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Abstract 

All cancers are different from each other, in their mutation spectrum, primary 

location of occurrence, and metastases as well as their phenotypic traits and tumor 

composition. For years, clinicians and pathologists have sought to describe, characterize, 

and exploit the hallmarks of cancer broadly to identify specific differences between 

cancer types and subtypes. As medical technology and science advances, so has 

understanding of the underlying biology of cancer initiation and progression. Further, the 

ability to identify and visualize subtle differences between types of cancer based on their 

phenotypic and morphologic presentation aids in the research and design of newer 

targeted cancer therapies aimed to improve the lives of patients regardless of their 

original prognosis. Currently, the most widely used method for studying tumor tissue and 

diagnosis diseases is hematoxylin and eosin staining (H&E) of surgical biopsies with 

supplemental immunohistochemistry (IHC) or in-situ hybridization (ISH) for molecular 

biomarkers. These methods are low-plex but highly reliable and have remained the gold 

standards half a century. IHC typically identifies and quantifies one biomarker of interest 

at a time and answer specific questions, such as whether or not a particular breast tumor 

biopsy contains cells that overexpress human epidermal growth factor receptor 2 (HER2) 

or not. IHC stains require manual interpretation by trained pathologists or histologists 

based on counting cells (commonly with a binary call as either positive or negative) 

expressing a particular marker: if there is an abundance of brown-stained HER2+ cells 

scored on one patient’s biopsy slide as compared to a control, then HER2 is scored as 



 

 

over-expressed. Unfortunately, this is a slow, laborious process that does not take 

advantage of many advances in computer vision and image analysis. Thus, digital 

methods that incorporate multiple antibodies have long been sought. 

Recently, a modified version of the traditional immunofluorescence assay, called 

cyclic immunofluorescence (CyCIF), has been used to perform high-throughput, 

multiplexed imaging of fixed, cultured cells in a multiwell plate format and (Lin et al., 

2015) as well as formalin-fixed paraffin-embedded (FFPE) sections of tissue or tumor 

samples (Lin et al., 2018) on slides in a manner compatible with standard histopathology 

workflows. As with the IHC assays, the goal is to detect particular cell- or tissue-specific 

macromolecules with antibodies, but for more analytes to spare tissue and reveal deeper 

cellular phenotypes. In CyCIF, both unconjugated and conjugated commercially available 

antibodies, used for indirect IF and direct IF, respectively, can be used, with up to 60 or 

more different antigens measured on each specimen. This enables a thorough 

characterization of tissue-intrinsic properties as well as tumor. In doing so, we can 

provide a more comprehensive and specific understanding of tissue sections and cellular 

populations as opposed to simply the presence or absence of an antigen or disease. Whole 

slide imaging (WSI) is performed on tumor biopsies, cycles are registered and stitched 

together, and a mutli-channel images containing data from numerous antibody stains is 

then analyzed to define the biological context in which cancer continues to persist. 

Here, we used CYCIF to investigate the composition and architecture of human 

cancers and adjacent normal tissue as a means to describe cellular composition both 

inside and outside of the tumor and along the tumor boundary, explore cell-to-cell 

interactions and neighborhood analyses, as well as evaluate the efficacy of commercially 



 

 

available antibodies. The data we present here, as well as the EMIT dataset on which it is 

based (Schapiro et al., 2021), defines, characterizes, and highlights noticeable trends of 

biology in human tissue microarrays (hTMA). I will use the staining of complementary 

serial sections of TMAs to accomplish our aim of characterizing tumor and benign cell 

morphology across cancers, uncover patterns across cancer different cancer types, 

identify morphological distinctions through antibody expression, and evaluate antibody 

staining across hundreds of reagents through a multi-disciplinary approach. This, 

beginning with fine-tuned and well-controlled experimentation and the use of deep 

learning artificial intelligence (AI) and automated post-processing of image-based data. 

In achieving our aims and showcasing the potential of CyCIF, we hope to translate this 

current research into an atlas-like resource aimed at addressing many outstanding 

questions in the fields of histology, pathology, and the newly emerging field of digital 

histopathology. Though we do not CyCIF does not provide a direct link into clinical care, 

we show that the results produced through our multifaceted pipeline can, and should, 

have a direct impact on clinical follow-ups as they pertain to individualized medicine. In 

detailing a patient’s primary tumor biopsy in replicate, with uniquely built-upon CyCIF 

panels to unearth as much biological and immunological information as possible, we 

have created an argument as to why high-plex cancer atlases might serve as valuable 

tools for enhancing our knowledge of disease-specific underlying biology to a never-

before-possible standard.
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Chapter I. 

Introduction 

The Current Standing in the Field of Histopathology 

Review of sectioned formalin-fixed paraffin-embedded (FFPE) tissue and tumor 

biopsies stained with the dyes hematoxylin and eosin (H&E) is the primary approach for 

cancer diagnosis. Staining of negatively (violet: nucleic acids and some proteins) and 

positively (red: cytoplasmic proteins and connective tissue such as collagens) charged 

molecules by H&E, respectively, reveal patterns of tissue and sub-cellular architecture to 

a trained pathologist inspecting the sample at high and low magnification. The patient’s 

clinical information and review of H&E-stained biopsy sections, cell size, and patterns of 

nuclear and cytoplasmic staining can be used to distinguish tumor, immune and stromal 

cell types, subtype and grade the cancer. Further, H&E provides a setting in which 

pathologists can quickly visualize groups of cells their morphologies, which are often 

distinguishable in the context of cancer, as a result of uncontrolled proliferation. The 

method has existed for over a century and remains relatively unchanged, yet a staple in 

the field of histology for its ability to recognize morphologic changes that dictate many 

contemporary cancer diagnoses (Fischer et al., 2008). Beyond grading the cancer itself, 

H&E staining can be used as a primary diagnostic tool in differentiating one form of 

cancer from another through pattern recognition and identification of subtype-specific 

abnormalities (Chen et al., 2020). 

While H&E staining remains a critical component of the histologic workflow that 

precedes many cancer diagnoses, interpretation requires a high level of human expertise, 
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meaning the workflow surrounding a single H&E slide requires much effort. While there 

have been technological advances that allow for H&E staining of many slides at the same 

time, the interpretation of this data requires one by one pathology review – one of its 

major limitations. Even in an era of “big data,” unassisted pathologist interpretation of 

H&E results remains the gold standard (Djuric et al., 2017) despite being both 

burdensome and subject to observer-to-observer variability (Tan et al., 2020). In addition, 

H&E does not provide detailed molecular information on a cell-to-cell basis and is 

limited to pattern recognition and qualitative features of tumors. Molecular detail is 

important in the context of diagnosis to provide quantitative insight into disease state and 

possible drug response, based on quantification of the presence of a particular protein 

within a tissue that may be unique to a group of cells or cell states. Not only that, but 

molecular features reveal mechanisms that can be used to apply existing or develop new 

treatments and offer insight as to how clinicians can improve a patient’s treatment 

regimen. To reach this next-level of clinical relevance, the method of 

immunohistochemistry (IHC) is used to detect individual molecules in FFPE biopsy 

tissue, building upon H&E findings, but with deeper and more specific data on the levels 

and distribution of a single protein. 

Often used to complement the findings seen through H&E staining, and add an 

additional layer of quantitative value, IHC staining incorporates the use of a clinically 

relevant (typically monoclonal) antibody as a biomarker in tissue sections. Like H&E, 

IHC affords the pathologist an easy way to discriminate cell types and cell morphology 

based on staining patterns. This can make it easier to distinguish benign tissue regions 

from malignant ones. It is also widely considered to be the gold standard in cancer 
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assessment and detection of disease-specific molecular changes. In IHC, an antibody is 

linked to an enzyme, and the antibody itself targets a molecule of interest, such as a 

mutated receptor or an oncogene. The antibodies are selected by pathologists and 

clinicians based on the suspected cancer type. For example, in breast cancer, pathologists 

target specific changes in expression associated with common subtypes such human 

epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone 

receptor (PR). In clinical practice, at least three slides are subjected to IHC staining (one 

slide targeting HER2, one targeting ER, and one targeting PR) and pathology review of 

one marker at a time is used to arrive at diagnostic findings. Based on these findings, 

antibody or small molecule therapeutics can be provided to target the specific 

abnormality and improve the patient’s clinical outcome. Herein we see the power of IHC 

in that the detection of a specific gene (protein) and its relative abundance can directly 

guide clinical intervention. 

As compared to H&E, IHC staining introduces a slightly qualitative aspect to the 

clinical standard. IHC depends on the use of chromogens, such as 3,3′-Diaminobenzidine 

(Rimm, 2014), commonly referred to as DAB. IHC staining employs the use of a single 

primary antibody that is linked to DAB. The enzyme, in turn, oxidizes DAB which leaves 

a brown colored precipitate that is detected through white-light brightfield microscopy, 

much like H&E. Nonetheless, IHC is frequently used as a diagnostic tool for solid tissue 

malignancies (Angelo et al., 2014). In the hands of a skilled pathologist, IHC moves 

beyond the abilities of H&E and can be used to judge relative levels of an antigen, wholly 

important in grading cancerous specimens, particularly in assessing disease state, to 

which H&E is relatively naive. Normally, the staining intensity of an antibody in IHC 
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correlates to its relative expression level or abundance: the darker the stain, the more 

antigen present (Nguyen, 2013) indicative of a higher burden, such as HER2 

overexpression. Though this evaluation is limited to a single antibody, the ability to 

include a quantitative aspect to histology staining represents another standard in the field 

and serves as an indispensable tool in assigning tumor type and diagnoses that are heavily 

dependent on morphological interpretation (Bellizzi, 2020) and expression level. H&E 

and IHC staining are often the first methods used to detect, classify, and score different 

malignancies and metastases (Litjens et al., 2018; Rüschoff et al., 2010); thus, their 

significance in the clinic remains vital. Due to these factors and the capability to detect 

and appraise cancers, H&E and IHC have a long withstanding presence in the clinic and 

have remained relatively unvarying for decades. 

What remains a limitation of the IHC method is the number of antibodies used. 

Traditionally, only one antibody is used to target one particular molecule per slide and 

then multiple batches of slides are used to stain any number of antibodies, such as three 

slides each stained for HER2, ER, or PR. Recent efforts within the last few decades have 

improved the capabilities of IHC to incorporate the staining of a second biomarker or 

antibody, known as double-stain IHC or indirect IHC (Chen et al., 2010). While this may 

seem a modest improving, it doubles the efficiency of the IHC assay and makes it 

possible to score co-expression at a single cell level. Even so, it is apparent that the need 

for additional biomarkers and antibodies screened in IHC remains a key area to 

investigate further. The use of multiple antibodies simultaneously can vastly improve our 

understanding of disease and disease status. For example, employing markers such as 

pan-Cytokeratin (pan-CK), Ki67, Cyclin D1, and PDL1, can be used to better understand 
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tumor burden, the proliferative nature of cancerous cells, as well as cell death 

programming that may be occurring within a tumor (Patel & Kurzrock, 2015) – typical 

hallmarks of cancer. By performing a dual-IHC stain with both pan-CK and Ki67, we can 

quickly determine not only the presence of tumor, but also how quickly the cells may be 

proliferating within the tumor and outside of it. These markers provide insight in regards 

to disease state or progression as opposed to simply the presence or absence of one 

biomarker – pathologists can see tumor or proliferating cells, but cannot see proliferating 

cells within the tumor simultaneously by conventional H&E or IHC and their single-

marker approaches. Therefore, you need a multi-marker method, a marker to score 

mitosis (Ki67) and a marker to identify the tumor (pan-CK), to visualize proliferating 

cells (Ki67+) within the tumorous region (pan-CK+), often signifying a rapidly growing 

tumor capable of metastasizing (Li et al., 2015). 

More than just to detect disease, using additional biomarkers help clinicians and 

pathologists gauge disease state, severity, and tumor burden. Pathologists also use H&E 

and IHC staining results to interpret and predict response rate, progression free survival, 

as well as overall survival (Patel & Kurzrock, 2015), key parameters to consider when 

considering drug treatments. Taken together, this information can be used to guide or 

direct drug treatment given the results; the richer and more detailed the results are in 

regards to mutations, over- and under-expressions, and mutations, the more precise a 

drug regimen can be provided to a patient. Continuing from the previous example, if 

there is not a visible HER2 overexpression mutation, there could be another mutation, 

such as with PR, which would steer drug treatment in an entirely different direction based 

on the evaluation of IHC slides in a patient-specific manner. That is to say, the ability to 
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probe and stain for multiple markers simultaneously offers a more well-controlled 

manner in which we can observe actionable biology. Multiplexing is superior than 

probing serial sections of the same tumor three with either a HER2, ER, or PR biomarker, 

which is significantly more time consuming. Overall, there is an unmet need for a 

histology-related assay to allow for the incorporation of many antibodies simultaneously. 

Being limited to one or two antibodies per slide does not allow for an in-depth 

understanding of a patient's tumor, nor does it maximize efficiency in histologic staining. 

One of the challenges in interpreting IHC stain results is that there is seldom 

complementary data, apart from preliminary H&E, limiting the generalized analysis of 

biomarker data, again a hindrance in the “big data” era. As it currently stands, both H&E 

and IHC slides are assessed in very large volumes to reach the required sample sizes 

needed for statistical significance in both the research and clinical hospital-based settings. 

However, given that there are large numbers and batches of slides that need to be both 

stained and analyzed, this becomes a long and exhaustive process that requires the time 

and attention of individuals to perform the staining as well as input from pathologists to 

evaluate the results. As fresh biopsies are performed in the hundreds each day, a rigorous 

evaluation, likely performed by multiple pathologists is needed. As mentioned, this 

manual scoring in the hundreds may actually decrease efficiency as fatigue sets in; it also 

introduces inter-observer variability among other human error(s). It would involve many 

trained specialists to assess large cohorts of slides each day to reach the required sample 

size – exhausting efforts that becomes error prone susceptible to decision fatigue, 

deferrals, and discrepancies (Wisell and Sams, 2013). By using machine learning, there is 

the potential to automate review and improve quantification of this process, minimizing 
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the burdens placed on pathologists while simultaneously increasing both accuracy and 

throughput. In doing so, we can remove much of the human error introduced once the 

proper machine learning training sets are prepared. While machine learning may not 

necessarily improve the speed of analysis, heightened accuracy and precision should not 

be overlooked. 

Adapting to the Evolving Field Using Deep-Learning and Multiplexing 

While machine-learning based automation can greatly lessen the burden placed on 

pathologists in evaluating H&E and IHC slides, the incorporation of multiplexing assays 

can greatly increase the amount of molecular information we can obtain from a single 

slide. Therefore, both of these advancements should be highly sought after in terms of 

moving the field forward in parallel with the technological advances. Recently, there 

have been developments to train supervised H&E machine learning algorithms to 

recognize the different morphologies and structures of cells from FFPE slides and guide 

artificial intelligence (AI) to perform these assessments in the place of actual 

pathologists. While there has been success in these endeavors, incorporating IHC slides 

for machine learning supplements the additional layer of quantifiability. Thus, H&E 

slides need to be integrated with IHC slides for training purposes in targeting specific 

cellular components and expression levels. While large sample sizes are needed to train 

deep learning AI, performing one sizable batch of manual annotations, though 

cumbersome and error-prone (Tellez et al., 2018) is superior to experts redundantly 

reviewing smaller batches of slides each time which becomes tiresome and burdensome. 

If a properly curated training set is prepared, then there is no longer a need for manual 

intervention in individual batch review – the same algorithms can be used each 
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experiment, likely with frequent improvements. Automation makes these efforts 

significantly less vexatious. 

Previous deep learning processes and automation efforts have proven successful 

in histopathology (Nadarajan et al., 2019) and can help advance the field if proper 

controls and supervised training(s) are incorporated. This includes annotating and 

classifying the different components of a cell, a process known as “labeling” (van der 

Wal et al., 2021), whereby pathologist-driven manual classification is used to identify 

particular cell types and structures. Doing so allows for manual interpretation of 

histology data to remain the ground-truth in assessing H&E and IHC slides, that is to say 

there is no deviation from the gold standard if it serves as the foundation for machine 

learning training sets  (Aeffner et al., 2017). Labeling efforts include identifying and 

marking certain cells, such as a B- and T-cells or macrophages, in a way that, when 

provided with different unmarked field, the machine learning algorithms can use its 

previously fed information to make the same judgements a pathologist had, but on a 

much larger scale. This is considered “supervised training” in that pathologists dictate the 

first-pass as to what a specific immune cell looks like and then the AI then learns from 

that information to make its own judgements about previously unseen based on cellular 

morphology and marker expression. Cumulative efforts can translate into increasing the 

throughput of analysis, quantification, and classification of potentially cancerous cells 

and tissues on standard pathological slides moving the field forward as a whole. 

To target the many components of a cell, a number of different markers must be 

employed to segregate nucleus, cytoplasm, membrane, and nucleoli etc. Utilizing one or 

two antibodies for IHC does not accomplish this task and limits the overall efficiency of 
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the method and its applicability. Moreover, it does not afford researchers the opportunity 

to incorporate a multiplexed approach – meaning the ability to image-capture multiple 

distinct fluorescent labels of many markers simultaneously (Taube et al., 2020). 

However, if a multiplexed IHC assay is performed, in which multiple antibodies or 

biomarkers can be used and viewed simultaneously, one can target and stain all structures 

in one pass. Not only are we able to stain the different structures within a cell, we can 

also employ antibodies that are specific for certain cell types such as CD56 for natural 

killer (NK) cells, CD66b for granulocytes, and CD146 for endothelial cells, to name a 

few. In doing so, we can begin to classify cellular structures based on staining 

localizations and train deep learning algorithms to recognize subtle differences amongst 

cancer cells between diseases as well as other cell types while being both supervised and 

confirmed by pathologists – hence supervised machine learning. 

The addition of other biomarkers to staining assays vastly improves our 

knowledge and understanding of relevant biology in a research setting. As we have 

discussed, H&E and IHC are both strong methodologies in which we can detect and 

recognize cancers, but by adding other antibodies, research teams can garner a more 

thorough biological understanding on a tumor-to-tumor basis. Not only can deploying 

multiple biomarkers highlight the unique components of the cell, other biomarkers can 

distinguish the same up- and down-regulations seen by IHC, elucidate aberrant signaling, 

identify cycling cells, and uncover cells undergoing apoptosis among other biological 

processes as long as the antibodies are available. Further, much like certain markers are 

specific to particular cell types, an expression profile consisting of multiple markers 

offers additional insight to the specificity of type and roll of cells, like a CD11c+CD14+ 
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representing a monocyte derived dendritic cell in the early stages of differentiation versus 

one that is simply CD11c+ (Figueroa et al., 2016), specifically when discussing diverse 

immune cell populations. Using multiple biomarkers simultaneously provides flexibility 

and a more efficient approach to the standards. If we can confidently identify and score 

presence and absence of one antigen at a time, we can do the same with multiple 

biomarkers so long as they appear in different colors/wavelengths under a microscope (in 

contrast cannot distinguish two DAB-labeled biomarkers on the same IHC slide). Recent 

advances have incorporated four labels and two-color imaging within the same IHC-

ready tissue (Dixon et al., 2015) conferring many advantages, for example probing for 

both CD11b and CD11c, traditionally lineage-dependent monocyte markers, here serving 

as markers specific for separate subtypes of leukemia: acute monoblastic versus 

microgranular (Gorczyca et al., 2011), another instance whereby subclassification of 

disease is morphology-driven. We refer to instances in which morphology impacts 

diagnosis or subtyping with the terms “histologic classification” or “histotype,” the latter 

borrowed from Lin and colleagues (2022), both of which we will further describe later. 

Probing for either CD11b or CD11c alone with a single stain cannot distinguish the acute 

monoblastic histologic classification from microgranular, so a double-stain is necessary 

for proper diagnosis. 

Even with two-to-four-plex capabilities, H&E and IHC evaluation remains limited 

in its scope and from the amount of molecular information we can ascertain from only a 

couple of antibodies. Increasing the number of biomarkers and antibodies visualized and 

quantified beyond two or four can greatly improve the clinical standard as well as elevate 

overall efficiency because it allows much more precise analysis of cell types and states at 
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a single cell level. One way to introduce multiplexing capabilities to histopathology is 

through incorporating immunofluorescence (IF) assays in combination with traditional 

IHC, known as multiplex immunohistochemistry/immunofluorescence (mIHC/IF). Using 

this method, Lu et al. found that mIHC/IF had a statistically significant greater diagnostic 

accuracy than the traditional IHC method in the detection of PD-L1, a key marker of 

tumor immune escape. They also found that mIHC/IF provided a statically significant 

higher area under the curve (AUC) for PDL1 sensitivity and specificity as well as 

positive predictive values and likelihood ratios, standard statistics used to validate 

findings, as compared to IHC. (Lu et al., 2019). It has also been found that even when 

using many antibodies, the accuracy and precision for single-cell expression remains high 

overall (Taube et al., 2020), meaning that multiplexing does not reduce the chief metrics 

of sensitivity, specificity, and AUC in regards to a breadth of biomarkers. Lu and 

colleagues suggest several different mIHC/IF modalities that differ in both the number of 

markers stained and visualized simultaneously as well as the capabilities of many 

commercially available microscopes necessary to perform these multiplexed scans. In 

conclusion, Lu insists on the pressing need to employ multiplexed applications to push 

the field of histopathology towards a more digital trend (digital histopathology) in which 

traditional H&E and IHC images are collected using digital microscopes for subsequent 

analysis as opposed to being examined by human experts working at a microscope. 

Multiplexed staining and microscopy serve as a pivotal foundation on which we 

can complement, transform, and advance the ways in which we collect and interpret H&E 

and IHC data. New commercially available scanners offer a multitude of capabilities to 

enhance histopathology and make it more digital through multichannel multispectral 
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imaging. By integrating and visualizing multiple markers, we are not only able to 

determine that there is dysmorphia in the tumor cells or an overabundance of a particular 

protein, but we can begin to interpret cellular composition, cellular function, and cell-to-

cell interactions, specifically in the tumor microenvironment (TME). Through 

multiplexed imaging, we can span the anatomical, molecular, and physiological levels to 

provide a more well-rounded interpretation of antigen expression across tissues and even 

introduce spatial correlations, heterogeneity across multiple markers, and differences in 

signaling pathway activation (Andreou et al., 2022). For example, Angelo et al. employed 

multiplexed ion beam imaging (MIBI) to stain and visualize ten labels simultaneously to 

provide insight on disease pathogenesis (Angelo et al., 2014). But why stop at ten?  

CyCIF Elucidates Underlying Tumor Biology in a Patient-Specific Manner 

Newer research has gone above and beyond the capabilities of mIHC/IF and MIBI 

to further expand upon the traditional IF assay and employ the use of many commercially 

available antibodies – up to 60 or more markers – on a single FFPE tissue. One such 

process is known as cyclic immunofluorescence (CyCIF) introduced by Lin and 

colleagues (2018). In this work, we describe and discuss how CyCIF can be used to 

complement the traditional workflows currently performed by pathologists in a research 

setting. It serves a robust assay for balancing throughput with multiplexed abilities 

allowing for the imaging of up to 80 slides per imaging session and the stain of 60, if not 

more, antibodies in the same tissue. While we do not claim that CyCIF can be used as a 

clinically validated tool currently, we do propose that it, and the associated image data, 

can be used to help interpret, better understand, and confirm H&E and IHC results 

through its multiplexed nature. In using CyCIF to complement the gold standards, H&E 
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and IHC data that has been widely accepted as the ground truth, yet hindered by its non-

generalizable analysis, can reach statistical significance with large sample sizes, a factor 

by which it was previously bottle-necked. We hereby suggest that CyCIF is capable of 

increasing sample through multiplexing antibody staining, but also allowing for a more 

generalized analysis through the creation of more heterogenous and diverse data. 

Not only does CyCIF provide much greater insight into single cell states, which is 

of immense value, it can also provide data on the context of cell types, cell proportions, 

and cellular neighborhoods of which mIHC/IF have only begun to scratch the surface. 

CyCIF also provides a host of down-stream analyses, such as a breakdown of the TME 

composition, neighborhood clustering, and cell-to-cell interactions through built-in 

modules that can be run directly after imaging – traditionally incredibly computationally 

taxing. CyCIF serves as a potent starting point in terms of assessing a high throughput 

and multiplexed approach to traditional pathology and histology. Beginning with 

interpretable results from the gold standards, CyCIF can take initial results and propagate 

them through a fine-tuned pipeline of context-driven antibody staining and down-stream 

computational methods that can expand our knowledge of a patient’s tumor biopsy and 

disease prognosis. Understanding the biological underpinnings of multiple disease types 

is an invaluable asset, particularly in the research setting. 

As different cancers propose unique challenges to clinicians in treating a patient’s 

tumor with a precise and targeted therapeutic trajectory, it is imperative to determine the 

cellular composition of the tumor itself, but also the cell populations outside the tumor, 

along the tumor boundary, and the cell amalgams amongst the tumor-stroma-immune cell 

interfaces. These cell populations comprise the tumor microenvironment, which has 
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become an attractive area of research over the last few years as it contributes to 

tumorigenesis and often dictates disease progression (Arneth, 2019). If we can 

understand the environment in which the tumor itself resides, the cell-to-cell interactions 

both inside and outside of the TME as well as the tumor boundary, the tumor 

composition, and relevant signaling aberrations, we have nearly maximized the amount 

of biological information extracted. In doing so, we become better able to provide 

therapeutics, or at least illuminate potential therapeutic targets, for certain cancer types. 

With the dual-marker approach of IHC, we are not even able to determine TME 

composition– limiting the degree to which we can understand a patient’s tumor. We 

cannot fully appreciate the biological complexity of these disease states one marker at a 

time.  

For instance, one of the greatest challenges when discussing cancer is 

understanding how cancer cells evade the immune system and continue to proliferate 

even in the presence of a high-abundance of both resident and infiltrating immune cells. 

In theory, the immune cells would kill and clear tumors, but we now have an 

understanding that cancer cells employ a variety of techniques, such as tumor induced 

tolerance or anergy (Drake et al., 2006) to evade a normal immune response allowing 

them to proliferate and replicate uncontrollably. Much of this goes is poorly understood 

based on conventional histological staining methods, but we can begin to understand 

some of these evasive techniques through CyCIF using antibodies that stain immune 

cells, cancer cells, proliferating cells, and mechanistic components that may be 

dysfunctional in one’s tumor. 
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One of the more telling signs of a specific cancer or cancer subtype in histology is 

the presence of particular markers or cell types within a tumor as seen through IHC. For 

example, most breast cancers are hallmarked by an ER, PR, or HER2 hormone receptor 

over- or under-expression, easily detectable through IHC, an instance whereby 

unambiguous tumor biomarkers are the staple of diagnoses and dictate therapeutic 

trajectory (Parise & Caggiano, 2014). While easily detectable through IHC, the 

underlying biological significance of these over- and/or under-expressions is hardly 

illuminated through these efforts and additional markers are needed to reveal the context 

in which these expression irregularities occur. In this work, we aim to perform a deep-

dive from many different experimental and analytical angles to further grasp these 

complex underlying biological processes. We generated an initial dataset comprised of 34 

different types of neoplastic tissues and tumors sectioned on human tissue microarrays 

(hTMA/TMA), we will visualize differences between various cancers through their 

expression of certain biomarkers and provide a first-pass characterization of a patient’s 

tumor. For instance, the canonical marker for tumor suppression, p53, can be found in 

varying degrees, depending on tumor status, across many, if not all, malignancies (Duffy 

et al., 2022), whereas a marker such as ER will be largely specific to breast cancer. 

Understanding, qualifying, and quantifying various expression levels of tumor markers, 

as well as immune markers, will reveal similarities and differences across many cancers. 

By employing the power of CyCIF, we can further gauge the uniqueness of 

tumors by their expression of multiple biomarkers. Primarily, we aim to observe 

phenotypic differences amongst cancer cell types based not only on nuclear and 

cytoplasmic morphology, as in H&E, but also on patterns of expression of specific 
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marker proteins. We can further see the phenotypic difference between a cancerous cell 

and one that is benign based on changes in marker expression levels within a tissue, but 

also with added information through co-staining of structure-targeting antibodies. Taken 

together, by incorporating staining with several antibodies that target nuclear or 

subcellular structures, such as FoxP3, a nuclear marker of T-regulatory cells, or a 

cytoplasmic marker, such as E-cadherin, we are able to stain the full cytoplasm of cells 

and make clear distinctions between cell components and between cell types. Using this 

multiplexed in which we can targets these different aspects of cell biology, we already 

outperform the standards of histopathology. While there remain many challenges in 

targeting all of the different cell types, cellular components, and sub-cellular constituents 

in a given tumor section, we have already extended beyond the capacity of traditional 

H&E and IHC in identifying dissimilar cell subpopulations. In staining tissue 

microarrays, we can observe the staining patterns found across many cancer types, 

neoplastic tissues, and non-cancerous controls to create an atlas-like tool for pathologists 

and clinicians to reference when reviewing their own histology slides. The nature of a 

TMA is the perfect setting to perform this type of research and atlas-creation as they are 

comprised of numerous biopsies on the same slide from different tumor blocks to allow 

for intra-TMA comparisons of like and unalike cancers. One of the major conveniences 

of using TMAs for tool creation is that cores can be punched in biological replicate to 

allow for some confidence to be established within a single slide. We are able to observe 

and probe for particular biomarkers and antibodies that will allow us to make broad 

conclusions about specific cancers and particular tumor and tissue biology that will help 

us understands differences amongst tumors at a deeply phenotypic molecular level. Some 
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of these resources already exist, but here we plan to extend our findings to a multitude of 

different malignancies and not just one specific disease. As we will discuss in greater 

detail, the cores in the TMA are cut in serial section(s), therefore, the biology that we 

observe in one section, typically five microns thick, may be limited to two dimensions. 

However, with 25 TMAs stained in succession, we have the ability to sift through the 

three-dimensional z-sectioning to attain a more complete understanding of some 

biological processes that may occur in the third dimension, the z-plane, though this 

remains a limitation of the assay and the imaging capacity of many microscopes. 

Using Data to Train Deep-Learning Cell Segmentation Algorithms 

Along with understanding the cellular composition of the tumor 

microenvironment, we need to be able to discriminate between cell types. These TMAs 

present a dataset through which we can probe and characterize both nuclear and cell 

surface/membrane morphology amongst cancers and compare them to benign cells. 

Recent publications propose Multiple Choice MICROscopy (MCMICRO) (Schapiro et 

al., 2021) and U-Net model for identifying cells and segmenting tissue (UnMICST) 

(Yapp et al., 2021) as key players in detailing the needs for better cell segmentation, a 

critical component of multiplexed imaging post-processing and a goal that many research 

groups share. During cell segmentation, the initial input of a whole, stitched slide is 

broken down into individual cells, on the order of hundreds of thousands, if not millions, 

possible through the detection of nuclear Hoechst staining. This way, a whole slide is 

broken down into individual cells; at a single cell level, segmentation occurs by 

surrounding individual nuclei with a mask denoting its coordinates for later post-

processing. MCMICRO and UnMICST offer alternatives and advancements in cell 
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segmentation, but require robust training sets to improve. Cell segmentation algorithms 

and deep learning AI can greatly outperform manual assessment when inspecting cell 

morphology, especially on a large scale, when fatigue becomes a factor. However, much 

like with overall H&E and IHC evaluation, there exists a common inner-observed 

dilemma by experts in the field of image-associated biology whereby there is no ground-

truth for the most systematic and automated ways to segment cells; the best way still 

remains to do so manually on subset of the data. 

Manual annotations that we curate for a number of antibodies targeting different 

aspects of a cell are then used for training deep learning AI algorithms to improve their 

abilities. This annotation is the aforementioned “labeling,” whereby pathologists denote 

nucleus from cytoplasm and mitochondria from cell membrane. These annotations serve 

as the supervised training that is then fed to deep learning AI to make the same 

classifications based on the input(s) it has received. The desire for improvement lingers 

and is a hotly debated topic while remaining an outstanding limitation in the field – there 

exists no perfect cell segmentation algorithm. Our data can help guide and improve cell 

segmentation efforts by producing nuclear and cytoplasmic masks in which contours and 

cellular components can be human demarcated – the necessary ground-truth (Sadanandan 

et al., 2017) – used for training supervised deep machine-learning algorithmic AI in large 

quantities. By being fed first-pass human labeling of the nucleus and cytoplasm, among 

other cellular components, in one CyCIF image, our AI can interpret these classifications 

and use them to improve segmentation and call attention to unique cell morphologies and 

patterns that may suggest one malignancy over another. 
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Traditionally, in cell segmentation a cell nucleus is located first and then staining 

intensities are evaluated and categorized as pixels move away from the nuclear centroid. 

When intensity values fluctuate, algorithms determine that the cytoplasmic edge has been 

reached and a contoured mask is created encompassing the nucleus, while a secondary 

mask extends beyond the nucleus to the perimeter of the cytoplasm until the intensity 

changes once again, either lower to that of background or higher representing a 

neighboring nucleus. While trained pathologists can discriminate by hand, it becomes an 

exhaustive and process with the many cells (up to a million) found on a typical whole-

slide image. Many goals in the quickly evolving field of histopathology revolve around 

minimizing the human interface and automating processes wherever possible. Following 

the trend in imaging, these curations can serve as the foundation for training algorithms 

to segment vast imaging datasets for us.  

Certain cancer types prove to be more difficult to segment due to their intrinsic 

morphology, such as spindly high-grade serous ovarian cancer (HGSOC) cells, which 

require meticulous manual annotations of dense clusters of cells or skin-related diseases, 

such as melanoma, where cells in the hypodermis and subcutaneous tissue are sparse and 

widespread. A high abundance of fatty adipose tissue (adipocytes) and their resident cell 

types are notorious for being difficult to segment and analyze in stained sections 

(Galarraga et al., 2012). The primary goal of analyzing the stains in this dataset is to 

compare and contrast cellular morphology amongst various cancers while a secondary 

goal is to evaluate our segmentation tools, check their accuracy, and improve our efforts 

as well as the efforts in the field through an iterative process.  
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Another outstanding question in regards to high-throughput microscopy and its 

role in (digital) histopathology is defining what level of biological relevance antibody 

staining data can confer and whether or not it can translate into a clinical setting. This ties 

back to the initial questions about complementing H&E and IHC as the gold standard for 

pathological biomarker evaluation and tumor delineation (Jager et al., 2016) despite their 

low plex nature. While no multiplexed imaging assay has been clinically validated, there 

are efforts to make them so. As the number of clinically relevant antibodies increase, so 

does the need for a multiplexed staining method. With stains from nearly 600 antibodies, 

most of which are relevant to the clinic, our work should serve as a first-pass validation 

resource for a breadth of biomarkers guided and confirmed by pathologists and clinicians. 

In comparing the required metrics such as AUC, sensitivity, and specificity, we attempt 

to make a case for CyCIF multiplexing to be equal to, if not greater than, the pathology 

standards. In doing so, we aim to create a powerful guide for antibody selection. Expert 

advice will provide insight as to what antibodies should stain particular tumors or tissue, 

such as Cytokeratin-7 expression in lung cancers, and elevate confidence in choosing the 

proper antibodies for specific tissues and tumor types in a manner that includes more than 

just one antibody at a time.  

Not surprisingly, there are two camps of thought in regards to the power and 

relevance of the multiplexed imaging trend towards digital histopathology: for example, 

Jager and colleagues suggest that any imaging method requiring image registration shall 

not outcompete the standards of IHC and H&E staining (2016), while others argue that 

this rapid transition is already occurring and becoming a viable clinical solution (Huss & 

Coupland, 2020). While we do not posit that CyCIF will revolutionize the field of digital 
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histopathology and become a mainstay of histopathologic analysis, we do suggest that 

complementing clinical standards with a multiplexed imaging approach can provide a 

deeper context and a vastly more information on oncogenic mechanisms. By uncovering 

more biology, we can further assess clinical samples to help improve precision medicine, 

targeted therapies, primary patient diagnoses as well as short- or long-term prognoses 

through a more thorough understandings of tumor on a patient-to-patient basis. 

Taken together, this work discusses the benefits and role of multiplexed imaging 

in the research space, but also its clinical relevance, and addresses some of the primary 

concerns in the rapidly evolving field. We propose advancements to the standards and 

alternatives to relatively unchanged processes through three specific aims: 

1. Evaluate antibodies through grading proper expression levels, correct 

cellular- or subcellular localization, true stain versus background (bg) or 

autofluorescence (af), and qualify staining across tissue types and compare 

prominent markers to H&E and IHC images – the clinical standards 

2. Discriminate between tumor and non-tumor cells through their relative 

abundance and staining patterns of certain antibodies 

3. Investigate cellular morphology, including nuclear, surface, and 

cytoplasmic staining, across multiple tissue types for comparison. A 

secondary goal of this aim is to enhance cell segmentation among various 

cancers through scoring of segmentation masks via antibodies targeting 

individual cell parts 

Through these specific aims we will address and provide support for our 

hypotheses: if there are expression-level differences amongst malignancies of shared 
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biomarkers, such as pan-Cytokeratin, as well as cancer-specific ones, such as TTF1, then 

CyCIF affords us the ability to interpret these expression differences at both a micro and 

macro level; if there are both cancerous and benign cells intra- and inter-tumor, then they 

will exhibit morphological differences and each cancer subtype will have its own distinct 

histotype. If we can stain numerous TMAs and various cancer cores with hundreds of 

commercially available antibodies, then CyCIF’s multiplexed nature will allow for 

consolidated evaluation and qualification of staining through the presence or absence of 

on-target expression and allow for comparisons of like antibodies, not possible with 

lower throughput assays. If we train our supervised machine deep learning AI with 

manually labeled training data, then we can achieve a higher level of confidence in our 

AI to improve segmentation in the field, particularly with notoriously difficult cancers, 

such as ovarian. All of these questions are addressable and provide insight on the current 

standing of image-related biology. Ultimately, we can push for CyCIF imaging to serve 

as a key resource in disease diagnosis and provide context for drug therapeutic targets. 

Here our goals are to consolidate validation resources to make trusted antibody selection 

more feasible, discern distinct histological classifications amongst many cancers, and 

improve automation of cell segmentation and other imaging post-processing tasks – all of 

which can be accomplished through multiplexed CyCIF imaging.
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Chapter II. 

Methods 

CyCIF: A Resource to Find New Molecular Markers 

With cancers having many features unique to the individual they afflict, it 

essential to understand the specific pathology behind a patient’s tumor to help clinicians 

better recognize the underlying causes of tumorigenesis and tumor progression. By 

identifying and describing these causes, therapies can be suggested in efforts to combat 

cancer growth, proliferation, and metastases. In this work, we have compiled a dataset 

that includes biopsies of human tumor from patients with various malignancies and 

subjected these biopsies to deep cellular phenotyping via cyclic immunofluorescence in 

efforts to characterize their unique tumors. Using deidentified patient data approved by 

the Institutional Review Board (IRB), we have created a resource to guide clinicians in 

their categorization of tumor based on their histological classification as well as 

expression levels of certain biomarkers on a patient-to-patient basis with the goal of 

improving precision medicine. 

As Peters and colleagues suggest, H&E remains the gold standard of pathology 

and is needed for evaluating the effectiveness of algorithms or multiplexed staining of 

antibodies as they relate to histopathology (Peters et al., 2019). Given that H&E has to 

power and accuracy to both detect and diagnose specific cancers (Cosatto et al., 2013), 

certain parameters such as sensitivity, specificity, negative predictive value, and AUC 

(area under the receiver operating characteristic curve) of multiplexed staining must be 
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compared as they are the critical statistics used for scoring H&E (Yamashita et al., 2021). 

Therefore, if a multiplexed methodology wants to be clinically implemented and 

validated, its parameters and statistics must be equal to or better than the manual scoring 

and assessment provided by experts. Rather than compete against the standard, we 

propose to expand and complement the findings obtained from H&E data to help further 

characterize tissues of interest. 

While it is easy to see that the progression from H&E staining to IHC offers more 

insights and specifics than just simple pattern recognition and cell morphology analysis, 

it also provides a more targeted approach and purpose, honing in on a specific supposed 

biomarker. Like H&E, the result still remains relatively binary: presence or absence of 

the biomarker in question despite the added benefit of more quantifiability in the form of 

positively stained brown cells. While IHC is a more precise method, certain limitations 

continue to impact both the throughput and the confidence in results, such as the 

preprocessing of slides (i.e., sectioning, mounting, and fixation), subjective scoring of 

markers, and uncertain and biased cut-off values (Zhao et al., 2015). Even with a 

trustworthy technique to extract data from FFPE pathology slides, there still remain 

challenges that are difficult to bypass. However, with a multiplexed approach we can 

address some of these limitations and provide a growing improvement to the current 

practices. 

Traditional immunofluorescence assays have enriched our understanding of 

cellular morphology through the use of antibody staining targeting the unique 

constituents of a cell. With H&E and IHC staining, we can already discern distinct 

patterns, morphologies, and antigen presence, but in order to multiplex antibody labeling, 
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new assays need to be developed. CyCIF, an adaptation of the traditional IF assay, builds 

upon its strengths, transitioning it to become an iterative, or cyclic process by allowing 

for staining of three antibodies per cycle (which we will further detail later) for as many 

cycles as the tissue remains on the slide, a highly multiplexed method. This is to say, 

theoretically, if tissue integrity remains high, the number of biomarkers added to one 

sample/slide can be limitless, leaving few constraints in the way of endless multiplexing. 

CyCIF is used to screen and phenotype tumor sections as well as other specimens 

embedded in FFPE (i.e., sections of trachea and lung tissue from human COVID-19 

decedents, attenuated tuberculosis tissues etc.) through multiplexed antibody staining. 

Though FFPE slides are preferred, any frozen specimens can also be studied. Instead of 

labeling a slide with just a nuclear DNA stain (usually Hoechst), three primary antibodies 

concurrently, and their corresponding secondary antibodies (tagged with a fluorophore), 

we perform subsequent staining with sets of three additional directly conjugated 

antibodies thereafter, its ensuing “cycle.” This process is repeated several times. A 

fundamental step performed between each cycle is to extinguish the fluorophores from 

the previous round’s secondary antibodies thereby removing any residual fluorescence. 

CyCIF was performed on tumor tissue to provide a deep phenotyping on cell populations 

and to help characterize the tumor microenvironment of various patients by qualifying 

and quantifying abundances of cell types, assessing up and down-regulation of signaling 

pathways, breaking down cell-to-cell interactions, and analyzing network proximity of 

like and unlike cell types through staining with antibodies and clinically relevant 

biomarkers. Shared characteristics or trends in marker expression amongst tumor types 

may indicate similar tissues of origin and shed insight on particular up-or-down regulated 
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pathways that could expose a druggable target, an attractive prospect for drug discovery 

and precision medicine.  

Specific CyCIF Panels Address Investigative Research Questions 

With these goals in mind, we have built upon work previously described by 

Schapiro et al. (2021) which describes our EMIT (Exemplar Microscopy Images of 

Tissues and Tumors) dataset as a significantly relevant microscopy tool. Analysis of 

EMIT has shown that CyCIF can increase our understanding of cancer biology and 

improve image-post-processing tool development; here, we expand upon preliminary 

findings and extend the reach of its capabilities. Altogether, we stained 25 human tissue 

microarrays composed of over 120 1.5mm biopsy cores from 42 patients representing 34 

types of cancer or non-neoplastic diseases, as well as normal tissue used as controls. Each 

of the TMAs was stained with particular CyCIF panels directed at answering a variety of 

distinct biological questions, although there were many markers overlapping between 

them. For example, common immune markers such as CD45, CD56, and CD68 were 

used to stain a majority of the TMAs as they are critical markers for staining diverse 

immune populations. Subsequent cycles employed additional antibodies to further 

subdivide these immune cell populations (CD45+ cells), such as CD4 and CD8a to 

differentiate helper T-cells from cytotoxic T-cells, or CD11c and CD163 to differentiate 

M1 and M2 macrophages that are both CD163+ (Egal et al., 2019). Another grouping 

seen recurrently in the TMAs provides a macro-level glance into tissue core-specific 

features characterized by the staining of E-cadherin, pan-Cytokeratin, and CD45 to 

differentiate epithelial cells from cancer/tumor cells from immune cells, respectively. 

These three categories gave a broad sampling of cell types within cores – allowing us to 



 

 27 

create a more specific supplemental staining plan based on the relative abundance of 

cancer, immune, and epithelial cells. Here also, we have used the earlier TMAs, such as 

TMA1, TMA2, and TMA3, to guide our own selection of antibodies for subsequent 

panels through evaluating their efficacy. TMA11 and TMA22 were specifically chosen to 

comprise the EMIT dataset as they were stained with panels focusing on training deep 

learning cell segmentation algorithms and evaluating the efficiency in labeling cells 

undergoing the different stages of mitosis, with a secondary emphasis on targeting 

important sub-cellular structures. The broad objective for staining each of the TMAs can 

be found in Table 1. Many of the earlier TMAs were stained with traditional markers 

used for characterizing the tissue architecture of different cancers, such as CD31 and 

Vimentin. Others were stained with antibodies aimed at targeting their primary tumor-cell 

type composition, such as c-Kit and calponin expressed in leiomyosarcoma or p14 and 

p16 expressed in liposarcoma. However, in efforts to both qualify and quantify an 

abundance of antibodies, as well as catalyze collaborative efforts, many TMAs were 

stained with project-specific antibodies and biomarkers to address particular biological 

questions. For example, TMA5 was stained specifically to target the cancer cells within 

each unique cancer core through using previously established cancer-specific markers. 

Pax8 was stained to target cancer cells specific to ovarian cancer cores, CDX2 was used 

to stain tumor in the gastrointestinal (GIST) cores, p53 to stain breast cancer cores, and 

TTF1 for lung adenocarcinoma (AC) cores. This panel was used to directly answer 

whether or not the expected hallmark of cancer biomarker stained as anticipated and also 

if we could differentiate one tumor type from another through these biomarker expression 

levels. The panel was also used to determine whether or not previously established 
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cancer-specific biomarkers would be present in unanticipated malignancies. Further, after 

gauging the hallmarks of certain cancers within the TMAs, they were almost always 

stained with antibodies of typically common immune cell types to evaluate immune 

response in connection to tumor-specific antibody presence. Other instances of cancer-

specific antibodies used can be found in Table 2. 

With different angles to consider for staining plans, we used a selection of the 

TMAs to address other factors that impact tumorigenesis, tumor progression, and 

immune regulation among a host of other relevant biological processes. For example, it is 

well-established, but not well understood, how a tumor continues to exist even in the 

presence of a strong immune cell population: B-cells, T-cells, natural killer (NK) cells, 

macrophages, dendritic cells etc. By using antibodies that target different cellular 

contexts, we have begun to acknowledge some of the reasons tumors persist and escape 

the typical immune response. The underlying biology can tell us the level of immune 

evasion that each tumor is exhibiting and cell-checkpoint markers such as cMAF, IRF7, 

RunX2, and STAT5a and STAT5b can shed light on the regulation or dysregulation of 

the immune system as it encounters tumor. The tumor, conversely, fights back and 

suppresses immune-mediated tumor killing so the cancerous cells can continue to 

proliferate, as evident by the presence of Ki67 or PCNA nuclear staining indicative of 

active proliferation (Juríková et al., 2016). The relative abundance of these biomarkers 

aids in understanding disease state and disease progression. Other panels were stained for 

pro-apoptotic markers, as well as markers indicative of cell-stress, such as NOS2, 

cPARP, cCASP3, Cox4, NQO1, HO1, p62, and HIF1a, helping us assess proper and 

improper cellular processes that should be triggered when unnatural signals are received 
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but often not in the company of tumor. As a result, aberrant signaling can initiate 

tumorigenesis and tumor progression (Doheny et al., 2020), factors that we can judge 

vaguely when scoring expression for these particular biomarkers. Knowing which cells 

are undergoing the most stress will help us identify the different stages of immune 

response and disease progression as well as further reveal the underlying mechanism(s) 

that may have gone awry as a result of cancer signaling. Additionally, by staining 

multiple TMAs with the BCL2 protein superfamily, we can measure the levels of pro- 

and anti-apoptotic proteins in tumor and stromal cells that can guide therapeutic decisions 

in many B-cell leukemias and lymphomas. As Davids et al. found, having more cells 

close to their apoptotic threshold, referred to as “apoptotic priming,” and therefore 

expressing additional pro-apoptotic markers, leads to improved clinical outcomes and 

reveals signaling from B-cell receptors (BCR) as druggable targets (Davids et al., 2012). 

In staining with BCL2 protein superfamily antibodies, we can quantify apoptotic priming, 

BCR signaling, and cells undergoing programmed cell death in efforts to combat the 

infiltrating tumor to determine whether this is normal or if these processes have been 

hijacked. By exploring these cellular mechanisms and related signaling pathways, we 

achieve a greater understanding as to what may drive disease progression in certain 

malignancies. Here we have provided quantifiable antibody imaging data for many 

signaling pathways, including the AKT and MAPK pathways, to reveal additional 

druggable targets as they relate to specific malignancies. 

In total, we stained 25 TMAs with over 520 different antibodies that delineate 

tumor, immune cells, tissue architecture, signaling pathways, cycling and proliferating 

cells, among others in hopes of garnering a near-complete deep cellular profiling. TMA 
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cores were grouped in twos by diagnosis as the cores were punched and mounted 

sequentially. Also, almost all of the cores are located elsewhere on the TMA as biological 

replicates in efforts to increase sample size to inspire further confidence in our findings. 

Figure 1 provides a general overview of the TMAs stained with CD163 (green), CD3d 

(white), and CD31 (red) giving a sense of tissue composition and landscape staining 

macrophages, T-cells, and blood vessels, respectively. Here we can begin to assess 

immune cell populations and tissue morphology at a per-core basis with only three 

markers. We can also begin to gauge tissue integrity from a macro level as CD31 outlines 

vasculature which often dictates tissue integrity, which we shall discuss in greater detail 

later. While many of the antibodies were used to directly address specific biological 

questions, others were used to propagate supplementary findings as well as guide the 

formulation of novel questions. A marker identified within a core where it was not 

expected may trigger further investigation into its biological and/or clinical significance. 

We have begun to address these questions and have considered the limitations in the field 

when doing so. 

Experimental Methods 

As outlined by Lin and colleagues (2018), using the standard CyCIF methods, all 

slides were baked and de-waxed using a LEICA Bond instrument as well as underwent a 

programmed heat-induced epitope retrieval process using the same instrument. Pre-

processing on the LEICA Bond took roughly six hours and all the TMAs were pre-

processed using the same protocol throughout, in an almost entirely automated manner to 

reduce human handling and minimize human error. After slides were removed from the 

Bond, residual chemicals from the instrument were rinsed away in multiple washes of 1x 
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phosphate buffer saline (PBS). After slides were rinsed, they underwent an initial 

photobleaching step that uses a hydrogen-peroxide sodium-hydroxide (H2O2) solution to 

minimize tissue autofluorescence. As we will delve into later, tissue autofluorescence and 

background staining pose major challenges to downstream analyses, so performing initial 

bleaching step proves valuable. After two 30-minute photo-bleach incubations 

sandwiched between LED lights, slides were rinsed again to remove residual bleach. 

At this juncture, slides were then mounted and imaged in their most raw form to 

capture tissue autofluorescence. Hoechst 33342 DNA stain was added in small quantities 

during the pre-processing steps performed by the LEICA bond, so the microscope is able 

to detect nuclei, thus a region of interest can be made even in the absence of antibody. 

After rinsing away the residual Bond chemicals, TMA cores were covered using a 70% 

glycerol v/v solution (this percentage parameter was optimized and selected after 

numerous earlier experiments). Slides were then mounted with a glass coverslip, left to 

dry briefly ensuring that the coverslip did not shift during image acquisition, and then 

imaged. By imaging tissue autofluorescence, we can get a quantitative understanding of 

what fluorescent properties FFPE tissues display after sectioning and pre-processing but 

still naïve to antibodies. These cycles are often referred to as “autofluorescence (af)-

channel,” for example “af-488” during imaging. 

After imaging, slides were de-coverslipped, an essential step that we will dissect 

in greater detail, and then prepared for an additional quality control step. As with 

reducing tissue af, TMAs were then stained and incubated overnight (4º C) in a darkened 

humidified chamber with the secondary antibodies that will be bound to primary 

antibodies in the next round of CyCIF, as well as Hoechst (1:5000). If a rabbit primary 
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antibody was selected for staining in the 488 channel, an anti-rabbit 488 secondary would 

be used to label that antibody (frequently goat in the 555 channel and mouse in the 647 

channel); thus we used species- and fluorophore-specific secondary antibodies for an 

initial incubation for quality control purposes. In doing so, we aimed to minimize any 

non-specific binding that may occur, but also quantify it if present, much like we had 

done with tissue autofluorescence. These cycles are often referred to as “background 

(bg)-antibody name,” for example “bg-CD28.” After overnight incubation, slides were 

rinsed in PBS and hidden from light as best as possible. Any fluorophore exposed to light 

will begin to lose intensity depending on how long the exposure lasts. Slides were then 

mounted and imaged using the same region of interest in which tissue af was captured 

from the previous day/cycle. Imaging the bg of the secondary antibodies is useful for 

accurate background subtraction during the post-processing of images allowing for 

interpretation of actual antibody stain considered “true,” when subtracting non-specific 

binding fluorescence. 

Overall, we stained various FFPE tissues with both unconjugated, species-specific 

primary antibodies as well as directly conjugated primary antibodies in the later “cycles.” 

The first cycle or two of CyCIF often employs unlabeled antibodies for indirect 

immunofluorescence as it usually benefits from higher binding specificity as the 

secondary antibody binds precisely to where the primary antibody has bound, with 

minimal off-target binding, though others argue the difference is minimal (McMahon et 

al., 2020) when compared to direct IF with pre-conjugated antibodies. The fluorophores 

that are bound, labeled, and imaged come in two formulations: either added through the 

incubation of a species- and isotype-specific secondary antibody or through a fluor that 
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has been directly conjugated to the antibody itself (by the vendor or via in-house 

conjugation). The latter are referred to as direct conjugates. Regardless of the type, when 

excited by a light source, the fluorophores fluoresce in different wavelengths, assigning 

different colors to each antibody imaged. Using a RareCyte microscope (or other 

microscopes with similar multi-spectral imaging capabilities), we visualized three 

antibodies and DNA with differentially emitted and excitation filter wavelengths as 

follows: DNA channel excited at 390nm, emitted at 435nm; AF488/FITC channel (note: 

here the AF represents “Alexa Fluor” which are the most commons fluorophores used in 

the FITC, Cy3, and Cy5 channels; it does not mean “auto fluorescence”) excited at 

475/28nm, emitted at 525/48nm; AF555/Cy3 channel excited at 542/27nm, emitted at 

597/45nm; AF647/Cy5 channel excited at 632/22nm, emitted at 679/34nm, respectively 

(Lin et al., 2018). With the three channels imaged together, as well as Hoechst, they 

represent a completed cycle: DNA, antibody in the FITC channel, antibody in the Cy3 

channel, and antibody in the Cy5 channel. After imaging, between each cycle, we 

performed the same highly optimized photobleaching step that quenches the fluorophores 

using the aforementioned H2O2-based solution before staining and imaging the 

subsequent cycle of antibodies. 

After the first couple of cycles, the importance of species is lost as direct 

conjugates do not require a secondary antibody, but antibody shuffling is needed to stain 

tissues with an antibody in each of the 488, 555, and 647 wavelength channels. Many of 

the more common antibodies and reagents have been well established in scientific 

literature, vendor websites, or from other validation efforts allowing for antibody 

shuffling. Markers for T- and B-cells, such as CD4, CD3d, CD8a, CD19 and CD20, are 
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common immune cells, which means they are usually available in many forms, either as 

an unlabeled version or as a direct conjugate with a number of possible fluorophore 

conjugations. However, less common antibodies that are more specific to particular 

subsets of cells or malignancy, such as MelanA (MART1), are only commercially 

available in the Cy5 channel. Or rather interestingly, through previous validations efforts, 

we have found that only the AF647 conjugate works properly given our conditions. Thus, 

to accommodate MART1-647, the other antibodies desired in the same cycle as MART1, 

perhaps HMB45 and Sox10, other markers of melanocytic differentiation, need to be in 

the AF488 and AF555 channels. Therefore, being able to mix and match antibodies is 

significant; if we run out of particular spaces for an antibody, alternative selections are a 

must. However, often there is no commercially available antibody to occupy the vacant 

channel. For this reason, we performed a rigorous initial battery of assays and context-

driven validation experiments and have extended many of the preliminary findings to 

shape continued efforts determining which antibodies work as expected and which do not 

– a key feature of this work. Further, we have qualified whether the performance of 

antibodies is more or less effective in one particular channel than it is in another, or if a 

direct conjugate, as opposed to an unlabeled version of the same antibody with the same 

target, performs any better. While we did not expect find drastic differences in the 

performance of an unconjugated antibody versus conjugated one or an antibody in one 

channel versus another, this was not the case for several antibodies, which we will 

discuss in greater detail. 

During imaging, a region of interest (ROI) is suggested by the RareCyte 

CyteFinder based on the presence of nuclear stain added during preprocessing. We either 
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confirm that the ROI is accurate or manually guide the microscope to scan a particular 

region and select desired landmarks within the tissue for focusing – focus points – which 

are evenly spread across the edges of the TMA with many points of focus in cellularly 

dense cores. By adding focus points on cellularly dense cores, we ensured a relatively 

consistent z-axis coordinate spanning the full TMA; if we focus on poorly adherent tissue 

cores where cells may be lost, the z-axis coordinate would shift too much during image 

acquisition to capture an in-focus image. Normally a sample ranges anywhere from 400-

600 image tiles, but depending on the tissue type, more tiles may be needed to capture the 

full specimen. As these TMAs contained over 120 cores, they ranged anywhere from 

1200-1600 tiles, meaning it took significant time to acquire each cycle’s image. Further, 

each of the antibodies had been previously optimized with particular dilutions and 

exposure times to ensure the proper excitation, emission, and time captured the true 

signal of an antibody. These parameters were selected after evaluating consolidated data 

collected from many previous antibody validation experiments aimed at determining 

which dilutions and exposure times produced the most reliable results. Most of the 

exposure times used ranged from 50 milliseconds (ms) to 500 ms. Using an exposure 

time longer than 500 ms can photo-bleach the sample and decrease true signal intensity of 

adjacent tiles as they are imaged one-by-one in a snaking pattern. Without spectral 

overlap, these four channels can be imaged, merged, and viewed simultaneously, giving 

us a representative image of the whole slide, referred to as whole slide imaging (WSI). 

Once the round of imaging was completed, the TMA slides were submersed in 1x 

PBS warmed to 42º C for a minimum of 30 minutes. The temperature of the PBS had 

been optimized through the same validation experiments mentioned. 42º C was the proper 
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temperature found to minimize shearing forces as the coverslip is removed; this process 

is referred to as de-coverslipping. During de-coverslipping, shearing occurs as PBS flow 

interacts with the glycerol mounting solution on the physical specimen often pulling 

tissue off the slide as the solutions interface as the coverslip begins to shift off of the 

slide. Tissue loss remains one of the greatest threats to CyCIF experimentation; if the de-

coverslipping process is not performed properly and slides are removed prematurely from 

the pre-warmed PBS, one risks losing large chunks of tissue which can compromise an 

experiment. As we will later detail, different presentations of tissue landscape play a role 

in overall tissue integrity and the core’s ability to remain full and adherent even after 

repeated rinses and de-coverslipping events. 

Once de-coverslipped, slides were photobleached twice, rinsed, and then re-

stained with primary antibodies, as well as Hoechst, for overnight incubation. After 

incubation, residual primary antibody was quickly rinsed away and the species- and 

isotype-specific secondary antibodies were added (to label the primary antibodies with a 

fluorophore) for one hour at room temperature, in the dark. The secondary antibodies 

were then rinsed off thoroughly and the same mounting and imaging procedure was 

performed. Both of these washes are critical steps in the experimental process. If primary 

and secondary antibody are not fully rinsed, one risks acquiring non-true antibody signal 

in the form of antibody aggregate, smudged signal (a literal smudge across an imaging 

field indicative of a poor fluorophore rinse), or saturating secondary, all of which further 

complicate downstream processing. Again, the same ROI is captured in successive cycles 

on successive days allowing for proper image registration and alignment during image 

post-processing through nuclear stain coordinates. Slides were then de-coverslipped, 
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bleached, and stained with the next round of antibodies; if another round of unconjugated 

primaries is used, species specificity remains a concern. Normally, rabbit, goat, and 

mouse antibodies are used in the first cycle, as they are the most common species of 

antibody. That said, if another round of indirect IF is performed, the primaries need to be 

a different species or isotype-specific, such as IgG1 and IgG2b, to allow for two 

additional mouse antibodies. Targeting IgG subclasses makes this type of double-stain 

possible; but the mouse antibody used in Cycle 1 must be IgG2a if an IgG1 and IgG2b 

secondary antibody is to be used in Cycle 2. This cyclic stain, image, bleach, stain 

process then repeats itself for each batch of three antibodies as many times as desired, 

hence cyclic immunofluorescence. 

Once all cycles had been stained and imaging had been completed, WSIs were 

registered and stitched together through an image post-processing pipeline utilizing 

ASHLAR (Alignment by Simultaneous Harmonization of Layer/Adjacency Registration) 

(Schapiro et al., 2021). Cycles were added on top of one another to create a multiplex 

image stack composed of three antibodies for however many cycles are stained until 

tissue integrity dissipates. For example, TMA1 was stained with 24 antibodies across 

eight cycles whereas TMA13 was stained with 45 distinct antibodies across 15 cycles 

(excluding background imaging and DNA in both instances). The end-product of these 

post-processing steps was a stitched WSI containing each of the cycles stacked upon one 

another in the form of an .ome.tif file that was then uploaded into visualization software 

such as omero or ImageJ for image inspection. Additionally, as modules of the 

MCMICRO post-processing pipeline, which includes ASHLAR, probability maps, 

segmentation masks, quantification .csv files, and illumination profiles were also created. 
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One cycle of TMA imaging produces a .tif image file anywhere from 10-30GB, so the 

multi-cycle .ome.tif image which contains the image of each cycle individually becomes 

an image file of approximately 250 or more GB depending on the number of cycles. 

When accounting for the number of TMAs stained in total (25), massive amounts of 

image data was generated and leaves the experimenter and analysis team busy for weeks 

disentangling single cell information, neighbor analyses, and intensity values across a 

myriad of cancers. From this accumulation of data, we extracted the necessary 

information to address both our aims and some of the limitations we have encountered 

first-hand in the field. With such an extensive dataset, we have focused primarily on the 

images, cores, and antibodies that could provide the most relevant information and 

context towards addressing our interests and concerns regarding CyCIF multiplexed 

imaging and how it can contribute to a clinical setting. Though we do not believe there 

will be a direct translation to clinical validation, the agglomeration of underlying biology 

we can ascertain from multiplexed and high throughput CyCIF imaging helps research 

scientists, pathologists, histologists, and clinicians answer critical questions pertaining to 

a patient's tumor.  

To answer some of the outstanding questions, we prepared aspects of these CyCIF 

experiments and staining plans to address our aims. One of the main aims was to assess 

the quality of commercially available reagents. With 25 TMAs stained with over 520 

different antibodies (Table 3), we have targeted different aspects of biology that include 

immune cell populations and subpopulations, signaling pathways, cell states, tumor 

progression markers, tumor-specific markers, and many others. With so many antibodies 

stained under the same conditions and images processed and compiled in the same 
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manner, we can begin to assess the markers and determine which worked as expected, 

better than expected, or worse than expected to create a useful guide not only for future 

CyCIF experimentation but also for the clinic when exploring antibody alternatives. We 

have also fine-tuned the quality control parameters of these TMAs to enhance our own 

confidence in our staining findings; the proper controls were implemented in terms of af 

reduction, af capture and quantification, as well as bg subtraction steps whereby the bg of 

all three channels was imaged and quantified for proper quantitative background 

subtraction. By shedding light on poorly understood underlying biology and mechanistic 

underpinnings in a research setting, we are more adequately prepared to share these 

results with pathologists and clinicians in hopes of bettering patients’ lives. If we can 

expose or suggest a druggable target through deep characterization of patient’s tumors, 

we might be able to improve their prognosis as a result of enhanced personalized 

medicine.  
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Chapter III. 

Results 

Cell Morphology Illuminates Patterns Amongst Like and Unalike Cancers 

One of the primary goals in assessing H&E and IHC images is to determine 

whether or not anything in the histology is unusual, typically representing the presence of 

disease and offering a brief glimpse into disease state. Differential growth rates, patterns, 

spacing, cell density, and morphology are mostly visible through evaluating IHC staining 

and can deliver insight as to whether abnormal growth and proliferation are occurring and 

sometimes the rate or extent at which these abnormalities transpire. These findings offer a 

unique view into a patient’s specific tumor and data to consider for pathologists and 

clinicians to determine the next steps in treatment. Here, we show how multiplexed 

CyCIF imaging can be accurately mapped back to original H&E and IHC images, 

accomplished from pattern recognition of morphological landmarks easily detectable in 

both image types. To do so, in all three methods, a specific antibody or biomarker is 

needed to target particular cell types or cell components for visualization. In our work, 

including the EMIT dataset, we have profiled and deeply analyzed, written up, and 

published two manuscripts incorporating some of the findings from these TMAs 

(Schapiro et al., 2021; Yapp et al., 2021) in which we characterize a host of cell types by 

expression of certain antibodies. In the two particular TMAs highlighted in the EMIT 

dataset, both slides were stained with markers specifically designated to outline the 

nuclear envelope of all cells to demarcate specific classifications of cellular 

morphologies. These labeled images enhance deep machine learning for cellular 

segmentation and the downstream processes of image alignment, tile stitching and 
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registration, core dearray, illumination correction, and other quantitative results, all 

outputs of MCMICRO. But, more than for just machine learning, these TMAs can serve 

as a visual guide into cell morphology and the differences amongst cancer histological 

classifications. By first identifying and outlining the nuclear envelope of cells within a 

given disease, we can show and appreciate morphological differences in the same way 

that H&E and IHC images can. We then compare these distinct diseases and their 

morphologically unique nuclei side-by-side to aid pathologists in their diagnoses – 

especially if exemplar data is available denoting distinct features of one subtype from 

another – an approach that is commonly performed today in many malignancy 

classifications as we will discuss later. 

From our data, cellular morphologies were broken down into seven distinct 

classes. These classes represent the most common cellular morphologies across all 25 

TMAs; they are: round versus narrow, small versus large, densely packed, irregularly 

packed, or organized in clusters (Figure 2). To diversify the cell types that deep learning 

AI was trained on, a subset of cores was selected to represent a varying population of cell 

types and morphology; they are: lung adenocarcinoma (AC), colon AC, non-neoplastic 

small intestine, non-neoplastic ovary, glioblastoma, normal prostate, and tonsil. Each of 

these cores were composed of cells classified into one or more groups. The cores were 

stained with a cocktail of two different nucleoporin (NUP) antibodies and four different 

lamin antibodies. This cocktail was selected to stain a majority, if not all, nuclear 

envelopes of cells present within a given field. From these images, we can begin to 

visualize the different cell morphologies and classify cell types based on their 

appearance. As shown, the lung adenocarcinoma sample presents with two unique 
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cellular morphologies, large cells present as well as smaller ones. In juxtaposition, the 

non-neoplastic ovarian sample is composed of narrow, spindle-like cells densely packed 

together; two cores representing four different classifiers. While this may seem trivial, in 

the diagnosis of ovarian carcinomas, the classification system is almost entirely 

morphology-based (Cho & Shih, 2009), further emphasizing the need for our exemplar 

data source. A quick qualitative overview of cellular morphologies and histological 

classifications can help distinguish differences in disease diagnosis. Further subdividing 

the patterns consistent across cores can serve as a reference guide for normally unnoticed 

minor differences that may hold large implications: one malignancy can be diagnosed 

over another almost entirely by histologic classifiers. 

MCMICRO and UnMICST Provide Multi-dimensional, Actionable Data 

As we have discussed, the MCMICRO pipeline serves as a tool that can advance 

WSI data curation and analysis in multiple ways. Both Coreograph and Scimap, modules 

within the MCMICRO pipeline, perform image post-processing steps that prepare our 

data for further investigation. Coreograph de-arrays all cores within the TMA such that 

each can be extracted and analyzed independently and in high resolution, honing in on 

disease-specific differences both intra- and inter-core. Scimap clusters cells at a single-

cell level, performs neighborhood analyses, and assigns a cell-type assignment based on 

marker expression through the generation of heat-maps that quantify expression levels 

across a gradient. For example, CD8 positivity is classified as cytotoxic T-cells, CD20 

positivity as B-cells, and pan-Cytokeratin positivity as tumor or regions of tumor burden. 

By generating a variety of classes of cell types through the expression level of many 

antibodies, we develop a firm understanding of each cell’s expression profile and how 
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neighborhoods of like cells interact in the presence of tumor. The more identifiers added, 

meaning the numbers of different antibodies a certain cell type expresses, the better we 

can understand the role of specific cell classes that exist, such as a CD163+ CD11c+ 

HLA-A+ macrophage tells us more about its role and subtype of macrophage than does a 

macrophage expressing only CD163. 

Both MCMICRO and UnMICST serve as valuable representations as to how this 

data was and will continue to be used. Though this dataset has not been prepared to serve 

solely as a deep-learning cell segmentation training set for one specific disease, the 

eclectic nature of core selection serves as a vital resource to train on a variety of cancers 

and cell types to enhance the detection of minute differences across diseases. However, if 

more samples were introduced, beyond the scope of this preliminary research, it is 

feasible that this work could serve as a catalyst and the foundation for an atlas that can be 

further broken down into specific diseases, much like what Lin et al. have done for 

colorectal cancer (2022). Until then, both MCMICRO and UnMICST take subsets of our 

data to train the algorithms associated with our cell-type-calling and labeling capabilities 

which are sufficient in recognizing morphologic differences between cancers to reveal 

patterns. Both modules have been cited showcasing the strength of our WSI post-

processing. Specifically, MCMIRCO and UnMICST stand relatively alone in the domain 

of whole-slide imaging, which has recently come to the forefront of histopathology, in 

that their capacities go above and beyond regions of interest being able to process large 

areas, an attractive prospect for data analysts in the big data era. 

Further, by using exhaustive expression profiles to classify cells, we can guide 

machine learning to a previously unmet level with comprehensive groupings. In curating 
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a list of “genotypes” based on expression levels of particular antibodies, we enhance the 

capabilities of our AI to perform at its best. In-depth classifications of cell types can help 

pinpoint differences in cellular populations amongst the cores within the TMA. As a 

result, we create a profile for each histological classification with its associated cellular 

composition and the cellular neighborhood in which these groups reside, hopefully 

revealing patterns that exist inter-core and inter-TMA. Another way in which CyCIF 

serves as a powerful tool is that it generates more actionable data from the same amount 

of material that both H&E and IHC require. But here we have begun to uncover data 

revolving around cell-cell interactions and composition of the TME, neither of which are 

reached via histological standards – one of their major limitations. By identifying 

different cell populations and profiles within a core, we expand our own understanding of 

the underlying biology within each malignancy. 

Not only do cellular morphologies matter when discussing unique phenotypes of 

different cancer histological classifications, but the tissue and cellular density does as 

well. We found that distinct cancers present differently from one another in terms of their 

cell populations, cell densities, and overall tissue architecture. Here, “histotype” from Lin 

(2022), is used when referring to a unique histological presentation or classification of 

different malignancies based primarily on morphology; so, subtypes within the same 

disease can have exclusive histotypes. Tonsil, often used as a control in many forms of 

antibody imaging, contains densely packed cells, both inside and around the germinal 

center. This histotype is starkly contrasted to that of glioblastoma and colon 

adenocarcinoma in which cells are more freely spaced throughout the core. Normal 

prostate also serves as a cancer-free control in which we are presented with a 
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heterogeneous mix of cellular phenotypes. Like lung AC, there are both large, rounded 

cells within the prostate core but also long spindly cells almost exclusively highlighted by 

lamin B2 staining, also seen in Figure 2. So, while there is limited clinical relevance to a 

normal prostate core, it can still serve as necessary training data for deep learning 

algorithms. Needless to say, the non-neoplastic prostate can also serve as a key 

comparison to a patient with a prostate malignancy as comparing cell morphologies and 

antibody expression levels between the two may expose investigation-worthy biology. 

These overall observations serve as critical material to aid diagnosis and can be used as 

reference material when assessing tissue morphology. While it may seem inconsequential 

to provide a histologic classification tool, generating disease-subtype-specific profiles 

based on slightly altered morphological features already serves as a critical resource in 

many malignancies such as lung and digestive tract cancers (Inzani et al., 2017) and we 

aim to expand these examples. 

Histological Classifications Determined by Presence or Absence of Antibody 

With 34 different tissues on the same pathology slide, it became possible to 

evaluate specific cores with their hallmarks of cancer. After a thorough literature search 

and battery of validation assays, we put together an atlas-like tool to determine which of 

our 500-plus antibodies can, should, and did stain the cores they were expected to stain. 

Table 2 provides an overview of the different cancer diagnoses, as well as benign tissues, 

and the particular antibodies that were expected to be expressed in each disease. For 

example, CD141, otherwise known as thrombomodulin, is used as a diagnostic marker to 

detect and classify different subtypes of mesotheliomas such as epithelioid versus 

sarcomatoid (Miettinen et al., 2001), yet another example whereby IHC assessment has 
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direct clinical translation. These findings affect how a clinician may treat a patient as one 

subtype of disease often requires one drug regimen versus another. As Inzani and 

colleagues suggest, classification tools based on morphological features have proved 

successful in predicting patient survival and impact both patient management and therapy 

establishment (Inzani et al., 2017). 

One of the confounding factors we identified during the collection of this dataset 

are false-positives and false-negatives in staining and how to mitigate or remove them 

from analysis. Even though we have described a systematic and well-controlled 

experimental approach, there are still aspects of the process that we cannot control. While 

we do expect to see malignancy-specific staining of the markers listed in Table 2, such as 

calponin present in leiomyosarcoma and SDHA in gastrointestinal stromal tumors, these 

markers may also appear in other cores scattered throughout the TMA. As Figure 3 

shows, the calponin is most abundant in the leiomyosarcoma core, though it is present in 

low quantities within breast ductal and lobular carcinoma cores as well as the seminoma 

core; the same goes for SDHA which is high in the GIST core as expected, but present in 

lower abundances in the mesothelioma, colon lymph node, and colon AC cores. Though 

many of these markers are highly-specific for one particular malignancy or normal cell 

type, there are overlaps and broad staining patterns observed throughout multiple 

diseases. Many markers such as pan-Cytokeratin and Ki67 appear in nearly all cores but 

in some IHC assessments, these markers serve as the lone critical indicators of tumor 

presence and tumor progression. In assessing HGSOC IHC slides, the main diagnostic 

markers for tumor and disease subtyping include Ki67, vimentin, E-cadherin, and CD8 – 

most of which are relatively common markers, thus used in many of our panels and seen 



 

 47 

throughout many cores within the TMA. In fact, all 25 of the TMAs were stained with 

pan-CK, 20 of the 25 with CD8, 17 of the 25 with E-cadherin, 16 of the 25 with Ki67, 

and 5 of the 25 with vimentin. Therefore, it seemed imperative to add additional markers 

such as ER, PR, and Pax8 to better evaluate the TME within the ovarian cores. Without 

those markers, the histological analysis may integrate false-positives as nearly all cancers 

expressed some levels of Ki67, vimentin, E-cadherin, and CD8. Though Ki67+ 

Vimentin+ E-cadherin+ and CD8+ cells are not always false-positives, the results need to 

be further tuned to regard those particular groupings as cancer cells in HGSOC, but not 

necessarily in other cancers, recapitulating the need for advanced marker expression 

profiles. With HGSOC, we are more confident in qualifying cells as cancerous if they co-

expresses pan-CK, Pax8, ER, or PR as opposed to pan-CK alone. Thus, our findings 

could not be extended without the addition of these disease-specific markers that guide 

our understanding of the biology and contexts that make them unique.  

Nucleoporin, Lamin, and Surface Markers Outline Cellular Compartments 

In staining these TMAs with lamin and nucleoporin, we afforded ourselves the 

ability to train deep learning AI algorithms based on the staining profiles found 

throughout the cancer cores, and, in turn, improve cell segmentation efforts. Automated 

processing tools vastly enhance the field of digital histopathology, but require rigorous 

training sets to guide algorithms in targeting and differentiating subtleties in images to 

create distinct classifications. The classifications from Figure 2 represent the basis for 

nuclear morphology segmenting used to train our AI. This image represents the 

preexisting standard as to how traditional cell segmentation occurs with a watershed 

approach: first identify and encapsulate the nucleus and then expand a secondary mask 
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around the centroid until pixel intensity values fluctuate. We then used our different 

nuclear masks to amend our segmentation, as seen in Figure 4, where we stained colon 

adenocarcinoma with lamin antibodies: lamin A/C, lamin B1, and lamin B2, to capture a 

large proportion of the nuclei in a desired field. If the lamin antibodies did not suffice in 

outlining all nuclear envelopes, the addition of NUP98 and NUP133 usually captured the 

remainder. We then used these markers to perform our own modification on the 

watershed segmentation process to create distinct classes of cell types, some of which 

appear in lung AC tissue. We feel as though extending these efforts to such a large 

number of TMAs has given us the ability to target and outline nearly all possible nuclei in 

a core – inspiring confidence that proper segmentation can be achieved. On top of the 

nuclear-envelope-cocktail, we then began to work on cytoplasmic and membranous 

labeling to capture the other two main components of a cell needed for cell segmentation. 

Other organelles and structures within the cell were also stained using a variety of 

antibodies that include TOMM20 to target mitochondria, catalase to target peroxisomes, 

and autophagosomes related to apoptosis with p62 to introduce additional classifications, 

however surface and cytoplasm seem to offer more intriguing and widely applicable 

opportunities. 

Traditionally, cell segmentation has been performed solely by identifying the 

nucleus as the centroid position and moving outward by a fixed number of pixels, but 

recent advances propose using multiple membrane markers to help identify differences in 

the morphologies amongst tumor cells between cancers in a contour-based manner 

(Schüffler et al., 2015). To do this, a number of surface markers can be used to target 

non-nuclear components of a cell such as E-cadherin, pan-Cytokeratin, CD68, and alpha 
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smooth muscle actin (aSMA). These markers, seen in Figure 5, highlight some of the 

unique morphological presentations of the cytoplasm and cell-surface that present in 

different ways and abundances across unalike cancers: epithelia – a diagnostic breast 

cancer marker (Singhai et al., 2011) – cytoplasm and membrane, the surface of many 

different immune cell types, and a subset of stromal cells, fibroblasts, respectively. 

Again, each additional label strengthens the AI’s ability to segregate cellular components. 

Each of kidney, lung AC, normal colon, and non-neoplastic colon show diversity in terms 

of surface staining abundance and intensity. Although sampling cell surfaces and 

cytoplasm works well with a cocktail of different antibodies, it still remains challenging 

to capture every distinct cell-surface or cytoplasm. Markers such as pan-Cytokeratin and 

E-cadherin are often used as hallmarks of these regions, but still, an outward border 

grown from a nuclear centroid cell makes a mask (Giotakis et al., 2021) and its 

accompanying drop in intensity values is what guides most cytoplasmic segmentation. 

Here, we have done the same but with a wide array of surface and cytoplasmic markers 

added ranging from N-cadherin and CD40 to Desmin and Cytokeratin 19. We hope that 

adding these markers will capture nearly all surfaces and cytoplasm present in cells and 

serve as a foundational piece in improving cytoplasmic segmentation much like the lamin 

and NUP antibody cocktail did for nuclei. However, this becomes only further 

complicated with densely populated regions of cells, such as non-neoplastic ovarian 

samples as it is nearly impossible to determine where one cell nuclei and/or cytoplasm 

begin and the next ends. With such a diverse group of surface markers across many 

malignancies, we have the precise dataset that can guide and enhance algorithmic nucleus 

and cytoplasm detection and segmentation though a scrupulous labeling session will be 
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essential. While it is no easy task to manually curate a large enough sample size, we find 

that the ground-truth of human intervention, identification, and classification is what is 

necessary to establish confidence in these advancing tools. 

CyCIF Uncovers Disease Progression through Contextual Staining 

As we have discussed, the gold standard in pathology at present remains 

histologic H&E and IHC staining to differentiate tumor from non-tumor and identify and 

quantify the presence of one particular biomarker at-a-time. To investigate and expand 

upon this, we probed various regions of melanoma, aiming to quantify the number of 

melanocytes present in a particular tissue through CyCIF. By looking at the H&E image 

of its serial section, it was determined that in different regions of interest there were 

spatially restricted regions of high melanocyte populations. These regions began 

superficially in the epidermis of skin and then penetrated inwards towards the dermis 

(seen in H&E as red and in CyCIF as green Sox10+ cells). These findings are outlined by 

the dotted black line seen in Figure 6, showing a differential staining pattern of 

melanocytes from non-cancerous tissue in the surrounding regions. That is to say that the 

presence of melanocytes shows a dramatically different staining pattern of densely 

packed pink cells, as compared to the neighboring benign tissue in dark pink and faint 

pink. While discernible by eye, this may be an imperfect interpretation of the data as 

varying shades of pink and purple may make it difficult to distinguish boundaries of 

similarly colored cell types and benign tissue from cancerous tissue. However, as seen on 

the right portion of Figure 6, after mapping the same region of interest from the H&E 

image to the multiplexed CyCIF image, it becomes increasingly clear that the melanocyte 

population(s), shown by green Sox10 staining, have sharp boundaries. These boundaries 
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can only be seen through the evaluation of multiplexed data and are mostly lost in a low-

plex setting. The CyCIF image provides the necessary context to gauge disease status: T-

cells are abundant around dense populations of melanocytes, but they also exist in regions 

where Sox10 expression is low. This is indicative of an immune reaction in response to 

the presence of melanocytes – again unseen through H&E. Seemingly, the contrast alone 

in CyCIF images are enough to provide contextualization and demarcate spatial 

restrictions as compared to white-light bright-field captured H&E stains. 

When we assess the IHC image, as opposed to the H&E image, we see the Sox10 

melanocyte marker (blue) appearing in high abundance, showcasing melanocytes 

underneath the epidermis in various fields (Figure 7) but in a more clear and quantitative 

fashion. The presence of dark blue is contrasted to the light blue Sox10-negative tissue 

and highlights where along the disease axis melanocyte populations reside, more easily 

distinguishable from IHC than from H&E, seen in Figure 6. Panels 1 and 2 of Figure 7 

show a superficial presence of melanocytes directly below the epidermal surface and not 

much else. However, the CyCIF images begin to reveal a limited immune response to 

these melanocytes, which is not seen in the IHC image. Progressing along the x-axis both 

in the tissue itself and across Figure 7, the number of melanocytes increases. Panel 3 still 

shows superficial melanocyte presence, but interestingly a robust immune response 

begins to appear deeper within the skin, indicative of immune regression. Interestingly, 

Panel 4 highlights a large abundance of melanocytes throughout various layers within the 

skin with minimal spatial restriction. Not only are the melanocytes present below the 

epidermis, but they begin to penetrate inwards towards the dermal regions where the 

aforementioned immune response occurs. Strikingly, T-cells and macrophages are not 
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present in high numbers despite the deepening penetration of melanocytes. Panel 5 

reiterates melanocytes at the superficial level, but also others that have penetrated deeper 

into the dermis. The accumulation of colors here highlights a tumor-infiltrating 

lymphocyte (TIL) response that occurs as a result of the large quantity of lymphocytes. 

As we review and evaluate the CyCIF images in the context of disease and disease state, 

we see the potential of CyCIF and how it can benefit clinical understanding of disease 

response through a context-driven multi-marker approach. IHC shows the various regions 

in which the melanocytes appear and their relative abundance, but offers nothing in the 

form of disease state. However, when you add immune markers for contextualization, the 

disease state becomes increasingly clear and can be defined into three different stages. 

Taken together, we have provided a direct comparison of multiplexed CyCIF 

imaging to that of both H&E and IHC staining. The resolutions of the images are 

comparable, the magnifications, exposures, and processing of the images are also similar 

in scope, so therefore CyCIF should be able to directly complement the pathological 

standards and move beyond what is currently being performed, adding an additional layer 

of descriptive biology. Where CyCIF excels is in the realm of tissue context. Without the 

addition of markers that label cytokeratin, T-cells, macrophages, and other relevant cell 

types, we do not fully grasp the context in which these melanocytes live. In a broad 

sense, if H&E and IHC are used to diagnose and track disease, then having a more well-

rounded understanding of disease can serve as an invaluable starting point. In both H&E 

and IHC, we are still able to answer the question “are melanocytes present in the 

sample,” but why would we not want to take this finding a step further and begin to 

evaluate the stages and progression of disease by adding specific markers to characterize 
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the environment in which they reside. We have shown the capabilities of CyCIF and have 

an extensive dataset whereby we can continue characterizing the context of many 

malignancies and disease states. 

High-Resolution and Imaging the Z-Plane Reveals Deeper Biology 

To further characterize the context of cellular environments and cell-to-cell 

interactions further, we subjected post-CyCIF slides to an even deeper contextualization. 

We imaged exemplar slides at a higher resolution (60x) to investigate our interesting 

findings in three-dimensional space. As our TMAs were sectioned serially, very little 

biological information should be lost section to section, but we wanted to explore how 

much, if any, was omitted. It should be noted that if missed biology remains a concern, it 

is possible to perform H&E on the same slide after CyCIF imaging (Lin et al., 2018) 

without issue, guaranteeing that the exact regions of tissue are being imaged and analyzed 

with nothing lost between slides. Slides imaged were sectioned at five microns and while 

we suspected minimal context lost from one serial section to the next, we explored how 

extreme some of these differences may be. Seen in Figure 8 is a high-resolution stain as 

well as a 3-D reconstruction and projection of a resident macrophage interfacing with an 

exhausted T-cell denoted by the presence of both PD1 and PDL1 on its surface. 

Interestingly, what is lost in lower resolution microscopy, 20x, typically the standard for 

multiplexed imaging, is the polarization of proteins as seen through the expressions of the 

corresponding antibodies. As shown in the inset, PD1, PDL1, and CD163 (the 

macrophage marker) are polarized towards the bottom right of the cell, which becomes 

more pronounced as you progress through the z-stack of an image. Here, the maximum 

image projection was used to emphasize the full polarization that occurs around the cell 
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in three-dimensional space. The right panel showcases a polarized co-stain of PDL1 atop 

of the CD8 T-cell marker. Not surprisingly, PD1 presents in a similar fashion as PDL1, 

nearby, but only on certain T-cells, the exhausted variety. While high-resolution imaging 

of the samples does take additional processing time and demanding pattern recognition 

under a more magnified microscope, the benefits are worth it. Much like how a CyCIF 

image piggybacks and advances histological standards, the high-resolution deconvolved 

and projected 60x CyCIF image perpetuates a more thorough understanding of the 

underlying biology that may be overlooked and lost at a lower resolution and adds 

considerable cell-cell biological and mechanistic information. We have performed deep-

phenotyping of particular samples of interest and thus have the ability to perform similar 

deep-dives on cores of interest that may require a more detailed scope of biology. 

The standard histological workflow employs H&E to highlight morphological 

disturbances indicative of disease and disease state which then guides IHC probing for 

certain markers specific to the suspected tumor type. Once a low-plex IHC stain has been 

performed, in the range of one to three antibodies, and the results have been assessed, we 

propose an additional arm of the workflow in which we craft a CyCIF panel addressing 

outstanding context-dependent questions which cannot be answered by H&E or IHC 

alone. Once regions of interest are found within the H&E image, they can be mapped 

directly onto CyCIF images. Then, the most interesting regions can be subjected to 

further profiling at a higher resolution to determine the exact context and interface that 

occurs between distinct cell populations as we have shown possible. While this process 

cannot be automated in entirety, the vast amount of relevant underlying biological 

information obtained from a deep cellular phenotyping of a patient’s biopsy, can then be 
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used to lead further discussions in the clinic about a patient’s tumor and course of 

treatment. There are few limitations as to how far and how much meaningful biological 

data and context can be extracted through CyCIF, but here we have shown four different 

staining modalities: H&E, IHC, CyCIF, and high-resolution CyCIF, that, when taken 

together, create a full mosaic of biology to be interpreted together. 

De-coverslipping Dictates Duration of a CyCIF Experiment 

While the markers discussed in the context of melanoma provide information 

associated with the immune response as it relates to the differentiation of melanocytes, 

the real power of CyCIF remains in its multiplex capabilities to characterize context. 

Cycles and antibodies can continue to be added and imaged for as long as the tissue 

remains intact and on the slide. That said, a central limitation of CyCIF is understanding 

the factors that can decrease tissue integrity. We aimed to determine whether or not there 

are systematic patterns emerging that dictate tissue integrity and how to account for them 

before beginning an experiment. Part of our efforts attempted to quantify how well tissue 

can hold together and recognize themes amongst the cores that hold together best. 

Unfortunately, many of these factors lay outside of the observable and controllable of 

CyCIF; the longevity of a slide may ultimately depend on storage conditions or fixation 

methods. However, in this work, we assess the factors that could be controlled and found 

that tissue integrity remains high for multiple tissue types within the TMAs for many 

cycles. Cores seen in Figure 9, showcase six different cancers: mesothelioma, colon AC, 

meningioma, glioblastoma, renal cell carcinoma, and lung small-cell cancer (from right to 

left) used to assess broad integrity patterns. The colon AC cores are first to succumb to 

tissue degradation. The reason for this degradation is likely due to three factors: 1. the 
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tissue is not fully sectioned on the slide itself, 2. as a result of this incomplete sectioning, 

there are spaces between cellularly dense regions, and 3. the overall tissue architecture of 

colon adenocarcinoma cores are not ideal for CyCIF as its blood vessels and associated 

vasculature, often defined by the presence of CD31 and/or CD34 (Qian et al., 2009), 

leave large gaps between cells even in dense regions, which we believe leads to 

systematic degradation (also seen in Figure 11b). An overview of this phenomenon in 

general is seen in Figure 10 where the top row of cores shows lung AC, pancreas, 

mesothelioma, tonsil, breast ductal carcinoma, and pulmonary lymph node with the most 

ideal cellular composition in three different TMAs. Conversely, the bottom row shows 

colon lymph node, lung non-neoplastic, colon non-neoplastic, GIST, breast lobular 

carcinoma, and kidney with the least ideal cellular composition as determined by the 

number of remaining nuclei in the last cycles from the same three TMAs. The overlap 

from first cycle to last cycle should appear in yellow, as evident in the top row. If red or 

green is seen alone, it is as a result of tissue loss. It is interesting to see in this instance 

that lung adenocarcinoma, which traditionally does not have the best tissue integrity, 

appears full and intact after twelve cycles. Typically, the cores with intrinsic large 

airways or gaps in the tissue, like lung AC, colon, or kidney, show the least amount of 

yellow overlap. While solutions interface during the de-coverslipping process, one can 

imagine a turbid flow of solutions that exert their strongest forces where tissue is the 

sparsest. Based on these findings, we can begin to establish patterns found within tissues 

that lead to their systematic degradation. 

Intriguingly, when we further explored lung adenocarcinoma, a cancer typically 

associated with complex vasculature, as outlined by red CD31 stain (Figure 11b), we 
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found that in both TMAs 11 and 12, the tissue was able to withstand 16 cycles; and as we 

have already seen, twelve cycles in TMA 17. This may be coincidental that the three lung 

AC cores profiled here in TMA 11, 12, and 17 have relatively smaller airways as 

compared to the one seen in Figure 11b demonstrating that the size of the airway, indeed, 

correlates with integrity over time. While the cells themselves adhered to the slide for 16 

cycles, Figure 11a shows other factors that impact tissue integrity over the course of the 

experiment, such as manual perturbations or initial sectioning success. As shown, 

horizontal lines begin to appear across the tissue surface in a linear fashion as we 

progress through cycles, leading us to believe that coverslips were dragged across the 

surface of the tissue, one of the only plausible ways a nearly perfect horizontal artifact 

appears. It seems dragging occurred during the de-coverslipping step between cycles six 

and seven where the coverslip did not properly shed off the slide. This artifact is most 

apparent in TMA 12, Cycle 13 where we can begin to see three or four nearly perfect 

horizontal lines emerge on the tissue – one line added for each rushed de-coverslipping 

event. The other main contributor seen in Figure 11a is overall tissue landscape. From 

initial sectioning, large regions void of cells are seen usually as a result of cross-sectioned 

vasculature snaking throughout the tissue. As cycles are added, spaces where original 

vasculature was seen grow as a result of surrounding tissue beginning to slough off. This 

can be seen in TMA 11 as the gaps in the 3 o’clock, 5 o’clock, and 7 o’clock positions 

grow from cycle to cycle. These findings support our argument that there can be 

systematic reasons as to why a core with one histotype lasts for fewer cycles than one of 

another histotype: tissue-intrinsic landscape interrupted by vasculature of varying 

degrees. 
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Though our data do not focus on improperly sectioned cores, many can be seen 

throughout the TMAs when referring back to Figure 1, such as multiple lung and colon 

tissues, skin, and hair follicle. While we would have liked each biopsy FFPE block to 

survive through sectioning of all 25 TMAs, sometimes this is not possible and therefore 

complete sectioning cannot be performed. When this happens, biological information is 

missing from the onset and, not surprisingly, poorly sectioned cores often fade fastest. 

Similarly, sometimes the FFPE block has irregularities resulting from the initial biopsy; 

as a result, unclean sections may be used for mounting. More examples of these improper 

punches from Figure 1 include the aforementioned skin and hair follicle shaft, but also 

mesothelioma (bottom right), two lung AC cores (middle), a tonsil section, and GI 

stromal tumor (right). These are just a few of the irregular cores sampled from TMA1 and 

do not necessarily extend through all TMAs sectioned. Sectioning may become cleaner 

the further into a block the histologist cuts as a result of the FFPE block shape, ergo 

TMA9 might have more preserved biology amongst certain cores than does TMA1 or 

TMA24. The overall landscape of cores is often uncontrollable from the beginning of an 

experiment as they extend back to initial sectioning and storage conditions. When you 

begin an experiment with less tissue, additional meaningful biology is omitted. If one 

starts at a deficit, handling slides during the CyCIF experimentation becomes even more 

precarious. While tissue integrity usually remains sturdy, manual perturbations can 

disrupt both the experiment and the downstream analysis of tissues, thus need to be 

controlled for as best as possible when performing CyCIF. Despite the inherent 

limitations of CyCIF, the potential to garner information in the 40-60 antibody range, if 



 

 59 

not more, remains remarkable and one the most highly multiplexed assays in the field, 

therefore tissue integrity remains a critical aspect to achieve these thresholds. 

Antibody Comparisons and Qualification Amongst Cores 

In staining 25 TMAs with a wide breadth of commercially available antibodies, 

we have constructed both a tool and a resource to begin validating markers that can be 

used without concern in CyCIF experimentation. We hope that these efforts can translate 

clinically and be applied as much or as little as desired when selecting biomarkers 

specific to one’s tumor or disease. Revealing the underlying biology through CyCIF in a 

research setting can inform clinicians of minor differences between patients that may be 

overlooked in a lower throughput setting. Many available markers come in a variety of 

formulations either as an unconjugated antibody that requires the tagging with a species-

specific secondary antibody conjugated to a fluor or a directly conjugated antibody in 

which the fluor is already bound to the antibody itself. Even after exhaustive efforts to 

test and qualify antibodies, there still remain outstanding issues when performing CyCIF 

experiments, such as will an antibody present with signal and will it work in the desired 

tissue type where stain is expected (i.e., CK20 in lung cancer). Having stained 25 serial 

sections of TMA, which contain over 120 cores, we have over 3,000 analyzable cores to 

evaluate staining patterns from over 520 antibodies (Table 3). Take these 3,000 cores and 

stain them, conservatively, with ten cycles of CyCIF, with three markers per cycle, leads 

to roughly 90,000 images to evaluate. While this number of images is much too large to 

investigate in one work, we have begun to dig through the cores, images, and markers 

that provide the most insight and may be relevant in clinic, such as HER2. 
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Digging more deeply into TMA 22, we see different cores across six different 

cancer histotypes and performed a primary qualification of certain antibodies. In these 

cores we see various expression levels of E-cadherin, aSMA, and CD56, a marker for 

natural killer cells (Figure 12). Broadly, these three markers are separated into high and 

low expression levels. For example, looking at the lung AC core independently, CD56 

expression levels are low; in a vacuum this would mean that the antibody is not working 

and should not be considered validated. However, taking a step back and examining other 

cores within the TMA, we find CD56 expression where there are expected to be high 

populations of natural killer cells such as non-neoplastic ovarian cancer, diverticulitis, 

and leiomyosarcoma. In contrast, the E-cadherin marker is barely visible in the ovarian 

sample, the appendix, and leiomyosarcoma and yet quite bright in the lung and small 

intestine. If one were to perform an IHC stain of E-cadherin in a similar ovarian core, a 

false conclusion may be reached; sample size and heterogeneous samples are needed to 

prove whether or not a stain is true. In the four ovarian cancer cores in TMA22, little, if 

any, E-cadherin is present (data now shown). Henceforth, we have provided the tools and 

resources to begin to make assessments of many antibodies that cannot be accomplished 

solely through IHC. Again, we find that context is crucial when qualifying these reagents, 

for example, cleaved caspase-3 and cleaved caspase-8 staining is not expected in cores 

with low levels of apoptosis (Pu et al., 2017) or tumor burden and therefore not present in 

many of the cores. While there are a number of reasons an antibody may not work such 

as a lack of signal or improper localization, we aim to further inspect if the stain is of 

high quality by comparing it H&E and IHC to evaluate its sensitivity, specificity, and 
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later, its AUC, the only way to prove its efficacy. Then we can move forward with its use 

in multiplexed imaging. 

Taking a step further and approaching qualification specifically, we stained 

certain TMAs with the same antibodies, either the same clone or different, in different 

channels, to allow us to make direct comparisons and quantify their on-target versus off-

target binding affinity; examples of like-antibody-comparisons can be found in Table 4. 

Various cores within TMA13 were stained with two different antibodies (with the same 

target) for each of Sox2, FoxP3, and CD28. We specifically selected lung small cell 

carcinoma (SCC) because we expected to see expression from these three antibodies. In 

total, we see a composite image of six total markers (Figure 13a). We have compared two 

unique versions of each antibody and their expected versus their actual presentation. The 

two Sox2 antibodies stain the same cells with strong intensity values in both; when green 

and red co-stain, we are presented with the nuclear yellow stain, the known localization 

typical of Sox2+ cells. These Sox2 antibodies were labeled with different fluorophores. 

For FoxP3, again, two different antibodies target the same T-regs, as evident by the 

localization of magenta and cyan with the expected staining pattern of bright sub-nuclear 

expression. These antibodies were from different vendors, were of different clones, and 

different fluorophores. Conversely, when lung SCC is stained with two different CD28 

antibodies, typically a marker localized to the cell surface of stimulated T-cells, we see a 

true, albeit messy stain in dark blue and a complete failure of staining using the second 

CD28 marker, in orange. These antibodies were from different vendors and one was 

conjugated and the other was not. The one that worked as expected was the unconjugated 

version (from Abcam plc.), further supporting the argument that indirect IF may be more 
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sensitive than direct IF – though further research needs to be performed to support this 

generalized conclusion. The blue stains the surface of cells while the orange presents a 

diffuse, auto-fluorescent stain with an indiscriminate staining pattern. This pattern is 

comparable to what tissue autofluorescence, poorly rinsed secondary antibody, and/or 

non-specific binding looks like (though the contrast here has been adjusted).  

When CD28 or other markers that present in the same manner have their marker 

intensity value distributions visualized in ImageJ, a software used to analyze multi-

dimensional images, a typical bimodal distribution of marker intensity is not seen in the 

associated histogram. Rather, a bleb of marker intensity close to the y-axis appears, 

indicating that no specific on-target staining has occurred. Typically, there is a small peak 

around the lower end of intensity spectrum indicative of background, but also a second 

peak usually seen further along the x-axis indicative of real expression if an antibody has 

worked as expected. Figure 13b highlights this phenomenon as histograms of intensity 

values are representative of the signal present within a particular core. Figure 13b shows 

that pan-Cytokeratin has a high expression level (green), as evident by the bimodal 

distribution of log-transformed signal, in lung adenocarcinoma. To emphasize these 

findings, we plotted true signal against the signal expression of pan-CK’s 

autofluorescence (red), which only has a left-most peak (denoted by the *). This is to say 

that the left-most peak is noise, whereas the peak on the right is representative of the true 

signal (denoted by the †). We can then gate and computationally remove the signal left of 

the second peak – effectively subtracting background. For comparative purposes, we then 

plotted CD13 (green), another typically finicky antibody, which presented similarly to 

CD28, in hepatocellular carcinoma, where its stain is expected. However, this time, the 
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histograms of true stain and autofluorescence (red) are nearly identical as the peaks 

overlap one another almost exactly and a second peak is not even present. That is to say, 

the CD13 antibody did not work in the expected tissue. In the same vein, the CD28 signal 

aligns closely to that of autofluorescence; thus, these particular antibodies would be 

categorized as a “failed reagent.” 

One of the more time-consuming aspects of qualifying and assessing antibodies 

for their proper signal and localization is flushing out false-positives, false-negatives, and 

to distinguish signal from noise. Figure 13b provides a quick example of this process and 

now needs to be extended to numerous other antibodies we have imaged. As discussed, 

we countered some of these difficulties by imaging background channels at the beginning 

of experiments which we have begun to use for quantitative background subtraction. In 

the process, we quantified tissue autofluorescence as well as non-specific binding, also 

called unspecific fluorescence background found in indirect immunofluorescence (Viegas 

et al., 2007), both of which pose major inconveniences in multi-channel microscopy and 

the downstream analyses. With the addition of photo-bleaching steps, we first diminished 

the tissue autofluorescence from completely naïve tissues, imaged it, and then plotted the 

intensity histograms for tissue autofluorescence (called “af-488). We then performed the 

same imaging and quantification after incubations with species-specific secondary 

antibodies to quantify non-specific binding and secondary antibody autofluorescence 

(called “bg-CD13,” for example, if CD13 is our primary antibody). These secondaries 

will label our first cycle’s primary, unconjugated antibodies in the subsequent round so it 

is important to quantify the non-specific binding to differentiate it from the real signal 

later. It is well established that the FITC channel has the highest level of tissue 
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autofluorescence as its peak excitation is at 500nm, but emits with a 75% relative 

intensity and greater from 506-532nm (Davis et al., 2014); thus, quantifying and 

subtracting these values are critical when it comes to assessing true marker stain, 

particularly in the FITC channel. After subtraction, which can be performed through 

ImageJ, we are left with a cleaner signal, with a bimodal distribution of intensity values 

which we can gate the residual non-specific binding from the real stain much like what 

we saw in Figure 13b. Building upon work by Du and colleagues (2019), we have created 

a systematic approach to qualifying these antibodies and, as a result, we have created an 

open-source list of antibodies that perform well in CyCIF at 

https://www.cycif.org/antibodies/recommended. This list serves as a valuable starting 

point for multiplexed imaging assays in many tissue and tumor types. 

Size, Translation to the Clinic, and other Hindrances of CyCIF 

Though many antibodies have proven to stain successfully in CyCIF experiments, 

it does not mean that they translate directly for clinical validation. While many of the 

clinically relevant antibodies, such as Ki67, HER2, and PDL1 have antibodies that can 

also be used in CyCIF, the opposite is not always true; that is to say we cannot claim that 

an antibody that worked in CyCIF experiments will work in a clinical setting. Even 

though we may have established some confidence in certain circumstances and under 

specific conditions, this does not prove sufficient for clinical standards. Therein remains 

the largest roadblock in the future of multiplexed imaging, be it CyCIF or some similar 

method: how can these assays be modified and what steps need to be taken to attain 

clinical validation. Regardless, we can use our dataset of hundreds of antibodies to 

complement the clinical standards as is and offer insight into the context of disease status 
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and disease progression. These advances seem inevitable and necessary in a field that is 

quickly headed towards digitization. One of the main limitations of this work is the 

overall size of the dataset and its need for automated processing and analysis of the data. 

Given the work we have performed, in combination with the work from Du and 

colleagues (2019), manually labeling, gating, and qualifying these antibodies will take an 

enormous amount of time, but as the field of digital histopathology grows, so too, do the 

tools we need to automate this workflow. Here we have presented data that can be 

divided and subdivided into different training sets, marker groupings, like and unlike 

cancer histotypes, and others to improve and complement traditional histology as well as 

help grow the field of digital histopathology. 

Altogether, we have addressed many of the outstanding questions in the field 

related to high throughput multiplexed imaging: its capabilities, limitations, and areas of 

success as they relate to the current standing of histopathology. We have established 

confidence in an abundance of antibodies, be them directly conjugated or unconjugated, 

through their expression levels and localization(s) and have concretely mapped them 

back to H&E and IHC for comparative performance and evaluation. It goes without 

saying that once the proper landmarks and regions of interest are matched in CyCIF 

images and the pathology standards, we can be more confident in the staining patterns. 

We have provided a small glimpse of how map-back abilities between the standards and 

multiplexed imaging have become possible, especially as pattern recognition among cell 

types and cellular densities improves. Pattern recognition becomes stronger with 

additional antibodies that delineate tumor from stroma or benign cells, nuclei from 

cytoplasm, and highly dense regions from low density of specific cancers purely based on 
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the abundance of a marker of interest within a core. That is to say, we have shown, 

through various methods, that we can use this TMA resource, the EMIT dataset, and our 

validations efforts to move the field of histopathology forward. 

Not only do we aspire to use this data to make advances in the field of 

histopathology, but we have shown the power and potential of automating and digitizing 

many of the processes still performed manually. While it remains a challenge to shift the 

dogma in the field, we do not propose that CyCIF multiplexed imaging, or any other 

multiplexed imaging modality for that matter, will wholly replace the standards, but that 

these tools can and should be used to improve the pre-existing methods. We have shown 

this is possible and will continue to make advances in our own research that can 

hopefully, one day, be analyzed and compared exhaustively enough with the clinical 

standards that sufficient confidence may be found and that these tools may be extended 

into a clinical setting. If for nothing else, the number of antibodies we have qualified and 

tested in many tissues should be used to guide future histology efforts to generate both a 

broader overview regarding a patient’s tumor and delve into patient-specific findings. 

With additional information and a clearer path to follow, there should be minor advances 

in the field regardless of a monumental shift in the field overall. 
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Chapter IV. 

Discussion 

CyCIF Can Be Used to Complement Clinical Findings 

Our findings support multiple arguments that CyCIF can be used as an atlas-like 

resource for clinicians, pathologists, and the field of digital histopathology as a whole in a 

myriad of ways. Its potential to provide a wealth of biological data through multiplexed 

antibody staining and imaging makes it a powerful tool. Here we have presented multiple 

lines of research that address the unique needs and limitations in the field of high-plex 

digital histology and have suggested several ways to complement and improve 

experimentation and analysis. High-plex tissue imaging in general, and CyCIF in 

particular, do not yet provide clinically validated assay technology, but propose that the 

results and findings obtained from high throughput multiplexed CyCIF imaging can 

catalyze advances in the field – and more importantly – enhance clinical outcomes for 

patients. In addressing our specific aims, we have outlined ways in which we can 

improve our understanding of a patient's tumor and its underlying biology using CyCIF. 

More specifically, we can begin assessing cellular morphology across cancer histotypes 

and use our data to improve automated cell segmentation and cell-type calling through 

artificial intelligence deep learning algorithms to discriminate disease-specific patterns. 

Thus, we can accomplish unmet needs on an individual level, but also more generally 

positively impact the field. 

We have shown that CyCIF multiplexed data can be accurately mapped back to 

the pathology standards of H&E and IHC images. Through a crude analysis of tissue 

landmarks, we can find the same regions of interest in both modalities, demonstrating 
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that our findings pair well with what is currently the gold standard in diagnosis. 

Moreover, we frequently take use the same antibodies as in IHC slide staining while 

further multiplexing the number of antibodies to be visualized concurrently. In doing so, 

we provide the context and neighborhood in which specific cell populations reside, 

uncovering the unique interfaces between them. Extending this approach should not be 

overlooked, especially since cancer biology is not limited to a handful of immune 

markers. Cells in a patient’s tumor can express a large diversity of antigens depending on 

the progression of disease and cell states, such as T-cell exhaustion, which can only be 

detected through the expression of a cocktail of antibodies that include, but is not limited 

to, CD8, PD1, PDL1, TIM3, LAG3, and TIGIT. The exact profile for what is considered 

an exhausted T-cell ranges across literature, but what is well-defined is that these 

particular cells can only be appraised through multiplexing and cannot be discriminated 

in single or double stain typical of H&E and IHC. The more diverse the marker 

expression of T-cell exhaustion antibodies, the more confident one can be in its profiling 

and role in immune response. This is but one example whereby a more diverse and 

definitive expression profile provides us with a better understanding of biological context 

and roles. 

Improving AI’s Ability to Cell-Type and Reduce Pathologist Intervention 

There still remain many unresolved challenges regarding the work we have 

presented here. A necessary next step is firmly establishing the guidelines and parameters 

needed to perform antibody analysis and quality control to a level similar to that of 

clinical validation. While we have collaborated with pathologists and clinicians, further 

work with CyCIF and our antibody sets need to be run in parallel with clinical testing of 
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standard antibodies. As of now, no multiplexed imaging platform has reached clinical 

validation, but numerous efforts posit that multiplexing is nearly ready for clinical 

translation (McMahon et al., 2020). While other research teams have also begun to 

address this issue, we have created a resource that can serve as a labeling guide for deep 

learning AI to outperform pathologists, an essential adaptation to growing databases and 

atlases. With an unprecedented number of antibodies stained across many tissue types 

under like conditions, an automated pipeline used to differentiate and score proper 

antibody localization and fluorescence expression profiles is indispensable. Not only 

have we provided the framework to do so, we have also established morphological 

criterion for AI to classify histotypes based on phenotypic presentation. As discussed, 

manual labeling, which is considered the ground-truth of pathology, is needed to prepare 

an initial dataset necessary for supervised deep learning. Larger sample sizes with 

additional labeling will always increase the accuracy of AI, so we view this collection of 

TMAs, through one lens, as an expanding set of training data. Although not the main 

focus of this research, this work has the capability to improve our deep learning AI to 

perform image post-processing steps such as cell-type calling and cell segmentation 

through phenotypic presentation. By incorporating cellular-architecture-targeting 

antibodies such as NUP, lamin, and various cytoplasmic and surface markers, we are 

confident that our labeled training data can improve these algorithms. Certain markers 

emphasize the fact that many cancers have morphologically distinct cell shapes, which 

we broke down into seven classes and labeled them accordingly. These annotations were 

fed directly to our deep learning AI for training to become a fully automated process. 

Using AI minimizes human interaction, saves time and energy, and it will also eventually 
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outperform pathologists after the preliminary training sets are provided (Rawat et al., 

2020) to further improve diagnosis accuracy.  

It goes without saying that generating high-plex antibody-based tissue images is 

not an easy task using current technology. It requires meticulous adherence to protocol to 

generating a staining pattern that is biologically meaningful and accurate. For example, 

FoxP3, as it primarily serves as a transcription factor, has its expression localized to the 

nucleus, much like c-Myc or p-H2AX. But there are nuances of some markers, such as 

p27, which can stain either in the nucleus, in the cytoplasm, or both the cytoplasm and 

nucleus (Sawabu & Watanabe, 2005) all of which is visible from IHC. These subtleties 

need to be recognized and labeled by eye initially, so that our AI can also distinguish 

heterogeneous staining patterns of the same antibody. That is to say that some markers 

require a more detailed and intensive curation to guide deep learning algorithms that 

others, but we have the sample size needed to establish confidence in our tools once 

sufficient pathologist-labeled training sets are inputted. While many of the images have 

already been curated, there are many hundreds more regions of interest that can be 

annotated to provide further training modules. 

Pattern Recognition Identified Through Cancer-Hallmark Antibodies 

Much like we stained with particular antibodies targeting the various shapes and 

localizations of biomarkers, we also employed numerous cancer-specific antibodies 

targeting cores within the TMAs with their supposed tumor hallmark biomarker to 

capture and characterize as many different cancer histotypes as possible. This is not the 

first time this has been done, as Bagchi and colleagues have performed a similar 

experiment (2021), though they strictly focus on IHC scoring, with a range extending 
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from 0-3, a limited and relatively arbitrary scoring system based on the presence and 

intensity of staining (0: absent; 1: weak positive; 2: moderate positive; 3: strong positive) 

and only performed on so many malignancies. Like Bagchi, we have stained many cores 

within the TMA, most noticeably in TMA5, with their cancer-specific markers: Pax8 for 

ovarian, TTF1 for lung cancer, c-Met and survivin for kidney, ER for breast, CDK4 in 

liposarcoma to name a few. From the resulting expression levels, we are able to 

distinguish cancerous regions within biopsies from non-cancerous regions by the 

presence and localization of these tumor-specific markers. A quick evaluation of the 

hallmark antibody vs typical immune markers, such as CD45 or CD4 and CD8, can 

present striking differences between regions within the same tissue, namely boundaries 

between cell populations. Multiply this information by the number of cancer-specific and 

broad immune cell antibodies stained and we have created a phenotypic guide that 

directly juxtaposes tumorous tissue from benign tissue that is useful for further clinical 

evaluation. Once the tumor had been found, we subjected it to deeper phenotyping, thus, 

we are able to provide more descriptive information to the clinician about a patient’s 

tumor and the TME in which it resides. 

With these cancer hallmarks we can also begin to uncover patterns that emerge 

from the localization and morphology of cells within a certain malignancy. Figures 2 and 

4 highlight the unique cell types and morphologies that are most abundant across cores. 

These classes have been deeply analyzed in this current work as well as other works that 

discuss the EMIT dataset (Schapiro et al., 2021), to create a visual guide that can first 

differentiate one cancer subtype from another, second, aid in diagnosis of particular 

cancers purely by the morphological presentation of certain tumor cells, and third, 
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provide the context in which we can truly evaluate a clinical outcome depending on 

disease state based on the relative abundance of certain cell types. Many cancer diagnoses 

and distinctions between disease subtypes are already performed in this manner, such as 

the expression of CK8 indicating a diagnosis of lobular carcinoma of the breast instead of 

ductal carcinoma (Moriya et al., 2006). We can use our work to inspire confidence in the 

antibodies we used as well as morphological distinction through expression gradients 

amongst cancers by revealing and quantifying subtle details between histotypes through 

morphology and context of disease state to improve a patient’s prognosis by suggesting 

areas for therapeutic intervention. Other research groups have asserted how powerful a 

morphology-driven classification resource can be, but most have taken it upon 

themselves to create a tool specific for one disease such as lung, digestive tract, or 

colorectal cancers. We propose to do the same thing, but extend our reach to multiple 

malignancies simultaneously and our phenotyping to a newfound level. 

Limitations of Our Research 

Although we do not believe that this work will immediately impact how clinical 

pathology and histology are performed, we hope to advance some of the technology and 

digitization of these methods in the push towards digital histopathology. Moving forward, 

our resources can be used for a variety of analyses ranging forward from antibody 

validation through AI enrichment. One notable limitation of the current work concerns 

our inability to as yet fully explore all of the different staining patterns in our dataset. 

With 120-plus cores of tissues multiplied at least by 25-fold for the numbers of TMAs 

stained, there are close to 4,000 cores of analyzable data in the collection, stressing the 

need for a strategic, and ideally automated, approach to analysis. This number only 
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increases when considering the number of individual antibodies used, nuclei counted, and 

membranes identified, which poses a massive roadblock - but also an opportunity - that 

needs to be deconstructed piece by piece. Even a thorough analysis of one TMA takes 

exhaustive efforts, nevertheless 25 of them, further supporting our arguments for 

automated analytics. 

While it would be conceivable to focus on a single core from each cancer and 

then delve into the staining patterns seen, such as the morphology of the nuclei and 

cytoplasm of cancerous cells versus non-cancerous, the overall goals may be lost. It is 

imperative to compare cores across TMAs to see if our findings reproduce and, secondly, 

to increase sample size allowing us to justify making broad conclusions about specific 

malignancies backed by our data. Many of our hypotheses have already been confirmed 

by the data we present and we plan on extending these findings to new experimentation 

and hypothesis formulation. We are able to show that there are systematic trends as to 

why one malignancy lasts for fewer cycles of CyCIF than another, namely due to its 

tissue-intrinsic characteristics such as the presence of airways or other vasculature. 

Typically, breast and ovarian cancers last longer in the CyCIF process (i.e., survive more 

cycles with tissue damage) as a result of their cell shape and densely-packed nature as 

compared to lung cancer which often presents with large cross-sectioned airways through 

the tissue. We show that many antibodies are cancer-specific, such as calponin, but 

others, like p53, ER, vimentin, and SDHB stain their primary malignancy, but may also 

be present in other tissues, just in varying degrees. Here, we need to vigorously assess 

true stain from background to establish further confidence in our findings, but we have 

laid forth the groundwork to do so. In making specific claims as they relate to numerous 
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processes throughout CyCIF data collection, we aim to extend these findings to make 

more broad and general conclusions that can positively impact scientific research as it 

pertains to multiplexed tumor imaging. 

Though we have outlined a relatively systematic way to decipher and approach 

this mass of biological data, there needs to be additional automation of these tasks if the 

entire dataset is to be analyzed. To do so, automated post-processing needs to be 

performed beginning with a dearraying of the cores, for which we have a software tool 

called Choreograph, affording us the opportunity to examine cores one by one (Schapiro 

et al., 2021). Then deep learning AI needs to be run in a core-by-core independent 

fashion to delineate the different cell populations present in each core, or more 

specifically, per disease. The cell types can then be sorted and counted based on their 

staining profiles (i.e., CD8+LAG3+PDL1+TIM3+), giving us an overall impression of 

cellular communities within each disease core. From there, a marker-by-marker 

assessment can be performed to evaluate staining; for example, if macrophages are most 

heavily involved in pancreas and lung cancers (Jung et al., 2015), what are the expected 

counts of CD163+ cells within those cores and how do they compare to non-lung or 

pancreas cores? There should be an increased abundance of macrophages in the 

pancreatic and lung cancer cores and this trend should be consistent in the same cores 

across most, if not all, TMAs. Further, these counts should be compared to CD163+ cell 

count in other malignancies to confirm whether or not pancreatic and lung cancer do 

possess greater macrophage populations. Still, the need for precise positive and negative 

controls to assess antibody staining is needed before making any generalized conclusions. 

We have attempted to incorporate as many controls in this work as possible. As with 
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many multiplexed imaging methods, the size of the data poses a bottleneck during the 

analysis phase as running these images through a post-processing pipeline generates a 

demanding computational burden – a challenge difficult to overcome with current 

software tools. 

Like computational burdens, there are other factors that potentially limit the 

applicability of CyCIF experimentation. One such limitation is understanding the biology 

that occurs in three-dimensional space. As we have touched upon briefly, having serial 

sections of these TMAs affords us different biological landscapes that alter these tumor 

microenvironments ever so slightly as we progress through tumor in the x- and y-axes, 

but we are limited in what we can interpret from the z-axis. As a general limitation of 

pathology, sections of tumor blocks must be cut to a certain thickness, usually five 

microns or less, limiting the ways in which we can decipher, or even see, three-

dimensional interactions. When these sections are cut, it is likely that individual cells are 

sectioned straight through their nuclei, inhibiting our ability to see a complete nuclear 

stain. But, as we saw, many markers, such as CD163, a macrophage marker, and PD1 and 

PDL1, typical markers of exhaustion, specifically T-cell exhaustion, stain cells in varying 

polarities. That is to say that there can be a higher abundance or concentration on one 

side of a cell than the other. Additionally, other biologically relevant morphological 

processes, such as the formation of synapses, can also extend in many directions, as 

Figure 6 demonstrates, stressing the need for three-dimensional capabilities. These 

behaviors are hardly noticed through standard microscopy and are only illuminated at a 

greater magnification. It is difficult to anticipate the range of biology that occurs in the z-
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axis, as we are limited by the five microns punched onto the slide, not offering us an 

opportunity to gauge this biology.  

However, a serial section stained the same way as its predecessor may shed light 

on 3D biological structures, though it is currently not possible to obtain the precise 

neighboring or continued topography without losing relevant biology in the process, often 

in the 300–600-micron range (Merz et al., 2021) as a result of ineffective sectioning, 

Furthermore, microscopes traditionally cannot acquire as high resolution images in the z-

plane as in the x-y plane, limiting our ability to see non-uniform staining. To address this 

need, assays being developed to image whole FFPE blocks aimed at preserving biology 

and maintaining three-dimensional image acquisition, such as light-sheet microscopy. 

Future studies need to be performed in order to determine the effectiveness of these 

methods, and the limitations of block thickness pertaining to observable biology, as they 

compare to other multiplexed assays, much like how multiplexed imaging needs to be 

fastidiously compared to pathology standards. 

Another limitation – arguably the initial paramount reason for this research – is in 

determining what barriers remain in incorporating multiplexed imaging, namely CyCIF, 

into clinical work. Clinical validation of a multiplexed imaging method has not yet 

occurred; similarly, the clinical significance of several antibodies remains relatively 

limited as only a handful of biomarkers have clinically established confidence. This 

dilemma suggests CyCIF as possible alternative or complementary method to improve 

this quandary. We have evaluated hundreds of antibodies using the high throughput 

nature of CyCIF, including non-traditional ones, that we hope will one day achieve 

clinical validation. H&E and IHC stains are the clinical standards when it comes to 



 

 77 

evaluating particular antibodies in assessing tumor type or burden. While they present 

useful data, the throughput of these methods is low, only a couple antibodies at a time, 

yet remain the gold-standard when it comes to pin-pointing an abnormality in a patient’s 

tumor. This has remained relatively unchanged for decades. H&E presents a binary stain 

delineating tumor that clinicians trust, where antibody expression is either absent or 

present; IHC provides the same only with heightened specificity and a slightly more 

quantitative output. In the future, we hope to prove that CyCIF can be used as a clinical 

diagnostic resource by adding more antibodies intra-sample and extend findings beyond a 

single biomarker, in the scopes of hundreds. By doing so, we increase our understanding 

of a patient’s specific tumor and expose possible targets for therapeutic intervention. 

Given these limitations, it is important to consider this work as a catalyst for 

multiplexed imaging and antibody validation. As more multiplexed staining and imaging 

methods and manuscripts come to the forefront, many of which highlight CyCIF and its 

abilities, we hope to share our data and assay to exemplify deep tumor phenotyping and 

cell type calling an its potential in more guided therapies. This is achieved through the 

staining of supplemental markers that describe the context in which tumors reside as well 

as the composition of the TME within an individual’s tumor. Characterizing a majority of 

cell types within a sample should be the overarching goal of many pathology trajectories 

regardless of whether or not they include CyCIF. To make this happen, continuous 

collaborations with institutions that work directly with clinicians and patients is critical 

for CyCIF’s success showcasing its unparalleled capabilities. If we can obtain sections of 

tumor from pathologists to characterize cellular composition through the use of clinical-

grade antibodies in both IHC and CyCIF, we can then shift our focus towards providing 
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precision medicine that is going to directly and positively impact patient’s lives. 

Multiplexed imaging has the power to bolster our knowledge of tissue biology and the 

assessment of disease (Bodenmiller, 2016). To this point, CyCIF is on periphery of 

diagnosis, but in the future, with some additional optimization and clinically approved 

standard operating procedures (SOPs), we aspire to meet the clinical standards in some 

capacity.  

Future Directions 

Although we have suggested CyCIF as the leading multiplexed imaging to be 

used for complementing histopathology standards, we would be remiss not to mention 

other IF-based assay, such as cyclic multiplexed-immunofluorescence (cmIF), 

multiplexed IF (mIF), MIBI, and multiplexed IHC, which are all currently being used in 

energies to improve cancer therapeutic strategies and aid disease diagnoses (Eng et al., 

2020; Parra, 2018). These other methods aim to perform in a similar fashion as CyCIF by 

complementing existing clinical standards through increased throughput, multiplexing, or 

automation. But, where CyCIF stands alone, is in its ability to incorporate all three of 

these desires in one assay. As clinical work is subjected to rigorous standards, for CyCIF 

to be deemed clinically validated and obstacles must be overcome. Continued 

collaborative efforts with pathologists will also be needed to can make clinical translation 

a possibility in the future. For now, we show that CyCIF remains a leading contender for 

clinical validation due to its multiplexed nature in which we can incorporate many forms 

of antibodies but also in its throughput, able to perform WSI on up to 80 slides, if not 

more, in a single imaging session. Further, the availability of training data has been, and 

will continue to be sought after for it use in improving AI labeling for image post-
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processing; our data can and should contribute to these endeavors. These three distinct 

arms of CyCIF experimentation will continue to expand as the need for multiplexed 

imaging does, and it shall continue to progress in parallel with the field of digital 

histopathology in general, making it even more practical to integrate moving forward. 

In efforts to help advance the field of digital histopathology in general, open-

source data is needed as a resource for tool development in a collaborative setting both on 

the experimental and analytical side. In maximizing the potential of our work, we suggest 

that the EMIT dataset serve as an open-source catalyst for tool development and growth. 

The novelty of the dataset at such that much of the preliminary research has already been 

performed ranging from optimizing experimental conditions, which include incubation 

times and background controls, through imaging, which includes accurate antibody 

dilutions and proper exposure times. Further, the initial battery of antibody validation 

efforts has perpetuated this dataset forward and served as one of the main successes of 

this research. We have also deprioritized many antibodies that did not work in our 

validation efforts and incorporated those that showed relative success for future 

experimentation. These initial efforts, ease the burden on others in that we have already 

established a list of reliable antibodies that serve as a solid starting point for antibody 

staining and imaging before further plexing. Making this data widely available will allow 

the scientific community to improve tools already being used by many research groups. 

As we have discussed, the CyCIF assay yields a superior amount of information 

as compared to H&E and IHC stains. We can explore cell-cell interactions, delve into 

neighborhood analyses, compare and contrast marker expression profiles of like and 

unalike cell types all from the same amount of biological material that H&E and IHC 
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require. It should be noted that more recent multiplexed histologic approaches have 

involved spatial studies, a hot area of scientific research that involve cellular 

neighborhoods and cell-to-cell interactions as they relate to proximity. We have scratched 

the surface of spatial interactions in our dataset by studying how certain cell populations 

interface with one another and what impact these relations may have. Moving beyond 

imaging in a traditional histologic section roughly five microns thick, newer assays have 

proposed using entire blocks of tissue subjecting them to three-dimensional imaging, to 

control for the loss of biology that may occur during sectioning. Recent studies such as 

those performed by Amin (Amin et al., 2017) and Lin (Lin et al., 2022), emphasize both 

the need and role of imaging as it is essential to synthesize patient history and physical 

examinations with imaging and pathological studies as they relate to patient biopsies 

(2017). Lin’s research team has performed a similar study to ours in which they have 

created an atlas-like resource in which they identified cell types, cell states, and classified 

the underlying morphological features of diagnostic and prognostic value within 

colorectal cancer (2022). Their work is the genesis of the term “histotype,” referring to 

unique tissue morphology classifications which present differently depending on the 

stage or subtype of a patient’s colorectal cancer. In our work, we perform the same types 

of analyses that span across a range of diseases, many with unique histotypes that convey 

pertinent information regarding a patient’s diagnosis and prognosis. These works, taken 

together, represent a shift in the field, incorporating a multi-faceted approach to 

interpreting and complementing histology data. 

What cannot go unnoticed is that the foundation for creating disease-specific 

atlases is antibody validation efforts as well as the optimization of conditions with 
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thorough quality control to ensure clean and systematic data collection. If these steps are 

not taken during the creation of atlases, which consolidate large amounts of data, we may 

not achieve even the simplest goals, since we have seen how crucial quality control and 

validation efforts are. As described for the Human Tumor Atlas (Rozenblatt-Rosen et al., 

2020), it is imperative to integrate all aspects of related biological data, not just H&E and 

IHC, to construct a potent atlas-tool to build up our knowledgebase as they pertain to 

cancers. The wealth of biological data includes clinical annotations, experimental, 

imaging, and computational data with the end goals of understanding tissue morphology 

amongst solid tumors, identifying common trends across tumors, and the characterization 

of specific tumor stage and type (Rozenblatt-Rosen et al., 2020). While these atlases 

should build off of one another and extend their visions towards a common goal in 

interpreting and reconstructing three-dimensional data, the underlying framework 

remains dependent on the reliability of antibodies in imaging data, a major element of 

these works often taken for granted. Thus, our dataset serves many purposes: as a large 

repertoire of well-controlled antibodies validation experiments, a preliminary assessment 

of cell and tumor morphology across many tissues, a diverse training set for supervised 

deep-learning AI, and an open-source input to improve other image-based computational 

processes. Therefore, we can use our data to advance tools and the like resources needed 

to keep up with the pace of a growing field. 

Altogether, we have accomplished many of our initial aims and provided a new 

resource to the community that is useful in a number of ways. We have increased 

confidence in a large number of antibodies through numerous antibody validations efforts 

and rigorous quality control. This is a vital foundation which few research groups wish to 
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perform, especially on the scale of 500-plus antibodies. Here, we establish an extensive 

pre-validated grading system to serve as a spring-board for other antibody imaging 

efforts. We have generated a dataset in which we classified seven main types of 

morphologies seen across 34 tumor types and begun to assess and annotate patterns and 

likeness between them to serve as a reference diagnostic tool. Through iterative and 

repeated labeling of images, we have put forth a finely-tuned training set for supervised 

deep machine-learning and an AI-driven classification system for cell types and 

expression profiles. We have provided the scaffold for methods advancement and 

outlined areas in which there is a pressing need for improvement in the field of digital 

histopathology. CyCIF can be used as a driving force behind many of these changes and 

the overarching desire to create atlases through which we can quickly gauge and identify 

similarities across tumor types through interpretation of their morphology and biological 

underpinnings. We hope that the data provided here, our multi-faceted approach and 

resources, catalyze collaborative efforts in aiming to understand each cancer’s unique and 

rapidly evolving properties. 
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Figure 1. Tissue landscape and cellular composition of cores within HTMA 427. 

Overview of the hTMA (#427) data. Here, we see staining of macrophages in green, 
activated T-cells in white, and blood vessels in red. Even with three markers present, it is 
easy to get a broad understanding of tissue characteristics and how they pertain to 
specific cancer types. For example, glioblastoma is chock-full of macrophages whereas 
leiomyosarcoma is altogether void of macrophages. Knowing these relative abundances 
can help guide follow-up research and the formulation of new hypotheses. We also see a 
brief evaluation of overall tissue integrity from initial biopsy punch. For example, the 
mesothelioma and lung adenocarcinoma cores do not display a full, robust punch as 
spleen and renal cell carcinoma. 
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Figure 2. Cell morphology classifications as determined by NUP and lamin staining. 

A cocktail of all available NUP and lamin antibodies was used to stain the maximum 
number of nuclear envelopes within various cancer cores. We classify specific cell shapes 
and densities into seven distinct classes: round versus narrow, small versus large, 
densely packed, irregularly packed, or organized in clusters. Using these classes, we can 
begin to make systematic interpretations on a core-to-core basis and make broad pattern 
assessments between like and unalike malignancies. 
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Figure 3. Variable expression of disease-specific antibodies in unexpected cores. 

Calponin and SDHB, two antibodies mostly specific for leiomyosarcoma and GIST, 
respectively, are expressed in other cores, sometimes indistinguishable from background 
as seen on the left, but also in true positive staining, albeit in less abundance, as with the 
colon and meningioma cores. These staining patterns are gated away from true signal in 
terms of scoring real signal from background. Detail further in Figure 13. 
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Figure 4. Cell segmentation overview targeting diverse nuclear envelope presentations.  

Exemplar staining of different lamin antibodies (and NUP98) used to target 
phenotypically diverse nuclear envelopes. Lamin stain often juxtaposes nuclear envelope 
NUP98 stain (minimal overlap in merged H tile). It is important to note that the lamin 
subtypes come from the same family; but the A/C, B1, B2, and B receptor subtypes stain 
different populations of cells and in different proportions. Image credit Clarence Yapp. 
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Figure 5. Cell surface markers observed in four distinct cancer histotypes.  

High- and low-resolution images of four different cores within the TMA. Here, tissue 
from kidney, lung, and colon (two different subtypes) show varied expression of E-
cadherin (green), pan-Cytokeratin (red), CD68 (white), and aSMA (blue). These markers 
stain epithelia, tumor, myeloid/dendritic cells, and fibroblasts, respectively. Overall cell 
morphology guides deep learning and cell-typing-calling of our AI. Beyond training AI, 
being able to identify and categorize unique histotypes affords us the ability to create a 
visual guide to different subtypes of disease; here the colon tissues present differently, 
especially in the form of differential pan-CK expression.  
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Figure 6. H&E regions mapped to multiplexed CyCIF image through tissue landmarks. 

A direct comparison of traditional H&E with CyCIF. It is immediately recognizable that 
the serial sections map well onto one another. The dotted black lines (left) indicate 
regions of tumor and the same regions are seen in the CyCIF images (right) namely in 
the form of high Sox10 expression, the melanocyte markers (green). The strength of H&E 
is to delineate tumor from non-tumor regions; here we show that CyCIF, when probed 
with the proper markers (of tumor in melanoma i.e., Sox10), can delineate tumor equally 
as effectively, if not better, and provide additional context. Taken further, even 
metastases can be mapped directly across sections. Small populations of tumor cells (red 
dotted lines) in H&E are visible in the CyCIF images, again in the form of green Sox10 
staining. Where CyCIF remains superior is the ability to add contextual markers, here in 
the form of T-cells (white and red) which provide immune reaction in response to the 
metastases and tumor revealing disease state. Image credit in collaboration with Tuulia 
Vallius and Roxanne Pelletier. 
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Figure 7. IHC regions mapped back to multiplexed CyCIF image outlines context. 

A direct comparison of a single melanocyte IHC marker, Sox10 (dark blue), as compared 
to the multiplexed CyCIF image also containing Sox10 (red). While the IHC image 
contains pertinent information regarding melanocyte presence and abundance, it is 
entirely context-independent. Conversely, the CyCIF image also contains keratin, 
delineating epidermis from dermis, T-cells markers, and macrophages that characterize 
the immune response in regards to melanocytes aggregation. What is important to note is 
that the localized immune response heightens as the number of melanocytes increase and 
penetrate inwards as seen with inflammatory and fibrosing regression as well as with a 
localize tumor infiltrating lymphocyte response. Image credit in collaboration with 
Zoltan Maliga. 
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Figure 8. High-resolution image of a synapsing macrophage and antibody polarization. 

Left: Raw data showing how biology occurs in a three-dimensional z-axis often missed 
during two-dimensional imaging. When computationally reconstructed, we see the 
synaptic projection from one resident macrophage (M) to an exhausted PD1+ T-cell (T) 
as it attempts to destroy it. Inset: Antibody localization and relative abundance of PD1, 
PDL1, and CD163 between the two neighboring cells comprising the synapse; PD1 most 
abundance in the points of contact. Right: high-resolution microscopy further reveals 
how certain antibodies aggregate on certain poles of cells and do not always present as a 
complete and contiguous ring usually seen in low-res microscopy. While PD1 is more 
widespread (red), PDL1 (green) is highly polarized to the bottom right of the cell which 
may require further investigation. Image credit in collaboration with Clarence Yapp and 
Zoltan Maliga.  
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Figure 9. Systematic degradation: tissue integrity evaluated across six cancers. 

Top: composite merged image of the first four cycles of blue, orange, green, and red 
DNA in TMA22. Presence of individual colors indicates tissue loss; second-from-the-
right bottom (colon AC) has stripes of color whereby cells have fallen off. Bottom: panels 
show cycles independently and tissue loss across all ten cycles. Most cores remain intact 
apart from colon AC. The right-most cores do exhibit some tissue loss around areas 
where gaps appear, but there is still enough tissue to finish the experiment. From these 
findings, systematic conclusions can be made: gaps in colon AC tissue leads to quicker 
degradation as compared to more cellularly dense cores. 
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Figure 10. Best and worst cellular landscapes across a full CyCIF experiment. 

Top: Cores with the best tissue integrity across a full CyCIF experiment from three 
different TMAs. Here, these cores show much yellow stain indicative of overlap of DNA 
from the first cycle and the last cycle, with minimal tissue loss. Not surprisingly, most of 
these histotypes have densely packed cells. Bottom: Cores with the worst tissue across 
the same three TMAs. In reaching conclusions regarding tissue landscape and tissue 
integrity, it is important to note that the cores in the bottom row almost all exhibit large 
gaps of space between tissue regions. As discussed, these gaps often lead to tissue 
sloughing off of the slide, ending an experiment prematurely. 
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Figure 11a. Lung AC tissue integrity from TMA 11 and 12 and artifact interference. 

A comparison of the same lung adenocarcinoma core across TMA11 (left) and TMA12 
(right). It is important to note that 1. both cores survived ten-plus cycles 2. tissue loss 
was initially isolated to the right-side of the core, where a gap was first noticeable in the 
third cycle 3. despite certain cycles appearing to display complete tissue loss, this was 
only an artifact of poor staining and contrast settings (Cycle 13 left and Cycles 9, 12, and 
15 right). Tissue was actually there, just not visible as a result of normalized contrasts, 
but it re-appeared in subsequent cycles. 4. Tissue loss in TMA12 can mainly be attributed 
to manual perturbations such as the initial cover-tile sliding across the tissue during de-
wax or incomplete de-coverslipping as the artifact introduced is nearly linear as 
discussed. A thorough investigation on a core-by-core basis is needed to understand 
systematic degradation patterns disease-by-disease, though broad conclusions can be 
made from pattern recognition. 
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Figure 11b. Exemplary lung adenocarcinoma with CD31 outlining blood vessels. 

Lung adenocarcinoma stained with CD31 (red) antibody showing the vasculature (blood 
vessels) that resides within these cores. By assessing CD31 staining, we can visualize the 
gaps in tissue and cells that have a long-term impact on overall tissue integrity. 
Traditionally, large gaps between cell means the tissue will degrade quickly. 
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Figure 12. Cell surface marker staining across six histotypes. 

A comparison of surface markers between six different cores within TMA22. Here we 
show varied expression of these surface markers between cores in varying degrees. 
Attaining the overall cell shape and discriminating between nucleus and cytoplasm/cell 
surface have a direct impact on improving cell segmentation. DNA (blue) shows nuclei in 
the cores with different shapes, which, once classified, was fed into deep learning AI for 
automated classification of cells across cancer indications. It is imperative for us and 
other research teams to make the same classification systems for surface and cytoplasmic 
to improve these aspects of cell segmentation in parallel.  
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Figure 13a. Intra core comparison of antibodies for validation purposes. 

Core of small-cell carcinoma used to determine the validity of like antibodies. The Sox2 
antibodies (green and red), as well as the FoxP3 antibodies (purple and cyan), seem to 
work well, exemplify strong signal, and stain the same cells with proper colocalization. 
Conversely, CD28 (blue) presents with a surface stain as expected, but the bottom panel 
(orange) shows a diffuse, non-specific stain indicative a “failed reagent” that should not 
be used in future experimentation. 
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Figure 13b. Gating autofluorescence and background from true antibody signal.  

As seen in Figure 13a, we see that some antibodies stain as expected with proper signal 
intensity and localization, however, some do not. Top: pan-CK expression in a lung 
adenocarcinoma core. The left histogram (*) matches the red autofluorescence image 
with low intensity, though still visible. The right histogram shows true stain, with a 
bimodal distribution of intensity values indicative of true stain (†; green) versus 
background. When gated, we see subtract the autofluorescence values and score the true 
stain. Bottom: CD13 stain in hepatocellular carcinoma whereby the true stain (green) 
matches nearly identically to that of autofluorescence (red). When plotted together, there 
is no bimodal distribution (*†), therefore this signal cannot be gated, indicative of a 
failed reagent, like CD28 in Figure 13a. 
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Table 1. Relevant TMA antibody stains according to scientific interest. 

 
Samples and antibody panels used to stain TMAs with their biological relevance. Despite 
common markers used in nearly all panels, such as CD3d, CD45, and Keratin, an 
abundance of markers was used specifically in one TMA or another to confer the most 
meaningful project-relevant biological data. Frequently, a number of test reagents are 
used to evaluate staining and determine whether or not follow-up experiments can be run 
using the reagent tested or if an alternative is needed, such as the B220 B-cell marker 
compared to CD19 and CD20. By validating antibodies in this manner, we have 
constructed a large list of antibodies than can be used to address many distinct biological 
questions and processes that extend beyond the capabilities of many other multiplexed 
imaging assays. 

 

 

 

 

 

 

Sample Focus/purpose of panel Key markers for staining
TMA1 Broad characterization of tissues (architecture) CD3d, CD11b, CD45, CD163, pan-CK, NCAM, Iba1, Elastase
TMA2 T-cell markers (version 1) CD3d, CD4, CD8, CD25, CD26, CD27, CD28, CD138, CD207
TMA3 Natural-killer cells CD1a, CD44, CD47, CD57, CLEC2d, NKG2c, TUJ1, IRF3, IRF5
TMA4 Myeloid cells, macrophages, and cell stress markers CD11c, CD40, CD80, CD83, CD305, TOMM20, NQO1, iNOS
TMA5 Cancer-specific tumor markers AXL, IDO, p53, CDX2, ZEB1, VEGFR2, CK17, HER2, Pax8, HES1
TMA6 B-cells markers CD19, CD20, B220, CD45, CD79, Pax5, E2F1, Gata4, BCL2, CD21
TMA7 Fiborblasts, DNA-damage, and blood vessels Podoplanin, pCHK2, pH2AX, TFEB1, SREBP1, FAP, NG2, EZH2
TMA8 BCL2-family proteins and apoptosis markers Bok, Bid, BCL2, Bax, Bak, MCL1, Bim, Bap, p53, Puma, ACO2
TMA9 Toll-like (TLR) and innate immune receptors TLR3, TLR4, TLR5, TLR7, TLR8, TLR10, BAP1, STING, CD13
TMA10 Receptor tyrosine kinases (RTK) and cell markers Tyro3, MERTK, Met, ALK, pAurK, Snail1, BIRC5, TCRvd
TMA11 Nuclear and cytoplasmic markers for segementation* NUP98, NUP133, Lamin B1, Lamin A/C, PML, S100a, EpCAM
TMA12 T-cell markers (version 2) CD68, CD357, Gran. B, H3K4M3, FoxA2, TIGIT, CD50, CCNE1
TMA13 T-cell markers (version 3) CD5, CD7, CD39, CD25, CD28, CD39, CD45RA, CD45RO
TMA14 Ludwig Collaboration 1 cCasp3, cParp, LC3, pSTAT1, pSTAT3, Smad1, RIP, pMKLK
TMA15 Ludwig Collab. 2: cell architecture, macrophages, B- and T-cells 4HNE, TFEB, Arg.2, GLUD1, BCL-XL, SELP, STAT3, pSTAT3
TMA16 Additional segmentation markers CMA, MBP, Coilin, STAT6, RunX2, IRF3, STAT6
TMA17 Mast cells and myeloid populations CD117, CMA1, MCT1, CD66b, G3BP, MPO, FUS, CEPBA, CK5
TMA18 Lymphoid, myeloid, and B- and T-cells CD115, IRF4, IRF5, CD79a, CD2, CD35, MDM2, TIM3, ERa
TMA19 Transcription factors, immune checkpoint, and myeloid space SPI1, CD66b, MITF, CMAF, IRF7, RunX2, STAT5A/B, IFNGR1
TMA20 Cellular metabolism and BCL2-proteins GLUD1, TFEB, PHD3, Gata3, Bim, SMAC, Desmin, CEBP, OLFM4
TMA21 PCA1: melanoma-directed markers 5HMC, Tet2, HMB45, WT1, ICAM1, GM130, ITGAV, LDH, CD90
TMA22 PCA2: melanoma-specific unconjugated primaries* CD73, CD107b, MART1, CDKN1A, CDKN1C, CDK2, CDKN2A
TMA23 Reagent optimization and antibody validation Sox10 (x2), Cyclin B1, Cyclin A2, Ki67 (x2), bAmyloid, NCL, CD45RB
TMA24 Immune landscapes H-HLA2, Nkp46, Vista, RORc, CD1d, LAG3, OX40, PD1, ICOS
TMA25 Cell segmentation advancements

* EMIT dataset
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Table 2. Tumor-specific antibodies to target each malignancy within the TMA. 

 
Antibodies that were used in efforts to identify the “hallmark” of specific cancers. 
Though we expect antibodies to be most specific for their suspected cancer type, they 
often stain other cores, thus follow-up investigation must be performed. Note: this is not 
the completed list. 

Histologic Classification Tumor subtype-specfic markers
Appendix, acute -itis TNFR2, CD38, Podoplanin
Breast D/LC ER, PR, HER2, RORc, Tbet,
Cirrhotic liver CD71, Smad2, MSH6, TDP43, CEPBA
Colon adenocarcinoma (AC) CDX2, MLH1, TP53, FDX1
Colon lymph node (LN) CPT1A, p53, VEGF, CD34
Dedifferentiated liposarcoma p53, MDM2, CDK4, s100
Diverticulitis s100, CD117
Ductal carcinoma, breast GATA3, Bcl2, CK8, E-cadherin
GI stromal tumor KIT, SDHA, SDHB, PDGFRa, PDGFRb
Glioblastoma Hes1, p53, EGFR, GFAP
Hepatocellular carcinoma CD13, NFATc1, CK8, CD10
High grade serous ovarian cancer Pax8, p53, yH2AX, Ki67, CD8
Kidney LN, cortex FDX1, pan-CK, Vimentin, WT1
Leiomyosarcoma aSMA, Desmin, Calponin, p14, p16
Lung AC CD1b, CD305, ALK
Lung small cell lung cancer CD28, Sox2, NCAM, E2F1, YAP1
Meningioma PR, STAT6, Sox10, s100
Mesothelioma CD141, CK5, Podoplanin, BAP, CDKN2A
Metastatic melanoma Sox10, MART1, HMGB45, PU.1, GITR, 
Pancreas AC CD47, CD63, CD166, Smad3, BclXl
Prostate AC CDKN1b, EPCAM, FOXO1A
Prostate LN CD1a, AR, ERG, CD10
Pulmonary LN TTF1, CCD163, aSMA, Catenin
Renal cell carcinoma CD27, CD86, CLEC2d, CK&, TFEB
Seminoma p53, CD117, Podoplanin, CD30(-)
Skin, hair follicle shaft cd34, CD207, Sox4, p27
Spleen Nestin, CD1d, CD68, MPO 
Tonsil CD3, CD4, CD19, CD20
Non-neoplastic colon
Non-neoplastic lung
Non-neoplastic ovary
Non-neoplastic pancreas
Non-neoplastic small intestine Nrf2
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Table 3. Overall antibodies used to stain each of the 24 TMAs 

 
Here we show the list of antibodies that were used to stain each of the TMAs. We can 
begin to see, by comparing this list to Table 1, how some overarching questions begin to 
appear. For example, TMA7 was stained in part to gauge DNA damage, thus we stained 
with NQO1, cCASP3, pH2AX among others. Our goal was to allow for ease of 
collaborations; if a collaborator wants to target particular biological mechanisms, we 
have antibodies tested, and ideally validated, for those processes. Note: this does not 
show the unique antibodies (i.e., vendor, fluor etc.); some can be seen in Table 4. 

 

 

 

 

 

 

 

 

 

TMA1 TMA2 TMA3 TMA4 TMA5 TMA6 TMA7 TMA8 TMA9 TMA10 TMA11 TMA12 TMA13 TMA14 TMA15 TMA16 TMA17 TMA18 TMA19 TMA20 TMA21 TMA22 TMA23 TMA24 TMA25
FDX1 CD25 CLEC2d CD40 CD11C CD19 SREBP1 BOK TLR7 ARG2 chREBP TIGIT CTLA4 pMKLK 4HNE IRF3 CD117 CD115 CD86 GLUD1 5HMC CD73 SOX10 HHLA2 **
GITR CD207 CLEC2d_2 GLUT2 AXL MERTK TFEB1 BID TLR10 MERTK CMA1 CD357 CD28 AXL TFEB CMA CMA1 CD207 TIA1 TFEB1 TET2 CD107B CMA1 NKp46
CD1d RORc CD1a CD83 IDO CD10 FAP BCL2 TLR4 TYRO3 MBP GZMB CD25 RIP ARG2 MBP MCT1 IRF4 SPI1 PHD3 HMB45 MART1 SOX10_b CD25
CD163 ECad ECad ECad ECad ECad ECad ECad ECad ECad ECad ECad ECad KI67 KI67 KI67 KI67 KI67 KI67 KI67 KI67 KI67 CD209 RORC
CD3d Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin Keratin
CD31 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD45 CD123 CD1D
LDH CD4 CD11b pTBK1 EPCAM CD19_b CD90 BAX TLR9 MET CD4 CD4 CD4 CD163 CD163 CD163 MPO CD11B CD206 ECad ECad ECad KI67 KI67
CD66b CD3d CD57 LC3 AXL_b CD3D CD29 CD3D CD3D CD3D CD3D CD3D CD3D CD3D CD3D CD3D CD66B CD11C CD68 aSMA aSMA aSMA CD3D CD3D
VDAC CD8a NKG2c HIF1A CTNNB1 CD20 PDPN MCL1 TLR4_b CD7 CD8A CD8A CD8A CD20 CD20 CD20 CD16 IRF5 VISTA CD56 CD56 CD56 CD45 CD45
Elastase CD28 CD57_2 IBA1 PCNA CD11B CD26 TCRb CD11B CD4 pJUN CD38 CD28_b cCASP3 cCASP3 cCASP3 CD163 CD163 CD163 GLUD1_b pS6 CD13 MET CD8A
CD57 CD25_2 Smad3 CD83_b bg3f MYC NG2 BAK TLR3 AXL cCASP3 cCASP8 cPARP pSTAT1 pSTAT1 pSTAT1 CD3D CD3D CD3D GATA3 NOS2 CD63 CD90 LAG3
CD45 Tbet NCAM CD305 CD3D BCL6 pSTAT3 pS6_235 CD20 CD8A IRF3 H3K4M3 MDM2 cPARP cPARP cPARP CD14 CD14 CD14 DESMIN GM130 CD32 CDKN2A PD1
CD11b Gata3 CD1a_2 cCASP3 P53 JUN CD90_b PUMA CAT CCND1 NUP133 PARP CD103 STAT3 STAT3 STAT3 CD79A SPI1 SPI1_b GATA3_b LDH CDKN1A MITF CD163
aSMA CTLA4 IRF5 CD80 PDGFRb CD34 CD146 CD33 pSTAT1_S727 ALK CALP CD4 ACTB LC3 LC3 LC3 FOXO3A IRF5_b CD66B VIM CD90 CCNA2 BIM FOXP3
CD16 STAT5a CD44 NQO1 CTNNB1_b HLADPB1 CD31 BCLXL MYD88 CDKN1B NUP98 FOXA2 FOXP3 pSTAT3 pSTAT3 pSTAT3 CD66B_b CD115_b IRF7 CD3D pMTOR CDKN1C cPARP HLADPB1
ECad STAT6 CD47 NRF2 EGFR CD43 CD33 CD8A CD11B_b CD30 LMNB1 CD15 CTLA4_b bg2h GLUD1 COIL MITF MITF MITF ANXA2 GAPDH PCNA CCND1 KIT
FoxP3 CD27 CD44_2 TOMM20 CK7 FOXO1A pChk2 BIM TLR8 pAURK IRF3_b SYP FOXP3_b CCNB1 SELP STAT6 FOXO1A IRF7 IRF7_b CD11C pERK pAUR pRb CD40
NCAM PD1 Smad2 CD85J CDX2 BCL2 MSH6 pMTOR CD103 PD1 CD45R H3K27M3 HLAA SMAD1 BCLXL RUNX2 IRF8 CD5 cMAF cPARP MTOR CDKN1B CD31 OX40
CD4 CD161 Smad5 CD163 CD4 CD45RA STAT3 BIM_b MPO SHP1 IRF3_c CD24 HES1 CD30 CD8A CD27 SMAC WT1 CCND1 SNAIL1 IBA1
Keratin Gata3_2 IRF7 iNOS aSMA GATA3 pH2AX pSRC TLR5 pRB PML CDK4 SOX2 CD66B_c CD4 CD4 BIM aSMA_b cPARP CCNB1 CD68
CD14 PDL1 CD33 CD86 CD8A MCL1 MLH1 BCL2_b STING CDKN1A GLUT1 GZMB_b pTyr FOXO3A_b CD79A LAG3 LYSC NQO1 p27 CCNA2 CD56
Iba1 STAT5b STAT6 HO1 EGFR_b CD34_b RAD51 BAP1 pS6_240 SNAIL1 LMNAC GzB CD7 CD16_b TIM3 IFNGR1 ICAM1 CD146 pCREB S100A MPO
CD1b STAT4 TNFR2 CD68 VIM ESR2 aSMA CD33_b TLR2 MLH1 CD1B CD11C ALDH1A1 G3BP CD19 PDL1 CEBP CD90 CCNB1 AXL NOS2
CD8a CD26 IRF5_2 HIF1A_b ZEB1 CD21 FANCD2 ACO2 AHR BIRC5 HSP27 CD3 SOX2 pJNK CD11B_b RUNX2 none ITGAV CCNE pATM GZMB

CD166 PU1 MAC387 CK8 CD45RO KI67 pERK pNDRG1 CD43 GAPDH CD68 CD7 TOMM40 ER alpha CD43 CD141 ICAM1 PCNA CD73 NKp46_b
Lag3 CD133 P62 VEGFR2 BAK pH3 PKM2 TLR1 KI67 HSP90 CDK9 S6 pIKBA POUF51 CD86_b CD90 CD11B CDK2 DCP1A LAG3_b
Vista NGFR CD64 YAP1 PR BRCA1 MTOR VIM CD5 S100A11 TTF1 IRF1 FOXO3A_c TIM3_b STAT5A ITGAV CYSC CDKN2A aSMA VISTA
CPT1A CD71 CD206 CK17 PR_b cCASP3 PDL1 CD10 TCRvd TDP43 TDT SMAD5 CD45RA TLR9 STAT5B Z_CD36 Z_CD73 zCD48 CD45RB NRP1
NFATc1 IRF3 RELA VCL FosB PMS2 PDGFRa PKM1 none_3 OGT Keratin_b HER3 CD31 CK19 TNFR2 Z_OLFM4 Z_CD117 zCD40 NCL ICOS
CD134 TUJ1 cPARP SMO CD61 MCM2 COX4 RELA none_4 COLL4 CDK6 KI67 MCSF PAX5 MHCII Z_ICOS Z_CD40L zCD137 BAmyloid CD209
PU1 ERG PRLR NFIL BRD4 CD90_c pP38 CD13 TCF7 FCERG1A CD48 CD5 CK5 CD2 IRF3
Lag3_b PU1_2 CD49F SYK HER2 bg3m pJNK pERK AURKA SQSTM1 MAP2 CD133 CEBPA CD35 CD86_c
TIM3 CD31 CD206_b HER2 ESR1 bg4m pSTAT6 CD80 TCRgd LMNB2 aSMA SOX4 FUS MDM2 VIM
STAT3 Cox4 LAMP1 SYK_b NOXA2 cCASP3_b CD19 CD138 ARG1 HSP70 CD50 TMEM173
STAT1 CYCS? COX4 HER2_b GATA4 CD90_d CCNA cPARP cCASP8 KI67 PRF1 HMGB1
Sox2 LAMP2 NANOG HES1 AR EZH2 SDHB IRF1 pH2AX pH2AX RUNX3 pBTK

cCASP3 MITF EZH2_b BIRC5 NCAD ARG1_b SEC61A NEUN CD45RA
TRKA E2F1 CDK2 S6 pSTAT1_Y701 MAD2L2 EPCAM pRb SMAD3
PAX8 GATA4 NQO1 MDM2 CD138_b CDKN2A CD86 CCNA2 CD45RO

TP53 CD10_b pCDK1 LMNAC_b GMNN CD39
POU5F1 GFAP CDKN1A_b ECad_b CK19 VIM
SDHA EMD BANF1 KI67_b CCNE1 pAKT
FN NES ARG1_c LMNB SCA1 pS6
CK19 MAP2 CCNA2 VEGFR2 AR LC
CYCS NECTIN1 ACO2 TUBG CCCNE AKT
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Table 4. Segment of antibodies used to stain TMAs per cycle per channel. 

 
A portion of the overall antibodies used to stain the full dataset. Antibodies are organized 
by the TMA they stained as seen in Table 3, but here we also show the channel and the 
dilution used as well as the vendor. This information is critical for antibody validation as 
clones, fluorophores, and vendors may show different staining presentations, as seen in 
Figure 13a. Note: this is not the complete list, but rather a portion from various TMAs. 

 

 

 

 

 

 

 

 

TMA Image Channel Antigen Vendor Cat No Dilution TMA Image Channel Antigen Vendor Cat No Dilution TMA Image Channel Antigen Vendor Cat No Dilution
TMA1 8 3 FOXP3 eBioscience 41-4777-82 200 TMA18 10 4 TIM3 CST 78226S 300 TMA5 11 4 YAP1 CST 38707S 300
TMA1 9 3 pan-CK Thermo-Fisher 41-9003-82 1000 TMA18 10 2 ER alpha Abcam ab194150 100 TMA5 10 4 ZEB1 abcam ab216121 300
TMA1 7 3 SMA Abcam ab202509 1000 TMA18 3 2 KI67 CST 11882S 200 TMA5 6 2 PCNA CST 8580S 1000
TMA1 5 4 VDAC abcam ab179840 200 TMA18 7 2 MITF Abcam ab201675 200 TMA5 14 2 Syk abcam ab198938 200
TMA1 7 2 CD11B Abcam ab204271 300 TMA18 6 2 PU.1 Santa-Cruz sc-390405 AF488 100 TMA5 7 2 TP53 CST 5429S 300
TMA1 4 2 CD163 abcam ab218293 500 TMA18 9 2 TIM3 CST 54669S 100 TMA6 13 2 BRD4 abcam ab197606 200
TMA1 9 2 CD4 R&D FAB8165G 300 TMA18 11 2 TLR9 Abcam ab58864 200 TMA6 6 2 CD11b Abcam ab204271 300
TMA1 8 2 ECAD CST 3199S 300 TMA19 5 2 CD163 Abcam ab218293 400 TMA6 3 2 CD19 CST 90176S 500
TMA1 6 2 ELANE1 Santa-Cruz sc-55549 100 TMA19 4 2 CD206 Santa-Cruz sc-376108 AF488 100 TMA6 5 2 CD19 abcam ab196468 200
TMA1 3 2 FDX1 Abcam ab108257 50 TMA19 8 2 CD27 Santa-Cruz sc-25289 AF488 100 TMA6 10 2 CD34 Santa Cruz sc-74499 AF488 200
TMA1 10 2 IBA1 Abcam ab195031 500 TMA19 10 2 CD43 Santa-Cruz sc-6256 AF488 100 TMA6 8 2 CD43 Santa Cruz sc-6256 AF488 300
TMA1 5 2 LDH abcam ab202652 500 TMA19 2 2 CD86 Abcam ab53004 100 TMA6 9 2 CD45RA BioLegend 304114 300
TMA10 17 2 ARG1 CST 66297S 100 TMA19 5 4 CD14 Abcam ab196169 1000 TMA6 11 2 CD45RO BioLegend 304212 300
TMA10 14 2 ARG1 LSBio LS-C447908 100 TMA19 5 3 CD3D Abcam ab208514 150 TMA6 7 2 cJun abcam ab193780 300
TMA10 15 2 ARG1 LSBio LS-C447914 100 TMA19 8 3 CD4 eBioscience 41-2444-82 100 TMA6 4 2 ECAD CST 3199S 300
TMA10 3 2 ARG2 Cell Signaling 55003S 300 TMA19 3 4 CD45 BioLegend 304056 300 TMA6 15 2 MITF abcam ab201675 200
TMA10 17 4 ACO2 Abcam ab198050 300 TMA19 6 3 CD66B BioLegend 392903 100 TMA6 14 2 Noxa2 abcam ab206256 200
TMA10 7 3 ALK CST 8868S 200 TMA19 4 3 CD68 CST 79594S 300 TMA6 14 4 AR abcam ab194195 200
TMA10 13 3 AURKA CST 50235S 200 TMA19 12 3 CD86 BioLegend 305405 100 TMA6 11 3 BAK Cell Signaling 14155S 200
TMA10 6 3 AXL CST 78909S 300 TMA19 10 3 CD86 Abcam ab77226 100 TMA6 8 4 BCL2 BioLegend 658705 200
TMA10 16 4 BANF1 Abcam ab208621 200 TMA19 7 4 cMAF abcam ab225416 100 TMA6 6 4 BCL6 Santa-Cruz sc-7388AF647 300
TMA10 14 3 cCASP8 CST 12602S 100 TMA19 11 4 HLADPB1 abcam ab201347 200 TMA6 3 4 CD10 Abcam ab951 200
TMA10 12 3 CCNA SC sc-271682 100 TMA19 7 3 IRF7 Abcam ab210435 300 TMA6 5 4 CD20 eBioscience 50-0202-80 200
TMA10 17 3 CCNA2 abcam ab297731 200 TMA19 6 4 IRF7 Santa-Cruz sc-74472 AF488 200 TMA6 10 4 CD21 abcam ab202693 300
TMA10 12 4 CD11c Santa-Cruz sc-19601 AF647 100 TMA19 8 4 LAG3 LS Bio LS-C344749 100 TMA6 7 3 CD34 Abcam ab30377 200
TMA10 5 3 CD3D abcam ab208514 150 TMA19 3 3 pan-CK Thermo-Fisher 41-9003-82 1000 TMA6 5 3 CD3D abcam ab208514 200
TMA10 4 4 CD45 BioLegend 304056 300 TMA19 9 3 PDL1 Abcam AB213358 150 TMA6 4 4 CD45 BioLegend 304056 300
TMA10 11 4 CD5 Santa-Cruz sc-53204 AF647 200 TMA19 2 4 PU.1 BD 554268 100 TMA6 12 4 CD61 Biolegend 336408 100
TMA10 5 4 CD7 abcam ab199023 200 TMA19 9 4 RUNX2 abcam ab215955 200 TMA6 6 3 cMyc abcam ab201780 200
TMA10 6 4 CD8A eBioscience 50-0008-80 300 TMA19 10 4 STAT5A Abcam ab194309 300 TMA6 15 3 E2F1 abcam ab208078 300
TMA10 15 4 CDKN2A Abcam ab192054 TMA19 2 3 TIA1 Santa-Cruz SC-1751 300 TMA6 12 2 PR abcam ab199224 300
TMA10 11 3 Ki67 eBioscience 41-5699-80 100 TMA19 11 3 TNFR2 abcam ab209582 200 TMA6 13 4 ER alpha abcam ab205851 200
TMA10 15 3 Mad2L2 Abcam ab210653 200 TMA19 12 4 VIM CST 9856S 300 TMA6 10 3 ER beta abcam ab205541 200
TMA10 3 3 MERTK abcam ab110108 100 TMA19 4 4 VISTA CST 92734S 100 TMA6 12 3 FOSB abcam ab211854 200
TMA10 10 3 MLH1 abcam ab215303 200 TMA19 9 2 IFNGR1 Abcam ab200327 300 TMA6 8 3 FOXO1A abcam ab207244 200
TMA10 8 3 p-AUR CST 13464S 200 TMA19 12 2 IRF3 abcam ab204647 200 TMA6 9 3 GATA3 abcam ab210672 300
TMA10 14 4 p-H2A.X CST 9720S 100 TMA19 3 2 KI67 CST 11882S 200 TMA6 15 4 GATA4 abcam ab194072 200
TMA10 9 3 p-Rb CST 8957S 300 TMA19 7 2 MITF Abcam ab201675 200 TMA6 14 3 GATA4 SC sc-25310 PE 300
TMA10 16 3 p21 CIP/WAF CST 8493S 100 TMA19 6 2 PU.1 Santa-Cruz sc-390405 AF488 100 TMA6 13 3 HER2 CST 98710S 200
TMA10 9 4 p21 CIP/WAF CST 8587S 200 TMA19 11 2 STAT5B abcam ab199767 300 TMA6 7 4 HLADPB1 abcam ab201347 300
TMA10 7 4 p27 Abcam AB194234 300 TMA2 9 2 CD161 Abcam ab210285 200 TMA6 9 4 MCL1 abcam ab197035 300
TMA10 4 3 pan-CK Thermo-Fisher 41-9003-82 1000 TMA2 11 2 CD166 abcam ab197543 200 TMA6 3 3 MERTK Abcam ab110108 100
TMA10 8 4 PD1 abcam ab201825 300 TMA2 3 2 CD25 Abcam ab128955 200 TMA6 4 3 pan-CK Thermo-Fisher 41-9003-82 1000
TMA10 10 4 Survivin CST 2866S 200 TMA2 6 2 CD28 BioLegend 302916 200 TMA6 11 4 PR eBioscience 50-9764-80 200
TMA10 7 2 CCND1 Abcam AB190194 200 TMA2 5 2 CD4 R&D Systems FAB8165G 200 TMA7 12 2 cCasp3 CST 9669S 100
TMA10 13 4 TCRgd Santa-Cruz sc-19601 AF647 100 TMA2 12 2 CPT1A abcam ab171449 150 TMA7 14 2 cCASP3 R&D IC835G 200
TMA10 3 4 TYRO3 R&D MAB859-SP 100 TMA2 12 4 CD134 BioLegend 350018 200 TMA7 6 2 CD26-FITC BioLegend 302704 200
TMA10 8 2 CD30 Santa-Cruz sc-19658 AF488 200 TMA2 3 3 CD207 R&D AF2088-SP 500 TMA7 8 2 CD33 abcam ab187838 300
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