
Machine Learning for Automated Planning

Citation
Zeng, Catherine Yingxuan. 2022. Machine Learning for Automated Planning. Bachelor's thesis, 
Harvard College.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371729

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37371729
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Machine%20Learning%20for%20Automated%20Planning&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=8fd8b4bfd05f4a0dac4895ecfc6127c2&department
https://dash.harvard.edu/pages/accessibility


Machine Learning for Automated Planning

Catherine Zeng

A thesis submitted in partial fulfillment
for the degree of Bachelor of Arts in
Computer Science and Mathematics

Harvard College
Cambridge, MA

March 21, 2022



Abstract

Automated planning is a long-standing problem which concerns finding an action sequence

to solve a task. In this thesis, we explore two problems in leveraging machine learning for

automated planning: (1) learning from failed planning attempts to improve efficiency of future

planning, and (2) adding goal-conditioning to action samplers in a neuro-symbolic planning

framework. In both problems, we utilize neural networks to learn mappings that empirically

enhance the performance of existing planning frameworks.

Acknowledgements

The work in this thesis was made possible by Tom Silver, Professor Leslie Kaelbling, and

other members of the Learning and Intelligent Systems group at MIT. I am especially grateful

for Tom’s patient and thoughtful guidance, as well as for Prof. Kaelbling’s insightful advice.

I would also like to thank my thesis readers Professor Finale Doshi-Velez and Professor

Michael D. Smith for their invaluable roles as mentors and advisors during my time at Harvard.

Finally, I thank my friends and family for their unwavering love and support.

1



Contents

1 Introduction 3
1.1 Methods of planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Learning from Failures in Classical Planning 6
2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Learning inadmissible heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Dead-end detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Connections to reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Eliminable Edge Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Eliminability in Failed Searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Learning to Predict Eliminability . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Goal-Conditioned Action Sampling in Integrated Task and
Motion Planning 18
3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Task and Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Learning Action Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Neuro-Symbolic Relational Transition Models . . . . . . . . . . . . . . . . . . . 19

3.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Conclusions 27

2



1 Introduction

Automated planning is a subfield of artificial intelligence which involves finding a sequence of actions

to solve a specified task. We can broadly think about automated planning as a set of states, actions,

and goals. A state is a representation of the current state of the world, an action is something

an agent can perform in order to move from one state to another, and a goal is a set of states

that the agent wishes to be in. Thus, a planning problem involves coming up with a series of

actions to take the agent from its initial state to a goal state. Planning problems can come in

several varieties, depending on attributes such as whether states are continuous or discrete, whether

actions are deterministic or nondeterministic, and whether there is full or partial observability of

the environment.

Planning is an important question to study both in terms of practical applications and as an

area of academic interest. In the real world, planning addresses the question of how an agent can

accomplish a complex task without having specified instructions at every step. Self-driving cars use

automated planning to navigate busy roads without human guidance [37], and household helper

robots use planning to perform various chores [21]. Planning is of theoretical interest because it

forms an important part of intelligent behavior. In 1997, IBM created the chess engine Deep Blue

using planning strategies to outplay reigning world champion Garry Kasparov in a six-game match,

scoring 3.5-2.5 [8]. More recently, in 2016, AlphaGo won against top human player Lee Sedol in

a five-game match 4-1, before it defeated top-ranked player Ke Jie 3-0 at the 2017 Future of Go

Summit [12][42]. Looking forward, planning will continue to play a key part in enabling artificial

intelligence to meet and exceed the capabilities of humans.

1.1 Methods of planning

The classical planning setting assumes a finite state and action space, as well as a deterministic

transition function mapping each state and action pair to a new state. Classical planning algorithms

are often based on state space search. Search nodes are the states of the planning environment, edges

3



represent possible state transitions, edge distances represent action costs, and a search algorithm is

applied in order to find a path to the goal state. Search algorithms may vary in terms of whether

they find an optimal path to the goal state, in which action costs are minimized, or if they simply

find a satisficing path.

When a planner does not have any information about the goal’s location, uninformed search

may be used. Uninformed search algorithms include traditional depth-first search and breadth-first

search; depth-first search explores as far along each branch as possible before backtracking, while

breadth-first search explores all nodes at the current depth before continuing search at the next

depth level. Search may also be guided by a heuristic function, which approximates the distance to

the goal from each state. Heuristic searches include greedy best-first search, which expands nodes

in the order of their heuristic values, and A∗ search, which expands nodes based on the estimated

total path length through the node (the sum of the cost to the node and the node’s heuristic value).

α−β search, which is used by Deep Blue, and Monte Carlo Tree Search, used by AlphaGo, are also

examples of heuristic search.

In environments with large, continuous state and action spaces, hierarchical planning may be

used [30][53][36]. Hierarchical planning divides the problem into various levels of abstraction. The

highest level corresponds to a highly discretized space in which solving for a plan to the goal is

easy, while the lowest level corresponds to the continuous state and actions of the environment.

In the robotics literature, task and motion planning solves robot planning problems using discrete

task-level planning and continuous motion-level planning.

The application of classical automated planners to real-world problems can be difficult because

of the difficulty of hand-crafting accurate descriptions of the planning task and because of challenges

scaling up off-the-shelf planners [24]. These two problems have been addressed by a long and active

line of research in machine learning for planning [24]. Approaches in this line include heuristic

learning [3, 18, 41, 42, 54] and generalized policy learning [6, 19, 20, 25, 34, 45].

4



1.2 Our contributions

We continue the work in machine learning for automated planning by exploring two directions. In

section 2, we investigate how to learn from failed planning attempts in the classical planning setting.

Our main insight is that, by identifying something we call eliminable edge sets in previous searches,

we can learn a model that predicts what edges can be eliminated in new similar searches. The

work in this section was published at the ICAPS 2021 Workshop on Planning and Reinforcement

Learning [55]. In section 3, we consider a more challenging setting where states and actions are

hybrid discrete/continuous and planning is bi-level. The key question we investigate here is to

what extent goal-conditioning can improve action sampling. For each direction of study, we will

discuss the most relevant work, our problem setup, our approach, and our empirical findings and

analysis. In Section 4, we conclude our explorations with some final thoughts and reflections on the

connection between our two directions of study.

5



2 Learning from Failures in Classical Planning

Our first direction of study takes place in the classical planning setting, where states and actions

are finite and state transitions are deterministic. However, even with deterministic transitions, we

may fail to realize a plan to the goal if the state and action spaces are large and we have compute

or time constraints. We address the question of how past failure experiences can be leveraged to

plan more efficiently and effectively in a similar new problems.

Approaches to learning from previous planning experiences almost always rely on successful past

experience [24] [25]. In the following related work section, we will describe two methods of learning

from failures; each of these methods have limitations that we attempt to overcome.

Specifically, we introduce the new concept of eliminable edge sets: sets of edges that can be

eliminated from a search graph without changing the solvability of the problem. We show how

eliminable edge sets can be identified from failed searches, with particular ease in the case of forward

search algorithms like A∗ and greedy best-first search (GBFS). These edges can then be used to

learn to predict eliminable edges in new problems, leading to faster planning.

In experiments, we consider this approach of learning to predict eliminable edge sets in four

visual navigation domains, all of which contain reversible actions and therefore lack dead-ends.

Our main empirical finding is that planning with the learned edge elimination model considerably

outperforms planning with the same algorithm that led to the failed search attempts. We continue

with an analysis of the aspects of the domains that enable this strong performance and conclude

with a discussion of remaining challenges and open questions in learning from failed search attempts.

2.1 Related work

2.1.1 Learning inadmissible heuristics

Thayer et al. [50] introduced what they called learning inadmissible heuristics during search in

a 2011 paper. Assuming that a search heuristic exists during planning, Thayer et al. show that

they can reason about the heuristic’s error – the difference between the estimates provided by the

6



heuristic and the true distances between states – to learn a better heuristic during a future planning

attempt. Our method is more generally applicable in that it does not assume an existing heuristic.

In addition, our method is able to extract information from states that is not captured in a heuristic,

and our method succeeds on failure cases mentioned in Thayer et al.’s work.

2.1.2 Dead-end detection

Another approach to learning from failed planning attempts is dead-end detection [23, 32], which

is closely related to nogoods in constraint satisfaction problems. A dead-end is a search state

from which no plan to the goal exists. Crucially, it is sometimes possible to examine a failed

search attempt and identify dead-ends; a search state with no successors is a dead-end, and a state

whose only successors are dead-ends is also a dead-end. A learning approach could leverage these

identified dead-ends to learn to predict dead-ends in a new planning problem, potentially speeding

up the search. Previous work on learning dead-end detectors considers planning in factored, logical

domains, and identifies formulaic representations of states that are verifiable dead-ends [46, 47, 48].

Unfortunately, there are many domains of interest where dead-ends are limited or absent alto-

gether (e.g., domains where all actions are reversible). Our notion of eliminability provides leverage

in domains that have no dead-ends to detect. Eliminability not only subsumes dead-end detection

— all edges incident with a dead-end are clearly eliminable — but also includes problem-specific

redundancy, where if there are multiple paths from initial state to goal, all but one path can be elim-

inated. Rather than limiting learning to logical, factored domains, we consider a planning setting

where states and transition models are not necessarily logical or factored, and we take an empirical

approach in the spirit of the learning for planning literature.

2.1.3 Connections to reinforcement learning

It is worth noting that learning from failed planning attempts is related to the challenge of explo-

ration with sparse rewards in reinforcement learning (RL) [2, 4, 15, 26, 31, 35]. Especially relevant

is exploration in multitask RL; see Colas et al. [11] for a recent survey. Much of the difficulty of

7



exploration in RL stems from the transition model being unknown. For example, several approaches

attempt to learn a transition model and use prediction error to guide exploration [7, 39]. In our

planning setting, we assume the transition model is known.

2.2 Preliminaries

We consider deterministic finite planning domains with states S, actions A, and transition function

succ(s, a) = s′ with s, s′ ∈ S and a ∈ A. Transitions have nonnegative costs; for simplicity, we

assume unit transition costs. A single planning problem consists of an initial state s0 ∈ S and a goal

g ⊆ S. A solution to a planning problem is a plan, that is, a sequence of actions (a0, a1, . . . , aT−1)

such that st+1 = succ(st, at) for 0 ≤ t < T , and sT ∈ g. In this work, we are interested in satisficing

planning, where solutions need not be optimal.

Deterministic planning can be framed as graph search. A graph G = (V,E) for a planning domain

associates one node ns ∈ V per state s and one directed edge between nodes ns and ns′ with label

a, denoted (ns, a, ns′) ∈ E , if succ(s, a) = s′. A plan for a particular problem corresponds to a path

in the graph starting at ns0 and ending at a node nsT such that sT ∈ g.

We are interested in learning to plan more efficiently and effectively from previous experience.

Formally, we assume access to a set of Train planning problems with varying initial states and

goals. A set of held-out Test problems are used for evaluation after training. The state space S,

action space A and transition function succ are fixed across all problems. To permit generalization

between problems with disjoint states, we will assume access to a featurizer ϕ(s0, g, s, a, s
′) ∈ F ,

which maps an initial state, goal, and transition to a feature space (e.g., images).

We are specifically interested in learning from planning failures. In the planning-as-graph-search

setting, a failed planning attempt can be represented by the set of nodes V ′ and edges E ′ that were

explored during search; these constitute a subgraph G′ of the domain graph G, and the attempt is a

failure when no path in G′ leads from initial state to goal. Each Train problem is associated with

one such subgraph. The question motivating this research is: what, if anything, can be learned

from these failed searches that will aid planning in the Test problems?

8



2.3 Approach

The main insight leading to our approach is the following: in examining the subgraph of a failed

planning attempt, it is possible to identify sets of edges that are eliminable. These are edges that,

in hindsight, could have been left unexplored without inhibiting planning. Our approach is to use

these eliminable edge sets to learn a predictive model that will allow us to preemptively eliminate

edges on the held-out Test problems. We next formalize what it means for an edge set to be

eliminable and then describe the details of our model.

2.3.1 Eliminable Edge Sets

We start with a formal definition of eliminable edge sets:

Definition 1 (Eliminable edge set). Given a graph G = (V,E) for a planning domain and a problem

(s0, g), a set of edges E− ⊂ E is eliminable if either 1) the problem is unsolvable, or 2) the problem

is solvable in the subgraph G− = (V,E ∖ E−), i.e. there exists a path from ns0 ∈ V to a node nsT ∈ V

in the subgraph G−, where sT ∈ g.

Figure 1: Two search graphs where node n0 has the initial state and n∗ has the goal. Edge labels
omitted for clarity. (a) The edge set {(n0, n1), (n1, n

∗)} is eliminable, since a plan through n2 would
remain in the graph with those edges removed. (b) Given a failed search attempt that has only
expanded five nodes from the initial state, one can already see that the edge set {(n0, n1), (n1, n3)}

is eliminable. In this work, we use eliminable edge sets identified from failed searches to learn a
predictive model that allows us to preemptively remove eliminable edge sets on new problems.

In the graph illustrated in Figure 1a, where action labels are omitted for visual clarity, the edge

9



set {(n0, n1), (n1, n
∗)} is eliminable because the path ((n0, n2), (n2, n

∗)) remains in the graph with

the edge set removed. Similarly, {(n0, n2), (n2, n
∗)} is eliminable, since the path through n1 remains

in the corresponding subgraph. The set {(n0, n1), (n0, n2)}, however, is not eliminable.

From this example, we can see that eliminability is importantly a property of a set of edges

and cannot be reduced to a property of individual edges; one cannot determine whether the edge

(n0, n1) is safe to eliminate without knowing whether the edge (n0, n2) will also be eliminated.

There is a clear relationship between eliminable edges and plans: given the path of a plan, the

set of all edges not in the path is eliminable. However, as we will see in the next section, in the

subgraph for a failed planning attempt, where no plan can be found, it may still be possible to

identify nontrivial eliminable edge sets.

2.3.2 Eliminability in Failed Searches

Given a subgraph representing a failed planning attempt, we would like to identify an eliminable

edge set. We begin with definitions familiar from graph search.

Definition 2 (Expanded node, open node). Given a subgraph Gsub = (Vsub,Esub) of a domain graph

G = (V,E), a node n ∈ Vsub is expanded if for all edges (n, a, n′) ∈ E, (n, a, n′) ∈ Esub. Otherwise,

the node is open.

Definition 3 (Reachable node, edge). Given a graph G = (V,E) and a planning problem (s0, g), a

node n ∈ V is reachable if there is a path from ns0 to n in G. An edge (n, a, n′) ∈ E is reachable if n

is reachable.

The following lemma gives us a mechanism to identify eliminable edge sets in certain naturally

arising subgraphs.

Lemma 1. Given a subgraph Gsub = (Vsub,Esub) of the domain graph G, a planning problem (s0, g)

with ns0 ∈ Vsub, and an edge set E− ⊆ Esub, let G−sub = (Vsub,Esub ∖ E
−). Suppose 1) no plan exists in

Gsub; 2) all open nodes in Vsub are reachable in G−sub; and 3) all edges in E− are reachable in Gsub.

Then E− is eliminable.

10



Proof. To review, there are four graphs here:

• G is the full domain graph.

• Gsub is the subgraph of the failed search, that is, the nodes and edges that were explored

during a search where no plan was found.

• G−sub is the subgraph of the failed search with the edges in E− eliminated.

• Let G− = (V,E ∖E−) be the subgraph of the full domain graph with the edges in E− eliminated.

If the planning problem is unsolvable, any edge set is eliminable, and the conclusion is trivial.

Otherwise, there exists a plan in G, that is, a path from ns0 ∈ V to some nsT ∈ V with sT ∈ g. This

path must contain a node nopen that is open in Gsub; otherwise, the path would contain only nodes

that are expanded in Gsub, and Gsub would contain a plan, violating assumption (1). By assumption

(2), nopen is reachable in G−sub, and therefore also reachable in G−, since G−sub is a subgraph of G−. It

remains to show that there is a path from nopen to nsT in G−.

Consider a path from nopen to nsT in G. Let n′open be the last open node in this path, i.e., the

closest open node to the goal nsT . Since it is open, n′open is reachable in G−sub and therefore also in

G−. Now consider the edges on the path from n′open to nsT and suppose that one or more are in E−,

the eliminated set. Because E− ⊆ Esub, these edges are in Esub. Furthermore, by assumption (3), each

such edge is reachable in Gsub, and thus all of the constituent nodes are reachable in Gsub as well,

including nsT . But we assumed in (1) that Gsub does not contain a plan, so this is a contradiction.

Therefore no edges along the path from n′open to nsT are eliminated, and thus a plan in G− (from

ns0 to n′open to nsT ) is maintained after the elimination of E−.

Thus to test whether an edge set is eliminable in a subgraph for a failed planning attempt

(where no plan exists), one could check whether each edge is reachable in the subgraph, and that

there are paths from the initial state to all open nodes in the graph with the edges removed. For

example, consider the graph shown in Figure 1b, where the five non-goal nodes are expanded, but

descendants of n3 and n4 are open. In examining the five-node subgraph, we can see that the edge

11



set {(n0, n1), (n1, n3)} must be eliminable, since both edges are reachable, and a path from n0 to

n3 and a path from n0 to n4 remain in the graph after those edges have been removed.

Identifying Eliminable Edges in Forward Searches. In practice, when planning with

forward1 search algorithms like GBFS or A∗, we do not need to explicitly test whether edge sets

satisfy the criteria of Lemma 1. At any given time in the execution of these algorithms, the shortest

paths from the initial state to all open nodes are maintained. The edges in these paths are not

eliminable. The complement of this set — all previously visited edges that are not in the paths —

constitute an eliminable set. We can therefore extract an eliminable edge set directly from a failed

forward search.

2.3.3 Learning to Predict Eliminability

After applying the above technique to each problem (s0, g) in the Train set, we obtain one set

of eliminable edges per problem, denoted D−s0,g. For each problem, let D+s0,g be the complement

of D−s0,g: edges that were explored in the failed planning attempt for (s0, g), but are not in the

eliminable set. From these problem-specific sets, we can construct:

D
−
= {(s0, g, s, a, s

′
) ∶ (ns, a, ns′) ∈ D

−

s0,g}

D
+
= {(s0, g, s, a, s

′
) ∶ (ns, a, n

′

s) ∈ D
+

s0,g}.

Recall that we have access to a featurizer ϕ(s0, g, s, a, s
′) ∈ F . Applying the featurizer to all

points in D− and D+, we arrive at a dataset that is amenable to standard binary classification. After

training a classifier fθ ∶ F → {0,1} with parameters θ, we can use the learned model to eliminate

edges during search on a new problem. In practice, rather than pruning edges entirely, we will learn

a probabilistic classifier and use the predicted probability that an edge is eliminable to determine

the order of expansion during GBFS.
1This work focuses on forward search, but we expect that it possible to formulate a version of Lemma 1 that would

work for backward search as well, where expansion and reachability would emanate from the goal, rather than the
initial state.

12



It is important to emphasize that we are not learning to predict whether an edge is eliminable

in any universal sense; as we saw in Section 2.3.1, individual edge eliminability is not well-defined.

Instead, the learned model fθ can be used to predict a certain eliminable edge set for any given

problem. In other words, given a problem (s0, g), fθ acts like an indicator function: all edges

(ns, a, n
′

s) for which fθ(ϕ(s0, g, s, a, s
′)) = 1 are in the eliminable edge set.

Erring on the Side of Non-Eliminability. In predicting eliminability, false positives (incor-

rectly predicting “eliminable”) are more problematic than false negatives, since pruning or down-

weighting a crucial edge could doom or delay search. In early experiments, we found that learned

predictors would sometimes predict false positives as the search considered edges that were sub-

stantially different from those seen in the training data. To remedy this, inspired by previous work

in exploration for RL [49], we introduce an unseen wrapper around our classifier that determines

whether an edge is sufficiently different from previously seen edges by some metric, and if so, assigns

it a zero probability of eliminability (see Section 2.4.1 for details).

2.4 Experiments and Results

We now present preliminary experiments and results.

(a) TMaze (b) Hallways

(c) WallRoom (d) FourRooms

Figure 2: Miniworld Domains

13



2.4.1 Experimental Setup

Domains. We test our approach in four visual navigation domains implemented in Miniworld [9]:

TMaze, Hallways, WallRoom, and FourRooms. Hallways and WallRoom are custom domains original

to this work. All domains involve an agent navigating to a goal. Figure 2 (left images) shows top

views of the environments, where the agent’s initial position is portrayed by the red arrow and a

goal position portrayed by the red square. States are comprised of the agent position and direction.

There are three possible actions from each state: move forward, turn 90○ left, or turn 90○ right. Each

state is associated with a first-person image (Figure 2, right images). The featurizer ϕ(s0, g, s, a, s′)

is a concatenation of the images for states s and s′.

In domains such as TMaze and Hallways, we expect our model to learn that edges corresponding

to moving the agent forward into an empty hallway with no exits are likely to be eliminable. It is

less clear a priori that the model will learn useful information in WallRoom or FourRooms.

Model Class. We parameterize the eliminability classifier fθ as a convolutional neural network

(CNN). For the unseen wrapper (Section 2.3.3), we discretize the state space using locality-sensitive

hashing (LSH).

CNNs are implemented in PyTorch version 1.5.0. The image features are passed through two

convolutional layers with kernel size 10 and stride 1 and two max pooling layers with kernel size 2

and stride 2, followed by three fully connected layers with ReLU activation with hidden dimensions

120 and 84.

LSH maps high dimensional input to discrete hash codes, such that similar inputs are mapped

to the same hashes. In particular, we use SimHash [49], an LSH which measures similarity by

angular distance. Given a vector x ∈ RD, SimHash retrieves a binary code h = sgn(Ax) ∈ {−1,1}k,

where A is a k ×D matrix with i.i.d. entries drawn from from a standard Gaussian distribution

N (0,1). Larger k values correspond to fewer collisions and finer granularity in discretization (we

use k = 500). For our purposes, x is a flattened representation of ϕ(s0, g, s, a, s′), the image features

for an edge.

14



Data Collection. Each of the four domains has one training task. To collect failed searches,

we run blind best-first search (i.e., breadth-first search) with a predetermined number of node

expansions such that no plan to the goal is found. The number of node expansions is determined

as a proportion of the number of nodes an average best-first search takes to solve the problem.

For example, train_expansion=0.2 indicates that, for a task where blind search takes roughly 300

node expansions to solve, the training search expanded 60 nodes. We verified that no plans were

found in any training problem.

Training. The CNN is trained with binary cross-entropy loss, using the Adam optimizer [28]

with learning rate 0.0001 for 320 epochs.

Testing. Each domain has nine test tasks, with variation in the initial states and goals such

that none are identical to the training task. During test search, the model predicts eliminability

of edges as they are encountered. The probability of eliminability is used as a heuristic to guide

GBFS.

Additional Details. Each experiment configuration shown is run with 25 random seeds, where

randomness is introduced via neural network initialization, the SimHash A matrix, and the random-

ized tie-breaking during search. All search code is based on Pyperplan [1] and all neural-network

code is written in PyTorch [38].

2.4.2 Results

As shown in Figure 3, in each of the four domains and across various training expansion amounts,

the eliminability predictor improves search in test problems compared to a blind best-first search.

Improvements generally increase as the training expansion amount increases. In simpler domains

such as TMaze, we can see a case of diminishing returns; train_expansion=0.4 achieves almost the

same as train_expansion=0.6, which has indiscernable performance from train_expansion=0.8.

In figures 4 and 5 we probe the impact of the unseen wrapper. These experiments compare four

models: blind, blind_unseen, cnn, and cnn_unseen. blind is a simple best-first search, whereas

blind_unseen is the best-first search with the unseen wrapper, i.e. prioritizing unseen edges. cnn

15



Figure 3: Model performance for different amounts of training expansion, where training expansion
refers to the number of nodes expanded during training search as a fraction of the number of node
expansions required for a blind best-first search search to solve the problem. In all domains and
across different training expansion amounts, our approach improves upon a blind best-first search.

is the CNN model with no additions, and cnn_unseen, the CNN with the unseen wrapper, is the

model we used for the main results.

Figure 4 shows model comparisons for training_expansion=0.2, and Figure 5 shows model

comparisons for training_expansion=0.8. We see that, especially when search is limited during

training, the CNN model without the unseen wrapper can occasionally perform quite poorly, some-

times significantly worse than a blind search. Although the unseen wrapper can be a detriment to

average performance, it acts as a “safety net” and consistently prevents the CNN model from per-

forming much worse than blind search. Note that at both high and low training_expansion, the

CNN model with the unseen wrapper can provide substantial improvements to search in comparison

to the blind and blind_unseen models.

16



Figure 4: Models comparison at training_expansion=0.2

Figure 5: Models comparison at training_expansion=0.8

2.5 Discussion

In this direction of study, we investigated what can be learned from failed planning attempts alone,

finding generalized eliminable edge set predictors to be a promising candidate. Among many possible

future directions, we are most eager to (1) apply the approach in other domains, e.g., IPC tasks [33];

(2) study the approach in settings where nontrivial domain-independent (e.g., delete-relaxation)

heuristics are available; (3) investigate learning during a single search, using what is learned to

bootstrap planning in the rest of the problem; (4) consider further connections to the RL literature

on exploration, perhaps adapting our approach to the RL setting where the transition model is

unknown.

17



3 Goal-Conditioned Action Sampling in Integrated Task and

Motion Planning

Our second direction of study takes us to a more challenging integrated task and motion planning

setting. Here, the states and actions are hybrid discrete/continuous, and the planning is bi-level. For

example, when we wish to Place a block, our discrete action Place takes in additional continuous

parameters, perhaps the position and orientation of the placement. We have the higher level task

plan – to move a block, Pick then Place – but also the lower level motion plan that determines

the smooth trajectory towards the block to pick and the trajectory towards the destination to place.

The main question we investigate here is how to increase the effectiveness of planning when

the task planning is not “downward-refinable”, i.e. a task plan might not correspond to a valid

motion plan. This common situation occurs when the abstractions made by task planning overlook

potential infeasibilities that may arise during motion planning. A task plan to move a block into a

box might not work if the task-level abstraction does not capture the fact that the block does not

fit into the box.

We extend Neuro-Symbolic Relational Transition Models (NSRTs) [10], a class of models that

attempts to address the challenges in task and motion planning by combining symbolic planning

and neural models. Specifically, we add goal-conditioning to the learned action sampler in NSRTs

and show empirical improvements on two simulated robotic tasks.

3.1 Related work

3.1.1 Task and Motion Planning

Task and motion planning has been extensively studied by the robotics community. Early work

approached the problem assuming downward-refinability, finding a task plan first before finding

suitable continuous parameter values [36]. The downward-refinability assumption could be relaxed

if there is a mechanism to try alternative task plans when motion planning fails [44]. Alternatively,

18



in environments in which it is more costly to repeatedly create task-plans that are not downward-

refinable than to first find satisfying continuous parameters for task-level actions, it makes sense to

satisfy continuous constraints before task-level planning [43] [16] [22]. Yet another approach is to

interleave the search for task-level actions and satisfying continuous parameters [13] [14]. See [17]

for a survey including a more thorough discussion of these methods.

As discussed in [17], machine learning for task and motion planning may be helpful in three

ways: (1) learning models, (2) learning search guidance, and (3) learning sampling guidance. Our

previous direction of study broadly falls under the second category, and our current direction of

study falls under the third category.

3.1.2 Learning Action Samplers

There have been a number of previous studies on learning the action samplers that sample continuous

parameters for task-level actions. For example, [52] improves action sampling using risk-aware

sampling and diversity-aware sampling. The former uses a Bayesian estimate of the scoring function

to select action instances for planning; the latter encourages diversity by adapting a kernel used

in the sampling process based on previous planning experience. [27] learns an action sampler from

both on-target trajectories (towards the goal) and off-target trajectories, using GANs to estimate

an importance ratio to learn a target distribution that assigns low probabilities to inefficient actions.

As far as we are aware, our work is the first to study the effects of goal-conditioning a learned action

sampler.

3.1.3 Neuro-Symbolic Relational Transition Models

As previously mentioned, we work with NSRTs [10]. NSRTs use symbolic AI planning in an outer

loop to guide continuous planning with neural models in an inner loop. Unlike previous work in the

task and motion planning setting, NSRTs do not assume knowledge of an abstract or continuous

transition model. The models learn four components: (1) abstract actions that act on abstract

states, (2) an abstract transition model that defines the effects of abstract actions on abstract

19



states, (3) a low-level transition model over continuous states and actions, and (4) action samplers

that map abstract actions to continuous actions. In our work, we focus on learning for the action

sampler, and so we differ slightly from NSRTs by using a known continuous transition model. In

the next section, we will introduce formalisms used by NSRTs to better describe our work in the

models’ context.

3.2 Problem Setting

In the task and motion planning literature, predicates are a discrete set of named relations over

objects. Predicates such as Holding(block1) discretize the continuous state space by abstracting

away the continuous pose and physical properties of block1. A predicate applied to a specific object

is called a ground atom, whereas a predicate applied to typed placeholder variables is called a lifted

atom. For example, Holding(block1) is a ground atom, and Holding(?b) is a lifted atom where

?b is an unspecified block-type object. NSRTs assume that the set of predicates are given.

Following the notations in [10], we have that a Neuro-Symbolic Relational Transition Model

(NSRT) is a tuple ⟨O,P,E,h, π⟩ where:

• O = (o1,⋯, ok) is an ordered list of parameters, each of a specified object type.

• P is a set of symbolic preconditions, each of which is a lifted atom over the parameters O.

• E is a set of symbolic effects, each of which is a lifted atom over the parameters O.

• h is low level transition model mapping continuous states and actions to the next continuous

states. In the original work, this is learned; in our study we use a ground truth model.

• π(a∣v) is an action sampler, a neural network that defines a conditional distribution over

actions a ∈ A, where A is the continuous action space and v is a vector of attribute values.

In the original work, the authors learn and plan with a collection of NSRTs. The collective

preconditions P and effects E allow for task-level planning in the abstract state and action space,

and the collective h and π allow for refining the task-level plan into environment actions in continuous

space.

20



We can now discuss the details of the action sampler. First, we let σ denote an injective

substitution mapping each parameter oi of an NSRT to an object. This mapping allows us to

ground an NSRT with objects; a ground NSRT can be thought of as an abstract action. Then,

given a continuous state s and a ground NSRT with substitution σ, we can define the context of

s as vσ = s[σ(o1)] ○ ⋯ ○ s[σ(ok)], where ○ denotes vector concatenation. In other words, vσ is

the concatenation of attribute values of the objects acted on by the NSRT. After data collection,

trajectories are partitioned into transitions (vσ, a, vσ′) for learning; we refer the reader to [10] for

more details on the partitioning process. For the action sampler π, we use the transitions (vσ, a, ⋅) to

learn a distribution P (a∣vσ). Specifically, a fully connected network predicts the mean and variance

of a Gaussian distribution that maximizes the likelihood of the action a given vσ.

The goal of a task and motion planning problem is a set of ground atoms, e.g.

{Above(block1,block2),Above(block2,block3)}. In our current experiments, the goal is a sin-

gle ground atom. We can therefore create a goal attribute vector g by concatenating the attribute

values of the objects in the goal atom. To goal-condition the action sampler, we learn the distribu-

tion P (a∣vσ, g) by augmenting each transition with g to become (vσ, a, ⋅, g).

3.3 Experiments

We test goal-conditioned action sampling on two simulated 2D robotic environments, NarrowHallway

and Cover. Refer to Fig. 6 for a visual rendering of the environments.

The NarrowHallway environment involves a robot arm and two cans in a narrow corridor. The

robot arm has a fixed base position and can extend linearly any distance from the base (as long as

it remains within the hallway). The goal of each task in this environment is for the robot arm to

pick up a pre-specified desired can. However, in the initial state, the robot arm is unable to pick up

the desired can because the other can obstructs its path. Therefore, to complete the task, the robot

arm should first pick up the obstructing can, then place the obstructing can, and finally pick up

the goal. All of these pick and place actions must be collision-free, where collisions are defined as

picking from or placing at a position such that there is an angle of less than 45○ between the robot

21



Figure 6: (a) In the NarrowHallway environment, a robot arm with a fixed base near the entrance
of a narrow hallway must pick up the desired goal can represented by the green circle, but is initially
obstructed by another can. (b) The grey area shows the area of collision when picking the goal can,
and other cans in this area will lead to a failure in picking. (c) The Cover environment involves a
vertical robot arm picking up a block and placing it so that the entire block covers the target. The
robot arm must be above the allowed hand regions when picking and placing.

base, the pick/place position, and another can (see Fig 6b). The predicates for the NarrowHallway

environment are HandEmpty(?robot), Holding(?can, ?robot). The tasks in the environment

only vary based on the position of the desired can, which can appear either to the right-and-top or

left-and-top of the obstructing can.

The Cover environment involves a vertical robot arm, a block, a target region, and allowed hand

regions. The block and target region are located on a surface, and therefore their position varies

along one dimension. The goal of tasks in this environment is for the robot arm to pick up the block

and place it such that the block covers the entire width of the target region. While picking and

placing, the robot arm must be above the allowed hand regions. Therefore, to fully cover the target

region while placing the block in the allowed hand region, it may be necessary for the robot arm to

pick up the block at a position offset from the center. The predicates for the Cover environment are

Cover(?block, ?target), HandEmpty(?robot), Holding(?block, ?robot). The tasks in

22



the environment differ based on the block position, the target position, and the allowed hand region

under the target. The target is always offset from the center of the target, either on the left or the

right.

For the experiments, we vary the number of action samples per step, which is the number of

attempts the action sampler has to refine the high-level plan of abstract actions. The maximum

attempted number of high-level plans is kept the same within environments (2 for NarrowHallway

and 1 for Cover, which are the minimum numbers needed for finding a successful plan). Each

experiment is run over 10 seeds, which controls randomization over state initialization and model

initialization. We train on 50 tasks and test on 50 tasks; the tasks are currently of the same

complexity but we hope to increase the complexity of the test tasks in the future.

3.4 Results

Figure 7: Number of tasks solved (out of 50) for goal-conditioned vs non-goal-conditioned solving
action sampling strategies.

Our first set of experiments compares the success rate of goal-conditioned action sampling versus

non-goal-conditioned action sampling. As shown in Fig. 7, goal-conditioned sampling increases

the proportion of solved tasks in both NarrowHallway and in Cover. In NarrowHallway, goal-

conditioning sampling can solve the tasks perfectly starting from 1 sample per step (solving 50 of

23



50 tasks with 0 standard deviation). The non-goal-conditioned sampler increases in success as the

number of samples per step is increased, but only achieves the same performance at 5 samples per

step. In Cover, the goal-conditioned sampler solves an average of 35 out of 50 tasks with high

variance with 1 sample per step, but solves all 50 tasks consistently with under 10 samples per step.

The non-goal-conditioned sampler solves an average of 10 out of 50 tasks with 1 sample per step,

and its success generally increases with the number of samples per step. There is an unexpected

increase of variance and decrease in success rate above 8 samples per step, but we believe this may

be due to our smaller sample size of 10 seeds. We may further investigate this observation in the

future with a larger sample size.

Figure 8: Planning time for goal-conditioned vs non-goal-conditioned solving action sampling strate-
gies.

Our second set of experiments compares the planning time of goal-conditioned action sampling

versus non-goal-conditioned action sampling (Fig. 8). Here, we see that in both environments, goal-

conditioned action sampling results in planning that takes less time than non-goal-conditioned action

sampling. This is expected because goal-conditioned action sampling is likely to succeed in fewer

refinement attempts. In addition, the planning time increases as the number of allowed samples per

step increases. This is also expected, as the number of tasks that are refined to completion increases

along the x-axis.

24



Figure 9: Examples of goal-conditioned and non-goal-conditioned sequences, where key frames are
selected to be shown. (a) Goal-conditioned action sampling in NarrowHallway solves the task
successfully by choosing to place the obstructing can at a position that will no longer obstruct the
goal. (b) A common failure case in non-goal-conditioned action sampling is when the robot attempts
to place the obstructing can behind the goal, but the action fails because the desired can obstructs
the placement. (c) In Cover, goal-conditioned action sampling picks up the block at an offset so
that the block will successfully cover the entire target. (d) When not goal-conditioned, the sampler
may choose to pick up the block in the middle of the block, resulting in the robot arm outside the
allowed hand regions when placing the block to cover the target region.

25



In Fig. 9, we qualitatively observe the differences between goal-conditioned and non-goal-

conditioned action sampling. In the NarrowHallway environment (Fig. 9(a)(b)), we see that goal-

conditioned action sampling allows the robot to place the undesired can in a position that is neither

obstructed by the goal nor would potentially obstruct the goal in the future. Non-goal-conditioned

action sampling cannot make guarantees about either, and typically fails during placement of the

undesired can. In the Cover environment (Fig. 9(c)(d)), goal-conditioned sampling allows the

robot to pick the block in a position such that the placement successfully covers the target region.

Non-goal-conditioned sampling fails because sampling the pick action is not informed by the offset

between the target and target’s allowed hand region; the placement that covers the target region

requires the robot arm to be outside the allowed hand region.

3.5 Discussion

Therefore, in this direction of study, we found that goal-conditioning the action sampler in the

NSRTs framework increases the success rate and decreases the time of planning. Our current study

is limited to two simple tasks in which it is relatively clear that a relationship exists between the

continuous parameters chosen to refine abstract actions and the attribute values corresponding to

the objects in the goal atom. In the future, we would like to observe the effects of goal-conditioning

the action sampler in more complex tasks.

To do so, we must also increase the generalization capabilities of our goal-conditioned action

sampler. Our current approach assumes that there is only one goal atom, in which case a concate-

nation of the attribute values of the objects in the goal atom is sufficient to represent the goal.

We will handle multiple goal atoms using graph neural networks [40], which will allow us to better

represent multiple objects and their symbolic relationships as specified by the goal atoms.

26



4 Conclusions

In this thesis, we first explored learning from failures in classical planning. We defined eliminable

edge sets, and we showed how to find eliminable edge sets in search graphs. In experiments on

navigation tasks, we found that learning a model of edge eliminability can increase the efficiency of

planning on a new similar task; this improvement can be seen even if the failed search made little

progress towards the goal. We then investigated goal-conditioning action samplers in the NSRTs

framework, and we found that goal-conditioning the sampler increases success rate and decreases

planning time on two simulated robotic tasks.

Our two directions of study were both motivated by a desire for efficient planning. In our

first study, we wanted our planner to avoid repeatedly making similar mistakes, such as walking

down a dead-end hallway. Afterwards, we were curious about how we can learn to reason about such

failures in more complex, hierarchical planning settings. A real world motivating example analogous

to Cover is a robot attempting to place a tall canister upright into a bin – the robot that grasps

the canister from the side when picking up the canister will encounter a failure when attempting

to place it. How could we have the robot autonomously understand that the reason for failure was

the grasp orientation (top vs side), rather than the position of the side grasp? There is a significant

body of work on failure diagnosis and plan repair [29][5][51], but we realized a cleaner solution in

this case is to goal-condition the grasp, thus grasping correctly on the first try and avoiding failure.

More broadly, our methodology in learning eliminable edge sets works by extracting useful

information from the state features that is not captured by the state abstraction. In our naviga-

tion task, the visual information from the agent’s perspective was able to guide the search better

than only knowing the positional coordinates of the agent. This suggests that eliminable edge sets

or similar reasoning about the search graph may be helpful in future work on learning state ab-

stractions. Additionally, although our goal-conditioned action sampling is currently limited to the

NSRTs framework, we hope our study motivates future work in investigating goal-conditioning in

other learned samplers.

27



References

[1] Alkhazraji, Y.; Frorath, M.; Grützner, M.; Helmert, M.; Liebetraut, T.; Mattmüller, R.;
Ortlieb, M.; Seipp, J.; Springenberg, T.; Stahl, P.; and Wülfing, J. 2020. Pyperplan.
https://doi.org/10.5281/zenodo.3700819. doi:10.5281/zenodo.3700819. URL https://
doi.org/10.5281/zenodo.3700819.

[2] Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.;
Tobin, J.; Abbeel, P.; and Zaremba, W. 2017. Hindsight experience replay. arXiv preprint
arXiv:1707.01495 .

[3] Arfaee, S. J.; Zilles, S.; and Holte, R. C. 2011. Learning heuristic functions for large state
spaces. Artificial Intelligence 175(16-17): 2075–2098.

[4] Bellemare, M.; Srinivasan, S.; Ostrovski, G.; Schaul, T.; Saxton, D.; and Munos, R. 2016.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, 1471–1479.

[5] Bidot, J.; Schattenberg, B.; and Biundo, S. 2008. Plan Repair in Hybrid Planning. Advances
inArtificial Intelligence .

[6] Bonet, B.; and Geffner, H. 2015. Policies that generalize: Solving many planning problems with
the same policy. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

[7] Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894 .

[8] Campbell, M.; Hoane, A. J.; and Hsu, F.-h. 2002. Deep Blue. Artificial Intelligence 134: 57–83.

[9] Chevalier-Boisvert, M. 2018. gym-miniworld environment for OpenAI Gym. https://github.
com/maximecb/gym-miniworld.

[10] Chitnis, R.; Silver, T.; Tenenbaum, J. B.; Lozano-Perez, T.; and Kaelbling, L. P. 2021. Learning
STRIPS operators from noisy and incomplete observations. arXiv preprint arXiv:2105.14074 .

[11] Colas, C.; Karch, T.; Sigaud, O.; and Oudeyer, P.-Y. 2020. Intrinsically Motivated Goal-
Conditioned Reinforcement Learning: a Short Survey.

[12] DeepMind. 2020. AlphaGo: The Story So Far. https://deepmind.com/research/
case-studies/alphago-the-story-so-far.

[13] Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.; and Nebel, B. 2009. Semantic At-
tachments for Domain-Independent Planning Systems. International Conference on Automated
Planning and Scheduling .

[14] Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B. 2009. Integrating Symbolic and Geo-
metric Planning for Mobile Manipulation. IEEE International Workshop on Safety, Security
and Rescue Robotics .

28

https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://doi.org/10.5281/zenodo.3700819
https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far


[15] Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and Clune, J. 2019. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995 .

[16] Garrett, C.; Lozano-Perez, T.; and Kaelbling, L. 2017. FFRob: Leveraging symbolic planning
for efficient task and motion planning. International Journal of Robotics Research .

[17] Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.; Kaelbling, L. P.; and Lozano-
Pérez, T. 2020. Integrated Task and Motion Planning. Annual Review of Control, Robotics,
and Autonomous Systems .

[18] Garrett, C. R.; Kaelbling, L. P.; and Lozano-Pérez, T. 2016. Learning to rank for synthesizing
planning heuristics. arXiv preprint arXiv:1608.01302 .

[19] Gomoluch, P.; Alrajeh, D.; and Russo, A. 2019. Learning classical planning strategies with
policy gradient. In Proceedings of the International Conference on Automated Planning and
Scheduling, volume 29, 637–645.

[20] Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and Abbeel, P. 2018. Learning general-
ized reactive policies using deep neural networks. In Proceedings of the International Conference
on Automated Planning and Scheduling.

[21] Gutiérrez, M. A.; Manso, L. J.; Núñez, P.; and Bustos, P. 2018. Planning object informed
search for robots in household environments. IEEE International Conference on Autonomous
Robot Systems and Competitions .

[22] Hauser, K.; Ng-Thow-Hing, V.; and Gonzalez-Baños, H. 2011. Randomized multi-modal motion
planning for a humanoid robot manipulation task. International Journal of Robotics Research
.

[23] Helmert, M. 2004. A Planning Heuristic Based on Causal Graph Analysis. In ICAPS, volume 16,
161–170.

[24] Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.; and Borrajo, D. 2012. A review of
machine learning for automated planning. The Knowledge Engineering Review 27(4): 433–467.

[25] Jiménez, S.; Segovia-Aguas, J.; and Jonsson, A. 2019. A review of generalized planning. The
Knowledge Engineering Review 34: e5.

[26] Kaelbling, L. P.; Littman, M. L.; and Moore, A. W. 1996. Reinforcement learning: A survey.
Journal of artificial intelligence research 4: 237–285.

[27] Kim, B.; Kaelbling, L. P.; and Lozano-Perez, T. 2018. Guiding Search in Continuous State-
action Spaces by Learning an Action Sampler from Off-target Search Experience. Association
for the Advancement of Artificial Intelligence (AAAI) .

[28] Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

29



[29] Kleer, J.; and C, W. B. 1987. Diagnosing multiple faults. Artificial Intelligence .

[30] Knoblock, C. A. 1992. An Analysis of ABSTRIPS. Artificial Intelligence Planning Systems .

[31] Lehman, J.; and Stanley, K. O. 2008. Exploiting open-endedness to solve problems through
the search for novelty. In Eleventh International Conference on Artificial Life (ALIFE XI).

[32] Lipovetzky, N.; Muise, C.; and Geffner, H. 2016. Traps, invariants, and dead-ends. In Proceed-
ings of the International Conference on Automated Planning and Scheduling, volume 26.

[33] Long, D.; and Fox, M. 2003. The 3rd international planning competition: Results and analysis.
Journal of Artificial Intelligence Research 20: 1–59.

[34] Martin, M.; and Geffner, H. 2004. Learning generalized policies from planning examples using
concept languages. Applied Intelligence 20(1): 9–19.

[35] Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; and Abbeel, P. 2018. Overcom-
ing exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), 6292–6299. IEEE.

[36] Nilsson, N. J. 1984. Shakey the Robot.

[37] Paden, B.; Čáp, M.; Yong, S. Z.; Yershov, D.; and Frazzoli, E. 2016. A Survey of Motion Plan-
ning and Control Techniques for Self-driving Urban Vehicles. IEEE Transactions on Intelligent
Vehicles 1: 33–55.

[38] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen,
T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; De-
Vito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc,
F.; Fox, E.; and Garnett, R., eds., Advances in Neural Information Processing Sys-
tems 32, 8024–8035. Curran Associates, Inc. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[39] Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017. Curiosity-driven exploration by
self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 16–17.

[40] Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and G, M. 2009. The Graph Neural
Network Model. IEEE Transactions on Neural Networks 20: 61–80.

[41] Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning domain-independent planning heuris-
tics with hypergraph networks. In Proceedings of the International Conference on Automated
Planning and Scheduling.

30

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[42] Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrit-
twieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the game
of Go with deep neural networks and tree search. nature 529(7587): 484–489.

[43] Simeon, T.; JP, L.; J, C.; and A, S. 2004. Manipulation planning with probabilistic roadmaps.
International Journal of Robotics Research .

[44] Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.; and Abbeel, P. 2014. Combined
Task and Motion Planning Through an Extensible Planner-Independent Interface Layer. In
Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE.

[45] Srivastava, S.; Immerman, N.; Zilberstein, S.; and Zhang, T. 2011. Directed search for general-
ized plans using classical planners. Proceedings of the International Conference on Automated
Planning and Scheduling .

[46] Steinmetz, M.; and Hoffmann, J. 2016. Towards clause-learning state space search: Learning
to recognize dead-ends. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30.

[47] Steinmetz, M.; and Hoffmann, J. 2017. Search and Learn: On Dead-End Detectors, the Traps
they Set, and Trap Learning. In IJCAI, 4398–4404.

[48] Steinmetz, M.; and Hoffmann, J. 2017. State space search nogood learning: Online refinement
of critical-path dead-end detectors in planning. Artificial Intelligence 245: 1–37.

[49] Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, O. X.; Duan, Y.; Schulman, J.; De-
Turck, F.; and Abbeel, P. 2017. # Exploration: A study of count-based exploration for deep
reinforcement learning. In Advances in neural information processing systems, 2753–2762.

[50] Thayer, J. T.; Dionne, A.; and Ruml, W. 2011. Learning Inadmissible Heuristics During Search.
International Conference on Automated Planning and Scheduling (ICAPS) .

[51] van der Krogt, R.; and de Weerdt, M. 2005. Plan Repair as an Extension of Planning. Inter-
national Conference on Automated Planning and Scheduling (ICAPS) .

[52] Wang, Z.; Garrett, C. R.; Kaelbling, L. P.; and Lozano-Perez, T. 2021. Learning compositional
models of robot skills for task and motion planning. International Journal of Robotics Research
.

[53] Yang, Q.; and D, T. J. 1990. ABTWEAK: Abstracting a Nonlinear, Least Commitment
Planner. Association for the Advancement of Artificial Intelligence (AAAI) .

[54] Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control knowledge for forward search planning.
Journal of Machine Learning Research 9(Apr): 683–718.

[55] Zeng, C.; and Silver, T. 2021. Learning Search Guidance from Failures with Eliminable Edge
Sets. ICAPS Workshop on Planning and Reinforcement Learning .

31


	Introduction
	Methods of planning
	Our contributions

	Learning from Failures in Classical Planning
	Related work
	Learning inadmissible heuristics
	Dead-end detection
	Connections to reinforcement learning

	Preliminaries
	Approach
	Eliminable Edge Sets
	Eliminability in Failed Searches
	Learning to Predict Eliminability

	Experiments and Results
	Experimental Setup
	Results

	Discussion

	Goal-Conditioned Action Sampling in Integrated Task and  Motion Planning
	Related work
	Task and Motion Planning
	Learning Action Samplers
	Neuro-Symbolic Relational Transition Models

	Problem Setting
	Experiments
	Results
	Discussion

	Conclusions

