 2022

*/

import DGBase from '../base.js'

export default class DGTestRig {

static assertThrows(fn, message) {

try {

fn();

console.error(`Function failed to throw: ${message}!`);

return false;

} catch(e) {

console.log(`fn threw exception: ${e}`)

return true;

}

}

static assertTrue(test, message) {

if(!(test)) {

console.error(`Assertion Failed! ${message}`, test);

return false;

}

return true;

}

static assertFalse(test, message) {

if((test)) {

console.error(`Assertion Failed! ${message}`, test);

return false;

175

}

return true;

}

static assertEQ(a, b, message) {

if(!DGBase.objectEquals(a, b)) {

console.error(`Assertion Failed! ${message}`, a, b)

return false

}

return true;

}

static assertNEQ(a, b, message) {

if(DGBase.objectEquals(a, b)) {

console.error(`Assertion Failed! ${message}`, a, b)

return false

}

return true;

}

static assertInRange(value, min, max, message) {

if(value < min || value > max) {

console.error(`Assertion Failed: ${message} ${value} <> (${min}, ${max}!`)

return false

}

return true

}

/**

* Run all functions whose name starts with "test_"

* @todo Replace with a function generator!

* @todo Parse the *TestRig name and create a new group, so we can add multiple tests to a

single module.

*/

static async run() {

176

const asyncEvery = async (array, predicate) => {

for(let item of array) {

if(!await predicate(item)) return false;

}

return true;

};

const needle = /^test_/g;

const tests = Reflect.ownKeys(this)

.filter((key) => key.match(needle))

await asyncEvery(tests, async (test) => {

console.group(test)

console.log(`Running test "${test.replace(needle, '').replace(/_/g, ' ')}"`)

return this[test]()

.then((ok) => {

(ok) ? console.log('Passed!'): console.error('Failed!');

return ok;

})

.finally(() => { console.groupEnd(); });

})

.then((ok) => {

(ok) ? console.log('All tests passed!'): console.error('Some tests failed!');

return ok;

})

}

}

177

C.1.3 DGGPUEngineTestRig

Listing C.3. Javascript code for DGGPUEngineTestRig.

/**

* @file /src/common/gpu/test/gpu.engine.test.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the WebGPU[Compute/Render]Engine test rig for Dynamical

Graph.

*

* @created 28 July 2022

*/

/* global GPUMapMode */

import DGTestRig from '../../test/test.js';

import DGUtil from '../../util/util.js';

import DGWebGPUComputeEngineValidation from './compute.js';

export default class DGGPUEngineTestRig extends DGTestRig {

static computeEngine = null;

static async test_compute_engine() {

// Build the engine

return DGWebGPUComputeEngineValidation.build()

// Execute the shader

.then((engine) => {

DGGPUEngineTestRig.computeEngine = engine;

return engine;

})

// Get the output

.then((engine) => {

const buffer = engine.bufferForKey('result');

return buffer.mapAsync(GPUMapMode.READ, 0, engine.bufferSize);

178

})

// Do the test

.then(() => {

const engine = this.computeEngine;

const buffer = engine.bufferForKey('result');

const expected = new Uint32Array([...DGUtil.iterRange(engine.elementCount, x => x +

engine.offset)]);

const arrayBuffer = buffer.getMappedRange(0, engine.bufferSize);

const actual = new Uint32Array(arrayBuffer);

return this.assertEQ(expected, actual, "values not equal!");

})

.catch((e) => {

console.error(e);

return false;

});

}

}

document.addEventListener('DOMContentLoaded', () => { DGGPUEngineTestRig.run() });

179

C.1.4 DGAsyncLoop

Listing C.4. Javascript code for the DGAsyncLoop Interface.

/**

* @file /src/common/adt/asyncLoop.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the Asynchronous Loop interface for Dynamical Graph.

*

* @created 28 July 2022

*/

/**

* Adds an async version of the 'map' method.

* @param {AsyncFunction} callback - An asynchronous function callback.

* @param {Array|Object} thisArg - The array/object to be used as 'this'

* @returns An array

*/

Array.prototype.asyncMap = async function(callback, thisArg = this) {

return Promise.all(thisArg.map(async (e, i, a) => await callback(e, i, a)));

}

/**

* Adds an async version of the 'forEach' method. An alias for asyncMap()

* @param {AsyncFunction} callback - An asynchronous function callback.

* @param {Array|Object} thisArg - The array/object to be used as 'this'

*/

Array.prototype.asyncForEach = async function(callback, thisArg = this) {

return thisArg.asyncMap(callback, thisArg);

};

/**

* Adds an async version of the 'filter' method.

* @param {AsyncFunction} callback - An asynchronous function callback.

* @param {Array|Object} thisArg - The array/object to be used as 'this'

180

*/

Array.prototype.asyncFilter = async function(predicate, thisArg = this) {

return thisArg.asyncMap(predicate, thisArg)

.then((result) => thisArg.filter((_, i) => result[i]))

}

/**

* Adds a parallel async version of the 'reduce' method.

* @param {AsyncFunction} callback - An asynchronous function callback.

* @param {Array|Object} thisArg - The array/object to be used as 'this'

*/

Array.prototype.reduce = async function(callback, thisArg = this, init = 0,) {

const reducer = async (p, e, i, a) => await callback(p, e, i, a) ? [...await p, e] : p;

return thisArg.reduce(reducer, init);

}

/**

* Adds a sequential async version of the 'filter' method.

* @param {AsyncFunction} callback - An asynchronous function callback.

* @param {Array|Object} thisArg - The array/object to be used as 'this'

*/

Array.prototype.reduceSequential = async function(callback, init) {

const reducer = async (p, e, i, a) => [...await p, ...await callback(p, e, i, a) ? [e]

: []];

return this.reduce(reducer, init);

}

181

C.1.5 DGBitVector & DGBitMatrix

Listing C.5. Javascript code for DGBitVector & DGBitMatrix.

/**

* @file /src/common/adt/bitvector.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the bitvector ADT class.

*

* @created 17 August 2022

*/

/**

* An implementation of a bitvector/bitvector ADT.

*/

export class DGBitVector {

/**

* Return the number of bits per 'element' of the base array.

* @type {number}

*/

static get BITS_PER_ELEMENT() { return 32; }

/**

* The default constructor.

* @constructor

* @param {number} count - The number of bits in the bitvector.

*/

constructor(count = 64) {

if(typeof count !== 'number')

throw new TypeError(`Attempt to create bitset with invalid type ${typeof count}!`);

// Sanitize

this._length = Math.floor(count);

const elementCount = Math.ceil(this._length / DGBitVector.BITS_PER_ELEMENT);

182

// Create the bit array

this._bits = new Uint32Array(elementCount);

}

/**

* The length of the bitvector.

* @type {number}

*/

_length = 64;

/**

* Convenience method for sanitizing the index.

* @param {number} index - The bit index.

* @returns {number} The sanitized index value.

* @throws TypeError if index is not a numeric type.

* @throws RangeError if index is out of bounds.

*/

_checkIndex(index) {

if(typeof index !== 'number')

throw new TypeError(`invalid index type ${typeof index}!`);

if(index >= this._length)

throw new RangeError(`index out of range: ${index} > ${this._length}!`);

return index;

}

/**

* Return the length of the bitvector.

* @type {number} - The length of the bitvector (in bits).

*/

get length() { return this._length; }

/**

* Get the value of the bit at the specified index.

* @param {number} index - The bit index.

*/

get(index) { return this._get(index); }

183

/**

* A convenience method so the iterator works for subclasses as well.

* @param {number} index - The index.

*/

_get(index) {

index = this._checkIndex(index);

return (this._bits[Math.floor(index / DGBitVector.BITS_PER_ELEMENT)] & (1 << (index

% DGBitVector.BITS_PER_ELEMENT))) != 0;

}

/**

* Set the bit at the specified index.

* @param {number} index - The bit index.

*/

set(index, value = true) {

index = this._checkIndex(index);

// set the bit

if(value)

this._bits[Math.floor(index / DGBitVector.BITS_PER_ELEMENT)] |= (1 << (index %

DGBitVector.BITS_PER_ELEMENT));

else

this._bits[Math.floor(index / DGBitVector.BITS_PER_ELEMENT)] &= ~(1 << (index %

DGBitVector.BITS_PER_ELEMENT));

// allow method chaining

return this;

}

/**

* Clear the bit at the specified index.

* @param {number} index - The bit index.

* @throws {RangeError|TypeError}

*/

clear(index) { return this.set(index, false); }

/**

* An iterator for scanning each of the bits.

184

* @type {Iterator}

*/

[Symbol.iterator]() {

let cursor = 0;

const vec = this;

const iterator = {

next() {

let done = !(cursor < vec.length);

return {

value: done ? undefined : vec._get(cursor++),

done: done

};

}

};

return iterator;

}

/**

* Print the object to a string, by looping through all of the bits and output.

*/

toString() { return '0b' + [...this].map(x => x ? 1 : 0) .join(''); }

}

export default DGBitVector;

/**

* Class representing a square matrix of bits.

* @extends DGBitVector

* @inheritdoc

*/

export class DGBitMatrix extends DGBitVector {

constructor(rows) {

super(rows * rows);

this._size = { rows: rows, columns: rows };

}

/**

185

* The size of the matrix: r,c.

* @type {Object}

*/

_size = {

rows: 1,

columns: 1,

};

/**

* The size of the matrix: r,c.

* @type {Object}

*/

get size() { return Object.freeze(this._size); }

/**

* Calculate the index offset for given row and column indices.

* @param {number} r - The row index.

* @param {number} c - The column index.

* @throws TypeError if `r` or `c` are not number instances.

* @throws RangeError if `r` >= the number of rows or `c` >= the number of columns.

*/

_checkIndex(r, c) {

if(c === undefined) return super._checkIndex(r);

if(typeof r !== 'number' || typeof c !== 'number')

throw new TypeError(`Invalid index type (${typeof r}${typeof c},!`);

if(r >= this._size.rows || c >= this._size.cols)

throw new RangeError(`Index out of range: (${r},${c})!`);

return r * this._size.rows + c;

}

/**

* Get the bit value at the given row and column indices.

* @param {number} r - The row index.

* @param {number} c - The column index.

*/

get(r, c) { return super.get(this._checkIndex(r, c)); }

186

/**

* Set the bit value at the given row and column indices.

* @param {number} r - The row index.

* @param {number} c - The column index.

*/

set(r, c, value = true) { super.set(this._checkIndex(r, c), value); return this; }

/**

* Clear the bit value at the given row and column indices.

* @param {number} r - The row index.

* @param {number} c - The column index.

*/

clear(r, c) { super.clear(this._index(r, c)); return this; }

/**

* Return a string representation of the bitmatrix.

* @returns {string}

*/

toString() {

const r = this._size.rows;

const c = this._size.columns;

return [...this].map((x, i) => {

const s = ((i % c) == (c - 1)) // Is this the end of a row?

? (i != (r * c - 1)) ? '\n' : '' // Is this the last item?

: '';

return `${x ? 1 : 0}${s}`

})

.join('');

}

}

/**

* A class representing an upper or lower triangular bit-matrix.

* @type {DGTriangularBitMatrix}

* @extends DGBitMatrix

* @inheritdoc

*/

export class DGTriangularBitMatrix extends DGBitMatrix {

187

constructor(rows, upper = false) {

super((rows * rows) / 2);

this._size = { rows: rows, columns: rows };

this._upper = upper;

}

/**

* Return true, if this is an upper triangular matrix, false otherwise.

* @type {boolean}

*/

_upper = false;

/**

* Return true, if this is an upper triangular matrix, false otherwise.

* @type {boolean}

*/

get upper() { return this._upper }

/**

* Calculate the number of columns for a given row.

* @param {number} r - The row index.

*/

_cols(r) {

return (this._upper) ?

(this._size.columns - r) :

r + 1

}

/**

* Calculate the index offset for given row and column indices

* @param {number} r - The row index.

* @param {number} c - The column index.

* @throws {RangeError|TypeError}

*/

_checkIndex(r, c) {

if(c === undefined) return super._checkIndex(r);

if(typeof r !== 'number' || typeof c !== 'number')

188

throw new TypeError(`Invalid index type (${typeof r}${typeof c},!`);

if(r > this._size.rows)

throw new RangeError(`Index out of range: (${r},${c})!`);

if(this._upper) {

if(c < r)

throw new RangeError(`Index out of range: (${r},${c})!`);

}

else if(c > r)

throw new RangeError(`Index out of range: (${r},${c})!`);

const m = this;

const doit = (r, c) => {

const d = m._cols(r - 1)

const e = Math.ceil((d * (d + 1)) / 2)

return e + c;

}

return (this._upper) ?

doit((this._size.rows - 1) - r, (this._size.rows - 1) - c) :

doit(r, c)

}

/**

* Return a string representation of the bitmatrix.

* @returns {string}

*/

toString() {

const r = this._size.rows;

const p = new Array(r - 1)

.fill(' ')

.join('');

let a = [];

let i = 0, j = 0;

// This is an upper-triangular matrix.

if(this._upper) {

for(i = 0; i < r; ++i) {

189

for(j = i; j < r; ++j) a.push(this.get(i, j) ? 1 : 0);

if(i < (r - 1)) {

a.push('\n');

a.push(p.substring(r - (i + 2)));

}

}

}

// This is a lower-triangular matrix.

else {

for(i = 0; i < r; ++i) {

for(j = 0; j < this._cols(i); ++j) a.push(this.get(i, j) ? 1 : 0);

a.push(p.substring(j - 1));

if(i < (r - 1)) a.push('\n');

}

}

return a.join('');

}

}

190

C.1.6 DGGraphBase

Listing C.6. Javascript code for DGGraphBase.

/**

* @file /src/common/adt/graph/base.js

* @author Rob Dotson

* @copyright 2020 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the abstract DGGraphBase class.

*

* @created 28 July 2020

*/

import DGBase from '../../base.js';

import DGRNG from '../../math/random/base.js';

/**

* @class DGGraphBase

* @desc DGGraphBase is an abstract class interface for creating DGGraph* instances.

*/

export class DGGraphBase extends DGBase {

/**

* @constructor

* @param {string} key - A String containing the DGGraphBase instances's key.

* @param {object} attributes - A key/value pair containing the DGGraphBase instance's

attributes.

* @param {boolean} debug - A boolean flag indicating whether or not to debug the DGGraphBase

instance.

*/

constructor(key, attributes, debug = false) {

super(debug);

// Set the key

if(!key || !((typeof key === 'string') || (key instanceof String)) || key == "")

throw new RangeError(`Cannot initialize ${this.constructor.name} with null 'key' field!`

);

191

this._key = key;

// Set the attributes

this._attributes = attributes || {};

// Set the time

this._attributes['birthdate'] = performance.now();

}

/**

* Get the specified key from a DGGraphBase subclass instance.

* @param {DGGraphBase} input - The subclass instance.

* @todo rename makeKey()

*/

static getKey(input) {

switch(typeof input) {

case 'string': break;

case 'object':

if(input instanceof DGGraphBase) { input = input.key; break; }

// fallsthrough

default:

throw new TypeError(`Source element has an invalid type: ${input.constructor.name}!`);

}

return input;

}

/**

* Generate a default key for the specified instance.

* @returns {string}

*/

static makeKey() { return [

this.prototype.constructor.name.replace(/^DG/g, ''),

DGRNG.Uint32.toString(16)

].join('-');

}

/**

192

* A string uniquely identifying the instance.

* @type {string}

*/

_key = "";

/**

* Return the instance's key.

* @type {string} - The key.

*/

get key() { return this._key; }

/**

* An object containing the instances attributes.

* @type {Object}

*/

_attributes = {};

/**

* Return the instance's attributes.

* @type {Object} - The attributes.

* @todo Move attributes to attributable interface, or remove.

*/

get attributes() { return this._attributes; }

/**

* Return the age of the graph element.

* @type {Number} - The birthdate of the materialization in milliseconds.

*/

get birthdate() { return this._attributes['birthdate']; }

/**

* Return the age of the graph element.

* @type {Number} - The age of the graph element in milliseconds.

*/

get age() { return performance.now() - this._attributes['birthdate']; }

}

export default DGGraphBase;

193

C.1.7 DGGraph

Listing C.7. Javascript code for DGGraph.

/**

* @file /src/common/adt/graph/graph.js

* @author Rob Dotson

* @copyright 2020 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the concrete DGGraph class.

*

* @created 28 July 2020

*/

import DGGraphBase from './base.js';

import DGQuickBloom from '../bloom.js';

import DGGraphNode from './node.js';

import {DGGraphEdge,

DGGraphDirectedEdge} from './edge.js';

import DGGraphSet from '../set.js';

import DGStack from '../stack.js';

import DGQueue from '../queue.js';

import {DGUnimplementedFeatureError,

DGUnsupportedFeatureError} from '../../error/error.js';

import '../array.js';

/**

* An object containing "enum" strings for graph events.

* @type {Object}

*/

export const DGGraphEvent = Object.freeze({

CLEARED : 'graph_cleared',

EDGE_ADDED : 'graph_edge_added',

EDGE_DELETED : 'graph_edge_deleted',

EDGE_MERGED : 'graph_edge_merged',

EDGE_REPLACED : 'graph_edge_replaced',

EDGES_CLEARED : 'graph_edges_cleared',

194

NODE_ADDED : 'graph_node_added',

NODE_DELETED : 'graph_node_deleted',

NODE_MERGED : 'graph_node_merged',

NODE_REPLACED : 'graph_node_replaced',

NODES_CLEARED : 'graph_nodes_cleared',

MATERIALIZE_BEGIN : 'graph_materialize_begin',

MATERIALIZE_END : 'graph_materialize_end',

MATERIALIZE_ERROR : 'graph_materialize_error',

});

/**

* A concrete class implementation encapsulating the graph ADT.

* @extends DGGraphBase

*/

export class DGGraph extends DGGraphBase {

/**

* The default constructor.

* @param {string} key - A string to use to uniquely identify a graph.

* @param {Object} data - An object containing two arrays: { vertices : <Array|TypedArray>,

edges : <Array|TypedArray> }

* @param {Object} attributes - An object containing the attributes to apply to the entire

graph.

* @param {boolean} debug - true if we want to debug this object, false otherwise.

*/

constructor(key = DGGraph.makeKey(), attributes = {}, debug = false) {

super(key, attributes, debug);

}

/**

* Convenience getter for graph events.

* @type {Object}

*/

static events = Object.freeze(DGGraphEvent);

/**

* Clear the graph

*/

clear() {

this

195

._clearEdges()

._clearNodes()

._clearMaterialization()

this.emit(DGGraphEvent.CLEARED, this);

}

/**

* The attributes for the graph

* @type {Object} - A key-value store containing attributes for this graph.

*/

get attributes() { return this._attributes; }

/**

* Determines if the graph allows self-looping.

* @type {boolean} - True, if self-loops are allowed, false otherwise.

*/

get allowsSelfLoops() { return this._attributes['allowsSelfLoops'] || true; }

/**

* Determines if the graph is directed or not.

* @type {Boolean} - True, if the graph is directed, false otherwise.

*/

get directed() { return this._attributes['directed'] || false; }

/**

* Determines whether or not the graph is a multigraph or not.

* @type {boolean} - True, multiple edges between the same nodes is allowed, false otherwise.

*/

get multiGraph() { return this._attributes['multiGraph'] || false; }

/**

* Return true if the graph is complete, false otherwise.

* @type {boolean}

*/

get complete() {

const e = [...this._nodes.values()]

.map(n => n.degree(this.directed, this.allowsSelfLoops))

.reduce((prev, current) => prev + current, 0);

196

const n = this.order;

return (e / 2) == (n * (n - 1) / 2);

}

/**

* The map of all edges attached to this graph.

* @type {Map<string,DGGraphEdge>}

*/

_edges = new Map();

/**

* Returns the size of the graph.

* @type {number} - The number of edges defined for this graph.

*/

get size() { return this._edges.size; }

/**

* The map of all edges attached to this graph.

* @type {Map<string,DGGraphEdge>}

*/

get edges() { return this._edges; }

/**

* Return the maximum number of edges that could be defined for this graph.

* @type {number} - The maximum number of edges.

*/

get maxEdges() {

const n = this.order;

let m = n - 1 + this.directed + this.allowsSelfLoops;

return (n * m) / 2;

}

/**

* Some extensible edge operations.

* @type {Object}

*/

static _edge_ops = Object.freeze({

CHECK : 0,

197

OVERWRITE : 1,

MERGE : 2,

});

/**

* Some extensible edge operations.

* @type {Object}

*/

static get EDGE_OP() { return this._edge_ops; }

/**

* Add an edge with the specified parameters to the graph.

* @param {DGGraphNode|string} source - The source node.

* @param {DGGraphNode|string} target - The target node.

* @param {Object} attributes - Attributes to use when creating the edge.

* @param {number} op - The operation to perform when adding the edge: 0 = check, 1 =

overwrite, 2 = merge

* @throws {DGUnsupportedFeatureError|RangeError|DGUnimplementedFeatureError}

*/

addEdge(source, target, attributes = { directed:this.directed }, op = DGGraph.EDGE_OP.CHECK

) {

// Does the graph allow self loops?

if(source == target && !this.allowsSelfLoops)

throw new DGUnsupportedFeatureError(`${this.key} does not allow self loops!`);

// Cache the nodes so we don't call .has() and .get() repeatedly

source = this._nodes.get(DGGraph.getKey(source));

target = this._nodes.get(DGGraph.getKey(target));

// Does the source node exist?

if(!source) throw new RangeError(`Source node '${source}' doesn't exist!`);

// Does the destination node exist?

if(!target) throw new RangeError(`Destination node '${target}' doesn't exist!`);

// Do the directed attributes match?

if((attributes.directed || this.directed) != this.directed)

throw new RangeError(`Attempt to add ${ attributes.directed ? '' : 'un'}directed edge to

${ this.directed ? '' : 'un'}directed graph!`);

198

// Are we trying to add a self-loop to a graph that disallows them?

if(source === target && !this.allowsSelfLoops)

throw new RangeError(`Attempt to add self-loop to graph that disallows them!`);

// Create the edge

//! @todo - should I also insert the edge with the opposite key for undirected graphs?

let edge = (attributes.directed)

? new DGGraphDirectedEdge(source, target, attributes)

: new DGGraphEdge(source, target, attributes);

// Get the old edge, if it exists

const old = this._edges.get(edge.key);

//! @todo we should make it easy for subclasses to check for this edge, and also check the

inverse, [b-a]

//! @todo to support multi-graphs, we should check if it exists, and if so, replace the

current edge with an array.

switch (op) {

// Check to see if the edge exists.

case DGGraph.EDGE_OP.CHECK: return this._edgeCheckAndSet(old, edge);

// Overwrite the existing edge.

case DGGraph.EDGE_OP.OVERWRITE: return this._edgeOverwrite(old, edge);

// Merge the edges.

case DGGraph.EDGE_OP.MERGE: return this._edgeMerge(old, edge);

// Invalid operation

default: throw new DGUnsupportedFeatureError(`Invalid edge op: ${op}!`);

}

}

_edgeCheckAndSet(prev, next) {

if(prev)

throw new RangeError(`Edge with key '${next.key}' exists!`);

// add the node

this._edges.set(next.key, next);

199

// notify anyone who cares

this.emit(DGGraphEvent.EDGE_ADDED, { graph: this, edge: next });

// method chaining

return this;

}

_edgeOverwrite(prev, next) {

// set the new node with that key

this._nodes.set(next.key, next);

// notify anyone who cares

if(prev) this.emit(DGGraphEvent.EDGE_REPLACED, { graph: this, edge: prev });

// method chaining

return this;

}

_edgeMerge(prev, next) { (prev,next);

throw new DGUnimplementedFeatureError('Edge merging is not yet supported!');

}

/**

* Determine whether or not the graph has an edge connecting these two nodes.

* @param {DGGraphNode|string} source - The source node or its key.

* @param {DGGraphNode|string} target - The target node or its key.

* @returns {boolean} - True if the graph has the specified key, false otherwise.

*/

hasEdge(source, target) {

// sanitize

source = DGGraph.getKey(source);

target = DGGraph.getKey(target);

const keys = (this.directed)

? [DGGraphEdge.makeKey(source, target, true), undefined]

: [DGGraphEdge.makeKey(source, target, false), DGGraphEdge.makeKey(target, source,

false)];

200

// If we're not directed, the node could have been stored in either direction.

return this._edges.has(keys[0]) || this._edges.has(keys[1]);

}

/**

* Retrieve the edge connecting the specified nodes.

* @param {DGGraphNode} source - The source node.

* @param {DGGraphNode} target - The target node.

* @returns {DGGraphEdge}

* @throws {RangeError}

*/

getEdge(source, target) {

// sanitize

source = DGGraph.getKey(source);

target = DGGraph.getKey(target);

const keys = (this.directed)

? [DGGraphEdge.makeKey(source, target, true), undefined]

: [DGGraphEdge.makeKey(source, target, false), DGGraphEdge.makeKey(target, source,

false)]

const edge = this.edgeForKey(keys[0]) || this.edgeForKey(this._edges.get(keys[1])

);

if(!edge)

throw new RangeError(`No edge from ${source} to ${target} exists!`);

return edge;

}

/**

* Find the edge with the specified key

* @param {string} key - A key identifying the edge to locate.

* @returns {DGGraphEdge|undefined}

*/

edgeForKey(key) { return this._edges.get(key); }

/**

* Clear all of the edges in the graph.

201

*/

_clearEdges() {

this._edges.clear();

this.emit(DGGraphEvent.EDGES_CLEARED, this);

return this;

}

/**

* Remove an edge from the graph instance.

* @param {DGGraphEdge|string} edge - The edge to remove.

*/

edgeRemove(edge) {

switch(typeof edge) {

case 'object': break;

case 'string':

if((edge = this.edgeForKey(edge))) break;

// fallthrough

default:

throw new TypeError(`Invalid edge or key!`);

}

// Clear the edge and remove it.

this._edges.delete(edge.clear().key);

// Notify everyone

this.emit(DGGraphEvent.EDGE_DELETED, edge);

}

/**

* Filter edges by arbitrary criteria.

* @param {CallableFunction} filter - The filter to use when selecting edges.

* @returns {Array<DGGraphEdge>}

*/

edgeFilter(filter) {

if(typeof filter !== 'function')

throw new TypeError(`Invalid filter!`);

return [...this._edges.values()].filter(filter);

202

}

/**

* A map of all of the vertices (nodes) contained in the graph.

* @type {Map<string,DGGraphNode>}

*/

_nodes = new Map();

/**

* Return the number of vertices in the graph instance.

* @type {number} - The number of vertices in the graph instance.

*/

get order() { return this._nodes.size; }

/**

* Return the set of vertices.

* @type {Map<string,DGGraphNode>} - The nodes attached to this graph.

*/

get nodes() { return this._nodes; }

/**

* Basic node operations to determine what to do when adding nodes.

* @type {Readonly<Object>}

*/

static _node_ops = Object.freeze({

CHECK: 0,

OVERWRITE: 1,

MERGE: 2,

});

/**

* Basic node operations to determine what to do when adding nodes.

* @type {Readonly<Object>}

*/

static get NODE_OP() { return this._node_ops; }

/**

* Add a node to the graph.

* @param {DGGraphNode} node - The node to add.

203

* @param {number} op - The operation to perform on the node: 0 = check, 1 = overwrite, 2 =

merge

*/

nodeAdd(node, op = DGGraph.NODE_OP.CHECK) {

if(!(node instanceof DGGraphNode))

throw new TypeError(`Attempt to add node of invalid type: '${node.constructor.name}'!`);

const key = node.key;

// get the old node if it exists

const old = this._nodes.get(key);

switch (op) {

// Check to see if the node already exists

case DGGraph.NODE_OP.CHECK:

if(old)

throw new RangeError(`Node with key '${key}' exists!`);

// add the node

this._nodes.set(key, node);

// notify anyone who cares

this.emit(DGGraphEvent.NODE_ADDED, { graph: this, node: node });

break;

// Overwrite any node(s) that already exist.

case DGGraph.NODE_OP.OVERWRITE:

// set the new node with that key

this._nodes.set(key, node);

// notify anyone who cares

if(old) this.emit(DGGraphEvent.NODE_REPLACED, { graph:this, previous:old,

current:node });

break;

// Merge the new and old nodes together.

case DGGraph.NODE_OP.MERGE:

throw new DGUnimplementedFeatureError('Node merging is not yet supported!');

// We shouldn't get here.

default:

throw new DGUnsupportedFeatureError(`Invalid node op: ${op}!`);

204

}

return this;

}

/**

* Remove a node from the graph instance.

* @param {DGGraphNode|string} edge - The node to remove.

*/

nodeRemove(node) {

node = this.nodeGet(node);

// Get any edges linked to this node, and remove them.

this._edges

.filter((edge) => edge.source === node || edge.target == node)

.forEach((edge) => this.edgeRemove(edge))

// Remove the node.

this._edges.delete(node.key);

// Notify everyone

this.emit(DGGraphEvent.NODE_DELETED, node);

}

/**

* Get a node, ensuring that it is a valid node type.

* @param {DGGraphNode|string} node - The node to retrieve

*/

nodeGet(node) {

switch(typeof node) {

case 'string': node = this.nodeForKey(node); break;

case 'object': node = this.nodeCheck(node); break;

default:

throw new TypeError(`Invalid node or key!`);

}

return node;

}

205

/**

* Retrieve a node with the specified key.

* @param {string} key - The node key.

*/

nodeForKey(key) {

let node;

if(!(node = this._nodes.get(key)))

throw new RangeError(`Node with key '${key}' doesn't exist!`);

return node;

}

/**

* Check to make sure this node is attached to this graph.

* @param {DGGraphNode} node - The node to check.

*/

nodeCheck(node) {

if(node instanceof DGGraphNode) {

if(!this._nodes.has(node.key))

throw new RangeError(`Disconnected node '${node.key}'!`);

} else

throw new TypeError(`Invalid node object:${node.constructor.name}!`);

return node;

}

/**

* Filter nodes by arbitrary criteria.

* @param {CallableFunction} filter - The filter to use when selecting nodes.

* @returns {Array<DGGraphNode>}

*/

nodeFilter(filter) {

if(typeof filter !== 'function')

throw new TypeError(`Invalid filter!`);

return [...this._nodes.values()].filter(filter);

}

206

/**

* Return an array of nodes attached to the graph with an order > 0.

* @type{Array<DGGraphNode>}

*/

connectedNodes() {

const filter = (node) => { return node.degree(this.directed, this.allowsSelfLoops) > 0;

}

return this.nodeFilter(filter);

}

/**

* Return an array of disconnected nodes attached to the graph.

* @type{Array<DGGraphNode>}

*/

disconnectedNodes() {

const filter = (node) => { return node.degree(this.directed, this.allowsSelfLoops) ==

0; }

return this.nodeFilter(filter);

}

/**

* Clear all of the nodes from the graph.

*/

_clearNodes() {

this._nodes.clear();

this.emit(DGGraphEvent.NODES_CLEARED, this);

return this;

}

/**

* Determine whether two nodes are adjacent.

* @param {DGGraphNode|String} a - The first node, or its key.

* @param {DGGraphNode|String} b - The second node, or its key.

* @returns {boolean} - True if the two nodes are adjacent, false otherwise.

* @todo optimize.

*/

isAdjacent(a, b) {

try {

207

return this.hasEdge(a, b);

} catch(e) {

console.log(e);

return false;

}

}

/**

* Return a set of neighbors for the specified nodes.

* @param {DGGraphNode} node - The node to query.

* @returns {DGGraphSet} - The set of neighbors of the specified node.

*/

neighbors(node) {

return DGGraphSet.union(node.sources, node.targets);

}

/**

* Return the graph density.

* @todo update for multigraphs

*/

get density() {

const order = this.order;

const size = this.size;

const d = (order * (order - 1));

return (order < 2)

? 0

: (this.directed)

? size / d

: (2 * size) / d;

}

/**

* Return an array of nodes ordered by depth-first search.

* @param {DGGraphNode|string} node - The node from which to start the search.

* @param {CallableFunction} - A callback function to call on each visited node: (node,

index) => {}

* @returns {Array<DGGraphNode>}

*/

dfs(node, visitFunc) {

208

const start = (node) ? this.nodeGet(node) : this._nodes.keys().next().value;

let visited = new DGGraphSet();

let stack = DGStack.from([start]);

let i = -1; // Index of the node we're visiting.

const noop = (node, index) => { console.log(`DFS visit: ${index}`, node.key); }

// Set the visit function

visitFunc = visitFunc || noop;

// Loop through all nodes connected to the first.

while(!stack.empty) {

// Pop the current node from the stack

const node = stack.pop();

// If we've already visited it, we're done

if(visited.has(node)) continue;

// Mark the current node as visited

visited.add(node);

// Perform the visit function on the node.

visitFunc(node, ++i);

// For each target node we haven't visited, push it onto the stack.

node.targets.forEach(t => { if(!visited.has(t)) stack.push(t); })

}

// Return the array in the order they were visited.

return [...visited];

}

/**

* Return an array of nodes ordered by breadth-first search.

* @param {DGGraphNode} start - The node from which to start the search.

* @param {CallableFunction} - A callback function to call on each visited node: (node,

index) => {}

* @returns {Array<DGGraphNode>}

*/

bfs(node, visitFunc) {

209

const start = (node) ? this.nodeGet(node) : this._nodes.keys().next().value;

let visited = new DGGraphSet();

let queue = DGQueue.from([start]);

let i = -1; // Index of the node we're visiting.

const noop = (node, index) => { console.log(`BFS visit: ${index}`, node.key); }

// Set the visit function

visitFunc = visitFunc || noop;

while(!queue.empty) {

// Remove the current node from the queue

const node = queue.dequeue();

// If we've already visited this node, we're done

if(visited.has(node)) continue;

// Mark the current node as visited

visited.add(node);

visitFunc(node, ++i);

// For each target node we haven't visited, push it into the queue.

node.targets.forEach(t => { if(!visited.has(t)) queue.enqueue(t); })

}

// Return the array in the order they were visited.

return [...visited];

}

_materialization = null;

/**

* Materialize an array.

* @param {DGMaterializationStrategy} strategy - The materialization strategy to use.

* @returns {Promise<boolean>} - Returns resolving to true if the materialization completed,

false otherwise.

*/

async materialize(strategy) {

// notify the world that we've begun materializing

210

this.emit(DGGraphEvent.MATERIALIZE_BEGIN, this);

// execute the strategy.

return strategy.execute(this)

.then((materials) => { this._materialization = materials; return this; })

.then(() => { this.emit(DGGraphEvent.MATERIALIZE_END, this); return this; })

.catch((error) => {

console.error(error);

this.emit(DGGraphEvent.MATERIALIZE_ERROR, this);

})

.finally(() => { return this; })

}

/**

* Clear the materialization if it exists.

*/

_clearMaterialization() {

this._materialization.destroy();

this._materialization = null;

}

}

export default DGGraph;

/**

* An implementation of an undirected multigraph ADT.

* @extends DGGraph

* @inheritdoc

*/

export class DGMultiGraph extends DGGraph {

/**

* The default constructor.

* @param {string} key - A string to use to uniquely identify a graph.

* @param {Object} data - An object containing two arrays: { vertices : <Array|TypedArray>,

edges : <Array|TypedArray> }

* @param {Object} attributes - An object containing the attributes to apply to the entire

graph.

* @param {boolean} debug - true if we want to debug this object, false otherwise.

*/

211

constructor(key = DGGraph.makeKey(), attributes = {}, debug = false) {

super(key, attributes, debug);

this._attributes['multiGraph'] = true;

}

}

/**

* An implementation of a directed graph ADT.

* @extends DGGraph

* @inheritdoc

*/

export class DGDirectedGraph extends DGGraph {

/**

* The default constructor.

* @param {string} key - A string to use to uniquely identify a graph.

* @param {Object} data - An object containing two arrays: { vertices : <Array|TypedArray>,

edges : <Array|TypedArray> }

* @param {Object} attributes - An object containing the attributes to apply to the entire

graph.

* @param {boolean} debug - true if we want to debug this object, false otherwise.

*/

constructor(key = DGGraph.makeKey(), attributes = {}, debug = false) {

super(key, attributes, debug);

this._attributes['directed'] = true;

}

}

/**

* An implementation of an directed multigraph ADT.

* @extends DGDirectedGraph

* @inheritdoc

*/

export class DGMultiDirectedGraph extends DGDirectedGraph {

/**

* The default constructor.

* @param {string} key - A string to use to uniquely identify a graph.

* @param {Object} data - An object containing two arrays: { vertices : <Array|TypedArray>,

212

edges : <Array|TypedArray> }

* @param {Object} attributes - An object containing the attributes to apply to the entire

graph.

* @param {boolean} debug - true if we want to debug this object, false otherwise.

*/

constructor(key = DGGraph.makeKey(), attributes = {}, debug = false) {

super(key, attributes, debug);

this._attributes['multiGraph'] = true;

}

}

213

C.1.8 DGQuickBloom

Listing C.8. Javascript code for DGBloomFilterBase & DGQuickBloom.

/**

* @file /src/common/adt/set.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the abstract DGGraphLayoutBase class.

*

* @created 17 August 2022

*

* @cite https://llimllib.github.io/bloomfilter-tutorial/

*/

import DGUtil from '../util/util.js';

import DGHash from '../math/hash.js';

import DGBitVector from './bitvector.js';

/**

* An abstract DGBloomFilter class.

*/

export class DGBloomFilterBase {

/**

* The default false positive rate.

* @type {number}

*/

static get DEFAULT_FPR() { return .001; }

/**

* Create a new bloom filter.

* @constructor

* @param {number} n - The maximum capacity of the bloom filter.

* @param {number} fpr - The false positive rate.

*/

constructor(n, fpr = DGBloomFilterBase.DEFAULT_FPR) {

214

// Sanitize

n = Math.floor(n);

n = (n < 1) ? 1 : n;

const bitsPerFilter = DGBloomFilterBase.bitsForFPR(n, fpr);

this._bitvector = new DGBitVector(bitsPerFilter);

this._hashCount = DGBloomFilterBase.hashesForFPR(n, fpr, bitsPerFilter);

this._hashes = [];

}

/**

* Calculate the number of bits to achieve the specified fpr (False Positive Rate) for a

given number of values.

* @param {number} n - The maximum number of values to store in the bloom filter.

* @param {number} fpr - The desired false positive rate.

* @returns {number}

*/

static bitsForFPR(n, fpr) {

let m = Math.pow(2.0, Math.log(2.0));

let nlp = n * Math.log(fpr);

m = Math.log(1.0 / m);

m = ((m * -nlp) / m);

return Math.ceil(m);

}

/**

* Returns the number of hashes required for the specified fpr.

* @param {number} n - The number of items indexed by the bloom filter.

* @param {number} fpr - The desired fpr.

* @param {number} bits - The number of bits in the bitvector.

* @returns {number}

*/

static hashesForFPR(n, fpr, bits) { return Math.ceil((bits / n) * Math.log(2.0)); }

/**

* Return the "width" of the bloom filter in bits.

* @type {number} - The number of bits in the bloom filter.

215

*/

get width() { return this._bitvector.length; }

/**

* Check to see if this function may contain the value we're looking for.

* @param {any} item - The item to check for.

* @returns {boolean} - True, if the bloom filter might contain the value, false otherwise.

*/

mayContain(item) { (item); /* abstract, is always false. */ return false; }

/**

* Add the item to the hash function.

* @param {any} item - The item to add.

* @returns {DGBloomFilterBase}

*/

add(item) { (item); /* abstract, does nothing */ return this; }

/**

* Hash the value

* @param {TypedArray} value - A TypedArray to hash

*/

hash(value) { return this._hashes.map((fn) => fn(value) % this._bitvector.length); }

/**

* Return a string representation of the internal bitvector.

*/

toString() { return this._bitvector.toString(); }

}

/**

* A concrete subclass of DGBloomFilterBase which uses the "quick-bloom" algorithm.

* @type {DGQuickBloom}

*

* @cite Adam Kirsch & Michael Mitzenmacher. Less Hashing, Same Performance: Building a Better

Bloom Filter.

* @see https://www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf

*/

export class DGQuickBloom extends DGBloomFilterBase {

/**

216

* Create a new bloom filter.

* @constructor

* @param {number} n - The number of bits to store in the bloom filter.

* @param {number} fpr - The false positive rate.

* @param {Array<CallableFunction> hashes - An array of hashes to use.

*/

constructor(n, fpr = DGBloomFilterBase.DEFAULT_FPR, hashes = [DGHash.fnv_1, DGHash.murmur]

) {

super(n, fpr)

this._hashes = hashes;

}

/**

* Perform the nth hash.

* @param {number} n - The current hash round index.

* @param {number} a - The first hash.

* @param {number} b - The second hash.

* @param {number} size - The length of the bitvector.

*/

_hash_n(n, a, b, size) { return (a + n * b) % size; }

/**

* Gets an iterable range of indices where the hash values could be.

* @param {number} count - The number of hash rounds to run.

* @param {Array<u32>} hashes - An array of hashes (for quickbloom, this is 2).

* @param {number} length - The length of the bit vector

* @returns {Iterable}

*/

_quickbloom = (count, hashes, length) => DGUtil.iterRange(count, (n) => this._hash_n(n,

hashes[0], hashes[1], length));

/**

* Add the item to the hash function.

* @param {any} item - The item to add.

*/

add(item) {

// Hash the item

const hashes = this.hash(item);

217

// How many hash rounds do we need?

const count = this._hashCount;

// How many bits are in the bitvector?

const length = this._bitvector.length;

// Use the quickbloom algorithm

for(const index of this._quickbloom(count, hashes, length)) this._bitvector.set(index

);

// The above is equivalent to:

// for(let n = 0; n < count; ++n) {

// const index = this._hash_n(n, hashes[0], hashes[1], length);

// this._bitvector[index] = true;

// }

// support method chaining.

return this;

}

/**

* Check to see if this function may contain the value we're looking for. We actually only

use this to determine if something *is not* contained within the filter.

* @param {any} item - The item to check for.

* @returns {boolean} - True if the bloom filter might contain the value, false otherwise.

* @todo Optimize this entire function to remove the stack allocation, turning this into a

single expression.

*/

mayContain(item) {

// Hash the item

const hashes = this.hash(item);

const count = this._hashCount;

const length = this._bitvector.length;

const indexes = this._quickbloom(count, hashes, length);

const map = [...indexes].map(index => this._bitvector.get(index));

const every = map.every(val => val);

218

return every;

}

}

export default DGQuickBloom;

219

C.1.9 DGLayoutEngineBase

Listing C.9. Javascript code for DGLayoutEngineBase.

/**

* @file /src/layout/base.js

* @author Rob Dotson

* @copyright 2020 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the implementation of the abstract DGLayoutEngineBase class.

*

* @created 28 July 2020

*

* @todo Use static mixins for the registry?

*/

import DGBase from '../common/base.js';

import DGGraph from '../common/adt/graph/graph.js';

/**

* Enum for layout events.

* @readonly

* @enum {string}

*/

export const DGLayoutEvent = Object.freeze({

LAYOUT_BEGIN: "layout_begin",

LAYOUT_END: "layout_end",

LAYOUT_STEP: "layout_step",

LAYOUT_ERROR: "layout_error",

});

/**

* The abstract class from which all layout engines inherit.

* @type {DGLayoutEngineBase}

*/

export class DGLayoutEngineBase extends DGBase {

/**

220

* A registry of valid Random Number Generators.

* @type {Map<class>}

*/

static #registry = new Map();

/**

* Return an array of valid shader type names.

* @type {Array<string>}

*/

static get registeredLayouts() { return Array.from(DGLayoutEngineBase.#registry.keys()); }

/**

* Register a layout class with the registry.

* @param {string} key - A string uniquely identifying a layout.

* @param {Prototype} value - A layout for a DGLayoutEngineBase subclass.

*/

static _registerLayout(key, value) { DGLayoutEngineBase.#registry.set(key, value); }

/**

* The default constructor.

* @constructor

* @param {DGLayoutEngineBase} initialLayoutEngine - The layout engine to use when initially

laying out the graph.

* @param {Object} bounds - The boundaries within which the graph will be laid out.

* @param {boolean} debug - true if we wish to debug the engine, false otherwise.

*

* @todo Subclasses must use the same materialization strategy for both this instance and

initialLayoutEngine.

*/

constructor(graph, initialLayoutEngine, strategy, debug = false) {

super(debug)

// set the materialization strategy

this._strategy = strategy;

// sanitize the input

this._initialLayoutEngine = initialLayoutEngine;

// set the bounds

221

this._bounds = bounds;

}

/**

* The layout attributes

* @type {Object|Map}

*/

_attributes = {};

/**

* Return the canvas boundaries.

* @type {Object} - The canvas boundaries.

*/

get bounds() { return this._attributes.bounds || { w: 256, h: 256 }; }

/**

* Set the canvas boundaries.

* @param {Object} bounds - The canvas boundaries

* @todo Subclasses must sanitize this.

*/

set bounds(bounds) { this._attributes['bounds'] = bounds; }

/**

* The graph to layout.

* @type {DGGraph}

*/

_graph = null;

/**

* The graph to layout.

* @type {DGGraph}

*/

get graph() { return this._graph; }

/**

* The materialization strategy to use to materialize the graph.

* @type {DGMaterializationStrategyBase}

* @todo Subclasses for individual layouts should define the fields used in a materialization.

*/

222

_strategy = null;

/**

* Get the materialization strategy.

* @type {DGLayoutStrategyBase}

*/

get materializationStrategy() { return this._strategy; }

/**

* Set the materialization strategy.

* @param {DGLayoutStrategyBase} strategy - The materialization strategy to use to

materialize the graph.

*/

set materializationStrategy(strategy) { this._strategy = strategy; }

/**

* The graph materialization.

* @type {Array<DGGraphMaterializationBase>}

*/

_materials = null;

/**

* Return the materialization if it exists, otherwise lazily materialize the graph.

*/

get materials() { return this._materials || this.materialize(); }

/**

* The initial layout engine to use when laying out this graph.

* @type {DGLayoutEngineBase}

*/

_initialLayoutEngine = null;

/**

* Return the initial layout engine.

* @type {DGLayoutEngineBase} - The initial layout engine.

*/

get initialLayoutEngine() { return this._initialLayoutEngine; }

/**

223

* Set the initial layout engine.

* @param {DGLayoutEngineBase} engine - The initial layout engine.

*/

set initialLayoutEngine(engine) { this._initialLayoutEngine = engine; }

/** BEGIN DGGLOInterface **/

/**

* Materialize the graph

*/

async materialize() {

this._materials = await this._strategy.materialize(this.graph);

return this;

}

/**

* Merge the passed in layouts with this instance, and return a new layout.

* @param {Array<DGGraphLayout>|DGGraphLayout} layouts - One or more layouts to merge into

another.

*/

async mergeLayouts(layouts) { return this.clone(); }

/**

* Merge another materialization with this one.

* @param {DGGraphMaterializationBase} materials - The materials to merge with the current

instance's.

*/

async mergeMaterials(materials) {

await this._strategy.merge(materials, this.materials)

return this;

}

/**

* Use the initial layout engine to layout the graph.

* @param {DGGraph} graph - The graph to be laid out.

* @returns {Promise<DGGraphLayout>} - Returns a promise which will resolve when the initial

layout is complete.

* @todo Subclasses must merge this materialization with the current materialization.

224

*/

async initialLayout(graph = this.graph) {

return this.initialLayoutEngine.layout(graph);

}

/**

* Calculate graph statistics.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the graph's

statistics have been calculated.

*/

async calculateStatistics(layout) { return layout; }

/**

* Calculate graph offsets.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the graph's offsets

have been calculated.

*/

async calculateOffsets(layout) { return layout; }

/**

* Partition the layout materials, and/or slice into buffer-sized components.

* @param {DGGraphLayout} layout - The graph layout.

* @type {AsyncCallableFunction} scatter - A function to partition the layout's materials.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the materials have

been scattered.

*/

async partition(layout, scatter = this.scatter) { return layout._materialsArray = scatter(

layout.materials), layout; }

/**

* Merge the layout materials.

* @param {DGGraphLayout} layout - The graph layout.

* @type {AsyncCallableFunction} gather - A function to merge the materials.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the graph has been

sliced.

*/

async mergePartitions(layout, gather = this.gather) { return layout._materials = gather(

materialsArray), layout; }

225

/**

* Place a graph's nodes according to the instance's algorithm.

* @param {DGGraph} graph - The graph.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the graph has been

laid out.

*/

async place(layout) { return layout; }

/**

* Finesse the graph's nodes into their final positions.

* @param {DGGraph} graph - The graph.

* @returns {Promise<DGGraphLayout>} - A promise which will resolve when the graph has been

finessed.

*/

async finesse(layout) { return layout; }

/**

* Determine if we've reached the terminal condition.

* @type {boolean} - True, if we've reached the terminal condition, false otherwise.

*/

get converged(layout) { return true; }

/**

* The default stop condition for the loop.

* @type {AsyncCallableFunction} - A function to determine whether to exit the loop.

*/

get stop() { return async (layout) => { return this.converged(layout); } }

/**

* The default partition function.

* @type {AsyncCallableFunction} - A function to partition the materials.

*/

get scatter() { return async (materials) => { return [materials] }; }

/**

* The default merge partition function.

* @type {AsyncCallableFunction} - A function which merges materials together.

*/

get gather() { return async (materialsArray) => { return materialsArray[0] }; }

226

/**

* The default fitness condition for the layout.

* @type {AsyncCallableFunction} - A function which returns the fitness metric for the

layout.

*/

get fitness() { return async (layout) => { return true; } }

/**

* Loop through the body of the algorithm until the stop condition is met.

* @param {DGGraph} graph - The graph to layout.

* @param {Object} context - The event context.

* @returns {Promise}

*/

async loop(layout, context, stop = this.stop) {

while(!await stop(layout))

await this.calculateOffsets(layout)

.then(this.place(layout))

.then(() => {

this.emit(DGLayoutEvent.LAYOUT_STEP, context);

})

return layout;

}

/**

* Layout the graph asynchronously.

* @returns {Promise<DGGraph>} - A promise which will resolve when the graph is laid out

successfully or fails.

*/

async layout(graph = this.graph) {

const layout = await this.initialLayout(graph);

let context = { graph: graph, layout: layout, error: null };

this.emit(DGLayoutEvent.LAYOUT_BEGIN, context);

return this.calculateStatistics(layout)

.then(layout => this.partition(layout))

.then(layout => this.loop(layout, context))

227

.then(layout => this.mergePartitions(layout))

.then(layout => this.finesse(layout))

.catch((error) => {

console.error(error);

context.error = error;

this.emit(DGLayoutEvent.LAYOUT_ERROR, context);

})

.finally(() => {

this.emit(DGLayoutEvent.LAYOUT_END, context);

return layout;

});

}

/**

* Event handler for when graphs change.

* @param {Event} event - The change event for the graph.

* @returns {Promise} - Promise which resolves when the event has been handled.

*/

async onchange(event) { (event); }

}

export default DGLayoutEngineBase;

228

C.2. WebGPU Code

C.2.1 DGWebGPUBase

All objects requiring access to the WebGPU (GPU Computing for the Web)

subsystem are subclasses of the abstract DGWebGPUBase class.

Listing C.10. Javascript code for DGWebGPUBase.

/**

* @file /src/common/gpu/base.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the abstract base class for all WebGPU-enabled objects.

*

* @created 28 July 2022

*

* @todo Need to add support for adaptor and device limits.

*/

import DGBase from '../base.js';

import DGGPU from './webgpu.js';

import { DGUnsupportedFeatureError } from '../error/error.js';

/**

* Enum for WebGPU events.

* @readonly

* @enum {string}

*/

export const DGGPUEvent = Object.freeze({

DESTROY: "destroy",

});

export default class DGWebGPUBase extends DGBase {

/**

* The GPU adapter

229

* @type {GPUAdapter}

*/

_adapter;

/**

* Return the instance's GPUAdapter

* @type {GPUAdapter} - The adapter.

*/

get adapter() { return this._parent ? this._parent.adapter : this._adapter; }

/**

* The GPU Device

* @type {GPUDevice}

*/

_device;

/**

* Return the instance's GPUDevice

* @type {GPUDevice} - The device.

*/

get device() { return this._parent ? this._parent.device : this._device; }

/**

* The GPU Queue

* @type {GPUQueue}

*/

_queue;

/**

* Return the instance's GPUQueue

* @type {GPUQueue} - The queue.

*/

get queue() { return this._parent ? this._parent.device.queue : this.device.queue; }

/**

* The DGWebGPU* instance this object has inherited its features from.

* @type {DGWebGPUBase} - The parent object

*/

_parent;

230

/**

* Return the instance's parent object.

* @type {DGWebGPUBase} - The parent object.

*/

get parent() { return this._parent; }

/**

* A generic label to be applied to this object.

* @type {string}

*/

_label = '';

/**

* Return the label string.

* @type {string} - The label string.

*/

get label() { return this._label; }

/**

* Set the label string

* @param {string} label - The label string.

*/

set label(label) { this._label = label; }

/**

* Construct the DGWebGPUBase object

* @constructor

* @param {debug} debug - A boolean indicating if we want debug messages displayed.

*/

constructor(debug = false) {

super(debug)

if(!DGGPU.isSupported)

throw new DGUnsupportedFeatureError("WebGPU is not supported!");

}

/**

* Initialize the context

* @method

231

* @async

* @param {object} options - A list of adapter options. `adaptorOptions` should be a

GPURequestAdapterOptions value.

* @throws {DGUnimplementedFeatureError} - If WebGPU is not supported on a browser, this is

thrown.

* @throws {InternalError} - Thrown if the WebGPU adapter or device cannot be requested.

* @todo Rewrite to use promise cascade and properly catch exceptions.

*/

async init(options = {}) {

// Do we wish to inherit?

const inherit = options.inherit || false;

if(inherit) {

this._parent = options.inherit || null;

// Register for destroy events sent by my parent.

this._parent.once('destroy', this);

}

// initialize as normal

else {

return super

.init(options)

.then(() => {

// GPURequestAdapterOptions

const adapterOptions = Reflect.has(options, 'adapterOptions') ?

options.adapterOptions : DGGPU.defaultAdapterOptions;

// Request the adapter

return DGGPU.requestAdapter(adapterOptions);

})

.then(async (adapter) => {

// Set the adapter

this._adapter = adapter;

// Get the adapter info

this._adapter['info'] = await adapter.requestAdapterInfo();

const features = ["depth-clip-control",

"depth32float-stencil8",

"texture-compression-bc",

232

"texture-compression-etc2",

"texture-compression-astc",

"timestamp-query",

"indirect-first-instance",

"shader-f16",

"bgra8unorm-storage",

"rg11b10ufloat-renderable"];

let supportedFeatures = [];

features.forEach((f, i, a) => { (i,a);

if(adapter.features.has(f)) supportedFeatures.push(f);

})

// GPUDeviceDescriptor

const requestedFeatures = DGGPU.deviceFeatureNames;

// Request the device

return this._adapter.requestDevice({ requestedFeatures });

})

.then((device) => {

// Set the device

this._device = device;

// Set the device queue

this._queue = device.queue;

// Finally return the device

return device;

})

.catch(error => console.error(error))

.finally(() => { return this; });

}

return this;

}

/**

* Event handler for 'destroy' events sent by my parents.

*/

233

ondestroy() { this.destroy(); }

/**

* Destroy any GPU resources I may have available.

*/

destroy() {

// Call super destroy

super.destroy();

// Destroy my buffers

this._destroyBuffers();

// Destroy my device

this._destroyDevice();

}

/**

* Destroy my device.

*/

_destroyDevice() {

// Don't destroy devices I inherit!

if(!this._parent) {

this.device.destroy();

this._device = null;

}

}

/**

* Destroy any buffers I may have.

*/

_destroyBuffers() {

this._buffers.forEach((buffer) => buffer.destroy());

this._buffers.clear();

this._buffers = null;

}

/**

* Build a DGWebGPUSubclass instance and initialize it. Since nearly all GPU* objects require

asynchronous operation, this is asyncronous.

234

* @todo Find a better way to do this

* @param {object} options - An object containing objects required to configure this object

* @param {boolean} debug - A flag indicating whether or not this object should be defined

* @returns {Promise<DGWebGPUBase>} - A promise indicating that this object was created

successfully.

*/

static async build(options, debug = false) {

// the async builder method

let builder = async () => {

try {

return new this(debug);

}

catch (e) {

console.error(e)

return Promise.reject(e)

}

}

return builder(debug)

.then((obj) => {

return obj.init(options)

})

.catch(error => {

console.error(error)

return null;

})

.finally(() => {})

}

}

export { DGWebGPUBase }

235

C.2.2 DGComputeEngine

Listing C.11. Javascript code for DGComputeEngine.

/**

* @file /src/common/gpu/compute.js

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains an abstract class for defining WebGPU compute engines.

*

* @created 28 July 2020

*/

import '../adt/map.js';

import DGWebGPUBase from './base.js';

import DGWebGPUShaderBase from './shader/base.js';

import DGWebGPUComputeShader from './shader/compute.js';

/* global GPUShaderStage, GPUBuffer */

/**

* A Compute Engine class.

* @type {DGWebGPUComputeEngine}

* @extends DGWebGPUBase

*

* @todo Do we need to check valid values of buffer binding types, or leave that to the WebGPU

subsystem?

* @todo We need to add binding layout indices to a stored value, so we can get the indices

back out! I know we also don't wish to foreach, on the array of layout descriptors!

*/

export default class DGWebGPUComputeEngine extends DGWebGPUBase {

/**

* The constructor.

* @constructor

236

* @param {boolean} debug - A flag indicating whether or not we wish to debug.

*/

constructor(debug = false) { super(debug) }

/**

* Initialize the compute engine

* @param {Object} options - A dictionary containing the options required to initialize the

context.

* @returns {Promise} - A promise indicating the class has successfully initialized.

*/

async init(options = {}) {

return super

.init(options)

.then(() => { return this; })

.catch(error => {

console.error(error);

return null;

})

.finally(() => {

if(this.debug) console.log(this);

});

}

/**

* The default label for compute engines.

* @type {string}

*/

static get label() { return 'compute'; }

/**

* The instance's label.

* @type {string}

*/

_label = null;

/**

* Return the instance's label.

* @type {string} - The label.

*/

237

get label() { return (this._label) ? this._label : DGWebGPUComputeEngine.label; }

/**

* Set the instance's label.

* @param {string} label - The label.

*/

set label(label) { this._label = label; }

/**

* Generate a label for the instance's subcomponent. The three inputs are joined thus: [

label, key, type] => 'label-key-type'

* @param {string} label - The base label.

* @param {string} key - The key sub-label.

* @param {string} type - The type sub-label.

*/

_makeLabel(label, key, type) {

const array = [];

if(label && typeof label == 'string' && label != '') array.push(label);

if(key && typeof key == 'string' && key != '') array.push(key);

if(type && typeof type == 'string' && type != '') array.push(type);

return array.join('-');

}

/**

* An array of three integers which indicates the x, y and z values of a compute workgroup.

* @type {Array<Int,3>}

* @todo We need to interrogate the adapter to determine what the max workgroup sizes are.

*/

_workgroupSize = [64, 1, 1];

/**

* Get the compute engine's workgroup size

* @type {Array<Int,3>} - An array of three integers which indicates the x, y and z values

of a compute workgroup.

*/

get workgroupSize() { return this._workgroupSize; }

238

/**

* Sets the compute engine's workgroup size

* @param {Array<Int,3>} wgs - An array of three integers which indicates the x, y, and z

values of a compute workgroup.

* @todo We need to check against the valid ranges.

*/

set workgroupSize(wgs = [64, 1, 1]) {

if(!(wgs instanceof Array) || wgs.size != 3)

throw new TypeError("Workgroup size must be an array of three integer values: [x, y, z

]!");

this._workgroupSize = wgs;

}

/**

* A map of bind group layout descriptors used to build the bind groups.

* @type {Map<string,Array<GPUBindGroupLayoutDescriptor>>}

*/

_bindGroupLayoutEntries = new Map();

/**

* Get an array of bind group layouts for the specified key.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @returns {Array<GPUBindGroupLayoutDescriptor>}

*/

bindGroupLayoutEntriesForKey(bindGroupKey) {

// Check inputs

if(!bindGroupKey || typeof bindGroupKey !== 'string')

throw new TypeError(`Invalid key type: ${typeof bindGroupKey}!`);

// If we don't yet have an array of bind group layouts for this key, add one.

if(!this._bindGroupLayoutEntries.has(bindGroupKey)) this._bindGroupLayoutEntries.set(

bindGroupKey, []);

// Return the array of bind group layouts entries.

return this._bindGroupLayoutEntries.get(bindGroupKey);

}

/**

239

* Get a bind group layout descriptor for a particular bind group.

* @param {GPUBindGroupLayoutDesc} bindGroupKey - A string identifying the bind group.

*/

bindGroupLayoutDescriptorForKey(bindGroupKey) {

// get the entries

const entries = this.bindGroupLayoutEntriesForKey(bindGroupKey);

// if we don't have any, we can't create a bind group!

if(entries.length == 0)

throw new RangeError(`No bind group layout entries for key '${bindGroupKey}'!`);

// index the entries

entries.forEach((e, i) => e.binding = i);

return {

label : bindGroupKey,

entries : entries,

};

}

/**

* Add a bind group layout entry.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {GPUBindGroupLayoutEntry} entry - A layout to add to the bind group.

*/

addBindGroupLayoutEntryForKey(bindGroupKey, entry) {

if(entry === undefined || entry === null)

throw new TypeError('Attempt to add null layout to bind group!');

// Get the layout array

let entries = this.bindGroupLayoutEntriesForKey(bindGroupKey);

// Add the layout entry

entries.push(entry);

// Support method chaining

return this;

}

240

/**

* Add a GPUBufferBindingLayout to the bind group layouts for a key.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {string} label - A string containing the buffer label we want to attach to the

layout.

* @param {GPUShaderStageFlags} visibility - A bitset of the members of GPUShaderStage.

* @param {GPUBufferBindingType} type - Indicates the type required for buffers bound to this

bindings. Valid values: "uniform", "storage", "read-only-storage"

* @param {boolean} hasDynamicOffset - Indicates whether this binding requires a dynamic

offset.

* @param {GPUSize64} minBindingSize - Indicates the minimum buffer binding size.

* @see https://gpuweb.github.io/gpuweb/#dictdef-gpubufferbindinglayout

* @todo Make sure we're supporting both the adapter and device supported limits.

* @see https://gpuweb.github.io/gpuweb/#supported-limits

*/

addBufferBindingLayoutEntryForKey(bindGroupKey, label ="", visibility =

GPUShaderStage.COMPUTE, type = 'uniform', hasDynamicOffset = false, minBindingSize = 0) {

const valid_types = ["uniform", "storage", "read-only-storage"];

if(!valid_types.includes(type))

throw RangeError(`Invalid GPUBufferBindingType: '${type}'! Valid types =

[${valid_types.join(", ")}]`);

// Create a layout

const layout = {

visibility : visibility,

buffer : {

label : label,

type : type,

hasDynamicOffset : hasDynamicOffset,

minBindingSize : minBindingSize,

},

};

// Add the binding layout to the array

this.addBindGroupLayoutEntryForKey(bindGroupKey, layout);

// Support method chaining

return this;

}

241

/**

* Build and return a binding buffer layout for the specified key.

* @param {string} bindGroupKey - A string instance identifying the bind group.

* @param {string} bufferKey - A string instance identifying the buffer.

*/

bufferEntryForBindGroupWithKey(bindGroupKey, bufferKey) {

const buffer = this.bufferForKey(bufferKey);

const index = this.bufferBindingIndexForKey(bindGroupKey, bufferKey);

const entry = { binding : index, resource : { buffer : buffer } };

return entry;

}

/**

* Get the buffer binding index for this buffer.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {string} bufferLabel - A string identifying the buffer we're trying to interrogate.

*/

bufferBindingIndexForKey(bindGroupKey, bufferLabel) {

// get the layout descriptor

const layout = this.bindGroupLayoutDescriptorForKey(bindGroupKey);

const entries = layout.entries;

const index = entries

.findIndex((entry) => {

return entry

.hasOwnProperty('buffer')

&& entry.buffer.hasOwnProperty('label')

&& entry.buffer.label == bufferLabel;

});

if(index < 0)

throw new RangeError(`No buffer binding for buffer labeled '${bufferLabel}' in layout

'${bindGroupKey}' exists!`);

return index;

}

242

/**

* Add a GPUSamplerBindingLayout to the bind group layouts for a key.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {string} label - A string containing the label we want to attach to the layout.

* @param {GPUShaderStageFlags} visibility - A bitset of the members of GPUShaderStage.

* @param {GPUSamplerBindingType} type - Indicates the required type of a sampler bound to

this bindings. Valid values: "filtering", "non-filtering", "comparison"

* @todo Move to DGWebGPURenderEngine

*/

addSamplerBindingLayoutEntryForKey(bindGroupKey, label = "", visibility =

GPUShaderStage.COMPUTE, type = "filtering") {

const valid_types = ["filtering", "non-filtering", "comparison"];

if(!valid_types.includes(type))

throw RangeError(`Invalid GPUSamplerBindingType: ${type}`);

// Create a layout

const layout = {

label : label,

visibility : visibility,

sampler : {

type : type,

},

};

// Add the binding layout to the array

this.addBindGroupLayoutEntryForKey(bindGroupKey, layout);

// Support method chaining

return this;

}

/**

* Add a GPUTextureBindingLayout to the bind group layouts for a key.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {string} label - A string containing the label we want to attach to the layout.

* @param {GPUShaderStageFlags} visibility - A bitset of the members of GPUShaderStage.

* @param {GPUTextureSampleType} sampleType - Indicates the type required for texture views

bound to this binding.

* @param {GPUTextureViewDimension} viewDimension - Indicates the required dimension for

243

texture views bound to this binding.

* @param {boolean} multisampled - Indicates whether or not texture views bound to this

binding must be multisampled.

*/

addTextureBindingLayoutEntryForKey(bindGroupKey, label = "", visibility =

GPUShaderStage.COMPUTE, sampleType = "float", viewDimension = "2d", multisampled = false)

{

const valid_types = ["float", "unfilterable-float", "depth", "sint", "uint"];

if(!valid_types.includes(sampleType))

throw RangeError(`Invalid GPUTextureSampleType: ${sampleType}`);

const valid_dims = ["1d", "2d", "2d-array", "cube", "cube-array", "3d"];

if(!valid_dims.includes(viewDimension))

throw RangeError(`Invalid GPUTextureViewDimension: ${viewDimension}`);

// Create a layout

const layout = {

label : label,

visibility : visibility,

sampler : {

sampleType : sampleType,

viewDimension : viewDimension,

multisampled : multisampled,

},

};

// Add the binding layout to the array

this.addBindGroupLayoutEntryForKey(bindGroupKey, layout);

// Support method chaining

return this;

}

/**

* Add a GPUStorageTextrueBindingLayout entry to the bind group layout entries for a key.

* @param {string} bindGroupKey - A string uniquely describing the bind group layout.

* @param {string} label - A string containing the label we want to attach to the layout.

* @param {GPUShaderStageFlags} visibility - A bitset of the members of GPUShaderStage.

* @param {GPUStorageTextureAccess} access - Indicates whether texture views bound to this

244

binding will be bound for read-only or write-only access.

* @param {GPUTextureFormat} format - The required format of texture views bound to this

binding.

* @param {GPUTextureViewDimension} viewDimension - Indicates the required dimension for

texture views bound to this binding.

*/

addStorageTextureBindingLayoutForKey(bindGroupKey, label = "", visibility =

GPUShaderStage.COMPUTE, access = "write-only", format, viewDimension ="2d") {

const valid_access_types = ["access"];

if(!valid_access_types.includes(access))

throw RangeError(`Invalid GPUStorageTextureAccess: ${access}`);

const valid_dims = ["1d", "2d", "2d-array", "cube", "cube-array", "3d"];

if(!valid_dims.includes(viewDimension))

throw RangeError(`Invalid GPUTextureViewDimension: ${viewDimension}`);

// Don't check valid texture formats, let's see what happens when we send invalid ones in.

I think we can remove all of this checking code and leave it to the gpu.

// Create a layout

const layout = {

label : label,

visibility : visibility,

sampler : {

access : access,

format : format,

viewDimension : viewDimension,

},

};

// Add the binding layout to the array

this.addBindGroupLayoutEntryForKey(bindGroupKey, layout);

// Support method chaining

return this;

}

/**

* A cached map containing the bind group layouts for this object.

245

* @type {Map<String,GPUBindGroupLayout>}

*/

_bindGroupLayouts = new Map();

/**

* Create and return a bind group layout based on the bind group layout descriptors for this

key.

* @param {string} bindGroupKey - A key uniquely describing a bind group layout.

* @returns {GPUBindGroupLayout} - The bind group layout

* @throws TypeError

*/

bindGroupLayoutForKey(bindGroupKey) {

if(!bindGroupKey || typeof bindGroupKey !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

// convenience

let layouts = this._bindGroupLayouts;

// Lazily create the bind group layout if it doesn't yet exist.

if(!layouts.has(bindGroupKey)) {

// Get the layout descriptor

const desc = this.bindGroupLayoutDescriptorForKey(bindGroupKey);

// Create the layout

const layout = this.device.createBindGroupLayout(desc);

// Set the key

layouts.set(bindGroupKey, layout);

}

// Return the bind group layout

return layouts.get(bindGroupKey);

}

/**

* A map of bindgroups for a specified key.

* @type {Map<string,GPUBindGroup>}

*/

_bindGroups = new Map();

246

/**

* Retrieve the bind group for a specified key

* @param {string} key - A string which uniquely identifies a bind group.

* @todo Remember to complete me before we get to this point.

* @todo We need to be able to get indices for these! How do we do that?

*/

bindGroupForKey(bindGroupKey) {

if(!bindGroupKey || typeof bindGroupKey !== 'string')

throw new TypeError(`Invalid key type: ${typeof bindGroupKey}!`);

// If the array containing buffers for the key doesn't exist, add one.

if(!this._bindGroups.has(bindGroupKey))

throw new RangeError(`No bind group for key '${bindGroupKey}' exists!`);

// Need to fill this out

return this._bindGroups.get(bindGroupKey);

}

/**

* Add a bind group.

* @param {string} bindGroupKey - A string which uniquely identifies a bind group.

* @param {GPUBindGroupDescriptor} desc - The bind group descriptor object.

*/

_addBindGroup(bindGroupKey, desc) {

const bindGroup = this.device.createBindGroup(desc);

// Should we use a map instead of an object?

this._bindGroups.set(bindGroupKey, bindGroup);

}

/**

* Add a bind group with the specified layout and entries.

* @param {string} bindGroupKey - A string which uniquely identifies a bind group.

* @param {GPUBindGroupLayoutDescriptor} layout - The bind group layout descriptor.

* @param {Array<GPUBindGroupLayoutEntryDesc>} entries - An array of bind group layout

entries.

*/

setBindGroupForKey(bindGroupKey, layout, entries) {

247

if(!bindGroupKey || typeof bindGroupKey !== 'string')

throw new TypeError(`Invalid key type: ${typeof bindGroupKey}!`);

const desc = {

layout : layout,

entries : entries,

};

this._addBindGroup(bindGroupKey, desc);

}

deleteBindGroup(key) { (key);

// @todo fill me in if needed

}

/**

* A map of buffers to be used by the compute engine.

* @type {Map<string,GPUBuffer>}

*/

_buffers = new Map();

/**

* Return a GPUBuffer instance with the specified key.

* @param {string} key - A string uniquely describing the array of buffers.

*/

bufferForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

// If the array containing buffers for the key doesn't exist, add one.

if(!this._buffers.has(key))

throw new RangeError(`No buffer for key '${key}' exists!`);

// Need to fill this out

return this._buffers.get(key);

}

/**

* Add a buffer to the compute engine.

248

* @param {string} key - A key for referring to the buffer later.

* @param {GPUBufferDescriptor|GPUBuffer} desc - A GPUBufferDescriptor object, or an already

created gpu buffer.

* @todo Add support for event handling.

*/

_addBuffer(key, desc) {

const buffer = (desc instanceof GPUBuffer) ? desc : this.device.createBuffer(desc);

// Should we use a map instead of an object?

this._buffers.set(key, buffer);

}

/**

* Add a buffer to the compute engine.

* @param {string} key - A unique string for identifying the buffer.

* @param {string} label - A string labelling the buffer.

* @param {GPUSize64} size - The size of the buffer in bytes.

* @param {GPUBufferUsageFlags} usage - The allowed usages for the buffer.

* @param {boolean} mappedAtCreation - If true creates the buffer in an already mapped state.

* @see https://gpuweb.github.io/gpuweb/#gpubuffer

*/

addBufferForKey(key, label = this.label, size = 0, usage = 0, mappedAtCreation = false) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key: ${typeof key}!`);

// If the array containing buffers for the key doesn't exist, add one.

if(!this._buffers.has(key))

throw new RangeError(`No buffer for key '${key}' exists!`);

// Check size

if(!size || size < 1)

throw new RangeError(`GPUBuffer must have size > 0: ${size}!`);

// Generate a label

label = this._makeLabel(label, key, 'buffer');

// Create the buffer descriptor.

const desc = { label : label, size : size, usage : usage, mappedAtCreation:

mappedAtCreation };

249

// Add the buffer.

this._addBuffer(key, desc);

// Allow method chaining.

return this;

}

deleteBufferForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key: ${typeof key}!`);

// If there is a buffer for this key, remove it and delete it.

if(this._buffers.has(key)) {

let buffer = this._buffers.get(key);

this._buffers.delete(key);

buffer.destroy()

}

}

resizeBufferForKey(key, size) {

// Get the old buffer

const oldBuffer = this.bufferForKey(key);

// if the old buffer size is the same as the new size, do nothing.

if(oldBuffer.size == size) return oldBuffer;

// create a new buffer

const newBuffer = this._device.createBuffer({ label : oldBuffer.label, size : size, usage

: oldBuffer.usage, mappedAtCreation: false });

// set the new buffer

this._buffers.set(key, newBuffer);

// destroy the old buffer

oldBuffer.destroy();

// return the new buffer

return newBuffer;

250

}

/**

* Add a buffer to the compute engine

* @param {string} key - A key for referring to the buffer later.

* @param {GPUBufferDescriptor} options - A GPUBufferDescriptor object

*

* @see https://webgpu.rocks/reference/dictionary/gpubufferdescriptor/#idl-gpubufferdescriptor

*/

addBuffer(

key,

label = this.label,

size = 0,

usage = 0,

mappedAtCreation = true

) {

// Make sure key is a string, and is not empty.

if(key === undefined || typeof key !== 'string' || key === '')

throw new RangeError(`GPUBuffer key invalid '${key}'!`);

// Validate the values

if(this._buffers.has(key))

throw new RangeError(`GPUBuffer with key '${key}' exists!`);

// Generate a label

label = this._makeLabel(label, key, 'buffer');

// Check size

if(!size || size < 1)

throw new RangeError(`GPUBuffer must have size > 0: ${size}!`);

// Add the buffer

this._addBuffer(key, { label: label, size: size, usage: usage, mappedAtCreation:

mappedAtCreation });

// Allow for method chaining

return this;

}

251

/**

* A map containing the shaders required by the compute engine.

* @type {Map<String,DGWebGPUShaderBase>}

*/

_shaders = new Map();

/**

* Return an array of shaders for use by the compute engine.

* @param {string} key - A key for referring to the buffer later.

*/

shaderForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

// If the array containing buffers for the key doesn't exist, add one.

if(!this._shaders.has(key))

throw new RangeError(`No shader for key '${key}' exists!`);

return this._shaders.get(key);

}

setShaderForKey(key, shader, override = false) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

if(this._shaders.has(key) && override)

throw new RangeError(`Shader for key '${key}' exists!`);

this._shaders.setOrDeleteIfNull(key, shader);

return this;

}

deleteShaderForKey(key) { return this.setShaderForKey(key, null, true); }

/**

* Build a DGWebGPUShader from source.

* @param {string} type - The shader type: 'compute', 'fragment', 'vertex'

* @param {GPUShaderOptionsDescriptor} shaderOptions - A dictionary containing shader options.

252

* @returns {Promise<DGWebGPUShaderBase>} - Returns a promise of a DGWebGPUShader subclass.

*/

async buildShaderFromSource(type = DGWebGPUComputeShader.type, shaderOptions) {

const options = {

inherit : this,

shaderOptions : shaderOptions,

};

return DGWebGPUShaderBase.build(type, options, this.debug)

}

/**

* Load WGSL shader code from a url.

* @param {string} url - The url where the shader source can be found.

* @param {string} type - The type of the shader we want to create.

* @param {object} keys - Keys to be used by the evaluator to spread and replace in the

source.

* @param {CallableFunction} evaluator - An evaluator function to use to use to replace

variables in the source.

* @returns {Promise<DGWebGPUComputeEngine>} - Returns a promise which allows method

chaining.

*/

async loadShaderFromURL(url = null, type = DGWebGPUComputeShader.type, keys = {}, evaluator

= null) {

if(!url || typeof url !== 'string')

throw new TypeError(`URL of source must be a string!`)

return fetch(url)

.then((response) => response.text())

.then((src) => {

const options = {

label: this._makeLabel(this.label, type, 'shader'),

code: (evaluator) ? evaluator(keys, src) : src,

};

return this.buildShaderFromSource(type, options)

})

.catch((e) => console.error(e))

}

253

/**

* The pipeline layout descriptors.

* @type {Map<string,Array<GPUBindGroupLayoutDescriptor>>}

*/

_pipelineLayoutDescriptors = new Map();

/**

* Add a pipleine layout descriptor.

* @param {string} key - A string indicating the pipeline layout we want.

* @param {Array<string>} bindGroupKeys - An array of bindGroupKeys.

*/

addPipelineLayoutDescriptorForKey(key, bindGroupKeys = []) {

if(!bindGroupKeys || !(bindGroupKeys instanceof Array))

throw new TypeError(`Invalid bind group keys type: ${typeof bindGroupKeys}!`);

if(bindGroupKeys.length < 1)

throw new RangeError(`No keys submitted!`);

const entries = bindGroupKeys.map(key => this.bindGroupLayoutForKey(key));

const desc = {

label : key,

bindGroupLayouts : entries,

};

return this.setPipelineLayoutDescriptorForKey(key, desc);

}

/**

* Return a pipeline layout descriptor identified by key.

* @param {string} key - The pipeline layout descriptor.

*/

pipelineLayoutDescriptorForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

// Do we have one?

if(!this._pipelineLayoutDescriptors.has(key))

throw new RangeError(`No pipeline layout descriptor for key '${key}' exists!`);

254

return this._pipelineLayoutDescriptors.get(key);

}

/**

* Set a pipeline layout descriptor.

* @param {key} key - A string instance identifying a pipeline layout descriptor.

* @param {GPUPipelineDescriptor|null} desc - The pipeline descriptor to set, or null, if we

wish to delete.

* @param {boolean} override - true if we wish to overwrite any existing values, false

otherwise.

*/

setPipelineLayoutDescriptorForKey(key, desc, override = false) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

let descriptors = this._pipelineLayoutDescriptors;

if(descriptors.has(key) && override == false)

throw new RangeError(`Pipeline layout descriptor for key '${key}' exists!`);

descriptors.setOrDeleteIfNull(key, desc);

return this;

}

/**

* Delete a pipeline layout descriptor.

* @param {string} key - A string instance identifying a pipeline layout descriptor.

* @calls setPipelineLayoutDescriptorForKey

*/

deletePipelineDescriptorForKey(key) { return this.setPipelineDescriptorForKey(key, null,

true); }

/**

* A map of pipeline layouts.

* @type {Map<string,Array<GPUPipelineLayout>>}

*/

_pipelineLayouts = new Map();

255

/**

* Returns a default GPUPipelineLayout

* @type {GPUPipelineLayout}

*/

static get DEFAULT_PIPELINE_LAYOUT() { return "auto"; }

/**

* Retrieves a pipeline layout for a given key.

* @param {string} key - A string instance identifying the pipeline layout.

*/

pipelineLayoutForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

let layouts = this._pipelineLayouts;

// If we don't already have these layouts, then try to build one.

if(!layouts.has(key)) {

const desc = this.pipelineLayoutDescriptorForKey(key);

const layout = this.device.createPipelineLayout(desc);

layouts.set(key, layout);

}

// return the output of the pipeline layouts

return layouts.get(key);

}

/**

* Sets the default pipeline layout for the specified key.

* @param {string} key - A string instance identifying the pipeline layout.

*/

setAutoPipelineLayoutForKey(key) { return this.addPipelineLayoutForKey(key,

DGWebGPUComputeEngine.DEFAULT_PIPELINE_LAYOUT); }

setPipelineLayoutForKey(key, layout, override = false) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

256

// If we already have a layout for this key, then add a new one

if(this._pipelineLayouts.has(key) && override == false)

throw new RangeError(`Pipeline layout for key '${key}' already exists!`);

this._pipelineLayouts.setOrDeleteIfNull(key, layout);

return this;

}

/**

* Deletes a pipeline layout identified by key.

* @param {string} key - A string instance identifying the pipeline layout.

*/

deletePipelineLayoutForKey(key) { return this.setPipelineLayoutForKey(key, null, true); }

/**

* Build a compute pipeline.

* @param {DGWebGPUComputeShader} shader - The shader to use in the pipeline. Defaults to the

shader already installed.

* @param {GPUPipelineLayoutDescriptor|string="auto"} layout - The layout to use when

building the compute pipeline. Defaults to "auto"

* @param {string} entryPoint - The entry point in the shader

*/

buildComputePipeline(shader = this.computeShader, layout =

DGWebGPUComputeEngine.DEFAULT_PIPELINE_LAYOUT, entryPoint = 'main') {

const desc = {

layout : layout,

compute : {

module : shader.module,

entryPoint : entryPoint,

},

};

return this.device.createComputePipeline(desc);

}

/**

* A map containing pipelines identified by key.

257

* @type {Map<string,GPUComputePipeline|GPURenderPipeline>}

*/

_pipelines = new Map();

/**

* Retrieves a pipeline for a specified key.

* @param {string} key - A string instance identifying the pipeline.

* @throws {TypeError|RangeError}

*/

pipelineForKey(key) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

if(!this._pipelines.has(key))

throw new RangeError(`No pipeline for key '${key}' exists!`);

return this._pipelines.get(key);

}

/**

* Add pipeline identified by key to the map.

* @param {string} key - A string instance identifying the pipeline.

* @param {GPUComputePipeline|GPURenderPipeline} pipeline - The pipeline to add.

* @param {boolean} override - true if we wish to overwrite or delete an existing pipeline,

false otherwise.

* @throws{TypeError|RangeError}

*/

setPipelineForKey(key, pipeline, override = false) {

if(!key || typeof key !== 'string')

throw new TypeError(`Invalid key type: ${typeof key}!`);

if(this._pipelines.has(key) && override == false)

throw new RangeError(`Pipeline for key '${key}' already exists!`);

this._pipelines.setOrDeleteIfNull(key, pipeline);

return this;

}

258

/**

* Delete a pipeline identified by key.

* @param {key} key - A string instance identifying the pipeline.

*/

deletePipelineForKey(key) {

return this.setPipelineForKey(key, null, true);

}

/**

* A convenience method for retrieving a compute pipeline identified by the key 'compute'

* @type {GPUComputePipeline} - The pipeline

*/

get computePipeline() { return this.pipelineForKey('compute'); }

/**

* A convenience method for setting the default compute pipeline,

* @param {GPUComputePipeline} pipeline - The compute pipeline.

*/

set computePipeline(pipeline) { this.setPipelineForKey('compute', pipeline); }

/**

* Return a compute pipeline that does nothing.

*/

noOpComputePipeline() {

const shader = { module : this.device.createShaderModule({ code:

DGWebGPUComputeShader.DEFAULT_SHADER_SOURCE, }) };

return this.buildComputePipeline(shader);

}

/**

* The currently active command encoder.

* @type {GPUCommandEncoder}

*/

_commandEncoder = null;

/**

* Retrieve the current command encoder, or lazily create one.

* @type {GPUCommandEncoder} - The currently active command encoder.

*/

259

get commandEncoder() {

// Lazily create the command encoder if it doesn't exist.

if(this._commandEncoder === null)

this._commandEncoder = this.device.createCommandEncoder();

return this._commandEncoder;

}

/**

* The currently active pass encoder.

* @type {GPUComputePassEncoder|GPURenderPassEncoder}

*/

_pass = null;

/**

* Retrieve the current pass encoder.

* @type {GPUComputePassEncoder|GPURenderPassEncoder|null} - The pass encoder, or null if no

pass is active.

*/

get pass() { return this._pass; }

/**

* Sets the current pass encoder.

* @param {GPUComputePassEncoder|GPURenderPassEncoder|null} encoder - The pass encoder to set.

*/

set pass(encoder) { this._pass = encoder; }

/**

* Submit work to the device queue.

*/

submitQueue() {

if(this.debug) console.log('submit queue');

this.device.queue.submit([this.commandEncoder.finish()]);

// at this point, the command encoder is dead, so zero it out so we can create a new one.

this._pass = this._commandEncoder = null;

// In case we want notification when this has completed.

return this.device.queue.onSubmittedWorkDone();

}

260

/**

* Perform work required by the compute engine.

* @discussion Subclasses should fill this in with appropriate functionality.

* @param {GPUComputePassEncoder|GPURenderPassEncoder} pass - The pass encoder upon which to

issue commands.

*/

doPass(pass = this.pass) { (pass); }

/**

* Begin the render/compute pass.

*/

passBegin() {

if(this.debug) console.log('pass begin');

this.pass = this.commandEncoder.beginComputePass();

return this;

}

/**

* End the render/compute pass.

*/

passEnd() {

if(this.debug) console.log('pass end');

this.pass.end();

return this;

}

/**

* Read from any buffers written to during the pass.

* @discussion Subclasses should override this method with appropriate commands.

*/

passReadBuffers() {}

/**

* Write to any buffers to be read during the pass.

* @discussion Subclasses should override this method with appropriate commands.

*/

261

passWriteBuffers() {}

/**

* Execute a compute pass.

* @todo should this be async? Reading the buffers may be required, and we need to prevent

locking up the buffers.

*/

async execute() {

// map the write buffers

return this.mapWriteBuffers()

.then(() => { return this.passWriteBuffers(); })

.then(() => { return this.passBegin(); })

.then(() => { return this.doPass(); })

.then(() => { return this.passEnd(); })

.then(() => { return this.passReadBuffers(); })

.then(() => { return this.submitQueue(); })

.catch((error) => { console.error(error); })

.finally(() => {

if(this.debug) console.log(this);

return this;

})

}

}

262

C.3. WGSL Code

C.3.1 XOR128

Listing C.12. WGSL code for the XOR128 pseudo-random number generator.

/**

* @file /src/common/gpu/shader/wgsl/xor128.wgsl

* @author Rob Dotson

* @copyright 2022 Rob Dotson. All Rights Reserved.

*

* @project dynamical.js

* @description This file contains the WGSL Implementation of the XOR128 algorithm.

*

* @created 12 Aug 2021

* @cite https://www.jstatsoft.org/article/view/v008i14

* @cite https://github.com/vadimdi/QCDGPU/blob/83eb474a221563bce50682b5c5de8ad7125c8682/Docs/

hpc-ua-2013_paper.pdf

*

* @todo We need to store local state here, it's pretty important not to accidentally pollute

the random number state.

* @todo We need to figure out why we can't define any compile-time constants. I understand

constexpr() are not supported,

* but it doesn't make sense that we can't even create a constant that is fixed.

*/

@group(0) @binding(0) var<storage,read_write> state : array<vec4<u32>>;

@group(0) @binding(1) var<storage,read_write> output : array<u32>;

@group(0) @binding(2) var<storage,read_write> outputf : array<f32>; // hrm, this seems like an

error

fn xor128_step(id: u32) -> u32 {

let t : u32 = state[id].x ^ ((state[id].x) << 11u);

state[id].x = state[id].y;

state[id].y = state[id].z;

state[id].z = state[id].w;

state[id].w = (state[id].w ^ (state[id].w >> 19u)) ^ (t ^ (t >> 8u))

263

;

return state[id].w;

}

fn xor128_step_float(id: u32) -> f32 {

let XOR128_m_FP = 4294967296.0f;

let XOR128_K = 2.3283064365386962890625E-10f; // 1/2^32

let XOR128_MIN_FLT = 1.0f / 4294967296.0f;

let XOR128_MAX_FLT = 4294967295.0f / 4294967296.0f;

var x = xor128_step(id); // this is error prone, we need to use the function below,

once we figure out how best to do this.

while(x < 1 || x > 4294967295) {

x = xor128_step(id);

}

return f32(x) / XOR128_m_FP;

}

fn u32_to_f32(a : u32, b : u32, min : f32, max : f32, k : f32) -> f32 {

return (f32(a) + k * f32(b) - (min + k * max)) / ((max - min) * (1.0 - k))

;

}

@compute

@workgroup_size(${workgroupSize[0]}u, ${workgroupSize[1]}u, ${workgroupSize[1]}u)

fn main(@builtin(global_invocation_id) global_invocation_id : vec3<u32>) {

let GID_SIZE = (${workgroupSize[0]}u * ${workgroupSize[1]}u * ${workgroupSize[2]}u)

;

let GID = global_invocation_id.x + global_invocation_id.y * ${

workgroupSize[0]}u + global_invocation_id.z * ${workgroupSize[0]}u * ${workgroupSize[1]}u;

let total = arrayLength(&output); // get the length of the data we need to

collect

let index = global_invocation_id.x; // get the current invocation id

if(index >= total) { return; } // don't overwrite the last few values.

output[index] = xor128_step(GID); // write the output

264

}

@compute

@workgroup_size(${workgroupSize[0]}u, ${workgroupSize[1]}u, ${workgroupSize[1]}u)

fn main_float(@builtin(global_invocation_id) global_invocation_id : vec3<u32>) {

let GID_SIZE = (${workgroupSize[0]}u * ${workgroupSize[1]}u * ${workgroupSize[2]}u)

;

let GID = global_invocation_id.x + global_invocation_id.y * ${

workgroupSize[0]}u + global_invocation_id.z * ${workgroupSize[0]}u * ${workgroupSize[1]}u;

let total = arrayLength(&output); // get the length of the data we need to

collect

let index = global_invocation_id.x; // get the current invocation id

if(index >= total) { return; } // don't overwrite the last few values.

outputf[index] = xor128_step_float(GID); // write the output

}

265

References

Ahn, J., Plaisant, C., & Shneiderman, B. (2014). A task taxonomy for network evo-
lution analysis. IEEE transactions on visualization and computer graphics, 20(3),
365–376. https://doi.org/10.1109/TVCG.2013.238

Akenine-Möller, T., Haines, E., & Hoffman, N. (2008). Real-Time Rendering (3rd
ed.). A K Peters, Ltd.

Apple Computer, Inc. (1984). Inside Macintosh (Vol. I). Addison-Wesley.

Apple Computer, Inc. (1985). Inside Macintosh (Vol. II). Addison-Wesley.

Apple Inc. (2021). WebKit [Framework]. https://webkit.org

Apple Inc. (2022a). Metal [Framework]. https://developer.apple.com/metal/

Apple Inc. (2022b). Safari (Version 16.0)[Computer Software]. https://www.apple.
com/safari/

Appleby, A. (2016). MurmurHash [Algorithm]. https://github.com/aappleby/
smhasher

Archambault, D., Purchase, H., & Pinaud, B. (2011). Animation, small multiples,
and the effect of mental map preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics, 17(4), 539–552. https://doi.org/10.
1109/TVCG.2010.78

Archambault, D. & Purchase, H. C. (2013). Mental map preservation helps user
orientation in dynamic graphs. In W. Didimo & M. Patrignani (Eds.), Graph
Drawing (pp. 475–486). Berlin, Heidelberg: Springer Berlin Heidelberg. https:
//doi.org/10.1007/978-3-642-36763-2_42

Argyriou, E., Bekos, M., & Symvonis, A. (2012). Maximizing the Total Resolution
of Graphs. The Computer Journal, 56(7), 887–900. https://doi.org/10.1093/
comjnl/bxs088

Bach, B., Dragicevic, P., Archambault, D., Hurter, C., & Carpendale, S. (2017). A
descriptive framework for temporal data visualizations based on generalized space-
time cubes. Computer Graphics Forum, 36(6), 36–61. https://doi.org/10.1111/
cgf.12804

Bailey, M. & Cunningham, S. (2009). Graphics Shaders: theory and practice. A K
Peters, Ltd.

Baldwin, D. & Rost, R. (2019a). The OpenGL ES® Shading Language (Ver-
sion 3.20.6)[Standard]. https://registry.khronos.org/OpenGL/specs/es/3.2/
GLSL_ES_Specification_3.20.html. Accessed: 2021-04-11

266

https://doi.org/10.1109/TVCG.2013.238
https://webkit.org
https://developer.apple.com/metal/
https://www.apple.com/safari/
https://www.apple.com/safari/
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1109/TVCG.2010.78
https://doi.org/10.1007/978-3-642-36763-2_42
https://doi.org/10.1007/978-3-642-36763-2_42
https://doi.org/10.1093/comjnl/bxs088
https://doi.org/10.1093/comjnl/bxs088
https://doi.org/10.1111/cgf.12804
https://doi.org/10.1111/cgf.12804
https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html
https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html

Baldwin, D. & Rost, R. (2019b). The OpenGL ES® Shading Language (Ver-
sion 3.20.6)[Standard]. https://registry.khronos.org/OpenGL/specs/es/3.2/
GLSL_ES_Specification_3.20.html

Beck, F., Burch, M., & Diehl, S. (2009). Towards an aesthetic dimensions framework
for dynamic graph visualisations. In 2009 13th International Conference Informa-
tion Visualisation (pp. 592–597).: IEEE. https://doi.org/10.1109/IV.2009.42

Beck, F., Burch, M., & Diehl, S. (2013). Matching application requirements with
dynamic graph visualization profiles. In 2013 17th International Conference on
Information Visualisation (pp. 11–18). https://doi.org/10.1109/IV.2013.2

Beck, F., Burch, M., Vehlow, C., Diehl, S., & Weiskopf, D. (2012). Rapid serial
visual presentation in dynamic graph visualization. In 2012 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 185–192).:
IEEE. https://doi.org/10.1109/VLHCC.2012.6344514

Bertin, J. (2011). Semiology of Graphics: Diagrams Networks Maps. Esri Press.

Bleiweiss, A. (2008). Gpu accelerated pathfinding. In Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’08 (pp.
65–74). Goslar, DEU: Eurographics Association.

Bostok, M. (2021). D3 (Version 7)[Computer Software]. https://d3js.org

Buck, I. & Purcell, T. (2004). A toolkit for computation on gpus. In R. Fernando
(Ed.), GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time
Graphics (pp. 621–636). Addison-Wesley.

Cebenoyan, C. (2004). Graphics pipeline performance. In R. Fernando (Ed.), GPU
Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics (pp.
473–486). Addison-Wesley.

Chuang, J. & Ahuja, N. (1998). An analytically tractable potential field model of
free space and its application in obstacle avoidance. IEEE transactions on systems,
man and cybernetics. Part B, Cybernetics, 28(5), 729–736. https://doi.org/10.
1109/3477.718522

Cohen, R. F., Di Battista, G., Tamassia, R., Tollis, I. G., & Bertolazzi, P. (1992).
A framework for dynamic graph drawing. In Proceedings of the Eighth Annual
Symposium on Computational Geometry, SCG ’92 (pp. 261–270). New York, NY,
USA: Association for Computing Machinery. https://doi.org/10.1145/142675.
142728

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
Algorithms (2nd ed., Vol. 1). MIT Press.

267

https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html
https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html
https://doi.org/10.1109/IV.2009.42
https://doi.org/10.1109/IV.2013.2
https://doi.org/10.1109/VLHCC.2012.6344514
https://d3js.org
https://doi.org/10.1109/3477.718522
https://doi.org/10.1109/3477.718522
https://doi.org/10.1145/142675.142728
https://doi.org/10.1145/142675.142728

Couturier, R. (2014). Pseudorandom number generator on gpu. In Designing Sci-
entific Applications on GPUs (pp. 463–474). Chapman and Hall/CRC. https:
//doi.org/10.1201/b16051-29

Dakkak, A., Pearson, C., & Hwu, W. (2016). Webgpu: A scalable online development
platform for gpu programming courses. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (pp. 942–949). https:
//doi.org/10.1109/IPDPSW.2016.63

Dalton, S., Olson, L., & Bell, N. (2015). Optimizing sparse matrix-matrix multi-
plication for the gpu. ACM transactions on mathematical software, 41(4), 1–20.
https://doi.org/10.1145/2699470

Demchik, V. (2014). Pseudorandom numbers generation for monte carlo simulations
on gpus: Opencl approach. In V. Kindratenko (Ed.), Numerical Computations
with GPUs (pp. 245–271). Cham: Springer International Publishing. https://
doi.org/10.1007/978-3-319-06548-9_12

Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1994). Algorithms for
drawing graphs: an annotated bibliography. Computational Geometry : Theory and
Applications, 4(5), 235–282. https://doi.org/10.1016/0925-7721(94)00014-X

Di Battista, G., Eades, P., Tamassia, R., & Tollis, I. G. (1999). Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall.

Du, X., Wei, Y., & Wu, L. (2017). A multi-constraint layout algorithm for dy-
namic network visualization. In 2017 IEEE 2nd International Conference on Big
Data Analysis (ICBDA) (pp. 832–836). https://doi.org/10.1109/ICBDA.2017.
8078754

Duţu, A., Sinclair, M. D., Beckmann, B. M., Wood, D. A., & Chow, M. (2020).
Independent forward progress of work-groups. In Proceedings of the ACM/IEEE
47th Annual International Symposium on Computer Architecture, ISCA ’20 (pp.
1022–1035).: IEEE Press. https://doi.org/10.1109/ISCA45697.2020.00087

Dunne, C. & Shneiderman, B. (2013). Motif simplification: Improving network
visualization readability with fan, connector, and clique glyphs. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. https:
//doi.org/10.1145/2470654.2466444

Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 42, 149–
160.

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., & Worley, S. (2003). Texturing
& Modeling: A Procedural Approach (3rd ed.). Morgan Kaufmann Publishers.

268

https://doi.org/10.1201/b16051-29
https://doi.org/10.1201/b16051-29
https://doi.org/10.1109/IPDPSW.2016.63
https://doi.org/10.1109/IPDPSW.2016.63
https://doi.org/10.1145/2699470
https://doi.org/10.1007/978-3-319-06548-9_12
https://doi.org/10.1007/978-3-319-06548-9_12
https://doi.org/10.1016/0925-7721(94)00014-X
https://doi.org/10.1109/ICBDA.2017.8078754
https://doi.org/10.1109/ICBDA.2017.8078754
https://doi.org/10.1109/ISCA45697.2020.00087
https://doi.org/10.1145/2470654.2466444
https://doi.org/10.1145/2470654.2466444

European Association for Standardizing Information and Communication Systems
(2015). ECMAScript 2015 (6th ed.). European Association for Standardizing In-
formation and Communication Systems. https://tc39.es/ecma262/

European Association for Standardizing Information and Communication Systems
(2020). ECMA-262: ECMAScript Language Specification (11th ed.). European
Association for Standardizing Information and Communication Systems. https:
//tc39.es/ecma262/

European Association for Standardizing Information and Communication Systems
(2021). ECMA-262: ECMAScript Language Specification. Jobs and Host Opera-
tions to Enqueue Jobs (11th ed.). European Association for Standardizing Infor-
mation and Communication Systems. https://tc39.es/ecma262/#sec-jobs

Firebase (2022). Superstatic (Version 8.0.0)[Computer Software]. https://www.
npmjs.com/package/superstatic

Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1996). Computer Graphics:
Principles and Practice (2nd ed.). Addison-Wesley.

Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F. T.,
Symvonis, A., Welzl, E., & Woeginger, G. (1993). Drawing graphs in the plane
with high resolution. SIAM Journal on Computing, 22(5), 1035–1052. https:
//doi.org/10.1137/0222063

Fowler, G., Noll, L. C., Cisco Systems, Vo, K.-P., Google Inc., Eastlake, D.,
Huawei Technologies, Hansen, T., & AT&T Laboratories (2019). The FNV Non-
Cryptographic Hash Algorithm [Algorithm]. https://datatracker.ietf.org/
doc/html/draft-eastlake-fnv-17.html

Frishman, Y. & Tal, A. (2007). Multi-level graph layout on the gpu. IEEE
Transactions on Visualization and Computer Graphics, 13(6), 1310–1319. https:
//doi.org/10.1109/TVCG.2007.70580

Frishman, Y. & Tal, A. (2008). Online dynamic graph drawing. IEEE Transactions
on Visualization and Computer Graphics, 14(4), 727–740. https://doi.org/10.
1109/TVCG.2008.11

Fruchterman, T. M. J. & Reingold, E. M. (1991). Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.
org/10.1002/spe.4380211102

Galán, S. F. & Mengshoel, O. J. (2018). Neighborhood beautification: Graph layout
through message passing. Journal of Visual Languages & Computing, 44, 72–88.
https://doi.org/10.1016/j.jvlc.2017.11.008

269

https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://tc39.es/ecma262/#sec-jobs
https://www.npmjs.com/package/superstatic
https://www.npmjs.com/package/superstatic
https://doi.org/10.1137/0222063
https://doi.org/10.1137/0222063
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-17.html
https://datatracker.ietf.org/doc/html/draft-eastlake-fnv-17.html
https://doi.org/10.1109/TVCG.2007.70580
https://doi.org/10.1109/TVCG.2007.70580
https://doi.org/10.1109/TVCG.2008.11
https://doi.org/10.1109/TVCG.2008.11
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1016/j.jvlc.2017.11.008

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

Godiyal, A., Hoberock, J., Garland, M., & Hart, J. C. (2009). Rapid multipole graph
drawing on the gpu. In I. G. Tollis & M. Patrignani (Eds.), Graph Drawing (pp.
90–101). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-642-00219-9_10

Google Inc. (2021). Chrome (Version 90.0.4430.93)[Computer Software]. https:
//www.google.com/chrome/

Google Inc. (2022). Chrome Canary (Version 106.0.5239.0)[Computer Software].
https://www.google.com/chrome/canary/

Hadany, R. & Harel, D. (2001). A multi-scale algorithm for drawing graphs nicely.
Discrete Applied Mathematics, 113(1), 3–21. https://doi.org/10.1016/S0166-
218X(00)00389-9

Hadlak, S., Schulz, H., & Schumann, H. (2011). In situ exploration of large dynamic
networks. IEEE Transactions on Visualization and Computer Graphics, 17(12),
2334–2343. https://doi.org/10.1109/TVCG.2011.213

Hagberg, A., Schult, D., & Swart, P. (2022). NetworkX Reference, Release
2.5. https://networkx.org/documentation/stable/_downloads/networkx_
reference.pdf

Harish, P. & Narayanan, P. J. (2007). Accelerating large graph algorithms on the gpu
using cuda. In S. Aluru, M. Parashar, R. Badrinath, & V. K. Prasanna (Eds.), High
Performance Computing – HiPC 2007 (pp. 197–208). Berlin, Heidelberg: Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77220-0_21

Idreos, S., Zoumpatianos, K., Athanassoulis, M., Dayan, N., Hentschel, B., Kester,
M. S., Guo, D., Maas, L., Qin, W., Wasay, A., & Sun, Y. (2018a). The periodic table
of data structures. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 41(3), 64–75. https://stratos.seas.harvard.edu/files/
stratos/files/periodictabledatastructures.pdf

Idreos, S., Zoumpatianos, K., Chatterjee, S., Qin, W., Wasay, A., Hentschel, B.,
Kester, M., Dayan, N., Guo, D., Kang, M., & Sun, Y. (2019). Learning data
structure alchemy. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 42(2), 46–57. https://stratos.seas.harvard.edu/files/
stratos/files/learningdatastructurealchemy.pdf

Idreos, S., Zoumpatianos, K., Hentschel, B., Kester, M. S., & Guo, D. (2018b). The
data calculator: Data structure design and cost synthesis from first principles, and
learned cost models. ACM SIGMOD International Conference on Management of
Data, (pp. 535–550). https://doi.org/10.1145/3183713.3199671

270

https://doi.org/10.1007/978-3-642-00219-9_10
https://doi.org/10.1007/978-3-642-00219-9_10
https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/canary/
https://doi.org/10.1016/S0166-218X(00)00389-9
https://doi.org/10.1016/S0166-218X(00)00389-9
https://doi.org/10.1109/TVCG.2011.213
https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf
https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf
https://doi.org/10.1007/978-3-540-77220-0_21
https://stratos.seas.harvard.edu/files/stratos/files/periodictabledatastructures.pdf
https://stratos.seas.harvard.edu/files/stratos/files/periodictabledatastructures.pdf
https://stratos.seas.harvard.edu/files/stratos/files/learningdatastructurealchemy.pdf
https://stratos.seas.harvard.edu/files/stratos/files/learningdatastructurealchemy.pdf
https://doi.org/10.1145/3183713.3199671

Ioannidis, Y. E. & Wong, E. (1987a). Query optimization by simulated annealing. In
Proceedings of the 1987 ACM SIGMOD International Conference on Management
of Data, Vol. 16 of SIGMOD ’87 (pp. 9–22). New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/38713.38722

Ioannidis, Y. E. & Wong, E. (1987b). Query optimization by simulated annealing.
SIGMOD Rec., 16(3), 9–22. https://doi.org/10.1145/38714.38722

Jacomy, A. & Plique, G. (2022). Sigma.js [Computer Software]. https://www.
sigmajs.org

Jargstorff, F. (2004). A framework for image processing. In R. Fernando (Ed.), GPU
Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics (pp.
445–467). Addison-Wesley.

Jeowicz, T., Kudelka, M., Plato, J., & Snael, V. (2013). Visualization of large
graphs using gpu computing. In 2013 5th International Conference on Intelligent
Networking and Collaborative Systems (pp. 662–667).: IEEE Computer Society.
https://doi.org/10.1109/INCoS.2013.126

Kahn, A. B. (1962). Topological sorting of large networks. Commun. ACM, 5(11),
558–562. https://doi.org/10.1145/368996.369025

Kamada, T. & Kawai, S. (1989). An algorithm for drawing general undirected graphs.
Information processing letters, 31(1), 7–15. https://doi.org/10.1016/0020-
0190(89)90102-6

Kelefouras, V., Kritikakou, A., Mporas, I., & Kolonias, V. (2016). A high-performance
matrix-matrix multiplication methodology for cpu and gpu architectures. The Jour-
nal of supercomputing, 72(3), 804–844. https://doi.org/10.1007/s11227-015-
1613-7

Kester, M. S., Athanassoulis, M., & Idreos, S. (2017). Access path selection in main-
memory optimized data systems: Should i scan or should i probe? ACM SIGMOD
International Conference on Management of Data, (pp. 715–730). https://doi.
org/10.1145/3035918.3064049

Khronos® Group (2014). WebGL Specification [Standard]. https://www.khronos.
org/registry/webgl/specs/1.0

Khronos® Group (2017). WebGL 2 Specification [Standard]. https://www.khronos.
org/registry/webgl/specs/2.0

Khronos® Group (2022a). OpenCL™ (Version 3.0)[Specification]. https://www.
khronos.org/opencl

Khronos® Group (2022b). Vulkan. Khronos® Group. https://www.vulkan.org/

271

https://doi.org/10.1145/38713.38722
https://doi.org/10.1145/38714.38722
https://www.sigmajs.org
https://www.sigmajs.org
https://doi.org/10.1109/INCoS.2013.126
https://doi.org/10.1145/368996.369025
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1007/s11227-015-1613-7
https://doi.org/10.1007/s11227-015-1613-7
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3035918.3064049
https://www.khronos.org/registry/webgl/specs/1.0
https://www.khronos.org/registry/webgl/specs/1.0
https://www.khronos.org/registry/webgl/specs/2.0
https://www.khronos.org/registry/webgl/specs/2.0
https://www.khronos.org/opencl
https://www.khronos.org/opencl
https://www.vulkan.org/

Kirsch, A. & Mitzenmacher, M. (2006). Less hashing, same performance: Building a
better bloom filter. In Y. Azar & T. Erlebach (Eds.), Algorithms – ESA 2006 (pp.
456–467). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.
1007/11841036_42

Kobourov, S. G. (2012). Spring embedders and force directed graph drawing algo-
rithms. https://doi.org/10.48550/arXiv.1201.3011

Kobourov, S. G. (2013). Force-directed drawing algorithms. In Tamassia & Rosen
(2013), 12 12, (pp. 363–408).

Koren, Y. (2005). Drawing graphs by eigenvectors: theory and practice. Computers
& Mathematics with Applications, 49(11-12), 1867–1888. https://doi.org/10.
1016/j.camwa.2004.08.015

Kreylos, O. & Hamann, B. (2001). On simulated annealing and the construction of lin-
ear spline approximations for scattered data. IEEE Transactions on Visualization
and Computer Graphics, 7(01), 17–31. https://doi.org/10.1109/2945.910818

Krüger, J. & Westermann, R. (2003). Linear algebra operators for gpu implementation
of numerical algorithms. ACM Trans. Graph., 22(3), 908–916. https://doi.org/
10.1145/882262.882363

Landau, H. J. (1967). Necessary density conditions for sampling and interpolation of
certain entire functions. Acta Mathematica, 117(none), 37–52. https://doi.org/
10.1007/BF02395039

Lee, B., Plaisant, C., Parr, C., Fekete, J., & Henry, N. (2006). Task taxonomy
for graph visualization. In AVI: Proceedings of the 2006 AVI workshop on BEyond
time and errors: novel evaluation methods for information visualization; 23-23 May
2006, BELIV ’06 (pp. 1–5).: ACM. https://doi.org/10.1145/1168149.1168168

Lefohn, A. E., Sengupta, S., Kniss, J., Strzodka, R., & Owens, J. D. (2006). Glift:
Generic, efficient, random-access gpu data structures. ACM Trans. Graph., 25(1),
60–99. https://doi.org/10.1145/1122501.1122505

Li, B., Wei, J., Sun, J., Annavaram, M., & Kim, N. (2019). An efficient gpu cache
architecture for applications with irregular memory access patterns. ACM trans-
actions on architecture and code optimization, 16(3), 1–24. https://doi.org/10.
1145/3322127

Li, J., Ranka, S., & Sahni, S. (2013). Gpu matrix multiplication. In S. Rajasekaran, L.
Fiondella, M. Ahmed, & R. A. Ammar (Eds.), Multicore Computing: Algorithms,
Architectures, and Applications. New York: Chapman and Hall/CRC, 1st edition.
https://doi.org/10.1007/978-1-4613-9692-5_3

272

https://doi.org/10.1007/11841036_42
https://doi.org/10.1007/11841036_42
https://doi.org/10.48550/arXiv.1201.3011
https://doi.org/10.1016/j.camwa.2004.08.015
https://doi.org/10.1016/j.camwa.2004.08.015
https://doi.org/10.1109/2945.910818
https://doi.org/10.1145/882262.882363
https://doi.org/10.1145/882262.882363
https://doi.org/10.1007/BF02395039
https://doi.org/10.1007/BF02395039
https://doi.org/10.1145/1168149.1168168
https://doi.org/10.1145/1122501.1122505
https://doi.org/10.1145/3322127
https://doi.org/10.1145/3322127
https://doi.org/10.1007/978-1-4613-9692-5_3

Lin, C. & Yen, H. (2005). A new force-directed graph drawing method based on edge-
edge repulsion. In Ninth International Conference on Information Visualisation
(IV’05) (pp. 329–334).: IEEE Computer Society. https://doi.org/10.1109/IV.
2005.10

Lin, D. & Huang, T. (2021). Efficient gpu computation using task graph parallelism.
In Euro-Par 2021: Parallel Processing, Lecture Notes in Computer Science (pp.
435–450). Cham: Springer International Publishing. https://doi.org/10.1007/
978-3-030-85665-6_27

Lu, J. & Si, Y. (2020). Clustering-based force-directed algorithms for 3d graph visu-
alization. The Journal of supercomputing, 76(12), 9654–9715. https://doi.org/
10.1007/s11227-020-03226-w

Marsaglia, G. (2003). Xorshift rngs. Journal of statistical software, 8(14), 1–6. https:
//doi.org/10.18637/jss.v008.i14

Marshall, S. (2004). Converting production renderman shaders to real-time. In R.
Fernando (Ed.), GPU Gems: Programming Techniques, Tips, and Tricks for Real-
Time Graphics (pp. 551–566). Addison-Wesley.

Mathews, M. (2011). JSDoc (Version 3)[Computer Software]. https://jsdoc.app

Mi, P., Sun, M., Masiane, M., Cao, Y., & North, C. (2016). Interactive graph
layout of a million nodes. Informatics, 3(4). https://doi.org/10.3390/
informatics3040023

Microsoft Inc. (2021). Edge [Computer Software]. https://www.microsoft.com/en-
us/edge

Misue, K., Eades, P., Lai, W., & Sugiyama, K. (1995). Layout adjustment and the
mental map. Journal of visual languages and computing, 6(2), 183–210. https:
//doi.org/10.1006/jvlc.1995.1010

Mockus, A. (2019). Insights from open source software supply chains (keynote). In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2019 (pp.3̃). New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/3338906.3342813

Mozilla Corp. (2021). Firefox (Version 88.0)[Computer Software]. https://www.
mozilla.org/en-US/firefox

Mozilla Developer Network (2022). The Event Loop. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/EventLoop

273

https://doi.org/10.1109/IV.2005.10
https://doi.org/10.1109/IV.2005.10
https://doi.org/10.1007/978-3-030-85665-6_27
https://doi.org/10.1007/978-3-030-85665-6_27
https://doi.org/10.1007/s11227-020-03226-w
https://doi.org/10.1007/s11227-020-03226-w
https://doi.org/10.18637/jss.v008.i14
https://doi.org/10.18637/jss.v008.i14
https://jsdoc.app
https://doi.org/10.3390/informatics3040023
https://doi.org/10.3390/informatics3040023
https://www.microsoft.com/en-us/edge
https://www.microsoft.com/en-us/edge
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1145/3338906.3342813
https://www.mozilla.org/en-US/firefox
https://www.mozilla.org/en-US/firefox
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop

N, R. J. & Murali, S. (2019). Memory sharing via unified memory architec-
ture. https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&
date=20190730&DB=EPODOC&CC=CN&NR=110069421A

Namata, G., Staats, B., Getoor, L., & Shneiderman, B. (2007). A dual-view approach
to interactive network visualization. CIKM. https://doi.org/10.1145/1321440.
1321580

NetworkX Developers (2020). NetworkX: Network Analysis in Python. https://
networkx.org

Nobre, C., Meyer, M., Streit, M., & Lex, A. (2019). The state of the art in visualizing
multivariate networks. Computer Graphics Forum, 38(3), 807–832. https://doi.
org/10.1111/cgf.13728

Nobre, C., Wootton, D., Harrison, L., & Lex, A. (2020). Evaluating multivariate net-
work visualization techniques using a validated design and crowdsourcing approach.
CHI. https://doi.org/10.1145/3313831.3376381

NVIDIA Corp. (2022a). cuBLAS [Computer Software]. https://developer.nvidia.
com/cublas

NVIDIA Corp. (2022b). CUDA (Version 11.8)[Framework]. https://www.nvidia.
com/en-gb/geforce/technologies/cuda/

Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of
the American Institute of Electrical Engineers, 47(2), 617–644. https://doi.org/
10.1109/T-AIEE.1928.5055024

OpenJS Foundation (2022). Node.js [Computer Software]. https://nodejs.org/en

Panic (2021). Nova (Version 10.0)[Computer Software]. https://www.nova.app

Patterson, D. A. & Hennessy, J. L. (2017). Computer Organization and Design: The
Hardware/Software Interface (Arm ed.). Morgan Kaufmann.

Plique, G. (2022). Graphology [Computer Software]. https://doi.org/10.5281/
zenodo.5681257

Qu, J., Liu, X., Sun, M., & Qi, F. (2017). Gpu-based parallel particle swarm opti-
mization methods for graph drawing. Discrete Dynamics in Nature and Society,
2017, 2013673. https://doi.org/10.1155/2017/2013673

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems (2nd ed.).
McGraw-Hill, Inc.

274

https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190730&DB=EPODOC&CC=CN&NR=110069421A
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190730&DB=EPODOC&CC=CN&NR=110069421A
https://doi.org/10.1145/1321440.1321580
https://doi.org/10.1145/1321440.1321580
https://networkx.org
https://networkx.org
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1111/cgf.13728
https://doi.org/10.1145/3313831.3376381
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://www.nvidia.com/en-gb/geforce/technologies/cuda/
https://www.nvidia.com/en-gb/geforce/technologies/cuda/
https://doi.org/10.1109/T-AIEE.1928.5055024
https://doi.org/10.1109/T-AIEE.1928.5055024
https://nodejs.org/en
https://www.nova.app
https://doi.org/10.5281/zenodo.5681257
https://doi.org/10.5281/zenodo.5681257
https://doi.org/10.1155/2017/2013673

Salmon, J., Moraes, M., Dror, R., & Shaw, D. (2011). Parallel random numbers: as
easy as 1, 2, 3. In 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), SC ’11 (pp. 1–12).: ACM. https://doi.
org/10.1145/2063384.2063405

Segal, M. & Akeley, K. (2022). The OpenGL® Graphics System (Version 4.6)[Speci-
fication]. https://www.khronos.org/opengl/

Sheng, S., Wu, C., Dong, X., & Chen, S. (2019). Research on dynamic graph lay-
out by parallel computing and markov process. In IEEE Intl Conf on Parallel &
Distributed Processing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking (ISPA/BD-
Cloud/SocialCom/SustainCom) (pp. 1092–1098).: IEEE Computer Society. https:
//doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00156

Silva, C., Chiang, Y., Correa, W., El-Sana, J., & Lindstrom, P. (2013). Out-Of-Core
Algorithms for Scientific Visualization and Computer Graphics, LLNL Technical
Report UCRL-JC-150434-REV-1. Technical report, Lawrence Livermore National
Library.

Simonetto, P., Archambault, D., & Kobourov, S. (2020). Event-based dynamic graph
visualisation. IEEE Transactions on Visualization and Computer Graphics, 26(7),
2373–2386. https://doi.org/10.1109/TVCG.2018.2886901

Singh, I., Shriraman, A., Fung, W. W. L., O’Connor, M., & Aamodt, T. M. (2014).
Cache coherence for gpu architectures. IEEE Micro, 34(3), 69–79. https://doi.
org/10.1109/MM.2014.4

Smith, A. R. (1984). Plants, fractals, and formal languages. In Proceedings of the 11th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’84 (pp. 1–10). New York, NY, USA: Association for Computing Machinery. https:
//doi.org/10.1145/800031.808571

Sorensen, T. & Donaldson, A. F. (2016). Exposing errors related to weak memory
in gpu applications. SIGPLAN Not., 51(6), 100–113. https://doi.org/10.1145/
2980983.2908114

Sorensen, T., Donaldson, A. F., Batty, M., Gopalakrishnan, G., & Rakamarić, Z.
(2016). Portable inter-workgroup barrier synchronisation for gpus. SIGPLAN no-
tices, 51(10), 39–58. https://doi.org/10.1145/3022671.2984032

Sorensen, T., Pai, S., & Donaldson, A. F. (2019). One size doesn’t fit all: Quantifying
performance portability of graph applications on gpus. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), International Symposium on
Workload Characterization Proceedings (pp. 155–166). New York: IEEE. https:
//doi.org/10.1109/IISWC47752.2019.9042139

275

https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2063384.2063405
https://www.khronos.org/opengl/
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00156
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00156
https://doi.org/10.1109/TVCG.2018.2886901
https://doi.org/10.1109/MM.2014.4
https://doi.org/10.1109/MM.2014.4
https://doi.org/10.1145/800031.808571
https://doi.org/10.1145/800031.808571
https://doi.org/10.1145/2980983.2908114
https://doi.org/10.1145/2980983.2908114
https://doi.org/10.1145/3022671.2984032
https://doi.org/10.1109/IISWC47752.2019.9042139
https://doi.org/10.1109/IISWC47752.2019.9042139

Sorensen, T., Salvador, L. F., Raval, H., Evrard, H., Wickerson, J., Martonosi, M., &
Donaldson, A. F. (2021). Specifying and testing gpu workgroup progress models.
Proceedings of ACM on Programming Languages, 5(OOPSLA), 1–30. https://
doi.org/10.1145/3485508

Stolper, C. D., Foerster, F., Kahng, M., Lin, Z., Goel, A., Stasko, J., & Chau, D. H.
(2014). Glos: Graph-level operations for exploratory network visualization. In
CHI ’14 Extended Abstracts on Human Factors in Computing Systems, CHI EA
’14 (pp. 1375–1380). New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/2559206.2581239

Sugiyama, K., Tagawa, S., & Toda, M. (1981). Methods for visual understanding of
hierarchical system structures. IEEE transactions on systems, man, and cybernet-
ics, 11(2), 109–125. https://doi.org/10.1109/TSMC.1981.4308636

Tamassia, R. & Rosen, K. H. (2013). Handbook of Graph Drawing and Visualization.
CRC Press LLC.

Tan, J., Yan, K., Song, S. L., & Fu, X. (2020). Energy-efficient gpu l2 cache design
using instruction-level data locality similarity. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES). https://doi.org/10.1145/3408060

The Mathworks, Inc. (2022). MATLAB (Version R2022b)[Computer Software].

Tufte, E. R. (1990). Envisioning information. Graphics Press.

Tutte, W. T. (1963). How to draw a graph. Proceedings of the London Mathematical
Society, s3-13(1), 743–767. https://doi.org/10.1112/plms/s3-13.1.743

Udupa, A., Govindarajan, R., & Thazhuthaveetil, M. (2009). Software pipelined
execution of stream programs on gpus. CGO ’09: Proceedings of the 2009 In-
ternational Symposium on Code Generation and Optimization, 33(1), 98–105.
https://doi.org/10.1109/CGO.2009.20

Valiant, L. G. (1981). Universality considerations in vlsi circuits. IEEE transactions
on computers, C-30(2), 135–140. https://doi.org/10.1109/TC.1981.6312176

Walshaw, C. (2003). A multilevel algorithm for force-directed graph-drawing. Journal
of graph algorithms and applications, 7(3), 253–285. https://doi.org/10.7155/
jgaa.00070

Wang, Y., Pan, Y., Davidson, A., Wu, Y., Yang, C., Wang, L., Osama, M., Yuan,
C., Liu, W., Riffel, A. T., & Owens, J. D. (2017). Gunrock: Gpu graph analyt-
ics. ACM Transactions on Parallel Computing, 4(1), 1–49. https://doi.org/10.
1145/3108140

Ward, S. A. & Halstead Jr., R. H. (1999). Computation Structures. The MIT Press.

276

https://doi.org/10.1145/3485508
https://doi.org/10.1145/3485508
https://doi.org/10.1145/2559206.2581239
https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.1145/3408060
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1109/CGO.2009.20
https://doi.org/10.1109/TC.1981.6312176
https://doi.org/10.7155/jgaa.00070
https://doi.org/10.7155/jgaa.00070
https://doi.org/10.1145/3108140
https://doi.org/10.1145/3108140

Ware, C. (2013). Information Visualization: Perception for Design (3rd ed.). Else-
vier/MK.

Web Hypertext Application Technology Working Group (2021a). HTML: Event
Loops. WHATWG. https://html.spec.whatwg.org/multipage/webappapis.
html#event-loops

Web Hypertext Application Technology Working Group (2021b). HTML: Processing
Model. WHATWG. https://html.spec.whatwg.org/multipage/webappapis.
html#processing-model

Web Hypertext Application Technology Working Group (2021c). HyperText Markup
Language (Version 5)[Standard]. https://html.spec.whatwg.org

Wei, Y., Du, X., Xu, D., & Wang, X. (2018). A speedup spatial rearrangement
algorithm for dynamic network visualization. In 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC) (pp. 749–753).: IEEE. https:
//doi.org/10.1109/DSC.2018.00120

World Wide Web Consortium (2022a). GPU for the Web Community Group. https:
//www.w3.org/community/gpu

World Wide Web Consortium (2022b). WebGPU. https://www.w3.org/TR/webgpu

World Wide Web Consortium (2022c). WebGPU Shading Language. https://www.
w3.org/TR/WGSL

World Wide Web Consortium (2022d). World Wide Web Consortium (W3C). https:
//w3c.org

Xiao, Y., Feng, R., Han, Z., & Leung, C. (2015). Gpu accelerated self-organizing
map for high dimensional data. Neural processing letters, 41(3), 341–355. https:
//doi.org/10.1007/s11063-014-9383-4

Xu, T., Yang, J., & Gou, G. (2018). A force-directed algorithm for drawing directed
graphs symmetrically. Mathematical problems in engineering, 2018, 1–24. https:
//doi.org/10.1155/2018/6208509

Zhong, J. & He, B. (2014). Medusa: Simplified graph processing on gpus. IEEE
transactions on parallel and distributed systems, 25(6), 1543–1552. https://doi.
org/10.1109/TPDS.2013.111

277

https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
https://html.spec.whatwg.org/multipage/webappapis.html#processing-model
https://html.spec.whatwg.org/multipage/webappapis.html#processing-model
https://html.spec.whatwg.org
https://doi.org/10.1109/DSC.2018.00120
https://doi.org/10.1109/DSC.2018.00120
https://www.w3.org/community/gpu
https://www.w3.org/community/gpu
https://www.w3.org/TR/webgpu
https://www.w3.org/TR/WGSL
https://www.w3.org/TR/WGSL
https://w3c.org
https://w3c.org
https://doi.org/10.1007/s11063-014-9383-4
https://doi.org/10.1007/s11063-014-9383-4
https://doi.org/10.1155/2018/6208509
https://doi.org/10.1155/2018/6208509
https://doi.org/10.1109/TPDS.2013.111
https://doi.org/10.1109/TPDS.2013.111

	Titlepage
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Equations
	List of Algorithms
	List of Code
	1 Introduction
	1.1 Background
	1.2 The Problem: Interactivity
	1.3 The Solution: Dynamical.JS
	1.4 Prior Work
	1.5 Terminology

	2 Design & Methodology
	2.1 Key Qualities
	2.2 System Agnosticism
	2.3 Modularity
	2.3.1 Data Module
	2.3.2 Layout Module
	2.3.3 Drawing Module
	2.3.4 Testing & Performance Module

	2.4 Graph & Layout Types
	2.4.1 Static Graph Layouts
	2.4.2 Dynamic (Offline) Graph Layouts
	2.4.3 Dynamical (Online) Graph Layouts
	2.4.4 Context Aware Layouts

	2.5 Aesthetics and the Mental Map
	2.5.1 Preserving the Mental Map
	2.5.2 Multiple Representation
	2.5.3 Small Multiples

	2.6 Cache Consciousness
	2.6.1 GPU Memory

	2.7 Exploratory Graph Operations (EGOs)
	2.8 Graph Data Operations (GDOs)
	2.8.1 Load Graph
	2.8.2 Store Graph
	2.8.3 Clone Graph
	2.8.4 Subgraph
	2.8.5 Merge Graphs
	2.8.6 Retrieve Element(s)
	2.8.7 Filter Elements
	2.8.8 Add Element(s)
	2.8.9 Remove Element(s)
	2.8.10 Update Element(s)
	2.8.11 Merge Element(s)
	2.8.12 Materialize
	2.8.13 Key Frame
	2.8.14 Coalesce
	2.8.15 Calculate Graph Statistics
	2.8.16 Find Path
	2.8.17 Neighbors

	2.9 Graph Layout Operations (GLOs)
	2.9.1 Layout
	2.9.2 Initial Layout
	2.9.3 Merge Layouts
	2.9.4 Calculate Layout Statistics
	2.9.5 Simplify
	2.9.6 Elaborate
	2.9.7 Partition
	2.9.8 Merge Partitions
	2.9.9 Calculate Forces
	2.9.10 Calculate Repulsive Forces
	2.9.11 Calculate Attractive Forces
	2.9.12 Calculate Offsets
	2.9.13 Centroid
	2.9.14 Place Node(s)
	2.9.15 Quality
	2.9.16 Finesse

	2.10 Graph Rendering Operations (GROs)
	2.10.1 Update Dimensions
	2.10.2 Apply Transform
	2.10.3 Render Layout
	2.10.4 Render Region
	2.10.5 Overlay
	2.10.6 Show Element(s)
	2.10.7 Hide Element(s)
	2.10.8 Apply Visual Mark to Element(s)
	2.10.9 Apply Visual Channel to Element(s)
	2.10.10 Interpolate

	2.11 Graph Analysis Operations (GAOs)
	2.11.1 Find Element(s) by Position
	2.11.2 Find Bounded Element(s)
	2.11.3 Select Element(s)
	2.11.4 Deselect Element(s)
	2.11.5 Filter Element(s)
	2.11.6 Highlight Element(s) of Interest
	2.11.7 Export Image
	2.11.8 Step Backward and Forward through GRO History

	2.12 Tunability
	2.12.1 Environmental Constraints
	2.12.2 Layout Constraints
	2.12.3 Quality Metrics

	3 Layout Algorithm Decomposition
	3.1 Algorithm Stages
	3.1.1 Initial Placement
	3.1.2 Statistics Calculation
	3.1.3 Partition
	3.1.4 Placement Loop
	3.1.5 Merge Partitions
	3.1.6 Finesse

	3.2 Basic Algorithms
	3.2.1 Random Placement
	3.2.2 Geometric
	3.2.3 Fixed & Free

	3.3 Force-Directed Layouts
	3.3.1 The Barycentric Method

	3.4 Spring Systems
	3.4.1 Fruchterman-Reingold
	3.4.2 Edge-Edge Repulsion

	3.5 Other Algorithms

	4 Computational Development
	4.1 External Requirements
	4.2 Publishing
	4.3 Hardware Configuration
	4.4 Tools
	4.5 Javascript
	4.5.1 Runtime & Concurrency
	4.5.2 Asynchronous Execution

	4.6 Computer Graphics
	4.6.1 History
	4.6.2 OpenGL

	4.7 Graphical Object Models
	4.8 Rendering Pipeline(s)
	4.8.1 The Geometry Pipeline
	4.8.2 The Pixel Pipeline

	4.9 Programmable Pipelines
	4.9.1 Shaders
	4.9.2 Shading Languages

	4.10 General-Purpose GPU Computing (GPGPU)
	4.10.1 GPGPU Memory & Concurrency

	4.11 GPGPU Frameworks
	4.12 Web Graphics
	4.12.1 WebGL & GLSL
	4.12.2 GPU for the Web (WebGPU)

	5 Implementation & Results
	5.1 Code Syntax & Documentation
	5.2 Environment
	5.3 Code organization
	5.4 The DGBase Object
	5.4.1 Extensibility

	5.5 Asynchronous Interfaces
	5.5.1 Asynchronous Initialization
	5.5.2 Asynchronous Loops

	5.6 Mathematical Operations
	5.6.1 Vectors & Matrices
	5.6.2 (Pseudo) Random Number Generators (PRNGs)

	5.7 Data Structures
	5.7.1 Graph ADT
	5.7.2 Index Structures
	5.7.2.1 Bit Vectors & Matrices
	5.7.2.2 Bloom Filters

	5.8 Data Module
	5.8.1 Materialization
	5.8.2 GPU Materialization
	5.8.3 Materialization Data Structures
	5.8.3.1 Adjacency Lists
	5.8.3.2 Adjacency Matrices

	5.8.4 Graph Traversal
	5.8.5 Graph Updates
	5.8.5.1 Key Graphs
	5.8.5.2 Change Sets

	5.8.6 File Formats

	5.9 Layout Module
	5.9.1 Layout Execution

	5.10 Drawing Module
	5.10.1 Rendering & Animation

	6 Conclusion
	6.1 Summary
	6.2 Challenges
	6.2.1 Multithreading
	6.2.2 Memory Limits
	6.2.3 Limited Optimization
	6.2.4 Timeslicing

	6.3 Future Work
	6.3.1 Architectural Changes
	6.3.2 Optimization Changes

	A Glossary
	B Acronyms
	C Code
	C.1 Javascript Code
	C.1.1 DGBase
	C.1.2 DGTestRig
	C.1.3 DGGPUEngineTestRig
	C.1.4 DGAsyncLoop
	C.1.5 DGBitVector & DGBitMatrix
	C.1.6 DGGraphBase
	C.1.7 DGGraph
	C.1.8 DGQuickBloom
	C.1.9 DGLayoutEngineBase

	C.2 WebGPU Code
	C.2.1 DGWebGPUBase
	C.2.2 DGComputeEngine

	C.3 WGSL Code
	C.3.1 XOR128

	References

