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Abstract

We performed harmonized molecular and clinical analysis on 1,048 melanoma whole-exomes

and discovered markedly different global genomic properties among genomic subtypes (BRAF,

(N)RAS, NF1, Triple Wild-Type), subtype-specific preferences for secondary driver genes, and

active mutational processes previously unreported in melanoma. Secondary driver genes

significantly enriched in specific subtypes reflected preferential dysregulation of additional

pathways beyond MAPK, such as induction of TGF-β signaling in BRAF melanomas and

inactivation of the SWI/SNF complex in (N)RAS melanomas. Additionally, select co-mutation

patterns coordinated selective response to immune checkpoint blockade. We also defined the

mutational landscape of Triple Wild-Type melanomas and revealed enrichment of DNA repair

defect signatures in this subtype, which were associated with transcriptional downregulation of

key DNA repair genes and may revive previously discarded or currently unconsidered

therapeutic modalities for genomically stratified melanoma patient subsets. Broadly, harmonized

meta-analysis of melanoma whole-exomes revealed distinct molecular drivers that may point to

multiple opportunities for biological and therapeutic investigation. Extension of this analysis to

structural variants in 355 melanoma whole-genomes revealed similar secondary driver genes

among the genomic subtypes, as well as novel subtype specific drivers specifically affected by

structural variants. Integration of Hi-C data also identified histology (cutaneous, acral, mucosal)

specific, recurrently altered, topologically associated domain (TAD) boundaries, some of which

are adjacent to TADs containing known cancer genes. Finally, the extent to which clinical and

genomic characteristics relate to prostate cancer clonal architecture, tumor evolution, and
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therapeutic response remains unclear. Here, we also reconstructed the clonal architecture and

evolutionary trajectories of 845 prostate cancer tumors with harmonized clinical and molecular

data. We show that the clonal architecture of prostate cancer tumors are associated with various

clinical risk factors, and demonstrate that a novel approach to evolutionarily-informed mutational

signature analysis that leverages clonal architecture can uncover additional cases of

homologous recombination deficient and mismatch repair deficient tumors, link the origin of

mutational signatures to the specific subclones, and has immediate therapeutic implications.

Broadly, clonal architecture and evolutionary informed analysis reveal novel biological insights

that are clinically actionable, and more generally may provide multiple opportunities for

biological and clinical investigation.
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Chapter 1: Introduction

A Brief Introduction to NGS and Integrated Omics Analysis in Cancer Research

The application of next-generation sequencing (NGS) technologies towards cancer

research has enabled integrative analyses of genomic, transcriptomic, and epigenomic data to

comprehensively characterize tumors at both the cohort (e.g. cancer type, subtype) and

individual patient levels. In 2006, The Cancer Genome Atlas (TCGA) project set out to

catalogue the set of genomic alterations that defined several cancer types. Today, TCGA is

comprised of over 10,000 tumor-normal exome pairs from 33 different cancer types, totaling

over 400 TB of raw omics data1. Each cancer type in TCGA features tumor samples that have

been profiled with whole-exome sequencing, bulk RNA-sequencing, microRNA sequencing, and

bisulfite sequencing, and to a lesser extent whole-genome sequencing (WGS). Integration of

these omics data has led to cancer type-specific genomic classifications and subtypes, as well

as pan-cancer classifications of immune subtypes that have implications for immunotherapy.

Although TCGA has led to many novel biological and clinical findings, the dataset has yet to be

completely mined, and is still the focus of many research projects.

The Pan-Cancer Analysis of Whole Genomes (PCAWG) project has aggregated over

2,600 cancer whole-genomes, and expands the body of work published through the TCGA

project2. Although WGS has been performed on a subset of tumor samples in TCGA, nearly all

analysis performed and published through TCGA has been restricted to the exonic, or “coding”,

portion of the genome. By sequencing the entire genome, PCAWG offers the advantage of

exploring and characterizing the noncoding regions of the genome, in addition to coding

regions. Somatic mutation calling in WGS data allows for the inspection of alterations at

regulatory elements, such as promoters, enhancers and transcription factor binding sites

(TFBSs)3.
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WGS also enables the identification of structural variants (SVs)4, such as duplications

and deletions not detectable through WES or copy number detection algorithms, as well as

translocations and transversions. SVs can be analyzed together with copy number alterations

(CNAs) to identify the presence of chromothripsis and chromoplexy5,6. Chromothripsis is a single

complex genomic event characterized by several SVs clustered within genomic regions of

oscillating copy number states across one or more chromosomes, while chromoplexy is defined

as a chain of balanced (rather than oscillating) translocations. Further, SVs and CNAs identified

through WGS can be superimposed with topologically associated domains (TADs) to infer their

effect on the 3-dimensional organization of the genome7. TADs are regions of the genome

where the DNA sequence within a TAD interacts with each other more often than DNA

sequences outside of the TAD. The boundaries of each TAD are defined by CTCF followed by

cohesin binding to DNA, and can prevent the interaction of regulatory elements, such as

promoters and enhancers, with genes in adjacent TADs8. SVs overlapping boundaries between

TADs can lead to the dysregulation of genes, even without overlapping the genes themselves,

providing another molecular mechanism for cancer undetectable with WES data9. One example

of this is enhancer hijacking, where a SV overlapping a TAD boundary allows an enhancer and

gene from adjacent TADs to interact where they normally wouldn't, resulting in aberrant

expression of the gene10–12. SVs overlapping TAD boundaries can also lead to the formation of

new chromatin domains, or “neo-TADs”, which also lead to misregulation of gene expression13.

Analyses and Methods Central to the Work of this Thesis

Mutational Significance Analysis

The rapid advancement of statistical methods and tools for analyzing NGS data has

provided novel insights into the biological underpinnings of various cancer types, and the

identification of therapeutic applications. Perhaps the most widely performed analysis of NGS
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data is the identification of significantly mutated genes (SMGs) through mutational significance

analysis. SMGs are genes that are mutated more than we would expect given some statistical

test or framework. Early tests aimed at determining the importance of a gene in a cohort of

cancer patients included the ratio of nonsynonymous to synonymous mutations14, which

operates under the assumption that genes important to cancer would be more likely to

experience function altering mutations. As the size of cancer cohorts continued to grow, these

early tests quickly became inadequate, often leading long lists of putative SMGs with several

genes that have no functional role in cancer and potentially dilute the signal of true drivers.

Common false positive SMGs include TTN, the largest gene in the human genome, and several

olfactory receptor genes. To address this issue, several mutational significance algorithms have

been developed to correct for additional covariates that may contribute to a gene's functional

relevance in cancer. These algorithms can broadly be classified in 3 categories based on

whether or not they emphasize mutational recurrence, functional impact, or sequence context.

MutSigCV2 is a popular mutational significance algorithm that emphasizes mutational

recurrence, or in layman's terms, seeing the same gene mutated over and over again across

samples in a cohort15. In addition to mutational recurrence, MutSigCV2 also corrects for the

background mutation rate of the cancer type, patient specific tumor mutational burden (TMB),

patient specific mutational spectrum, gene expression, and gene replication timing. Gene

expression and gene replication timing were used as covariates because of their relationship to

gene-specific mutation frequencies. Genes that are more highly expressed generally experience

fewer mutations than lowly expressed genes, and genes in late replicating regions generally

experience a higher mutation rate than genes in early replicating regions.

OncodriveFML is a mutational significance algorithm that emphasizes the functional

impact of alterations on various genetic elements, including protein function, RNA structure,

TFBS affinity, and microRNA targets.16 The functional impact of alterations on each of these

features is assessed using frameworks such as the combined annotation dependent depletion
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(CADD) framework for genes and promoters17, and RNAsnp for RNA secondary structure18.

Simulations of possible sets of gene mutations across the cohort, correcting for sequence

context, are used to determine if a cohort's observed alterations in a particular gene have higher

functional impacts than expected. By assessing significance via functional scoring frameworks,

OncodriveFML also possesses the capability to include noncoding mutations and identify

putative driver noncoding regions, such as promoters, enhancers, splice intronic regions, and

untranslated regions.

While MutSigCV2 and OncodriveFML correct for sequence context, the scope of this

correction is limited. MutSigCV2 compartmentalizes the mutational spectrum of tumors into 1 of

6 predetermined classes (C > T, C > A, TpA > T, CpG > T, TpC > any base, miscellaneous), and

OncodriveFML leverages either cohort level or sample level mutation sequence context for

simulation of mutation probabilities. MutPanning is a mutational significance algorithm that

corrects for many of the same covariates as MutSigCV2, but places greater emphasis on the

sequence context of mutations and the mutational processes that generated them19.

Mutpanning takes advantage of passenger mutations preferentially occuring in nucleotide

contexts characteristic of the mutational processes active in the tumor, while driver mutations

tend to deviate from characteristic sequence contexts and provide a signal for driver gene

detection.

Mutational Signature Analysis and DNA Repair Mechanisms

Statistical advancements have also led to the concept of mutational signatures, which is

based on the foundation that all somatic mutations observed in cancer are the result of some

exogenous or endogenous mutational exposure. Each of these mutational exposures

preferentially results in mutations in particular sequence contexts at specific frequencies, which

are called “signatures”20. Some of the endogenous mutational processes characterized via

mutational signatures include homologous recombination deficiency (HRD; associated with
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mutational signature 3), APOBEC activity (associated with mutational signatures 2 and 13), and

mismatch repair deficiency (MMRd; associated with mutational signatures 6, 15, 20 and 26).

Exogenous exposures characterized by mutational signatures include ultraviolet (UV)

mutagenesis (associated with mutational signature 7), and smoking tobacco (associated with

mutational signature 4). There also exists a subset of signatures with unknown etiologies, most

of which are only observed in a small subset of cancer types.

The first approach used to identify the mutational signatures present in a cohort of

tumors was non-negative matrix factorization (NMF) applied to whole-exome sequencing (WES)

data in 201321,22. NMF allows for the decomposition of single nucleotide variants (SNVs) into a

chosen number of mutational signatures based on NMF metrics and heuristics. Two common

approaches for choosing the optimal number of signatures include using the cophenetic

correlation coefficient, or choosing the number of signatures such that increasing the number of

signatures by 1 doesn’t yield a significantly better residual sum of squares error between the

original matrix and product of the two decomposed matrices. Cosine similarity between each of

the decomposed signatures and a set of reference signatures can be used to determine the

identity of the decomposed signatures.

While NMF was the first method used to identify the presence of mutational signatures in

tumor samples, there are several drawbacks to its application, specifically when WGS data is

not available. WES samples generally produce too few mutations per tumor for accurate and

robust mutational signature determination, requiring the mutations of several samples to be

pooled together. This leads to generalizing the mutational signatures identified to all of the

samples in the cohort, regardless if a subset of those signatures aren’t present in certain

samples. In 2016, non-negative least squares (NNLS) regression approaches for determining

active mutational signatures were popularized through the development of deconstructSigs23.

NNLS allows mutational signatures to be determined on individual samples without the need to

pool mutations across a cohort, which enables the identification of mutational signatures present
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at lower frequencies that may not be detectable by NMF-based methods. Additionally, NNLS

circumvents the need to generalize each mutational signature identified to every sample in the

cohort.

The field of mutational signature analysis is still expanding beyond the application of

NNLS, particularly with a focus on clinical utility. In 2019, a novel computational method called

Signature Multivariate Analysis (SigMA) was developed specifically to identify the presence of

mutational signature 3 (associated with HRD) from clinical panel sequencing data, which

generally results in too few mutations for accurate mutational signature detection via other

existing methods24. SigMA deploys a cancer type specific Bayesian likelihood-based approach,

as well as NMF and NNLS, followed by gradient boosting for classification. Briefly, SigMA

leverages the prevalence of each mutational signature, and sample specific mutational

spectrums, from a cohort of WGS samples of the same cancer type to calculate the likelihood.

Poly (ADP-ribose) polymerase inhibition (PARPi) is a common treatment for advanced

breast, ovarian, and prostate cancers that exhibit signs of HRD25. Currently, the only FDA

approved biomarker for treatment with PARPi is the presence of BRCA1/2 inactivating

alterations, and specifically in ovarian cancer the number of HRD-associated copy number

events26. These HRD-associated copy number events are loss of heterozygosity (LoH),

telomeric allelic imbalance (TAI), and large scale transition (LST) events. The association

between each of these types of copy number events and HRD were found independently and in

breast cancer cohorts, however their association with mutational signature 3 has held across a

variety of cancer types, such as breast cancer, ovarian cancer, prostate cancer and melanoma.

For each sample, SigMA provides a strict and “loose” threshold for the identification of signature

3, based on the frequency of signature 3 in the cancer type and the false positive rate (FPR) of

the classification. In breast, ovarian, and prostate cancer the sensitivity of signature 3 under the

strict threshold is 58.4%, 41.7%, and 64.3% with FPRs of 1.8%, 1.56%, and 4.4%, respectively.
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The low FPR of signature 3 in these cancer types demonstrates the potential impact of SigMA in

clinical settings.

HRD isn’t the only DNA repair-associated mutational process with clinical applicability

that can be detected through somatic mutation data and mutational signatures. MMRd is

associated with 4 different mutational signatures (6, 15, 20 and 26), and can result in a

hypermutator phenotype called microsatellite instability (MSI)27. MSI is characterized by DNA

polymerase slippage events in microsatellite regions during replication that are usually repaired

by MMR machinery. MMRd/MSI-high tumors are associated with improved response to immune

checkpoint blockade (ICB) therapy across several solid tumor cancer types, and

MMRd/MSI-high status is an FDA approved biomarker for treatment with the PD-L1 checkpoint

blockade drug pembrolizumab28. The gold standard for determining MSI status in the clinic is

through the use of PCR or MSI immunohistochemistry (IHC), however, these procedures can be

expensive and time consuming29. Further, it has been postulated that the use of NGS to identify

MSI status may yield additional MSI patients not identified by these methods. Two

computational methods for identifying MSI status from NGS data are MSIsensor-pro30 and

MANTIS31, both of which still perform well on samples with low sequencing coverage or tumor

purity (the proportion of the sample that is tumor cells). Further, MSIsensor has been suggested

as a potential diagnostic tool for screening potential MSI-high prostate cancer patients that may

benefit from ICB therapy.

Phylogenetic Reconstruction

The order in which somatic mutations occur in the evolution of a tumor can be inferred

through calculating their cancer cell fraction (CCF), or the fraction of cancer cells that harbor the

mutation32. A mutation’s CCF is a function of its variant allele frequency (VAF), allelic copy

number at the locus, and the purity of the tumor sample (i.e. the proportion of the sample that is

tumor cells). The CCF for a mutation can be assigned through maximum likelihood estimation
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via a binomial distribution, choosing the CCF that results in the highest probability of observing

the actual number of alternate reads (successes) out of the total number of reads sequenced at

that position (trials).

Phylogenetic reconstruction algorithms allow for the investigation into the clonal

architecture and evolutionary trajectories of tumors by clustering mutations into cell

subpopulations, also referred to as clones, based on CCF information33. While it is possible for

these algorithms to infer cell subpopulations from single samples, more than one temporal or

spatial sample is generally recommended for accurate results. Multiple biopsies provide 2

distinct advantages for phylogenetic reconstruction, which are the reduction of noise due to

repeated measurements, and the ability to identify sets of mutations whose CCFs shift together

due to being in the same clone34. Most phylogenetic reconstruction algorithms also output

phylogenetic trees based on the cellular prevalence of the inferred clones followed by the

application of the pigeon-hole principle. The pigeon-hole principle simply states that the sum of

the cellular prevalence of all a parent clone’s subclones cannot be greater than the parent

clone’s cellular prevalence. One novel phylogenetic reconstruction algorithm is PhylogicNDT35,

which was developed for analysis of PCAWG consortium data, and is composed of several

modules geared towards tumor evolution analysis. These modules include a clustering

algorithm which utilizes a Bayesian dirichlet process with Gibbs sampling to identify cell

subpopulations present in a patient’s tumor, and a phylogenetic tree reconstruction algorithm

which constructs of an ensemble of probable phylogenetic trees while accounting for

uncertainties in cluster (clone) identity and mutation memberships.

Melanoma Clinical and Genomic Background

The National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)

Program estimated that over 90,000 new cases of melanoma were diagnosed in 2018, and

despite the development of novel therapies and approaches for melanoma in the past decade,
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an estimated 9,300 patients died from melanoma. Early genetic studies led to the identification

of BRAF V600E hotpot mutations, and the development of dabrafenib and vemurafenib, which

are targeted inhibitors of these mutations36. Due to the high mutational burden of UV

mutagenesis, cutaneous melanomas are one of the most highly mutated cancer types at

approximately 13 mutations per megabase (Mb)37. The high TMB of melanoma also makes it

one of the most frequent cancer types treated with ICB therapy, where TMB > 10 mutations/Mb

is a Food and Drug Administration (FDA) approved biomarker for ICB therapy. Despite

biomarker status, TMB is a fairly weak predictor of response to ICB, and has been shown to be

associated with varying effect sizes and statistical significance depending on cohort and cancer

type38. Thus, the identification of novel biomarkers and associations with ICB response remains

an important and open area of research39. The sheer number of melanoma patients receiving

ICB therapy makes melanoma a rich candidate for determining mechanisms of response and

resistance to ICB via NGS data, which may lead to the identification of biomarkers and patient

population subsets with high likelihoods of responding to therapy.

The TCGA skin cutaneous melanoma (SKCM) study led to the classification of four

melanoma genomic subtypes based on the presence of mutations in the most frequently

mutated, mutually exclusive, driver genes: BRAF, (N)RAS, NF1 and Triple Wild-Type (TWT).

Approximately 50%, 25%, 15% and 10% of cutaneous melanomas are classified as BRAF,

(N)RAS, TWT, and NF1 subtypes, respectively. BRAF and (N)RAS are oncogenes that activate

the MAP kinase pathway, whereas NF1 is a negative regulator of the MAP kinase pathway and

promotes the development and growth of melanoma through inactivating mutations37,40. TWT

cutaneous melanomas, which lack somatic mutations in BRAF, (N)RAS, and NF1, possess very

distinct genomic characteristics relative to the other genomic subtypes. Compared to other

subtypes, TWT melanomas experience an enrichment of CNAs, low TMB (2.5 mutations/Mb),

and have no known SMGs. Several studies have reported recurrent mutations and CNAs in KIT,

but not to a level of statistical significance. The low TMB of TWT melanomas can be partially
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explained by the lower contribution of UV mutagenesis (mutational signature 7) to the

mutational spectrum of these tumors. Roughly 50-60% of TWT tumors present evidence of

mutations due to UV mutagenesis compared to upwards of 90% in the other genomic subtypes.

The lack of SMGs identified in TWT melanomas can also be explained by the low TMB of these

tumors, in addition to the largest cohort of TWT melanomas analyzed only containing 46

samples37.

Other than cutaneous melanomas, two other common histological melanoma subtypes

are acral and mucosal melanomas. Acral melanomas occur on non-hair bearing skin such as

the palms of the hands and soles of the feet41, and mucosal melanomas occur in mucosal

membranes such as the inside of the mouth41,42. While the genomic subtypes identified in

cutaneous melanoma have been applied to acral and mucosal melanomas, the majority of these

tumors are TWT and lack genomic alterations affecting the MAP kinase pathway. Both acral and

mucosal melanomas have lower mutational burden, and higher copy number and SV burden

compared to cutaneous melanomas. Furthermore, acral and mucosal melanomas frequently

lack the presence of UV mutagenesis, while clock-like mutational processes, such as

spontaneous deamination of cytosines, are responsible for generating the majority of mutations

in these tumors. WGS of acral and mucosal melanomas has also revealed different driver

alterations, such as recurrent mutations in KIT and SF3B1, and recurrent SVs affecting TERT,

CDK4, MDM241,42.

Prostate Cancer Clinical and Genomic Background

Prostate cancer is the most common non-cutaneous cancer in men with over 1.4 million

cases diagnosed and 381,000 deaths annually worldwide. Despite the overall high burden of

this disease, the majority of men with prostate cancer die of non-related causes. Early studies

aimed at the genomic classification of prostate cancer identified recurrent alterations in

androgen receptor (AR) signaling, DNA repair, and phosphoinositide 3-kinases (PI3K)-AKT
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signaling pathways, all of which are associated with more aggressive phenotypes and advanced

disease43. Unlike melanoma, prostate cancer has one of the lowest TMBs of all cancer types at

between 1-2 mutations per Mb44. Due to this TMB, power analysis via mutational significance

algorithms suggest that only 700 prostate cancer whole-exomes are required to identify all

SMGs mutated at a prevalence of at least 2% across the cancer type45. In 2017, Armenia et al.

aggregated and uniformly analyzed 1,013 prostate cancer whole-exomes, over twice the size of

the TCGA-PRAD cohort, with the purpose of saturating the SMG landscape and identifying

novel drivers of prostate cancer43. This study identified 97 SMGs, 70 of which were novel and

included the transcription factor SPEN, which functions in the AR signaling pathway.

To further elucidate the role of genomic alterations and features with prostate cancer

risk, progression, and recurrence, Boutros et al. reconstructed the phylogenies of 293 primary

prostate cancer tumor whole-genomes to determine the association between clonal architecture

and tumor evolution with clinical characteristics and outcomes46. This study identified that SNVs

in FOXA1 and ATM preferentially occur as truncal alterations, while SNVs in TP53 and SPOP

occur clonally and subclonally. Further, Boutros et al. showed that about half of prostate cancer

patients experience a shift in the active mutational processes generating mutations over the

course of their tumor evolution. Clock-like mutational processes (signature 1) were typically

observed early in tumor evolution and were associated with higher mutation CCFs, while DNA

repair associated signatures (signature 3 and signature 16; associated with HRD and

polymerase eta) were typically observed subclonally. Lastly, Boutros et al. demonstrated that

polyclonality of prostate cancer tumors was associated with higher rates of biochemical

recurrence, regardless of prostate cancer risk determined by gleason score, tumor stage, and

prostate-specific antigen (PSA) levels.

While Boutros et al. provided seminal work for understanding prostate cancer tumor

evolution, both patients with metastatic tumors and patients of African ancestry were not

included in the analysis. Metastatic prostate cancers are associated with significantly higher
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TMB and copy number burden compared to primary prostate cancers, which yields increased

tumor heterogeneity47. Metastatic tumors also possess recurrent alterations in cancer genes at

higher prevalence, which provides more power to detect clonal and subclonal driver genes than

in localized disease. Additionally, metastatic prostate cancer tumors present HRD48 and MSI49 at

higher frequencies than primary tumors, which would allow for more comprehensive analysis of

these DNA repair deficiencies in this cancer type. The use of PARPi for HRD metastatic patients

is currently being tested in clinical trials50, and the prevalence and use of immunotherapy for

MSI patients is being explored in metastatic castration resistant prostate cancer patients49.

Prostate cancer patients of African ancestry are typically associated with a worse

prognosis and higher rates of biochemical recurrence compared to European ancestry patients,

however it is difficult to correct for the role of socioeconomic status51–53. It has been suggested

that, in addition to socioeconomic and healthcare disparity factors, the higher tumor volume,

metastasis rate and mortality following radical prostatectomy in African ancestry patients may be

the result of earlier transformation to a clinically significant cancer54. While distinct driver genes

have been identified in patients of African ancestry, whether genetic underpinnings relate to

these clinical observations is poorly understood, particularly with respect to the treatment of

these cancers55. Evolutionary informed genomic analysis may provide insight into the initiation,

growth, and clinical observations of prostate cancer tumors in men of African ancestry.
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Chapter 2: Melanoma Exome Meta-Analysis

Abstract

We performed harmonized molecular and clinical analysis on 1,048 melanomas and discovered

markedly different global genomic properties among subtypes (BRAF, (N)RAS, NF1, Triple

Wild-Type), subtype-specific preferences for secondary driver genes, and active mutational

processes previously unreported in melanoma. Secondary driver genes significantly enriched in

specific subtypes reflected preferential dysregulation of additional pathways, such as induction

of TGF-β signaling in BRAF melanomas and inactivation of the SWI/SNF complex in (N)RAS

melanomas, and select co-mutation patterns coordinated selective response to immune

checkpoint blockade. We also defined the mutational landscape of Triple Wild-Type melanomas

and revealed enrichment of DNA repair defect signatures in this subtype, which were associated

with transcriptional downregulation of key DNA repair genes and may revive previously

discarded or currently unconsidered therapeutic modalities for genomically stratified melanoma

patient subsets. Broadly, harmonized meta-analysis of melanoma whole-exomes revealed
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distinct molecular drivers that may point to multiple opportunities for biological and therapeutic

investigation.

Introduction

Genomic characterization of melanoma led to the classification of four subtypes based

on mutations in the most frequently mutated, mutually exclusive, driver genes: BRAF, (N)RAS,

NF1 and Triple Wild-Type (TWT)1-2. These studies, the largest of which included 333

melanomas2, have augmented our understanding of the melanoma genomic landscape,

informed development of effective therapies with targeted agents3-4 and enabled molecular

stratification strategies for immune checkpoint blockade5–7. Still, only a subset of patients exhibit

durable responses to therapies targeting these known genetic vulnerabilities. Furthermore, while

cancer immunotherapy has revolutionized clinical management of advanced melanoma, only a

subset of patients respond to these agents and new molecular targets remain a great clinical

need8.

Identification of new molecular targets is challenging in melanoma due to the extremely

high mutational load compared to most solid tumors, which is largely attributed to UV

mutagenesis. As a result, power analysis has estimated that thousands of samples are required

to saturate the landscape of significantly mutated genes (SMGs) in melanoma9. Additionally,

while BRAF, (N)RAS, and NF1 mutants all converge on MAP kinase signaling, each of these

melanoma subtypes is associated with distinctive clinical characteristics, outcomes and immune

profiles suggesting molecular differences that could be informed by systematic characterization

in sufficiently large patient cohorts1-2,10-12. Further, there has been no definitive molecular

dissection of TWT melanomas for unbiased gene discovery.

We hypothesized that expanded and harmonized molecular analysis of a larger cohort of

melanomas would reveal new genetic drivers within and among these canonical genomic

subtypes, and therapeutic vulnerabilities in genomically stratified patient subsets. Thus, we
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harmonized 1,048 melanoma tumor and matched germline whole-exome sequencing (WES)

samples1-2,6-7,13-18 and performed uniform molecular analyses across and within established

genomic subtypes to redefine the molecular properties that coordinate in heterogeneous

melanoma patient populations.

Results

Significantly Mutated Genes in Melanoma

In total, we aggregated and uniformly analyzed WES data from 1,048 melanomas with

matched germline samples that passed joint quality control parameters (Methods,

Supplementary Figure 2.1, Supplementary Tables 2.1-2.3, Supplementary Data 2.1). Our cohort

was comprised of 494 BRAF, 290 (N)RAS, 102 NF1 and 162 TWT melanomas, with 5% of all

melanomas having acral or mucosal origin. Additional histology information and raw sequencing

metrics can be found in Supplementary Tables 2.2-2.3. The median nonsynonymous mutational

load for the entire cohort was 7.94 mutations/Mb, and was significantly higher in the cutaneous

melanomas compared to acral and mucosal melanomas (8.23 mut/Mb vs 1.87 mut/Mb;

Mann-Whitney U, p = 1.01 x 10-15; Figure 2.1A).
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Figure 2.1: Identification of consensus driver genes in melanoma.
a) Nonsynonymous mutational load is significantly elevated in cutaneous (n = 871) melanomas
compared with acral (n = 34) and mucosal (n = 17) melanomas (Mann–Whitney U-test,
P = 9.79 × 10−16, two sided). The data are represented as a boxplot where the middle line is the
median, the lower and upper edges of the box are the first and third quartiles, the whiskers
represent the interquartile range (IQR) ×1.5 and beyond the whiskers are outlier points. An
asterisk denotes a Mann–Whitney U-test P < 0.05. b) The overlap between SMGs identified by
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Figure 2.1 (continued): each mutational significance algorithm (Benjamini–Hochberg, q-value
cutoff <0.05), and when combining the P values via Brown’s method (Benjamini–Hochberg,
q-value cutoff <0.05). c) The distribution of mutation types in melanoma SMGs that are known
cancer genes (CGC and OncoKB genes), ordered by statistical significance from left to right.

The statistical challenge of identifying cancer driver genes becomes increasingly difficult

in cancers with high background mutation rates like melanoma9,19. To identify high-confidence

melanoma driver genes, we utilized three orthogonal mutational significance algorithms that

emphasize mutational recurrence, sequence context, and accumulated functional impact

(MutSig2CV, MutPanning, and OncodriveFML respectively)9,19-21. We next applied Brown’s

method to combine the p-values from each mutational significance algorithm, followed by a strict

FDR cutoff (q < 0.01) and consideration of transcriptional activity in bulk and single cell

melanoma transcriptomes to evaluate SMGs by lineage and potential function (Supplementary

Figure 2.1-2.3, Methods), to reduce the number of false positive findings. This process yielded a

set of 178 genes (excluding BRAF, (N)RAS, and NF1; Figure 2.1B, Supplementary Figures

2.2-2.5). When restricting to known cancer genes, 46 genes were present in both the COSMIC

Cancer Gene Census (CGC v86) and OncoKB, while 10 and 6 genes were only present in the

CGC and OncoKB, respectively (Figure 2.1C)22. A total of 157 novel candidate melanoma

SMGs were identified through this set of high-confidence driver genes (Supplementary Data

2.2), 41 (26%) of which are known cancer genes. These novel SMGs have been experimentally

implicated in MAPK signaling and therapeutic response (e.g. FGFR2 and LCK)23, tumor-intrinsic

mediators of cancer immunotherapy (e.g. ARID1A, ASXL2, B2M, BRD7 and SETD2)24, and

oncogenesis in other cancer types (e.g. CDK4 and MSH6)25-26 (Supplementary Table 2.4). Only

32 of the 83 SMGs previously identified in large melanoma studies (cohort size > 100), were

classified as SMGs by any algorithm in our cohort (Benjamini-Hochberg q-value cutoff < 0.1,

Supplementary Table 2.5)1-2,10,17.
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Significantly Mutated Genes in Melanoma Genomic Subtypes

The median nonsynonymous mutational load varied widely between genomic subtypes

(Mann-Whitney U, p < 3.82 x 10-8 for all pairwise), ranging from 2.06 mutations/Mb in TWT

melanomas to 32.29 mutations/Mb in NF1 melanomas (Figure 2.2A), which is consistent with

previous findings1-2,10,17. (N)RAS melanomas experienced a higher ratio of clonal mutations

relative to the other genomic subtypes (Mann-Whitney U, p < 1.44 x 10-4 for all pairwise;

Methods), whereas TWT melanomas experienced an elevated ratio of subclonal mutations

(Mann-Whitney U, p < 0.014 for all pairwise). Further, BRAF and (N)RAS melanomas frequently

had more clonal mutations than subclonal mutations, while NF1 and TWT melanomas had more

subclonal mutations than clonal mutations (Supplementary Figure 2.6). These findings could not

be explained by the differences in tumor purity between the genomic subtypes (Kruskal-Wallis, p

= 0.23).
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Figure 2.2: Melanoma genomic subtypes have distinct global properties and secondary
driver genes.
a) The nonsynonymous mutational load was significantly different between the genomic
subtypes (Mann–Whitney U-test, P < 3.82 × 10−8 for all pairwise, two sided). NF1 melanomas
experienced the largest mutational load, whereas TWT melanomas experienced the lowest
mutational load. The data are represented as a boxplot where the middle line is the median, the
lower and upper edges of the box are the first and third quartiles, the whiskers represent the
IQR ×1.5 and beyond the whiskers are outlier points. b) We identified 66, 56, 24 and 19 SMGs
in BRAF, (N)RAS, NF1 and TWT melanomas, respectively. Overlapping of the genomic subtype
SMGs revealed that genomic subtypes seldom share the same SMGs despite BRAF, (N)RAS
and NF1 all converging on the MAPK pathway. Specifically, 70% (46/66), 64% (36/56), 54%
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Figure 2.2. (continued): (13/24) and 47% (9/19) of the SMGs identified in BRAF, (N)RAS, NF1
and TWT melanomas were exclusive to their respective subtypes. In aggregate, only 18%
(23/127) of the SMGs identified through the genomic subtype mutational significance analysis
were found in more than one genomic subtype. c) The top three nongeneric hits (via the q
value, Benjamini–Hochberg) from pathway and protein–complex over-representation analysis of
SMGs specific to each genomic subtype. This analysis revealed several recurring patterns in
BRAF (for example, cell cycle), (N)RAS (for example, chromatin remodeling), NF1 (for example,
DNA damage) and TWT (for example, RUNX3 and KIT signaling) melanomas.

Due to the high mutational load of melanoma, it is unlikely that mutations in specific

genes and pathways are restricted to genomic subtypes. However, we hypothesized that

specific genes and pathways may be mutated more than expected or preferentially

overrepresented in a subtype specific context, despite BRAF, NRAS and NF1 converging on the

MAP kinase pathway. Indeed, mutational significance analysis within each of the genomic

subtypes revealed that candidate SMGs were seldom shared between the subtypes (Figure

2.2B, Extended Data 2.1), and putative function altering mutations in related pathways and

protein complexes were significantly associated within those same genomic subtypes (Figure

2.2C). This suggests dysregulation of these pathways may act as co-drivers at different

frequencies dependent on the genomic subtype necessitating subtype-specific significance

analyses, and that subtype-specific analyses may provide further insights into additional SMGs

irrespective of overall co-mutation patterns. Thus, we performed sub-type specific significance

analyses to dissect the co-driver dysregulation patterns.

BRAF-mutant
A total of 66 SMGs were identified in BRAF melanomas, which included previously

established co-mutations (i.e. PTEN, Figure 2.2B-C, Supplementary Figures 2.7-2.8). Two of the

more frequent BRAF co-mutators, MECOM and BMP5 (24.7%, Figure 2.2C, Supplementary

Figure 2.9), have been associated with several immune related pathways (e.g. TGF-β, IFN-α,

epigenetic modification)27-30.  Notably, within the subset of melanomas that received
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immunotherapy (n = 297), BRAF and MECOM/BMP5 co-mutated melanomas demonstrated

improved clinical benefit compared to MECOM/BMP5 wild-type BRAF melanomas (Methods;

77.3% vs. 35.5%, Fisher’s exact test, p = 6.4 x 10-4, Figure 2.3A), even when correcting for

mutational load, tumor purity, and treatment (logistic regression, p = 0.018). When restricting to

MECOM/BMP5 mutated melanoma, MECOM/BMP5-mutant BRAF melanomas were

significantly associated with improved clinical benefit compared to MECOM/BMP5-mutant

non-BRAF melanomas (77.3% vs. 46%, Fisher’s exact test, p = 0.02, Figure 2.3A), further

nominating MECOM and BMP5 as subtype-specific mediators of immunotherapy response in

melanoma.

Figure 2.3: SMGs exclusive to BRAF melanomas have implications for immunotherapy,
and secondary drivers further segregate with p.Val600Glu– and p.Val600Lys–encoding
hotspot mutations.
a) In BRAF melanomas, but not non-BRAF melanomas, mutations in MECOM and/or BMP5
were associated with clinical benefit to immunotherapy, as assessed by RECIST criteria. In
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Figure 2.3. (continued): addition, when restricting to MECOM/BMP5-mutated melanomas,
BRAF melanomas are associated with significantly better clinical benefit compared with
non-BRAF melanomas (Fisher’s exact test, P = 0.02, two sided). b) Survival curves between
MECOM/BMP5-mutant and wild-type tumors in all immunotherapy-treated tumors (n = 297; top),
BRAF immunotherapy-treated tumors (n = 109; middle) and non-BRAF immunotherapy-treated
tumors (n = 188; bottom). c) Overlap of BRAF-mutant, BRAF p.Val600Glu– and BRAF
p.Val600Lys–encoding SMGs revealed that roughly two-thirds of both the p.Val600Glu– and the
p.Val600Lys–encoding SMGs were also identified through the BRAF-mutant mutational
significance analysis. However, only 16% (7/44) and 32% (7/22) of the p.Val600Glu– and
p.Val600Lys–encoding SMGs overlapped with each other, respectively. d) Despite p.Val600Lys
tumors experiencing a twofold enrichment of nonsynonymous mutational load, some BRAF
p.Val600Glu–encoding cancer gene (CGC, OncoKB) SMGs are altered in a similar or greater
proportion of samples (left; P > 0.05 adjusted for mutational load between subtypes, χ2, two
sided). Conversely, some BRAF p.Val600Lys–encoding cancer gene SMGs are altered in more
than double the proportion of samples (right; P < 1.85 × 10−3 adjusted for mutational load
between subtypes, χ2, two-sided). EGFR, epidermal growth factor receptor; PI3K,
phosphoinositide 3-kinase. a,d) An asterisk denotes a Mann–Whitney U-test P < 0.05.

When considering the entire cohort, patients with MECOM/BMP5 mutations (including

BRAF melanomas) demonstrated improved clinical benefit (55.6% vs. 37.2%, Fisher’s exact

test, p = 0.008), PFS (log-rank, p = 0.042, Figure 2.3B, Supplementary Table 2.6), and OS

(log-rank, p = 0.021). Similarly, clinical benefit remained significantly associated with

MECOM/BMP5 mutations after correcting for mutational load, tumor purity, and treatment

(logistic regression, p = 0.034). Although the results were concordant in this cohort and a limited

external validation cohort (Extended Data 2.2), MECOM/BMP5 mutations were not statistically

associated with improved PFS and OS after correcting for these same covariates (PFS: p =

0.053; OS: p = 0.058; Supplementary Table 2.6).

V600E and V600K mutant melanomas
We then examined BRAF V600E (NC_000007.13:g.140453136A>T) and V600K

(NC_000007.13:g.140453136_140453137delinsTT) tumors given their diverse clinical and

genomic features 31-33. BRAF V600E (n = 376) and V600K (n = 76) hotspot mutations comprised

92% of the BRAF melanomas in our cohort. Consistent with prior reports, we observed

significant differences in median age of diagnosis, mutational load, and copy number burden

(Supplementary Figures 2.10-2.12). Given these global differences, we aimed to determine if

secondary drivers were unique to the BRAF V600E or V600K subtypes (Figure 2.3C, Methods).
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In the V600K and V600E cohorts, 13 (59%) and 19 (61.4%) SMGs were also identified as BRAF

subtype SMGs. ARID2, CDKN2A, MAP2K1, PPP6C, PTEN, RAC1, and TP53 were identified as

SMGs in the V600E, V600K and overall BRAF subtype cohorts. Despite the elevated mutational

load in V600K tumors, CDKN2A, PTEN and TP53 were mutated in a similar proportion of

V600E tumors (χ2, p > 0.05 adjusted for mutational load between subtypes), among others

(Figure 2.3D). However, established cancer genes AKAP9, COL3A1, DDX3X, FAM131B, IDH1,

and USP6 were identified as SMGs unique to V600K melanomas. Conversely, canonical cancer

genes that were SMGs exclusive to the V600E cohort included B2M, CDK4, CTNNB1, EZH2,

JAK1, PRKAR1A, TAP2, and TRRAP, several of which are involved in immune response

(Supplementary Table 2.7). Thus, BRAF-mutant melanomas have distinct genomic

substructures overall, and within specific mutant alleles.

(N)RAS-mutant subtype
We identified 56 SMGs in (N)RAS melanomas, excluding NRAS, KRAS and HRAS

(Supplementary Figures 2.13-2.14). The chromatin remodeler SWI/SNF complex genes

ARID1A, ARID1B, ARID2 and BRD7 were all classified as SMGs in (N)RAS melanomas (31%

of (N)RAS-mutant melanomas and 22.5% in non-(N)RAS-mutant melanomas; Fisher’s exact

test, p = 8.64 x 10-6, Figure 2.4A, Supplementary Figure 2.15). Both ARID2 and BRD7 are

unique to the SWI/SNF PBAF complex, and mutations in these genes were mutually exclusive

in (N)RAS melanomas (Figure 2.4A)34. (N)RAS melanomas were significantly associated with

putative inactivating mutations in PBAF complex genes in the multivariate analysis correcting for

mutation rate and tumor purity (logistic regression, p = 0.049 for all PBAF genes, p = 0.036 for

unique PBAF genes, Supplementary Table 2.8), but not BAF complex genes (p = 0.1 for all BAF

genes, p = 0.338 for unique BAF genes). Further, nonsynonymous BAF/PBAF complex

mutations were disproportionately clonal (Methods) in (N)RAS melanomas relative to other

genomic subtypes (χ2, p < 4.08 x 10-5 pairwise adjusted for background subtype proportions,
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Figure 2.4B), indicating that BAF/PBAF mutations may be tumor initiating events particularly

when paired with activating (N)RAS mutations (Supplementary Table 2.9).

Figure 2.4: (N)RAS melanomas frequently experience clonal mutations in the PBAF
complex, and PBAF complex mutations are associated with improved OS and PFS when
treated with immunotherapy.
a) The co-mutation plot of BAF/PBAF complex SMGs identified in (N)RAS melanomas. Putative
loss-of-function mutations (nonsense, splice site, indels) are almost entirely mutually exclusive
to each other. Furthermore, mutations in ARID2 and BRD7 (specific to the PBAF version of the
SWI/SNF complex) were never observed in the same tumor. b) The distributions of cancer cell
fractions (Methods) for all PBAF and BAF complex genes among the genomic subtypes.
Mutations in BAF/PBAF complex genes were enriched for being clonal (Methods) in (N)RAS
melanomas compared with other genomic subtypes (χ2 pairwise adjusted for subtype
proportions, P < 2.24 × 10−4, two sided), and PBAF gene mutations were clonal more frequently
than BAF gene mutations in (N)RAS melanomas (P = 0.003, two-sided Kolmogorov–Smirnov
test). An asterisk denotes a Kolmogorov–Smirnov test P < 0.05. c) Mutations in PBAF genes are
associated with significantly improved OS and PFS to immunotherapy. Although PBAF-mutant
(N)RAS and non-(N)RAS melanomas have significantly better OS compared with their PBAF
wild-type counterparts, the improvement in OS is much more pronounced in (N)RAS
melanomas. PBAF-mutant non-(N)RAS melanomas do not experience significantly better PFS
compared with PBAF wild-type non-(N)RAS melanomas. However, PBAF-mutant (N)RAS
melanomas have significantly improved PFS compared with PBAF wild-type (N)RAS
melanomas, and the PFS signal from PBAF-mutant (N)RAS melanomas is driving the significant
improvement in PFS at the entire cohort level.

Inactivation of the PBAF complex has been associated with improved response to

immunotherapy in renal cell carcinoma patients35, and increased T cell cytotoxicity in melanoma
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models (Supplementary Table 2.10)24. Within the subset of our cohort that received

immunotherapy, (N)RAS melanomas co-mutated with PBAF complex mutations were

significantly associated with improved PFS (log-rank, p = 8.6 x 10-3, Figure 2.4C, Supplementary

Table 2.6) and OS (log-rank, p = 9.8 x 10-3, Figure 2.4C), as well as concordant (but not

statistically significant) associations with clinical benefit (56.4% vs. 35.7%, Fisher’s exact test, p

= 0.076) and OS in a limited external validation cohort (Extended Data 2.3). Non-(N)RAS

melanomas co-mutated with PBAF complex mutations were also associated to a lesser degree

with improved OS (p = 0.028, Figure 2.4C), but not PFS. PBAF complex mutations in the overall

cohort were still significantly associated with improved PFS and OS after correcting for

mutational load, tumor purity, and treatment (logistic-regression, PFS: p = 0.027; OS: p = 0.007;

Supplementary Table 2.6), though this was largely driven by co-mutation with (N)RAS

melanomas (Supplementary Table 2.6).

NF1-mutant subtype

Consistent with prior studies, we observed that NF1 melanomas occurred in older

patients (Supplementary Figure 2.16A) and harbored higher mutational load than the other

genomic subtypes10-11. Through our approach, we identified 24 SMGs in NF1 melanomas (FDR

q < 0.01, Supplementary Figures 2.16-2.18). Of the RASopathy genes previously implicated in

NF1 melanomas 10,36, RASA2 and SPRED1 were the only ones classified as SMGs. However,

NF1 melanomas were significantly associated with putative inactivating mutations in known

RASopathy genes (logistic regression corrected for mutation rate and purity, p = 1.25 x 10-4,

Supplementary Table 2.8). One additional RAS-associated gene not previously implicated in

melanoma, RASSF2, was also identified as a SMG specifically in the NF1-mutant subtype11.

RASSF2 is a tumor suppressor that regulates the MAP kinase pathway through interactions with

KRAS, and hypermethylation of its promoter has been observed in several cancer types37-39.
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Triple Wild-Type (TWT) Subtype

Unlike the other subtypes, genomic driver analyses in TWT melanomas have been

limited due to insufficient cohort size for unbiased driver discovery. Here, we identified 19 SMGs

(FDR q < 0.01, Figure 2.5A, Supplementary Figures 2.19-2.21). Consistent with prior reports,

KIT was the most frequently mutated SMG2,17,40. Three additional SMGs, GNA11, GNAQ, and

SF3B1, are known driver genes in uveal melanoma (not included in this study)41 and

predominantly consisted of established hotspot mutations. Though SF3B1 has been identified

as a driver in mucosal melanomas42, SF3B1, GNA11, and GNAQ were identified as SMGs when

considering only cutaneous TWT melanomas (Supplementary Figure 2.19, Supplementary Data

2.2). Through this analysis we identified putative driver events in 91 of 162 (56.17%) tumors,

leaving many tumors without a SMG. This large fraction of tumors without known driver

mutations may be partially due to the low background mutation rate in this subtype limiting the

power to identify more drivers19-21.

Figure 2.5: Identification of new drivers and enrichment of mutational signature 3 in TWT
melanomas.
a) The co-mutation plot of TWT SMGs, including the annotation of tumor histology. These SMGs
include canonical melanoma cancer genes (for example, CTNNB1, CDKN2A and TP53) and
known uveal melanoma driver genes (for example, GNA11, GNAQ and SF3B1). However, these
19 SMGs explain only the presence of drivers in just over 50% of TWT melanomas. b) The
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Figure 2.5 (continued): proportion of samples in each genomic subtype exhibiting mutational
signatures (Methods) in our discovery and validation (n = 159) cohorts. Signature 3 was present
in 21.5% of TWT melanomas compared with 4.5% of non-TWT melanomas (P = 2.20 × 10−11,
two-sided Fisher’s exact test), and was the third most active mutational signature in TWT
melanomas. In our validation cohort (Methods), signature 3 was identified in 19.6% of TWT
melanomas and 5.6% of non-TWT melanomas (P = 0.001, two-sided Fisher’s exact test), and
was again the third most active signature in TWT melanomas. In both the discovery and the
validation cohorts, the proportion of tumors with signatures 3 and 7 was significantly different
across the genomic subtypes (P < 0.05, χ2, two sided). An asterisk denotes a χ2 P < 0.05. HRD,
homologous recombinant deficiency. c) The proportion of base changes ordered by genomic
subtype and the proportion of C>T transitions (increasing, left to right). d) The relative
contribution of each mutational signature ordered by genomic subtype and the relative signature
7 contribution (increasing, left to right).

Similarly, while we observed that TWT melanomas exclusively experienced enrichment

of focal amplifications of the KIT/KDR locus, this subset only represented 18% (29/162) of TWT

melanomas (Supplementary Figure 2.22-2.23, Supplementary Table 2.11, Supplementary Data

2.3, Methods)43. Half the tumors with KIT mutations also had an amplification of KIT, including

all three tumors with in-frame insertions in KIT (Figure 2.5A). SMGs from other genomic

subtypes also jointly experienced an enrichment of amplifications or deletions, such as CDK4

mutations and amplifications in BRAF melanomas (Supplementary Table 2.11, Supplementary

Data 2.3). Global analysis of structural variants (SVs) revealed that TWT melanomas were

enriched in both copy number alterations (CNAs) (Kruskal-Wallis, p = 9.28 x 10-7,

Supplementary Figure 2.24A)44 and fusion events (Kruskal-Wallis, p = 0.006, Supplementary

Figure 2.24B)45 compared to other subtypes. BRAF was the most common fusion partner in

TWT melanomas (n = 3 samples; Supplementary Table 2.7), although there were no recurrent

fusion pairs. In aggregate, TWT melanomas demonstrate increased genomic instability relative

to the other genomic subtypes, although specific driver events were not highly recurrent in

gene-level somatic analysis.
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Mutational signatures and DNA repair defects in melanoma

To augment SMG analysis and identify additional TWT melanoma drivers, we next

characterized the active mutational processes in this cohort (Methods)46-47. Consistent with prior

studies, the three most active signatures were signature 1 (aging), signature 7 (UV) and

signature 11 (alkylating agents)48-49. As expected, performing mutational signature analysis

within the BRAF, (N)RAS and NF1 subtypes independently revealed these same 3 signatures

(Figure 2.5B-D). However, in TWT melanomas, signature 11 was replaced by signature 3,

previously associated with homologous recombination (HR) deficiency when observed with

BRCA1/2 mutations in other tumor types, as the third most active signature (Figure 2.5B,

Supplementary Data 2.4). Signature 3 was identified in 35 of 162 (21.6%, Methods) TWT

tumors and 40 of 886 (4.5%) non-TWT tumors (Fisher’s exact test, p = 5.7 x 10-12). Additionally,

the average relative contribution of signature 3, when present, was significantly higher in TWT

tumors than non-TWT tumors (24.6% vs. 16.7%, t-test, p = 0.015).

Given the flat and ambiguous nature of signature 349, we next examined potential

confounders to this observation in TWT melanomas. The difference in signature 3 prevalence

between TWT and non-TWT tumors was not confounded by histopathological subtype (Fisher’s

exact test, cutaneous: 19.7% vs. 4.5%, p = 8.72 x 10-8; acral/mucosal: 45.8% vs. 11.1%, p =

0.011), age (logistic regression, 1.72 x 10-10), or mutational load (logistic regression, p = 2.6 x

10-3). We also replicated our findings using an orthogonal NMF-based method, including

enrichment of signature 3 in TWT melanomas (Supplementary Figure 2.25, Extended Data

2.4)47. We further confirmed this finding with NMF through downsampling analysis; removing 35

signature 3 tumors vs. 35 non-signature 3 tumors resulted in signature 3 being called in 0% and

92.7% of 1000 simulations, respectively (Extended Data 2.5).

To further evaluate this TWT DNA repair signature finding, we examined its association

with copy number loss of heterozygosity (LoH) events50-51, telomeric allelic imbalance (TAI)52,
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and large scale transitions (LST)53, which were previously associated with double strand break

(DSB) repair and HR deficiency in breast and ovarian cancer54. Tumors with signature 3 had

significantly greater numbers of LoH regions (Kolmogorov-Smirnov, p = 0.005; univariate logistic

regression, p = 5.34 x 10-5, Supplementary Figure 2.26, Methods), TAI (Mann-Whitney U, p =

4.4 x 10-5, Supplementary Figure 2.27, Methods), and LST (Mann-Whitney U, p = 0.007,

Supplementary Figure 2.28, Methods) compared to non-signature 3 tumors (Figure 2.6A).

Further, the unweighted sum of these HR deficiency associated CNA events was significantly

enriched in tumors with signature 3 (Mann-Whitney U, p = 6.21 x 10-5, Extended Data 2.6,

Methods)54. To confirm that the association between signature 3 and these DNA repair

signatures were not spurious, we performed these same tests for all signatures, but no other

signature was significantly associated with all of these associated events (Supplementary

Figure 2.29).
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Figure 2.6: Identification of new drivers and enrichment of mutational signature 3 in TWT
melanomas.
a) Signature 3 tumors had significantly elevated numbers of LoH (P = 0.005; two-sided
Kolmogorov–Smirnov test; P = 5.34 × 10−5, two-sided univariate logistic regression), TAI
(P = 4.4 × 10−5, two-sided Mann–Whitney U-test) and LST (P = 0.007, two-sided Mann–Whitney
U-test) events. b) Signature 3 was also enriched in TWT tumors of two independent melanoma
WGS cohorts, suggesting that the assignment of signature 3 was not ambiguous or the result of
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Figure 2.6 (continued): noise from lower mutational load in WES data. Asterisks denote a
Mann–Whitney U-test P < 0.05. c) Although indel signature ID8 was found in most melanoma
WGS samples, the relative contribution of indel signature ID8 was significantly higher in TWT
tumors (P = 3.3 × 10−3; two-sided Kolmogorov–Smirnov test). d) Significance versus effect size
(fold-change) of significantly differentially expressed (Benjamini–Hochberg, q-value cutoff <0.05;
signature 3 versus non-signature 3) DNA-repair genes via edgeR. Gene names highlighted in
purple function in DSB repair pathways including HR. e) The distribution of expression between
putatively DSB repair-deficient and non-DSB repair-deficient TWT tumors for DSB repair genes
that were significantly differentially expressed (Mann–Whitney U-test; ordered by two-sided P
value, increasing, left to right; *P < 7.6 × 10−3). The data are represented as a boxplot where the
middle line is the median, the lower and upper edges of the box are the first and third quartiles,
the whiskers represent the IQR ×1.5 and beyond the whiskers are outlier points.

To externally evaluate these mutational signature patterns, we next performed signature

analysis in a separate set of melanoma WES tumors that were not included in our original

cohort (Methods). Consistent with our findings, signature 3 was observed in 19.6% of TWT

tumors and 5.6% of non-TWT tumors (Mann-Whitney U, p = 9.79 x 10-3, Figure 2.5B). To further

evaluate whether signature 3 was assigned as a result of ambiguity with lower total called

mutations, we analyzed melanoma whole-genome sequenced (WGS) cohorts (n = 390,

Hayward et al.17 and Priestley et al55; Methods). In the Hayward et al. cohort, signature 3 was

identified in 2 of 14 (14.8%) cutaneous TWT melanomas and 2 of 126 (1.6%) cutaneous

non-TWT melanomas (Fisher’s exact test, p = 0.0498, Figure 2.6B, Supplementary Data 2.4). In

the Priestley et al. cohort, signature 3 was identified in 6 of 42 (14.3%) TWT melanomas

compared to 7 of 208 (3.8%) non-TWT melanomas (Fisher’s exact test, p = 0.011, Figure 2.6B,

Supplementary Data 2.4). Signature 3 was still enriched in TWT melanomas when combining

the two WGS cohorts (Fisher’s exact test, p = 9.6 x 10-4).

Finally, NMF-based indel mutational signature analysis in all 390 WGS tumors revealed

that signature 3 was the sole mutational signature associated with indel signature 8 (ID8;

Methods), whose proposed etiology is the non-homologous end joining activity component of

DSB repair. BRAF, (N)RAS, and NF1 melanomas were associated with indel mutational

signatures ID1, ID2, and ID13 (associated with UV), while TWT melanomas were associated

with indel mutational signatures ID1, ID8, and ID13, even when removing the tumors with
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signature 3 (Extended Data 2.7). Although ID8 has been identified in the majority of melanoma

tumors56, as was also the case in the WGS validation cohorts, ID8 was more pronounced in

TWT tumors. Single-sample level decomposition (Methods) revealed that although there was no

difference in the proportion TWT tumors with ID8 compared to non-TWT tumors (Fisher’s exact

test, p > 0.05), when present, indel signature ID8 contribution was significantly higher in TWT

tumors (Kolmogorov-Smirnov, p = 3.3 x 10-3, Figure 2.6C, Supplementary Data 2.4). This may

explain why ID8 was only identified in the NMF-based indel signatures for the TWT cohort.

Thus, the increased genomic instability of TWT melanomas in general, as evidenced by

elevated SV burden, may also manifest in elevated contribution of indel signature ID8

representing double strand DNA repair dysfunction.

Double-strand break repair deficiency in TWT Melanomas

To examine potential sources for this DNA repair dysfunction in TWT melanoma, we

surveyed whether alterations in genes previously implicated in DSB repair (N=190,

Supplementary Table 2.8, Methods) were enriched in the putative DSB repair defective

melanomas, with emphasis on the TWT subtype. While rare deleterious somatic mutations (e.g.

ATM, BRCA2), CNAs (e.g. CHEK1 and RNF8 deletions), or germline pathogenic mutations (e.g.

WRN, XRCC2) were observed in DNA repair genes, there was no association with these events

and signature 3 (Fisher’s exact test, q > 0.05, Supplementary Figure 2.30, Supplementary Table

2.12).

Given the lack of genomic features previously correlated with signature 3 in this setting,

we then examined whether transcriptional states in DNA repair processes (N=496 genes,

Supplementary Table 2.8, Methods), including HR and other DSB repair pathways, could inform

the relationship between signature 3 contribution and TWT melanoma (Extended Data 2.8A).

Signature 3 contribution was significantly correlated with 19 DNA repair genes (Pearson’s,

p-value cutoff < 0.05; 9 positive, 10 negative), of which 9 function in DSB repair pathways
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(Extended Data 2.8B), suggesting a potential dosage relationship between the degree of

signature 3 activity and the expression of these genes. However, none of these genes passed

FDR correction when including the full set of genes. To determine if the effect size of expression

differences in these genes were also significantly associated with the presence of signature 3,

we performed differential expression analysis57-59. A total of 11 DNA repair genes were

significantly differentially expressed by two methods (Benjamini-Hochberg, q-value cutoff < 0.05,

Figure 2.6D, Extended Data 2.9, Supplementary Data 2.5, Methods), four of which are involved

in DSB repair (ATM, APLF, DCLRE1C, MDC1, Figure 2.6E).

Promoter methylation of RAD51C has also been shown to cause HR deficiency in breast

cancer60, although no DNA repair genes were in regions differentially methylated61-62 between

signature 3 and non-signature 3 melanomas (Methods). Analysis of signature 3 contribution

correlations with methylation β-values for DNA repair genes (Pearson’s, p-value cutoff < 0.05)

and anti-correlations with expression identified 6 positions across 6 genes (Extended Data

2.10). INO80, which functions in the initial stages of HR63-64, was the only DSB repair associated

gene implicated in this analysis and had significantly higher methylation in signature 3 tumors

(Mann-Whitney U, p < 0.015, Extended Data 2.10A, Supplementary Table 2.13). Thus,

non-genetic events of the DSB repair genes ATM, APLF and INO80, all of which function early

in DSB repair65-66, were significantly associated with signature 3 contributions in melanoma.

Discussion

Through harmonized and uniform genomic analyses on expanded melanoma WES, we

revealed a complex secondary genomic architecture of melanoma that includes multiple

oncogenic drivers not previously implicated in this disease. Mutational significance analysis

within the genomic subtypes revealed novel, secondary drivers that are rarely shared between

the subtypes. Further, several pathways and mechanisms potentially driving tumors in each of

the subtypes have remained unappreciated. Over 35% of BRAF melanomas had mutations in
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the TGF-β pathway genes (BMP5, MECOM), and roughly 30% of (N)RAS melanomas had

mutations in SMGs that are core components of the BAF/PBAF complex (ARID1A, ARID1B,

ARID2, BRD7). Further, nonsynonymous mutations in BAF/PBAF genes were enriched for being

clonal in (N)RAS melanomas compared to the other genomic subtypes, indicating that aberrant

chromatin remodeling and histone modifications may differentially drive tumor progression in a

subset of (N)RAS melanomas. Each of these observations were linked to associations with

selective immune checkpoint blockade response that warrant biological evaluation. Critically, we

do not claim prognostic or predictive biomarkers status for these findings, which require

randomized prospective analyses.

Prior to this study, TWT melanomas lacked known SMGs, although several studies had

proposed KIT may be driving a subset of these tumors. Here we’ve identified 19 SMGs,

including KIT, in TWT melanomas, and fully characterized their distinct mutational landscape.

TWT melanomas have significantly lower mutational load but increased genomic instability (SVs

and CNVs). Perhaps most surprisingly, between 14-20% of TWT melanomas display mutational

signature 3, which has ambiguous etiology, but in certain histologies has been associated with

HR deficiency when co-occurring with BRCA1/2 mutations.

No one etiology of signature 3 was identified, however transcriptional data suggested a

role for downregulation of ATM and NHEJ dysregulation. ATM functions in both the initial stages

of HR and NHEJ repair67-68, where it is recruited to DSBs by the MRN complex and

subsequently activated, resulting in the phosphorylation of several key HR proteins (e.g.

BRCA1, H2AX and MDC1)69-71, as well as later stages of HR repair after RAD51 filament

formation65. Further, since APLF is directly phosphorylated by ATM, and accumulates at H2AX

foci66,72-73, this suggests the observed ATM down-regulation occurs during the early stages of

DSB response. Prior studies in ATM deficient cell lines have shown that when BRCA1/2 remain

intact, the HR repair pathway is not entirely deficient but rather repairs DSBs at a slower rate,

which in turn promotes a more active NHEJ pathway that results in higher rates of DSBs68. This
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may be similar to the mechanism by which we observe signature 3 in TWT melanoma, and

explain why there is an absence of some canonical features associated signature 3 (e.g.

BRCA1/2 alterations)71, as well as why NHEJ indel signature ID8 is detected but not ID656.

Future studies to evaluate the functional consequences of these candidates in melanoma cells,

and clinical studies incorporating long read sequencing, may further inform the genetic

etiologies underlying these events.

While clinical trials of melanoma patients treated with platinum-based chemotherapy

were negative, a subset of patients approximating the frequency of signature 3 positive

melanomas in this cohort had definitive clinical responses74-75. Prospective assessment of

genomically stratified melanomas that consider mutational signatures may enable recovery of a

rarely utilized therapeutic modality (platinum-based chemotherapy) and others not widely

considered (e.g. ATR inhibitors68,76) for melanoma. Moreover, prospective generation of new

melanoma models that captures the genomic and phenotypic diversity of the disease (e.g.

pre-clinical TWT models with signature 3) will aid identification of novel therapies. Broadly, deep

and harmonized exome and genome-wide molecular analysis of increasingly large and

histologically uniform tumor types will continue to reveal new biology with immediate

translational potential, especially as clinical sequencing programs can directly connect these

genomic observations with robust phenotypic measures.

Methods

DNA-seq dataset description

We downloaded publicly available aligned whole-exome sequencing BAM files from 10

previously published studies1-2,6-7,13-18. Prior to filtering out samples that failed joint quality control

metrics, this sample set consisted of 1,307 tumor with matched normal pairs. Information on pair

counts per cohort and dpGaP/ICGC accession numbers are included in Supplementary Table

2.1.
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The expression data used in this study is from the TCGA-SKCM cohort, which is

publically available from the TCGA-SKCM workspace on FireCloud

(TCGA_SKCM_ControlledAccess_V1-0_DATA). The normalized RNA expression data

(RSEM-Upper quartile normalized) were used for all expression analysis, except differential

expression analysis. The differential expression analysis R packages, edgeR and DESeq257-59

both require raw RNA counts since they apply their own normalization methods to the data.

The methylation data used in this study were also downloaded from the TCGA-SKCM

workspace on FireCloud. The calculated beta values were used for all methylation analysis.

Genomic data processing

Aligned whole-exome sequencing BAM files were obtained for all samples in the studies

mentioned (see DNA-seq dataset description). BAM files aligned to GRCh37 were realigned to

Hg19 using the Picard realignment pipeline.

Removal of duplicate samples

To remove duplicate samples from the same patient we calculated the pairwise relationship

between all matched normal BAM files in our cohort using Somalier

(https://github.com/brentp/somalier). The relatedness between all of the samples used in the

analyses of this study can be seen in Supplementary Figure 2.31.

Joint quality control metrics

To pass quality control, we required samples to pass four separate criteria. GATK3.7

(https://hub.docker.com/r/broadinstitute/gatk3/tags) DepthOfCoverage was used to determine

the mean target coverage for tumor and normal samples77. To pass this metric we required a

mean target coverage of at least 50X in the tumor sample and at least 20X in the corresponding

normal sample. ContEst (https://software.broadinstitute.org/cancer/cga/contest_download) was
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used to determine the extent of cross sample contamination78. All samples that had cross

sample contamination less than 5% were considered. FACETS

(https://github.com/mskcc/facets), an allelic copy number caller that also determines purity and

ploidy of tumors, was used to obtain both allelic CNAs (see Copy number analysis) and purity

estimates44. For tumor samples, we required a tumor purity of 20%. The average purity of the

tumor samples that passed this filter was 65% (median: 69%). The last filter we applied was

percentage of tumor-in-normal, which was determined by deTiN79. All tumor samples with

corresponding normal samples that had less than 30% tumor-in-normal passed this filter.

Clinical data

All clinicopathological data was downloaded from the published studies from which we obtained

whole-exome sequencing data. The only clinical features used in this study were age at

diagnosis, the location of the primary tumor, whether the sample was primary or metastatic, and

the histology of the tumor (e.g. cutaneous, acral, mucosal, desmoplastic, occult).

Somatic variant calling

Single-nucleotide variants (SNVs) and other substitutions were called with MuTect (v1.1.6)80

(https://github.com/broadinstitute/mutect). MuTect (v1.1.6) was used to call SNVs instead of

MuTect2 because, at the time of analyses performed herein, the MuTect2 method has not been

published and is still actively being developed and compared with other approaches. MuTect

mutation calls were filtered for 8-OxoG artifacts81, and artifacts introduced through the formalin

fixation process (FFPE) of tumor tissues77. 8-OxoG and FFPE sequencing artifacts were filtered

out in a three step process. First, sequence metrics are obtained from running Picard’s

(https://broadinstitute.github.io/picard/) CollectSequencingArtifactMetrics, which categorizes

sequence context artifacts as occurring before hybrid selection (preadapter) or during hybrid

selection (bait bias). For 8-OxoG artifacts, Picard’s CollectOxoGMetrics was run to obtain
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Phred-scaled scores for the 16 trinucleotide sequence contexts implicated in oxidation of

8-oxoguanine. Lastly, orientation bias filtering (C>T transition for FFPE, G>T transversion for

8-OxoG) was applied to these metrics using the GATK tool FilterByOrientationBias. Indels were

called with Strelka (v1.0.11). MuTect calls and Strelka82 calls were further filtered through a

panel of normal samples (PoN) to remove artifacts generated by rare error modes and miscalled

germline alterations80. The cancer cell fraction (CCF) of mutations, defined as the fraction of

tumor cells inferred to contain the mutation, were annotated using a modified version of the

mafAnno.R script from https://github.com/tischfis/facets-suite, which calculates the CCF

likelihoods using the method described in McGranahan et al. 201583 from FACETS outputs.

Clonal mutations were defined as having a CCF of over 80% with a probability of greater than

50% (Prob(CCF > 0.8) > 0.5).

Mutational significance analysis

To identify significantly mutated genes (SMGs) in melanoma, we applied three different

algorithms that emphasized mutational recurrence (MutSig2CV;

https://github.com/getzlab/MutSig2CV)9,19, sequence context (MutPanning;

https://www.genepattern.org/modules/docs/MutPanning)20, and accumulated functional impact

(OncodriveFML; http://bbglab.irbbarcelona.org/oncodrivefml/home)21. Due to the large number

of samples, high mutational burden, and wide range of mutational burden, we combined the

results (p-values) from each algorithm using Brown’s method, and classified SMGs using a strict

FDR corrected p-value cutoff (q < 0.01). An expression filter was applied to the list of SMGs,

such that only genes that are expressed in melanocytes were considered. All genes that had a

RSEM-UQ count of at least 10 passed this expression filter. Additionally, in the event that the

mutations were gain of function, genes that failed the initial filter but had a median normalized

expression (RSEM-UQ) of at least 10 in the mutated samples were also kept. This is slightly

more strict than the expression filter applied in the TCGA-SKCM study, which remains the
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largest published study of melanoma exomes to date 2. To make certain that the gene

expression in the bulk transcriptome data was in part due to malignant cells, we leveraged

single cell data from Tirosh et al.84, and also required that SMGs had observable expression in

malignant melanoma cells. Lastly, hotspot mutations in SMGs were manually run through the

UCSC BLAT filter to remove genes that were classified as false positives from mismapped

reads. We used UpSetR 1.4.0 to plot the intersection of SMGs between genomic subtypes85.

Copy number analysis

Allelic copy number alterations (CNAs) were determined using FACETS, which provides

information on copy number loss of heterozygosity events44. These CNAs were used in all copy

number analysis besides identifying regions significantly enriched in focal

amplifications/deletions using GISTIC2.043, which requires that adjacent segments with the

same overall copy number change have not been smoothed into one large segment (See Copy

number significance). GATK 3.7 was used to generate segmentation files for all tumor and

normal samples that passed quality control, and used as input for GISTIC2.0.

Copy number significance

Focal regions with significant enrichment of amplifications/deletions were identified from a

merged segmentation file using GISTIC2.0 (https://github.com/broadinstitute/gistic2). To identify

regions harboring germline CNAs to be excluded from the analysis, we ran GISTIC2.0 on the

normal samples with amplification and deletion thresholds of 0.1. Any region with a q-value <

0.25 was excluded from the somatic analysis. To identify focal regions with significant

enrichment of somatic amplifications/deletions, we ran GISTIC2.0 with amplification and

deletion thresholds of 0.3. Any region with a q-value less than 0.1 was considered a peak.

Additionally, we examined copy number calls from FACETS for genes associated with DSB

repair to determine if they were enriched in tumors with signature 3 via Fisher’s exact test.
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Immunotherapy survival analysis

To determine if there are significant differences between the survival curves of 2 or more groups

of samples we used the log-rank test from the survival R package. We performed this test for

both overall survival (OS) and progression free survival (PFS). To evaluate whether tumor

mutational burden was a confounding factor in the survival analysis, we also performed cox

proportional hazards models adjusting for tumor mutational burden (Supplementary Table 2.6).

Immunotherapy RECIST response analysis

We defined clinical benefit as having complete response (CR), partial response (PR) or stable

disease (SD) with overall survival of more than 1 year, per RECIST criteria. Patients classified

as having SD with overall survival of 1 year or less were, or progressive disease (PD) were

classified as non-responders. To determine if genomic characteristics were associated with

clinical benefit to immunotherapy we performed Fisher’s exact test.

Whole-exome mutational signatures

Active mutational processes were determined using the deconstructSigs R package

(https://github.com/raerose01/deconstructSigs), with a signature contribution cutoff of 6%. This

cutoff was chosen because it was the minimum contribution value required to obtain a

false-positive rate of 0.1% and false-negative rate of 1.4% via the authors in-silico analysis, and

is the recommended cutoff46. To confirm the presence of signature 3 as the third most active

signature in TWT melanomas, and that the identification of signature 3 was not simply due to

the deconstructSigs model, we used the SomaticSignatures R package47

(https://www.bioconductor.org/packages/release/bioc/html/SomaticSignatures.html), which

employs an NMF-based model, rather than the linear-based model used in deconstructSigs. To

determine that signature 3 was enriched in TWT melanomas we used Fisher’s exact test.
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Downsampling of TWT melanomas to determine the robustness of signature 3

To further confirm that signature 3 was indeed the third most dominant signature in TWT

melanomas and not being called as a result of the low mutation rate, we first ran 1000

NMF-based simulations (via SomaticSignatures) without the 35 signature 3 TWT samples

identified via deconstructSigs to confirm the absence of signature 3. We then ran 1000

NMF-based simulations removing 35 random non-signature 3 TWT samples each run to confirm

the existence of signature 3 (Extended Data 5).

Validation of signature 3 and immunotherapy response in independent datasets

To validate the presence of signature 3 in both TWT and non-TWT melanomas, we obtained

mutation calls from the supplement of three independent studies: (1) Riaz et al. 2017, which

included 68 patients with melanoma that were either treated with ipilimumab or

ipilimumab-naive86, (2) Roh et al. 2017, which studied 56 melanoma patients of which 53 had

mutation calls from pretreatment whole-exome sequencing87, and (3) Hugo et al. 2016, which

evaluated 38 pretreatment melanoma patients88. The mutation calls for each of these cohorts

were obtained from the supplemental information of the original papers, and subsequently run

through deconstructSigs41. To determine that signature 3 was enriched in TWT melanomas we

used Fisher’s exact test. The 3 cohorts mentioned above, as well as the CheckMate 064 cohort

from Rodig et al. 201889 were used to validate the association MECOM/BMP5 or PBAF complex

mutations with OS and RECIST response.

Calculation of HR deficiency associated copy number events (scores)

To calculate the number of LoH events, TAI events and LST events we used the FACETS copy

number calls as input to the scarHRD R package (https://github.com/sztup/scarHRD), which

implements the methods used in 50, 52, and 53, respectively. To determine p-values for the

association between loss of heterozygosity events and the presence of signature 3, we used a
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Kolmogorov-Smirnov test and univariate logistic regression. To determine p-values for the

association between the presence of signature 3 with telomeric allelic imbalance (TAI), large

scale transitions (LSTs), and the unweighted sum of these homologous recombination

associated copy number scores we used a Mann-Whitney U test. We highlighted these specific

statistical tests for each score because they were used to find the associations in the original

papers, however, Kolmogorov-Smirnov, Mann-Whitney U, and univariate logistic regression

were significant for each of the four scores (Supplementary Data 2.4).

Whole-Genome sequenced data analysis

To evaluate whether signature 3 was not being called in the WES data purely because of

ambiguity challenges, we performed mutational signature analysis on two melanoma WGS

cohorts: (1) the ICGC Hayward et al. cohort17 and (2) the Priestly et al. HMF cohort55. We

received the mutation calls for these cohorts directly from the authors, however, a version of the

mutation calls from the Hayward et al. cohort is available to download from ICGC. The VCF files

from the Priestley et al. cohort were annotated using VEP (release 99) to determine the

genomic subtype (BRAF, (N)RAS, NF1, TWT) of each sample. To conform with the

characterization used in this study, BRAF and (N)RAS non-hotspot samples were categorized

as BRAF-mutant or (N)RAS-mutant melanomas, respectively.

Indel Mutational Signatures

To call NMF-based indel mutational signatures in the WGS samples we used SigProfiler

(v1.0.5)56 (https://github.com/AlexandrovLab/SigProfilerExtractor), and performed cosine

similarity between the global NMF suggested solutions and the known COSMIC signatures. To

confirm that the association between signature 3 and ID8 was not random or artefactual, we

tested the association between ID8 and all SNV signatures. We did this by running SigProfilier

on all tumors with mutational contribution of each signature independently (e.g. running
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SigProfiler on all tumors with signature 1, then on all tumors with signature 2, and so on).

Besides signature 3, signature 6 was the only other signature to yield ID8. To prove that ID8

was only associated with signature 3 tumors, we reran SigProfiler on the subset of signature 6

tumors that lacked contribution of signature 3, and vice versa. To call single-sample indel

signatures we used the deconstructSigs R package46 and limited the search space to known

indel signatures in melanoma56. The reference file used for calling indel signatures via

deconstructSigs was downloaded from the supplement of Alexandrov et al.56

(https://www.synapse.org/#!Synapse:syn11738318.4).

Germline variant discovery

Germline whole-exome sequencing data were used to perform germline variant calling of single

nucleotide variants (SNVs) and small deletions/duplications (indels) across all samples.

Genome Analysis Toolkit (GATK) HaplotypeCaller pipeline (version 3.7) was used to call

germline variants according to the GATK best practices77. GATK Variant Quality Score

Recalibration (VQSR) method was used to filter germline variants. The SNP VQSR model was

trained using HapMap3.3 and 1KG Omni 2.5 SNP sites, and a 99.6% sensitivity threshold was

applied to filter variants. In addition, Mills et. al. 1KG gold standard and Axiom Exome Plus sites

were used for indel recalibration using a 99% sensitivity threshold90.

Germline variant pathogenicity evaluation

Pathogenicity of the germline variants that passed filtering were classified according to the

American College of Medical Genetics and Genomics and the Association of Molecular

Pathology clinical-oriented guidelines91. The germline variants were evaluated for pathogenicity

using publicly-available databases such as ClinVar and gene-specific databases. Population

minor allele frequencies of these variants were obtained from the publicly-available Exome

Aggregation Consortium (ExAC) database and Genome Aggregation Database (gnomAD).
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Based on the evidence extracted from these resources, germline variants were classified into 5

categories: benign, likely benign, variants of unknown significance, likely pathogenic and

pathogenic91. Truncating germline variants in genes that have not so far been associated with a

clinical phenotype, but are expected to disrupt the protein function, were classified as likely

disruptive. Only germline variants classified as pathogenic, likely pathogenic, or likely disruptive

were considered in the analysis.

Differential expression analysis

Differential expression analysis was performed using the edgeR57

(https://bioconductor.org/packages/release/bioc/html/edgeR.html) and DESeq258-59

(https://bioconductor.org/packages/release/bioc/html/DESeq2.html) R packages between TWT

samples with and without signature 3. Tumor purity was included as a covariate in the models.

To classify a gene as significantly differentially expressed we applied a Benjamini-Hochberg

corrected p-value threshold of 0.05 (Supplementary Data 2.5). As recommended by the

DESeq2 documentation, the output of this method is compatible for input to the Independent

Hypothesis Weighting (IHW) R package, and the IHW R package

(https://bioconductor.org/packages/release/bioc/html/IHW.html) was used to perform FDR

correction for DESeq2 results92. Although we ran differential expression analysis on all genes,

our downstream analysis focused on DNA repair genes (n = 496, see Gene sets).

Immune Cell Composition

To determine the composition of immune cells in the tumor microenvironment of each tumor we

used CIBERSORT93 (https://cibersort.stanford.edu/). The LM22 immune cell signature matrix

was used for deconvolution on the raw TCGA SKCM RNA-seq data. CIBERSORT was run for

1000 permutations and quantile normalization was applied. To determine if there was a
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significant shift in the proportion of immune cell types between genomically stratified groups of

melanomas we used a Mann-Whitney U test.

Expression correlation analysis

To identify genes whose expression was linearly associated with relative contribution of

signature 3, we performed Pearson’s correlation between relative signature 3 contribution and

normalized RNA expression data for all TCGA-SKCM samples that passed our joint quality

control parameters. We performed this analysis on all DNA repair genes (n = 496, see Gene

sets), which includes HR genes and other DSB repair pathway genes.

Gene sets

All gene sets and their corresponding genes used for analysis in this study can be found in

Supplementary Table 2.8. DNA repair gene sets from the KEGG, GO and REACTOME

databases were downloaded from the molecular signatures database (MSigDB v6.2)94-95

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Gene sets from GO, KEGG and

REACTOME that specifically contained genes involved in mitotic recombination were

considered HR genes (n = 54). HR genes and genes in the GO DSB repair gene set were

considered DSB genes (n = 190). The BAF and PBAF gene sets were downloaded from

genenames.org. The RASopathy gene set was derived from96.

Gene fusions

Fusions calls from 45 were leveraged to determine global differences in fusion events between

the genomic subtypes and to identify recurrent fusion events. A Kruskal-Wallis test was used to

determine if there was a significant difference in the number of fusions events per tumor

between the genomic subtypes.
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Methylation analysis

Differential methylation analysis was performed between TWT samples with and without

signature 3 using bumphunter via the minfi R package61-62

(http://bioconductor.org/packages/release/bioc/html/minfi.html). We also identified potential

sites of methylation associated with signature 3 by applying several joint heuristics and

statistical tests. To identify candidate sites we required that there be (1) a significant (p-value

cutoff < 0.05) positive Pearson correlation between signature 3 contribution and methylation

β-values, (2) a significant median difference in β-values of at least 2% between signature 3 and

non-signature 3 tumors, and (3) a significant anticorrelation between methylation β-values and

gene expression. The joint heuristic and statistical analysis was restricted to DNA repair genes

(n = 496, see Gene sets), while the differential methylation analysis extended to the entire

exome.

Pathway over-representation analysis

We performed pathway over-representation analysis on the genomic subtype specific SMGs

(including BRAF V600E/K) using ConsensusPathDB (v34)97 (http://cpdb.molgen.mpg.de/). We

ran ConsensusPathDB (on March 15, 2020) with default parameters for pathway-based sets,

and protein complex-based gene sets (Supplementary Table 2.7).

Statistics and Reproducibility

Statistical analyses were performed using the stats R package for R version 3.6.1. Reported

q-values represent Benjamini-Hochberg corrected p-values, and reported p-values represent

nominal p-values. All statistical tests performed (e.g. Mann-Whitney U, Kolmogorov-Smirnov,

t-test, Fisher’s exact test, χ2) were two-sided.
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Chapter 3: Melanoma SV Analysis

Abstract

We performed harmonized structural variant (SV) and molecular analysis on 355 melanomas

and discovered markedly different global genomic properties among melanoma histological

subtypes, histology-specific cancer genes recurrently affected by SVs overlapping adjacent

topologically associated domain (TAD) boundaries, and a potential mechanism for the

downregulation of ATM observed in double-stranded break (DSB) repair deficient triple wild-type

cutaneous melanomas. Acral melanomas were associated with increased numbers of SVs and

prevalence of chromothripsis compared to cutaneous and mucosal melanomas. Additionally,

while mucosal melanomas were enriched for SVs relative to cutaneous melanomas, there was

no difference in the prevalence of chromothripsis. Irrespective of histological subtype, SVs

affecting TAD boundaries were enriched for affecting actively expressed TADs rather than lowly

expressed or repressed TADs. The most recurrently altered TAD boundaries in acral and

mucosal melanomas was chr11:77750000-77825000, which is adjacent TADs containing the

cancer genes GAB2 and PAK1. GAB2 and PAK1 both play a role in the MAPK signaling

pathway. The most recurrently altered boundary in cutaneous melanomas was

chr9:21700000-21775000, which is adjacent to the TADs containing the tumor suppressors

CDKN2A, CDKN2B, and MTAP. Lastly, in the subset of cutaneous melanomas in our cohort, we

identified that SVs affecting the MRN complex were associated with the presence of DSB repair

deficiency, as well as the expression of ATM. Broadly, integration of SV analysis with regulatory
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element and molecular data revealed subtype-specific modes of melanoma oncogenesis, and a

potential causal mechanism for DSB repair deficiency in cutaneous melanoma, both of which

provide new opportunities for biological and therapeutic investigation.

Introduction

Cutaneous melanoma is among the most highly mutated cancers due to the impact of

UV mutagenesis leading to many C>T transitions across the genome1,2. For this reason,

molecular analyses of melanoma is often focused on somatic mutations, and increasingly so

due to the association of tumor mutational burden (TMB) with response to immunotherapy3–6.

Somatic structural variant (SV) analyses of cutaneous melanoma whole genomes have been

performed2,7, with emphasis on the counts and frequency of SVs. In contrast to cutaneous

melanoma, acral and mucosal melanomas are associated with lower TMBs compared to

cutaneous melanomas, with the majority of tumors showing no detectable effect of UV

mutagenesis on their mutational spectrums (e.g. TERT, CDK4, MDM2). Instead, in these

subtypes, comprehensive SV analysis identified higher SV burden than cutaneous melanomas

and the presence of focal SVs targeting known cancer genes8,9. Conversely, features relating to

the landscape of SVs across histologic or molecular (BRAF-mutant, RAS-mutant, NF1-mutant,

and triple wild-type (TWT)) subtypes of melanoma remain incompletely characterized.

Chromothripsis, a single complex genomic event characterized by several SVs clustered

in genomic regions of oscillating copy number states across one or more chromosomes, has

been systematically characterized in acral melanomas9, and a subset of cutaneous melanomas

available through the PCAWG consortium (n=106)9,10. In contrast to chromothripsis

characterization, the frequency and effect of SV events on topologically associated domains

(TADs), which preserve the regulatory landscape of genes11, remains unexplored across all

melanoma histological subtypes. Disruption of boundaries between TADs has been shown to

result in dysregulation of neighboring gene expression through a variety of mechanisms,
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including overexpression of oncogenes through enhancer hijacking12 or inversions overlapping

TAD boundaries placing genes near atypical regulatory elements 13,14.

Finally, a subset of cutaneous melanomas exhibit SNV mutational signature 3

(associated with BRCA1/2 mutation and double-stranded break (DSB) repair deficiency in

certain cancer types) associated with downregulation of ATM15, among dysregulation of other

genes that function early in the DSB repair pathway. However, no DSB repair-associated

genomic features identified in cutaneous melanoma whole-exomes were statistically associated

with signature 3, and the mechanism leading to the downregulation of ATM in the majority of

these tumors remains unclear. SV analysis also enables the identification and characterization

of various DSB repair mechanisms activity between signature 3 positive and negative tumors7,15,

beyond homologous recombination deficiency (HRD)-associated events that can be obtained

through allelic copy number analysis16,17. Taken together, we hypothesized that somatic SVs

may inform (i) molecularly defined subtype-specific modes of melanoma oncogenesis, (ii)

regulatory disruption, and (iii) DNA repair defects that were not identifiable via somatic mutation

analysis. Thus, we harmonized WGS from 355 melanomas to investigate the role of SVs in

melanoma oncogenesis across these different axes.

Results

We assembled and uniformly analyzed SVs in 355 melanoma WGS (116 acral, 175

cutaneous, and 64 mucosal melanoma; Methods)1,2,8,9. Of the cutaneous melanoma samples,

81, 55, 19, and 20 samples were BRAF-mutant, NRAS-mutant, NF1-mutant, and triple wild-type

(TWT), respectively. The median sequencing coverage was 57X and 37X in tumor and matched

normal samples, respectively, with no statistical difference in tumor sample coverage between

the histologies (Wilcoxon-Mann-Whitney, p = 0.08; Supp. Figure 3.1). Additionally, there was no

difference in the median tumor purity between the histologies, ranging from 61% in mucosal

melanomas to 66% in acral melanomas (Wilcoxon-Mann-Whitney, p = 0.37), while background
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ploidy in acral (3.3) and mucosal (2.9) melanomas were significantly higher than in cutaneous

(2.1) melanomas (Wilcoxon-Mann-Whitney, p < 3.8 x 10-5). In total, our framework identified a

total of 106,032 (median events per tumor; acral: 81, mucosal: 64, cutaneous: 23) somatic

genomic rearrangements (Methods; Figure 3.1A), consisting of 25,401 deletions (DEL), 16,297

duplications (DUP), 17,935 inversions (INV), and 46,399 translocations (TRA). Of the 46,399

TRA events, 13,075 (28%) were intrachromosomal while 33,324 (72%) were interchromosomal.

Across acral, mucosal, and cutaneous melanomas approximately 72.4%, 71.4%, and 70.7% of

TRA events were interchromosomal, respectively.

Global properties of SVs across histological subtypes

The number and features of SVs varied widely across the melanoma histologies. Both

acral and mucosal melanomas had significantly higher numbers of TRA, DEL, INV, and DUP

events per tumor compared to cutaneous melanomas (Wilcoxon-Mann-Whitney, p < 2.89 x 10-9;

Figure 3.1B). However, when compared to mucosal melanomas, acral melanomas had

significantly higher numbers of TRA (Wilcoxon-Mann-Whitney, p = 2.9 x 10-4) and INV (p = 0.01)

events per tumor, but not DEL or DUP events. Acral melanomas were also significantly

associated with larger (measured by distance between breakpoints) SV events across all SV

categories compared to cutaneous melanomas (Wilcoxon-Mann-Whitney, p < 0.026), but not

mucosal melanomas. Furthermore, the distributions of DEL and INV sizes in cutaneous

melanomas possess distinctive modes surrounding smaller SV events (Kolmogorov-Smirnov, p

< 2.2 x 10-16; Figure 3.1C), which may suggest a distinct mechanism of generation. Indeed,

pan-cancer analysis of SVs identified small deletions (< 10kb) to be enriched in early replicating

regions near TAD boundaries, and inversions enriched in late replicating regions7.

Within cutaneous melanomas, there was no difference in the number of TRA, INV and

DUP events per tumor between the genomic subtypes (Wilcoxon-Mann-Whitney, p > 0.05).

However, NF1-mutant melanomas had significantly higher numbers of DEL events per tumor
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compared to the other genomic subtypes (Wilcoxon-Mann-Whitney, p < 0.022; Figure 3.1D).

Examining the distribution of DEL and INV sizes within cutaneous melanomas revealed that the

majority of smaller SV events in this histology were in NF1 and NRAS-mutant tumors (Figure

3.1E). Thus, between histologic and molecular subtypes, the quantity and characteristics of SVs

varies widely.

Figure 3.1: Characteristics of histological and cutaneous genomic subtypes in melanoma
(a) The total number of TRA, DEL, INV, and DUP events in acral, cutaneous, and mucosal
melanomas. (b) The distribution of the number of TRA, DEL, INV and DUP events in acral,
cutaneous, and mucosal melanomas. (c) The distribution of the number of TRA, DEL, INV and
DUP events across the cutaneous melanoma genomic subtypes. (d) The distribution of the
sizes of TRA, DEL, INV and DUP events in acral, cutaneous, and mucosal melanomas. (e) The

62



Figure 3.1 (continued): distribution of the sizes of TRA, DEL, INV and DUP events across the
cutaneous melanoma genomic subtypes. (b-c) Asterisks denote a p-value < 0.05.

Characteristics of chromothripsis

While chromothripsis has been identified in each of the melanoma histological subtypes,

prior studies were either unable to differentiate chromothripsis from other complex events8,9, or

used methods for identification with low sensitivity10,18,19. Additionally, the relevance of

chromothripsis between melanoma histological subtypes, or between genomic subtypes within

cutaneous melanomas which have been shown to harbor distinct genomic features, is unknown

1,2,15. In this cohort, acral melanomas were significantly enriched for chromothripsis events

(Methods)10 compared to both mucosal (Fisher’s exact, OR = 5.04, 95% CI = 2.51 - 10.44, p =

8.23 x 10-7) and cutaneous melanomas (Fisher’s exact, OR = 6.84, 95% CI = 3.96 - 12.04, p =

5.01 x 10-14; Figure 3.2A), while there was no significant difference in the rate of chromothripsis

between cutaneous and mucosal melanomas (Fisher’s exact, p = 0.41). Further, 85% of

chromothripsis events in acral melanomas involved interchromosomal SVs compared to 65% of

mucosal (Fisher’s exact, OR = 3.05, 95% CI = 0.85 - 10.49, p = 0.055) and 52% of cutaneous

(Fisher’s exact, OR = 5.17, 95% CI = 2.07 - 13.53, p = 1.1 x 10-4) melanomas. Of the

interchromosomal chromothripsis events, the majority involve more than 1 additional

chromosome (> 2 in total; 67% acral, 62% mucosal, and 57% cutaneous). In one extreme case,

an Acral melanoma tumor had a single chromothripsis event affecting 18 chromosomes (Figure

3.2B), whereas the most chromosomes involved in a single chromothripsis event in mucosal

and cutaneous melanomas were 8 (Figure 3.2C) and 6, respectively. Thus, chromothripsis is the

source of genomic instability in the majority of acral melanomas, and may present many

opportunities to identify clinically relevant druggable fusions per tumor. Conversely, cutaneous

and mucosal melanomas experience chromothripsis at less than half the rate of acral

melanomas, and have similar chromothripsis landscapes despite significantly different global SV

properties.
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Within cutaneous melanomas, 42% (8/19) of NF1-mutant melanomas harbored

chromothripsis events compared to 20-25% in the other genomic subtypes, although this did not

reach statistical significance (Fisher’s exact, p = 0.09; Figure 3.2D). All but one (88%)

NF1-mutant melanomas that harbored chromothripsis involved interchromosomal SVs,

compared to just 38% of BRAF-mutant melanomas with chromothripsis. Roughly 55% and 50%

of NRAS-mutant and TWT tumors with chromothripsis involved interchromosomal SVs,

respectively. 2 of 3 (67%) NF1-mutant melanomas with missense mutations harbored

chromothripsis, compared to 6 of 16 (37.5%) NF1-mutant melanomas with inactivating

mutations, although this difference was not statistically significant (Fisher’s exact test, p > 0.05).

There was no difference in the proportion of V600E and V600K tumors with chromothripsis

within BRAF-mutant melanomas.

A subset of samples in each genomic subtype had chromothripsis events that spanned

other driver genes that define the subtypes. For example, one BRAF melanoma harbored an

intra-chromosome chromothripsis event that affected the BRAF locus (Figure 3.2E), while 4

other BRAF melanomas harbored chromothripsis events that spanned NRAS. One tumor with

an NRAS G12R mutation had an intra-chromosome chromothripsis event spanning KRAS

(Figure 3.2F), while BRAF and NF1 were involved in chromothripsis events in 1 NRAS

melanoma each. Additionally,  2, 4, and 1 NF1 melanomas harbored chromothripsis events

spanning BRAF, NRAS, and NF1 respectively, with 2 of the tumors harboring chromothripsis at

the NRAS locus also harboring chromothripsis at the KRAS locus. Furthermore, 1 of the 2 NF1

melanomas with chromothripsis events spanning NRAS and KRAS was the tumor with the

chromothripsis event spanning the NF1 locus. In TWT tumors, BRAF and NRAS were involved

in chromothripsis events in 1 sample each. Thus, SVs generated via chromothripsis may

provide secondary mechanisms of MAPK pathway dysregulation through genes that define the

genomic subtypes, which was even more rare outside of chromothripsis events. Furthermore, in
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the case of BRAF melanomas, these events may result in resistance mechanisms to targeted

therapy20. Thus, chromothripsis events in cutaneous melanoma are capable of generating

alterations that drive tumor initiation and development.

We lastly determined whether the distribution of short INV and DELs observed in NF1

and NRAS-mutant melanomas were the result of chromothripsis. The distribution of small INVs

observed in NF1-mutant melanomas were largely driven by 2 samples, both of which had

chromothripsis. However, only 34.6% and 7.3% of small INVs in these samples were located in

chromothripsis regions. Similarly, the distribution of small INVs observed in NRAS-mutant

melanomas was largely driven by a single sample that harbored chromothripsis, with only 8.5%

of these small INVs were located in chromothripsis regions. While the distribution of short DELs

observed in NF1 and NRAS-mutant melanomas were not driven by a few outlier samples, there

again was no association with the numbers of these events and chromothripsis

(Wilcoxon-Mann-Whitney, p > 0.05). These results suggest that despite the frequency of SV

events differing between the histological subtypes, the differences in the sizes of these SV

events are driven by outlier samples.
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Figure 3.2: The rate and characteristics of chromothripsis events vary by melanoma
histologies and cutaneous genomic subtypes.
(a) The frequency of chromothripsis across acral, cutaneous, and mucosal melanomas. (b) The
most extreme chromothripsis event observed in an acral melanoma tumor, which consisted of
SVs spanning a total of 18 chromosomes. (c) The most extreme chromothripsis event observed
in a mucosal melanoma tumor, which consisted of SVs spanning a total of 8 chromosomes. (d)
The frequency of chromothripsis across the cutaneous melanoma genomic subtypes. (e) An
example of an intra-chromosomal chromothripsis event spanning the BRAF locus in a
BRAF-mutant cutaneous melanoma. (f) An example of an intra-chromosomal chromothripsis
event spanning the KRAS locus in a (N)RAS-mutant cutaneous melanoma. (a, d) Asterisks
denote a p-value < 0.05.

Effect of SVs on topologically associated domains (TADs)

Disruption of TAD boundaries through chromothripsis or other SV events can lead to the

formation of neo-TADs and dysregulation of gene expression, whereby transcription factors,

enhancers12,21, and silencers22 that are typically absent from a gene’s native TAD may act on the

gene as a result of SVs23. To investigate the effect of SVs on TADs in melanoma, we focused on

SVs unlikely to span multiple TAD boundaries using an established cutoff defined by the

66

https://paperpile.com/c/7PqpX0/hAwQx+cKFFx
https://paperpile.com/c/7PqpX0/72Fko
https://paperpile.com/c/7PqpX0/MMBK0


PCAWG consortium (< 2Mb; Methods)11. To infer the putative impact of boundary affecting SVs

(BA-SVs), we leveraged the 5 TAD type annotations from that same study11, which were

determined using the 15 chromatin state model from the Roadmap Epigenomics Project24.

These 5 TAD types are Heterochromatin, Low, Repressed, Low-Active, and Active, which are

associated with increased expression in the order specified for genes contained within the

TADs. We observed that 17.2%, 13.6%, and 7.2% of acral, mucosal, and cutaneous melanoma

SVs (< 2Mb) spanned TAD boundaries, respectively. All acral melanoma tumors harbored at

least one SV that spanned a TAD boundary, compared to 97% and 86.3% of mucosal and

cutaneous melanomas, respectively (Figure 3.3A). Further, when assessing the putative

functional impact of BA-SVs across histological subtypes, roughly 97% acral melanomas

harbored a TAD boundary spanning SV adjacent to an Active TAD, compared to 83% of

mucosal and less than 50% of cutaneous melanomas (Figure 3.3B-C). While there was no

significant association between chromothripsis and the presence BA-SVs in a tumor in any

histological subtype (Fisher’s, p > 0.05), tumors with chromothripsis events were associated

with higher numbers of BA-SVs per tumor in acral (Wilcoxon-Mann-Whitney, p = 2.7 x 10-5) and

cutaneous (Wilcoxon-Mann-Whitney, p = 0.026) melanomas, but not mucosal melanomas

(Wilcoxon-Mann-Whitney, p = 0.09).

Of the total 2477 TAD boundaries, 399 (16.1%), 159 (6.4%), and 105 (4.2%) boundaries

were affected by SVs in more than one tumor in the acral, mucosal, and cutaneous cohorts,

respectively (Figure 3.3D). Further, SVs affecting the recurrently altered boundaries comprised

56.6%, 35.7%, and 28.4% of all boundary spanning SVs in acral, mucosal, and cutaneous

melanomas, respectively. There was no enrichment in the types of TADs adjacent to recurrently

altered boundaries (altered in > 1 sample) compared to boundaries only altered in a single

tumor across the histological subtypes (Fisher’s exact, p > 0.05). In general BA-SVs adjacent

TADs containing tumor suppressors (Supp.Table 1) were enriched for deletion events (Fisher’s

exact; OR = 2.34; 95% CI = 1.63 - 3.35; p = 2.21 x 10-6; Methods; Figure 3.3E), whereas
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BA-SVs adjacent TADs containing oncogenes (Supp.Table 1) were enriched for complex events

(Fisher’s exact; OR = 2.62; 95% CI = 1.69 - 4.18; p = 2.71 x 10-6; Methods; Figure 3.3E).

Figure 3.3: Melanomas frequently harbor SVs affecting boundaries adjacent to active
TADs and TADs containing cancer genes
(a) The number of BA-SV spanning events per tumor across acral, mucosal and cutaneous
melanomas categorized by the type of SV event. Complex SV events are defined as
overlapping concomitant DEL, DUP, INV, or TRA events. (b) The number of affected TADs per
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Figure 3.3 (continued): tumor across acral, mucosal and cutaneous melanomas categorized
by functional TAD type (Methods). (c) The proportion of acral, mucosal, and cutaneous
melanomas with BA-SVs adjacent active TADs. (d) Cancer genes that are putatively affected by
BA-SVs in at least 5 tumors per histological subtype, characterized by the type of SV event. (e)
The proportion of event types resulting in BA-SVs that putatively affect tumor suppressors and
oncogenes (Methods). (c, e) Asterisks denote a p-value < 0.05.

The most recurrently affected TAD boundary in both Acral (n=27, 23%) and Mucosal

(n=7, 11%) melanomas was chr11:77750000-77825000, which is adjacent TADs containing the

cancer genes GAB2 and PAK1 (Figure 3.4A-B). PAK1 is an oncogene that is involved in

activation of the MAPK pathway25, and has been suggested as a potential target in BRAF

wild-type melanomas26. Further, PAK1 has been identified as the most recurrently altered kinase

gene via fusion events in acral melanomas2, suggesting PAK1 may also  frequently activate the

MAPK pathway outside of boundary affecting events. Similarly, GAB2 is involved in the

activation of the MAPK and PI3K/AKT pathways, and has been proposed to play a role in

angiogenesis in melanomas27. This TAD boundary was altered in 4% of cutaneous melanomas

and was 650kb away from a fragile site (FRA11H)28. The most recurrently altered boundary in

cutaneous melanomas (all DEL events, n=7) was chr9:21700000-21775000, which is flanked by

a Repressed TAD and a Low-active TAD (Figure 3.4C). This boundary is adjacent to the TADs

containing the cancer genes CDKN2A, CDKN2B, and MTAP, all of which are tumor

suppressors, and this boundary is located within a fragile site region (FRA9C)29. One potential

mechanism of these BA-SVs is a long range silencer interaction between regulatory elements of

the adjacent repressed TAD and these tumor suppressors30. The second most recurrently

altered TAD boundary (chr22:19600000-19675000) was flanked by Active and Low-Active TADs

(Figure 3.4D), and is adjacent to TADs containing the cancer genes SEPTIN5, DGCR8, and

HIRA. Unlike the other highly recurrently altered TAD boundaries, this TAD boundary was

located several megabases away from the nearest fragile site (8Mb, FRA22B). Both DGCR8

and HIRA are involved in UV-induced DNA damage repair, where DGCR8 is required for

transcription-coupled nucleotide excision repair (NER) at UV-induced lesions31, and HIRA is a
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histone regulator required for efficiently priming chromatin for transcriptional reactivation

following DNA repair at UV-induced lesions32,33. These results suggest an unappreciated role of

BA-SVs in tumor development and progression across melanoma histological subtypes, and

that BA-SVs can generate histology specific driver events in melanoma. Further, a subset of

cutaneous melanomas experience BA-SVs affecting NER genes that may exacerbate the effect

of UV mutagenesis on the mutational spectrum of tumors, resulting in an increase of TMB,

which may also have implications for immunotherapy.

Figure 3.4: Recurrently affected boundaries adjacent cancer gene containing TADs
(a) The contact frequency map and annotations of SV events for the most recurrently altered
TAD boundary in acral melanomas. (b) The contact frequency map and annotations of SV
events for the most recurrently altered TAD boundary in mucosal melanomas. Cancer genes of
interest in the adjacent TADs for both acral and mucosal melanomas include PAK1 and GAB2.
Both of the adjacent TADs for this boundary were low-active TADs. (c) The contact frequency
map and annotations of SV events for the most recurrently altered TAD boundary in cutaneous
melanomas. Cancer genes of interest in the adjacent TADs include CDKN2A, CDKN2B, and
MTAP. The TAD containing these genes is a low-active TAD, and the other adjacent TAD is a
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Figure 3.4 (continued): repressed TAD. (d) The contact frequency map and annotations of SV
events for the second most recurrently altered TAD boundary in cutaneous melanomas. Cancer
genes of interest in the adjacent TADs include HIRA, SEPTIN5, and DGCR8. HIRA is present in
an active TAD, and SEPTIN5 and DGCR8 are present in a low-active TAD. The contact
frequencies shown here are from the IMR90 cell line, one of the 5 cell lines used to determine
the functional TAD classifications by the PCAWG consortium.

The relationship between mutational signatures and SVs in cutaneous melanoma

To further assess the potential functional impact of SVs in melanoma, we next assessed

SV pattern relationships with mutational signatures. The predominant mutational signatures in

cutaneous melanoma are signature 1 (aging), signature 7 (UV mutagenesis), signature 11

(alkylating), and signature 3 (DSB repair), which is enriched in TWT melanomas15. We

previously reported an association between signature 3 and indel signature 8 (ID8; NHEJ), as

well as homologous recombination deficiency associated copy number events; however, the

relationship between mutational signatures and SVs in cutaneous melanoma has remained

unexplored15. Consistent with prior analyses, mutational signature 3 was enriched in TWT

cutaneous tumors in our cohort (Fisher’s exact; 5/20 vs. 5/155; OR = 9.75; 95% CI = 2.00 -

47.89; p = 1.1 x 10-3; Figure 3.5A; Methods), and it was the only SNV signature that was

associated with increased numbers of SVs per tumor, after correcting for disease stage,

genomic subtype, coverage, and tumor purity (multivariate regression, p = 3.2 x 10-3).

Specifically, this association was due to increased numbers of DUP and TRA events

(multivariate regression, p = 3.2 x 10-4; Figure 3.5B), but not DEL or INV events (multivariate

regression, p > 0.17). Further, when characterizing SVs as being generated by either NHEJ,

MMEJ, or SSA, which are DSB repair mechanisms frequently involved in the repair of SV events

and associated with distinct microhomology patterns at SV breakpoint junctions (Methods),

signature 3 tumors were significantly associated with increased numbers of SVs arising from

NHEJ (multivariate regression, p = 6.7 x 10-3), and decreased numbers of SVs arising from SSA

(multivariate regression, p = 2.8 x 10-4). The ratio of NHEJ associated SVs to SSA associated
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SVs is also significantly higher in signature 3 tumors (Wilcoxon-Mann-Whitney, p = 1.95 x 10-3;

Figure 3.5C). Although with a smaller effect size, higher relative contribution of UV mutagenesis

to the mutational spectrum of cutaneous melanomas was associated with lower numbers of SVs

(multivariate regression, p < 2.7 x 10-3), particularly TRA and DUP events (multivariate

regression, p < 4.09 x 10-5). There was no association between SNV mutational signatures and

chromothripsis (multivariate regression, p > 0.07).

We then evaluated whether specific SVs affected canonical cancer genes and may

directly relate to the mutational processes in cutaneous melanoma. Similar to our finding that

cutaneous melanoma genomics were associated with somatic mutations in distinct secondary

driver genes15, several canonical cancer genes were also enriched for SVs on a genomic

subtype basis. The most significantly enriched alteration in BRAF melanomas were

non-duplication SV events in CDKN2A (39/81, 48%; Fisher’s exact, OR = 2.41, 95% CI = 1.24 -

4.78, p = 7.8 x 10-3). Only 1 BRAF and 1 non-BRAF melanoma had duplication events

overlapping CDKN2A. NF1 melanomas were significantly associated with non-duplication SV

events in two RASopathy genes, RAF1 and SPRED1 (Fisher’s exact, OR = 5.03, 95% CI = 1.46

- 16.42, p = 4.8 x 10-3), the latter of which has also been identified as a significantly mutated

gene exclusive to NF1 melanomas15,34. The most statistically significant finding in TWT

melanomas was CBFA2T3, which was not altered in any of the other genomic subtypes

(Fisher’s exact, OR = Inf, 95% CI = 5.69 - Inf, p = 1.3 x 10-4), and is a putative tumor suppressor

in breast cancer35,36. CBFA2T3 exclusively harbored TRA and INV events in these tumors (n=4).

MRE11A was among the cancer genes significantly enriched for SVs in TWT tumors

(Fisher’s exact, OR = 5.36, 95% CI = 1.01 25.18, p = 0.024) and is one of the core genes of the

MRN complex, which is involved in the initial processes of double-stranded break repair prior to

homologous recombination and non-homologous end joining, and is responsible for activating

ATM37,38. We previously found that signature 3 in TWT tumors was associated with

downregulation of ATM, although we were unable to identify recurrent alterations in somatic
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coding regions that might explain the downregulation of ATM in a subset of samples15. Three of

the 5 TWT tumors with SVs affecting MRE11A had detectable signature 3. Expanding the

analysis to all signature 3 vs. non-signature 3 tumors also revealed the enrichment of NBN

(Fisher’s exact, OR = 7.26, 95% CI = 1.04 - 39.44, p = 0.023), another core gene of the MRN

complex. All SVs affecting MRE11A and NBN were complex events (Methods), compared to

less than half (43%) of non-signature 3 tumors (Fisher’s exact, OR = 6.74, 95% CI = 1.42 -

32.04, p = 7.4 x 10-3; Figure 3.5D). Pathway overrepresentation analysis (Methods) on the set of

cancer genes significantly enriched for SVs in signature 3 tumors identified the MRN complex

as the top enriched protein complex (q = 1.79 x 10-3).

Although SVs affecting RAD50 were not associated with signature 3 tumors, there was

no difference in the association between MRE11A or NBN expression and ATM expression

compared to the association between RAD50 and ATM expression in TWT tumors (Supp.

Figure 3.2). However, the correlation between MRN complex expression and ATM expression

was significantly stronger in TWT tumors than in non-TWT tumors (r=0.82 vs r=0.69; Fisher’s

Z-transformation, p = 0.03; Figure 3.5E). To assess whether the correlation observed in TWT

tumors was not spurious due to having 7-fold less samples, we performed downsampling

analysis for 10,000 simulations (Methods). Only 2.57% of these simulations yielded a correlation

coefficient higher than that observed for TWT tumors (p = 0.0257, Figure 3.5F). These results

suggest that MRN-dependent ATM activation may be more frequent in TWT tumors or that ATM

activation is more tightly regulated by the MRN complex in TWT tumors, potentially explaining

why the association between signature 3 and ATM downregulation was restricted to TWT

tumors. Additionally, these results are consistent with our previous finding that signature 3 in

TWT cutaneous melanomas are associated with dysregulation of ATM, and affects genes that

function early during the initiation process of double-stranded break repair.
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Figure 3.5: Cutaneous signature 3 tumors are enriched for SVs frequently caused by
NHEJ, and are associated with SVs affecting the MRN-complex.
(a) The frequency of mutational signature 3 in TWT and non-TWT cutaneous melanomas. (b)
The distribution of the number of events per tumor between signature 3 and non-signature 3
cutaneous melanomas, characterized by SV type. (c) The distribution of the ratio of putative
NHEJ to SSA generated events between per tumor by signature 3 status in cutaneous
melanomas. (d) The odds ratio (yellow square) and 95% confidence interval of the odds ratio
(purple line) via Fisher’s exact test for SVs overlapping MRN complex genes in signature 3
cutaneous tumors compared to non-signature 3 cutaneous tumors. (e) The correlation between
ATM expression and MRN complex expression (methods) in non-TWT and TWT cutaneous
melanoma tumors. (f) The distribution of Pearson’s correlation coefficients from 10,000 Figure
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3.5 (continued): randomly sampled simulations where non-TWT cutaneous tumors are
downsampled to the number of TWT cutaneous tumors in the cohort.

Discussion

Through uniform analysis of SVs on the largest melanoma WGS cohort to date, we

revealed distinct frequencies and drivers of melanoma histological and cutaneous genomic

subtypes. Acral and mucosal melanomas were associated with more SVs per tumor relative to

cutaneous melanomas regardless of the SV type, and acral melanomas were enriched for

chromothripsis events relative to cutaneous and mucosal melanomas. Additionally, in tumors

that had chromothripsis events, acral melanomas were associated with higher rates of

interchromosomal chromothripsis events compared to cutaneous and mucosal melanomas.

While the frequencies of SV events differed between acral and mucosal melanomas, the

functional impact and driver gene alterations observed in these histological subtypes were

similar. Roughly 97% and 83% of acral and mucosal melanomas, respectively, had BA-SVs that

affected functionally active TADs compared to less than half of cutaneous melanomas. In

cutaneous melanomas, NF1-mutant tumors were enriched for deletion SVs, and had

chromothripsis events at nearly twice the rate compared to the other genomic subtypes. Thus,

in addition to having the highest TMB of the genomic subtypes, NF1 also has the highest SV

burden1,15.

Of the 16 genes recurrently affected (observed in at least 5 tumors) by BA-SVs in

mucosal melanomas, 13 were shared with acral melanoma. One of these genes was NF1, one

of the MAPK pathway genes used to define the cutaneous melanoma genomic subtypes. All but

one BA-SV affecting NF1 in acral and mucosal melanomas were deletion events. In addition to

sharing similar recurrently affected genes, acral and mucosal melanomas also shared the the

most recurrently altered TAD boundary (chr11:77750000-77825000), which is adjacent to the

TADs containing PAK1 and GAB2. Only EMSY was recurrently affected by BA-SVs in both

cutaneous and mucosal melanomas, and only CDKN2A and CDKN2B were recurrently affected
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by BA-SVs in both acral and cutaneous melanomas. Thus, despite having drastically different

SV landscapes, acral and mucosal melanomas share many of the same driver SVs. This is akin

to the shared somatic mutation derived driver genes from these subtypes2,39.

The most recurrently affected genes by BA-SVs in cutaneous melanomas were CDKN2A

and CDKN2B, with the majority being deletion events. CDKN2A was also enriched for

non-duplication events (39/81; 48%) in BRAF-mutant cutaneous melanomas compared to the

other genomic subtypes. Notably, CDKN2A has also been identified as a canonical driver in

cutaneous melanoma via analysis of somatic mutations1,15. The second most recurrently altered

TAD boundary in our cutaneous melanoma cohort affected the NER genes HIRA and DGCR8,

which are involved in the repair of mutations caused by UV mutagenesis. Increased activity of

UV mutagenesis is associated with higher TMB40, and therefore may have implications for

immunotherapy treatment decisions or response. Other than MTAP and SEPTIN5, these were

the only recurrently altered cutaneous melanoma genes that were not recurrently altered in

acral or mucosal melanomas, which frequently lack the presence of UV-induced mutations.

Mutational significance analysis in cutaneous melanoma has revealed that the genomic

subtypes preferentially experience mutations that affect distinct pathways. NF1 melanomas

preferentially experienced alterations in RASopathy genes, with SPRED1, RASA2, and

RASSF2 being identified as significantly mutated genes within the subtype15. NF1 melanomas in

our cohort were enriched for SV events affecting SPRED1 and RAF1, the latter of which has

been implicated in activating fusion events in cutaneous melanoma, and enriched in TWT

tumors41.

A subset of cutaneous melanoma tumors have been characterized as having mutational

signature 3 (associated with DSB repair deficiency), enriched in TWT tumors15. While the

prevalence of signature 3 has been characterized in cutaneous melanoma WGS samples, its

association with SVs has remained unexplored. Here we show that signature 3 is associated

with increased DUP and TRA events in melanoma, and is associated with a higher rate of the
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error-prone NHEJ repair. However, we did not find a significant association between signature 3

and chromothripsis, despite prior studies linking HRD to increased prevalence of

chromothripsis42. Signature 3 in TWT tumors is associated with downregulation of ATM and

methylation of INO80, however the source of ATM downregulation is unknown. Here we

identified the enrichment of SVs affecting MRN complex genes in signature 3 tumors, which

directly interacts with ATM. Like ATM and INO80, the MRN complex functions early in the DSB

repair pathway, providing further evidence for the source of signature 3.

Overall we demonstrated that SV analysis of melanoma whole-genomes can identify

additional driver mechanisms unique to histological and cutaneous genomic subtypes, some of

which may present as clinically relevant druggable events. Still, further experimental work in

preclinical models will be required to determine the therapeutic relevance of MRN complex

alterations and ATM downregulation in melanoma, as well as the functional consequences of

SVs at recurrently altered TAD boundaries. Furthermore, the number of whole exome samples

far exceeds the number of WGS samples in melanoma. Continued harmonized molecular

analysis of a larger melanoma WGS cohorts will help determine the robustness and true

prevalence of driver alterations identified in this study.

Methods

Whole-genome sequencing dataset description

We downloaded publicly available aligned WGS BAM files from 4 previously published studies.

For SV analysis, we required both tumor and normal samples to have a sequence coverage of

at least 20X, and a tumor purity of at least 20%. The median sequencing coverage was 57X in

the tumor samples and 37X in the normal samples. The median tumor purity ranged from 61%

in mucosal melanomas to 66% in acral melanomas.

The cutaneous melanoma mutation data, which was used to determine genomic subtype

and identify mutational signatures (see Mutational signatures), was downloaded from the
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supplement of Hayward et al. 20172, and the ICGC Data Portal (https://dcc.icgc.org/)43 for

TCGA-SKCM WGS samples.

The cutaneous melanoma expression data used in this study is from the TCGA-SKCM

cohort, which is publicly available from the TCGA-SKCM workspace on FireCloud

(TCGA_SKCM_ControlledAccess_V1-0_DATA) via dbGaP access. The RSEM upper quartile

normalized expression data was used for all expression analysis in this study.

SV calling

We called SVs with three different SV calling methods: Manta

(https://github.com/Illumina/manta)44, DELLY2 (https://github.com/dellytools/delly)45, and SvABA

(https://github.com/walaj/svaba)46. To identify a set of high confidence SVs per tumor we filtered

the calls to only keep SVs identified by 2 or more methods, allowing for a maximum distance of

1kb pairwise between breakpoints and requiring that the calls agree on type, strand, and are at

least 30bp long. This filtering was performed using the SURVIVOR R package

(https://github.com/fritzsedlazeck/SURVIVOR)47.

Copy number calling

Allelic copy number calls were determined using FACETS (https://github.com/mskcc/facets)16,

which also provides tumor purity and ploidy information. These copy number calls were used as

input to ShatterSeek10 (see Identification of chromothripsis events) for identifying the oscillating

copy number criteria of chromothripsis events.

Identification and visualization of chromothripsis events

To identify chromothripsis events in melanoma cancer genomes we ran ShatterSeek

(https://github.com/parklab/ShatterSeek)10 using the high confidence SVs and allelic copy

number data as input. ShatterSeek was also used to visualize chromothripsis events on single
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chromosomes, such as in Figures 2E-F. To visualize interchromosomal chromothripsis events

we used the circos tool on Galaxy (https://usegalaxy.org/)48. Non-chromothripsis complex events

were defined as overlapping concomitant DEL, DUP, INV, or TRA events.

SV annotations

To add gene level annotations to our high confidence SV set, we ran AnnotSV

v3.0(https://lbgi.fr/AnnotSV/)49 using the default set of hyperparameters. The SV annotations

were run on December 29th, 2020.

TAD and TAD boundary assignments and TAD annotations

TAD and TAD boundary assignments, as well as TAD type annotations were downloaded

from Akdemir et al. 202011. Here, TAD and TAD boundary coordinate assignments were

determined by identifying TAD boundaries that were within 50kb of each other across Hi-C data

from 5 different cell types (GM12878, HUVEC, IMR90, HMEC and NHEK). TAD type

annotations (Heterochromatin, Low, Repressed, Low-Active, and Active) were determined by

k-means clustering to the 15 state ChromHMM model from the Roadmap Epigenomics Project24,

and associating the clusters with gene expression data from GTEx50 and ICGC43.

Short range SVs likely to only affect a single TAD boundary were classified as < 2Mb in

length, and were the only types of SVs used in the boundary affecting analysis. The cutoff of <

2Mb was defined by the PCAWG consortium (< 2Mb)11. For a short range SV to be considered

boundary affecting, the entire TAD boundary had to be overlapped by the SV.

Fragile site annotations

Fragile site annotations were obtained from https://webs.iiitd.edu.in/raghava/humcfs/51.

Specifically, we used the “Fragile site bed files” reference, which provides a directory of bed files

containing fragile site regions on a per chromosome basis.
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Classification of double-stranded break repair mechanisms

To classify SVs as being repaired by NHEJ, MMEJ, or SSA, we applied the breakpoint

microhomology cutoffs identified in Li et al. 20207, which were determined by fitting linear

functions to breakpoint microhomology data across PCAWG. This resulted in the identification of

3 sets of structural variants defined by microhomologies of 1 bp, 2-9 bp, and 10 or more bp,

which were classified as NHEJ, MMEJ, and SSA, respectively.

Mutational signatures

To identify mutational signatures present in tumor samples we ran deconstructSigs

(https://github.com/raerose01/deconstructSigs)52 using the COSMIC v2 signatures reference53,54

and a signature contribution cutoff of 0.06. This contribution cutoff provides a false-positive rate

of 0.1% and false-negative rate of 1.4%, and is the recommended cutoff.

Pathway over-representation analysis

We performed pathway over-representation analysis on the set of cancer genes enriched in

signature 3 tumors via Fisher’s exact method using ConsensusPathDB (v. 34)

(http://cpdb.molgen.mpg.de)55. We ran ConsensusPathDB (on May 18th, 2021) using the default

parameters for both pathway-based gene sets and protein complex-based gene sets.

Expression correlation analysis

We performed correlation between ATM expression and MRN complex gene using the

TCGA-SKCM RSEM upper quartile normalized RNA-seq data. To calculate one single

expression for the entire MRN complex we calculated the geometric mean of MRE11, NBN, and

RAD50. Correlation was calculated using the stats R package, and the geometric mean was

calculated using the psych R package.
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Gene sets

The oncogene and tumor suppressor gene sets used in the BA-SV analysis were downloaded

from MSigDB56,57 on May 27th, 2021 under the curated Gene Families

(https://www.gsea-msigdb.org/gsea/msigdb/gene_families.jsp). The set of cancer genes were

determined by taking the union of Cancer Gene Census (v. 86) genes and OncoKB58 cancer

genes.

Statistics and reproducibility

Statistical analyses were performed using the stats R package for R v.3.6.1. Reported q-values

represent FDR-corrected  p-values and reported p-values represent nominal p-values. All

statistical tests performed (for example, Wilcoxon-Mann-Whitney, Kolmogorov–Smirnov,

Fisher’s exact test) were two sided.
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Chapter 4: Clonal Architecture

Abstract

The extent to which clinical and genomic characteristics relate to prostate cancer clonal

architecture, tumor evolution, and therapeutic response remains unclear. Here, we

reconstructed the clonal architecture and evolutionary trajectories of 845 prostate cancer tumors

with harmonized clinical and molecular data. We observe that primary tumors in Black patients

are associated with higher biochemical recurrence rates, yet in contrast to prior observations

relating polyclonal architecture and adverse clinical outcomes, demonstrate these tumors to be

more linear and monoclonal. Additionally, we demonstrate that a novel approach to

evolutionarily informed mutational signature analysis that leverages clonal architecture can

uncover additional cases of homologous recombination deficient and mismatch repair deficient

tumors in primary or metastatic tumors, link the origin of mutational signatures to specific

subclones, and may have immediate therapeutic implications. Broadly, clonal architecture and
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evolutionary informed analysis reveal novel biological insights that are clinically actionable and

provide multiple opportunities for subsequent investigation.

Introduction

Tumors consist of cell subpopulations that are characterized by a variety of genomic and

epigenomic features including single nucleotide variants (SNVs), insertions and deletions

(indels), copy number alterations (CNAs), structural variants (SVs), and methylation profiles1.

The aggregate of these subpopulations defines the clonal architecture of a tumor, and inherently

delineates intra-tumoral heterogeneity. Whole-exome sequencing can provide a snapshot of

these cell subpopulations at a point in time and space, and computational methods aimed at

determining the number of tumor cell subpopulations and their relative cellular frequencies

(“clonal architecture”), as well as inferring linear or branched phylogenetic evolutionary

trajectories2–4, can improve our understanding of tumor evolution. Understanding the

relationship between tumor clonal architecture and patient clinical characteristics may provide

insight into disease trajectory, outcomes, and inform treatment decision-making5.

Prostate cancer (PC) is the second leading cause of cancer mortality in men6.

Genomically-informed therapeutic options in advanced PC have been limited until recently with

the approval of immune checkpoint blockade with pembrolizumab for tumors with deficient DNA

mismatch repair/microsatellite instability (MSI)7, or high tumor mutational burden, and PARP

inhibition for prostate tumors harboring certain deleterious alterations in homologous

recombination (HR) genes8,9. Despite their overall benefit, responses to these therapies are

heterogeneous8–10, and little is known to date regarding how these clinical phenotypes relate to

the clonal architecture of the tumors.

A prior study leveraged a large cohort of localized PC tumors (n = 293) to analyze

associations between clonal architecture and clinical (e.g., Gleason score) or genomic (e.g.

mutational signatures) covariates. This work observed that polyclonality is associated with
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increased risk of biochemical recurrence after definitive therapy, and that the mutational

signature spectrum of a subset of primary tumors shifted over time from clock-like and APOBEC

signatures to that of homologous recombination deficiency (HRD)11. However, clonal

architecture analyses to date have been limited to primary tumors, did not consider the potential

effect of ancestry, and were not guided by cell subpopulation inference classifications. We

hypothesized that clonal architecture analysis could improve the understanding of race or

ancestrally distinct routes to oncogenesis as well as clinical responses to emerging treatment

paradigms in metastatic PC. Though spatio-genomic data consisting of multi-focal biopsies from

a single tumor are preferred for evolutionary analysis due to the increased power to resolve the

true clonality of genomic alterations12,13, the number of PC patients with this data remains

limited. Therefore, we paired harmonized molecular and clinical data from 845 primary and

metastatic PC tumors14 with novel computational methodologies to determine how clinical and

genomic components relate to PC clonal architecture and evolutionary dynamics.

Results

Localized Prostate Cancer Clinical Risk Groups and Clonal Architecture

We first evaluated previously identified11 associations between clonal architecture

(Figure 4.1A) and evolutionary trajectories (Figure 4.1B) with clinical characteristics in localized

(primary) PCs. All primary PCs in this cohort were treatment naive radical prostatectomy

specimens. Based on phylogenetic reconstruction (Methods), tumors were defined as (1)

monoclonal vs polyclonal; the former if only a single cell cluster was identified, and (2) having

evidence of linear vs branched evolution; the former if each cell subpopulation had a maximum

of 1 child subpopulation. We did not detect a statistically significant association between clonal

architecture and either age of onset (early: 55 or younger; late: older than 55; univariate linear

regression, p = 0.07)15 or ETS fusion status in our cohort (n = 521; univariate linear regression,

p = 0.1). However, we did identify significant associations between clonal architecture and
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NCCN clinical risk categories (n = 468 primary tumors with risk information, Supplemental

Tables 4.1-2). Approximately 17%, 10%, and 5% of low, intermediate, and high-risk primary

tumors were classified as monoclonal, respectively. NCCN low-risk tumors were significantly

associated with being monoclonal relative to high-risk tumors in univariate analysis (Figure

4.1C; Fisher’s exact test; 95% CI = 1.26-11.88, OR = 3.93; p = 8.6 x 10-3) and were significantly

associated with fewer cell subpopulations (i.e., subclones), after adjusting for mutational burden,

tumor purity, and coverage (Figure 4.1D; linear regression, p = 4.6 x 10-4). In contrast,

intermediate-risk tumors were not associated with monoclonal architecture (Fisher’s; 95% CI =

0.68-4.92, OR = 1.92; p = 0.19). Despite differences in the clonal architecture of tumors by risk

group, there was no significant association between risk groups and evolutionary trajectories

(linear vs. branched evolution; Fisher’s, p > 0.28 pairwise for all).
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Figure 4.1: The Clonal Architecture and Evolutionary Trajectories of Prostate Cancer, and
associations with clinical risk groups
(a) The distribution of the number of cell subpopulations (clonal architecture) per tumor across
the cohort of 845 tumors. Of the 845 tumors, 50 (6%) were monoclonal, 303 (36%) were
biclonal, and 492 (58%) were polyclonal. (b) Roughly three-quarters of PC tumors exhibited
linear evolutionary trajectories rather than branched/complex evolutionary trajectories. (c) The
distribution of the number of cell subpopulations (subclones) per tumor by risk group for all
primary tumors with risk information in our cohort (n = 468). Low-risk tumors were significantly
associated with being monoclonal relative to high-risk (Fisher’s; 95% CI = 1.26-11.88, OR =
3.93; p = 8.6 x 10-3), but not intermediate-risk (Fisher’s; 95% CI = 0.68-4.92, OR = 1.92; p =
0.19) tumors. (d) Low-risk tumors were also significantly associated with lower numbers of cell
subpopulations per tumor after adjusting for confounding covariates, such as mutational burden,
tumor purity, and coverage (linear regression, p = 4.6 x 10-4).
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Self-Reported Race and Ancestry

The association between self-reported race, genetic ancestry, and outcomes in men with

prostate cancer is complex. Black men have substantially higher rates of prostate cancer

incidence and mortality compared to other racial groups, which is considerably influenced by

disparities in access to and utilization of equitable healthcare as well as other socioeconomic

and health-related factors that influence environmental exposures. Due to the paucity of AA

tumors in published genomic studies of PC, whether genetic underpinnings relate to these

clinical outcome disparities is poorly understood16. We therefore evaluated whether there were

associations between self-reported race, genetic ancestry and clonal architecture that may

contribute to prostate cancer outcome disparities by race. Importantly, we note that our data set

lacked information on the numerous non-genomic factors described above in these analyses,

and therefore these results are limited to the available covariates of NCCN risk category and

sequencing characteristics such as tumor coverage and purity.

Of the 560 primary PCs in our cohort, 112 were from men with self-reported Black race

(Supp. Table 4.1). Black patients were approximately twice as likely to experience biochemical

recurrence (Fisher’s, 24.4% vs. 14.3%, CI = 1.01-3.61; OR = 1.93, p = 0.03; Supp. Figure 4.1A),

even after adjusting for clinical risk groups (logistic regression, p = 1.3 x 10-4), had a significantly

higher rate of early onset PC development (Fishers, 36.6% vs. 27%, CI = 0.98 - 2.46, OR =

1.56, p = 0.048, Supp. Figure 4.1B), and had slightly lower mutational burden (Mann-Whitney U,

1.04 mut/Mb vs. 1.27 mut/Mb, p = 1.13 x 10-7; Supp. Figure 4.1C) There was no difference in

genomic instability, as measured by proportion genome altered, between Black and non-Black

patient tumors (Mann-Whitney U, 13.5% vs. 14.9%, p = 0.14), consistent with previous reports17.

With respect to clonal architecture, tumors from Black patients were borderline

significantly associated with lower numbers of clones after adjusting for clinical risk group,

mutational burden, tumor purity, and sequencing coverage (linear regression, p = 0.06, Figure
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4.2A).  Additionally, mutations in Black patient tumors were found at higher cancer cell fractions

(CCFs) (Kolmogorov-Smirnov, p < 2.2 x 10-16), and this relationship remained significant after

adjusting for confounding covariate (linear regression, p = 0.025, Figure 4.2B; Supp. Table 4.3).

The overall CCFs of tumor cell subpopulations were also significantly higher in tumors from

Black patients (Kolmogorov-Smirnov, p = 0.013, Figure 4.2C). Furthermore, the fraction of

mutations classified as clonal per tumor was significantly higher in Black patients

(Mann-Whitney U, p = 2.77 x 10-6, Figure 4.2D), even when removing monoclonal tumors from

the analysis (Kolmogorov-Smirnov, p = 0.002), and this relationship too remained significant

when adjusting for confounding covariates (linear regression, p = 0.034, Figure 4.2E; Supp.

Table 4.3).

When comparing tumor phylogenetics, Black patient tumors were significantly

associated with linear evolutionary trajectories (Fisher’s; 95% CI = 1.29-6.24; OR = 2.67; p = 4.8

x 10-3, Methods), and this association still held after correcting for confounding covariates

(logistic regression, p = 0.032; Figure 4.2F). Continental ancestry assignments via ancestry

inference analysis (Supp. Figure 4.2) revealed these same statistical associations with PC

clonal architecture and evolutionary trajectory (Methods, Supp. Table 4.3).

Race is a social construct, and the racial group a patient identifies with is influenced by a

multitude of non-biological factors, thus confounding the association between race and clinical

outcomes. Therefore, we also tested the association between genetic ancestry and PC clonal

architecture by performing local ancestry admixture estimation on our primary PC patients

(Methods). Higher AFR ancestry admixture proportions were significantly associated with lower

numbers of cell subpopulations per tumor (linear regression, p = 0.02, Figure 4.2G, Supp. Table

4.3), higher proportions of clonal mutations per tumor (linear regression, p = 0.022, Figure

4.2H), and linear evolutionary trajectories as opposed to branched/complex trajectories (logistic

regression, p = 0.014, Figure 4.2I; Supp. Table 4.3) These associations were strictly due to AFR

admixture proportions, not other ancestry admixture proportions (Methods), although this
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analysis also revealed significant inverse associations with these features (less subclones and

lower proportions of clonal mutations per tumor) for the EUR admixture proportions (Supp. Table

4.3).

Figure 4.2: Ancestry influences the clonal architecture of primary PCs and tumors in
Black men preferentially exhibit evidence of punctuated evolutionary trajectories marked
by rapid selective sweeps
(a) Self-report Black race was borderline significantly associated with less cell subpopulations
(clones) per tumor (linear regression, p = 0.06), and (b) significantly associated with higher
mutation CCFs compared to non-Black race (linear regression, p = 0.025) after correcting for
confounding covariates. (c) The CCFs of cell subpopulations, not just individual mutations, was
also significantly higher tumors in Black patients compared to non-Black patients
(Kolmogorov-Smirnov, p = 0.013). (d) The fraction of clonal mutations per tumor was
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Figure 4.2 (continued): significantly higher in Black patient samples compared to non-Black
tumor samples (Mann-Whitney U, p = 2.77 x 10-6), (e) even after correcting for confounding
covariates (linear regression, p = 0.034). (f) Reported Black race was also associated with a
higher frequency of linear evolutionary trajectories, rather than branched/complex evolutionary
trajectories, compared to non-black patient tumors (logistic regression, p = 0.036). (g) Higher
AFR admixture proportions were significantly associated with less subclones per tumor (linear
regression, p = 0.02), (h) a higher fraction of clonal mutations per tumor (linear regression, p =
0.024), and (i) a higher frequency of linear evolutionary trajectories after correcting for
confounding covariates (logistic regression, p = 0.014).

A 3.8 Mb region on chromosome 8q24 has been associated with prostate cancer risk in

AA men, most notably the SNP allele A at rs1447295 18. Thus, we imputed the genotype at this

locus in primary PC samples that had sufficient off target coverage (n = 85, Methods). AFR

tumor samples in our cohort were enriched for the A allele (21/33, 63.6%) at rs1447295

compared to EUR patient (15/52, 28.8%) samples (Fisher’s exact, 95% CI = 1.55 - 12.16, OR =

4.24, p = 3.1 x 10-3) Further, of the 4 samples that were homozygous for the A allele at

rs1447295, 3 were of AFR ancestry. The A allele at rs1447295 was associated with fewer

subclones per tumor (univariate linear regression, p = 7.3 x 10-3), as well as both the A/A and

A/C genotypes relative to the C/C genotype (univariate linear regression, A/A: p = 0.011, A/C: p

= 0.026). However, when correcting for confounding covariates (excluding risk, which rs1447295

is strongly associated with19–22), only the A allele in general (linear regression, p = 0.039), but

not the A/A or A/C genotypes (linear regression, A/A: p = 0.063, A/C: p = 0.081) were

associated with fewer subclones per tumor. This difference is likely the result of our imputation

cohort being over 5-fold smaller than our original discovery cohort (n = 468 vs. n = 85, 5.5-fold

smaller). Proportion of clonal mutations per tumor showed a similar effect, where both the A

allele (univariate linear regression, p = 5.4 x 10-3) and genotype (univariate linear regression,

A/A: p = 0.017, A/C: p = 0.019) were significantly associated with higher proportions of clonal

mutations per tumor in the univariate setting, while only the A allele (linear regression, p =

0.033) but not the genotypes (linear regression, A/A: p = 0.064, A/C: p = 0.067) was significantly

associated with higher proportions of clonal mutations after correcting for confounding
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covariates. We did not observe a significant association between the risk A allele and

evolutionary trajectories (branched/complex vs. linear). All A/A genotype samples had linear

trajectories, and 89% of A allele containing samples had linear evolutionary trajectories

compared to 83% of non-A allele samples (Fisher’s exact, 95% CI = 0.37 - 7.7, OR = 1.55, p =

0.55).

To validate the associations between clonal architecture and ancestry, and demonstrate

that our findings were not a consequence of only sequencing coding regions, we performed the

same analysis on a small cohort of AFR (n=7) and EUR (n=7) primary prostate cancer

whole-genomes23. While mutation CCFs and the CCFs of tumor cell subpopulations were

slightly higher in EUR tumors, AFR patient tumors had fewer subclones per tumor, and a higher

fraction of mutations classified as clonal per tumor (Supp. Figure 4.3A). These associations

were borderline significant after correcting for tumor purity, coverage, and mutational burden

(linear regression; fraction of clonal mutations: p = 0.08, Supp. Figure 4.3B; number of clones: p

= 0.11). Although there were no monoclonal tumors in this cohort, 5 of 7 (71%) AA tumors were

bi-clonal compared to 3 of 7 (43%) European ancestry tumors. Further, all AA tumors (100%)

had linear evolutionary trajectories compared to 3 of 7 (43%) European ancestry tumors

(Fisher’s; 95% CI = 0.85 - Inf; OR = Inf; p = 0.07; Figure 4.3). Together, these findings suggest

an association between tumors from AFR and/or Black patients and linear as well as

monoclonal genomic architecture. This finding contrasts with the positive correlation previously

observed between polyclonality and more aggressive disease as measured by biochemical

recurrence rate among White patients11.
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Figure 4.3: Evolutionary trajectories in African and European ancestry whole genome
sequencing samples from primary tumors
A total of 2 out of 7 African ancestry samples had more than 2 cell subpopulations, compared to
4 out of 7 European ancestry samples. In both African ancestry cases with more than 2 cell
subpopulations the tumor had a linear evolutionary trajectory, whereas all 4 European ancestry
cases with more than 2 cell subpopulations had branched evolutionary trajectories (Fisher’s, p =
0.07).

Primary vs. Metastatic

We next aimed to compare clonal architecture and evolutionary trajectories between

primary (N = 560) and metastatic (N = 285) PC tumors (Supp. Table 4.1). Primary tumors had

significantly higher rates of monoclonal tumors (Fisher’s; 10% vs. 2.5%; 95% CI = 1.93-11.40,
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OR = 4.32; p = 3.98 x 10-5), and less tumor cell subpopulations in general (Kolmogorov-Smirnov,

p < 2.2 x 10-16; Supp. Figure 4.4B). When restricting to polyclonal tumors (> 2 subclones), to

prevent the increased frequency of monoclonal and bi-clonal tumors in primary PCs from

biasing the analysis, metastatic tumors were still significantly associated with branching patterns

of evolution compared to primary tumors (Fisher’s; 68% vs. 52%; 95% CI = 1.22-3.05, OR =

1.92; p = 0.003), whereas primary tumors were significantly associated with linear evolution.

When including monoclonal and bi-clonal tumors, over 80% of primary tumors displayed

patterns of linear evolution, consistent with findings in whole-genomes (Supp. Figure 4.4C;

Fisher’s; 82.4% vs. 67.4%; 95% CI = 1.6 - 3.18, OR = 2.25; p = 1.58 x 10-6)11.

We next aimed to identify clonal and subclonal significantly mutated genes (SMGs) in

primary and metastatic PC tumors (q < 0.1). Six genes were identified exclusively as clonal

SMGs in both primary and metastatic tumors (e.g. APC, CDK12, ERF, FOXA1, SPOP, ZFHX3),

while 13 and 30 genes were identified exclusively as clonal SMGs in primary (e.g. ATM, IDH1,

SMARCA1) or metastatic tumors (e.g. AR, BRCA2, CUL3), respectively. There was no overlap

between subclonal primary and subclonal metastatic SMGs, however, the primary subclonal

SMGs PIK3CA, PTEN, and KDM6A were identified as clonal SMGs in metastatic PCs (Supp.

Figure 4.4D), supporting the hypothesis that alterations in the PI3K/AKT/mTOR pathway may

increase the metastatic potential of primary PC tumors24–26. Indeed, the PI3K-AKT-mTOR

signaling pathway was only identified via pathway overrepresentation analysis for primary

subclonal SMGs and metastatic clonal SMGs (Methods; q < 0.05). Additional pathways

overrepresented by clonal SMGs in metastatic samples included AR signaling, canonical WNT

signaling, and the RAC1-PAK1-p38-MMP2 pathway (q < 0.05). ANKT1 and NCOR1 were

subclonal SMGs exclusively in primary tumors, and AFF1 was a subclonal SMG exclusive to

metastatic samples.
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Tumor-level Mutational Signatures

Previous studies have shown that mutational signatures27,28 appear and shift over the

evolutionary trajectory of localized PC tumors11. Thus, we determined the mutational signatures

present in each tumor and their association with clonal architecture. Using SigMa29, signature 3

was identified in 23.6% of metastatic PCs compared to 2% of primary PCs (Methods; Fisher’s;

95% CI = 7.79-32.59; OR = 15.21; p < 2.2 x 10-16, Figure 4.4A), and MSI associated signatures

(signatures 6, 15, 20, and 26) were identified in 6.7% of metastatic PCs compared to 1.4% of

primary PCs (Fisher’s; 95% CI = 2.01-13.10; OR = 4.89; p = 1 x 10-4), consistent with prior

reports303132. Conversely, clock-like signatures (signatures 1 and 5) were enriched as the

dominant mutational process in primary PCs (Fisher’s; 96.6% vs. 70%; 95% CI = 7.14-21.84;

OR = 12.21; p < 2.2 x 10-16). We orthogonally validated these classifications using scarHRD33 to

identify HRD-associated copy number events, and MSIsensor34 to detect somatic microsatellite

changes (Supp. Figure 4.5A-C).

Cell Subpopulation-Level Mutational Signatures

We next performed mutational signature analysis at the level of tumor cell

subpopulations after accounting for clonal architecture4. A total of 1439 cell subpopulations

across 829 tumors were powered for the analysis (Methods). Only 51% (40/78) of signature 3

tumors exhibited evidence of signature 3 at the cell subpopulation level, whereas 96% (26/27) of

MSI tumors showed evidence of MSI at the cell subpopulation level (Figure 4.4B). The

discrepancy observed in the signature 3 tumors may be due to the reduction in power to call

signature 3 when separating mutations into their respective cell subpopulations. To determine

the robustness of these signature calls and confirm their clonality, we validated the results using

a second phylogenetic reconstruction method (Methods).

Of the 40 tumors with evidence of signature 3 at both the overall tumor and cell

subpopulation level, signature 3 was a clonal mutational process in 3 of 5 primary tumors (60%),
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and 31 of 35 metastatic tumors (89%). Of the 26 tumors with tumor and cell subpopulation level

evidence of MSI, MSI was identified clonally in 6 of 8 primary tumors (75%), and 9 of 18

metastatic tumors (50%). Interestingly, 12 tumors categorized by clock-like mutational

signatures at the tumor level showed evidence of signature 3 at the cell subpopulation level

(Figure 4B), with the majority of these being the clonal cell subpopulation (83%; 1/2 primary,

9/10 metastatic). While tumors identified with signature 3 exclusively at the cell subpopulation

level had higher numbers of HRD-associated CNA events than tumors identified with signature

3 exclusively at the whole tumor level, these differences were non-significant (Supp. Figure 4.6).

MSI was also detected in cell subpopulations of tumors categorized by clock-like mutational

processes (n = 31, Figure 4.4B). In each of these tumors, MSI was the result of a subclonal

mutational process (1 primary, 30 metastatic). This high rate of subclonal MSI is consistent with

results from the PCAWG cohort showing mismatch repair (MMR)-associated signatures

preferentially result in subclonal mutations35. These results suggest that signature 3 and MSI

classifications may be masked by more active or dominant mutational signatures, such as

clock-like signatures in PC, when performing mutational signature analysis at the whole tumor

level.

PC tumors with signature 3 present in the clonal (truncal) subpopulation had significantly

elevated numbers of LOH (Kolmogorov-Smirnov, p = 1.12 x 10-10; univariate logistic regression,

p < 2.2 x 10-16), TAI (Mann-Whitney U, 23 vs. 4 events, p < 2.2 x 10-16), LST (Mann-Whitney U,

23.5 vs. 8 events, p < 2.2 x 10-16), and total number of HRD-associated CNA (Mann-Whitney U,

61 vs. 18 events, p < 2.2 x 10-16) events compared to PC tumors with no signature 3 (Supp.

Figure 4.7A). However, PC tumors with clonal evidence of signature 3 had significantly elevated

numbers of TAI (Mann-Whitney U, 23 vs.10 events, p = 8.4 x 10-4) events, but not LOH, LST,

and total number of HRD-associated CNA events compared to PC tumors with subclonal

signature 3 (Supp. Figure 4.7A). Tumors with subclonal signature 3 had significantly more LST

(Mann-Whitney U, 17 vs. 8 events, p = 5.6 x 10-3) and total HRD-associated (Mann-Whitney U,
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39 vs. 18 events, p = 0.01) CNA events compared to tumors with no signature 3, as well as

borderline significant enrichment of LOH (Kolmogorov-Smirnov, p = 0.20; univariate logistic

regression, p = 2.3 x 10-9) and TAI (Mann-Whitney U, 10 vs. 4 events, p = 0.058) events (Supp.

Figure 4.7A).

Metastatic tumors with clonal evidence of MSI had significantly higher mutational burden

and MSIsensor scores than metastatic tumors with subclonal MSI (TMB: Mann-Whitney U,

59.35 mut/Mb vs. 4.95 mut/Mb, p = 1.19 x 10-9; MSIsensor: Mann-Whitney U, 14.93 vs. 0.12, p =

3.63 x 10-6) or no MSI (TMB: Mann-Whitney U, 59.35 mut/Mb vs. 2.45 mut/Mb, p = 4.01 x 10-7;

MSIsensor: Mann-Whitney U, 14.93 vs. 0.12, p = 2.83 x 10-7; Supp. Figure 4.7B-C).

Interestingly, metastatic tumors with evidence of subclonal MSI had elevated mutational burden

compared to metastatic tumors with no MSI signatures (Mann-Whitney U, 4.95 mut/Mb vs. 2.45

mut/Mb, p = 1.17 x 10-9, Supp. Figure 4.7C), but not higher MSIsensor scores (Mann-Whitney U,

0.12 vs. 0.12, p = 0.84; Supp. Figure 4.7B). These results suggest that the endogenous

mutational process driving signature 3 may preferentially occur clonally, while the endogenous

mutational process driving MSI may preferentially occur subclonally, and that cell subpopulation

specific analyses can uncover additional samples with DNA repair defect-associated mutational

signatures36.
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Figure 4.4: Mutational signature analysis at the cell subpopulation level can identify
additional PC patients with HRD or MSI
(a) The proportion of metastatic and primary samples that have evidence of mutational
signature 3 (associated with HRD) and MSI-associated mutational signatures. Activity of HRD
and MSI-associated mutational signatures were more frequent in metastatic samples compared
to primary samples. (b) The overlap between samples with evidence of mutational signature 3
and MSI-associated mutational signatures at the tumor and cell subpopulation levels. Out of 78
samples identified with signature 3 from running SigMA on all mutations in the tumor, 40 (51%)
of those samples were identified as having signature 3 when running SigMA on the cell
subpopulations. Conversely, 12 samples that were not classified as having signature 3 at the
tumor level were identified as having signature 3 when running SigMA on the cell
subpopulations. Similarly, while all but 1 sample identified with the MSI-associated signature at
the tumor level were identified as having the MSI-associated signature at the cell subpopulation
level, and 31 additional samples were identified as having MSI at the cell subpopulation level.

Mutational mechanisms of clonal and subclonal signature 3 and MSI in PC

We next aimed to leverage cell subpopulation level mutational signatures to identify

genomic alterations associated with signature 3 and MSI (Figure 4.5A). Thus, we performed

germline mutation calling on a set of double-stranded break repair and MMR genes (Methods),

and hypothesized that any germline alteration solely casual of signature 3 or MSI would

manifest clonally. Of the 16 samples (all metastatic) with pathogenic germline BRCA2
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alterations, 10 (62.5%) showed clonal activity of signature 3 (Figure 4.5A-B, Supp. Figure

4.8A-B). Three of those 10 samples also had clonal somatic BRCA2 mutations (1 missense, 2

frameshift deletions), and therefore signature 3 in these samples may be the result of biallelic

loss. Conversely, none of the tumors with germline ATM alterations (0 of 10), and only 1 tumor

with a BRCA1 germline alteration (14%, 1/7) had clonal activity of signature 3. One of 2 samples

with PALB2 germline alterations, in this case a primary sample, also had clonal activity of

signature 3. Additionally, 1 of 2 samples with MSH6 germline alterations had clonal activity of

MSI (Supp. Figure 4.8C-D), although this sample also had a clonal somatic MSH6 mutation and

therefore may be the result of a biallelic loss (Figure 4.5B).

We next identified cases where signature 3 and MSI may have been caused by somatic

alterations. Five of 15 tumors with only somatic putative loss of function (LOF) BRCA2

mutations (i.e. no germline alterations) had signature 3. Three of these tumors had clonal

BRCA2 mutations, and 2 tumors had subclonal BRCA2 mutations, with the onset of signature 3

being observed within the same cell subpopulation as the mutations (Figure 4.5B). Like the

germline results, none of the tumors with putative LOF somatic ATM mutations had signature 3.

One tumor with a clonal BRCA1 mutation had clonal activity of signature 3, and 1 of 2 tumors

with putative LOF somatic PALB2 mutations (Figure 4.5B), each of which were clonal, had

clonal evidence of signature 3.

Other than the MSI tumor with the MSH6 biallelic loss, one other MSI tumor harbored a

putative LOF MSH6 somatic mutation (Figure 4.5B). The tumor with the MSH6 double hit also

had putative LOF somatic mutations in MSH3 and PMS1, as well as missense mutations in 15

other MMR associated genes. Interestingly, this tumor had an intermediate MSIsensor score

(1.81), despite having the highest mutational burden of any tumor in the cohort. All 3 samples

with putative LOF somatic mutations in MSH2 (2 clonal, 1 subclonal) experienced the onset of

MSI in the corresponding cell subpopulation (Figure 4.5A-B).
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Figure 4.5: Linking the origin of mutational signatures to germline and somatic
alterations and tracking how mutational signatures influence tumor evolution
(a) Co-mutation plot of putative LOF somatic and germline alterations in a curated set of DSB
and MMR-associated genes. The co-mutation plot is annotated with the clonality of the
alterations, clonality of signature 3 (associated with HRD), and clonality of MSI associated
signatures. The co-mutation plot is also annotated with the number of HRD-associated CNA
events (ScarHRD) per sample, as well as MSIsensor scores and mutational burden which are
associated with MSI. (b) Phylogenetic trees from a subset of tumors included in the co-mutation
plot showing how our novel approach can (top) link the origin of mutational signatures to
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Figure 4.5 (continued): somatic or germline alterations at the cell subpopulation level, and how
(top and bottom) the mutational signatures influence the subclonal diversification over the
tumors evolution. The subclone numbers indicate the inferred order in which those subclones
occured. For example, subclone 2 is present at a higher CCF than subclone 3.

Therapeutic implications of cell subpopulation mutational signature analysis

To determine the therapeutic implications of integrating cell subpopulation level derived

mutational signatures with tumor level derived mutational signatures, we leveraged progression

free survival (PFS) data from patients in our cohort that were treated with PARP inhibitors

(PARPi) (n=37; Methods)37. Although nonsignificant, univariate Cox PH analysis revealed that

patients with tumor level (HR = 0.60, p = 0.33; Supp. Figure 4.9A) or cell subpopulation level

(HR = 0.45, p = 0.11; Supp. Figure 4.9B) signature 3 had a lower hazard for progression when

treated with PARPi, and this effect held when integrating the both levels of signature calls (HR =

0.59, p = 0.20; Supp. Figure 4.9C). When correcting for prior treatment with radiation or

systemic therapies, both cell subpopulation level signature 3 calls and the combination of tumor

level and cell subpopulation level signature 3 calls were significantly associated with longer PFS

(cell subpopulation level: HR = 0.34, p = 0.036; combined: HR = 0.39, p = 0.037; Supp. Figure

4.9D-F; Supp. Table 4.4), while tumor level signature 3 was borderline associated with improved

PFS (HR = 0.33, p = 0.09). Thus, these results suggest that integrating cell subpopulation level

mutational signatures with traditional approaches of identifying HRD patients can identify more

patients that may benefit from PARPi.

To further validate the identification of cell subpopulation signature analysis and its

therapeutic implications outside of the PC context, we applied this novel integrative approach to

a cohort of ovarian cancer tumors treated with cisplatin chemotherapy38,39. We were able to

recapitulate the association between signature 3 clonality and HRD-associated CNA events

observed in PC (Supp. Figure 4.10A), and our approach identified additional patient tumors with

signature 3 present compared to current approaches40,41. Furthermore, patients with signature 3
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identified via our novel integrative approach had improved PFS on cisplatin therapy (Supp.

Figure 4.10B-E), further highlighting the potential expanded therapeutic impact of a clonal

architecture-based approach to signature analysis for clinical use.

Discussion

In this study, we revealed novel associations of genomic and clinical characteristics with

clonal architecture and evolutionary dynamics in PC tumors through CCF inference and

phylogenetic reconstruction of 845 single biopsy samples. Clinical covariates that were

associated with the clonal architecture of PC tumors included clinical risk groups, self-reported

race, ancestry, and primary versus metastatic status. While the association between clinical risk

groups and clonal architecture has already been established, we demonstrated that tumors in

patients with germline AFR ancestry or Black race, which have substantial disparities in clinical

outcome, paradoxically exhibit clonal architecture and evolutionary features previously reported

in lower risk tumors from White patients11.

Our observations that primary tumors in Black and/or AFR patients are more monoclonal and

have linear genomic architecture, but have higher rates of biochemical recurrence, could

indicated that these tumors were screened for and detected at a time point after they had

underwent rapid selective sweeps or punctuated evolution. Rapid selective sweeps in tumor

evolution occur when all cell subpopulations collapse into one dominant clone5,42,43. The

combination of mutations within this dominant clone may cause or collaborate with tumor

transcriptomic, proteomic, and microenvironmental phenotypes that together are associated

with higher rates of biochemical recurrence. Through admixture analysis, we provide evidence

that the enrichment of linear and monoclonal phylogenies in Black and/or AFR patient tumors

may partially be explained by inherited germline SNPs associated with increased risk of PC. The

lower abundance of driver intratumoral heterogeneity in AFR and Black patient samples coupled

with evidence of rapid selective sweeps and higher clonality genomic alteration events are akin
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to observations in clear cell renal cell carcinoma12, where these features were associated with

worse outcomes compared to tumors with increased clonal diversity (i.e. more subclones) and

lower clonality of alterations.

Together with prior publications suggesting that Black patients who undergo

prostatectomy for PC have higher tumor volume relative to White patients44, our data also

reinforce the critical importance of more nuanced screening approaches and better healthcare

resources and access for this patient population. In the context of data illustrating equivalent if

not better outcomes for Black patients with advanced PC when treated appropriately with

standard of care therapies in relatively equal-access settings45,46, it is possible that earlier

detection of PC in Black patients and its prompt treatment may improve patient outcomes.

Our observations on self-reported race, ancestry, genomic architecture, and outcome in

localized PC have several caveats. Within our large cohort, Black and AFR patients are

under-represented, limiting the power to detect accurate genomic differences. Our data was

aggregated from patients who donated tissue samples primarily at certain academic medical

centers through efforts such as The Cancer Genome Atlas, which likely do not fully represent

the spectrum of Black and AFR PC. Furthermore, our dataset lacks information on key

associations with PC outcome such as health insurance access, zip code, comorbidities such as

obesity, tobacco exposure, and others. Recruitment of geographically and racially diverse

patient populations and inclusion of information on known risk factors for prostate cancer

incidence and mortality are vital for subsequent validation of our findings and other efforts to

elucidate the association between tumor biology and outcome. Even more importantly, equal

access to resources that may minimize these other risk factors for adverse prostate cancer

outcomes are essential.

Using a novel approach that integrates phylogenetic reconstruction4 with mutational

signature analysis29, we demonstrate that performing mutational signature analysis at the cell

subpopulation level can uncover both clonal and subclonal drivers as well as additional cases of
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HRD and MSI, which may have therapeutic implications. Mutational significance analysis of

clonal and subclonal mutations in primary and metastatic tumors revealed shared clonal drivers

(e.g. ERF, FOXA1 and SPOP) that may be important for tumor initiation and progression, as

well as subclonal drivers in primary tumors that may confer metastatic potential and a selective

advantage in metastatic sites (e.g. KDM6A, PTEN and PIK3CA)24. We also find that associated

genomic features, such as HRD-associated CNA events33 and mutational burden47, show

activity levels consistent with the clonality of the corresponding mutational signature.

Specifically, there is a stepwise increase in the number of HRD-associated CNA events from

tumors with no signature 3 to subclonal signature 3 to clonal signature 3, and a stepwise

increase in mutational burden from tumors with no MSI signature to subclonal MSI signature to

clonal MSI signature. Immunotherapy selection for PC patients based on MSIsensor scores48

may miss subclonal MSI cases that can be captured through this analytical framework. For a

subset of tumors, we further demonstrate the ability to link putative causal germline and somatic

alterations to the origin of HRD or MSI30,31,49,50 in the corresponding cell subpopulation.

Additionally, the application of our novel integrative approach to PC tumors treated with PARPi

and ovarian cancers treated with cisplatin chemotherapy identified more patients that appeared

to benefit from these therapies, demonstrating the potential expanded therapeutic impact of our

approach.

While the size of our cohort offers the statistical power necessary to find associations

with clonal architecture and evolutionary trajectories, this study is limited by only having a single

biopsy with exome sequencing per sample. Single biopsy samples are more prone to sampling

bias compared to multifocal biopsies, whereby mutation CCFs may deviate from their true value

based on biopsy location (i.e. subclonal mutations presenting more clonally or subclonally)2,13,51.

To address this issue and increase the confidence of the timing (e.g. CCF or clonality status) of

these events in PC, we leveraged the timing of each event across all samples and performed all

analyses at the cohort level. Further, while PC whole-genome sequencing datasets do exist,
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they lack the breadth of clinical characteristics to fully interrogate ancestry, HRD and MSI but

may augment these investigations prospectively. Future studies involving spatio-genomic

profiling12,13, single-cell sequencing52–54, or long read sequencing55 may further validate and

inform the biology underlying these findings. Nevertheless, clonal architecture and evolutionary

informed analysis of increasingly large cohorts of tumors will continue to reveal novel biological

insights with immediate clinical potential, especially as clinical sequencing programs integrate

such analyses into their workflows.

Methods

Cohort collection, quality control, and somatic variant calling

The somatic variants utilized in this study were taken from supplementary table 2 of Armenia et.

al14. The cohort collection, quality control metrics, and somatic variant calling information can be

found in the Methods of that study. However, in Armenia et al14, allelic copy number, purity, and

ploidy information were determined using ABSOLUTE56 in tumors where the purity was too low

for FACETS57 to output a solution. To remain consistent in this study, we re-ran FACETS and

only kept tumors where FACETS produced a solution. Out of the original 1,013 PC tumors in the

cohort, 845 produced a FACETS output.

Clinical data

All clinical data was downloaded from the original published studies37,58–64 Clinical data for the

TCGA samples were taken from the original study59, and updated using the clinical data from

the MC3 study39 where applicable. Clinical risk groups were defined using the NCCN guidelines.

Specifically, low risk: tumor stages T1-T2, grade group 1, and PSA < 10 ng/mL; intermediate

risk: tumor stages T2b-T2c, grade group 2 or 3, or PSA 10-20 ng/mL, and no high risk features;

high risk: tumor stage T3a or higher, grade group 4 or higher, or PSA > 20 ng/mL.
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Allelic copy number calling

Allelic CNAs were determined using FACETS57, which provides major and minor allele integer

copy number values, tumor purity, tumor ploidy, and the cellular fraction of each copy number

segment. The CCF of each CNA was calculated by adjusting the cellular fraction of the CNA by

tumor purity.

Calculation of mutation CCFs

Somatic mutation CCFs were calculated using the maximum likelihood method described in

McGranahan et al.65 using allelic copy number and tumor purity information from FACETS57.

Here the maximum likelihood estimation of mutation CCFs are determined using a binomial

distribution, taking into account tumor copy number, tumor purity, and variant allele frequency.

This process is performed for the scenarios where the mutation occurs on either 1) the major

allele, 2) the minor allele, or 3) a single allele copy, and the most likely CCF is chosen. For

mutations that fall on normal ploidy segments, there is no difference in the CCF calculations for

the mutation occurring on the major allele, minor allele, or a single copy of an allele. For

mutations occurring on segments where both the major and minor allele copy numbers do not

equal 1, the mutations with the highest likelihood of occurring on a single copy of an allele

(rather than the major or minor allele) indicates that the mutation likely occurred after the CNA.

Calculation of copy number alteration CCFs

The cellular frequency estimation column (“cf.em”) output by FACETS57 is the fraction of all cells

with a particular allelic copy number, including normal cells. To get the CCF of any non-diploid

copy number segment the “cf.em” column was divided by the FACETS derived tumor purity.
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Phylogenetic reconstruction of tumor architecture

To reconstruct the clonal architecture of prostate cancer tumors we used the PhylogicNDT4

Cluster module, which determines the number of tumor cell subpopulations and the respective

assignment of each mutation to a cell subpopulation. The CCF annotated MAF file and

FACETS-derived tumor purity were used as inputs to the clustering method. The outputs from

the PhylogicNDT Cluster module were then used as inputs to the PhylogicNDT BuildTree

module, which produces a series of phylogenetic trees ordered by likelihood. The phylogenetic

trees with the highest likelihood were used in the analyses of this study, and were used to

determine whether a tumor exhibited linear or branched evolution. Linear evolution is defined as

phylogenetic reconstruction where each cell subpopulation in the tumor has a maximum of 1

child node. The number of clones per tumor were defined as the number of clusters identified by

PhylogicNDT, and monoclonal tumors were defined as tumors where PhylogicNDT identified

only a single cluster.

Although PyClone was not designed for use in whole-exome data2 and tends to over

cluster whole-exome mutation data66, it is one of the most highly used phylogenetic

reconstruction methods. To validate the subclonal and clonal origin of mutational signatures

(see Mutational signature analysis) we also ran PyClone with the following hyperparameters:

burnin: 1000, density: pyclone_beta_binomial, init_method: connected, mesh_size: 101,

num_iters: 10000, prior: major_copy_number, thin: 1. In cases where both methods were

powered enough to call signatures at the cell subpopulation level, Pyclone identified MSI in all

the same samples as PhylogicNDT (n=46; 100%), whereas Pyclone only identified signature 3

in 41 of 44 (93.2%) samples determined to have signature 3 via PhylogicNDT. Pyclone did not

result in any additional MSI or signature 3 cases that weren’t detected by PhylogicNDT. Further,

when both methods identified MSI and signature 3 in the same samples, MSI was identified at
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the same clonality (e.g. clonally or subclonally) in 43 of 46 (93.5%) samples, and signature 3

was identified at the same clonality in 40 of 41 (97.6%) samples.

Mutational significance analysis

To perform mutation significance analysis we used MutSigCV267, and classified SMGs as genes

with an FDR corrected p-value < 0.1.

Mutational signature analysis

Active mutational processes were determined using both the deconstructSigs40 and SigMa29 R

packages. To run deconstructSigs we used the recommended, default parameters with the

COSMIC (v2) signatures as the signatures reference. To run SigMa we set the data parameter

equal to “seqcap” for whole-exome sequencing, the tumor_type parameter equal to “prost” for

prostate adenocarcinoma, and check_msi parameter equal to TRUE to identify tumors with

MMRd associated signatures. Default values were used for all other parameters. To run SigMa

at the cell subpopulation level, we ran SigMa on the clusters of mutations output by

PhylogicNDT4. In certain cases where there were too few mutations in a cluster (< 10), SigMa

failed to produce an output for the cluster. Additionally, since running SigMa at the cell

subpopulation level reduces the number of mutations input into SigMa, it may reduce the power

to detect signature 3 and MSI in certain cases. Conversely, running at the cell subpopulation

level enables the identification of signature 3 and MSI that may be confounded or overpowered

by other mutational signatures at the tumor level.

While non-negative least squares (NNLS) methods (e.g. deconstructSigs)40 are popular

for identifying mutational signatures in individual samples, these methods are susceptible to

increased rates of false positives in tumors with low mutational burden29, which is the case with

many PC tumors. For instance, the observed prevalence of signature 3, associated with HRD, in

primary PC whole-genomes was 5.8%, whereas deconstructSigs called signature 3 in 14.5% of
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primary PC tumors. A worse discrepancy was observed for mismatch repair deficient (MMRd)

associated signatures. For this reason we reported mutational signature analysis using SigMa29,

which utilizes non-negative matrix factorization (NMF), NNLS, and likelihood-based statistics

combined with machine learning to classify known signatures across cancer types.

Classification of clonal vs. subclonal mutations and mutational signatures

Mutations and mutational signatures were classified as clonal if they were identified in the

truncal cluster of the tumor. Conversely, mutations and mutational signatures were classified as

subclonal if they were not identified in the truncal cluster of the tumor. While mutations identified

in the truncal cluster of the tumor are presumed to be present in every other cluster throughout

the tumor, it is much more difficult to determine whether this is the case for mutational

signatures. For instance, the identification of a mutational signature present in only the truncal

cluster may still be active subclonally, but not identified due to power issues, the presence of a

more active mutational signature, or that mutations generated by another signature were

selected for. Conversely, mutations, CNAs or epigenetic alterations may cause a reversion of

the mutational signature, specifically those caused by endogenous mutational processes such

as HRD and MMRd.

Calculation of HRD-associated CNA events (scores)

To calculate the number of LOH, TAI, and LST events in each tumor, we used the FACETS57

allelic copy number calls as input to the scarHRD R package33. To determine the enrichment of

these events in tumors classified with signature 3, we used the same statistical tests as the

original papers the associations were discovered in. That is, Kolmogorov-Smirnov and

univariate logistic regression for LOH events68, and Mann-Whitney U for both TAI and LST

events69,70. Mann-Whitney U was also used to determine if there was a significant enrichment in
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the unweighted sum of events, and denote the significance values of all four scores (LOH, TAI,

LST, unweighted sum) in the figures.

Identification of mutations at microsatelites

To identify replication slippage variants at microsatellite regions and quantify the proportion that

are somatic (also called MSIsensor score) we used MSIsensor34. PC tumors were characterized

as having high, intermediate, and low MSIsensor scores using the same criteria as Abida et.

al48.

HRD and MMRd gene sets

The list of HRD and MMRd genes were curated from three prostate cancer specific studies: 1)

Matteo et al. 201530, 2) Pritchard et al. 201631, and 3) de Bono et al. 202049, as well as Polak et

al. 201750.

Pathway overrepresentation analysis

We performed pathway overrepresentation analysis on genes identified as SMGs, and

significantly amplified or deleted, using ConsensusPathDB (CPDB)71,72. We ran CPDB on

December 3rd, 2019 with default parameters for pathway-based sets.

Germline variant discovery

DeepVariant (v0.8.0)73 was used to call SNVs and small deletions/duplications (indels) from

whole-exome sequencing matched normal samples. Only high quality variants that were

classified as “PASS” in the “FILTER” column were kept, and the CombineVariants module from

GATK 3.774 was used to merge all of the high quality variants into a single Variant Call Format

(VCF) file. The vt (v3.13)75 tool was then used to decompose multiallelic variants, followed by
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normalization of variants. The high quality germline variants were annotated using VEP (v2)76

with the publicly available GRCh37 cache file.

Germline variant pathogenicity evaluation

High quality germline variants were evaluated for pathogenicity using publicly-available

databases such as ClinVar and gene-specific databases, and classified according to the

American College of Medical Genetics and Genomics and the Association of Molecular

Pathology clinical-oriented guidelines77. Based on the evidence extracted from these resources,

germline variants were classified into 5 categories: benign, likely benign, variants of unknown

significance, likely pathogenic and pathogenic77. Additionally, truncating germline variants in

genes that have yet been associated with a clinical phenotype, but are expected to disrupt the

protein function, were classified as likely disruptive. Only germline variants classified as

pathogenic, likely pathogenic, or likely disruptive were considered in the analysis.

Ancestry inference

Hail (v0.2.39-ef87446bd1c7) was used to perform ancestry inference for each sample in our

cohort. The “variant_qc” method was used on the combined cohort germline VCF to compute

common variant statistics. This was followed by filtering out rare variants with an allele

frequency less than 0.01, and variants that had a Hardy-Weinberg equilibrium p-value greater

than 1 x 10-6. Additionally, we used the “ld_prune” method to filter out variants with a Spearman

correlation threshold less than 0.1. The “hwe_normalized_pca” method was used to obtain the

principal component analysis (PCA) eigenvalues and scores. To infer the ancestry of our

samples, we also performed PCA on 1000 Genomes reference samples78,79, and trained a

random forest classifier on the first 10 principal components to assign one of the five 1000

Genomes super populations (European, African, Admixed American, East Asian, and South

Asian) to each of our samples.
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Population admixture estimation

Bcftools mpileup was used to generate a VCF of genotype likelihoods with the following options:

1) specifying not to skip anomalous read pairs (-A), 2) recalculating base alignment quality on

the fly (-E), and 3) skipping indels (-I). We then called genotypes at local population ancestry

reference sites from the 1000 Genomes Project (as opposed to super populations, see

“Ancestry inference”; https://www.internationalgenome.org/category/population/) using Bcftools

call with the option to call genotypes given alleles (-C), followed by removing duplicate genotype

calls using Bcftools norm. The resulting VCF was used to as input to PLINK (v1.9)80 --make-bed,

which was subsequently used as input to fastNGSadmix81 to determine the admixture

proportions for the 1) Utah Residents (CEPH) with Northern and Western European Ancestry

(CEU), 2) Han Chinese in Beijing, China (CHB), 3) Yoruba in Ibadan, Nigeria (YRI), and 4)

Peruvians from Lima, Peru (PEL) populations.

Imputation of rs1447295

To impute the genotypes of samples at rs1447295, we first calculated off-target coverage of our

samples using bedtools genomecov82 followed by GATK depth of coverage74. Only samples with

> 0.1X off-target coverage were considered for subsequent analysis. We then calculated the

relatedness between samples using somalier (https://github.com/brentp/somalier)83, and

removed samples that were related by the 2nd degree or closer (kinship value > 0.125). We

then split the samples by their super population ancestry assignments (European or African),

and required that reported race matched the ancestry assignments. The GLIMPSE pipeline84

was then run on both the European (n=52) and African (n=33) ancestry cohorts independently

to infer the genotypes at rs1447295. The info score for rs1447295 was 0.90 in the European

ancestry cohort, and 0.96 in the African ancestry cohort.
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Survival analysis

To demonstrate the improved clinical utility of using SigMa29, and determine the therapeutic

implication of cell subpopulation level mutational signatures, we performed survival analysis on

a subset of patients in our cohort that received PARPi (Olaparib or Veliparib)37. In the

multivariate model we corrected for whether or not the patient also received prior radiation,

hormone therapy, chemotherapy, and immune-related therapy (i.e. yes or no). To validate the

presence of signature 3 at both the tumor and cell subpopulation levels, and determine if the

associations apply in other cancer contexts, we leveraged data from the TCGA ovarian cancer

cohort38,39, and restricted our analysis to ovarian tumors treated with platinum-based

chemotherapy. The drug information, number of platinum-based chemotherapy cycles, patient

age, and tumor stage information were downloaded from FireCloud

(https://portal.firecloud.org/#workspaces/broad-firecloud-tcga/TCGA_OV_ControlledAccess_V1-

0_DATA). The ovarian cancer mutation calls and survival data were downloaded from the MC3

study39. To determine if there are significant differences between the survival curves of two or

more groups we used the log-rank test from the survival R package. To evaluate whether any

covariates were confounding the associations identified in the Kaplan-Meier analyses, we also

performed Cox proportional hazards analysis (using the survival R package) correcting for these

covariates.

Clonal architecture and evolutionary dynamics in WGS cohort

Somatic mutation VCFs for African ancestry (n=7) and European (n=7) ancestry WGS samples

from Petrovics et al23 were obtained directly from the authors, and we restricted the somatic

mutation call set to those classified as high-confidence in the original study. Mutation CCFs

were calculated as described in “Calculation of mutation CCFs'' using FACETS-derived allelic

copy number calls and the histologically defined tumor purities from the original study. The
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clonal architecture and evolutionary trajectories of these tumors were determined using

PhylogicNDT4 as described in “Phylogenetic reconstruction of tumor architecture”.
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Chapter 5: Conclusions

General Overview

While the work in this dissertation was primarily focused on the development and

application of novel computational frameworks to melanoma and prostate cancer, these

frameworks can be applied to any cancer type. These include frameworks for 1) identifying

driver genes via aggregating information from mutational recurrence, sequence context, and

accumulated functional impact-based algorithms followed by pruning of significant results

through the integration of bulk and single-cell RNA sequencing, as well as 2) evolutionary
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informed driver gene and mutational signature analysis by leveraging bayesian methods for

cancer subclone identification and determining the presence of mutational signatures from

datasets with few (at least 10) mutations.

Novel driver gene identification framework applied to melanoma

The motivation for developing the driver gene identification framework was largely due to

the combined factors of cohort size (> 1,000) and the tumor mutational burden of melanoma

(10-13 mutations per megabase). The application of just one, or even multiple algorithms

independently, can result in several false positives that frequently include large genes such as

TTN and olfactory genes that are unrelated to cancer. As the number of samples that undergo

whole exome sequencing continues to increase for each cancer type, this will continue to

become an issue in driver gene identification analysis, regardless of how low the mutational

burden of the cohort may be. Through our novel approach we identified melanoma genomic

subtype-specific driver genes that reflected preferential dysregulation of additional pathways

outside of MAPK, some of which had implications for immunotherapy response. Accurate

identification of driver genes as we continue to saturate the mutational landscape of cancer is

imperative for creating driver gene catalogues, understanding biological underpinnings of

disease, and identifying potential therapeutic targets and biomarkers. An additional layer of

driver gene identification analysis is understanding when and how these genes play a role in a

tumor's evolution. Drivers that are more often identified as clonal may be required for tumor

initiation, whereas drivers that are more often observed subclonally may be required for

advancement to a more advanced disease, or even therapeutic escape mechanisms.

Furthermore, how the clonality of driver alterations affects the efficacy and response to various

therapies remains an open area of investigation.
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Molecular drivers of TWT melanomas

Of the 1,048 melanoma whole-exomes aggregated, 162 were triple wild-type (TWT)

melanomas. Unlike the other subtypes, genomic driver analyses in TWT melanomas have been

limited due to insufficient cohort size for unbiased driver discovery. Application of our novel

driver gene framework to TWT patients identified 19 drivers, including drivers frequently

observed in uveal melanomas. Furthermore, while a lack of UV mutagenesis has been reported

in TWT tumors, we identified the enrichment of double-stranded break (DSB) repair deficiency

signatures in this subtype, which was associated with transcriptional downregulation ATM and

increased methylation of INO80. Follow up analysis in TWT whole-genomes revealed the

association between the DSB repair deficiency signature and structural variants affecting the

MRN complex. Melanoma patients that exhibit this DSB repair deficiency signature may respond

to previously discarded therapeutic modalities such as platinum-based chemotherapy, or those

currently unconsidered such as PARP inhibitors (PARPi) or ATR inhibitors (ATRi).

Evolutionary informed genomic analysis in prostate cancer

Mutational signature analysis has traditionally been performed on all mutations from a

tumor at once, where accurate inference of the clonality of a mutational signature was rarely

possible. Here we demonstrated that integration of phylogenetic reconstruction methods with a

likelihood-based mutational signature algorithm designed for clinical panel sequencing data is

able to determine the presence of mutational signatures at a cell subpopulation resolution.

Through this framework we can link the presence of certain mutational signatures such as

homologous recombination deficiency (HRD) and mismatch repair deficiency (MMRd) to specific

subclones, and in certain cases identify putative causal somatic or germline alterations within

that subclone. This approach also identifies additional patients with HRD and MMRd

undetectable by traditional mutational signature analysis, potentially increasing in number of

patients amenable to PARPi or platinum-based chemotherapy. Specifically, we showed that the
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application of our novel integrative approach to a subset of prostate cancer tumors treated with

PARPi, and ovarian cancers treated with cisplatin chemotherapy, identified more patients that

benefited from these therapies, demonstrating the potential expanded therapeutic impact of our

approach.

Finally, we observed that despite primary tumors in Black patients being associated with

higher biochemical recurrence rates, these tumors tend to be more linear and monoclonal,

which is contrary to observations between adverse outcomes and polyclonicity in White patient

cohorts. One possible explanation is that these tumors had undergone rapid selective sweeps,

or “punctuated evolution”, prior to being screened and undergoing whole-exome sequencing.

Rapid selective sweeps are one growth model for tumor evolution, where all cell subpopulations

in a tumor collapse into one dominant clone, manifesting in a monoclonal tumor. While we do

provide evidence that these apparent rapid selective sweeps may partially be explained by

inherited germline SNPs associated with increased risk of prostate cancer, we do not possess

the relevant socioeconomic or standard of care information necessary to determine the true

extent that genetics plays in this observation.

Future Directions

Driver gene identification and saturation in prostate cancer and renal clear cell

carcinoma

Since the conclusion of the melanoma whole-exome study we’ve continued to aggregate

prostate cancer and renal clear cell carcinoma whole-exomes. To date we’ve aggregated over

2,000 prostate cancer whole-exomes and over 1,000 renal cell carcinoma whole-exomes, both

of which are the largest cohorts in their respective cancer type to date. Based on cancer type

specific mutational burden, power analysis suggests that roughly 2,000 prostate cancer and

1,000 renal clear cell carcinoma whole-exomes will allow the identification of all driver genes

mutated at a frequency of at least 1% and 3%, respectively. Application of our novel driver
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identification framework will yield a set of high confidence driver genes for each cohort, and in

the case of prostate cancer saturate the landscape of driver genes. The set of drivers identified

from these analyses will have the potential to further our understanding of prostate and renal

cell cancer biology, and enable the identification of therapeutic targets or biomarkers in

genomically stratified patient subsets.

Sensitivity of DSB repair deficient melanomas to relevant therapeutic compounds

We identified the enrichment of DSB repair deficiency signatures in TWT cutaneous

melanomas that is associated with the downregulation of ATM. However, we were unable to

identify causal mechanisms for the downregulation of ATM in our subset of TWT whole-exomes,

although follow analysis in whole-genomes suggested that alterations affecting the MRN

complex may be a potential mechanism. Additionally, understanding whether tumors with the

DSB repair deficiency signature may respond to various therapies previously unconsidered in

melanoma, such as PARPi and ATRi, is a necessary first step for translating these findings to

the clinic. To address these, we plan to perform CRISPR knockout screens in TWT and

non-TWT melanoma cell lines, followed by assessing the sensitivity of these knockout cell lines

to PARPi and ATRi.

Effect of subclonal HRD and MSI on response to PARPi and immunotherapy

We demonstrated that our novel computational framework for evolutionary informed

signature analysis at the cell subpopulation resolution was able to identify additional cases of

HRD and MMRd. In a limited cohort of prostate cancer patients treated with PARPi, we showed

that HRD patients only identified at the cell subpopulation level had better response than

patients without HRD, and similar response to HRD patients identified with more traditional

approaches. We also demonstrated similar results in the subset of TCGA ovarian cancer

patients treated with platinum-based chemotherapy. To determine the robustness of these

127



results, as well as determine if the clonality of HRD matters for response to relevant therapies,

we would like to apply our framework to larger cohorts of PARPi or platinum-based

chemotherapy treated prostate, breast and ovarian cancer patients. Furthermore, we would also

like to address these same questions in immunotherapy treated cohorts for patients with MMRd

identified via our framework.

Appendix

Supplementary Figure 2.1: Quality control, mutation calling and mutational significance
workflow
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Supplementary Figure 2.2: Expression differences between mutant vs. wild-type putative
gain of function, previously unknown cancer gene, melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type
melanoma putative gain of function (GoF) SMGs that are not in the COSMIC Cancer Gene
Census or OncoKB databases. NRAS is included as a reference for GoF mutations (purple
name). Genes highlighted by a yellow point have a statistically significant difference in
expression between mutant vs. wild-type tumors.
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Supplementary Figure 2.3: Expression differences between mutant vs. wild-type putative
loss of function, previously unknown cancer gene, melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type
melanoma putative loss of function (LoF) SMGs that are not in the COSMIC Cancer Gene
Census or OncoKB databases. NF1 is included as a reference for LoF mutations (purple name).
Genes highlighted by a yellow point have a statistically significant difference in expression
between mutant vs. wild-type tumors.
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Supplementary Figure 2.4: CCFs of SMGs identified in the full cohort of 1,048 melanomas
Density plots showing the distribution of CCFs for mutations in melanoma SMGs. Some genes
are almost always clonal (e.g. CDKN2A, EIF1AX), while others are bimodal (e.g. GINS1, EZH2)
indicating those genes may be both clonal and subclonal drivers.
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Supplementary Figure 2.5: Impact of hypermutated tumors on SMG analysis
To determine the effect hypermutated tumors may have on false positives in our cohort, we
classified tumors in the top 10% of mutational burden as hypermutated tumors. Here we show
SMGs identified only in the (a) entire cohort (n = 1048), (b) only when hypermutators are
removed (n = 943), and (c) both. (a) For some genes only called SMGs when including all
samples, over half the mutations are from hypermutator tumors, including known cancer genes
(e.g. CHIC2, FAM58A). Further, a nontrivial amount of hypermutator tumors are NF1
melanomas (49%), and several SMGs identified only when including all tumors are driven by
NF1 melanoma (e.g. SPRED1, RASA2). (c) For all genes identified in both analyses, the
fraction of mutations belonging to hypermutated tumors never exceeded 50%. However, this
phenomenon was also observed in genes only identified when (a) including all samples, and (b)
when removing hypermutators. Thus, the covariates included in mutational significance
algorithms likely contribute more to statistical significance than the fraction of mutations
contributed to hypermutated tumors. Indeed, the Brown’s p-values of SMGs
(Benjamini-Hochberg, q-value cutoff < 0.1) was not associated with the fraction of mutations
contributed by hypermutated tumors (linear regression, p > 0.05, two-sided). Expanding to all
genes, the fraction of mutations contributed by hypermutated tumors slowly becomes more
significantly associated with higher p-values (linear regression, p < 0.05, two-sided). This is
likely because hypermutated tumors comprise a large percentage of mutations for infrequently
mutated genes.
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Supplementary Figure 2.6: Clonal and subclonal mutations per genomic subtype
(a) Distribution of clonal:subclonal mutation ratios per genomic subtype (Mann-Whitney U, p <
1.27 x 10-4 for all pairwise). (b) Distribution of clonal (Mann-Whitney U, p < 5.6 x 10-8 for all
pairwise) and (c) subclonal nonsynonymous mutational burdens per genomic subtype
(Mann-Whitney U, p < 6.0 x 10-4 for all pairwise). The data are represented as boxplots where
the middle line is the median, the lower and upper edges of the box are the first and third
quartiles, the whiskers represent the interquartile range (IQR) multiplied by 1.5, and beyond the
whiskers are outlier points. The p-values derived from the Mann-Whitney U tests are two-sided.
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Supplementary Figure 2.7: Expression differences between mutant vs. wild-type,
previously unknown cancer gene, BRAF melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type
BRAF melanoma SMGs that are not in the COSMIC Cancer Gene Census or OncoKB
databases. BRAF, NRAS, and NF1 are included as references for gain of function (GoF) and
loss of function (LoF) mutations (purple names). Genes with a mean fold-change difference
above 0 indicate higher expression in mutant samples compared to wild-type (i.e. GoF
mutations). Genes with a mean fold-change difference below 0 indicate lower expression in
mutant samples compared to wild-type (i.e. LoF mutations). Genes highlighted by a yellow point
have a statistically significant difference in expression between mutant vs. wild-type tumors.
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Supplementary Figure 2.8: CCFs of BRAF SMGs
Density plots showing the distribution of CCFs for mutations in BRAF SMGs. Some genes are
almost always clonal (e.g. STAT4, DDX3X), while others are bimodal (e.g. STK19, ZFP91)
indicating those genes may be both clonal and subclonal drivers.
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Supplementary Figure 2.9: SMGs in the BRAF melanoma subtype
(a) CoMut plot focusing on the TGF-β pathway associated SMGs (MECOM, BMP5) identified
exclusively in BRAF melanomas. MECOM is an antagonist of the TGF-β pathway (specifically
with the SMAD genes), as is BMP5 (Alliston et al., 2005; Bramlage et al., 2011).

Supplementary Figure 2.10: BRAF V600E vs. V600K mutational burden when stratifying
by age
(a) Age at diagnosis was significantly older in BRAF V600K patients compared to V600E
patients (Mann-Whitney U, p = 1.07 x 10-5). (b) Nonsynonymous mutational load was
significantly elevated in BRAF V600K melanomas compared to V600E melanomas
(Mann-Whitney U, 1.2 x 10-13). (c) Even when stratifying by age there is still a significant
increase in mutations in V600K tumors compared to V600E tumors (15-44 yrs old: 34.68
mut/Mb vs. 6.69 mut/Mb, Mann-Whitney U, p = 0.024; 45-59 yrs old: 15.88 mut/Mb vs. 6.68
mut/Mb, Mann-Whitney U, p = 0.007; 60-74 yrs old: 11.39 mut/Mb vs. 6.1 mut/Mb,
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Supplementary Figure 2.10 (continued): Mann-Whitney U, p = 0.0002; 75-87 yrs old: 8.29
mut/Mb vs. 4.57 mut/Mb, Mann-Whitney U, p = 0.03). The data are represented as boxplots
where the middle line is the median, the lower and upper edges of the box are the first and third
quartiles, the whiskers represent the interquartile range (IQR) multiplied by 1.5, and beyond the
whiskers are outlier points. The p-values derived from the Mann-Whitney U tests are two-sided.

Supplementary Figure 2.11: Global CNA properties of BRAF V600E and V600K samples
(a) BRAF V600E tumors experience significantly more copy number events than V600K tumors
(49.5 vs. 42, Mann-Whitney U, p = 0.027,). (b) Likewise, V600E tumors also have a significantly
higher proportion of the genome altered compared to V600K tumors (54.2% vs. 42.5%,
Mann-Whitney U, p = 0.028). The data are represented as boxplots where the middle line is the
median, the lower and upper edges of the box are the first and third quartiles, the whiskers
represent the interquartile range (IQR) multiplied by 1.5, and beyond the whiskers are outlier
points. The p-values derived from the Mann-Whitney U tests are two-sided.

137



138



Supplementary Figure 2.12: GISTIC2.0 amplification and deletion peaks for BRAF V600E
and V600K melanomas
(a) Significant amplification regions in BRAF V600E and BRAF V600K melanomas
(Benjamini-Hochberg, q-value cutoff < 0.1). (b) Significant deletion regions in BRAF V600E and
BRAF V600K melanomas (Benjamini-Hochberg, q-value cutoff < 0.1). The complete list of
peaks and the genes they contain can be found in SupplementaryTable 2.12. Supplementary
Table 2.12 also contains annotations on what genes contained in the peaks are in the CGC and
OncoKB, and what genes were called a SMG in the same genomic subtype.

Supplementary Figure 2.13: Expression differences between mutant vs. wild-type,
previously unknown cancer gene, (N)RAS melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type
(N)RAS melanoma SMGs that are not in the COSMIC Cancer Gene Census or OncoKB
databases. BRAF, (N)RAS, and NF1 are included as references for gain of function (GoF) and
loss of function (LoF) mutations (purple names). Genes with a mean fold-change difference
above 0 indicate higher expression in mutant samples compared to wild-type (i.e. GoF
mutations). Genes with a mean fold-change difference below 0 indicate lower expression in
mutant samples compared to wild-type (i.e. LoF mutations). Genes highlighted by a yellow point
have a statistically significant difference in expression between mutant vs. wild-type tumors.
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Supplementary Figure 2.14: CCFs of (N)RAS SMGs
Density plots showing the distribution of CCFs for mutations in (N)RAS SMGs. Some genes are
almost always clonal (e.g. CDKN2A, RB1), while others are bimodal (e.g. IARS2, LONP2)
indicating those genes may be both clonal and subclonal drivers.
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Supplementary Figure 2.15: Mutations in BAF/PBAF complex genes identified as SMGs in
(N)RAS melanomas
(a) CoMut plot of (N)RAS subtype BAF/PBAF complex SMGs in BRAF melanomas. ARID2,
ARID1A, and BRD7 were identified as SMGs in the BRAF subtype, although at lower
frequencies and statistical significance. (b) CoMut plot of (N)RAS subtype BAF/PBAF complex
SMGs in NF1 melanomas. Although a higher proportion of NF1 melanomas harbored mutations
in these genes compared to (N)RAS melanomas, only ARID2 was identified as significantly
mutated. Further, the majority of mutations in NF1 melanomas are not putative loss of function
(nonsense mutations, splice-site variants and indels).
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Supplementary Figure 2.16: Clinical characteristics and SMGs in NF1 melanomas
(a) Distribution of age at diagnosis between the genomic subtypes. NF1 melanomas are
associated with significantly older age at diagnosis compared to the other genomic subtypes
(Mann-Whitney U, p < 0.028 pairwise for all, two-sided). The data is represented as a boxplot
where the middle line is the median, the lower and upper edges of the box are the first and third
quartiles, the whiskers represent the interquartile range (IQR) multiplied by 1.5, and beyond the
whiskers are outlier points. (b) The co-mutation plot of NF1 RASopathy SMGs and the novel
RAS-associated SMG RASSF2, including the annotation of missense and inactivating NF1
mutations. Loss of function mutations in the RASopathy genes (RASA2 and SPRED1) were
never observed in the same tumor, as were loss of function mutations between SPRED1 and
RASSF2. One tumor harbored loss of function mutations in both RASA2 and RASSF2.
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Supplementary Figure 2.17: Expression differences between mutant vs. wild-type,
previously unknown cancer gene, NF1 melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type NF1
melanoma SMGs that are not in the COSMIC Cancer Gene Census or OncoKB databases.
BRAF, NRAS, and NF1 are included as references for gain of function (GoF) and loss of
function (LoF) mutations (purple names). Genes with a mean fold-change difference above 0
indicate higher expression in mutant samples compared to wild-type (i.e. GoF mutations).
Genes with a mean fold-change difference below 0 indicate lower expression in mutant samples
compared to wild-type (i.e. LoF mutations). Genes highlighted by a yellow point have a
statistically significant difference in expression between mutant vs. wild-type tumors.
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Supplementary Figure 2.18: CCFs of NF1 SMGs
Density plots showing the distribution of CCFs for mutations in NF1 SMGs. Some genes are
almost always clonal (e.g. FAM58A, RASSF2), while others are bimodal (e.g. RAC1, MSH6)
indicating those genes may be both clonal and subclonal drivers.
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Supplementary Figure 2.19: SMGs in TWT Melanomas
CoMut plot of SMGs in the cohort of only cutaneous TWT melanomas.

Supplementary Figure 2.20: Expression differences between mutant vs. wild-type,
previously unknown cancer gene, TWT melanoma SMGs
Mean expression fold-change differences (in TCGA samples) between mutant vs. wild-type
TWT melanoma SMGs that are not in the COSMIC Cancer Gene Census or OncoKB
databases. BRAF, NRAS, and NF1 are included as references for gain of function (GoF) and
loss of function (LoF) mutations (purple names). Genes with a mean fold-change difference
above 0 indicate higher expression in mutant samples compared to wild-type (i.e. GoF
mutations). Genes with a mean fold-change difference below 0 indicate lower expression in
mutant samples compared to wild-type (i.e. LoF mutations). Genes highlighted by a yellow point
have a statistically significant difference in expression between mutant vs. wild-type tumors.
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Supplementary Figure 2.21: CCFs of TWT SMGs
Density plots showing the distribution of CCFs for mutations in TWT SMGs. Some genes are
almost always clonal (e.g. RQCD1, GNA11), while others are bimodal (e.g. SF3B1, DDX59)
indicating those genes may be both clonal and subclonal drivers.
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Supplementary Figure 2.22: GISTIC2 workflow for calling focal regions enriched in
amplifications and deletions
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Supplementary Figure 2.23: GISTIC2.0 amplification and deletion peaks for each of the
genomic subtypes
We used GISTIC2.0 to identify regions selectively targeted by somatic CNAs in each of the
genomic subtypes. (a) A total of 26, 29, 14 and 16 significant focal amplification peaks, and (b)
16, 14, 9, and 7 significant focal deletion peaks, were identified in BRAF, (N)RAS, NF1 and
TWT melanomas, respectively (Benjamini-Hochberg, q-value cutoff < 0.1). Several of these
peaks were in regions containing CGC and OncoKB genes (Supplementary Table 12).
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Supplementary Figure 2.24: CNA and fusion events per genomic subtype
(a) There was significant heterogeneity in the number of CNAs between the genomic subtypes
(Kruskal-Wallis, p = 7.78 x 10-8, two-sided), ranging from 75 events in TWT melanomas to 47
events in BRAF melanomas. However, there was no difference in the proportion of the genome
altered by CNA events between the subtypes (Kolmogorov-Smirnov, p > 0.05, two-sided). (b)
The occurrence of gene fusions also differed significantly between the subtypes (Kruskal-Wallis,
p = 0.006, two-sided), ranging from 6 fusion events in TWT melanomas to 2 fusion events in
BRAF melanomas. The data are represented as boxplots where the middle line is the median,
the lower and upper edges of the box are the first and third quartiles, the whiskers represent the
interquartile range (IQR) multiplied by 1.5, and beyond the whiskers are outlier points.
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Supplementary Figure 2.25: NMF validation of deconstructSigs results on the entire
cohort via SomaticSignatures
(a) NMF statistics for the entire cohort of melanomas. (b) Cosine similarity between COSMIC
signatures and signatures decomposed via NMF for the entire cohort of melanomas. Signature
S1 had the highest cosine similarity with signature 7 (UV exposure), signature S2 had the
highest cosine similarity with signature 11 (exposure to alkylating agents), and signature S3 had
the highest cosine similarity with signature 1 (spontaneous deamination of 5-methylcytosine).
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Supplementary Figure 2.26: DSB repair deficiency - loss of heterozygosity (LoH) score
(a) Distribution of copy number LoH events in signature 3 (yellow) and non-signature 3 (purple)
melanomas in the entire cohort. This satisfies the test used in Abkevich et al., 2012 and Timms
et al., 2014, as the distribution was significantly different via the Kolmogorov-Smirnov test (p =
0.005, two-sided) and univariate logistic regression (p = 5.34 x 10-5). (b) Density plot of copy
number LoH events in the entire cohort. (c) Distribution of copy number LoH events in signature
3 and non-signature 3 melanomas in TWT melanomas (p = 0.015, Kolmogorov-Smirnov,
two-sided; p = 0.077, univariate logistic regression, two-sided). (d) Density plot of copy number
LoH events in the TWT melanomas.

151



Supplementary Figure 2.27: DSB repair deficiency - allelic telomeric imbalance score
(a) Distribution of copy number TAI events in signature 3 (yellow) and non-signature 3 (purple)
melanomas in the entire cohort. This satisfies the test used in Birkbak et al., as the distribution
was significantly different via a Mann-Whitney U test (p = 4.40 x 10-5, two-sided). (b) Density plot
of copy number TAI events in the entire cohort. (c) Distribution of copy number TAI events in
signature 3 and non-signature 3 melanomas in TWT melanomas (Mann-Whitney U, p = 1.8 x
10-3, two-sided). (d) Density plot of copy number TAI events in the TWT melanomas. In (a) and
(c) the data is represented as a boxplot where the middle line is the median, the lower and
upper edges of the box are the first and third quartiles, the whiskers represent the interquartile
range (IQR) multiplied by 1.5, and beyond the whiskers are outlier points.
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Supplementary Figure 2.28: DSB repair deficiency - large scale transitions
(a) Distribution of copy number LST events in signature 3 (yellow) and non-signature 3 (purple)
melanomas in the entire cohort. This satisfies the test used in Popova et al., as the distribution
was significantly different via a Mann-Whitney U test (p = 6.82 x 10-3, two-sided). (b) Density plot
of copy number LST events in the entire cohort. (c) Distribution of copy number LST events in
signature 3 and non-signature 3 melanomas in TWT melanomas (Mann-Whitney U, p = 0.056,
two-sided). (d) Density plot of copy number LST events in the TWT melanomas. In (a) and (c)
the data is represented as a boxplot where the middle line is the median, the lower and upper
edges of the box are the first and third quartiles, the whiskers represent the interquartile range
(IQR) multiplied by 1.5, and beyond the whiskers are outlier points.
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Supplementary Figure 2.29: Associations between mutational signatures and scarHRD
scores
(a-c) Signature 3 was the only mutational signature to be associated with all three scarHRD
copy number event scores (loss of heterozygosity, allelic telomeric imbalance, large scale
transitions), and (d-f) this relationship still held when excluding acral and mucosal melanomas,
which are enriched in copy number alterations compared to cutaneous melanomas. The dashed
lines represent p-value cutoffs of 0.05.
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Supplementary Figure 2.30: Somatic alterations of interest in signature 3 TWT
melanomas
(a) Top: Lollipop plot of somatic mutations in ATM for TWT melanomas. The splice-site variant in
the FAT domain of ATM was exclusive to a TWT melanoma with signature 3. Bottom: Lollipop
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Supplementary Figure 2.30 (continued): plot of somatic mutation in ATM for non-TWT
melanomas. A signature 3 non-TWT melanoma also had a splice-site variant in the FAT domain
of ATM. (b) Lollipop plot of somatic mutations in BLM for TWT melanomas. The missense
mutation in the HRDC domain of BLM was exclusive to a TWT tumor with signature 3.

Supplementary Figure 2.31: Relatedness between normal samples
To prevent duplicate mutation calls from the same patient influencing our analyses, we used
Somalier to determine the relatedness between normal samples in our cohort. Samples from the
same patient would have a relatedness value very close to 1. Opacity was used to show the
density of points.
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Extended Data Figure 2.1: Overlap between SMGs from the entire cohort and subtype
analyses
(a) Overlap between the subtype-specific SMGs and the SMGs that were identified via the
entire cohort. Most of the SMGs identified in the entire cohort analysis were not identified
through the subtype specific analysis (115 of 178, 64.6%).
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Extended Data Figure 2.2: MECOM/BMP5 immunotherapy validation (overall survival and
RECIST response)
External validation analysis of overall survival for MECOM/BMP5 mutations using the Roh, Riaz,
Hugo, and Rodig whole-exome cohorts (n = 194 total) for (a) all melanomas, (b) BRAF
melanomas, and (c) non-BRAF melanomas, excluding post treatment biopsies. These cohorts
were chosen because they were immunotherapy treated, whole-exome sequenced, cohorts not
included in our discovery cohort. Due to the diverse treatment regimens in each of these trials
and cohorts, we were unable to correct for drug. Further, since we did not have access to raw
sequencing data from all these studies, we could not calculate and correct for tumor purity and
utilized published variant calls. The hazard rate ratios of MECOM/BMP5 mutations when
correcting for only mutational load was (a) 0.59 (multivariate Cox proportional-hazards, p = 0.09)
for all melanomas, (b) 0.46 (multivariate Cox proportional-hazards, p = 0.16) for BRAF
melanomas, and (c) 0.68 (multivariate Cox proportional-hazards, p = 0.31) for non-BRAF
melanomas. These results are similar to what was observed in the discovery cohort
(Supplementary Table 2.8), although this validation cohort size was not powered to achieve
statistical significance. (d) The association between the BRAF subtype and MECOM/BMP5
mutations for clinical benefit to immunotherapy (via RECIST) in our limited validation cohort was
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Extended Data Figure 2.2 (continued): similar to our discovery cohort findings, but not
statistically significant. The p-values shown in a-c) are derived from the log-rank test.

Extended Data Figure 2.3: PBAF complex immunotherapy validation (overall survival and
RECIST response)
External validation analysis of overall survival for PBAF mutations using the Roh, Riaz, Hugo,
and Rodig cohorts (n = 194), which are immunotherapy treated, whole-exome sequenced,
cohorts not included in our discovery cohort. (a) Survival curves between PBAF-mutants and

159



Extended Data Figure 2.3 (continued): non-PBAF mutants. (b) Survival curves between
PBAF-mutants and non-PBAF mutants where PBAF mutants are classified by having mutations
in ARID2, PBRM1, SMARCA4, and SMARCB1, which are the 4 PBAF complex genes
commonly used in clinical sequencing panels. This limited validation cohort lacked sufficient
samples with co-mutation of (N)RAS and PBAF complex genes (n = 9), and thus validation
analysis was only performed on all tumors. Due to the unique treatment regimens in each of
these cohorts, we were unable to correct for drug. Further, because we did not have access to
raw sequencing data from these studies, we could not calculate and correct for tumor purity.
When correcting only for mutational load the hazard ratio of PBAF mutations in the
whole-exome cohorts, (a) when considering all genes in the PBAF complex, was 1.07
(multivariate Cox proportional-hazards, p = 0.80). The differences in these findings relative to the
primary larger cohort may indicate differences in patient population and study size relative to our
discovery cohort. (b) When considering only mutations in ARID2, PBRM1, SMARCA4, and
SMARCB1 as PBAF-mutant, the HRR was 0.86 (multivariate Cox proportional-hazards,
p = 0.61). The p-values for (a-b) are derived from the log-rank test.
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Extended Data Figure 2.4: NMF validation of deconstructSigs results on genomic
subtypes via SomaticSignatures
(a) NMF statistics for BRAF melanomas. (b) Cosine similarity between COSMIC signatures and
signatures decomposed via NMF for BRAF melanomas. (c) NMF statistics for (N)RAS
melanomas. (d) Cosine similarity between COSMIC signatures and signatures decomposed via
NMF for (N)RAS melanomas. (e) NMF statistics for NF1 melanomas. (f) Cosine similarity
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Extended Data Figure 2.4 (continued): between COSMIC signatures and signatures
decomposed via NMF for NF1 melanomas. (g) NMF statistics for TWT melanomas. (h) Cosine
similarity between COSMIC signatures and signatures decomposed via NMF for TWT
melanomas. The cophenetic correlation coefficient and residual sum of squares (RSS) suggests
3 is the optimal number of signatures for each genomic subtype.

Extended Data Figure 2.5: NMF simulations via SomaticSignature on TWT melanomas
removing 35 random non-signature 3 samples each simulation
A total of 35 signature 3 samples were identified via deconstructSigs in our signature analysis.
To ensure that our NMF validation in TWT melanomas (Supplementary Fig. 17) is actually
identifying signature 3 because it is indeed present, and not because it’s a flat signature, we
performed 1000 simulations removing 35 random non-signature 3 samples each time. Signature
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Extended Data Figure 2.5 (continued): 3 was identified 927 times (92.7%), which corroborates
the deconstructSigs results and suggests signature 3 is the third most dominant signature in
TWT melanomas. Performing 1000 simulations when removing the 35 signature 3 samples
each time never yielded the identification of signature 3 via NMF.

Extended Data Figure 2.6: DSB repair deficiency - unweighted sum of HRD associated
events
(a) Distribution of the unweighted sum of HRD associated CNA events (loss of heterozygosity,
telomeric allelic imbalance, large scale transitions) in signature 3 (yellow) and non-signature 3
(purple) melanomas in the entire cohort. Signature 3 tumors were significantly enriched in HRD
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Extended Data Figure 2.6 (continued): associated copy number events via a Mann-Whitney U
test (p = 6.21 × 10−5, two-sided). (b) Density plot of HRD associated copy number events in the
entire cohort. (c) Distribution of HRD associated copy number events in signature 3 and
non-signature 3 melanomas in TWT melanomas (Mann-Whitney U, p = 5.49 × 10−3, two-sided).
(d) Density plot of HRD associated copy number events in the TWT melanomas. In (a) and (c)
the data is represented as a boxplot where the middle line is the median, the lower and upper
edges of the box are the first and third quartiles, the whiskers represent the interquartile range
(IQR) multiplied by 1.5, and beyond the whiskers are outlier points.

Extended Data Figure 2.7: Indel mutational signatures on the 390 WGS tumors
Cosine similarity between COSMIC indel mutational signatures and the suggested solution NMF
results from SigProfileExtractor. Indel mutational signatures revealed that (a) BRAF, (b) (N)RAS,
and (c) NF1 melanomas were associated with indel signatures ID1, ID2 and ID13 Extended
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Data Figure 2.7 (continued): (associated with UV), while (d) TWT melanomas were associated
with indel signatures ID1, ID8 (associated with NHEJ), and ID13. (e) Mutational signature 3 was
associated with indel signatures ID1 and ID8, and was the sole mutational signature associated
with ID8. (f) Interestingly, when removing signature 3 tumors from the TWT melanoma cohort,
TWT melanomas were still associated with indel signature ID8. Thus, the increased genomic
instability of TWT melanomas in general is enough to result in ID8.

Extended Data Figure 2.8: Comparison of transcriptional profiles between DSB repair
deficient and DSB repair intact TWT melanomas
(a) The workflow used to identify transcriptional differences between putative DSB repair
deficient (presence of signature 3) and non-DSB repair deficient (no contribution of signature 3)
TWT tumors. (b) Pearson correlation between signature 3 contribution and normalized gene
expression in TWT melanomas (Methods) identified 9 positive and 10 negative signifi- cant
correlations for DNA-repair genes (Pearson’s, p-value cutoff < 0.05; Methods). Genes
highlighted in purple function in DSB repair pathways, including HR. Opacity was used to show
the density of non-significant points along both axes.
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Extended Data Figure 2.9: Differential expression analysis between signature 3 and
non-signature 3 TWT melanomas
(a) DESeq2 log2 fold-change vs edgeR log2 fold-change for cumulative set of DNA-repair
genes. (b) Significance vs log2 fold-change of significantly differentially expressed DNA repair
genes as determined by DESeq2. Yellow points indicate genes whose expression was
significantly correlated with signature 3 contribution and significantly differentially expressed.
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Extended Data Figure 2.9 (continued): Green points indicate genes that were only
significantly differentially expressed. Genes highlighted in purple function in DSB repair. Opacity
was used to show the density of non-significant points along both axes.
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Extended Data Figure 2.10: Methylation and signature 3 contribution
(a) Pearson correlation between signature 3 contribution and methylation β-values plotted on
the x-axis vs. difference in median methylation between signature 3 and non-signature 3 TWT
samples on the y-axis. Six probe sites were significantly correlated with signature 3 contribution,
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Extended Data Figure 2.10 (continued): had a significant difference in median β-values (via
Mann-Whitney U), and had methylation β-values significantly associated with gene expression.
Of the six probe sites, INO80 was the only gene involved in HR repair. Opacity was used to
show the density of non-significant points along both axes. (b) Expression of INO80 was
significantly correlated with methylation β-values at INO80-ch.15.415873F (Pearson’s, r = −0.51,
p = 8.516 × 10−5). Points in yellow are from signature 3 TWT samples and points in purple are
from non-signature 3 TWT samples.

Supplementary Figure 3.1: Tumor sample coverage by melanoma histological subtype
The median sequencing coverage of tumor samples in general is 57X, and there is no statistical
difference in tumor sample coverage between the histologies (Wilcoxon-Mann-Whitney;
pairwise; p = 0.08).
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Supplementary Figure 3.2: Association between MRN complex gene expression and ATM
expression
Although SVs affecting RAD50 were not associated with signature 3 tumors (Fisher’s exact, p >
0.05), there was no difference in the association between MRE11A or NBN expression and ATM
expression compared to the association between RAD50 and ATM expression in TWT tumors
(Fisher’s Z-transformation; pairwise; p > 0.05).
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Supplementary Figure 4.1: Clinical and Genomic Characteristics associated with
self-reported race in PC
a) The rate of biochemical recurrence between tumors from Black and non-Black patients with
information on biochemical recurrence status (n=380). Consistent with previous studies, the rate
of biochemical recurrence was significantly higher in Black compared to non-Black patient
samples (Fisher’s exact test, p = 0.03). b) The proportion of early onset (<= 55 years old)
tumors in our cohort between Black and non-Black patient tumors. Consistent with previous
studies, Black patient samples were associated with a higher rate of early onset tumors
(Fisher’s exact test, p = 0.048). c) The distribution of TMB between Black and non-Black
localized tumor samples. Non-Black patient samples were associated with a slightly higher TMB
in our cohort (Mann-Whitney U, p = 1.13 x 10-7).
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Supplementary Figure 4.2: Continental Ancestry Inference
(a) The first 2 principal components output by Hail “hwe_normalized_pca”. Samples from our
cohort (n=845) are represented by purple points. 1000 Genomes superpopulation references
samples are also included: African (yellow), admixed race (light blue), East Asian (teal),
European (red), South Asian (green). (b) Ancestry inference assignment of 1000 Genomes
super populations for each sample in our cohort using a random forest classifier trained on the
first 10 principal components output by Hail “hwe_normalized_pca”. The first principal
component (PC1) primarily separates samples according to their similarity to the African (yellow)
reference population.

172



Supplementary Figure 3: WGS validation of preferential punctuated evolutionary
trajectories in tumors from Black patients
(a) The distribution of the fraction of clonal mutations in each whole genome sequenced tumor
based on self-reported race (n = 7 AA, n = 7 non-AA). Although nonsignificant (Mann-Whitney
U, 39.3% vs. 17.1%, p = 0.32), Black patient tumors exhibited higher fractions of mutations in
the clonal cluster. (b) After correcting for confounding covariates such as TMB, sequencing
coverage, and tumor purity, self-reported Black race was borderline significantly associated with
a higher proportion of mutations in the clonal cluster (multivariate linear regression, p = 0.08).
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Supplementary Figure 4.4: Primary and metastatic PC tumors are associated with distinct
genomic and clonal architecture properties
(a) The distribution of tumor mutational burden (TMB) between primary and metastatic samples
in our cohort (n = 845). The median TMB observed in the metastatic samples was more than
two-fold higher than the TMB observed in primary samples (Mann-Whitney U, 2.66 mut/Mb vs.
1.22 mut/Mb, p < 2.2 x 10-16). (b) The distribution of the number of cell subpopulations (clones)
between primary and metastatic samples. Metastatic samples were associated with having
significantly more cell subpopulations than primary samples (Kolmogorov-Smirnov, p p < 2.2 x
10-16). Similarly, the rate of monoclonality in metastatic samples was 10% compared to 2.5% in
primary samples (Fisher’s, p = 3.98 x 10-5). (c) Primary tumors are associated with a higher rate
of linear evolutionary trajectories compared to metastatic tumors (Fisher’s; 95% CI = 1.6 - 3.18,
OR = 2.25; p = 1.58 x 10-6). (d) The overlap between clonal and subclonal primary and
metastatic driver genes identified via mutational significance analysis with MutSigCV2.
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Supplementary Figure 4.5: Mutational signatures and their associations with genomic
events in PC tumors.
(a) The distribution of homologous recombination deficiency (HRD)-associated copy number
events between primary and metastatic samples with and without evidence of mutational
signature 3. Metastatic samples with signature 3 were associated with higher numbers of
HRD-associated copy number events compared to metastatic samples without signature 3, and
primary samples with signature 3 were associated with higher numbers of HRD-associated copy
number events compared to primary samples without signature 3. Additionally, metastatic
samples with signa- ture 3 had higher numbers of HRD-associated copy number events
compared to primary samples with signature 3. (b) The distribution of MSIsensor scores
between primary and metastatic samples with and without MSI-associated mutational
signatures. Metastatic samples with MSI-associated mutational signatures had higher
MSIsensor scores than metastatic samples without MSI-associated mutational signatures, and
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Supplementary Figure 4.5 (continued): primary samples with MSI-associated mutational
signatures had higher MSIsensor scores than primary samples without MSI-associated
signatures. Additionally, metastatic samples with MSI-associated mutational signatures had
higher MSIsensor scores compared to primary tumors with MSI-associated mutational
signatures. (c) The distribution of mutational burden between primary and metastatic samples
with and without MSI-associated mutational signatures. Asterisks denote statistical significance
via Mann-Whitney U tests.

Supplementary Figure 4.6: HRD-associated copy number events are associated with the
clonality of mutational signature 3
The distribution of homologous recombination deficiency (HRD)-associated events between
tumors where mutational signature 3 was identified at both the tumor and cell subpopulation
levels, just at the tumor level, just at the cell subpopulation level, and not at all. Asterisks
indicate statistical significance via Mann-Whitney U tests.
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Supplementary Figure 4.7: Clonality of mutational signatures and their associations with
genomic events in PC tumors.
(a) The distribution HRD-associated copy number events based on the clonality of mutational
signature 3 from running SigMA at the cell subpopulation level. There is a stepwise increase in
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Supplementary Figure 4.7 (continued): the number of HRD-associated copy number events
from tumors with no signature 3, to subclonal signature 3, to clonal signature 3. (b) The
distribution of MSIsensor scores based on the clonality of MSI-associated mutational signatures
from running SigMA at the cell subpopulation level. Samples with clonal activity of
MSI-associated mutational signatures had significantly higher MSIsensor scores than samples
without activity of MSI-associated mutational signatures, however, this was not the case for
samples with subclonal activity of MSI-associated mutational signatures. (c) The distribution of
tumor mutational burden based on the clonality of MSI-associated mutational signatures from
running SigMA at the cell subpopulation level. There is a stepwise increase in the TMB from
tumors with no MSI-associated signature, to subclonal MSI-associated signature, to clonal MSI
associated signature.
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Supplementary Figure 4.8: Germline and putative loss-of-function somatic alterations in
DNA repair genes in samples with signature 3 and MSI
(a) The proportion of samples with germline alterations in genes associated with homologous
recombination that exhibited mutational signature 3 when running SigMA on all mutations in the
tumor and on (b) mutations from each cell subpopulation. Samples with germline alterations in
ATM, FAM175A, MRE11A, RAD51C, and BRIP1 never exhibited mutational signature 3. (c) The
proportion of samples with germline alterations in genes associated with mismatch repair
deficiency that exhibited microsatellite instability associated mutational signatures when running
SigMA on all mutations in the tumor and on (d) mutations from each cell subpopulation.
Samples with germline alterations in HOXB13, PMS2, and TP53 never exhibited microsatellite
instability-associated mutational signatures. Some of the genes included in our list of
homologous recombination associated and mismatch repair associated genes did not have
germline alterations in our cohort, and therefore are not represented in these figures.
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Supplementary Figure 4.9: Effect of signature 3 identification framework on PARPi
treated prostate cancers
(a) Kaplan-Meier survival curves between signature 3 and non-signature 3 tumors identified by
running SigMa at the tumor-level. (b) Kaplan-Meier survival curves between signature 3 and
non-signature 3 tumors identified by running SigMa at the cell subpopulation-level. (c)
Kaplan-Meier survival curves between signature 3 and non-signature 3 tumors identified by
combining the tumor-level and cell subpopulation-level SigMa calls. (d) Multivariate Cox
proportional-hazards analysis for tumor-level signature 3, correcting for whether or not the
patient also received radiation, immune-related therapy, and chemotherapy. (e) Multivariate Cox
proportional-hazards analysis for cell subpopulation-level signature 3, correcting for whether or
not the patient also received radiation, immune-related therapy, and chemotherapy. (f)
Multivariate Cox proportional-hazards analysis for the combined tumor-level and cell
subpopulation-level signature 3 calls, correcting for whether or not the patient also received
radiation, immune-related therapy, and chemotherapy.
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Supplementary Figure 4.10: Effect of signature 3 clonality on survival in cisplatin treated
ovarian cancers
(a) The associations between the clonality of mutational signature 3 and the number of
homologous recombination deficiency (HRD)-associated copy number events in the ovarian
cancer cohort were highly concordant with the observed associations in our prostate cancer
cohort. That is, there is a stepwise increase in the number of HRD-associated copy number
events from tumors with no signature 3 (n = 111), to subclonal signature 3 (n = 7), to clonal
signature 3 (n = 225). Asterisks denote statistical significance via Mann-Whitney U tests. To
determine if the clonality of mutational signature 3 affects how tumors respond to therapy, we
performed Kaplan-Meier and Cox proportional hazard (PH) analysis on (b-c) overall survival
(OS) and (d-e) progression free survival (PFS). Tumors with clonal activity of mutational
signature 3 were associated with significantly improved (b-c) OS and (d-e) PFS. (c) Tumors
with only subclonal activity of mutational signature were borderline significantly associated with
improved OS (Cox PH, p = 0.087). (e) Although nonsignificant, subclonal only activity of
mutational signature 3 trended in the direction of improved PFS as well (Cox PH, HR = 0.56, p =
0.22)
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