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Abstract 

Traditionally, tumor-specific antigens (TSAs) are believed to result solely from 

mutations occurring within specific cancer types. Peptides resulting from these mutations 

can be applied as therapeutic agents which engineer the body's immune system so that it 

can identify and remove tumorigenic cells with greater efficiency. These TSA-based 

therapeutics are known as neoantigen vaccines. Neoantigen vaccines have been 

developed for personalized treatment of cancer patients, resulting in the overall increased 

patient survival rates. However, the discovery process of neoantigen vaccines is 

considered inefficient, often resulting in delays in production, and subsequently, in the 

delivery to critical cancer patients. Despite developments of sophisticated algorithms, the 

discovery process of mutation-based neoantigenic TSAs continues to elude researchers 

with its rarity. The difficulties in the identification process may be attributed to the 

dynamic nature of the mutational landscape in each tumor. This dynamic nature makes 

identifying a viable neoantigenic mutation a possibility only to some cancer patients. 

Furthermore, the rate at which a tumor mutates also varies tumor-to-tumor and patient-to-

patient, making a streamline processing of neoantigen vaccine largely impractical. This 

Thesis serves as a new frontier towards improving TSAs identification and widening the 

discoverable landscape by identifying novel classes of tumor-specific antigens arising 

from alternative, non-mutational sources. The work done in this Thesis utilized open-

source bioinformatic tools in conjunct with in-house python scripts. The resulting tool is 

called the novel Hybrid de novo Transcriptome Assembly Pipeline (“hybrid de novo”). 



 

 

The novel hybrid de novo pipeline investigates non-mutational tumorigenic landscapes in 

carcinomas, sarcomas, and neoplasms in the lung. These landscapes are compared against 

the landscapes of a healthy human tissue panel (comprising of various tissues of the 

body) in order to identify the lung TSAs. The procedure largely analyzes total RNA-seqs 

of the cancer and healthy tissues to identify the presence of any non-canonical transcripts 

in the non-canonical transcriptional frames. These non-canonical transcriptional frames, 

which have previously been of little interest in cancer treatments field, have resurfaced as 

the prime suspect of potential sources for novel TSA isoforms. Utilizing the novel hybrid 

de novo pipeline, we were able to identify a total of 20 novel, non-canonical TSAs 

existing only within the lung cancer patient samples (N = 100), all of which were shared 

amongst the patients with varying degrees of frequency. We also identified an additional 

11 novel isoforms that have high expressions in cancer samples, and low expressions in 

healthy tissues (tumor-associated antigens – TAAs). Summarily, the application of the 

novel hybrid de novo pipeline in TSAs and TAAs discoveries, in conjunct to traditional 

pipeline (mutational-based) will improve the overall chance for neoantigen vaccine 

discovery and clinical translation. Furthermore, the presence of shared TSAs and TAAs 

show a significant potential for stratifying neoantigen vaccines in patients with similar 

tumor-genomic make up. If the process for patient genome profiling can be streamlined, 

groups of cancer patients whose tumor expresses shared TSAs/TAAs will benefit from 

ready-to-use ‘generic’ neoantigen vaccines. The concept of a ‘generic’ drug for use in 

personalized medicine will largely reduce the overall time required from lab-to-patient 

while maintaining the precision associated with traditional personalized medicine. 
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Chapter I. 

Introduction 

Background 

Over the past two decades, the emergence of cancer immunotherapy has rapidly 

advanced in the field of oncology worldwide. Cancer immunotherapy is a class of 

treatment that harnesses the power of the immune system in order to prevent, control, and 

eliminate cancer cells. Cancer immunotherapy has been considered another effective 

option for cancer treatments, joining surgeries, cytotoxic chemotherapy, and cellular 

irradiation. Cancer immunotherapy comes in many forms, including immune checkpoint 

inhibitors (ICIs), cancer vaccines, adoptive cell transfer, and tumor-infecting viruses 

(Rizvi, 2017; Voelker, 2020). Amongst these, the ICIs have been most widely used for 

commercial cancer treatments, resulting in dramatic decreases in subsets of malignancies.  

However, the anti-tumor effects of ICIs are generally dependent on the presence 

of the immune checkpoint receptors, which can be under-expressed in some cancer 

subtypes (Oiseth and Aziz, 2017) under immune-suppressive tumor microenvironment 

(TME). A TME is a major obstacle to the success of ICIs therapy since the tightly-packed 

compound of cancer cells does not allow for tumor-infiltrating lymphocytes (TILs) to 

reach immune checkpoint receptors. The lack of these receptors renders ICIs unusable, 

allowing cancer cells to evade the immunological recognition and escape (Bodey et al., 

2000). As ICIs are only effective against specific cancer profiles, researchers seek to 

improve cancer response via multimodal therapy with ICIs and cancer vaccines. Clinical 

trials of these multimodal therapies provided evidence of positive priming of cancer cells 
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via cancer vaccines. The combination immunotherapy approach can turn a ‘cold’ 

(immunologically low-response tumor) tumor ‘hot’ (immunologically high-response 

tumor) by targeting antigens expressed exclusively on cancer cells, allowing for TILs to 

enter the TME while also priming the T-cell immune responses (Collins et al., 2018). 

Evolution of Multimodal Immunotherapies 

In 2010, the first autologous cell-based cancer vaccine, sipuleucel-T, was 

approved by the United States Food and Drug Administration for the treatment of 

metastatic prostate cancer. Sipuleucel-T, which contains antigen-presenting cells (APCs) 

primed with a recombinant fusion protein, PA2024, revealed the first instances in 

precision immune engineering. In order to stimulate 'memory,' PA2024 makes use of 

granulocyte-macrophage colony-stimulating factor (GM-CSF), inducing the activation of 

APCs for the downstream immuno-processing of its fused prostatic acid phosphatase 

(PAP) antigen (Kantoff et al., 2010).  

Cancer vaccines such as sipuleucel-T engage the immune response by generating 

antigen-specific T-cells in combination therapy. The recognition process of cancer 

vaccine-induced T-cells is initiated by the binding of naïve T-cell receptors to foreign 

antigen from the vaccine contained in the major histocompatibility complex (MHC) class 

II of the human APCs. Upon recognizing a non-self antigen, primed T-cells undergo 

multiple proliferation phases to form a large pool of effector cells that recognize the same 

antigen presented on other cells of the body. After expansion, the newly formed pool of 

primed, effector T-cells facilitates the identification and removal of cancer cells with 

other lymphatic cells, such as the natural killer (NK) cells (Figure 1). 
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In 2017, a phase I study of sipuleucel-T and an ICI ipilimumab resulted in a 

statistical increase in serum antibodies specific to PAP and PA2024 above the level 

achieved with monotherapy of either medication (Scholz, et al. 2017). These results 

suggest the importance of antigen-specific T-cells undergoing the ‘prime-expand-

facilitate’ induced by the cancer vaccine, which improved the median survival rates of 

patients enrolled. 

 

Figure 1: Multimodal immunotherapy can prime, expand, and facilitate the anti-tumor 

response  

(Collins, et al. 2018) 
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Non-synonymous Mutated Neoantigen Vaccine 

Unlike sipuleucel-T, which is a cell-based cancer vaccine that is cultured in vitro 

as pre-primed, engineered APCs; the modern cancer vaccines employed 'internal' 

immune-engineering by inoculating cancer peptides to the patients directly. This modern 

method induces immune responses in vivo, reducing the need for high-level inoculation 

of live cells, thus easing difficulties in production, safety controls, and costs (Bassani-

Sternberg et al., 2016).  

With the refinement in modern cancer vaccine production, researchers now have 

the freedom to explore multitudes of vaccine candidates at a more modest cost, resulting 

in the development of ‘neoantigen’ class of vaccine for the use of T-cell based 

immunogenic priming. Neoantigens are special, non-autologous peptides that are 

presented on the surface of MHC class II of the APCs. The use of these antigens provides 

great specificity and accuracy for targeting cancer cells (Day et al., 2009). However, not 

all peptides are considered neoantigens. The criteria for being neoantigenic is dependent 

on multiple factors (Guo, Lei, and Tang, 2018; Wei et al., 2019; Hodge et al., 2020). 

First, peptides must be able to undergo APC uptake upon inoculation, where they are 

enzymatically lysated into smaller fragments. If the peptide fragments maintain strong 

kinetic affinities with the MHC class II protein, they will be presented on the surface of 

the APCs. Only after being presented on the APC are the peptides considered 

neoantigenic. The MHC-peptide complex is then recognized by the T-cell receptor and 

goes on to activate naïve T-cells (Oiseth and Aziz, 2017; Ribatti, 2017). 

Being based on loose peptides, neoantigens alone are poor inducers of the 

adaptive immune response necessary for T-cell activations. In order to induce effective 
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T-cell priming, adjuvants are needed to attract immune cells to the site of injection. 

Adjuvants also promote cell-mediated trafficking of antigens to draining lymph nodes, 

triggering APCs activation (Paston et al., 2021). Following priming, expansion, and 

facilitation of T-cells, the pool of effector cells will maintain a self-recognizing 

biochemical feedback loop (Ochsenbein, 2002) to avoid harming healthy cells, but will 

effectively induce cellular eradication upon the recognition of non-self antigens 

(Zugazagoitia et al., 2016; Ribatti, 2017). 

The number of peptide-based cancer vaccines being explored has increased since 

the establishment of neoantigens’ role in immune-priming. The search for potent cancer-

identifying neoantigens revolves around finding mutated antigenic peptides that present 

only on cancer cells, also known as tumor-specific antigens (TSAs). Modern neoantigen 

vaccines are based entirely on TSAs, delivering high specificity against tumors 

presenting such peptides (Anagnostou et al., 2017). 

On the other hand, TSAs are excessively rare. Since the mutations that generate 

TSAs are considered patient-specific, TSA identifications are performed patient-wise. As 

is with many personalized medicines, the process for neoantigen discovery and synthesis 

is slow (Schumacher and Schreiber, 2015). In practice, researchers use rapid-synthesis of 

multiple TSAs candidates with varying expression in cancer to provide for a broad-

coverage effect against tumors to compensate for the torpid turnaround time. This 

understanding that TSAs are ‘patient-specific’ mutagenic antigens that vary from patient-

to-patient dates back to 1957, when R.T. Prehn and J. M. Main published an article called 

‘Immunity to Methylcholanthrene-induced Sarcomas.’ This article, stating “that 

immunity to syngeneic tumors was theoretically impossible; the tumor was a part of the 
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self and therefore could not arouse an immune response” (Prehn and Main, 1957) 

provided ground concepts for many neoantigen vaccine discovery techniques and 

computational tools in the present day (Gubin et al., 2015). 

Methods in TSAs discoveries 

As patient-specific therapies go, the discovery of the patient’s own non-

synonymous somatic mutations is crucial in neoantigen vaccine development (Ott et al., 

2017; Hilf et al., 2019; Sun et al., 2019; Fang et al., 2020). Researchers searched for these 

mutations within the patients’ protein-coding regions in the form of RNA sequencing 

analyses. Most often, the mutations discovered for neoantigen vaccines are from single-

nucleotide variations (SNVs) and insertion-deletion (INDELS) mutational events. To 

identify these mutations, bioinformatic algorithms are used in conjunction with next-

generation sequencing (NGS), Deep sequencing, proteogenomic analyses, 

immunoprecipitation, and mass spectrometry (MS) to validate TSA candidates. RNA 

sequencing analyses and validation are often performed before downstream MS variant 

calling and MHC-binding assessment (Hodge et al., 2020). 

The process of MS variant calling involves heavy-duty processing in identifying 

candidate peptides and matching these peptides to those in the cancer proteome. The use 

of MS in neoantigen discoveries is so prevalent due to the ability of MS to directly 

compare peptide spectra between cancerous tissues to those in healthy tissues. In practice, 

however, one cannot easily isolate peptides of interest from cancerous tissues due to the 

scarce availability of cancer tissues and the large volume of MHC-specific antibodies 

needed for immunoprecipitation.  
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Since MS sensitivity to identify TSAs is conditional on the abundance of peptides 

for the spectra, peptides with low abundances cannot be detected (Hodge et al., 2020). 

Since low abundance peptides may escape undetected, the use of MS alone in the 

discovery process for neoantigens is impractical. In this sense, utilizing computationally 

analyzed RNA sequencing data alongside MS variant calling and MHC-binding 

assessment is now the standard workflow for neoantigen vaccines (Figure 2). 

 

Figure 2: A standard workflow for neoantigen peptide discovery  

(Hodge et al., 2020) 
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Still, the yield for immunogenic TSAs originating from SNVs and INDELs is low 

even amidst cancers with a high tumor mutational burden (TMB). TMB refers to the 

number of somatic gene mutations present in the tumor, varying across different cancer 

types. Tumors such as the non-small-cell lung cancer (NSCLC) and melanoma are 

considered to have high TMB (Alborelli et al., 2020; Stein et al., 2019). However, meta-

analysis from Bassani-Sternberg and their team showed infrequent presence of 

immunogenic TSAs in melanoma despite its high mutational burden compared to other 

cancer types (Bassani-Sternberg et al., 2016). In a cross-analysis of 13 different SNVs 

neopeptide studies, only 53 of the 1,948 SNVs tested were shown to elicit T-cell 

responses (Bjerregaard et al., 2017), averaging to merely two immunogenic TSAs per 

tumor. These statistics expectedly declined in classes of cancer with lower TMB, such as 

those in acute myeloid leukemia (AML). The lack of usable immunogenic TSAs in most 

classes of cancer prompted for additional sources of TSAs (Sahin et al., 2017). 

Origins of MHC-bound ‘non-canonical’ Antigens in Normal and Cancer Cells 

A recent study has shown MHC-presentation of targetable neoantigens originating 

from non-canonical sources within the cancerous mouse and human genomes (Laumont 

et al., 2018). These neoantigens do not contain mutated residue but are expressionally 

deficient in normal tissues, presenting only in the cancer genome. Laumont and his team 

also defined another class of peptides, which had been previously focused on by targeted 

therapy, called the tumor-associated antigens (TAAs). These peptides were employed 

only as cancer biomarkers due to their high expression in cancer tissues, but they also 

contain non-negligible expressions in healthy tissues. 
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The sources of these enigmatic, non-canonical peptides may be examined through 

the immunopeptidomes (Istrail et al., 2004). An immunopeptidome is a collection of 

recognizable peptides presented by the MHC molecule. The immunopeptidome from 

healthy human tissue is primarily composed of degraded proteins (retirees), defective 

ribosomal products (DRiPs), or short-lived proteins (SLiPs). The presentation of these 

peptides in normal cells represents the health of the cell and allows T-cells to determine 

whether a cell requires mediated removal and recycling (Dersh, Hollý, and Yewdell, 

2021). 

Interestingly, the majority of DRiPs are found from non-canonical translation 

events. DRiPs can arise from non-canonical translation initiation sites at the 'CUG' and 

other near-cognate (single-nucleotide difference from canonical 'AUG') start codons, or 

from non-canonical translation initiation factor 2A (EIF2A) instead of EIF2α-GTP-Met-

tRNAiMet complex (Starck et al., 2012). Further, non-canonical translation initiation has 

been shown to be significantly enhanced by stress, such as viral infections or 

environmental distress. The enhanced non-canonical translation preferentially generates 

peptides from the 3' to 5' untranslated regions (UTR) of the mRNA as well as alternative 

reading frames within the known coding regions (Starck et al., 2016). Despite the 

contribution of non-canonical translation to the antigenic immunopeptidome, the event 

constitutes a small fraction of the total cellular translation. The apparent paradox 

highlights a key feature of immunosurveillance, a process in which the host immune 

system recognizes and eliminates tumors – that the classical computational proteome 

poorly reflects the landscape of recognizable immunopeptidomes (Yewdell, Dersh, and 

Fåhraeus, 2019). 
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Given the rich population of non-canonical translations in the generation of MHC 

class I binding peptides, carcinogenesis can be thought of as a stressor. Carcinogenesis is 

the process with which cancer is formed from a normal cell, and is suggested to result 

from the dysregulation and aberrant translation of irregular peptides under duress for 

survival (Dersh, Hollý, and Yewdell, 2021).  

Compared to healthy cells, which are constantly regulated by proliferative 

checkpoints, tumors contain mutations that allow for avoidance of these checkpoint 

signals, resulting in uncontrolled proliferation. The aberrant growths in cancer cells give 

rise to both biochemical and physical stressors, such as hypoxia, nutrient deficiency, and 

chronic toxin exposure due to the lack of space and poor ventilation of the environment. 

In turn, the selective pressure within the TME naturally leads to the accumulation of 

genetic and epigenetic alterations within the surviving cancer cells. The surviving cancer 

cells can then evolve with enhanced non-canonical translational events (Sriram, Bohlen, 

and Teleman, 2018). 

To date, only a handful of studies have described targeting tumor 

immunosurveillance via non-canonical antigens. Despite successful personalization of 

non-synonymous mutation neoantigens targeting TSAs from various tumors (melanoma 

and glioblastoma), the computational prowess for identifying non-synonymous 

mutations, and subsequently, the neoantigens, falls short in malignancies with fewer 

mutations (Sahin et al., 2017; Hilf et al., 2019).  
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Current Approaches in TSAs and TAAs Discovery 

As non-canonical translational events are enhanced in physically and biologically 

stressed environments, tumors generated from these translational events provide insight 

into new-generation of antigen discoveries. The multi-level non-canonical translational 

events in tumors suggested TAAs as another viable target for cancer immunotherapy.  

Non-canonical TAAs have the potential to be much less expressionally present in normal 

tissues compared to cancer tissues since non-canonical transcriptional events evidently 

occur less frequently in healthy cells.  

These TAAs arise mostly from genetic and epigenetic amplification or post-

translational modification of peptides, which can originate from both the canonical and 

non-canonical translational frames. They also have the tendency for expression that are 

higher and preferential to cancer cells, which create another potential source for cancer 

neoantigen that could effectively target cancer cells without synonymous mutations most 

often associated with TSA landscape.  

Despite the theoretical lowered specificity for cancer cell targeting compared to 

TSA-based neoantigens, TAA-based antigen discoveries have been reported to have a 

much greater volume and discoverable landscape. This increased discoverable landscape 

improves the likelihood that the antigens can be shared amongst patients and thus, 

reduces the cost and time for neoantigen vaccine productions. These alternative 

translational events have hinted at the presence of other types of neoantigens.  
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It has been surmised that some classes of neoantigens should provoke greater 

immunogenic responses than others (Hodge et al., 2020). For example, a TSAs arising 

from SNV mutation is characterized by a single-nucleotide polymorphism, which can 

have highly similarity to the wild-type peptide and conform to the supposed 

immunogenicity of the antigen will have narrow-impact personalization as cancer 

neoantigen vaccine. On the other hand, a more exotic class of neoantigens 

immunopeptidome not arising from mutations but from non-canonical translating events 

lacking in the normal, healthy proteome could result in a broader-scale immunogenic 

effect. 

Further, despite the synonymous SNV/INDELS classes of neoantigens being 

classified as 'personal' (the mutation is specific to the person's tumor), other classes of 

neoantigens, such as driver neoantigens, may be shared amongst patients. However, non-

canonical neoantigens arising from other sources were previously overlooked due to 

difficulties in the detection and identification of their origins. However, insights into 

other potential sources of neoantigens previously described in the literature (1.) gene 

fusions (Wei et al., 2019), 2.) splice sites creation (Jayasinghe et al., 2018), 3.) alternative 

splicing (Kahles et al., 2018), 4.) intron retention (Smart et al., 2018), 6.) non-coding 

RNA (Laumont et al., 2018) from 5' to 3' UTR (Chong et al., 2020), and 7.) RNA editing 

and modifications (Christofi and Zaravinos, 2019) have been recognized as an important 

field of study for diversifying the pool for neoantigen identifications within the tumor 

genetic landscape. 
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Advances in next-generation sequencing (NGS), MS, and novel computational 

tools initiated the extensive search for novel sources of neoantigens. Laumont and 

colleagues have successfully utilized an alignment-free RNA workflow ("k-mer 

profiling) to identify immunogenic neoantigens from non-coding transcripts from 

RNAseq data in various cancer cells or neoantigen identifications within the tumors' 

genetic landscape. K-mer profiling has vastly improved mapping precision and variant 

calling accuracy over the classical MS searches and traditional alignment-based methods 

(Laumont et al., 2018). The translated peptides from the RNA transcriptome from k-mer 

profiling have been validated through MS for presentation match on MHC class I and 

further selected for in vivo studies. Specifically, the study has identified 1,875 MHC-

peptides on CT26 (murine colon carcinoma) and 783 on EL-4 (murine lymphoma) cell 

lines, showing a largely expanded immunopeptidome over the SNV/INDELS 

computational pipelines (Laumont et al., 2018). 

Another study suggested intron-retention to be a source of cancer neoantigen. 

Potential neoantigens derived from tumor-specific introns have been computationally 

identified from RNAseq and validated via MHC class I immunopeptidome MS data from 

various cancer cell lines (Smart et al., 2018). Failure of splicing machineries or splice-site 

mutation cause introns to be included in mature mRNA. The superposition of tumor-

specific introns neoepitope suggests that the aberrant splicing events in tumor models can 

generate abnormal transcripts, which can be translated into immunogenic, MHC-bound 

peptides. In fact, Smart and colleagues have shown that the identified intron retention 

events in melanoma tissue were able to increase the neoantigen load up to 70% compared 

to neoantigens of the same tissue solely considering the canonical somatic mutations. 
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Potential Sources of Novel Neoantigens 

Realistically, TSAs and TAAs discovered through mutations within the canonical 

reading frames make up only 1 percent of the patients’ genome (Lachmann et al., 2018; 

Chong et al., 2020). It is believed that the rest of the genome, which is the non-coding 

regions, contains unusable ‘junk DNA’ lacking instructions for cellular protein synthesis. 

However, the idea that shared TSAs and TAAs may exist beyond the canonical 

translation frame was suggested in three independent reports (Andreev et al., 2015; 

Gerashchenko et al., 2012; Starck et al., 2016). These reports reveal that specific stress 

conditions can shut down the canonical translation, all the while increasing the non-

canonical 5'UTR translation of stress-privileged transcripts. Furthermore, reports of the 

effect of pro-inflammatory cytokines, such as the type I interferon and tumor necrosis 

factor α (TNF-α), show an increased number of potential non-canonical translations 

(Prasad et al., 2016). 

Researchers continue to discover the unexplored potential for TSAs and TAAs 

discoveries within these non-coding regions, finding evidence of transcription and 

translation events independent of genetic mutations (Barvík et al., 2017, Laumont et al., 

2018). As the identification of non-canonical antigens remains an elusive area of research 

with little consensus over the most viable, most immunogenic sources for TSAs and 

TAAs, the search for more powerful computational algorithms and MS variant calling 

techniques continue (Laumont et al., 2018). The additional landscape from non-canonical 

transcription and translation events further presses for the need of an antigen discovery 

pipeline with greater flexibility.  
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As antigen repertoire grows, traditional sequencing and MS variant calling 

workflows require a renewed understanding of cancer biology to utilize the non-

canonical reading frames for immunotherapy successfully. 

While the standardized approach to neoantigen discovery relies on the 

identification of the non-synonymous mutation in tumors, the Thesis utilizes a 'hybrid', 

analysis of traditional RNA processing algorithms with de novo recognition of isoforms 

of transcripts that exists outside of the capture range of traditional algorithms. The novel 

“hybrid de novo” pipeline was formulated while considering the various and potentially 

unknown mechanisms from which non-canonical antigens may arise. 

A de novo concept of antigen discovery is not new. However, given evidence that 

TSAs and TAAs can originate from elusive sources, the ‘hybrid’ concept of our 

discovery pipeline makes for an improved tool for capturing wide ranges of antigens and 

isoforms of previously less-known sources both canonical- and noncanonically. In order 

to investigate the correlation between tumor formation, growth, and escape with non-

canonical transcription and translation events, we have generated three separate 

computational methods for discoveries. These differing methods comprise the overall 

novel hybrid de novo pipeline, which is based on multimodal prediction models 

combined with traditional mapping of the transcriptome to pre-existing genome 

annotations. 

The novel hybrid de novo pipeline is a tool that may be key to translating 

alternative-source TSAs and TAAs discoveries into a more practical clinical setting. 

Since current vaccine-to-patient turnaround time remains poor due to laborious 
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experimental and regulatory barriers, stratification of cancer vaccine proposed a more 

practical solution to clinical translation.  

In contrast to targeting tumor-specific, private TSAs and TAAs, the concept of 

‘shared’ immunogenic antigens from non-canonical sources makes cancer vaccine more 

applicable to a wider range of patients. Despite shared antigens being an underexplored 

topic, with shared TSAs being considered impossible, the vast alternative transcriptional 

and translational landscape which contains overlapping regions can prove to be 

promising (Laumont et al., 2018). The shared TSAs and TAAs found could be central for 

generating high-precision, high-stratification cancer treatments. The shared TSAs and 

TAAs can be further applied systemically for global-scale computational proteogenomic 

antigen discoveries to deliver ‘generic’ shared antigen-based cancer vaccines. 

The discovery of shared TSAs and TAAs with the novel hybrid de novo pipeline 

may also reveal the underlying mechanism in which cancers thrive. The aberrant 

transcriptional and translational events, the dysregulation of proliferative checkpoints, 

and the ability for immune escape may be explained through exploring the expression of 

these antigens in cancer.  
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Chapter II. 

Material and Methods 

For the scope of this Thesis, we explore the use of the novel hybrid de novo 

pipeline in discovering shared TSAs and TAAs amongst cancer tissue samples of various 

lung squamous cell carcinoma patients from the Cancer Genome Atlas (TCGA) database. 

As mentioned previously, while SNVs and INDELs can generate personalized 

neoantigens, which are likely to be TSAs, traditional antigen discovery pipelines lack the 

ability to process aberrant peptides from alternative sources (both canonical and non-

canonical). The novel hybrid de novo pipeline has the ability to capture a much wider 

range of these aberrant peptides. As a proof-of-concept for the wide-capture range of the 

novel hybrid de novo pipeline, we have generated ‘global’ (healthy) and ‘local’ (cancer-

specific) databases. Each database contains its own sets of peptides from canonical and 

non-canonical sources. In addition, peptides from the ‘local’ database are cross-examined 

with those within the ‘global’ database to identify for TSAs and TAAs with strong 

expressions.  

Both databases are generated from the total RNA sequencing data of multiple 

tumor- and health-tissue atlases (TCGA, NCBI, and ONCOBOX). Since the data used in 

this study contain human genetic information, they are protected under the NIH-

controlled access data download and management. Reports of data storage, security and 

privacy protocols are submitted to the dbGaP committee prior to data approval. Data 

download permission was granted via the eRA Commons platform. Pre-anonymized 

patient data are further encrypted and de-identified to provide local security. RNA 

sequencing data were classified into normal and tumor and stored separately.  
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Section I: Generation of Global and Tissue-specific Reference Databases 

I.I Sources of Human Medullary Thymic Epithelial Cells (mTECs) 

For this study, we have elected the use of healthy medullary thymic epithelial 

cells (mTECs) to represent the repertoire of T-cell recognizable self-antigens in the 

cancer differential expression studies. In the human immune system, mTECs represent a 

set of unique stromal cell populations within the thymus. These specialized cells are key 

to establishing lymphatic central tolerance and T-cell maturation, a process in which any 

self-reactive immature T-cells are eliminated or redirected. Since mTECs can recognize 

self- and non-self antigens from semi-random somatic rearrangements of the TCRs (via 

VDJ rearrangements), they are believed to contain the largest collection of T-cell 

recognizable self-antigens (Larouche et al., 2020).  

In this step, raw RNA sequencing data (as FASTQ files) from mTECs were 

obtained via various databases (NCBI-ANTE and ONCOBOX) with access permission 

following the sequence read archive (SRA) guidelines from NCBI servers. Despite some 

of the data being open-sourced, all data were anonymized based on dbGaP's two-step 

removal of personal information and identifiers. Each sample is given a study-specific 

identification number and stored in an individualized directory within the Quality 

Network Appliance Provider (QNAP).  

I.II Preparation of Data Security for the ‘Global’ Human Tissue Atlas 

In addition to the mTECs self-antigen repertoire, a comprehensive ‘global’ 

database containing multitudes of healthy human tissues was also generated. The need for 

this large-scale global transcriptome database is due to the ambiguity in a cancer’s true 
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primary site. Even though the cancer model used in this study has a primary site in the 

lung, the true sites of origin for each cancer sample may vary due to events of metastasis, 

clinical diagnosis, and removal. When combined with the mTECs transcriptome 

repertoire, the global database provides for a more comprehensive and complete outlook 

of what is considered ‘normal’ in T-cell mediated immune response against cancer.  

The Global Human Tissue Atlas (global atlas) is a multi-tissue transcriptome 

database generated from 22 types of healthy human tissues via the novel hybrid de novo 

pipeline. In this data preparation step, raw RNA sequencing data (as FASTQ files) from 

NCBI-ANTE and ONCOBOX were obtained with access permission following the SRA 

guidelines from NCBI servers. Our global atlas, including the mTECs, contains a total of 

168 samples: adrenal gland (6 samples), bladder (5 samples), bone marrow (11 samples), 

brain (9 samples), cervix (4 samples), colon (12 samples), esophagus (11 samples), 

kidney (8 samples), liver (11 samples), lung (8 samples), mammary gland (5 samples), 

medullary thymic epithelial cells (mTECs) (3 samples), ovary (4 samples), pancreas (8 

samples), prostate (6 samples), skeletal muscle (6 samples), skin (6 samples), small 

intestine (9 samples), stomach (15 samples), thyroid gland (6 samples), tonsil (7 

samples), uterus (2 samples), and whole blood nuclear cell (WBNCs) (6 samples). 

Despite some of the data being open-sourced, all data were anonymized based on 

dbGaP's two-step removal of personal information and identifiers. Each sample is given a 

study-specific identification number and stored in an individualized directory within the 

Quality Network Appliance Provider (QNAP).  
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I.III Quality Control of Input RNA Sequences 

RNA sequencing has become one of the most transient sources of data for 

biotechnology, engineering, and bioinformatics for the purpose of transcriptome 

profiling, and in our case, novel transcript and peptide discoveries. Due to the intrinsic 

design of current high-throughput Next-generation Sequencing (NGS) technologies, 

RNA sequences' quality may be compromised for their throughput, thus, requiring 

vigorous quality control (QC) procedures to ensure reproducibility in experimental results 

(Sheng et al., 2017). Two common issues in raw RNA sequencing data are the 

contamination of samples with genomic information from another species, and RNA-seq-

specific issues such as ribosomal RNA (rRNA) residual, RNA degradation, and varying 

read coverages (Zhou et al., 2018).  

In order to ensure clean data for analysis, RNA sequencing results (in FASTQ file 

format) were subjected to QC based on (1) sequencing-quality assessment and trimming 

and (2) detection of internal contaminants, and (3) detection of external contaminants 

using RNA-QC-chain following default settings (Figure 3). RNA-QC-chain utilizes a 

three-sequential workflow that first trims low sequencing-quality reads, which is 

followed by an rRNA filter, in which rRNA fragments are identified, extracted, and used 

to further identify the contaminating species, and lastly, multiple metrics are provided for 

the evaluated FASTQ data. The trimmed outputs of RNA-seq data are used for 

downstream processing. 
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Figure 3: The workflow of RNA-QC-chain  

(Zhou et al., 2018) 

I.IV RNA Sequence Alignment with the Human Genome 

In order to determine the position from which the RNA sequencing read has 

originated from within the human genome, the RNA reads are aligned to the reference 

genome using the STAR (Spliced Transcript Alignment to a Reference) aligner (Dobin et 

al., 2013). The STAR alignment was executed with STAR version 2.7.9a on an Intel® 

Xeon® CPU E5-2630 v4, 2.20 GHz, 98 GB RAM supercomputer under the Linux 

CentOS7 operating system with modified settings (Figure 4). 
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Figure 4: Settings of the STAR aligner for NCBI-ANTE and ONCOBOX read alignment  

(Techachakrit, 2022) 

STAR aligner is an RNA-seq alignment tool designed by Alexander Dobin and 

colleagues to align non-contiguous sequences directly to the reference genome. In 

contrast to traditional alignment methods, which are short-read mappers which align short 

reads to a database or splice junctions, STAR aligner utilizes their two-steps algorithms, 

namely (1) the seed search and (2) the clustering/stitching/scouring step (Dobin et al., 

2013). During seed search, the STAR aligner sequentially searches for a maximal 

mappable prefix (MMP) by way of identifying the read sequence R, the read location I, 

and the reference genome G. The MMP is thus defined as the longest substring (maximal 

mappable length (MML)) of the read sequence at location i that matches exactly one or 

more substrings of G.  
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Equation 1: Maximal Mappable Prefix (MMP) 

 

𝑅𝑖 , 𝑅𝑖+1, … , 𝑅𝑖+𝑀𝑀𝐿−1 

The first seeds identified were mapped to a donor splice site; then, the MMP 

search is repeated again in the unmapped portion for an acceptor splice site.   

 

Figure 5: A Schematic representation of the MMP in the first step of STAR algorithms  

(a) splice site junction detection, (b) mismatches, (c) tails. (Dobin et al., 2013) 
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The second phase of the STAR aligner utilizes a stitching mechanism to compose 

together an entire read sequence by attaching all the previously generated seeds together, 

as shown in Figure 5. In order to stitch together seeds in the proper order, the seeds are 

clustered together by proximity to select a set of anchor seeds, which other seeds were 

stitched on to. This stitching mechanism represents a single sequence, allowing for 

possible genomic gaps and overlaps between the inner ends of the reads. All seeds that 

are mapped within a genomic window around the anchors are then stitched together, with 

the assumption of a local linear transcription model. This approach greatly increases the 

sensitivity of the STAR aligner as compared to other alignment tools (Figure 6). 

Due to its high-throughput turn-around rates, we have elected to use STAR 

aligner as our aligning tool. In an attempt to generate the global atlas containing nearly a 

terabyte of data, STAR aligner excels in both speed and sensitivity. The computational 

tool exhibits the lowest false-positive rates with high sensitivity when compared with 

other RNA sequencing alignment algorithms in the field, such as TopHat2 (Kim et al., 

2013), GSNAP aligner (Wu et al., 2010), RUM aligner (Grant et al., 2011), and 

MapSplice (Wang et al., 2010) as shown in Figure 6. 

The GRCh38.102 human genome assembly and gene annotation were obtained as 

FASTA files and GTF files, respectively, from the open-source Ensembl genome 

database at the European Bioinformatics Institute (Yates et al., 2020). Each NCBI-ANTE 

and ONCOBOX sample was searched and mapped with the most extended matching 

sequence within the reference genome and searched again for unmapped regions of reads. 

The separate MMPs were then stitched together to generate complete read alignment for 

each sample. 
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Figure 6: Comparison of true-positive rates vs. false-positive rates of differing tools  

Comparison of true-positive rates (as a percentage) vs. false-positive rates (percentage) 

for simulated RNA-seq data using STAR, TopHat2, GSNAP, RUM, and MapSplice tools. 

(Dobin et al., 2013) 
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I.V RNA Read Assembly and Merging 

The resulting spliced read alignments, outputted as unsorted binary BAM files, 

were sorted based on reference position using SAMtools and assembled via StringTie. 

SAMtools is a set of utilities which facilitates interactions with DNA and RNA read 

alignments in the SAM, BAM and CRAM formats (Li et al., 2009). To pass the unsorted 

BAM files into StringTie for read assembly and merging, SAMtools version 1.11 with 

subcommand ‘sort’ was performed under default settings. Following sorting, StringTie, a 

high-efficiency read assembler version 2.1.4 (Pertea et al., 2015) was used under default 

settings to perform the primary assembly. The GTF results from the primary assemblies 

were merged to form a global reference for the secondary de novo assembly. The 

secondary assemblies were performed with and without the expression estimation mode 

(‘eb’ and ‘woe’ respectively), which limits the processing of read alignments to estimate 

the coverage of transcript with the merged global reference GTF (Figure 7).  

 

Figure 7: StringTie secondary assemblies, following the ‘eb’ and ‘woe’ protocols  

(Techachakrit, 2022) 
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StringTie is a transcript assembling tool that can simultaneously assemble reads 

and estimate their expression simultaneously. StringTie first groups the reads into 

clusters, which are then turned into splice graphs. The splice graphs are then used in 

iterative extraction of the heaviest path, construction of flow network, and computation of 

maximum flow for abundance estimation (Figure 8). 

 

Figure 8: Overview of StringTie algorithm in comparison to Cufflink and Traph  

(Pertea et al., 2015) 
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StringTie is used to assemble both of the canonical and non-canonical 

transcriptomes resulting from STAR alignment and is the basis of the novel hybrid de 

novo pipeline (Figure 9). First, a reference-based, human genome-guided assembly is 

used to reconstruct the read alignments to the genome, identifying clusters of reads 

representing the potential transcripts that have been previously annotated. Following the 

canonical transcriptome reconstruction, the STAR alignment reads are also assembled 

under the de novo transcriptome reconstruction, using the previously merged 

transcriptome library to avoid redundant isoforms. This multi-passes processing of 

StringTie generate a transcriptome that is fully missing from the annotated reference. 

 

Figure 9: A schematic workflow for a general tandem StringTie-based de novo analysis  

(Pertea et al., 2015) 
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When combined with the two-step algorithms generated by tandem StringTie 

runs, we generate the output of the novel hybrid de novo transcriptome. The assembly 

allows for comprehensive identification of all transcripts present in a sample, including 

annotated genes, novel isoforms of annotated genes, and novel genes. The resulting 

transcriptomes represent the libraries of each RNA sequencing sample. These 

transcriptomes are merged to generate the transcriptome database, which considers 

redundant transcript structures across all samples. 

I.VI Construction of Transcriptome-based Global Proteome Database 

The newly generated global transcriptome database was annotated with 

GFFcompare following default settings to identify each transcript's relationship to the 

reference genome. GFFcompare is a utility tool that can be used to compare, merge, 

annotate and estimate the accuracy of GTF and GFF files as compared to the reference 

genome (Pertea et al., 2020).  

Following annotations, the Transcriptome database was segregated into clusters 

based on their annotated output of strandedness using in-house python scripts: 1.) 

convertGTF_nt_sample_wise.py, 2.) GTF2FilteredList-eb.py, 3.) GTF2FilteredList-

woe.py, and 4.) seqkit.py (see Appendix 2, 3, 4, and 5 respectively), then translated based 

on its annotations for translation (forward, reverse, six-frames) using in-house python 

scripts: translate_allORF.py and GTF2TPM (see Appendix 6 and 7 respectively), 

resulting in six final outputs (eb-pos, eb-neg, eb-unk, woe-pos, woe-neg, woe-unk, 

respectively). The scripts were generated on Python 3.8.9. The six clusters of final 

outputs are then merged to generate a single normal tissue master FASTA file containing 

all ORFs from all the samples in the global transcriptome-based proteome database.  
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For the scope of this Thesis, we have kept all of the translated results, as any 

possible reading frames may be present in tumors. In order to deal with the large datasets, 

the most likely reading frames were flagged for each transcript based on researching 

peptides via BLASTP for assistance in prioritization. The resulting master FASTA file 

was then converted into a Python dictionary in tandem with its transcript per million 

(TPM) values. The Python dictionary format allows for the large quantity of files to be 

crossed search for unique and non-unique results. 

I.VII Construction of Tissue-specific Transcript Expression Database 

To identify the downstream tissue-specific transcript expressions in cancer cells, 

we constructed a database of tissue-specific expression levels for the transcript identified 

(section I.V). The transcripts were quantified with Salmon version 1.8.0 following the 

default protocol for single- or paired-end (dependent on the particular sample’s origin of 

RNA sequencing). Salmon is a transcript quantification tool that uses probabilistic two-

phase inference algorithms, consisting of light-weight mapping followed by and online 

and offline phases which estimate and refine the resulting expression levels (Patro et al., 

2017). The resulting nucleotide FASTA files (step I.V) were merged to act as a reference 

for the quantification. Duplicates within the nucleotide master FASTA file were marked 

and removed, and the master FASTA file was converted into a reference library with 

human genome GRCh38.p13 as its reference. The reference library was quantified 

against the original FASTQ files for read abundances. For the scope of this Thesis, the 

read abundances were not used in an isoform-level differential expression study but can 

be applied in tandem with computational tools such as Wasabi and Sleuth in R.   

  



 

34 

Section II: Identification of Sufficient Sample Size 

II.I Sample-level Transcript Rarefication 

In order to deliver an accurate global and tissue-specific database for the 

discovery of non-canonical tumor neoantigens, we calculated the number of samples 

required to capture substantial gene expression for analysis using our in-house python 

script: unique_counter.py (see Appendix 1). The Python script ‘unique_counter.py’ uses 

the rarefaction technique to subsample on the basis of sampling with replacement. 

Rarefaction is a technique used to access species richness from random samplings 

in the field of ecology. The technique was developed by Howard L. Sanders in 1968. The 

calculation allows for the estimation of species richness for a given number (N) of 

samples in the sample size. The resulting rarefaction curves are plots of the number of 

species as a function of N samples, which grow at a steep tangent first before reaching a 

plateau where saturation is achieved (Sanders, 1968).   

By applying the rarefaction technique to our transcript sampling, we are able to 

generate a saturation curve, estimating transcript homogeneity based on random 

sampling. By randomly sampling lower depths (known as subsampling) of specific 

numbers of RNA sequencing experiments and plotting the sample coverage of specific 

genes as a rarefaction curve, the saturation position would identify the numbers of 

samples required for a complete representation of sample coverage within the particular 

tissue. The information gained from these saturation points allowed us to understand the 

variability of transcript expression across samples from the same tissue. This has been 

utilized to identify as many unique transcripts as possible while distinguishing between 

false positives and rare transcripts, which may not be consistently detected in all samples. 
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Equation 2: Rarefaction estimation for the expected number of transcript species E(S) 

 

N = total sample size 

S = number of transcript species 

n = standard sample size for comparison 

Ni = number of individuals in the ith species 
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Section III: Quantitative Analysis of Individual Tumor Samples 

III.I Preparation of Data Security of the ‘Local’ Cancer Tissue Atlas 

The ‘local’ cancer tissue atlas is a transcriptome database containing lung cancer 

transcripts processed by the novel hybrid de novo pipeline. The local cancer atlas 

represents all discoverable coding and non-coding transcripts from the cancer sample set 

within the limit of the novel hybrid de novo pipeline.  

In this study, 100 patient-derived RNA sequencing data (as BAM files) of lung 

squamous cell carcinoma were obtained from the TCGA-LUSC project. In this data 

preparation step, raw BAM files from TCGA-LUSC were obtained with access 

permission following the dbGaP guidelines via the eRA Commons platform. The pre-

anonymized data were re-encrypted and de-identified for local storage in an 

individualized QNAP. Additional cancer atlases were generated for experimental 

purposes, but were used only as rarefaction models within this study. These atlases 

include the TCGA-KIRP (cervical kidney renal papillary cell carcinomas) and the 

TCGA-KIRC (renal clear cell carcinomas), following the same protocol. 

III.II Cancer RNA alignment with STAR aligner 

 In the TCGA database, the patients’ FASTQ files had been pre-aligned by the 

data donors in order to further improve data security resulting in downloadable BAM 

files. TCGA uses STAR aligner to align the cancer RNA reads to the human reference 

genome (version GRCh38.d1.vd1). 
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III.III RNA Read Assembly and Merging 

The resulting spliced read alignments, outputted as unsorted binary BAM files, 

was sorted based on reference position using SAMtools and assembled via StringTie. 

SAMtools version 1.11 with subcommand ‘sort’ were performed under default settings. 

Following sorting, a primary assembly was performed with StringTie version 2.1.4 under 

default settings. The GTF results from the primary assemblies were merged to form a 

global cancer reference for the secondary de novo assembly. The secondary assemblies 

were performed with and without the expression estimation mode (‘eb’ and ‘woe’ 

respectively), which limits the processing of read alignments to estimate the coverage of 

transcript with the merged global reference GTF, similarly to step I.V. (Figure 7). 

The resulting transcriptomes (TCGA-LUSC, TCGA-KIRP, and TCGA-KIRC) 

represent the libraries of each RNA sequencing sample. These transcriptomes are 

individually merged to generate the transcriptome database, which considers redundant 

transcript structures across each and all samples. 

III.IV Construction of Transcriptome-based Global Proteome Database 

The newly generated global transcriptome database was annotated with 

GFFcompare following default settings to identify each transcript's relationship to the 

human reference genome. Following annotations, the transcriptome databases were 

segregated into clusters based on their annotated output of strandedness using in-house 

python scripts: 1.) convertGTF_nt_sample_wise.py, 2.) GTF2FilteredList-eb.py, 3.) 

GTF2FilteredList-woe.py, and 4.) seqkit.py (see Appendix 2, 3, 4, and 5 respectively). 
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The resulting segregations were then translated based on thier annotations for 

translation (forward, reverse, six-frames) using in-house python scripts: 

translate_allORF.py and GTF2TPM (see Appendix 6 and 7 respectively), resulting in six 

final outputs (eb-pos, eb-neg, eb-unk, woe-pos, woe-neg, woe-unk). The scripts were 

generated on Python 3.8.9. The six clusters of final outputs were merged to generate a 

single normal tissue, master FASTA file containing all ORFs from all the samples in the 

global transcriptome-based proteome database. 

For the scope of this Thesis, we have kept all of the translated results, as any 

possible reading frames may be present in the cancer samples. In order to deal with the 

large datasets, the most likely reading frames were flagged for each transcript based on 

researching peptides via BLASTP for assistance in prioritization. The resulting master 

FASTA file was then converted into a Python dictionary in tandem with its TPM values. 

The Python dictionary format allows for a large quantity of files to be crossed search for 

unique and non-unique results. 

III.V Construction of Tissue-specific Transcript Expression Database 

To identify the downstream tissue-specific transcript expression in cancer cells, 

we constructed a database of tissue-specific expression levels for the transcript identified 

in section III.IV. The transcripts were quantified with Salmon following protocols in step 

I.VII. The resulting nucleotide FASTA files (step III.IV) were merged to act as a 

reference for the quantification process. Duplicates within the nucleotide master FASTA 

file were marked and removed, and the master FASTA file was converted into a 

reference library with human genome GRCh38.p13 as its reference.  
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The reference library was quantified against the original FASTQ files for read 

abundances. For the scope of this Thesis, the read abundances were not used in an 

isoform-level differential expression study, but again, can be applied in tandem with 

computational tools such as Wasabi and Sleuth in R. 

Section IV: Meta-analysis of Global Tumor Neoantigen Database 

IV.I Identification of shared ORFs within TCGA-LUSC 

In order to identify tumor-specific antigens in TCGA-LUSC, we utilized an in-

house Python script: TPM_dict-LUSC.ipynb (see Appendix 8). TPM_dict-LUSC.ipynb 

was run on Jupyter Notebook version 6.2.0 (Kluyver et al., 2016), a web-based 

interactive computing platform based on Python, to generate the TCGA-LUSC master 

peptide dictionary (‘the lung cancer dictionary’).  

The lung cancer dictionary contains nested information of each ORF, the 

transcript identified, the identity of origin in regards to the human genome, the patient 

derivation, and the cancer classification (the TCGA-LUSC in this case). By list 

comparisons in Python, we extracted all non-unique ORFs presented amongst the patient 

samples within the lung cancer dictionary. These non-unique ORFs are candidates for 

shared TSAs and TAAs, since they are shared amongst multiple patients within the 

sampling set. The resulting non-unique ORFs were extracted. The extracted results were 

parsed through a TPM check filter (TPM > 1) to assure sufficient expression before being 

counted and stored individually. The identified ORFs were later clustered in a transcript-

wise fashion based on their transcript ID. 
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IV.II Identification of shared, TCGA-LUSC-specific ORFs 

To identify ORFs which are specific to the sample set from TCGA-LUSC, we 

utilized the in-house Python script: TPM_dict-ONCOBOX.ipynb (see Appendix 9). 

TPM_dict-ONCOBOX.ipynb was run on Jupyter Notebook version 6.2.0 to generate the 

healthy tissue (NCBI-ANTE and ONCOBOX-based) master peptide dictionary (‘the 

healthy tissues dictionary’). 

The healthy tissues dictionary contains nested information of each ORF, the 

transcript identified, the identity of origin in regards to the human genome, the patient 

derivation, and the tissue of origins (amongst the 22 tissues the ORFs were generated 

from). By using two lists comparison in Python, we cross-searched all non-unique ORFs 

resulting from section IV.I with the newly generated healthy tissue dictionary. Any 

shared ORFs that are unique to the lung cancer dictionary are considered candidates for 

TSAs, while those that are also present in the healthy tissues dictionary are considered 

candidates for TAAs. The resulting non-unique ORFs were separately extracted. The 

extracted results were parsed through a TPM check filter (TPM > 1) to assure sufficient 

expression before being counted and stored as ‘TSA candidates’ and ‘TAA candidates’, 

respectively. The identified ORFs were later clustered transcript-wise based on their 

transcript ID. 

IV.III Analysis for potential antigens based on shared ORFs (TSA- and TAA-candidates) 

The shared TSAs and TAAs candidates identified in section IV.II were further 

analyzed for their potential as neoantigenic peptides. Namely, the ORFs undergo in silico 

predictions for proteasomal cleavages based on the human proteasome using NetChop 

version 3.1 on the web-based server under threshold settings of 0.5.  
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NetChop is a web server- and command-line Linux-based neural network 

proteasome cleavage prediction tool, which was trained on human data, including novel 

sequence encoding scheme and 1260 publicly available MHC class I ligands (C-terminus 

cleavage sites) for improved prediction accuracies (Kesmir et al., 2002; Nielsen et al., 

2005). NetChop intakes peptide FASTA files, which are the shared ORFs (TSA- and 

TAA-candidates) in this study. The identified cleaved peptides were outputted as tables 

containing residue numbers, amino acids, assigned prediction, prediction scores, and 

sequence names (Figure 10). 

 

Figure 10: Example output for NetChop version 3.1 

(Kesmir et al., 2002; Nielsen et al., 2005)
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Chapter III. 

Results 

 

Figure 11: Workflow for the Novel Hybrid de novo Pipeline 

The novel Hybrid de novo pipeline involved multi-step workflows of well-known 

computational tools, such as the STAR aligner and StringTie. (Techachakrit, 2022)  
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Section I: Design and rationale of the novel Hybrid de novo transcript reconstruction 

Pipeline for novel isoform discovery 

Attempts to computationally predict/discover TSAs via non-synonymous 

mutations faced the exceedingly high false discovery and low discovery rates, which 

resulted in the TSAs discovery being dependent on system-level molecular MHC peptide 

repertoire via the high-throughput MS/MS studies (Laumont et al., 2018). Even so, the 

current tandem MS (MS/MS) studies are still reliant on a user-defined protein database, 

most often generated from proteogenomics strategies in order to match the acquired 

MS/MS spectrum to peptide sequences.  

Ideally, for the discovery of TSAs, the transcriptome-based proteome database 

generated from RNA sequences that matched to these MS/MS spectra should contain all 

potential peptides, both annotated (canonical) and unannotated ones (non-canonical). 

Only by considering novel transcript isoforms that exist in a tumor or a cluster of tumors, 

which later would be translated into peptides, can we discover the extent of TSAs. 

Due to limitations with tandem MS software tools, current tools used in MS/MS 

analyses are unable to compute large search spaces created by translating all RNA 

sequencing reads in all reading frames. Thus, we devised the novel hybrid de novo 

pipeline (Figure 11) as a strategy for generating database for proteogenomic analysis, in 

order to re-investigate the non-canonical transcriptional frames to infer transcript 

structures from the mapped reads with and without the absence of previously annotated 

transcript structures.  
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By using a de novo transcript reconstruction strategy in tandem with the canonical 

transcriptome reconstruction, we can identify transcript clusters that are from canonical 

and non-canonical sources, and thus, comprehensively characterize the TSAs landscape 

coded from all genomic regions. 

In the first computational round of the pipeline, a canonical transcriptome is 

generated based on the alignment of normal and tumor RNA sequencing to the human 

genome and genome annotations provided by Ensembl (GRCh38.p13), which are then 

assembled into a transcriptome. Reads which are contained within exons are aligned with 

the reference genome, while reads that are spanned between splice junctions are aligned 

with gaps to the reference human genome. This first round of assembly results in multiple 

transcriptomes containing canonical (pre-annotated) transcripts that are specific to each 

input RNA sequencing sample. 

The second computational round of the pipeline involved using the merged results 

of the canonical transcriptomes (merged transcriptome) as an assembly reference for the 

de novo transcriptome reconstruction. The unbiased approach allows for comprehensive 

identification of all transcripts within the sample by excluding those that had been 

previously identified via canonical annotations (redundant transcript structures). While 

the common gene/transcript databases may contain some novel isoforms, this second step 

ensures a complete transcriptome identification from any genomic regions within the 

experimental samples.  



 

45 

 

Figure 12: Post-processing steps of the discovered data via novel Hybrid de novo Pipeline  

The discovery of databases involved post-processing of the obtained data in order to 

clean up and extract the necessary transcripts, and subsequently, in silico translated 

peptide. The workflow shows the steps involved with our in-house python script and 

Salmon quantification resulting in the final databases. (Techachakrit, 2022) 
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Section II: Post-processing analysis for the generation of Transcriptome-based Proteome 

Databases 

To generate interpretable data from the novel hybrid de novo analyses, we have 

generated a Python-based sub-workflow which convert the resulting GTF files into cross-

searchable peptide dictionaries on Jupyter Notebook. The post-processing pipeline has 

streamlined the procedure in generating the peptide dictionaries in both healthy tissues 

and cancer. The generated sub-workflow successfully provided easy-access to our 

translated ORF data across both canonical and non-canonical platforms. 

 The GTF file format or the general transfer file format are files resulting from the 

StringTie output, and are one of the final outputs of the novel hybrid de novo pipeline. 

The GTF file contains nine total fields, which are tab-separated in a Dataframe-like 

structure. These fields are (1) seqname – contains the name of chromosome of scaffold, 

assigned based on the reference genome during the computational processing, (2) source 

– the database or project name, (3) feature – whether the particular line is a gene, 

transcript, or exon, (4) start – the starting position of the particular feature, (5) end – the 

stopping position of the particular feature, (6) score – a point value assigned to the 

particular feature, (7) strand – forward, reverse, or unknown, (8) frame – denote the 

starting codon position, (9) attribute – a semicolon-separated list containing additional 

information of each feature. 

For the purpose of generating the databases, ‘the attributes’, which contained 

valuable information such as the gene ID, transcript ID, TPM, coverages, and FPKM 

must be extracted. However, the attribute length within each sample set can vary thus it 
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cannot be simply expanded to a finite number of cells as would the other fields of the 

GTF dataframe.  

Thus, we have elected to generate a Python function that would "parse" out the 

individual attributes, in their various lengths, and recombine them with the original 

Dataframe for downstream processing (see Appendix 1). 

The transcript ID generated in the GTFs were then counted and processed for 

uniqueness within each sample to generate subsampling data, which were used to 

generate the rarefaction curves. The rarefaction curves are used to identify the number of 

samples necessary to generate a relatively homogeneous and reliable database. For the 

rarefication procedures, we generated an in-house Python script ‘Unique_counter.py’ (see 

Appendix 1) that will subsample N numbers of the dataset, which were then parsed 

individually and counted. 

Following the identification of a sufficient sample size, we constructed a multi-

level GTF conversion tool that extracted the "transcript_ID" of the attribute field, as well 

as the "seqname," "start," and "end" fields. This information is stored in BED files 

(browser extensible data), a text file format that is used to store the genomic regions as 

coordinates and associated annotations. The data are presented in the form of columns 

separated by tabs. The BED files containing these coordinates were then fed into 

Bedtools2, in combination with an in-house Python script 

‘ConvertGTF_nt_sample_wise.py’ (see Appendix 2) which allowed for coordinate-based 

extraction of nucleotides based on genomic regions, resulting in nucleotide FASTA files. 

The ‘ConvertGTF_nt_sample_wise.py’ script contains a 'holder' that considers the exonic 

coordinate and sequence that has been fed into it, and acts as a stepwise find-and-stitch 
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secondary tool to assure novel isoforms are properly generated without the intronic 

regions.  

In order to decrease the number of false discoveries, we have elected to use a 

filtration system to segregate the raw nucleotide FASTA files generated via the Bedtools2 

and ‘ConvertGTF_nt_sample_wise.py’. We generated another in-house Python script 

‘GTF2FilteredList-eb.py’ and ‘GTF2FilteredList-woe.py’ (see Appendix 3 and 4, 

respectively), which generated a filtered list of each of the GTF lines based on their 

strandedness. The list of each strandedness (forward, reverse, and unknown) was fed as 

input into seqkit.py, which utilizes the tool Seqkit with a python automatic execution 

script ‘seqkit.py’ (see Appendix 5) in order to generate three different nucleotide FASTA 

files based on each individual input (Figure 12). 

The nucleotide FASTA files, now clustered based on their strandedness were then 

translated accordingly (forward, reverse, and six-frames, respectively) using an in-house 

Python script ‘translate_allORF.py’ (Appendix 6), which detects the flag extensions on 

the files and translates them accordingly based on found starting codons combination, 

resulting in datasets of peptide FASTA files. 

The peptide FASTA files were then piped into a Jupyter Notebook-based database 

Python nested dictionary. In Python, a dictionary is an unordered collection of items, 

which allows us to add key-to-value pairs of data. A nested dictionary contains another 

outer layer of key to a key-to-value pair of data. This storage format allows for us to 

create compact, transferrable, and searchable sets of databases that can search input 

peptides as values (Figure 13) 
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Figure 13: Jupyter Notebook view of the Peptide Search Algorithms over TCGA-LUSC 

Python dictionary (Techachakrit, 2022) 

The output peptides from the input 

"MGAVCTSGARSEREFRAQARDSARQDSAPGRRGPGAALGEGAVEGERRR" has 

resulted in the search over all entries of translational events of all 100 patients, returning 

two shared peptides within the TCGA-LUSC database, including its method and TPM  
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Section III: Sample-level transcript variability is greater in tumor samples than healthy 

control samples 

We have elected to compare a sample-level transcript saturation between TCGA-

LUSC (The Cancer Genome Atlas: Lung Squamous Cell Carcinoma Project) and the 

ONCOBOX healthy lung tissues. We have identified samples from 100 individuals from 

the TCGA-LUSC project, and determined that the number is sufficient to act as a 

baseline for sample-level transcript homogeneity (Figure 14). The method for this 

sampling follows a simple subsampling equation (see Method II.I) following gradual 

rounds of input increase and resampling. 

 

Figure 14: Sample-level transcript Rarefaction Curves 

(a) Healthy Lung Tissues (N = 8), and (b) TCGA-LUSC (N = 100). (Techachakrit, 2022) 
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Expectedly, there is an observable difference in the transcript saturation rates 

between the healthy lung tissues and the cancerous lung tissues. In the rarefaction curve 

generated from subsampling healthy lung tissues, the highest number of unique transcript 

counts is 120,982, with the mean maximum unique transcript counts of approximately 

103,388. The standard deviation amongst the maximum lung tissue samples (with 

sampling rounds of 5) is 11,845, with a margin of error of 5,297 unique transcripts.  

On the other hand, a much higher number of unique transcripts were identified in 

the cancerous lung tissues. At 100 samples (the studies’ technical limitation), the highest 

number of unique transcript counts is 485,790, with the mean maximum unique transcript 

counts of approximately 478,186. The standard deviation amongst the maximum 

cancerous lung tissue samples (with sampling rounds of 5) is 6,834, with a margin of 

error of 3,056 unique transcripts. 

The significant increase in cancer transcript variabilities post-hybrid de novo 

pipeline canonical and non-canonical transcript discoveries, compared with the healthy 

tissue transcript discoveries conform with the ideas that: (1) there is a greater variability 

in cancer cells, and (2) that these variabilities arise from non-mutational, non-canonical 

sources. 

On the other hand, since there are both systemic and technical limitations for 

usable data, we were unable to perform a one-to-one rarefaction analysis between the 

healthy and cancerous lung tissues. Ideally, 100 samples from healthy lung tissues should 

be used to compare for transcript variabilities, however, we were unable to obtain more 

total RNA sequencing data of the healthy lung tissues at this time. 
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In order to determine the general trend that greatly differentiated the sample-level 

transcript homogeneity between tumor and normal tissues, we further investigated 22 

other normal healthy tissues (a total of 168 tissue samples) from the ONCOBOX 

repertoire to identify the average trend for normal tissue saturation. Two additional 

rounds of rarefaction analyses were performed on TCGA-KIRC and TCGA-KIRP, which 

originated from kidney renal clear cell carcinoma and cervical kidney renal papillary cell 

carcinoma, respectively, in order to determine the same concept from the perspective of 

tumor diversity. We have found 8-12 samples to be sufficient for transcript homogeneity 

in non-tumorigenic, healthy tissues, while at least 100 samples are required for 

tumorigenic tissues (Figure 15 and 16, respectively). 

 

(a) (b)
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(c) (d)

(e) (f)

(g) (h)
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Figure 15: Sample-level Rarefaction Analysis on Various Tissues 

(a) Adrenal Gland, (b) Bladder, (c) Bone Marrow, (d) Brain, (e) Cervix, (f) Colon, (g) 

Esophagus, (h) Kidney, (i) Liver, (j) Lung, (k) Mammary Gland, (l) mTECs, (m) Ovary, 

(n) Pancreas, (o) Prostate, (p) Skeletal Muscle, (q) Skin, (r) Small Intestine, (s) Stomach, 

(t) Thyroid Gland, (u) Tonsil, (v) Uterus, (w) WBNCs. (Techachakrit, 2022) 

 

Figure 16: Sample-level Rarefaction Analysis on other TCGA projects  

(a) TCGA-KIRP and (b) TCGA-KIRC. (Techachakrit, 2022) 

(u) (v)

(a) (b)
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Section III: Non-canonical transcription sites are sources of shared TSAs amongst 

TCGA-LUSC clusters 

Through the Jupyter Notebook dictionary sub-workflows, we have identified 31 

ORFs that are shared within the TCGA-LUSC samples, ranging from 8 to 60 amino acids 

in length. Tracing back, these ORFs originated from 7 distinct transcripts: (1) 

ENST00000000233.8, (2) ENST00000000412.6, (3) MSTRG.1004.1, (4) 

MSTRG.10052.1, (5) STRG.1.1, (6) STRG.10.1, and (7) STRG.100.1. Three of the seven 

transcripts were derived from the "woe" computational procedure (STRG.1.1, 

STRG.10.1., and STRG.100.1), while two of the seven were derived from the "eb" 

computational procedure (MSTRG.1004.1 and MSTRG.10052.1), and two of the seven 

were from the canonical frames (ENST00000000233.8 and ENST00000000412.6). These 

ORFs are given a unique identification ‘ptx’ followed by a number ranging from 1 to 31 

(Figure 17). 

Amongst the 31 ORFs which were found to be shared amongst patients in the 

TCGA-LUSC sampling set, 20 are considered TSA candidates. The TSA candidates 

(ptx2, ptx3, ptx4, ptx6, ptx7, ptx9, ptx12, ptx13, ptx16, ptx17, ptx18, ptx20, ptx21, ptx23, 

ptx24, ptx25, ptx26, ptx27, ptx30, and ptx31) are ORFs that are completely absent from 

the healthy tissues dictionary (with TPM = 0), and have passed the expression level 

parsing in the lung cancer dictionary (with TPM > 1).  

The TSA candidates have been identified as ORFs originating from the non-

canonical transcriptional events (as annotated via StringTie), except for one (ptx2) which 

originated from canonical sources as a novel isoform. 
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Figure 17: Shared TCGA-LUSC ORFs in Cancer vs. Healthy Samples  

(Techachakrit, 2022) 
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Amongst the 31 ORFs which were found to be shared amongst patients in the 

TCGA-LUSC sampling set, 11 are considered TAA candidates. The TAA candidates 

(ptx1, ptx5, ptx8, ptx10, ptx11, ptx14, ptx15, ptx19, ptx22, ptx28, and ptx29) are ORFs 

that are present in the healthy tissues dictionary (with TPM ≠ 0), and have passed the 

expression level parsing in the lung cancer dictionary (with TPM > 1). The TAA 

candidates are present in various tissues (Figure 18).  

 

ptx Ad Bla Bon Bra Cer Col Es Ki Li Lu Ma Me Ov Pan Pro Ske Ski Sma Sto Thy Ton Ute Wbn 

1 6 5 11 9 4 12 11 8 11 8 5 3 4 8 6 6 6 9 15 6 7 2 6 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 1 0 0 0 0 0 

8 4 0 0 0 0 0 1 0 0 0 3 0 1 0 1 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

11 0 0 0 0 0 3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 0 0 

14 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

19 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

28 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 

Figure 18: Count of patients with TAA candidates expression in various healthy tissues 

Tissues listed from left to right, respectively: adrenal gland, bladder, bone marrow, 

brain, cervix, colon, esophagus, kidney, liver, lung, mammary gland, medullary thymic 

epithelial cells (mTECs), ovary, pancreas, prostate, skeletal muscle, skin, small intestine, 

thyroid gland, tonsil, uterus, whole blood nuclear cells (WBNC). (Techachakrit, 2022) 

  



 

60 

Interestingly, there were two sets of ORFs originating from canonical 

transcriptional events (ptx1 and ptx2) that are present in all TCGA-LUSC sampling sets. 

The first, ptx1 is a TAA candidate with presence in all healthy and cancer tissues. Since 

ptx1 is presented in all healthy tissues at relatively high TPMs, ranging from 5.65 to 

124.28 (Figure 19), its use as cancer biomarker and therapeutics may be null. The ORFs 

representing ptx1 were identified as an isoform of the nuclear distribution protein nudE-

like 1 (NDEL1) via UniProt search. The NDEL1 gene in the general coding regions 

encodes for a coiled-coil protein that plays key roles in cytoskeletal organization, cellular 

signaling, and neuron migration. It is required for mitosis in some cell types but appears 

to be dispensable for mitosis in cortical neuronal progenitors. Multiple isoforms of the 

genes have been previously observed, with a ubiquitous expression in all 22 listed tissues. 

On the other hand, the ptx2 is highly specific to the TCGA-LUSC sampling set. It 

is a TSA candidate, as it lacks any expression (TPM = 0) in the healthy tissues dictionary. 

All 100-lung cancer patients express ptx2 at varying degrees of TPM, ranging from 

23.2476 to 187.7537 (Figure 19).  

The transcript associated with ptx2, ENST00000000412.6, is a novel alternative 

isoform associated with the cation-dependent, mannose-6-phosphate receptor (CD-MPR) 

gene. CD-MPR plays a key role in lysosomal function through the specific transport of 

mannose-6-phosphate-containing acid hydrolases from the Golgi complex to lysosomes. 

Multiple isoforms of the genes have been previously observed. Additionally, the 

expression of CD-MPR protein has been noted to be influenced by estradiol in MCF-7 

breast cancer cells (Bannoud et al., 2018).  
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Figure 19: TPM values of shared peptide sequence amongst TCGA-LUSC samples  

The distribution of TPM values amongst the peptide ID (ptx1-ptx31) in the y-axis as 

correlated to the house-assigned TCGA-LUSC patient sample ID (LU1-LU100) in the x-

axis. (Techachakrit, 2022) 

Furthermore, we have identified an even split in expressions between ptx3 and 

ptx4 in amongst the 100 patients. Upon investigation, we have found that the first group 

of patients (50 people), belonging to those diagnosed with lung squamous cell 

carcinomas with ‘classical’ subtype, present the expression of ptx3 peptides and not ptx4 

peptides (Figure 19). On the other hand, the other half of our sample size (50 people), 

diagnosed with squamous cell carcinomas with ‘basal’ subtype presents the expression of 

ptx4 peptides and not ptx3 peptides. 



 

62 

According to the original study by the Cancer Genome Atlas Research Network, 

the classical subtype is characterized by chromosome instability, hypermethylation, and 

alterations in KEAP1, NFE2L2, and PTEN genes, while the basal subtype expresses 

alterations in the NF1 gene (Figure 20). 

We believe this to be a sampling bias on our end. Due to limited computational 

space, RNA data (in BAM file format) from 50 samples were first downloaded from the 

TCGA-LUSC project and subsampled for homogeneity. Due to insufficiency in the 

sample size, the data director had bulk downloaded another 50 samples and subsampled 

again, resulting in highly segregated results between ptx3 and ptx4.  

 

Figure 20: Gene expression subtypes integrated with genomic alterations 

(The Cancer Genome Atlas Research Network, 2012) 
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Section IV: Cross-tissues distribution analysis of ptx2 

We also performed a distribution analysis for the TPM values of the 31 ORFs that 

were shared (Figure 21). The overall distributions are trimodal, with the second mode 

roughly normal. With a special interest in the TSA candidate, ptx2, we overlayed the 

TPM distribution against the overall distribution, resulting in an approximately normal 

curve within the fourth quartile of the overall TPM values.  

 

Figure 21: TPM values of ptx2 as compared to the distribution of other shared peptides  

The distribution histogram comparing the results of ptx2, a peptide presented specifically 

to all TCGA-LUSC patient samples. (Techachakrit, 2022) 
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Section V: Identification of relative environmental factors on ptx2 

We further studied the potential correlations between this highly specific, high 

TPM, shared ptx2 peptide with a known factor of exposure, smoking. We have analyzed 

three separate situations in which smoking was involved: looking at the TPM value 

distributions of (1) ptx2 and the length of years the patient has been smoking (Figure 

22.a), (2) ptx2 and the number of cigarettes smoked per day (Figure 22.b), and (3) ptx2 

and packs of cigarette smoked per year (Figure 22.c).  

However, we were unable to find a statistically significant correlation in all three 

situations. This is due to the lack of homogeneity in the obtained data, where in the given 

samples of 100 patients, roughly 85% are clear smokers. However, the other 15% are of 

unknown origins, with which has partial to no information regarding the state of exposure 

to cigarettes. 30% of the sample also lacks the length of time that patients have been 

smoking prior to cancer diagnosis, even though they were denoted clinically as smokers.  

In Figure 22.b and 22.c, despite not showing a correlation with high TPM density, 

the randomness may suggest that smoking does not act as a factor that is relevant to the 

existence of ptx2. 
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Figure 22: TPM distributions of ptx2 amongst various smoking scenarios  

The TPM distributions of ptx2 amongst (a) years of smoking prior to cancer diagnosis, 

(2) number of cigarettes smoked per day, and (c) number of packs of cigarette smoked 

per year. (Techachakrit, 2022) 
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Section VI: in silico peptide cleavage from TSA- and TAA-candidates 

The shared TSAs and TAAs candidates identified were analyzed for their 

potential as neoantigenic peptides. All 31 ORFs were processed for proteasome cleavage 

prediction via NetChop version 3.1. using the default C term 3.0 settings and a threshold 

of 0.5. The output peptides were sorted and counted length-wise. 

In order to identify peptides that are usable as neoantigens, they must fit into the 

core binding motifs of the MHC molecules. In humans, the core binding motifs of both 

MHC class I and II are comprised of peptides length of approximately 9 amino acids 

(Garcia-Garijo et al., 2019). However, amino acids of lengths between 8 to 11 are 

considered for neoantigen developments. 

Out of the 31 ORFs, 16 were identified to have viable lengths post-cleavage of 

between 8-11 amino acids. Amongst these 16 ORFs, 12 are TSA candidates (ptx2, ptx4, 

ptx9, ptx12, ptx16, ptx18, ptx21, ptx23, ptx26, ptx227, ptx30, and ptx31), while the other 

4 are TAA candidates (ptx8, ptx10, ptx22, and ptx28). For the purpose of this Thesis, we 

were able to identify both shared TSAs and TAAs candidates from the novel hybrid de 

novo pipeline.
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Chapter IV. 

Discussion 

In order to explore the global landscape of TSAs, we have developed the novel 

Hybrid de novo pipeline, utilizing proteogenomic approaches to incorporate both 

canonical RNA sequence processing and a de novo one to increase the range of 

discoveries of multiple novel isoforms. Even as the focal point of cancer vaccine 

immunotherapies was within the scope of non-synonymous mutations, we have expanded 

TSA discoveries to the non-canonical transcriptional frames. The study shed light on 

where previously unmet needs in oncological research and medicine reside with its 

unanticipatedly large TSA landscape. 

In the 20 TSAs and 31 TAAs shared within the TCGA-LUSC sample group, only 

2 (ptx1 and ptx2) were discovered based on atypical canonical transcriptional frames, 

while the rest resulted from non-canonical origins. The lack of fully annotated peptide 

amongst the list of TSAs and TAAs suggest an alarmingly high number of antigens that 

were missed by traditional RNA sequence processing approaches, which focused on 

exonic mutations. In addition to capturing of canonical transcriptional frames from the 

RNA sequencing data, our approach efficiently captures ORFs generated from other 

sources of non-mutational, non-canonical translational frames such as complex structural 

variants.  

Since most TSAs and TAAs discovered via the novel Hybrid de novo pipeline 

which derives from non-coding regions do not overlap their mutational counterparts, they 
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present major advantages over traditional neoantigens arising from mutational-based 

tumor specificity. Whereas traditional mutational-based TSAs are a private, yet changing 

repertoire for a singular patient, the shared TSAs and TAAs promise greater potential for 

therapeutics and diagnosis biomarkers, as they are shared amongst multiple patients. As 

biomarkers, shared TSAs and TAAs can yield early diagnosis of cancers, leading to 

better prognosis overall. The process of developing the TSAs vaccine should not be 

limited to neoantigens arising from mutations, but also include the ones shared amongst 

tumors. Provided that the search for neoantigens, in the future, encompasses these shared 

TSAs, the potential for a more 'generic' targets for T-cell-based cancer immunotherapy 

may be possible. If so, it will decrease the production time, cost and delivery to further 

improve the patients' quality of life.  

Limitations 

Despite potential access to international databases, such as the TCGA, NCBI-

ANTE, and ONCOBOX, we acknowledge that the availability of normal human thymus 

and normal human tissues is limited; thus, we rely on computational optimization for 

creating a well-rounded global database that would potentially capture most of the self-

expressed peptides. However, it could not be guaranteed that the global database would 

fully capture the true extent of all normal human self-expressed peptides and thus 

required reupdating of the database for greater computational precision. Further, since 

neoantigenic non-canonical transcripts are still an underexplored field of study, there 

were issues of validating novel transcripts, prioritizing reads from increasingly large 

databases, identifying likely reading frames and maintaining a compact mini-database for 

downstream MS searches. 
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In the identification of sufficient sample size, the concerns of sensitivity and false 

discovery rate come into play. Even though the number of samples required for complete 

sample coverages can be calculated statistically, we cannot guarantee the number of the 

tissue samples available. If the number of available samples is lower than those required 

by the rarified results, we flagged the specific tissue within the database as incomplete. 

The results of an incomplete tissue-specific database cause a lower accuracy (higher false 

discovery rate) when computing for neoantigens within tumor samples. However, it 

would not decrease the rate of discovery within the computational pipeline. 

For Quantitative Analysis of Individual Tumor Samples, the peptides identified 

through this pipeline are not representative of all possible neoantigen peptides, as it does 

not account for specific mutation-based peptides (which are the current common 

pipeline). However, for usages in neoantigen identification, the current neoantigen 

variant calling pipeline for single-nucleotide variations (SNVs) and insertion-deletion 

(INDELS) mutations can be combined with this pipeline for an improved rate of 

neoantigen discovery. 

Finally, in this computational study, we hypothesized the existence of a shared, 

possibly tumor-driven antigens when searching in a larger pool generated from the 

computational pipeline, taking into account the non-canonical origins. However, these 

transcriptome-derived peptides may not be translated in vivo. Our work presents the 

possibility of the shared TSAs and TAAs. Further, the identification of shared peptides 

could not guarantee immunogenicity in vivo. Regardless, the resulting meta-analysis 

should reveal the intrinsic biology of different cancer from a broader perspective. 
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Appendix 1 

Unique_counter.py 

import pandas as pd 

import os 

import random 

import glob 

import numpy as np 

import argparse 

 

def parse_files(fname): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes 

    Returns: Filtered list with two columns 'transcript_id', 'FPKM_val' 

    V.3 

    ''' 

    #import files, remove 2 rows 

    df = pd.read_csv(fname, delimiter = '\t', header = None, skiprows = 2) 

     

    #rename columns 

    df.columns = ['seqname', 'source', 

'feature','start','end','score','strand','frame','attributes'] 

 

    #split attributes 

    if fname.endswith("_eb.gtf"): 

        cols = ['gene_id', 'transcript_id_raw', 

'ref_gene_name','cov','FPKM_raw','TPM','blank'] 

        df[cols] = df.attributes.str.split(';', expand = True) 

        df[['toss1', 'transcript_id_mark', 'transcript_id']] = 

df.transcript_id_raw.str.split(" ", expand=True) 

        df[['toss2', 'FPKM_mark', 'FPKM_val']] = df.FPKM_raw.str.split(" ", 

expand=True) 

    else: 

        cols = ['gene_id', 'transcript_id_raw', 'reference_id', 

'ref_gene_id','ref_gene_name','cov','FPKM_raw','TPM','blank'] 

        df[cols] = df.attributes.str.split(';', expand = True) 

        df[['toss1', 'transcript_id_mark', 'transcript_id']] = 

df.transcript_id_raw.str.split(" ", expand=True) 

        df[['toss2', 'FPKM_mark', 'FPKM_val']] = df.FPKM_raw.str.split(" ", 

expand=True) 

 

    #get rid of quotations around values 

    df['transcript_id'] = df.transcript_id.str.replace('"', '') 

    df['FPKM_val'] = df.FPKM_val.str.replace('"', '') 

 

    #Boolean filter for only FPKM (ignore cov) 

    df = df[df.FPKM_mark=='FPKM'] 
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    #convert string value to float 

    df.FPKM_val = df.FPKM_val.astype(float) 

 

    #final dataframe 

    df_filtered = df[['transcript_id', 'FPKM_val']] 

 

    return df_filtered 

 

def key2files(files_lst): 

    """ 

    Function: Convert input files to Dict 

    Returns: Dict with common Key name to multiple values 

    """ 

    samples_dict = {} 

    for f in files_lst: 

        s = f.split('_')[0] 

        if s not in samples_dict: 

            samples_dict[s] = [] 

        samples_dict[s].append(f) 

    return samples_dict 

 

def merge_df(lst_fname): 

    """ 

    Function: Merge & parsed input files 

    Input: List of files 

    Returns: Merged file with two columns "transcript_id" "FPKM_val" 

    """ 

    merged_df = None 

    for fname in lst_fname: 

        df1 = parse_files(fname) 

        if merged_df is None: 

            merged_df = df1 

        else: 

            merged_df = pd.concat([merged_df, df1]) 

    return merged_df 

 

def calc_unique_tx(idx, samples_dict) -> int: 

    """ 

    Function: Calculate Unique transcripts based on merged df 

    Returns: unique counts of the file 

    """ 

    unique_tx = [] # running list of unique transcripts 

    for i in idx: 

        df_filtered = merge_df(samples_dict[i]) 

        df_filtered = df_filtered[df_filtered.FPKM_val >= 1] 

        unique_tx_tmp = df_filtered.transcript_id.unique().tolist() # unique tx 

list for given file 

        unique_tx = unique_tx + unique_tx_tmp 

 

    return len(np.unique(unique_tx)) 

 

def retrieve_unique_counts(n_increment, samples_dict): 

    """ 

    Function: Retrieve Unique Counts 

    Input: n_increment is the number of increasing increments 
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    """ 

     

    n_samples = 1 #number of samples for sampling 

    n_samples_total = len(samples_dict) #number of total samples files 

     

    dfs = [] 

 

    while True: 

        for i in range(5): 

            n_idx = [random.randint(0, n_samples_total-1) for n in 

range(n_samples)] 

            idx_key = [list(samples_dict.keys())[i] for i in n_idx] 

            n_unique_tx = calc_unique_tx(idx_key, samples_dict) 

            df = pd.DataFrame([{'n_sample': n_samples, 'n_unique_tx': 

n_unique_tx}]) 

            dfs.append(df) 

        n_samples += 1 #increments 

        if n_samples > n_samples_total: 

            break 

    df_merged = pd.concat(dfs, ignore_index=True) 

     

    return df_merged 

 

def main(args): 

    #list of input files within the folder 

    print("Starting unique counter...") 

    files_lst = [f for f in glob.glob("*.gtf")] 

    samples_dict = key2files(files_lst) 

    random.seed(10) 

    df = retrieve_unique_counts(args.n_increment, samples_dict) 

    print("Writing output...") 

    df.to_csv('output.csv') 

     

 

if __name__ == '__main__': 

    parser = argparse.ArgumentParser(description="Unique counter") 

    parser.add_argument('n_increment', type=int) 

    args = parser.parse_args() 

 

    main(args) 
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Appendix 2 

ConvertGTF_nt_sample_wise.py 

import glob 

import os 

import sys 

import pybedtools 

from pybedtools import BedTool 

from os import path 

from gtfparse import read_gtf 

 

def GTF2BED(files_lst): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes 

    Returns: BED files (CSV) with 'chromosome', 'start', 'end', 'exon_id', 

'score', 'strand' 

    V.1 

    ''' 

    #import files via gtfparse 

    for file in files_lst:   

        df = read_gtf(file) 

        df = df.rename(columns = {'seqname':"chromosome"}) 

        df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

        df['length'] = df['end'] - df['start'] 

     

        df = df[df['feature'] != 'transcript'] 

        df = df[df['length'] != 0] 

     

        #return df_filtered 

        df_filtered = df[['chromosome', 'start', 'end', 'exon_id', 'score', 

'strand']] 

     

     

        df_filtered.to_csv(file[:-4] + ".bed", sep = '\t', header = False, 

index = False) 

 

def BED_toNT(bed_lst): 

    ''' 

    Function: take in BED file from list and extract nt sequences based on 

GRCh38.102 fasta file, then stitch together multiple exons to form transcript & 

isoforms 

    Returns: fasta file in multiple-exons as novel isoforms 

    ''' 

    in_fasta = BedTool('/shareqnap/TCGA_JT/GRCh38.d1.vd1/GRCh38.d1.vd1.fa') 

     

    for b in bed_lst: 

        in_bed = BedTool(b) 

        bedExt = in_bed.sequence(fi = in_fasta, nameOnly = True) 

        #print(open(bedExt.seqfn).read()) 

     

        file = open(b[:-4] + ".fa", "w") 
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        s = open(bedExt.seqfn).read() 

     

        key2lines = {} 

        key = '' 

 

        for line in s.split('\n'): 

            line = line.strip() 

            if '>' in line: 

                key = line.split('_')[0] 

                continue 

            key2lines[key] = key2lines.get(key, '') + line 

        for e in sorted(key2lines): 

            #print(e) 

            #print(key2lines[e]) 

            file.write(e + '\n' + key2lines[e] + '\n') 

         

        file.close() 

 

pybedtools.helpers.set_bedtools_path(path='/data/users/techajir/.py3/lib64/pyth

on3.6/site-packages/pybedtools/') 

 

files_lst = [f for f in glob.glob("*.gtf")] 

bed_lst = [b for b in glob.glob(".bed")] 

 

GTF2BED(files_lst) 

BED_toNT(bed_lst) 
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Appendix 3 

GTF2FilteredList-eb.py 

import pandas as pd 

import glob 

from gtfparse import read_gtf 

 

def parseGTF2filterpos(gtf_name): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == '+'] 

    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListpos(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_eb.gtf"): 

            eb_merged = parseGTF2filterpos(fname) 

            eb_merged = eb_merged.append(parseGTF2filterpos(fname)) 

             

            eb_BED = eb_merged[['transcript_id']] 

         

    return eb_BED.to_csv("eb-pos_list.txt", header = False, index = False) 

 

def parseGTF2filterneg(gtf_name): 

    ''' 
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    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == '-'] 

    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListneg(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_eb.gtf"): 

            eb_merged = parseGTF2filterneg(fname) 

            eb_merged = eb_merged.append(parseGTF2filterneg(fname))    

             

            eb_BED = eb_merged[['transcript_id']] 

         

    return eb_BED.to_csv("eb-neg_list.txt", header = False, index = False) 

 

def parseGTF2filterunk(gtf_name): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == 'nan'] 
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    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListunk(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_eb.gtf"): 

            eb_merged = parseGTF2filterunk(fname) 

            eb_merged = eb_merged.append(parseGTF2filterunk(fname))    

             

            eb_BED = eb_merged[['transcript_id']] 

         

    return eb_BED.to_csv("eb-unk_list.txt", header = False, index = False)         

 

files_lst = [f for f in glob.glob("*.gtf")] 

 

merge_toListneg(files_lst) 

merge_toListpos(files_lst) 

merge_toListunk(files_lst) 
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Appendix 4 

GTF2FilteredList-woe.py 

import pandas as pd 

import glob 

from gtfparse import read_gtf 

 

def parseGTF2filterpos(gtf_name): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == '+'] 

    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListpos(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_woe.gtf"): 

            woe_merged = parseGTF2filterpos(fname) 

            woe_merged = woe_merged.append(parseGTF2filterpos(fname)) 

             

            woe_BED = woe_merged[['transcript_id']] 

         

    return woe_BED.to_csv("woe-pos_list.txt", header = False, index = False) 

 

def parseGTF2filterneg(gtf_name): 

    ''' 
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    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == '-'] 

    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListneg(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_woe.gtf"): 

            woe_merged = parseGTF2filterneg(fname) 

            woe_merged = woe_merged.append(parseGTF2filterneg(fname))    

             

            woe_BED = woe_merged[['transcript_id']] 

         

    return woe_BED.to_csv("woe-neg_list.txt", header = False, index = False) 

 

def parseGTF2filterunk(gtf_name): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes, filtering for one with 

TPM > 0 transcript 

    Returns: df with exon_id, filtered for exons only 

    V.1 

    ''' 

    #import files via gtfparse 

    df = read_gtf(gtf_name) 

    df = df.rename(columns = {'seqname':"chromosome"}) 

    df['exon_id'] = df['transcript_id'] + "_" + df['exon_number'] 

    df['length'] = df['end'] - df['start'] 

    df['TPM'] = df['TPM'].notna() 

    df['TPM'] = df['TPM'].astype(float) 

     

    df = df[df['strand'] == 'nan'] 



 

80 

    df = df[df['length'] != 0] 

    df = df[df['TPM'] > 0] 

    df = df[df['feature'] == 'transcript'] 

     

    #return df_filtered 

    df_filtered = df[['transcript_id']] 

     

    return df_filtered 

 

def merge_toListunk(files_lst): 

    ''' 

    Function: take in list of gtf files, parsing over them, and merged based on 

type, saving as csv (bed file) 

    Returns: csv files containing merged eb and woe results 

    V.1 

    ''' 

    for fname in files_lst: 

        if fname.endswith("_woe.gtf"): 

            woe_merged = parseGTF2filterunk(fname) 

            woe_merged = woe_merged.append(parseGTF2filterunk(fname))    

             

            woe_BED = woe_merged[['transcript_id']] 

         

    return woe_BED.to_csv("woe-unk_list.txt", header = False, index = False)         

 

files_lst = [f for f in glob.glob("*.gtf")] 

 

merge_toListneg(files_lst) 

merge_toListpos(files_lst) 

merge_toListunk(files_lst) 
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Appendix 5 

seqkit.py 

import os 

 

dir_ = '.' 

out_ = 'out_' 

listtxt = os.path.join(dir_, 'neg_list.txt') 

for f in os.listdir(dir_): 

 if f.endswith('.fa') and not f.startswith(out_): 

  infile = os.path.join(dir_, f) 

  outfile = os.path.join(dir_, out_ + f) 

  cmd = 'seqkit grep -n -f "%s" "%s" > "%s"' % (listtxt, infile, 

outfile) 

  os.system(cmd) 

 

dir_ = '.' 

out_ = 'out_' 

listtxt = os.path.join(dir_, 'pos_list.txt') 

for f in os.listdir(dir_): 

 if f.endswith('.fa') and not f.startswith(out_): 

  infile = os.path.join(dir_, f) 

  outfile = os.path.join(dir_, out_ + f) 

  cmd = 'seqkit grep -n -f "%s" "%s" > "%s"' % (listtxt, infile, 

outfile) 

  os.system(cmd) 

 

dir_ = '.' 

out_ = 'out_' 

listtxt = os.path.join(dir_, 'unk_list.txt') 

for f in os.listdir(dir_): 

 if f.endswith('.fa') and not f.startswith(out_): 

  infile = os.path.join(dir_, f) 

  outfile = os.path.join(dir_, out_ + f) 

  cmd = 'seqkit grep -n -f "%s" "%s" > "%s"' % (listtxt, infile, 

outfile) 

  os.system(cmd) 

  



 

82 

Appendix 6 

translate_allORF.py 

import glob 

from Bio import SeqIO 

from Bio import Seq 

from collections import defaultdict 

from Bio.SeqRecord import SeqRecord 

 

def translate_pos(fa_lst): 

    ''' 

    Function: translate all nucleotide fasta files that are positively stranded 

three frames forward, keep all ORFs with length >= 8 

    Returns: peptide fasta files 

    ''' 

    for f in fa_lst: 

        with open(f[:-3] + 'ALLorf.fa', 'w') as fout: 

            for rec in SeqIO.parse(f, 'fasta'): 

                for strand, seq in [(1, rec.seq)]: 

                    for frame in range(3): 

                        length = 3 * ((len(rec)-frame) // 3) 

                        for pro in 

seq[frame:frame+length].translate().split("*"): 

                            splitlocal = pro.find("M") 

                            seq_final = pro[splitlocal:] 

                            if len(seq_final) >= 8: 

                                print("%s...%s - length %i, strand %i, frame 

%i" \ 

                                % (seq_final[:10], pro[-3:], len(seq_final), 

strand, frame)) 

                                SeqIO.write(SeqRecord(seq = seq_final, id = 

rec.id, description = str(frame)), fout, 'fasta') 

 

def translate_neg(fa_lst): 

    ''' 

    Function: translate all nucleotide fasta files that are negatively stranded 

three frames reverse, keep all ORFs with length >= 8 

    Returns: peptide fasta files 

    ''' 

    for f in fa_lst: 

        with open(f[:-3] + 'ALLorf.fa', 'w') as fout: 

            for rec in SeqIO.parse(f, 'fasta'): 

                for strand, seq in [(-1, rec.seq.reverse_complement())]: 

                    for frame in range(3): 

                        length = 3 * ((len(rec)-frame) // 3) 

                        for pro in 

seq[frame:frame+length].translate().split("*"): 

                            splitlocal = pro.find("M") 

                            seq_final = pro[splitlocal:] 

                            if len(seq_final) >= 8: 
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                                print("%s...%s - length %i, strand %i, frame 

%i" \ 

                                % (seq_final[:10], pro[-3:], len(seq_final), 

strand, frame)) 

                                SeqIO.write(SeqRecord(seq = seq_final, id = 

rec.id, description = str(frame)), fout, 'fasta') 

 

def translate_unk(fa_lst): 

    ''' 

    Function: translate all nucleotide fasta files that are unknown stranded in 

all six frames, keep all ORFs with length >= 8 

    Returns: peptide fasta files 

    ''' 

    for f in fa_lst: 

        with open(f[:-3] + 'ALLorf.fa', 'w') as fout: 

            for rec in SeqIO.parse(f, 'fasta'): 

                for strand, seq in (1, rec.seq), (-1, 

rec.seq.reverse_complement()): 

                    for frame in range(3): 

                        length = 3 * ((len(rec)-frame) // 3) 

                        for pro in 

seq[frame:frame+length].translate().split("*"): 

                            splitlocal = pro.find("M") 

                            seq_final = pro[splitlocal:] 

                            if len(seq_final) >= 8: 

                                print("%s...%s - length %i, strand %i, frame 

%i" \ 

                                % (seq_final[:10], pro[-3:], len(seq_final), 

strand, frame)) 

                                SeqIO.write(SeqRecord(seq = seq_final, id = 

rec.id, description = str(frame)), fout, 'fasta') 

 

 

posfa_lst = [p for p in glob.glob("pos_*")] 

translate_pos(posfa_lst) 

 

negfa_lst = [n for n in glob.glob("neg_*")] 

translate_neg(negfa_lst) 

 

unkfa_lst = [u for u in glob.glob("unk_*")] 

translate_unk(unkfa_lst) 
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Appendix 7 

GTF2TPM.py 

import pandas as pd 

import glob 

from gtfparse import read_gtf 

 

def GTF2GeneExp(gtf_list): 

    ''' 

    Function: Parse GTF files with 6 or 8 attributes 

    Returns: df with transcript_id:TPM, dropping multiple exons (keep 

transcripts) 

    ''' 

    for gtf in gtf_list: 

        df = read_gtf(gtf) 

        df_ext = df[['transcript_id', 'TPM']] 

     

        #remove all non-values 

        nan_value = float("NaN") 

        df_ext.replace("", nan_value, inplace=True) 

        df_ext.dropna(subset = ["TPM"], inplace=True) 

         

    #return df_ext: 

    df_ext.to_csv(gtf[:-4] + ".csv", sep = '\t', header = False, index = False) 

 

gtf_list = [f for f in glob.glob("*.gtf")] 

GTF2GeneExp(gtf_list) 
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Appendix 8 

TPM_dict-LUSC.ipynb 

peptide_seq = [] 

tissue_1 = [] 

transcript_ID = []  

patient_ID = [] 

method = [] 

 

tx2tissuesample = {} 

for tissue in master_dict: 

    entry = master_dict[tissue] 

    for seq in entry: 

        peptide = entry[seq] 

        if peptide not in tx2tissuesample: 

            tx2tissuesample[peptide] = set() 

        tx2tissuesample[peptide].add((tissue, seq)) 

print('------------output------------') 

print(len(tx2tissuesample)) 

for transcript in tx2tissuesample: 

    t_samples = sorted(tx2tissuesample[transcript]) 

    print(transcript) 

    print(type(transcript)) 

    print(len(t_samples)) 

    for e in t_samples: 

        peptide_seq.append(transcript) 

        print('\t', e) 

        string_e = ''.join(e) 

        print(string_e) 

        print(string_e.split(sep = '>')[0]) 

        tissue_var = string_e.split(sep = '>')[0] 

        tissue_1.append(tissue_var) 

        print(string_e.split(sep = '>')[1].split(sep = ' ')[0]) 

        transcript_ID.append(string_e.split(sep = '>')[1].split(sep = ' ')[0]) 

        print(string_e.split(sep = '-')[1].split(sep = '_')[1]) 

        patient_ID.append(string_e.split(sep = '-')[1].split(sep = '_')[1]) 

        print(string_e.split(sep = '-')[1].split(sep = '_')[2][:-9]) 

        method.append(string_e.split(sep = '-')[1].split(sep = '_')[2][:-9]) 

        print('-----------------------') 

    print('>>>>>>>>>>>>>>>>>>>>>>>>>>>') 
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Appendix 9 

TPM_dict-ONCOBOX.ipynb 

peptide_seq = [] 

tissue_1 = [] 

transcript_ID = []  

patient_ID = [] 

method = [] 

 

tx2tissuesample = {} 

for tissue in master_dict: 

    entry = master_dict[tissue] 

    for seq in entry: 

        peptide = entry[seq] 

        if peptide not in tx2tissuesample: 

            tx2tissuesample[peptide] = set() 

        tx2tissuesample[peptide].add((tissue, seq)) 

print('------------output------------') 

print(len(tx2tissuesample)) 

for transcript in tx2tissuesample: 

    t_samples = sorted(tx2tissuesample[transcript]) 

    print(transcript) 

    print(type(transcript)) 

    print(len(t_samples)) 

    for e in t_samples: 

        peptide_seq.append(transcript) 

        print('\t', e) 

        string_e = ''.join(e) 

        print(string_e) 

        print(string_e.split(sep = '>')[0]) 

        tissue_var = string_e.split(sep = '>')[0] 

        tissue_1.append(tissue_var) 

        print(string_e.split(sep = '>')[1].split(sep = ' ')[0]) 

        transcript_ID.append(string_e.split(sep = '>')[1].split(sep = ' ')[0]) 

        print(string_e.split(sep = '-')[1].split(sep = '_')[1]) 

        patient_ID.append(string_e.split(sep = '-')[1].split(sep = '_')[1]) 

        print(string_e.split(sep = '-')[1].split(sep = '_')[2][:-9]) 

        method.append(string_e.split(sep = '-')[1].split(sep = '_')[2][:-9]) 

        print('-----------------------') 

    print('>>>>>>>>>>>>>>>>>>>>>>>>>>>') 

storage_df = pd.DataFrame({'peptide_seq':peptide_seq, 'tissue':tissue_1, 

'transcript_ID':transcript_ID, 'patient_ID':patient_ID, 'method':method}) 

storage_df.to_csv("common_healthy_tissue_peptides.csv") 
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