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Abstract: U.S. invention has become increasingly concentrated around major tech centers since 

the 1970s, with implications for how much cities across the country share in concomitant local 

benefits. Is invention becoming a winner-takes-all race? We explore the rising spatial 

concentration of patents and identify an underlying stability in their distribution. Software 

patents have exploded to account for about half of patents today, and these patents are highly 

concentrated in tech centers. Tech centers also account for a growing share of non-software 

patents, but the reallocation, by contrast, is entirely from the five largest population centers in 

1980. Non-software patenting is stable for most cities, with anchor tenants like universities 

playing important roles, suggesting the growing concentration of invention may be nearing its 

end. Immigrant inventors and new businesses aided in the spatial transformation.   

 

One Sentence Summary: The growing concentration of patenting in tech centers masks an 

important stability in non-software patenting for most U.S. cities. 
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Introduction 

The spatial distribution of invention is important for science, business, and policy. Invention 

builds upon itself, and knowledge spillovers are more localized than other forms of economic 

interaction.1 Consequently, tight clusters of innovation form and shape the access of individuals 

and institutions to important resources necessary for this work.2 The depths of these local 

technology pools influence the likelihood of achieving breakthrough inventions that draw 

frontier industries to a region and the capacity of regions to recombine prior work into novel 

contributions.3 The distributional implications of the spatial location of invention are significant 

and long-lasting, with one study showing children raised in areas lacking invention are less likely 

to become future inventors (Bell et al., 2019).  

U.S. patenting has become much more spatially concentrated around tech clusters like San 

Francisco and Boston compared to the 1970s, making these places more productive for 

researchers in terms of their patenting propensity, important for business organization, and 

central to high-tech startups.4 Astoundingly, five of the six most valuable public companies in 

the world in 2020 were tech companies headquartered in San Francisco or Seattle. In response, 

local policy initiatives to boost innovation abound (Chatterji et al., 2014), and 238 U.S. cities bid 

for Amazon’s HQ2. Is invention becoming a winner-takes-all race? 

While the growing prominence of tech clusters is important, we show in this note that it is mostly 

due to two forces: 1) the rise of software patents, which are very concentrated in tech centers, 

and 2) the reallocation of non-software patents to tech centers from a few big population centers. 

These trends mask an important stability in the spatial distribution of non-software patents. We 

trace part of this stability to dispersed anchor tenants like universities. 

Our work is closely linked to Bettencourt et al. (2007) and Balland et al. (2020). Bettencourt et 

al. (2007) show that patenting activity became increasingly concentrated in U.S. urban areas in 

the latter decades of the 20th century and that patenting scales at a super-linear rate to city 

population; Verspagen and Schoenmakers (2004) show similar spatial concentration in 

multinational patenting in Europe. More recently, Balland et al. (2020) quantify that patenting 

and related forms of innovation have become increasingly concentrated in larger cities.5 This 

increase is linked to the capacity of big cities to conduct more complex processes; the spatial 

concentration of invention has been growing since the 1850s. 

We contribute to this literature in several ways. Most studies focus on quantifying the macro 

relationship of patenting to city size, using data spanning small cities like Casper, WY, and Enid, 

OK to the giants of New York and Los Angeles. Case studies also contemplate competition 

among tech clusters, such as Saxenian’s (1996) account of the migration of semiconductors from 

Boston to San Francisco. Our contribution is to quantify how much of the rise of tech centers like 

Boston, Seattle, and San Francisco since the 1970s is due to a shift of patenting from the biggest 

population centers in 1980 like NYC and LA. The magnitudes are large: the 13.6% reduction 

from the 1970s to 2015-2019 in the patent share accounted for by the five largest population 

 
1 Audretsch and Feldman, 1996; Ganguli et al., 2020; Jaffe et al., 1993; Rosenthal and Strange, 2020. 
2 Breschi and Lissoni, 2001; Buzard et al., 2017, 2020; Kerr and Kominers, 2015; Stuart and Sorenson, 2003. 
3 Bloom et al., 2021; Duranton, 2007; Duranton and Puga, 2001; Fleming and Sorenson, 2001; Jacobs, 1970; Kerr, 2010; Lin, 

2011; Youn et al., 2015. 
4 Alcacer and Delgado, 2016; Guzman, 2020; Guzman and Stern, 2020; Moretti, 2019; Verspagen and Schoenmakers, 2004. 
5 In a model of the form y ≈ population^β, the authors estimate β equals 1.54 for published papers, 1.26 for patents, 1.11 for 

GDP, and 1.04 for employment. Related, they also note a scaling of 1.57 for patents in ‘computer hardware and software’. 
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centers in 1980 is comparable to the combined patenting of the 238 MSAs with the least 

patenting in 2015-2019. 

We also provide new evidence linking this increasing spatial concentration to software/digital 

inventions, including artificial intelligence. We draw upon algorithms by Bessen and Hunt 

(2007) and Graham and Vishnubhakat (2013), as well as our own extension of these using 

machine learning techniques. We measure an enormous increase in the share of patenting that is 

software related, to account for almost half of patenting today. This type of invention is 

conducive to spatial concentration and responsible for much of the overall rise in the 

concentration of inventions. In non-software domains, the distribution of patenting is more 

stable, although the shift of activity away from large population centers is still evident.6 

These two trends—the reallocation of patents from a few large population centers to tech clusters 

and the explosion of software patents—are nuanced and masked in aggregate assessments. The 

purpose of this research note is to quantify them and raise their profile. We close by exploring 

their link to factors important for innovation (e.g., universities, immigration). These preliminary 

explorations are atheoretical and not conclusive, but they hopefully spark interest in follow-on 

assessments.  

   

Patent Data 

We study micro-records for all utility patents granted by the United States Patent and Trademark 

Office (USPTO) from January 1976 to December 2020 (Hall et al., 2001; Li et al., 2014). We 

consider patents with at least one inventor in the United States and locate the work to the modal 

U.S. city of inventors listed on the patent. We date patents by their application year and consider 

applications made during 1975 to 2019. Our Online Supplemental Materials describe data 

preparation in detail.  

Defining a tech cluster requires consideration of complementary inputs to patenting like venture 

capital investment.7 We follow Kerr and Robert-Nicoud (2020) and Rosenthal and Strange 

(2020) by using two criteria that reflect the scale and density of local tech activity: 1) the city 

ranks among the top 15 cities for patents and venture capital investment (the scale of activity) 

and 2) the city holds shares for patents, venture capital, employment in R&D-intensive sectors, 

and employment in digital-connected occupations that exceed its population share (the density of 

activity).  

Six metropolitan statistical areas (MSAs8) satisfy these scale and density criteria: San Francisco, 

Boston, Seattle, San Diego, Denver, and Austin. New York and Los Angeles are ambiguous, as 

the cities hold large scale but fall short on several density requirements. If we relax some 

requirements, three other candidates are Raleigh-Durham, Minneapolis-St. Paul, and Washington 

DC, and our Online Supplement Materials discuss robustness of the patterns documented to tech 

cluster definitions. 

 
6 As we describe further below, the line between software patents and other digitally connected inventions is blurry. The spatial 

transformation we depict in this note is robust under available definitions, including one for artificial intelligence, but we do not 

claim that the clustering pattern would be necessarily absent in neighboring domains.    
7 Samila and Sorenson, 2011; Sorenson and Stuart, 2001. 
8 Throughout, we use consolidated MSAs such that San Francisco includes San Jose, Oakland, and so on. 
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In 1980, the ten most populated MSAs were New York City, Los Angeles, Chicago, 

Philadelphia, Detroit, San Francisco, Washington DC, Dallas-Ft. Worth, Houston, and Boston. 

San Francisco (#6) and Boston (#10) are two of the identified tech clusters, and the next largest 

is San Diego at #17 in terms of the 1980 population ranking. Our analysis focuses on the 

reallocation of patenting from the five largest MSAs in 1980 in terms of population that rank 

ahead of San Francisco to tech centers. 

We identify software patents using algorithms based upon key words in the patent.9 We build our 

main results on the algorithm developed by Bessen and Hunt (2007), as it has been commonly 

used, and we later discuss alternatives.  

Bessen and Hunt (2007) state: “Our concept of software patent involves a logic algorithm for 

processing data that is implemented via stored instructions; that is, the logic is not ‘hard-wired.’ 

These instructions could reside on a disk or other storage medium or they could be stored in 

‘firmware,’ that is, a read-only memory, as is typical of embedded software. But we want to 

exclude inventions that do not use software as part of the invention. For example, some patents 

reference off-the-shelf software used to determine key parameters of the invention; such uses do 

not make the patent a software patent.” 

The Bessen-Hunt algorithm requires that a utility patent description includes either the string 

“software” or the strings “computer” and “program”, but it must not contain “antigen” or 

“antigenic” or “chromatography”. The patent title must also not contain “chip” or 

“semiconductor” or “bus” or “circuit” or “circuitry”. The patent titles and grant year of three 

examples: Apparatus for identifying the type of devices coupled to a data processing system 

controller (4025906, 1977); Remotely initiated telemetry calling system (5327488, 1992); and 

Intelligent power cycling of a wireless modem (7308611, 2007). 

Software patents have exploded as a share of patenting. During 1975-1979, 2.5% of patents are 

software related, and this share is 49.9% since 2015. This tremendous growth is due to 

technological changes making software widespread and legal changes allowing more intellectual 

property protection.10  

 

The Spatial Transformation of U.S. Patenting 

Figure 1 shows annual rates of U.S. patenting for tech clusters and large population centers. 

Beyond these two groups, we aggregate the remaining 270 MSAs and prepare a fourth group for 

rural areas. The thatched portion of each series is software-related, and the solid portion is non-

software-related. Patents are dated by their application years, and the final period of 2015-2019 

is not shown due to incomplete series with respect to patent counts given future grants will 

occur. The share-based metrics that we focus on for most of this paper are less sensitive to this 

incomplete process. 

The rise of the six tech centers is very stark, and Figure 2 presents these data in terms of shares. 

The six tech centers account for 11.3% of patents from 1975-1979, but surge to 34.2% for 2015-

2019. San Francisco’s growth is from 4.6% to 18.4%. While other groups decline in share, the 

magnitudes and economic importance are different. The five largest population centers show the 

 
9 Bessen and Hunt, 2007; Graham and Vishnubhakat, 2013; Hall and MacGarvie, 2010; Layne-Farrar, 2005; Webb, 2019; Webb 

et al., 2018. 
10 Graham and Vishnubhakat, 2013; Hunt, 2010; Lerner and Seru, 2017. 
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largest drop, from 32.2% to 18.6%. By contrast, the aggregate decline for the other 270 cities, 

from 45.5% to 41.0%, is much less. Non-urban areas also decline from 11.0% to 6.1%.  

This reallocation is remarkable and has not been documented in prior work. Indeed, because the 

reallocation is among big cities, this movement of well more than 10% of patents is almost 

completely orthogonal to the standard elasticity measured across the full city size distribution. In 

a model of the form patents ≈ population^β, we estimate β=1.313 (0.037) for 1975-1979 and 

β=1.397 (0.047) for 2015-2019, like prior work. Yet, if we take the patenting that occurs in tech 

centers and the large population centers for 2015-2019 and re-apportion according to the relative 

patent shares that were present in 1975-1979, our estimate remains almost identical at β=1.397 

(0.042). In other words, the β coefficient is a big vs small city comparison and less sensitive to 

shifts among bigger cities.11  

By contrast, an Ellison-Glaeser (EG) metric (Ellison and Glaeser, 1997) calculates the sum of 

squared deviations between the patenting shares of MSAs compared to their population shares 

(with a normalization factor). The index is defined as: 

𝐸𝐺 =
∑ (𝑠𝑖 − 𝑝𝑖)

2
𝑖

1 −  ∑ 𝑝𝑖
2

𝑖

 

where 𝑠𝑖 is the share of patenting in city i and 𝑝𝑖 is the population share. The EG index is well 

suited for capturing reallocation of activity at the top end of the city size distribution. The EG 

index has a value of zero if innovation is spread out the same as population; positive values 

indicate concentration that differs from what one would expect based upon population.  

An EG index shows a much stronger response. From a starting value of 0.003 in 1975-1979, the 

EG increases ten-fold to 0.033 in 2015-2019. This increase is substantial, and if we instead re- 

re-apportion recent patenting within tech clusters and large population centers according to their 

relative rates in 1975-1979, our EG index only grows to 0.011. Thus, more than 70% of the rise 

in the EG index is due to movements among these larger cities. 

 

Software vs Non-Software Patenting 

Figures 1 and 2 suggest that software patenting is important for our understanding of spatial 

clustering and tech clusters. Software patents are a significant share of invention in all cities, but 

they account for well more than half of patents in tech clusters. Panel B in Figure 2 shows that 

the tech centers account for 45.4% of software patents after 2015, more than double their starting 

share of 20.2%. San Francisco again features prominently with 25.8% of software patents filed 

after 2015. This reallocation pulled from all regions. 

Panel B of Figure 2 shows that tech clusters are also important for non-software patents (solid 

lines), growing from 11.0% to 23.1% across the period. San Francisco is 11.1%. However, the 

share for the 270 MSAs grows slightly from 45.5% to 48.1%. The shift is instead from the five 

largest cities in 1980, which fall from 32.3% to 20.0%. These cities have remained mostly 

prosperous and often hold leading positions in important sectors (e.g., media in Los Angeles, 

finance in New York). But, while patents continue to increase in a super-linear relationship to 

city population, invention has become less coupled to the largest cities.12  

 
11 We exclude rural areas from this exercise and the upcoming Ellison-Glaeser calculations. 
12 Carlino et al., 2007; Fritsch and Wyrwich, 2020; Lerner et al., 2020; Moretti, 2012. 
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We next separate industrial and university assignees to study agglomeration behavior. Industrial 

firms have discretion over locations, such as the choice by IBM of how much of its R&D work 

to conduct in its Yorktown Heights and Albany, NY, labs versus those in Cambridge, MA and 

San Jose, CA. The creative destruction process also pits new entrants in tech centers against 

spatially distant incumbents. By contrast, universities are local anchor tenants across the country 

and mostly constrained from agglomerating.13 Research universities also rarely go out of 

business. 

Panel A of Figure 3 displays the EG metric for software and non-software patenting by industrial 

assignees. Software patenting is more concentrated than non-software patenting, and it has 

become extremely agglomerated among industrial assignees. As industrial firms account for 

most patents (85.7% after 201514), their concentration principally shapes the overall 

concentration of US patenting.  

Panel B of Figure 3 provides a stark contrast with university patenting. While software 

represents 31.5% of university patents after 2015, their spatial concentration has declined. 

Concentration levels among non-software patents have also declined.  

This recent role of universities in promoting the geographic stability of invention stands in 

contrast to how universities contributed disproportionately in the 1970s and 1980s for the 

emergence of software patents in tech centers, especially Boston and San Francisco. After this 

concentrated start, however, university contributions have been more widespread. The compound 

annual growth rate of university patenting from 1975 to 2015 is highest in the Other 270 Cities. 

 

The Spread of Software Patents 

In 2011, prominent venture investor Marc Andreessen famously proclaimed “software is eating 

the world” (Andreessen, 2011). Indeed, Figure 4 shows that software patenting has expanded 

beyond its traditional NBER technology categories of computers/communications and 

electrical/electronics. For example, software patents are 15.8% of patents in chemicals and 

drugs/medicines. In total for 2012, software patents represent more than a quarter of patents in 

24.6% of the 410 United States Patent Classes (USPCs) that are continually present from 1975 to 

2012, and more than two-thirds of classes have a greater than 5% software share by 2012.  

We can decompose software’s growth using the USPC patent class system (which ends in 2012) 

using the identity:  

Δ𝑆𝑊𝑡 = ∑𝑐𝑖,𝑡−1Δ𝑆𝑊𝑖,𝑡 + ∑(𝑆𝑊𝑖,𝑡−1 − 𝑆𝑊𝑡−1)Δ𝑐𝑖,𝑡 + ∑Δ𝑐𝑖,𝑡Δ𝑆𝑊𝑖,𝑡 

where Δ𝑆𝑊𝑡 is the change in the share of software patents between 2012 (t) and 1976 (t-1) and 

𝑐𝑖,𝑡 is USPC class i’s share of patents in year t. The first term captures the within-class effect 

(i.e., software becoming more prevalent as technology classes looked in 1976), the second 

captures a between-class effect (i.e., classes that were software intensive in 1976 growing more 

quickly), and the third term represents a cross component (i.e., classes that are becoming more 

software intensive also growing more quickly). 

 
13 Agrawal and Cockburn, 2003; Agrawal et al., 2014; Berkes and Nencka, 2019; Feldman, 2003; Hausman, 2012; Kantor and 

Whalley, 2014. 
14 During 1975-1979, approximately 70.2% of patents were made by industrial assignees, 1.1% by universities, 2.8% by 

government, and 26.0% unassigned. For 2015-2019, these shares were 85.7%, 4.2%, 0.7%, and 9.5%, respectively. Shares can 

total to more than 100% due to joint assignment of patents across institutions. 
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We calculate that 38.3% of the software patenting growth is from an increased software share 

holding the 1976 distribution of patent classes constant (the within term), 36.9% from an 

increase in the class shares holding constant the 1976 software intensity (the between term), and 

24.7% from faster growth of classes also correlating with faster software penetration (the cross 

term). These elements are visible in Figure 4 as well. 

 

Extensions   

We discuss here supporting evidence contained in the Online Supplemental Materials.  

We defined tech clusters with attention to non-patenting factors (e.g., venture investment). An 

alternative approach isolates absolute changes in realized patenting growth, which proves 

informative.15 The four MSAs that attracted the biggest absolute change in patent counts from 

1975 to 2020 are four of our tech clusters (in order): San Francisco, Seattle, Boston, and San 

Diego. The next three cities in terms of the biggest absolute change in patent counts over the 

period are Los Angeles, New York City, and Detroit, three of our five large 1980 population 

centers. Thus, these cities still attracted more patents, as hinted at in Figure 1, but they lost 

substantial relative grounds. Indeed, we can replicate our findings with just a focus on the four 

tech clusters identified with this approach. 

Additionally, there is a substantial stagnation and decline in the economic might of the Rust Belt 

during this period. While the major Rust Belt cities (such as Buffalo, Cleveland, and Pittsburgh) 

also lose a substantial share of patenting since the 1970s, this process is distinct. Among our 

large 1980 population centers, Detroit and, to a lesser extent, Chicago, feature among the Rust 

Belt, but they play a relatively small role in the trends we focus on. 

Turning to software definition, a first question focuses on the quality of software patents. 

Perhaps the explosion in patents in tech centers has been associated with deteriorations in their 

quality. Using techniques like forward citations16, we do not observe any declines in patent 

quality (software and non-software) for tech centers compared to other locations. 

The Bessen and Hunt (BH) technique uses keywords, and a prominent technique by Graham and 

Vishnubhakat (GV) defines software via patent classes. To evaluate the performance of these 

approaches, we randomly sampled 1600 patents from NBER Category 2 stratified across eight 

periods from 1976-79 to 2010-14. Within each period, we sampled 100 BH, 50 GV, and 50 other 

patents. One patent was sampled twice, and several could not be reliably assigned, resulting in a 

final sample of 1559 patents. We manually defined 788 (50.5%) of these as software patents. 

Both techniques performed reasonably well and had understandable challenges. BH identified 

91% of the patents that we classified as software (recall), but only 79% of BH identified patents 

were ones we identified as software (precision). The parsimonious set of keywords in the BH 

algorithm performs well in identifying likely software patents, and the algorithm’s weakness are 

the false positives that evade the few negatively selected terms.   

The GV algorithm identified 98% of the patents that we classified as software (recall), but only 

68% of GV patents identified as software were manually classified as software (precision). The 

 
15 We thank a referee for this suggestion. In the Online Supplemental Materials, we also discuss the small scope for expanding 

out the tech cluster definition to include more cities like Raleigh-Durham and Minneapolis-St. Paul.  
16 Harhoff et al., 1999; Hall et al., 2005. 



8 

 

patent class approach achieves a lot by identifying the classes with the most software patents, 

although 98% will overstate performance if extending sample beyond NBER Category 2. GV’s 

straightforward challenge is that these classes are not exclusive to software patents. 

The Online Supplemental Materials show that performance of BH and GV algorithms is best 

after 1995, increasing on both precision and recall from the 1970s until that point.  

Using these 1559 hand-coded patents, we developed a third approach by training a machine 

learning algorithm. Conceptually, this is an extension of both techniques, giving up the 

transparency of BH’s keywords for a computational approach that particularly bolsters negative 

selection. The training on many patents in GV classes also benefits from the technology 

perspectives developed during the examination process. The algorithm is stingier in assignment 

(88% recall) but has fewer false positives (85% precision). 

Figure 5 shows our key findings with the three techniques. We further incorporate a definition of 

AI-related patents developed by Giczy et al. (2021). The spatial reallocation of patents that this 

paper emphasizes are robust across these definitions. There is important scope for further honing 

patent technology divisions with computation techniques, with this robustness check perhaps 

being a seed.  

 

Future Research 

This note has documented a remarkable spatial transformation of patenting due to 1) the rise of 

software patents, which are very concentrated in tech centers, and 2) the reallocation of non-

software patents to tech centers from a few big population centers.  

Future research should explore why software patenting rose so much in its spatial concentration. 

Its higher initial concentration than patenting in traditional technologies (e.g., chemicals, 

agriculture) is not too surprising, but the subsequent growth in agglomeration deserves attention. 

Candidate ideas include growing technology complexity (Sorenson et al., 2006; Balland et al., 

2020), greater need to participate in tacit knowledge about technology and market trends to be 

competitive, greater role of venture investment in new software startups, and greater desire for 

top talent in these fields to be in certain cities. 

How this concentration happened is also interesting. In the Online Supplemental Materials, we 

provide preliminary evidence that software patenting growth in tech centers is facilitated through 

new businesses coming to the forefront, such as Apple and Microsoft, and less due to shifts in 

locations of incumbents, such as IBM. We also quantify how the increased US reliance on 

immigrant inventors17 aided the speed of the spatial transition. These two early cuts suggest that 

the dynamism of the U.S. innovation system, in terms of new firm formation and access to global 

talent, shaped the spatial transformation.   

Hidden behind these trends is an important stability in the spatial distribution of non-software 

patents. Indeed, to some degree, the spatial transformation of patenting may be ending, except 

for a mechanical effect, should software grow as a share of patenting.  Figure 1’s trends taper off 

over the last two decades, and the underlying patenting shares of cities are becoming calcified.18 

 
17 Bernstein et al., 2019; Hunt and Gauthier-Loiselle, 2010; Kerr and Lincoln, 2010; Peri et al., 2015; Stephan and Levin, 2001. 
18 To illustrate, a vector of non-software patenting shares for cities in 2015-2019 displays a 0.970 correlation to a similar vector 

for 1995-1999, whereas the correlation between the vectors for 1995-1999 and 1975-1979 is lower at 0.877. 
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Despite software’s growth across technologies, non-traditional sectors have yet to experience a 

substantial agglomeration around tech clusters like what transpired in 

computers/communications and electrical/electronics.  

The pandemic raises many ongoing debates about future spatial concentration and tech clusters. 

Yet, even without the pandemic’s emergence, this paper shows that the underlying stability of 

non-software patenting is likely to continue and ensure a broader spatial distribution of 

innovation. Regional advantages for being a premier location for invention will likely remain the 

subject of intense local competition19, but these spatial dynamics suggest the remarkable recent 

increases in the concentration of local invention are unlikely to segue into a winner-takes-all 

race. 
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Materials and Methods 

1. Additional Information on Data 

We utilize the patent records created and held by the United States Patent and Trademark Office (USPTO). 

Our data source is the PatentsView.org web API. Established in 2012 by the Obama administration, 

PatentsView provides a standardized database of patent records that “longitudinally links inventors, their 

organizations, locations, and overall patenting activity.” (source: https://www.patentsview.org/web/). 

PatentsView contains all patent records starting with patents granted in 1976, and our download from 

spring 2021 contains records through December 31, 2020. This paper considers patent records with 

application dates from the start of 1975 through the end of 2019. The use of application dates for patents 

is better suited for the timing of innovation, as the USPTO’s review procedure can take multiple years and 

varies across fields. 

We downloaded the following fields (not all of which have employed in our study): 

• Patent Data: Patent Number; Patent Date (Grant Date); Patent Abstract; Patent Kind (Patent Kind 

code, e.g. B1, B2, S, P1); Patent Type (Functional category of Patent, e.g. Utility, Design, Plant); 

Patent Title; Number of Claims in Patent; Application Date of Patent; List of Patent Numbers for 

Cited Patents; List of Patent Numbers for Citing Patents 

o United States Patent Classification Codes (USPC): USPC Mainclass ID; USPC Subclass ID; 

Sequence (Order Priority of USPC code) 

o NBER Category Codes: NBER Category ID; NBER Subcategory ID 

o Cooperative Patent Classification (CPC) Codes: CPC Section ID; CPC Subsection ID; CPC 

Group ID; CPC Subgroup ID; Sequence (Order Priority of CPC code) 

• Inventor Data: Inventor ID (assigned by PatentsView); First Name; Last Name; City; State; State 

FIPs; County FIPs; Country; Sequence (Order Priority of Inventor on Patent) 

• Assignee Data: Assignee ID (assigned by PatentsView); Organization Name; First Name; Last 

Name; City; State; State FIPs; County FIPs; Country; Assignee Type (discussed below); Sequence 

(Order Priority of Assignee) 

Notes about requested fields and their preparation: 

• The USPC system was retired at the beginning of 2015 in favor of the CPC system, jointly 

developed by the USPTO and the European Patent Office to code Utility patents. The USPC system 

remains in place for other patent types, e.g. Design and Plant. For statistics in the paper, we use 

the older USPC system (e.g., level of software penetration into non-traditional patent classes) 

since it covered the full duration of our sample period excepting the last few years.  

• We also use the NBER Category system that aggregates the USPC patent classes, as initially started 

by Hall et al. (2001). To extend the NBER system to the end of our data, we developed a 

probabilistic mapping of CPC codes to NBER categories and subcategories based upon the 

transition period during which the USPTO assigned both CPC and USPC codes to granted patents.  

• The Assignee Type refers to the organizational character of the assignee.  

https://www.patentsview.org/web/


o PatentsView provides the following classifications for Assignee Type: US Company or 

Corporation; Foreign Company or Corporation; US Individual; Foreign Individual; US 

Government; Foreign Government; Country Government; and State Government (US). 

We group these categories into “Industrial”, “Government”, and “Individual”. 

▪ Note that an Individual assignee indicates a person has a claim to the property 

rights of the patent. This is separate from the inventor designations below. Every 

patent has listed inventors, but the assignment of patents to individuals is rare. 

Most inventors working for a university, corporation, or government have agreed 

to assign the rights of an invention over to their employer. 

o We also construct a “University” classification to represent academic and research 

institutions using automated and manual procedures: 

▪ If an assignee’s name includes the strings “university”, “college”, “institute of 

technology”, “research foundation”, “research institute”, or “polytechnic 

institute”, we classify it as a “University” patent. We verified the accuracy on the 

classification for the top 2000 patent assignees by number of patents. 

▪ During this manual review, we also identified several academic organizations that 

are best classified as a University but did not have the above the naming 

conventions (e.g. Dana-Farber Cancer Institute, Inc.; Georgia Tech Research 

Corporation). 

▪ We remove the PatentsView-based designation (e.g. Industrial) when classifying 

an assignee as a university. As such, the assignee types are mutually exclusive and 

collectively exhaustive, but patents can have multiple assignees with different 

assignee types. 

• PatentsView provides geographic data identifying country and city, in addition to state and county 

codes for US-based inventors and assignees. For most records, we map the provided county FIPs 

codes into Metropolitan Statistical Areas (MSA). The county code is missing in a small share of US 

cases, and, where possible, we use the city and state to repair the missing code.   

o We require patents to have at least one inventor located in the United States, and we do 

not further consider foreign inventors in our analysis. 

o Patents can contain multiple inventors in different locations. If there is a unique most 

common MSA, we use that as the spatial location of the patent. We use the highest rank 

inventor’s location when a tie exists. 

• To identify software patents, our main algorithm follows Bessen and Hunt (2007). Section 3 of this 

Supplement discuss additional procedures for identifying software patents in detail. The Bessen 

and Hunt (2007) approach that underlies most of our results: 

o Patent must be a Utility Patent but not a Reissued Patent. We screen via limiting patents 

to Patent Kinds “A”, “B1”, and “B2”. 

o The patent description must include either the string “software” or the strings 

“computer” and “program”, but must not contain “antigen” or “antigenic” or 

“chromatography”. 

o The patent title must not contain “chip” or “semiconductor” or “bus” or “circuit” or 

“circuitry”. 



• To identify inventor ethnicity, we follow a procedure that utilizes the names of inventors and 

ethnic name algorithms: e.g., mapping the surnames “Patel” and “Gupta” to the Indian ethnicity 

and those with “Rodriguez” and “Hernandez” to the Hispanic ethnicity. The algorithms combine 

common name conventions with ethnic name databases first developed for marketing purposes.  

o Ethnicity is assigned at the inventor level and then aggregated to the patent level by 

averaging over inventors, thus giving equal weight to each patent in aggregate statistics.  

o The procedure is laid out in detail in these papers: 

▪ Kerr, W. & W. Lincoln. (2010). The Supply Side of Innovation: H-1B Visa Reforms 

and U.S. Ethnic Invention. Journal of Labor Economics 28(3), 473–508. 

▪ Kerr, W. (2007). The Ethnic Composition of U.S. Inventors. Harvard Business 

School Working Paper 08-006.  

Table S1 documents several measures for cities using data from around 2015-2018 that we employ to 

define a tech cluster. (Table S1 and the next three paragraphs are taken from Kerr and Robert-Nicoud 

(2020) with small modification.) The table contains the top 15 MSAs in terms of venture investment. This 

table speaks best to the scale of tech activity across cities and, through a comparison to the population 

share in Column 7, the implied density of tech efforts. The top 15 MSAs as ranked by venture capital 

investment hold 94% of venture capital activity in Column 1 and 57% of patenting in Column 2, compared 

to just 31% of population. If we instead rank on patents, Detroit, Portland, Dallas-Ft. Worth, and Houston 

feature in the 15 largest centers, with Washington, Miami, Atlanta, and Raleigh-Durham dropping out. 

Either way, patenting and especially venture capital investment are under-represented outside of leading 

tech centers.  

Columns 3 and 4 of Table S1 next provide two measures of local employment in leading industries for R&D 

investment as measured by National Science Foundation (2017). We first show a restrictive definition, 

where we identify college-educated workers earning more than $50,000 (short-hand labelled as “high-

skilled”) and working in a top 10 R&D-intensive sector—11.7% of such individuals work in the San 

Francisco area, compared to 5.9% of them being outside metropolitan areas. The second measure 

broadens to any full-time employee (no education or salary restriction) among the 20 most R&D-intensive 

sectors. Column 5 similarly looks at high-skilled workers in occupations in computer- and digital-

connected work, and Column 6 expands to all full-time workers in a broader class of STEM-connected 

occupations.   

This table shows the potential and challenges of defining tech clusters using the scale and density of local 

tech activity. Six cities appear to qualify under any aggregation scheme: San Francisco, Boston, Seattle, 

San Diego, Denver, and Austin all rank among top 15 locations for venture capital and for patents (scale) 

and hold shares for venture capital, patents, employment in R&D-intensive sectors, and employment in 

digital-connected occupations that exceed their population shares (density). These six cities are our core 

group for analysis. Washington, Minneapolis-St. Paul, and Raleigh-Durham would join the list if relaxing 

the expectation that that share of venture investment exceed population share (which is hard due to the 

very high concentration in San Francisco). These three borderline cases grow from 3.8% to 5.2% of US 

patents during our sample period, and thus their inclusion would be consistent with our results but also 

not greatly influence them. 



New York and Los Angeles are more ambiguous: they hold large venture capital markets, but their patents 

and employment shares in key industries and fields are somewhat less than their population shares. They 

account for 7% of the patent share decline. At the other end of the city size distribution, it is hard to be a 

robust-yet-small tech cluster on both venture investment and patent metrics due to the concentration of 

innovation. If one only requires that a tech cluster achieve a venture capital and patent share that is 1.5x 

the local population share, the one new city would be Provo, UT, with Denver dropping out.   

The reallocation that we emphasize in this paper is separate from the declines in industrial activity for the 

“Rust Belt” of America. As a representative calculation, the collective share of patenting in Buffalo NY, 

Cincinnati OH, Cleveland OH, Columbus OH, Indianapolis IN, Milwaukee WI, Pittsburgh PA, and St. Louis 

MO declined from 9.3% in 1975-1984 to 4.4% after 2015. Detroit is among the five major population 

centers in 1980 but does not play a significant role its decline as its patenting share grows slightly during 

the period. The dynamic is also not connected to a broad mean reversion phenomenon from 1980 stature: 

exactly half of the 20 largest cities in 1980 grow their patenting share and half experience declines. 

 

2. Supporting Data Analysis and Statistical Methods 

Table S2 tabulates the data used in Figure 2 of the main text.  

We use two common measures to capture the agglomeration of innovative activity as documented in our 

patent dataset: the Herfindahl-Hirschman Index (HHI) and the Ellison-Glaeser (EG) Index. We apply these 

two metrics at the Metropolitan Statistical Area (MSA) level. 

Let si represent the share of patents in MSA i: 

𝑠𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 𝑖𝑛 𝑀𝑆𝐴𝑖

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑒𝑛𝑡𝑠
 

The HHI is defined as the sum of the squared shares of patenting held by MSAs: 

𝐻𝐻𝐼 = ∑ 𝑠𝑖
2

𝑖

 

The EG (Ellison and Glaeser 1997) index incorporates more information than the HHI by including the 

underlying population share of the geographic unit as a benchmark against which to compare innovation 

shares. Define the MSA population share as pi.  

𝑝𝑖 =
𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑆𝐴𝑖

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 

Then we define the EG index as follows: 

𝐸𝐺𝐼 =
∑ (𝑠𝑖 − 𝑝𝑖)2

𝑖

1 −  ∑ 𝑝𝑖
2

𝑖

 



The EG metric takes a value of zero if innovation is spread out the same as population. Positive values 

indicate concentration that differs from what one would expect based upon population. This metric 

captures better than an HHI metric the reallocation of patenting among large cities. 

Table S3 documents the patent counts, software share, and HHI and EG concentration levels for all patents 

and broken out into three major groups based upon the NBER categories: Computers and 

Communications together with Electrical and Electronics, Chemical together with Drugs and Medical, and 

Mechanical together with Miscellaneous/Others. This table shows the growth in software patenting in 

multiple technology areas and the rising EG values for software. It is noticeable that concentration levels 

are not rising substantially outside of software categories. 

Figure S1 is a companion figure to Figure 4 in the main text. It shows the absolute patent counts used to 

generate the patent shares made up by each combination of NBER category and software relevance. This 

figure does not include the final period of 2015-2019 applications as the full level of patenting is not well 

established for that period yet due to the grants still in progress; Figure 4’s composition is better assessed.  

Figure S2 displays a correlation plot that models the stability of the spatial distribution of patenting across 

MSAs for software and non-software patents. High correlations, indicated by dark shading, measure that 

there has been very little change from one period to the other in patenting shares. This figure highlights 

the significant shift through the 1990s from an earlier spatial stability to the current one. This aligns with 

the significant shift in patent from the 1980 population centers into the tech clusters, with less subsequent 

movement once most of the transition occurred. The spatial distribution of software shows a stronger 

shift than non-software patenting. 

Table S4 repeats Table S3 with breakouts by types of patent assignee: Industrial, University, Government, 

or Unassigned. Industrial patents are the majority and grow to be 85.7% of patents during 2015-2019. 

University patents are also a growing share, while government and unassigned patents are declining in 

absolute count and share. The EG values by assignee type from this table are used in Figure 3. 

Tables S5a-S5b compare metrics of patent quality for tech clusters versus elsewhere for software and 

non-software patents, respectively. The first three metrics are directly from the patent data: number of 

claims, number of backward citations, and number of forward citations. The fourth metric recalculates 

forward citations excluding citations from the same assignee, and have also confirmed similar results 

when excluding citations from the same MSA as any inventor on the focal patent. (Forward looking 

measures have natural attrition in later periods as a shorter time horizon is used in their calculations.)  

We also compute two metrics based upon Hall et al. (2001): Patent Originality and Patent Generality. 

Originality measures how novel an innovation is through the technological diversity of the patents cited. 

Let sij be the percentage of citations by patent i to patents in technology j; the originality metric is:  

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝑖 = 1 −  ∑ 𝑠𝑖𝑗
2

𝑛𝑗

𝑗

 



Generality measures how broad future use of a patent is based on the technological diversity of the future 

patents citing it. Let sij be the percentage of forward citations for patent i from patents in technology j. 

Then we define the Generality of patent i as follows. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑡𝑦𝑖 = 1 −  ∑ 𝑠𝑖𝑗
2

𝑛𝑗

𝑗

 

In examining Tables S5a-S5b, there is no systematic evidence of patent quality being lower in tech clusters 

as they have come to represent more of US patenting. 

Figure S3 shows the distribution of patents by assignee cohort in our four groups. We identify the first 

year that an assignee applies for a patent and keep that cohort assignment throughout the sample period. 

Technology clusters show a weaker reliance on older incumbent assignees than other cities. In addition, 

the assignees that emerged in the late 1990s and early 2000s show a large share of patenting in these 

locations compared to other locations. 

Immigration to the United States increased substantially since 1975 for science and engineering, and these 

workers display greater spatial mobility for opportunities (see references in main text). Using ethnic name-

matching algorithms, we group inventors into those of Anglo-Saxon and European ethnicities vs ethnic 

inventors showing Chinese, Hispanic, Indian, Japanese, Korean, Russian, and Vietnamese names. We 

restrict the next analyses to those inventors present in US cities, excluding rural areas. 

Figure S4 displays the change in patent share among ethnic inventors over time. Anglo-Saxon and 

European ethnicity inventors decline from 90.6% of invention in 1975 to 66.0% for 2019. The growth of 

ethnic invention to one-third of U.S. patenting is due in large part to Chinese and Indian invention surging 

from collectively 3.4% of 1975 patenting to 22.3% for 2019. Tables S6a-S6c further catalogue the ethnic 

composition of inventors by period and for software vs. non-software. Ethnic inventors are more 

prevalent in fields Computers & Communications and Electrical & Electronic. Indian inventors are 

especially prominent for software patenting.  

Figure S5 documents that this shift in inventor composition aided the rapid spatial reallocation of 

invention. Ethnic invention has been particularly important for the reallocation of patenting from the 

largest cities to tech clusters.  

The section closes with two analyses that do not utilize the tech cluster definition. Table S7 presents 

trends based dividing cities by the four with the biggest absolute change in patent counts from 1975 to 

2020 (San Francisco, Seattle, Boston, and San Diego) compared to the next three (Los Angeles, New York 

City, and Detroit). Our trends carry through with this approach. Measures like Ellison and Glaeser 

concentration indices are not affected as they are calculated across the full city distribution. 

Table S8 returns to the super-linear model patents ≈ population^β described in the main text. We 

estimate β=1.313 (0.037) for 1975-1979 and β=1.397 (0.047) for 2015-2019, like prior work. The first 

column of Table S7 repeats for interim years. The second and third columns show break outs for software 

and non-software. The final column shows the values when we reallocate patenting that occurs in tech 



centers and the large population centers for a period according to the relative patent shares that were 

present in 1975-1979. 

 

3. Variations for Defining Software Patents 

Our paper models the substantial rise in the geographic concentration of patenting activity for the United 

States, and one of its core themes is that this is due to the increasing geographic concentration of software 

patents combined with the increasingly large share of software patents as a share of patents overall.  

This section reviews in greater detail approaches for defining software patents to show the robustness of 

our spatial transformation under alternative algorithms.  

Our main classification of “software patent” comes from Bessen and Hunt (2007, BH). As noted earlier, 

the BH algorithm requires the utility patent description include either the string “software” or the strings 

“computer” and “program”, but must not contain “antigen” or “antigenic” or “chromatography”. In 

addition, the patent title must not contain “chip” or “semiconductor” or “bus” or “circuit” or “circuitry”. 

In short, BH is a string-matching algorithm that looks for key words to select and negatively select patents.  

BH describe their motivation and process as follows: “Griliches (1990) reviews the two main techniques 

that researchers have used to assign patents to an industry or technology field: (1) using the patent 

classification system developed by the patent office; and (2) reading and classifying individual patents. In 

this paper, we use a modification of the second technique. We began by reading a random sample of 

patents, classifying them according to our definition of software, and identifying some common features 

of these patents. We used these to construct a search algorithm to identify patents that met our criteria.”  

In their design of their algorithm, BH state: “Our concept of software patent involves a logic algorithm for 

processing data that is implemented via stored instructions; that is, the logic is not ‘hard-wired.’ These 

instructions could reside on a disk or other storage medium or they could be stored in ‘firmware,’ that is, 

a read-only memory, as is typical of embedded software. But we want to exclude inventions that do not 

use software as part of the invention. For example, some patents reference off-the-shelf software used 

to determine key parameters of the invention; such uses do not make the patent a software patent.”  

The BH approach has several strengths. Notably, it is straightforward to understand and can be applied to 

all patents. A potential weakness, which we examine below, is the propensity to include non-software 

patents that evade the negative selection terms.   

BH evaluate their algorithm on a sample of 400 randomly selected patents in the period 1996-98. BH find 

that 78% of patents which were identified as software by manual examination were captured by the 

algorithm, while 84% of patents identified by the algorithm were actually software patents.  

Graham and Vishnubhakat (2013, GV) take the other route noted by Griliches (1990) by defining software 

patents through a selected set of USPC classes. GV work builds upon a similar approach taken by Graham 



and Mowery (2003, GM).1 The GV approach again benefits from being straightforward to understand and 

implement, and it captures insights from patent examiners during the classification process. A potential 

weakness is that the chosen patent classes are not exclusive to software, allowing false positives, and that 

some patents will show up in other classes too.2 

Layne-Farrar (2005) explores how well BH and the earlier GM approaches identified software patents. 

Layne-Farrar attempts to recreate the patent datasets generated by BH and GM for investigation. She 

then samples 500 BH and 320 GM patents, asking software experts to answer the question, “Is the patent 

clearly for a non-software innovation?” She reports that 6.3% of GM and 52.4% of BH patents were 

rejected by experts. Layne-Farrar suggests the high rejection rate for BH is due to the algorithm picking 

up instances that “mentioned software only in passing.” The most common types of these patents related 

to “sensors/monitors, machinery, and transportation”, and these patents “typically did not qualify as 

software because the software control portion of the sensor/machine generally used standard algorithms 

and methods (“off-the-shelf” software in Bessen and Hunt’s parlance), with the novel part of the invention 

entirely captured in the mechanical portion.” For some purposes, this expert scrutiny might be too strict. 

We also investigate the performance of the BH and GV algorithms with our own sample of 1600 patents 

from NBER Category 2: Computers & Communications. We focus on this category to center the exercise 

(including the upcoming machine learning algorithm) in the NBER category where both techniques place 

 
1 Graham S. & D. Mowery. (2003). Intellectual Property Protection in the U.S. Software Industry. In Patents in the 
Knowledge-Based Economy (W. Cohen & S. Merrill, eds.). 
2 The class-subclass pairs are as follows. Class 29: Subclasses 026000-065000, 560000-566400, 650000- 650000; Class 
73: Subclasses 455000-487000, 570000-669000; Class 84: Subclasses 600000-746000; Class 235; Class 236; Class 
244: Subclasses 003100-003300, 014000; Class 250; Class 257; Class 307; Class 315; Class 318: Subclasses 700000-
832000; Class 320; Class 323; Class 324; Class 326; Class 327; Class 330; Class 331; Class 340: Subclasses 850000-
870440; Class 340: Subclasses 002100-010600, 825000-825980; Class 340: Subclasses 286010-693900, 901000-
999000; Class 340: Subclasses 815400-815730, 815740- 815920; Class 341: Subclasses 020000-035000, 173000-
192000; Class 341: Subclasses 001000-017000, 050000-172000, 200000-899000; Class 342: Subclasses 001000-
465000; Class 343; Class 345: Subclasses 001100-215000, 418000-428000, 440000-472300, 473000-475000, 
501000-517000, 518000-689000, 690000-698000, 699000; Class 348; Class 353; Class 355; Class 356: Subclasses 
002000-003000, 004090- 004100, 006000-027000, 030000-139000, 140000, 142000-151000, 153000-900000; Class 
358: Subclasses 001100-003320, 260000-517000, 518000-540000; Class 359: Subclasses 326000-332000; Class 361: 
Subclasses 001000-270000, 437000; Class 363; Class 365; Class 367: Subclasses 001000-008000, 009000, 010000-
013000, 014000-080000, 081000-085000, 086000, 087000-092000, 093000-094000, 095000- 191000, 197000-
199000, 900000-910000, 911000-912000; Class 368; Class 369: Subclasses 001000-032000, 043000-054000, 
058000-062000, 064000, 069000-070000, 083000-095000, 097000, 100000-126000, 128000-152000, 174000-
175000, 275100-276000, 300000; Class 370; Class 374; Class 375; Class 378: Subclasses 004000-020000, 210000-
901000; Class 379: Subclasses 067100-088280, 188000-337000; Class 380; Class 381; Class 382; Class 385; Class 386; 
Class 396: Subclasses 028000, 048000-304000, 310000- 321000, 373000-386000, 406000-410000, 421000, 449000-
501000, 505000-510000, 529000-533000, 563000; Class 398; Class 438: Subclasses 009000, 689000-698000, 
704000-757000; Class 455; Class 463: Subclasses 001000-047000, 048000-069000; Class 473: Subclasses 065000, 
070000, 136000, 140000- 141000, 151000-156000, 407000; Class 482: Subclasses 001000-009000, 051000-053000, 
057000-065000, 069000-070000, 112000-113000; Class 600: Subclasses 001000-015000, 019000-041000, 300000-
406000, 407000-480000, 481000-507000, 529000-595000, 920000-921000; Class 606: Subclasses 001000-052000, 
163000-164000; Class 623: Subclasses 024000-026000; Class 700; Class 701; Class 702; Class 703: Subclasses 001000-
010000, 011000-012000, 013000-999000; Class 704; Class 705; Class 706; Class 707; Class 708; Class 709; Class 710; 
Class 711; Class 712; Class 713; Class 714: Subclasses 001000-100000, 699000-824000; Class 715; Class 716; Class 
717; Class 718; Class 719; Class 725; Class 726; Class 901; Class 902. 



their most patents. We generate a stratified sample of patents evenly split over eight time periods: 1976-

79, 1980-84, … , 2010-14. This stratification ensures equal representation of technologies from different 

periods and avoided oversampling later patent technologies due to increasing numbers of patents over 

time. Within each strata, we randomly selected 100 BH patents, 50 GV patents, and 50 patents that 

neither algorithm had selected as software related. We sampled more BH patents given that it was the 

primary software definition used in the paper.  

We manually evaluated the patent title, abstract, and description of these 1600 patents to classify 

whether we deemed them software related. We followed the BH conceptual model of seeking to identify 

software patents as separate from hard-wired instructions and to not simply capture “off-the-shelf” 

software use. One patent was sampled twice, and some patents could not be confidently classified as 

software or non-software. These patents were omitted from the sample, resulting in a final sample size 

of 1559 unique patents. During manual review and classification, 788 patents were classified as software 

and 771 patents were classified as non-software.  

Table S9 shows diagnostics on software definitions. The BH algorithm identifies 91% of the patents which 

were manually classified as software (recall), but only 79% of patents identified as software by the 

algorithm were manually classified as software (precision). Our sample selection favored patents that are 

more likely to be classified as software by BH algorithm, so this performance level may be an upper bound.  

Compared to their stated goal and the parsimonious keyword structure, we conclude BH does a 

reasonably good job. The algorithm is liable to over-select software patents, which is what we see in our 

manual review. Patent 5252970: Ergonomic multi-axis controller is an example of a BH software patent 

that we deemed in error. The abstract reads: 

“A manually operated ergonomic multi-axis controller such as those used for controlling cursor position 

along x and y axes and for entering x, y and/or z coordinate information into a computer or the like. The 

housing includes a distal end portion angled with respect to the upper surface and the base of the housing 

to conform to the natural curvature of the human hand. The primary actuator, such as a trackball or 

joystick is positioned at the distal end portion. Secondary actuators are located along the sides of the 

housing.” 

This patent relates to a hardware invention that may have software elements for communicating with the 

computer system to which it serves as an input device, but this software is not the focus of the invention. 

The BH algorithm responds to the statement “types of controllers described below, are often used in 

conjunction with computer graphics software” in the patent specification to classify it as software.  

In our manual review, we adjust BH conceptual model to also focus more generally on patents where the 

invention relies on using some type of computation or logical instructions to be run by a central processing 

unit (CPU). Consider for instance Patent 4238746: Adaptive line enhancer. The abstract reads: 

“An input signal X(j) is fed directly to the positive port of a summing function and is simultaneously fed 

through a parallel channel in which it is delayed, and passed through an adaptive linear transversal filter, 

the output being then subtracted from the instantaneous input signal X(j). The difference, X(j)-Y(j), 

between these two signals is the error signal .epsilon.(j). .epsilon.(j) is multiplied by a gain .mu. and fed 



back to the adaptive filter to readjust the weights of the filter. The weights of the filter are readjusted 

until .epsilon.(j) is minimized according to the recursive algorithm: ##EQU1## where the arrow above a 

term indicates that the term is a signal vector. Thus, when the means square error is minimized, 

W.sub.(j+1) =W.sub.(j), and the filter is stabilized.” 

The BH algorithm does not classify this as a software patent, but we do based upon the need to implement 

the invention into software code to complete the computations outlined.   

Table S9 also reports diagnostics on the GV algorithm. GV’s recall rate is 98% and its precision is 68%. As 

with BH, we emphasize these results are specifically for NBER Category 2 patents and thus the recall rate 

is likely to be lower when applied across the full patent database.  

Patent 4238746: Adaptive line enhancer discussed above is an example of a patent that we deem software 

but is not classified as software by the GV algorithm because its USPC classification, 333/166 Time Domain 

Filters, is not used as a software class by the algorithm. Patent 6827508: Optical fiber fusion system is, 

however, classified as a software patent via its USPC class 385/96 Fusion Splicing. Its abstract reads: 

“An automated fusion system includes a draw assembly for holding optical fibers and for applying a 

tension to the fibers. The fibers are held substantially parallel to each other in the draw assembly. The 

system also includes a removal station that etches or strips buffer material from the fibers after the fibers 

have been placed in the draw assembly, and a heater or torch assembly for heating the fibers as the draw 

assembly applies a tension to the fibers in a manner that causes the fibers to fuse together to form a 

coupler region. In addition, a packaging station is used to secure a substrate to the coupler region of the 

fibers to form the optical coupler.” This patent is about a production process for optical fibers, rather than 

anything to do with software invention. 

Table S9 shows that performance of BH and GV algorithms is best after 1995, increasing on both precision 

and recall from the 1970s until that point. The BH and GV algorithms show a 0.515 correlation. 

Table S10a shows our concentration levels using the GV technique. The GV approach is based upon USPC 

classes and cannot be reliably extended to the last period after the USPC system ends. The GV approach 

shows a higher level of initial software patenting in Table S10a, with very similar trend growth. The key 

findings for our four city groupings and the EG concentration metric are almost identical in Table S11a. 

This consistency to the outcomes with the BH algorithm is very reassuring. 

Using these 1559 hand-coded patents, we also developed a third approach by training a machine learning 

(ML) algorithm. Conceptually, this is an extension of both techniques, giving up the transparency of BH’s 

keywords for a computational approach that particularly bolsters negative selection. The training on many 

patents in GV classes also benefits from perspectives developed during the examination process. We used 

80% of the sample to train the algorithm and the remaining 20% for out-of-sample testing. The ML 

algorithm is stingier in assignment (88% recall) but has fewer false positives (85% precision) on the out-

of-sample test. ML patents show a 0.584 and 0.444 correlation to the BH and GV definitions, respectively.3   

 
3 Our procedure uses Natural Language Processing methods. We use a transformer model named Bidirectional 
Encoder Representations from Transformers (BERT, https://arxiv.org/abs/1810.04805) provided by the Hugging 



Table S10b shows our concentration levels using the ML technique. The key findings for our four city 

groupings and the EG concentration metric are again very similar in Table S11b.  

Following common practice, we assigned a patent to be software related in the ML procedure if the 

probability was greater than 50%. 57.2% of the sample had a probability of 10% or less, 17.5% of the 

sample had a probability between 10% and 80%, and 25.3% of the sample had a probability of more than 

80%. We observe even higher clustering (a 2015-2019 EG value of 0.071) when using the latter group only. 

Finally, we incorporated the recently released work of Giczy et al. (2021) for designating AI-related 

patents. In their Table A1, they report Precision, Recall, and F1 as 0.405, 0.375, and 0.390, respectively. 

Their technique assigns AI-related to 12.7% of patents in 1975-2019 sample; by comparison, BH estimate 

29.4% are software related across the same period. Most of their AI-related patents are also selected by 

the software definitions: 84.1%, 92.7%, and 94.8% are also BH, GV, and ML patents, respectively. Table 

10c and Table S11b show concentration levels are even higher among AI-related patents. 

We close by emphasizing that the purpose of these comparisons and our machine learning exercise was 

to demonstrate robustness to the core work developed in this paper using the BH algorithms. We hope in 

future work to continue using these techniques more broadly over patent technologies.  

 
Face (https://huggingface.co) community organization. The BERT model is made up of a complex deep neural 
network architecture, and Hugging Face provides pre-trained BERT models that can be fine-tuned through transfer 
learning (i.e., the process of training models on one corpus of documents and tuning it to a similar but different 
corpus of documents). For our use case, we make use of the SciBERT (https://arxiv.org/abs/1903.10676) model 
which is a BERT model trained to a corpus of scientific documents.   

Step 1: Adapt the SciBERT Language model to the patent corpus. We want to train the SciBERT model to the patent 
corpus used for classification. We extract patents used to generate our sample, i.e. patents in NBER Category 2 and 
with grant years 1976-2014. We then randomly sample 1% of patents from this group for unsupervised training of 
the language model. This group is split into an 80-20 train-validation split for training the language model. We use a 
masked language model for training, where the train set is used by the model for unsupervised learning of the model 
weights and the validation set is used to evaluate how well the model is learning the weights through a prediction 
task for next token prediction with a 15% probability of token masking across the sequence.  

Step 2: Train a classification layer added to the end of the adapted SciBERT model. With the masked language model 
training completed, we use the Hugging Face AutoModelForSequenceClassification class to load the trained model 
and append a classification head on top of it for use in our classification task. We split our manually generated 
supervised dataset of 1559 patents in an 80-20 train-test split for the classification task. We make use of active 
learning in the training process. Specifically, we split our train dataset into 50% subtrain and 50% validation, then 
we iteratively add the most impactful patents from the validation dataset back to the subtrain dataset with each 
training cycle. We determine the “most impactful patents” by evaluating the patents for which the model got the 
prediction wrong and where it was most erroneously confident in the prediction. For instance, an impactful patent 
would be one which has a ground truth of software, but the model predicted non-software with a probability of non-
software more than 75%. The expanded subtrain dataset is then used for training in the next cycle of training. Each 
cycle of training consists of 3 epochs, and we use 3 cycles of active learning, moving at most 125 patents each cycle, 
for a total of 4 training cycles. In all cycles and epochs, we use the held-out test set to evaluate performance. 



Fig. S1: US patents by technology category and software-related

Notes: Figure presents the average annualized U.S.-based patent grants by the six major NBER categories and whether software-related. The 
thatched portion of each series is software-related, the solid portion is non-software-related. The final period of 2015-2019 is not shown due 
to incomplete series.
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Fig. S2: Correlation plot of MSA patent shares across periods

Notes: Figure presents the correlation of the distribution of patenting activity from period to period in the sample and decomposes this 
patenting activity by software patents and non-software patents.



Fig. S3: Distribution of patents by assignee cohort

Notes: Figure groups applications by the application date of their first patent regardless of location.
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Other Asian

Fig. S4: Ethnic composition of US invention

Notes: Figure presents the ethnic composition of US domestic inventors. Anglo-Saxon and European contributions (not shown) collectively 
decline from 90.6% in 1975 to 66.0% in 2019.
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Russian



Fig. S5: Ethnic patenting and spatial adjustments

Notes: See Figure S4. Figure presents the spatial distribution of patenting by the ethnicity of inventors for 1975-1979 compared to 2015-2019. 
Ethnicity is assigned through inventor names. Ethnic patenting includes those with Chinese, Hispanic, Indian, Japanese, Korean, Russian, and 
Vietnamese names.  

A: Distribution of ethnic patenting

B: Distribution of Anglo-Saxon and European patenting 
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Consolidated metro area

Venture 

capital 

investment

Granted 

patents

Employment 

in top 10 R&D 

industries, 

high-skilled

Employment 

in top 20 R&D 

industries, all 

workers

Employment 

in computer- 

and digital-

connected 

occupations, 

high-skilled

Employment 

in STEM-

connected 

occupations, 

all workers Population

(1) (2) (3) (4) (5) (6) (7)

San Francisco 48.1% 18.4% 11.7% 4.9% 8.6% 5.5% 2.5%

New York 15.3% 6.0% 6.3% 5.1% 8.0% 6.0% 6.4%

Boston 10.5% 4.5% 5.5% 2.4% 3.4% 2.7% 1.6%

Los Angeles 6.5% 5.3% 5.6% 5.7% 3.9% 3.9% 5.8%

Seattle 2.1% 4.0% 4.2% 2.4% 3.5% 2.5% 1.2%

San Diego 1.9% 3.6% 3.2% 1.6% 1.5% 1.5% 1.0%

Chicago 1.7% 2.5% 3.2% 3.2% 3.9% 3.2% 2.9%

Washington DC 1.5% 1.7% 4.4% 1.8% 6.6% 4.6% 1.8%

Miami 1.5% 0.7% 0.9% 1.1% 1.0% 1.2% 1.4%

Denver 1.1% 1.5% 1.5% 0.9% 1.7% 1.5% 1.0%

Austin 1.0% 2.1% 1.8% 1.0% 1.5% 1.2% 0.6%

Philadelphia 0.8% 1.8% 3.3% 2.1% 2.4% 2.2% 2.0%

Atlanta 0.7% 1.5% 1.4% 1.6% 2.8% 2.3% 1.7%

Minneapolis-St. Paul 0.7% 2.0% 1.3% 1.7% 2.0% 1.9% 1.0%

Raleigh-Durham 0.5% 1.4% 1.7% 0.8% 1.2% 1.0% 0.5%

Share in top 15 VC MSAs 93.8% 57.0% 55.9% 36.0% 52.1% 41.2% 31.3%

Share in other MSAs 5.9% 37.3% 38.3% 49.3% 41.8% 47.9% 48.0%

Share in non-metro areas 0.3% 5.7% 5.9% 14.8% 6.1% 10.9% 20.7%

Table S1: Statistics on patenting and innovation in major U.S. cities

Notes: Table lists the top 15 (consolidated) MSAs in terms of venture capital investment in descending rank. Venture capital investments are for 2015-

2018 based upon location of new investments in ventures and are taken from Thomson One. Patents are for 2015-2018 based upon the most frequent 

location of inventors and application date of utility patents and are taken from patents granted by the USPTO through end of 2019. Employment columns 

are for 2014-2018 using the combined American Community Survey 1% files. ACS sample includes those aged 18-65 who are working and with positive 

wage earnings, not in group quarters, with usual hours worked greater than 30 per week, and with usual weeks worked per year greater than 40. High-

skilled workers are those with college-degrees or higher in education and earning $50,000 or more. The 10 industries with the highest R&D per worker as 

listed by NSF (2017) are Software publishers; Pharmaceuticals and medicines; Other computer and electronic products; Data processing, hosting, and 

related services; Communications equipment; Semiconductor and other electronic components; Navigational, measuring, electromedical, and control 

instruments; Pesticide, fertilizer, and other agricultural chemicals; Aerospace products and parts; Scientific research and development services. These 

industries in some cases map into more than one NAICS industry in the ACS for employment data. Population data are 2015-2018 based upon counties 

that comprise MSAs and are taken from the Census Bureau. There are 281 MSAs identified in the venture capital, patent, and population data and 261 

identified in the ACS data. Population distributions in the ACS are very similar, with the one noticeable difference of LA being a 4.2% share. Table taken 

from Kerr and Robert-Nicoud (2020).



Tech clusters Five largest Other 270 non-Urban

(6 cities) cities in 1980 cities areas

1975-1979 0.113 0.322 0.455 0.110

1980-1984 0.124 0.298 0.468 0.110

1985-1989 0.139 0.276 0.478 0.107

1990-1994 0.163 0.252 0.485 0.100

1995-1999 0.233 0.221 0.463 0.084

2000-2004 0.274 0.202 0.448 0.076

2005-2009 0.310 0.198 0.427 0.066

2010-2014 0.337 0.189 0.413 0.062

2015-2019 0.342 0.186 0.410 0.061

1975-1979 0.202 0.300 0.432 0.067

1980-1984 0.200 0.272 0.465 0.063

1985-1989 0.217 0.257 0.457 0.070

1990-1994 0.274 0.217 0.452 0.057

1995-1999 0.374 0.188 0.396 0.042

2000-2004 0.413 0.166 0.381 0.039

2005-2009 0.436 0.175 0.355 0.033

2010-2014 0.461 0.169 0.337 0.033

2015-2019 0.454 0.172 0.339 0.035

1975-1979 0.110 0.323 0.455 0.112

1980-1984 0.120 0.299 0.468 0.113

1985-1989 0.133 0.277 0.480 0.110

1990-1994 0.150 0.256 0.488 0.105

1995-1999 0.198 0.228 0.480 0.094

2000-2004 0.219 0.216 0.474 0.091

2005-2009 0.229 0.212 0.472 0.086

2010-2014 0.233 0.205 0.476 0.086

2015-2019 0.231 0.200 0.481 0.087

Table S2: Concentration levels

A. All patents

B. Software patents

C. non-Software patents

Notes:  See Figure 2.



Software 

Total Software share  Total Software non-Software  Total Software non-Software

1975-1979 197,897 4,968 2.5% 0.041 0.046 0.041 0.003 0.009 0.003

1980-1984 181,212 8,635 4.8% 0.037 0.039 0.037 0.003 0.007 0.003

1985-1989 214,539 15,172 7.1% 0.034 0.038 0.034 0.003 0.008 0.003

1990-1994 293,573 31,174 10.6% 0.032 0.044 0.031 0.005 0.017 0.004

1995-1999 443,669 87,172 19.6% 0.039 0.067 0.035 0.013 0.039 0.009

2000-2004 526,751 148,325 28.2% 0.045 0.071 0.038 0.020 0.046 0.013

2005-2009 515,688 201,201 39.0% 0.050 0.076 0.038 0.025 0.050 0.014

2009-2014 630,822 285,806 45.3% 0.057 0.092 0.038 0.032 0.065 0.014

2015-2019 494,057 246,593 49.9% 0.058 0.093 0.036 0.033 0.065 0.013

1975-1979 46,367 3,458 7.5% 0.046 0.049 0.045 0.007 0.012 0.007

1980-1984 46,652 6,063 13.0% 0.042 0.043 0.042 0.008 0.010 0.007

1985-1989 57,965 10,540 18.2% 0.040 0.041 0.040 0.010 0.011 0.010

1990-1994 87,764 22,327 25.4% 0.044 0.052 0.042 0.017 0.025 0.015

1995-1999 177,186 69,591 39.3% 0.064 0.077 0.058 0.038 0.049 0.032

2000-2004 251,806 121,025 48.1% 0.071 0.082 0.065 0.046 0.057 0.040

2005-2009 280,364 167,932 59.9% 0.075 0.087 0.062 0.049 0.060 0.037

2009-2014 340,067 233,063 68.5% 0.093 0.108 0.068 0.067 0.081 0.044

2015-2019 275,123 198,549 72.2% 0.093 0.108 0.062 0.066 0.080 0.038

1975-1979 53,724 334 0.6% 0.056 0.062 0.056 0.012 0.014 0.012

1980-1984 53,021 730 1.4% 0.051 0.045 0.051 0.011 0.009 0.011

1985-1989 61,737 1,523 2.5% 0.046 0.037 0.046 0.009 0.007 0.010

1990-1994 87,414 3,623 4.1% 0.040 0.042 0.040 0.008 0.012 0.009

1995-1999 124,661 8,255 6.6% 0.041 0.053 0.040 0.012 0.026 0.011

2000-2004 127,046 12,512 9.8% 0.044 0.055 0.043 0.016 0.030 0.015

2005-2009 113,673 15,255 13.4% 0.043 0.056 0.042 0.016 0.029 0.015

2009-2014 147,643 25,869 17.5% 0.043 0.052 0.042 0.016 0.026 0.015

2015-2019 102,251 21,216 20.7% 0.045 0.057 0.043 0.018 0.030 0.016

1975-1979 97,806 1,176 1.2% 0.035 0.040 0.035 0.003 0.006 0.003

1980-1984 81,539 1,842 2.3% 0.032 0.032 0.032 0.002 0.004 0.002

1985-1989 94,837 3,109 3.3% 0.029 0.035 0.029 0.002 0.004 0.002

1990-1994 118,395 5,224 4.4% 0.027 0.031 0.027 0.003 0.006 0.003

1995-1999 141,822 9,326 6.6% 0.027 0.033 0.026 0.003 0.006 0.003

2000-2004 147,899 14,788 10.0% 0.027 0.034 0.027 0.005 0.010 0.005

2005-2009 121,651 18,014 14.8% 0.028 0.037 0.027 0.006 0.012 0.007

2009-2014 143,112 26,874 18.8% 0.028 0.042 0.027 0.008 0.018 0.007

2015-2019 116,683 26,828 23.0% 0.029 0.044 0.026 0.009 0.022 0.007

Patent count  Herfindahl-Hirschman Index  Ellison-Glaeser Index 

Notes:  Metrics consider agglomeration of US domestic invention across 281 MSAs, with invention in rural areas excluded. Herfindahl-Hirschman Index measure the sum 

of squared shares of activity for cities. Ellison and Glaeser metrics consider agglomeration of invention relative to MSA populations. Patents are grouped in Panels B-D 

into the six major NBER technology categories; a small number of patents are not included in the break-outs due to lack of NBER tech code.

Table S3:  Concentration ratios within technology divisions

A. All Patents

B. Computers/Communication + Electrical/Electronic

C. Chemicals + Drugs/Medicine

D. Mechanical + Miscellaneous



Software 

Total Software share  Total Software non-Software  Total Software non-Software

1975-1979 138,940 3,983 2.87% 0.042 0.046 0.043 0.005 0.010 0.005

1980-1984 131,947 7,124 5.40% 0.039 0.039 0.039 0.005 0.008 0.005

1985-1989 152,800 12,268 8.03% 0.035 0.039 0.035 0.005 0.009 0.005

1990-1994 211,220 25,650 12.14% 0.034 0.046 0.033 0.007 0.020 0.006

1995-1999 343,117 76,899 22.41% 0.043 0.072 0.038 0.018 0.045 0.013

2000-2004 431,907 134,474 31.13% 0.050 0.076 0.043 0.026 0.052 0.018

2005-2009 438,643 185,587 42.31% 0.055 0.081 0.042 0.030 0.055 0.019

2009-2014 542,523 264,333 48.72% 0.064 0.098 0.042 0.039 0.071 0.018

2015-2019 425,980 228,270 53.59% 0.066 0.099 0.040 0.040 0.071 0.017

1975-1979 2,099 108 5.15% 0.054 0.078 0.053 0.032 0.052 0.032

1980-1984 3,185 220 6.91% 0.043 0.057 0.043 0.020 0.034 0.020

1985-1989 5,723 571 9.98% 0.046 0.055 0.045 0.021 0.029 0.020

1990-1994 11,362 1,352 11.90% 0.040 0.049 0.040 0.018 0.025 0.018

1995-1999 19,145 2,657 13.88% 0.041 0.043 0.041 0.016 0.018 0.016

2000-2004 21,340 3,938 18.45% 0.036 0.034 0.037 0.013 0.013 0.013

2005-2009 22,651 5,430 23.97% 0.034 0.035 0.034 0.011 0.009 0.012

2009-2014 29,585 8,318 28.12% 0.035 0.037 0.035 0.012 0.012 0.012

2015-2019 20,892 6,571 31.45% 0.034 0.036 0.034 0.013 0.014 0.013

1975-1979 5,461 179 3.28% 0.060 0.098 0.060 0.039 0.089 0.038

1980-1984 4,302 236 5.49% 0.076 0.072 0.077 0.054 0.055 0.054

1985-1989 3,108 249 8.01% 0.082 0.068 0.085 0.061 0.052 0.063

1990-1994 5,125 513 10.01% 0.110 0.082 0.114 0.091 0.065 0.095

1995-1999 4,740 661 13.95% 0.120 0.078 0.129 0.108 0.067 0.116

2000-2004 4,793 867 18.09% 0.121 0.113 0.124 0.108 0.099 0.111

2005-2009 4,235 931 21.98% 0.120 0.114 0.123 0.106 0.100 0.108

2009-2014 4,731 1,271 26.87% 0.123 0.099 0.135 0.109 0.089 0.121

2015-2019 3,386 996 29.42% 0.129 0.120 0.135 0.117 0.109 0.122

1975-1979 51,426 699 1.36% 0.044 0.071 0.044 0.005 0.019 0.005

1980-1984 41,838 1,055 2.52% 0.039 0.057 0.039 0.003 0.011 0.003

1985-1989 53,191 2,101 3.95% 0.036 0.046 0.036 0.003 0.007 0.003

1990-1994 66,880 3,755 5.61% 0.034 0.045 0.033 0.002 0.009 0.002

1995-1999 78,873 7,181 9.10% 0.034 0.046 0.034 0.003 0.011 0.002

2000-2004 70,980 9,371 13.20% 0.035 0.047 0.034 0.004 0.014 0.003

2005-2009 53,097 9,846 18.54% 0.035 0.051 0.033 0.004 0.018 0.003

2009-2014 58,164 12,932 22.23% 0.035 0.056 0.032 0.005 0.023 0.003

2015-2019 46,973 11,631 24.76% 0.035 0.056 0.031 0.005 0.021 0.003

C. Government assignees

D. Unassigned

Notes:  See Table S3. Patents are grouped in Panels A-D by type of assignee. Patents can be assigned to two or more types of assignees.

Table S4:  Concentration ratios by type of assignee

Patent count  Herfindahl-Hirschman Index  Ellison-Glaeser Index 

A. Industrial assignees

B. University assignees



Patent Count Number of Backward Forward Forward Patent Patent 

Claims Citations Citations Citations External Originality Generality

1975-1979 1,002 15.2 6.8 39.6 37.9 0.466 0.677

1980-1984 1,728 16.0 8.1 49.3 47.9 0.555 0.679

1985-1989 3,293 17.5 9.9 69.2 66.9 0.588 0.687

1990-1994 8,536 20.1 11.8 83.9 80.9 0.604 0.697

1995-1999 32,562 24.2 17.9 80.6 75.5 0.631 0.681

2000-2004 61,299 26.4 25.9 33.7 30.4 0.649 0.574

2005-2009 87,700 21.8 29.3 13.6 11.3 0.631 0.418

2009-2014 131,884 20.9 27.0 6.1 4.5 0.594 0.281

2015-2019 111,913 20.0 25.1 1.2 0.7 0.569 0.085

1975-1979 3,966 15.6 6.4 34.6 33.2 0.493 0.673

1980-1984 6,907 15.4 8.4 43.1 41.2 0.563 0.675

1985-1989 11,879 17.3 10.1 54.9 52.4 0.592 0.681

1990-1994 22,638 18.6 12.3 64.0 60.8 0.605 0.679

1995-1999 54,610 22.2 19.1 66.0 62.3 0.628 0.665

2000-2004 87,026 24.6 24.9 31.5 28.1 0.639 0.565

2005-2009 113,501 20.2 27.8 12.6 10.4 0.620 0.413

2009-2014 153,922 19.1 29.8 5.8 4.2 0.600 0.282

2015-2019 134,680 18.5 32.1 1.4 0.7 0.579 0.071

Notes: Table compares the patent traits for technology clusters compared to other regions. Number of claims, backward citations, and forward citations are derived from 

the USPTO directly. Forward citations external excludes forward citations in the originating assignee. Originality and Generality indices follow Hall et al. (2001).

Table S5a: Patent quality comparison for software patents

A. Technology Clusters

B. All Other



Patent Count Number of Backward Forward Forward Patent Patent 

Claims Citations Citations Citations External Originality Generality

1975-1979 21,300 11.1 5.6 19.7 18.8 0.428 0.588

1980-1984 20,745 12.0 6.9 24.2 23.0 0.492 0.603

1985-1989 26,573 14.2 8.5 33.5 31.9 0.536 0.614

1990-1994 39,461 15.8 10.5 42.3 40.0 0.557 0.617

1995-1999 70,646 19.0 14.7 41.8 38.8 0.580 0.603

2000-2004 82,923 21.3 23.7 26.7 23.6 0.598 0.526

2005-2009 72,063 18.7 36.4 12.7 10.0 0.604 0.400

2009-2014 80,455 17.9 36.8 5.8 3.8 0.594 0.278

2015-2019 57,152 17.9 35.3 1.2 0.6 0.576 0.054

1975-1979 171,629 10.5 5.7 16.5 15.7 0.415 0.578

1980-1984 151,832 11.5 7.4 20.2 19.0 0.470 0.582

1985-1989 172,794 13.1 8.9 24.7 23.2 0.511 0.588

1990-1994 222,938 14.2 10.9 29.4 27.4 0.540 0.588

1995-1999 285,851 16.8 14.4 28.4 26.0 0.564 0.571

2000-2004 295,503 19.6 20.6 19.1 16.7 0.583 0.502

2005-2009 242,424 17.1 26.8 10.8 8.8 0.584 0.378

2009-2014 264,561 16.7 30.9 5.2 3.8 0.573 0.236

2015-2019 190,312 16.4 32.6 1.1 0.5 0.553 0.050

Table S5b: Patent quality comparison for non-software patents

A. Technology Clusters

B. All Other

Notes: See Table S5a.



Anglo-Saxon Chinese European Hispanic Indian Japanese Korean Russian Vietnam.

1975-1979 74.6 2.0 15.5 3.0 1.9 0.5 0.3 2.0 0.1

1980-1984 73.2 2.8 15.1 3.0 2.5 0.7 0.5 2.1 0.1

1985-1989 72.1 3.3 14.7 3.3 2.8 0.8 0.5 2.2 0.2

1990-1994 70.1 4.4 14.1 3.5 3.5 0.9 0.6 2.4 0.3

1995-1999 66.3 6.5 13.6 3.6 5.1 1.0 0.7 2.7 0.5

2000-2004 62.4 8.7 13.0 3.9 6.3 1.1 0.9 3.1 0.6

2005-2009 59.1 10.3 12.3 4.1 7.9 1.2 1.2 3.3 0.6

2010-2014 57.1 11.2 11.7 4.6 9.1 1.0 1.3 3.4 0.6

2015-2019 55.4 11.6 11.5 5.1 10.0 1.0 1.4 3.4 0.6

Chemicals 63.6 8.3 13.9 3.7 5.5 1.0 0.9 2.9 0.4

Computers 55.2 11.2 11.7 4.2 11.4 1.1 1.1 3.4 0.6

Pharmaceuticals 61.5 8.6 14.0 4.6 5.7 1.0 1.0 3.1 0.5

Electrical 59.2 11.0 12.6 3.8 6.7 1.2 1.4 3.4 0.6

Mechanical 71.6 3.9 13.8 3.6 3.0 0.8 0.5 2.5 0.3

Miscellaneous 73.1 3.2 13.4 4.2 2.5 0.6 0.5 2.2 0.3

Table S6a:  Ethnic composition of inventors residing in United States

Ethnicity of Inventor

Notes:  Table presents descriptive statistics for inventors residing in the US at the time of patent application.  Inventor ethnicities are estimated through inventors' 

names using techniques described in the text.  Patents are grouped by application years and major technology fields. 



Anglo-Saxon Chinese European Hispanic Indian Japanese Korean Russian Vietnam.

1975-1979 76.5 2.1 14.1 2.7 1.7 0.4 0.2 2.2 0.1

1980-1984 74.5 2.3 14.6 3.0 2.4 0.7 0.3 2.2 0.1

1985-1989 73.5 2.9 13.9 3.0 3.0 0.7 0.4 2.2 0.2

1990-1994 69.9 4.9 14.1 3.1 3.9 0.9 0.5 2.4 0.4

1995-1999 64.7 7.0 13.4 3.2 6.7 1.1 0.5 2.8 0.6

2000-2004 60.5 8.7 12.7 3.8 8.7 1.1 0.7 3.3 0.6

2005-2009 56.2 10.6 11.9 4.1 10.8 1.2 1.1 3.5 0.6

2010-2014 53.4 12.0 11.3 4.5 12.3 0.9 1.3 3.6 0.5

2015-2019 51.4 12.5 11.0 5.0 13.3 0.9 1.6 3.7 0.6

Chemicals 61.2 9.4 12.6 3.9 6.4 1.2 1.2 3.5 0.5

Computers 54.3 11.1 11.4 4.3 12.8 1.0 1.1 3.4 0.6

Pharmaceuticals 59.9 8.9 13.7 4.6 6.5 0.8 1.4 3.7 0.5

Electrical 56.9 12.1 12.4 4.0 7.8 1.2 1.4 3.7 0.6

Mechanical 66.2 7.0 12.9 3.8 5.1 0.9 0.8 2.9 0.3

Miscellaneous 70.1 4.3 13.2 4.2 3.6 0.8 0.6 2.7 0.5

Table S6b:  Ethnic composition of inventors residing in United States for software patents

Ethnicity of Inventor

Notes:  See Table S6a.



Anglo-Saxon Chinese European Hispanic Indian Japanese Korean Russian Vietnam.

1975-1979 74.6 2.0 15.5 3.0 1.9 0.5 0.3 2.0 0.1

1980-1984 73.1 2.8 15.2 3.0 2.5 0.7 0.5 2.1 0.1

1985-1989 72.0 3.4 14.7 3.3 2.8 0.8 0.5 2.2 0.2

1990-1994 70.2 4.4 14.2 3.5 3.5 0.9 0.6 2.4 0.3

1995-1999 66.7 6.4 13.7 3.7 4.7 1.0 0.7 2.7 0.5

2000-2004 63.1 8.7 13.2 4.0 5.4 1.1 1.0 3.0 0.6

2005-2009 61.0 10.1 12.5 4.1 6.1 1.2 1.2 3.2 0.6

2010-2014 60.1 10.5 12.1 4.7 6.4 1.1 1.2 3.2 0.6

2015-2019 59.4 10.7 11.9 5.2 6.7 1.1 1.3 3.2 0.6

Chemicals 63.7 8.2 14.0 3.6 5.4 0.9 0.9 2.8 0.4

Computers 57.9 11.5 12.4 3.7 7.8 1.5 1.3 3.1 0.8

Pharmaceuticals 61.8 8.5 14.0 4.6 5.5 1.1 1.0 3.0 0.5

Electrical 59.9 10.7 12.7 3.8 6.4 1.3 1.3 3.3 0.6

Mechanical 72.3 3.5 13.9 3.6 2.7 0.8 0.5 2.4 0.2

Miscellaneous 73.4 3.1 13.4 4.2 2.4 0.6 0.5 2.1 0.3

Table S6c:  Ethnic composition of inventors residing in United States for non-software patents

Ethnicity of Inventor

Notes:  See Table S6a.



Top 4: SF, Next 3: LA, Other 274 non-Urban

SEA, BOS, SD NYC, DET cities areas

1975-1979 0.100 0.214 0.575 0.110

1980-1984 0.108 0.199 0.582 0.110

1985-1989 0.122 0.188 0.583 0.107

1990-1994 0.140 0.172 0.588 0.100

1995-1999 0.199 0.156 0.561 0.084

2000-2004 0.241 0.149 0.534 0.076

2005-2009 0.273 0.147 0.515 0.066

2010-2014 0.304 0.141 0.494 0.062

2015-2019 0.307 0.143 0.489 0.061

1975-1979 0.178 0.225 0.530 0.067

1980-1984 0.170 0.196 0.571 0.063

1985-1989 0.184 0.188 0.559 0.070

1990-1994 0.229 0.158 0.555 0.057

1995-1999 0.312 0.139 0.507 0.042

2000-2004 0.355 0.125 0.481 0.039

2005-2009 0.380 0.135 0.451 0.033

2010-2014 0.418 0.130 0.419 0.033

2015-2019 0.408 0.137 0.420 0.035

1975-1979 0.098 0.214 0.577 0.112

1980-1984 0.105 0.199 0.583 0.113

1985-1989 0.117 0.188 0.585 0.110

1990-1994 0.129 0.174 0.592 0.105

1995-1999 0.172 0.160 0.574 0.094

2000-2004 0.196 0.158 0.555 0.091

2005-2009 0.204 0.154 0.555 0.086

2010-2014 0.209 0.150 0.555 0.086

2015-2019 0.206 0.150 0.557 0.087

Notes:  See Table S2.

Table S7: Table S2 based upon largest patenting changes 

A. All patents

B. Software patents

C. non-Software patents



Total Software non-Software Counterfactual

1975-1979 1.313 1.144 1.309 1.313

1980-1984 1.327 1.293 1.322 1.325

1985-1989 1.312 1.389 1.304 1.305

1990-1994 1.309 1.484 1.294 1.300

1995-1999 1.361 1.604 1.333 1.356

2000-2004 1.380 1.623 1.333 1.378

2005-2009 1.434 1.679 1.354 1.431

2010-2014 1.435 1.670 1.343 1.434

2015-2019 1.397 1.605 1.309 1.397

Table S8:  Super-linear patenting to population rates

Notes:  Table reports estimations of β coefficient from a model of patents ≈ population^β. The last 

column shows the values when we reallocate patenting that occurs in tech centers and the large 

population centers for a period according to the relative patent shares that were present among these 

cities in 1975-1979. This highlights the degree to which the reallocation between tech centers and 

large population centers is largely orthogonal to the super-linear parameter calculated across the full 

city size distribution.



F1 Precision Recall F1 Precision Recall F1 Precision Recall

Test Sample 0.861 0.846 0.877

Full Sample 0.843 0.788 0.906 0.801 0.679 0.976 0.894 0.874 0.915

1975-1979 0.682 0.600 0.789 0.667 0.514 0.948 0.832 0.798 0.870

1980-1984 0.753 0.638 0.918 0.661 0.497 0.986 0.824 0.722 0.959

1985-1989 0.806 0.750 0.871 0.784 0.655 0.978 0.881 0.929 0.839

1990-1994 0.842 0.802 0.885 0.786 0.667 0.958 0.885 0.885 0.885

1995-1999 0.935 0.953 0.918 0.851 0.763 0.964 0.872 0.911 0.836

2000-2004 0.902 0.855 0.955 0.862 0.768 0.982 0.931 0.893 0.973

2005-2009 0.846 0.792 0.908 0.856 0.759 0.982 0.930 0.891 0.972

2010-2014 0.912 0.870 0.958 0.898 0.815 1.000 0.950 0.935 0.966

Table S9:  Diagnostics on software definitions

Notes:  Table reports precision and recall estimates from an application of algorithms to a random sample of patents classified by authors as software related. We 

randomly sampled 1600 patents from NBER Category 2 stratified across eight periods from 1976-79 to 2010-14. Within each period, we sampled 100 BH, 50 GV, and 

50 other patents. One patent was sampled twice, and several could not be reliably assigned, resulting in a final sample of 1559 patents. A machine learning algorithm 

was trained on 80% of data and then tested out-of-sample on the remaining 20%. F1=2*(precision*recall)/(precision+recall). 

Bessen and Hunt (2007) Graham and Vishnubhakat (2013) Machine Learning Approach



Tech clusters Five largest Other 270 non-Urban

(6 cities) cities in 1980 cities areas

1975-1979 0.113 0.322 0.455 0.110

1980-1984 0.124 0.298 0.468 0.110

1985-1989 0.139 0.276 0.478 0.107

1990-1994 0.163 0.252 0.485 0.100

1995-1999 0.233 0.220 0.463 0.084

2000-2004 0.274 0.202 0.448 0.077

2005-2009 0.307 0.198 0.428 0.067

2010-2014 0.323 0.195 0.415 0.067

1975-1979 0.183 0.324 0.422 0.071

1980-1984 0.200 0.291 0.442 0.066

1985-1989 0.228 0.256 0.445 0.070

1990-1994 0.270 0.223 0.450 0.056

1995-1999 0.360 0.187 0.409 0.044

2000-2004 0.396 0.172 0.393 0.039

2005-2009 0.424 0.175 0.367 0.033

2010-2014 0.449 0.174 0.346 0.031

1975-1979 0.097 0.322 0.462 0.119

1980-1984 0.104 0.300 0.474 0.122

1985-1989 0.113 0.281 0.488 0.118

1990-1994 0.125 0.262 0.497 0.116

1995-1999 0.157 0.240 0.496 0.107

2000-2004 0.172 0.227 0.494 0.108

2005-2009 0.183 0.222 0.493 0.102

2010-2014 0.193 0.217 0.486 0.105

Table S10a:  Concentration levels using GV definition

A. All patents

B. Software patents

C. non-Software patents

Notes: See Table S2. Software defined using Graham and Vishnubhakat (2013).



Tech clusters Five largest Other 270 non-Urban

(6 cities) cities in 1980 cities areas

1975-1979 0.113 0.322 0.455 0.110

1980-1984 0.124 0.298 0.468 0.110

1985-1989 0.139 0.276 0.478 0.107

1990-1994 0.163 0.252 0.485 0.100

1995-1999 0.233 0.221 0.463 0.084

2000-2004 0.274 0.202 0.448 0.076

2005-2009 0.310 0.198 0.427 0.066

2010-2014 0.337 0.189 0.413 0.062

2015-2019 0.342 0.186 0.410 0.061

1975-1979 0.160 0.348 0.424 0.068

1980-1984 0.195 0.315 0.432 0.057

1985-1989 0.231 0.293 0.413 0.063

1990-1994 0.278 0.260 0.411 0.052

1995-1999 0.364 0.217 0.378 0.041

2000-2004 0.400 0.195 0.368 0.037

2005-2009 0.425 0.190 0.349 0.036

2010-2014 0.459 0.179 0.327 0.035

2015-2019 0.461 0.176 0.328 0.036

1975-1979 0.109 0.320 0.457 0.114

1980-1984 0.117 0.296 0.471 0.116

1985-1989 0.128 0.274 0.486 0.112

1990-1994 0.141 0.250 0.499 0.110

1995-1999 0.182 0.222 0.496 0.100

2000-2004 0.209 0.205 0.489 0.097

2005-2009 0.227 0.203 0.482 0.087

2010-2014 0.238 0.197 0.482 0.083

2015-2019 0.242 0.195 0.480 0.083

Table S10b:  Concentration levels using machine learning approach

A. All patents

B. Software patents

C. non-Software patents

Notes: See Table S2. Software defined using  machine learning algorithm.



Tech clusters Five largest Other 270 non-Urban

(6 cities) cities in 1980 cities areas

1975-1979 0.113 0.322 0.455 0.110

1980-1984 0.124 0.298 0.468 0.110

1985-1989 0.139 0.276 0.478 0.107

1990-1994 0.163 0.252 0.485 0.100

1995-1999 0.233 0.221 0.463 0.084

2000-2004 0.274 0.202 0.448 0.076

2005-2009 0.310 0.198 0.427 0.066

2010-2014 0.337 0.189 0.413 0.062

2015-2019 0.342 0.186 0.410 0.061

1975-1979 0.183 0.317 0.425 0.076

1980-1984 0.211 0.288 0.442 0.058

1985-1989 0.263 0.254 0.420 0.063

1990-1994 0.319 0.217 0.411 0.053

1995-1999 0.426 0.192 0.349 0.033

2000-2004 0.452 0.174 0.344 0.031

2005-2009 0.471 0.178 0.326 0.025

2010-2014 0.505 0.173 0.297 0.024

2015-2019 0.502 0.172 0.301 0.026

1975-1979 0.112 0.322 0.455 0.111

1980-1984 0.123 0.298 0.468 0.111

1985-1989 0.136 0.276 0.480 0.108

1990-1994 0.156 0.254 0.488 0.102

1995-1999 0.213 0.223 0.475 0.089

2000-2004 0.247 0.206 0.464 0.083

2005-2009 0.275 0.202 0.448 0.074

2010-2014 0.296 0.193 0.440 0.071

2015-2019 0.302 0.190 0.438 0.070

Table S10c:  Concentration levels using AI definition

A. All patents

B. AI-related patents

C. non-AI patents

Notes: See Table S2. AI-related patents defined using Giczy et al. (2021).



Software 

Total Software share  Total Software non-Software  Total Software non-Software

1975-1979 197,897 4,968 2.51% 0.041 0.046 0.041 0.003 0.009 0.003

1980-1984 181,212 8,635 4.77% 0.037 0.039 0.037 0.003 0.007 0.003

1985-1989 214,539 15,172 7.07% 0.034 0.038 0.034 0.003 0.008 0.003

1990-1994 293,573 31,174 10.62% 0.032 0.044 0.031 0.005 0.017 0.004

1995-1999 443,669 87,172 19.65% 0.039 0.067 0.035 0.013 0.039 0.009

2000-2004 526,751 148,325 28.16% 0.045 0.071 0.038 0.020 0.046 0.013

2005-2009 515,688 201,201 39.02% 0.050 0.076 0.038 0.025 0.050 0.014

2009-2014 630,822 285,806 45.31% 0.057 0.092 0.038 0.032 0.065 0.014

2015-2019 494,057 246,593 49.91% 0.058 0.093 0.036 0.033 0.065 0.013

1975-1979 197,891 36,200 18.3% 0.041 0.050 0.039 0.003 0.009 0.003

1980-1984 181,181 37,687 20.8% 0.037 0.045 0.036 0.003 0.009 0.003

1985-1989 214,429 48,666 22.7% 0.034 0.044 0.033 0.003 0.011 0.003

1990-1994 293,466 77,971 26.6% 0.032 0.048 0.030 0.005 0.019 0.003

1995-1999 443,307 165,500 37.3% 0.039 0.071 0.030 0.013 0.042 0.005

2000-2004 525,416 238,531 45.4% 0.045 0.076 0.031 0.020 0.050 0.007

2005-2009 493,712 254,707 51.6% 0.049 0.079 0.031 0.024 0.052 0.008

2009-2014 303,394 154,871 51.0% 0.056 0.095 0.032 0.030 0.067 0.009

Notes:  See Tables S3 and S10a.

Table S11a:  Comparison of software and AI definitions

Patent count  Herfindahl-Hirschman Index  Ellison-Glaeser Index 

A. Core results using Bessen and Hunt (2007) approach

B. Alternative definition from Graham and Vishnubhakat (2013)



Software 

Total Software share  Total Software non-Software  Total Software non-Software

1975-1979 197,897 13,549 6.85% 0.041 0.052 0.040 0.003 0.009 0.003

1980-1984 181,212 16,072 8.87% 0.037 0.049 0.036 0.003 0.010 0.003

1985-1989 214,539 23,926 11.15% 0.034 0.047 0.033 0.003 0.011 0.003

1990-1994 293,573 48,792 16.62% 0.032 0.048 0.030 0.005 0.016 0.004

1995-1999 443,669 123,657 27.87% 0.039 0.062 0.033 0.013 0.032 0.008

2000-2004 526,751 178,614 33.91% 0.045 0.067 0.037 0.020 0.039 0.014

2005-2009 515,688 214,965 41.69% 0.050 0.072 0.039 0.025 0.044 0.016

2009-2014 630,822 280,922 44.53% 0.057 0.089 0.039 0.032 0.061 0.016

2015-2019 494,057 225,945 45.73% 0.058 0.092 0.039 0.033 0.063 0.016

1975-1979 197,893 1,778 0.90% 0.041 0.049 0.040 0.003 0.009 0.003

1980-1984 181,184 2,726 1.50% 0.037 0.044 0.037 0.003 0.008 0.003

1985-1989 214,436 5,342 2.49% 0.034 0.047 0.034 0.003 0.014 0.003

1990-1994 293,473 12,999 4.43% 0.032 0.058 0.032 0.005 0.027 0.004

1995-1999 443,348 40,893 9.22% 0.039 0.083 0.036 0.013 0.053 0.010

2000-2004 526,503 68,801 13.07% 0.045 0.083 0.041 0.020 0.056 0.017

2005-2009 515,238 90,882 17.64% 0.050 0.089 0.044 0.025 0.061 0.019

2009-2014 630,314 121,650 19.30% 0.057 0.113 0.048 0.032 0.083 0.023

2015-2019 494,056 99,931 20.23% 0.058 0.119 0.048 0.033 0.089 0.024

Notes:  See Tables S10b and S10c. Values in Panel B are for AI and non-AI related paents.

Table S11b:  Comparison of software and AI definitions

Patent count  Herfindahl-Hirschman Index  Ellison-Glaeser Index 

A. Using machine learning algorithm for software patents

B. Using AI-related patent definition from Giczy et al. (2021)


