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Abstract

Convolutional neural networks (CNNs) are a well-established technique for

image classification problems. While the topology of a CNN strongly affects the

performance of that CNN, designing a CNN’s topology remains a difficult task, often

with nothing better than some empirical rules-of-thumb for guidance. Evolutionary

algorithms are a family of metaheuristics that can be applied to optimization problems

where good solutions are hard to create from first principles, but the quality of a

given solution is easy to measure. In this research, we develop and evaluate several

variations on an algorithm, SDAG, which applies evolutionary methods to finding

performant topologies for CNN-based image classifiers.
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Chapter I. Introduction

Since the late 1980s–more than 30 years ago as of this writing–researchers have

known that sufficiently complex artificial neural networks (ANNs) “can approximate

virtually any function of interest to any desired degree of accuracy” (Hornik et al.,

1989). Moreover, there are practical methods (most commonly gradient descent by

backpropagation (Rumelhart et al., 1986) (Lecun et al., 1998)), given an ANN and a

“function of interest”, to adjust the weights of that ANN to better approximate

the function (Aggarwal, 2018). A particular subset of ANNs, the convolutional

neural networks (CNNs), have proven effectiveness in many domains, but especially

in their original application of image classification (Rawat & Wang, 2017), and can

be “trained” by the same methods as any other ANNs.

By the early-to-mid 2000s, graphics processing units (GPUs) that could be

programmed through a specialized assembly language were available on the mass

market, and researchers showed that they had great potential for high-performance

massively-parallel numerical computation in general (Bolz et al., 2003) (Krüger &

Westermann, 2003) (Steinkraus et al., 2005), and training of ANNs, including CNNs

in particular (Steinkraus et al., 2005) (Chellapilla et al., 2006). Since then, GPUs

have become the predominant platform for working with CNNs and other machine

learning models (Nguyen et al., 2019).

We have, then, proven techniques for automatically training the weights of

ANNs, and relatively inexpensive hardware coprocessors to greatly accelerate these
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techniques. For all of this progress, however, one important aspect of creating an

ANN remains arguably more art than science: an ANN can be thought of as a graph

of nodes called “neurons”, and while it is well established that the topology of this

graph can greatly influence both the efficiency and the performance of an ANN (Solla,

1992), there are few hard-and-fast rules about how to choose a topology. This task

still usually calls for a great deal of human expertise, effort, and trial-and-error (Jaafra

et al., 2019).

The problem of finding an ANN topology for a given application is a problem

where it’s difficult to design a good solution from first principles, as it’s largely

unclear what those principles even are. However, given a proposed solution, it’s

simple (though perhaps computationally very expensive) to evaluate the quality of

that solution: we construct an ANN with the given topology, train it on a training

dataset, then evaluate its performance on a separate test dataset (Aggarwal, 2018).

When we have a problem that’s difficult to solve, but easy to evaluate solutions for,

there is a family of robust and versatile heuristics that we can consider using. That

family is the family of evolutionary algorithms (EAs).

If ANNs are a “biomimetic” method, based on a model of physiological processes

in a living animal, we could call EAs “ecomimetic”, as they simulate some of the

dynamics present in real ecosystems. According to the theory of evolution, given

certain conditions that are found in natural ecosystems, with the passage of time we

would expect the typical organism living in that ecosystem to become better adapted

to its ecological niche (Holland, 1992). In a typical EA, the “organisms” are proposed

solutions to some problem, and we have a way of measuring the quality, or “fitness”,

of a solution. We begin with a “population” of solutions that are randomly generated,

and hence probably not very good. Given such a population, a single iteration of an

EA “breeds” a new population, the contents of which are generated by combining
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and altering solutions present in the current population. This breeding process is set

up so that solutions with a higher fitness will tend to pass on their characteristics

to the next generation more often than less fit solutions. Over the course of many

generations, we expect the average fitness of a solution to rise (Fogel, 1994).

Part of the appeal of EAs is that they can be applied to problems that are

difficult-to-impossible to solve in a closed form; as Lozano puts it, they “can deal with

multimodalities, discontinuities and constraints, with noisy functions, multiple-criteria

decision making processes or with problems given by a simulation model” (Lozano,

2002). The idea of using EAs to find an effective topology for an ANN also goes

back to the 1980s (Kampfner & Conrad, 1983) (Miller et al., 1989). However, even

though CNNs also began to be investigated during that decade (Fukushima, 1980)

(LeCun et al., 1989), there seems to be no published research on the topic of evolving

CNN topologies until 2017 (Suganuma et al., 2017) (Real et al., 2017) (Xie & Yuille,

2017), which was less than five years ago as we write this, and it was only in 2020

that methods without significant restrictions on the topologies of the resulting CNNs

were first introduced by Yuan et al. (Yuan et al., 2020). Their experimental results in

that work are very promising, and their methods appealingly flexible. In this work,

we hope to contribute some fundamental knowledge to this new and exciting line of

research.
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Chapter II. Background

2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are a family of computational methods

based on a simplified mathematical model of the structure of biological brains (Aggarwal,

2018). The fundamental unit of the ANN is the “neuron” (Aggarwal, 2018). Formally,

we can define a neuron as a function n : Rk → R, where:

n(x⃗) = φ(b+ x⃗ · w⃗) (2.1)

x⃗ is a k-dimensional vector, w⃗ is a constant k-dimensional “weight” vector, b

is a constant scalar “bias” value, φ : R → R is a (typically nonlinear) “activation

function”, and (·) : Rk × Rk → R is the vector dot-product operator (·)(x⃗, y⃗) =∑k−1
i=0 xi yi.

Individual neurons are arranged into a directed graph to form an ANN. If this

graph is acyclic, we call this a “feedforward” neural network. If any cycles exist,

the network is “recurrent” (Xin Yao, 1999). In this paper, we will consider only

feedforward networks, and hence only directed acyclic graphs (DAGs), except where

noted. Certain neurons {o0, ..., ob−1} in the ANN are designated as outputs from the

ANN. There are also nodes {i0, ..., ia−1} in an ANN that represent not neurons, but

rather the inputs to the ANN. No edges in the graph terminate at an input node, and
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for any neuron in the graph, there is a path (perhaps with multiple edges) to that

neuron from at least one input node. There is a one-to-one correspondence between

edges coming into a neuron, and the elements of the weight vector of that neuron.

That is, if we let Nn(x⃗) represent the output of neuron n in an ANN N when vector

x⃗ is input to N , we can rewrite (2.1) like so:

Nn(x⃗) = φ(b+
∑
e∈E

weve(x⃗)) (2.2)

Here, φ and b are defined as in (2.1); E is the set of all edges in N terminating

at n; we ∈ R is the weight associated with edge e; and, if n′ is the input node or

neuron from which edge e originates, ve : Ra → R is defined:

ve(x⃗) =


x⃗k if n′ is input node ik

Nn′(x⃗) otherwise

(2.3)

Putting (2.2) and (2.3) together, we have a method by which we can assign

input values to the input nodes of an ANN, then recursively calculate the values of all

neurons. In this way we can consider an ANN with a input nodes and b output nodes

to define a function N : Ra → Rb, where N(x⃗) = ⟨No0(x⃗), ..., Nob−1
(x⃗)⟩ (Aggarwal,

2018).

Optimization of the weights of an ANN N to approximate a target function f :

Ra → Rb is generally done by supervised learning on a training dataset D ⊂ Ra using

gradient descent via backpropagation (Lecun et al., 1998) . Taking that statement

one piece at a time, “supervised learning” means that we already know the value

of f(x⃗) for each element x⃗ ∈ D, and we will repeatedly present N with an element

x⃗ ∈ D, calculating a predicted value N(x⃗) (Lecun et al., 1998). “Gradient descent”

means, for each x⃗ we present toN , we calculate L(f(x⃗), N(x⃗)) for some “loss function”
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L : (Rb,Rb)→ R that measures the degree of error in the predicted value N(x⃗) when

compared to the known value f(x⃗) (Lecun et al., 1998) (Aggarwal, 2018). For each

weight w of N , we then find the partial derivative ∂L
∂w

, and we calculate an updated

weight w′ = w − ϵ ∂L
∂w

, with the “learning rate” ϵ a small positive value (Lecun et al.,

1998). “Backpropagation” is the name of the dynamic programming algorithm that

allows us to efficiently find those partial derivatives (Aggarwal, 2018). When each

x⃗ ∈ D has been so used to adjust the weights of N once, we say that we have trained

N for one “epoch” (Aggarwal, 2018). While it is generally necessary to train an ANN

for multiple epochs to achieve an acceptable level of performance, training an ANN for

too many epochs introduces the risk of “overfitting”. Overfitting is characterized by

poor generalization; that is, an overfit ANN’s performance on the training data may

be very good, but its performance on any other dataset will generally be significantly

worse (Aggarwal, 2018).

2.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of ANNs originally developed

in the 1980s for visual pattern recognition tasks, modeled on the structure of the

vertebrate visual cortex (Hubel & Wiesel, 1962) (Fukushima, 1980) (LeCun et al.,

1989). In this simplified model of vision, we can think of the input, i.e. the light

that enters an animal’s eye and falls upon the retina, as a two-dimensional matrix of

pixels, just as we might represent an image in a computer program.

The first element to process this input is a grid of “feature detectors”, each

associated with a set of coordinates that specify a particular element of the input. For

each detector, the region of some given size around that point is the “receptive field”

of the detector (Hubel & Wiesel, 1962) (Aggarwal, 2018). Each detector analyses

the subset of the input that falls into its receptive field, looking for the presence or

6



absence of a set of simple geometrical features, which set is common to all detectors

in the layer (Aggarwal, 2018). The first layer thus assembles a “feature map” for

each detectable feature: for any given point in a feature map in the output of the

first layer, the value at that point indicates the degree to which the feature detector

whose receptive field centers on that point considers its input to resemble the feature

in question (Aggarwal, 2018).

The output from this first layer of detectors is fed into another layer of

detectors. Just as the first layer, each detector in the second layer is associated

with a certain receptive field, this time consisting of the subset of first-layer detectors

within a given region. Also like the first-level detectors, the second-level detectors

assemble their input into feature maps. However, the input to the second layer is the

set of feature maps output by the first layer, and rather than detecting simple features

from raw input, the second layer detects slightly more complicated features formed by

combinations of simple features (Aggarwal, 2018). More layers may follow, with each

layer forming more and more complex features from the simpler features detected

by the layer below, until features of great complexity can be recognized (Fukushima,

1980).

For simplicity, we will assume in this paper, unless stated otherwise, that the

input to a CNN is always a rank-3 tensor representing a two-dimensional image in

RGB color (Schwarz et al., 1987), written in the form T = {tcxy : 0 ≤ c < 3, 0 ≤ x <

h, 0 ≤ y < w}, for some positive height and width in pixels h and w. We call the

subset {tixy : 0 ≤ x < h, 0 ≤ y < w} the “ith plane” of T . As a consequence of this

assumption, intermediate results within a CNN will also be rank-3 tensors, though

generally of a different size than the input.

Although we concentrate on rank-3 tensor input in this work, the techniques

in this section can be extended to input of other ranks. One-dimensional CNNs, that
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is those that take a rank-1 tensor (a.k.a. a vector) as input, have been applied to

detection of defects in machinery, in which process they act upon time series data

represented as vectors (Ince et al., 2016). CNNs are also used to evaluate video input

by representing it as a rank-4 tensor, adding a time dimension to the spatial and color

dimensions of still images (Baccouche et al., 2011) (Ji et al., 2013).

As a general ANN can be represented by a DAG of neurons, a CNN can be

represented by a DAG of units called “layers” (Aggarwal, 2018). Unlike the arbitrary

number of inputs we can attach to a neuron, a layer in a CNN has a defined arity, i.e.,

a specific number of inputs that it must have (Irwin-Harris et al., 2019). As long as

that condition is satisfied, the architecture of a CNN may otherwise be an arbitrary

DAG. Apart from the binary layers that we will discuss in Section 2.2.5, which have

an arity of 2, all of the following layer types have arity 1.

2.2.1 Convolution Layers

The convolution operation which gives CNNs their name is a generalization of

the dot product from vectors, i.e. tensors of rank 1, to tensors of arbitrary rank. A

convolution layer defines a function f : Ra → Rb in terms of a set K = {K0, ..., Kb−1}

of tensors called “kernels” or “filters” (Aggarwal, 2018). For some given odd positive

integers h′ and w′, with h′ ≪ h and w′ ≪ w (and often with h′ = w′), each kernel in

K has dimensions a× h′ × w′.

A convolution layer uses each kernel ki in turn to generate the ith plane of its

output. Given an input tensor T ∈ Ra×h×w, and a kernel ki ∈ Ra×h′×w′
, informally

speaking we can think of positioning ki so that it overlaps with some subset T ′ ⊂ T ,

with T ′ ∈ Ra×h′×w′
just as ki. Note that, since h′ and w′ are both odd, there is some

x and y such that the center of T ′ is the set {tnxy : tnxy ∈ T, 0 ≤ n < c}. The value

of the element of f(T ) with coordinates (i, x, y) is then the convolution of ki with T ′,
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written ki ⋆ T
′, and defined as the sum of the products of each element of ki with the

corresponding element of T ′. Alert readers might now be wondering what happens if

x and y are such that some of T ′ would be outside the bounds of T . There are several

ways to deal with this (Aggarwal, 2018); we will take the approach of pretending that

those missing coefficients from T are in fact present, but equal to 0, so that they end

up not affecting the final sum. As in a general ANN, we can also add a fixed bias

term to each output value; each kernel may have its own bias value. Algorithm 2.1

on page 10 describes the operation of a convolution layer more formally.

In addition to its kernels, a convolution layer does have other parameters such

as “stride” and “dilation”. We will not touch on dilation here nor use it in our

experiments; the curious are referred to Yu and Koltun (Yu & Koltun, 2016). Stride

is described in Section 2.2.4. We can consider Algorithm 2.1 to implicitly use a stride

of 1 and a dilation of 0.

2.2.2 Depthwise Separable Convolution Layers

A depthwise separable convolution consists of “a depthwise convolution, i.e. a

spatial convolution performed independently over each channel of an input, followed

by a pointwise convolution, i.e. a 1x1 convolution, projecting the channels output by

the depthwise convolution onto a new channel space” (Chollet, 2017).

In other words, given a tensor T ∈ Rc×h×w, let Pi be the ith plane of T . We

treat each Pi as a separate tensor, with Pi ∈ R1×h×w, and for each Pi we define a

corresponding convolution kernel, ki ∈ R1×h′×w′
. For each Pi, we then calculate the

“spatial convolution” P ′
i = ki ⋆ Pi. Now we reassemble the various P ′

i , defining a

tensor T ′ ∈ Rc×h×w such that the ith plane of T ′ is equal to P ′
i .

Let c′ be the desired number of channels in the output, and define c′ more

convolution kernels, {k′
0, ..., k

′
c′−1}, with each k′

i ∈ Rc×1×1. The result of the depthwise
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Algorithm 2.1 Applying a convolution layer to a tensor

1: function convolution(T, kernels)
2: half h′ ← (kernels[0].height− 1)/2
3: half w′ ← (kernels[0].width− 1)/2
4: output← tensor of size kernels.length× T.height× T.width, all elements

initialized to 0
5: for i′ ← 0, kernels.length− 1 do
6: kernel← kernels[i′]
7: for x← 0, h− 1 do
8: for y ← 0, w − 1 do
9: output value← kernel.bias
10: for ∆x ← −half h′, half h′ do
11: for ∆y ← −half w′, half w′ do
12: if 0 ≤ x+∆x < h and 0 ≤ y +∆y < w then
13: x′ = ∆x + half h′

14: y′ = ∆y + half w′

15: for i← 0, T.depth− 1 do
16: kernel value← kernel[i][x′][y′]
17: input value← T [i][x+∆x][y +∆y]
18: output value← output value+

kernel value ∗ input value
19: end for
20: end if
21: end for
22: end for
23: output[i′][x][y]← output value
24: end for
25: end for
26: end for
27: return output
28: end function
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separable convolution is then T ′′ ∈ Rc′×h×w, where the ith plane of T ′′ is equal to k′
i⋆T

′.

Algorithm 2.2 on page 11 demonstrates depthwise separable convolution.

Algorithm 2.2 Applying a depthwise separable convolution layer to a tensor

1: function depthwise separable convolution(T, depthwise kernels,
pointwise kernels)

2: T ′ ← empty tensor same size as T
3: for i← 0, T.depth− 1 do
4: T ′[i]←convolution(T [i], [depthwise kernels[i]])
5: end for
6: return convolution(T ′, pointwise kernels)
7: end function

2.2.3 Activation Layers

Just as the final step in evaluating a neuron in a general ANN is to apply

an activation function, convolution and depthwise separable convolution layers are

typically followed by an activation layer. In this work, we will be using “rectified linear

unit” (Aggarwal, 2018) activation, “ReLU” for short. The ReLU function, φ : R→ R,

is defined φ(x) = max(0, x). All a ReLU layer does, then, is apply the ReLU function

to every value in the input tensor. Formally, a ReLU layer implements a function

Φ : Rc×h×w → Rc×h×w, and if tensor T = {tixy : 0 ≤ i < c, 0 ≤ x < h, 0 ≤ y < w},

then Φ(T ) = {t′ixy : t′ixy = max(0, tixy), tixy ∈ T} (Aggarwal, 2018).

2.2.4 Pooling Layers

Pooling layers, informally, operate on every plane of their input separately,

reducing small square regions of each plane to a single value (Aggarwal, 2018).

Two common types of pooling, both of which we will use in our experiments, are

“max-pooling” and “average-pooling”. Max-pooling maps each region of its input to

the maximum value found in that region. Average-pooling maps each region to the
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mean of values found in that region. Note that, in contrast to a convolution layer, the

output of a pooling layer always has the same depth as the input (Aggarwal, 2018).

In addition to the pooling operation and the region size, a pooling layer is

defined by a parameter called “stride” (Aggarwal, 2018). Intuitively, we can think

of the stride as how far the region “moves” at each step. In this work, we will be

exclusively using pooling layers with a 2 × 2 input region and a stride of 2. We will

not examine the interaction of stride and region size in detail here; suffice to say that,

with the parameters we are using, if we apply pooling to a tensor in Rc×x×y, the

output will be in Rc×(x/2)×(y/2) (Aggarwal, 2018).

Algorithm 2.3 on page 12 shows how max-pooling is applied to an input tensor;

as described above, it uses a region size of 2×2 and a stride of 2. We will also assume,

for simplicity, that the height and width of the input are divisible by 2. The algorithm

for average-pooling is the same, except that on line 10 we calculate the mean, rather

than the maximum, of the region in question.

Algorithm 2.3 Max-pooling a tensor

1: function maxpool(T )
2: output height← T.height/2
3: output width← T.width/2
4: output← empty tensor of size (T.depth, output height, output width)
5: for i← 0, T.depth− 1 do
6: for j ← 0, output height− 1 do
7: for k ← 0, output width− 1 do
8: upper left← (i, j ∗ 2, k ∗ 2)
9: region← 1× 2× 2 slice of T with upper-left corner at upper left
10: output[i][j][k]← largest value in region
11: end for
12: end for
13: end for
14: return output
15: end function
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2.2.5 Binary Layers

We can also define layers that implement binary operations on tensors. Two

kinds that we will use are “sum layers” and “concatenation layers”. Sum layers

perform element-wise addition on two tensors of the same size. Concatenation layers

return one tensor “stacked” on another of the same height and width. That is, if

T ∈ Rc×h×w, and T ′ ∈ Rc′×h×w, the concatenation of them, written T ⊕ T ′, is such

that T ⊕ T ′ ∈ R(c+c′)×h×w. The first c planes of T ⊕ T ′ are equal to the planes of T ,

and the remaining c′ planes of T ⊕ T ′ are equal to the planes of T ′. We can (and, in

Chapter 3, do) extend both operations to tensors of incompatible shapes by adopting

the convention that each matrix is padded with 0s as necessary to make the sizes

compatible. The details of how we do this padding are shown in Algorithm 2.4 on

page 14.

2.3. Evolutionary Algorithms

Evolution is one of the pillars of the modern understanding of biology. Some

of the main ideas of the theory of evolution include the following (Bowler, 2003):

• Individuals produce offspring, either alone (asexual reproduction) or with the

cooperation of another individual (sexual reproduction).

• The observable characteristics of an individual (the phenotype) are an expression

of a collection of genetic information (the genotype).

• Genetic information is copied from parent(s) to children. In the case of sexual

reproduction, crossover occurs, resulting in children with genotypes consisting

of a mixture of both parents’ genotypes.
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Algorithm 2.4 Matching shapes of tensors to match sizes for sum or concatenation

1: function match shapes(Ts,match depth?)
2: if match depth? then
3: max depth← largest depth of all tensors in Ts
4: end if
5: max height← largest height of all tensors in Ts
6: max width← largest width of all tensors in Ts
7: output← [ ]
8: for all T ∈ Ts do
9: if match depth? then
10: depth difference← max depth− T.depth
11: else
12: depth difference← 0
13: end if
14: height difference← max height− T.height
15: width difference← max width− T.width
16: depth padding front←floor(depth difference/2)
17: depth padding back ← depth difference− depth padding front
18: height padding top←floor(height difference/2)
19: height padding bottom← depth difference− height padding top
20: width padding left←floor(width difference/2)
21: width padding right← width difference− width padding left
22: padded tensor ← T with 0s to pad on each side per the padding values

found in previous six lines
23: output.append(padded tensor)
24: end for
25: return output
26: end function
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• The process of reproduction may be perturbed by randomly occurring mutations,

by which mechanism novel genes can be introduced.

• Individuals exist in an environment, and not all individuals are equally well

suited for existence in this environment. Due to the peculiarities of their

respective phenotypes and the nature of their particular environment, some

individuals will be “fitter” than others. Fitter individuals, by definition, tend

to have more offspring than less fit individuals. We say that there has been

“selection for” the traits of fitter individuals, and “selection against” those of

less fit.

• As a result of the conditions above, over repeated cycles of reproduction and

selection, the overall fitness of individuals in the population will tend to rise.

None of the above phenomena are restricted to the biological world (Holland,

1992). An individual might be a biological organism, or it might be a data structure

in a computer’s memory. Genes may be encoded in DNA, or in bits. Phenotypes may

result from the transcription of DNA into proteins, or from applying a function to a

value. By the mid-1960s, research into several varieties of evolutionary algorithms—optimization

metaheuristics inspired by natural evolution—was well established (De Jong et al.,

1997).

A generic evolutionary algorithm might have this general structure (Xin Yao,

1999) (Ashlock, 2006) (Saxena & Saad, 2006):

1. Generate the first generation of individuals.

2. Evaluate all members of the current generation against a given fitness function.

A fitness function is a problem-specific function that measures how good a

solution a given individual is to the problem in question. Depending on our
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formulation of the problem, we can adopt either the convention that a higher

fitness value indicates better performance, or vice versa. For example, if our

goal was to evolve a binary classifier, we might use the Fβ score (van Rijsbergen,

1979) (Chinchor, 1992) of that classifier on a validation set, with a higher score

indicating a fitter individual. Contrariwise, if evolving a multiclass classifier,

the cross-entropy loss (Aggarwal, 2018) (Bridle, 1990) might be a useful fitness

function, with a lower value indicating higher fitness.

3. If the given termination conditions are met, terminate and return the current

population as the result of the algorithm. Termination conditions might include

the reaching of a given maximum number of generations or amount of wall-clock

time; the generation of an individual more fit than some threshold; or stagnation,

defined as no improvement in fitness over some number of generations.

4. If the termination conditions are not met, breed a new generation of individuals

from the current generation. This step is also dependent on the problem and

the formulation of the problem, but typically analogues of the natural-world

phenomena of mutation, asexual reproduction, and/or sexual reproduction with

genetic crossover are used. The method of reproduction should have the property

that fitter individuals will tend to reproduce more than less fit individuals.

5. Replace the current generation with the newly-bred generation and repeat from

step 2.

2.3.1 Direct vs. Indirect Representations

In every evolutionary algorithm, the questions arise of how to represent a

genotype, and how to map a genotype to a phenotype (Granadeiro et al., 2013)

(Rothlauf, 2006). Let the function f map genotypes to phenotypes for some evolutionary
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algorithm. If f is the identity function f(g) = g, we are using a “direct representation”

(Rothlauf, 2006). Otherwise, we are using an “indirect representation”. Per Granadeiro

et al., the “two main requirements for a representation are encoding all the possible

solutions of the problem and enabling the application of the variation operators to

them (crossover and mutation)” (Granadeiro et al., 2013). Indirect representation

arises because, for a given problem, there may be no known representation suitable

for both “application of the variation operators” and the fitness evaluation central to

EAs. In this project, we will be using an indirect representation. In fact, as we will

see in Chapter 3, not only is our representation indirect, but the function f that we

use to turn a genotype into a phenotype is stochastic, due to our use of the stochastic

He normal initializer (He et al., 2015).

2.4. Related Work

In 1983, Kampfner and Conrad combined ANNs of one or a small number

of neurons with an evolutionary algorithm. They were not interested in producing

ANNs as an end in itself, but rather as a means to simulating the “evolutionary

selection circuits model of learning” (Kampfner & Conrad, 1983) in biological brains.

Nevertheless, in the process, they evolved ANNs which were able to solve simple

problems in classification and control (Kampfner & Conrad, 1983). The first published

work to focus on evolving ANNs per se may be that of Miller et al. in 1989 (Miller et

al., 1989), which cites earlier unpublished work. Miller et al. used a genetic algorithm

to produce feedforward ANN topologies and backpropagation to train ANN weights

(Miller et al., 1989); in a broad sense, that is the same approach we use in this

paper. A 1990 paper by Fahlman evolved recurrent ANNs (ANNs with cycles), but

was limited in that it could only produce recurrent connections from one neuron to

itself (Fahlman, 1990). By contrast, Angeline et al.’s GNARL algorithm, introduced
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in 1994, could evolve arbitrary recurrent ANN topologies (Angeline et al., 1994).

In 2002, Stanley and Miikkulainen published an influential paper that introduced

NEAT: the Neuroevolution of Augmenting Topologies method (Stanley &Miikkulainen,

2002). NEAT uses a direct encoding of an ANN as a graph, in which each genome

contains a single gene corresponding to each neuron and edge of the graph (Stanley

& Miikkulainen, 2002). An edge gene also contains that edge’s weight, and the

evolutionary methods of NEAT operate on both the topology and weights of the

ANN (Stanley & Miikkulainen, 2002). NEAT was not the first algorithm to use

evolutionary methods (as opposed to e.g. backpropagation) to optimize weights as

well as topology; it was preceded by work such as that of Fullmer and Miikkulainen

and that of Dasgupta and McGregor (Fullmer & Miikkulainen, 1991) (Dasgupta &

McGregor, 1992). However, NEAT addressed several perceived shortcomings in earlier

algorithms, and Stanley and Miikkulainen were able to show that NEAT was a viable

method to evolve ANNs for control problems (Stanley & Miikkulainen, 2002). In the

following years and through to recent times, numerous variations and refinements on

NEAT have been invented (Whiteson et al., 2005) (Chen & Alahakoon, 2006) (Pardoe

et al., 2005) (Miguel et al., 2008) (Kassahun & Sommer, 2005) (Siebel & Sommer,

2008) (Tan et al., 2009) (Kohl & Miikkulainen, 2012) (Wang et al., 2013) (Caamaño

et al., 2015). One such variation is Stanley et al.’s HyperNEAT algorithm (Stanley

et al., 2009), which, while not producing CNNs, is based on a similar insight, to wit,

that “[b]iological neural networks rely on exploiting [geometric] regularities for many

of their functions. For example, neurons in the visual cortex are arranged in the same

retinotopic two-dimensional pattern as photoreceptors in the retina. That way, they

can exploit locality by connecting to adjacent neurons with simple, repeating motifs”

(D’Ambrosio et al., 2014).

The earliest reference we were able to find to applying EAs to CNNs specifically
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was not until 2014, in the work of Koutńık et al.; those authors do claim this to be the

“first use of deep learning in the context [of] evolutionary [reinforcement learning]”

(Koutńık et al., 2014). That work used a CNN as part of an evolved controller for an

AI player in the TORCS car-racing simulator (Wymann et al., 2014), which took as its

input the rendered graphics that a human player would see if they were playing, and

reduced that high-dimensionality input down to a feature vector of low dimensionality

(Koutńık et al., 2014). The CNN was fixed in topology, with only weights evolving.

Through use of a novel fitness function, they demonstrated unsupervised learning of

the CNN weights, that is, without “using a large training set of class-labeled images

via backpropagation” (Koutńık et al., 2014). In 2015, Verbancsics and Harguess

extended HyperNEAT to evolve weights of an image-classification CNN, still using a

fixed CNN topology (Verbancsics & Harguess, 2015).

In 2017, the first works that we know of to use evolutionary methods to

generate topologies for CNNs, rather than just weights, were published (Suganuma

et al., 2017) (Real et al., 2017) (Xie & Yuille, 2017). These methods could not

generate CNNs of arbitrary topology; the first authors to do so seem to be Yuan

et al., who introduced the DAGCNN algorithm in 2020, a genetic algorithm with an

indirect encoding able to represent different kinds of CNN layers arranged into an

arbitrary DAG (Yuan et al., 2020). Their work, and that of the associated teams of

authors Irwin-Harris et al. and Sun, Xue, Zhang, and Yen, forms the foundation of

this present work, and we will refer to their work frequently in this paper (Irwin-Harris

et al., 2019) (Sun, Xue, Zhang, & Yen, 2020b) (Yuan et al., 2020) (Sun, Xue, Zhang,

& Yen, 2020a) (Sun, Xue, Zhang, Yen, & Lv, 2020).
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2.5. Research Aims

2.5.1 Evaluating the Tendency Hypothesis

Our first goal for this project is to test an assertion that we call the “tendency

hypothesis”. Recall from Section 2.3 that we said that a generic evolutionary algorithm

evaluates the fitness of each individual in each generation. However, in the library

that we implement in this project, evaluating the fitness of a single individual involves

training a CNN, which is an expensive process.

Instead, when our library wants to choose an individual for reproduction, it

uses an algorithm called a “slack binary tournament”, shown formally in Algorithm

3.9 on page 35, based on the methods of Sun, Xue, Zhang, and Yen (Sun, Xue,

Zhang, & Yen, 2020a). To choose an individual for reproduction by slack binary

tournament, we choose, with replacement, two arbitrary individuals from the current

generation of individuals. We then train each individual on a given training set. We

then use the trained individuals to make predictions on a given validation set, using a

given loss function, evaluating the mean and standard deviations of this loss function

over the entire set of predictions. The winner of the tournament is the individual

with lower average loss, as long as the difference in average loss between the two

individuals is greater than some given value, the “mean slack”. If the means are

within that mean slack value of each other, the winner is the individual with the

lower standard deviation of loss, but likewise under the condition that the difference

between standard deviations is greater than a given “standard deviation slack”. If

that condition is not met, the individual with fewer parameters is the winner.

The slack binary tournament reduces the amount of expensive training that our

algorithm must do in two ways. The first is that, since we sample with replacement,

in general not every individual in a generation need be evaluated. Having calculated
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the fitness of an individual once, it is simple to cache it for future reference. The

second is that, when training the individuals on the training set, we don’t need to

train those individuals for as many epochs as we would need to do so if we meant

to use them to make useful predictions. As Sun, Xue, Zhang, and Yen put it, it “is

sufficient to investigate only the tendency of the performance” (Sun, Xue, Zhang,

& Yen, 2020a). In other words, they assert that we can treat the performance of

an individual, when trained for a small number of epochs, as an approximation of

the performance of that individual when trained for a larger number of epochs, with

enough accuracy to be able to use those estimates to distinguish better-performing

individuals from worse. The slack values, then, effectively give us a way to specify

how much confidence we are willing to place in those estimates. A larger slack value

means that, to accept the difference between two estimated values as meaningful, we

require the difference between them to be more distinct, allowing more of a “safety

margin” between the estimates.

What we investigate in Section 4.1, then, is whether this hypothesis holds,

and if so, how many epochs of training should be used for the purposes of conducting

slack binary tournaments.

2.5.2 Investigation of Hyperparameters

The behavior of any machine-learning algorithm is governed by a number

of parameters; to avoid confusion with the parameters of a given instance of a

machine-learning model, we call these parameters of the algorithm itself “hyperparameters”

(Li et al., 2021). Given how new this area of research is (as mentioned in Section

2.4), there is little evidence to suggest how to tune the hyperparameters of our

algorithm for best results. In Section 4.2, we conduct a series of experiments to learn

about the effects of varying the values of these hyperparameters, and combinations
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of hyperparameters.

2.5.3 Testing Different Variations on the Base Algorithm

The basic implementation of our algorithm used in the first two series of

experiments hews fairly closely to methods introduced by Sun, Xue, Zhang, and Yen;

Irwin-Harris et al.; and Yuan et al. In the third series of experiments, Section 4.3, we

try a series of variations on the basic algorithm, to see if any significant improvement

in the results can be had.
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Chapter III. Algorithm Design and Implementation

We developed a library, SDAG, based mainly on the methods of Sun, Xue,

Zhang, and Yen; Irwin-Harris et al.; and Yuan et al. (Sun, Xue, Zhang, & Yen,

2020b) (Irwin-Harris et al., 2019) (Yuan et al., 2020) (Sun, Xue, Zhang, & Yen,

2020a) (Sun, Xue, Zhang, Yen, & Lv, 2020), to evolve topologies for CNNs.

Some of the most important classes are briefly described in Table 3.1 on page

24. We will examine each of those classes, and some of their subclasses, in the course

of reviewing SDAG’s algorithm for evolving CNNs.

3.1. Creating the Initial Generation

The Population class is the intended main entry point for programs using

this library.

Population is generally not meant to be instantiated directly, but rather

through the Population.make random factory method (Gamma et al., 1994) (see

Algorithm 3.1 on page 24), which initializes a Population by repeatedly calling

Genome.make random (see Algorithm 3.2 on page 25). Population.make random

takes as arguments the shape of a single input example, the number of outputs desired,

a training loader, and a validation loader. The loaders are intended to be instances

of the torch.utils.data.DataLoader class.

As an example, in our experiments evolving CIFAR-10 classifiers below, we
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Name Purpose

Block Subnetwork of an Individual corresponding to a single Gene.
Gene Specifies the parameters to use for a single Block when converting

a Genome to an Individual, which always include the operation
performed by the Block (e.g. convolution, average pooling,
summation), from where the Block takes its input, and any
parameters specific to the Block type (like the kernel size of a
convolutional Block).

Genome Sequence of Genes that can be converted into an Individual. Two
“parent” Genomes can exchange Genes and produce a “child”, in a
process called “crossover”.

Individual Neural network composed of Blocks arranged into a directed acyclic
graph.

Mutation Changes the Genes in a Genome, for example, by removing a Gene,
inserting a Gene, or changing the parameters of a Gene.

Population Collection of a single “generation” of Genomes.

Table 3.1: Key classes

Algorithm 3.1 Population.make random

1: function Population.make random(input shape, n outputs,
training loader, validation loader, hyperparameters)

2: genomes← [ ]
3: for i← 1, hyperparameters.n genomes do
4: new genome ← Genome.make random(input shape, n outputs,

hyperparameters.min n genes, hyperparameters.max n genes)
5: genomes← genomes.append(new genome)
6: end for
7: return Population.new(genomes, training loader, validation loader,

hyperparameters)
8: end function

24



Algorithm 3.2 Genome.make random

1: function Genome.make random(input shape, n outputs, min n genes,
max n genes)

2: length← arbitrary integer in min n genes, ...,max n genes inclusive
3: genes← [ ]
4: for gene index← 0, length− 1 do
5: gene class← arbitrarily chosen concrete subclass of Gene
6: input indices← [ ]
7: for i← 1, gene class.arity do
8: new input index← arbitrary integer in −1, ..., gene index− 1

inclusive
9: input indices.append(new input index)
10: end for
11: if gene class is ConvGene or DepSepConvGene then
12: kernel size← arbitrary member of gene class.valid kernel sizes
13: feature depth← arbitrary member of

gene class.valid feature depths
14: gene← gene class.new(input indices, kernel size, feature depth)
15: else
16: gene← gene class.new(input indices)
17: end if
18: genes.append(gene)
19: end for
20: return Genome.new(input shape, n outputs, genes)
21: end function
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want to map 3-channel images that are 32 by 32 pixels in size to one of 10 different

classes. Hence we pass make random the input shape (3, 32, 32); 10 for the number

of outputs; and two separate DataLoaders, one of which we initialize from the

4,500-element training set generated in Section 4.1, and the other from the 500-element

validation set.

Population.make random also takes a number of hyperparameters, described

in Table 3.2 on page 27. Note that, in our experiments below, we always use the

default values for n genomes, n generations, make optimizer, and criterion class,

and as such we will not include those hyperparameters when listing the hyperparameters

used in an experiment.

3.2. Main Loop

Having created a Population, we start the process of evolution by calling

Population.breed. This method repeatedly, for n generations iterations, produces

a new set of Genomes from the set of Genomes within the Population, and replaces

the old set with the new set, as in Algorithm 3.3 on page 28.

As we will see in Section 3.2.3 and Section 3.2.4, a fundamental operation

in our algorithm for breeding a new generation is the “slack binary tournament”.

To understand the slack binary tournament, first we must examine SDAG’s fitness

function.

3.2.1 Evaluating Fitness

As mentioned in Section 2.3.1, we are using an indirect representation for

SDAG. This means it is not possible to use a Genome directly to make predictions

from an input example: a Genome is not itself a CNN, but rather a concise description

of the topology of one. If we want to actually evaluate data, we must transform a
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Name Description Default

n genomes Number of Genomes in each
generation. Note that it is
possible for a Genome to appear
multiple times in a generation.

100

n generations Number of generations to run for. 100
make optimizer Function that takes an

Individual and returns a
torch.optim.Optimizer to
optimize the Individual’s
parameters.

lambda i:

Adam(i.parameters())

criterion class Loss function class from
torch.nn module to be used
in optimization.

CrossEntropyLoss

min n genes Minimum number of Genes in
each randomly-created Genome of
the initial generation.

10

max n genes Maximum number of Genes in
each randomly-created Genome of
the initial generation.

15

elitism fraction When breeding a new generation,
fraction of that generation that
should be selected by elitism,
rather than by crossover.

0.2

mutation probability When the Genomes for a
new generation are selected,
probability, for each Gene in each
Genome, that that gene will be
subjected to a Mutation.

0.003

mean threshold Slack value used when comparing
mean losses of two Genomes on
validation set in slack binary
tournament.

0.2

std threshold Slack value used when comparing
standard deviation of losses of two
Genomes on validation set in slack
binary tournament.

0.02

Table 3.2: Available hyperparameters on Population.make random
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Algorithm 3.3 Population.breed

1: procedure Population.breed
2: n by elitism←floor(self.n genomes ∗ self.elitism fraction)
3: n by crossover ← self.n genomes− n by elitism
4: for generation index← 1, self.n generations do
5: new genomes← [ ]
6: for i← 1, n by elitism do
7: elite genome← self.slack binary tournament
8: new genomes.append(elite genome)
9: end for
10: for i← 1, n by crossover do
11: parent1← self.slack binary tournament
12: parent2← self.slack binary tournament
13: child← parent1.crossover(parent2)
14: new genomes.append(child)
15: end for
16: for all genome ∈ new genomes do
17: genome.apply mutations(self.mutation probability)
18: end for
19: self.genomes← new genomes
20: end for
21: end procedure
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Genome into an Individual as in Algorithms 3.4 on page 29, 3.5 on page 30, and 3.6

on page 30.

Algorithm 3.4 Genome.to individual

1: function Genome.to individual
2: blocks← [ ]
3: output shapes← [ ]
4: output indices← {i : 0 ≤ i < self.genes.length}
5: for all gene ∈ self.genes do
6: block ← gene.to block(self.input shape, output shapes)
7: blocks.append(block)
8: output shape← block.output shape
9: output shapes.append(output shape)
10: for all input index ∈ gene.input indices do
11: output indices.remove(input index)
12: end for
13: end for
14: return Individual.new(blocks, self.input shape, output indices,

self.output feature depth)
15: end function

We can thus create an Individual based on a given Genome. Following the

PyTorch convention, the method on the Individual that actually takes an example

as input and produces a prediction as output is called forward. Recall that, in

Section 2.1, we described the typical method of training an ANN as descending

the gradient of a loss function, using backpropagation to efficiently find the partial

derivatives that make up that gradient. A single iteration of the backpropagation

algorithm consists of a forward phase, in which input is evaluated by the ANN; and

a backward phase, in which the value of the loss function and its partial derivatives

are calculated (Aggarwal, 2018). Hence the method name forward. Having written

forward, PyTorch is able to define the corresponding implementation of backward

automatically, so we don’t have to do so explicitly (Paszke et al., 2019). Blocks also

have a forward method, which we invoke during Individual.forward, but we will

not show those in detail here, as they are straightforward implementations of the
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Algorithm 3.5 Gene.to block

1: function Gene.to block(model input shape, layer output shapes)
2: input shapes← [ ]
3: for all input index ∈ self.input indices do
4: if input index = −1 then
5: input shapes.append(model input shape)
6: else
7: input shapes.append(layer output shapes[input index])
8: end if
9: end for
10: block ← self.block class.new(self.input indices, input shapes)
11: copy block class specific parameters (e.g. convolution layer’s filter size) from

self to block
12: return block
13: end function

Algorithm 3.6 Individual.new

1: function Individual.new(blocks, input shape, output indices,
output feature depth)

2: self.blocks← blocks
3: self.output indices← output indices
4: self.output feature depth← output feature depth
5: self.tail ← global average-pooling layer followed by fully-connected layer
6: initialize fully-connected layer weights with He normal initialization
7: end function
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operations described in Section 2.2.

Individual.forward works by iterating over the array of Blocks within the

Individual. Call the Block bn which has index n in the Individual. We use the

input indices of bn to determine the input values we will use for bn. If i is an input

index of bn, and i = −1, then the corresponding input of bn uses the model input

passed to Individual.forward. Otherwise, the input uses the output of bi. Recall

that each input index i of bn is constrained so that −1 ≤ i < n, thus ensuring that

each input of bn will be defined by the time we attempt to calculate the output of

bn. If n is in the list of the Block’s output indices, we also add the output of bn to a

running list of tail inputs.

Having iterated over all Blocks, Individual.forward then pads the tail inputs

as necessary to make them all the same size, and sums them. This sum is then input

to the Individual’s tail, which consists of a global average-pooling layer followed by a

fully-connected layer. The global average-pool operation maps a tensor T ∈ Rc×x×y to

a tensor T ′ ∈ Rc×1×1 by applying average-pooling with a region size of x×y to T , thus

reducing each plane of T to the mean of all values in that plane. The fully-connected

layer maps that T ′ ∈ Rc×1×1 to a vector y⃗ ∈ Rk, where k is the number of output

classes (hence 10 in the case of CIFAR-10). Each yi ∈ y⃗ is a linear combination of

the c scalar values in T ′, so the fully-connected layer has c ∗ k parameters. y⃗ is the

output from Individual.forward.

To evaluate a Genome’s fitness, then, as in Algorithm 3.8 on page 33, we first

turn it into an Individual. In keeping with the results in Section 4.1, we then train

the Individual for a single epoch on our training set, then use that lightly-trained

Individual to make predictions for the validation set. We calculate the mean and

standard deviation loss (using the loss function specified by the criterion class

hyperparameter) for the Individual over the validation set, as well as noting down
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Algorithm 3.7 Individual.forward

1: function Individual.forward(model input)
2: tail inputs← [ ]
3: block outputs← [ ]
4: for block index ∈ 0, self.blocks.length− 1 do
5: block ← self.blocks[block index]
6: inputs← [ ]
7: for all input index ∈ block.input indices do
8: if input index = −1 then
9: inputs.append(model input)
10: else
11: inputs.append(block outputs[input index])
12: end if
13: end for
14: block output← block.forward(inputs)
15: block outputs.append(block output)
16: if block index ∈ self.output indices then
17: tail inputs.append(block output)
18: end if
19: end for
20: tail inputs←match shapes(tail inputs)
21: tail input← sum of all tail inputs
22: return self.tail.forward(tail input)
23: end function
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how many parameters it has. These values are cached for each Genome by the

Population, so that if the same Genome appears again in the current generation

or a future one, we don’t have to repeat the expensive computations involved in

evaluating that Genome. As we will see in Section 3.2.3, due to elitism, we can expect

a significant number of cache hits.

Algorithm 3.8 Population.evaluate fitness

1: function Population.evaluate fitness(genome)
2: individual← genome.to individual
3: loss function← self.criterion class.new
4: optimizer ← self.make optimizer(individual)
5: training data← self.training loader.data
6: training labels← self.training loader.labels
7: validation data← self.validation loader.data
8: validation labels← self.validation loader.labels
9: individual.train one epoch(training data, training labels,

loss function, optimizer)
10: validation predictions← individual.forward(validation data)
11: losses← loss function(validation predictions, validation labels)
12: return {”mean”: mean(losses), ”std”: standard deviation(losses),

”n parameters”: individual.n parameters}
13: end function

3.2.2 Slack Binary Tournament

As stated above in Section 3.2, a key operation when breeding a new generation

is the slack binary tournament, shown in Algorithm 3.9 on page 35 (Sun, Xue, Zhang,

& Yen, 2020a). It is used by other parts of the algorithm–elitism and crossover,

discussed below in Sections 3.2.3 and 3.2.4–to choose Genomes on which to operate.

To choose a Genome by slack binary tournament, we first choose with replacement

two arbitrary Genomes, with uniform probability, from the Population. We get

the fitness of each, either computed via Algorithm 3.8 on page 33 or looked up in

the cache. Recall that the fitness value contains three seperate metrics: the mean
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loss, the standard deviation of loss, and the number of parameters. Between both

Individuals, we compare the difference in the mean loss. If that difference is greater

than the mean threshold parameter, the Genome corresponding to the Individual

with the lower mean loss is the winner of the tournament. Otherwise, we compare

the difference in the standard deviation loss, and if that difference is greater than

the std threshold hyperparameter, the winner is the Genome corresponding to the

Individual with the lower standard deviation loss. If neither of those two conditions

apply, the Genome whose Individual has fewer parameters wins.

One notable difference between our implementation of slack binary tournaments

and that of Sun, Xue, Zhang, and Yen (Sun, Xue, Zhang, & Yen, 2020a) is in how

we break ties when the difference in mean loss between the Genomes is smaller than

the mean threshold, i.e. when the conditionals on lines 16 and 18 of Algorithm 3.9

on page 35 both evaluate to false. In their implementation, when this is the case,

they proceed to compare first the number of parameters, and then the standard

deviations of loss (with slack). We have reversed this order, comparing first standard

deviation, and then only if necessary the number of parameters. Sun, Xue, Zhang, and

Yen’s reasoning for making the parameter count more important than the standard

deviation is that networks with fewer parameters consume less of the limited power

and compute budgets of mobile devices. Smartphones with built-in high-resolution

digital cameras and a reasonable amount of computing power are now ubiquitous,

suggesting many possibilities for CNN-based mobile apps, so those authors do make

a good point in identifying the feasability of implementing a given network on a mobile

device as a potentially important consideration. Moreover, as engineers working in

an age of anthropogenic climate crisis, in a field that consumes a significant portion

of the world’s generated electricity, it is morally incumbent upon us to consider the

energy efficiency of our software.
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Algorithm 3.9 Population.slack binary tournament

1: function Population.slack binary tournament
2: genome1← self.pick arbitrary genome( )
3: genome2← self.pick arbitrary genome( )
4: if genome1 ∈ self.fitness cache then
5: genome1 fitness← self.fitness cache[genome1]
6: else
7: genome1 fitness← self.evaluate fitness(genome1)
8: self.fitness cache[genome1]← genome1 fitness
9: end if
10: if genome2 ∈ self.fitness cache then
11: genome2 fitness← self.fitness cache[genome2]
12: else
13: genome2 fitness← self.evaluate fitness(genome2)
14: self.fitness cache[genome2]← genome2 fitness
15: end if
16: if genome1 fitness.mean− genome2 fitness.mean ≥

self.hyperparameters.mean threshold then
17: return genome2
18: else if genome2 fitness.mean− genome1 fitness.mean ≥

self.hyperparameters.mean threshold then
19: return genome1
20: else if genome1 fitness.std− genome2 fitness.std ≥

self.hyperparameters.std threshold then
21: return genome2
22: else if genome2 fitness.std− genome1 fitness.std ≥

self.hyperparameters.std threshold then
23: return genome1
24: else if genome1 fitness.n parameters < genome2 fitness.n parameters

then
25: return genome1
26: else
27: return genome2
28: end if
29: end function
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However, in this work, we are primarily interested in validating (or not) the

effectiveness of the solutions produced by this approach to topology search. There

is not much point in optimizing an algorithm that doesn’t produce usable results

in the first place. Unlike the number of parameters, and like the mean loss, the

standard deviation of loss for a given network is a measurement of the quality of

predictions made by that network. Informally we can think of the standard deviation

as measuring the consistency of this quality, and for most applications we would

prefer a network that can consistently make good predictions to one that often makes

both extremely good and extremely bad predictions, even though they might have

similar mean losses. Hence our decision to give the standard deviation priority over

parameter count.

3.2.3 Elitism

Some subset of the replacement set of Genomes in each iteration of Population.breed

is chosen through a process called “elitism”. The proportion of replacements so chosen

is controlled by the elitism fraction hyperparameter. To use the evolutionary

terms from Section 2.3, elitism is like asexual reproduction, in which a single individual’s

genome is copied.

Elitism simply consists of conducting multiple slack binary tournaments on

the current generation of Genomes, and keeping the winners of each tournament

unchanged for the next generation. For example, if we use the default values of

0.2 for elitism fraction and 100 for n genomes, when breeding a new generation,

the Population will conduct 20 slack binary tournaments, keeping the winners of

those. Note that, since we sample with replacement in a slack binary tournament, it

is possible that a given Genome will compete in and possibly win multiple tournaments

during elitism, so generally a Genome can appear multiple times in a Population, and
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the number of distinct Genomes may be less than n genomes. Also, although we copy

the winning Genomes unchanged into the new generation during this step, they may

still be altered through mutation, as described below in Section 3.2.5.

3.2.4 Crossover

Crossover is SDAG’s analogue of sexual reproduction, in which the genomes of

two individuals mingle together to produce a child with similarities to both parents.

As shown in Algorithm 3.10 on page 38, in a single crossover operation, we first

conduct two separate slack binary tournaments to select two “parent” Genomes, A

and B. Define the function l(G) as returning the length in Genes of the Genome G,

and define G[n], with 0 ≤ n < l(G), as returning the nth Gene in G. We will assume,

without loss of generality, that l(A) ≤ l(B). We then choose random integers i and

j such that 0 ≤ i < j ≤ l(A). With equal probability, we designate one of A and B

to be the “outside” parent O, and the other to be the “inside” parent I. We then

construct a “child” genome C such that l(C) = l(O), and:

C[n] =


I[n] if i ≤ n < j

O[n] otherwise

(3.1)

This C is then the result of the crossover operation.

If we were again to use the default values of 0.2 for elitism fraction and 100

for n genomes, when breeding a new generation, we will then generate (1−0.2)∗100 =

80 such children, conducting 160 slack binary tournaments in the process.

3.2.5 Mutation

We now have n genomes Genomes prepared through a mixture of elitism and

crossover. The final step in creating the new generation is to apply Mutations to
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Algorithm 3.10 Genome.crossover

1: function Genome.crossover(other)
2: n genes← self.genes.length
3: if n genes > other.genes.length then
4: return other.crossover(self)
5: end if
6: start index← arbitrary integer from 0 to n genes− 1 inclusive
7: end index← arbitrary integer from start index+ 1 to n genes inclusive
8: coin flip← either 0 or 1 with equal probability
9: if coin flip = 0 then
10: outer parent = self
11: inner parent = other
12: else
13: outer parent = other
14: inner parent = self
15: end if
16: head← outer parent.genes[0 : start index]
17: middle← inner parent.genes[start index : end index]
18: tail← outer parent.genes[end index : outer parent.genes.length]
19: child genes← concatenate lists(head,middle, tail)
20: child = Genome.new(self.input shape, self.output feature depth, child genes)
21: return child
22: end function
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Name Allowed on Effect

ChooseInputMutation All Genes Replace one of the target
Gene’s input indices with
an arbitrarily chosen valid
index.

DeletionMutation All Genes Remove the target Gene

from the Genome, unless
that would leave the
Genome empty.

InsertionMutation All Genes Insert a randomly-created
Gene before or after the
target Gene.

ChooseKernelSizeMutation ConvGene,
DepSepConvGene

Replace the target Gene’s
kernel size with an
arbitrarily chosen valid
value.

ChooseOutputFeatureDepthMutation ConvGene,
DepSepConvGene

Replace the target Gene’s
output feature depth with
an arbitrarily chosen valid
value.

Table 3.3: Available Mutations

these Genomes. We apply an arbitrarily-selected Mutation to every Gene in every

Genome with probability mutation probability. The available Mutations are listed

in Table 3.3 on page 39.

Each of the concrete subclasses of Mutation implement an apply method,

which takes a single Gene as input and returns a list (possibly empty) of Genes to

replace the input gene with in the Genome. Hence, DeletionMutation.apply always

returns an empty list, InsertionMutation returns a list consiting of the original Gene

with a new gene before or after it, and the other Mutations return a list whose single

element is a modified version of the input Gene. This process is shown in Algorithm

3.11 on page 40. In the case that no mutation is applied, we return a list containing

only the original Gene. Doing this lets us simplify other parts of Algorithm 3.11.

One point to note is that, if a Mutation adds or deletes Genes, it’s possible

that input indices of subsequent Genes may point to different sources than before
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Algorithm 3.11 Genome.apply mutations

1: function Genome.apply mutations(mutation probability)
2: new genes← [ ]
3: adjustments← array with value 0 repeated self.genes.length times
4: for source index← 0, self.genes.length− 1 do
5: source gene← self.genes[source index]
6: if arbitrary real number between 0 and 1 ≤ mutation probability then
7: mutation← source gene.valid mutation(source index)
8: replacement genes← mutation.apply(source gene)
9: else
10: replacement genes← [source gene]
11: end if
12: for all replacement gene ∈ replacement genes do
13: new input indices← [ ]
14: for all input index ∈ replacement gene.input indices do
15: if input index = −1 then
16: new input indices.append(−1)
17: else
18: adjustment← adjustments[input index]
19: new input indices.append(input index+ adjustment)
20: end if
21: end for
22: replacement gene.input indices← new input indices
23: end for
24: adjustment change← replacement genes.length− 1
25: for adjustment index← source index, self.genes.length− 1 do
26: adjustments[adjustment index]← adjustments[adjustment index] +

adjustment change
27: end for
28: new genes← concatenate lists(new genes, replacement genes)
29: end for
30: if new genes ==[ ] then
31: new genes← self.genes
32: end if
33: return Genome.new(self.input shape, self.output feature depth, new genes)
34: end function
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the Mutation was applied. For example, if we delete the Gene at index k, then each

Genes with original index i, i > k will wind up with index i− 1; inserting a Gene has

the opposite effect. We address this by maintaining an array of these adjustments

of the same length as the Genome, which starts out initialized to all 0s (i.e. no

adjustment needed). For each source gene with original index k, after we’ve gotten

the corresponding list of replacement genes, we update the input indices of each

replacement gene by adding to each the appropriate adjustment from adjustments.

The pertinent adjustments are then updated based on the length of replacement genes.

There is one significant difference between our implementation of these input

index adjustments and that of Yuan et al. which originally noted this question of

changing inputs (Yuan et al., 2020). In Yuan et al.’s algorithm, when a mutation

inserts genes, affected input indices in genes that follow are only updated with 50%

probability, whereas we always make the relevant adjustments. Their algorithm does,

like ours, always apply adjustments in the case that a gene is deleted.

3.2.6 End of the Main Loop

With the mutations applied, the Genomes for the next generation are ready, and

we replace the contents of the Population with these new Genomes. This completes

one iteration of Population.breed. If all goes well, after running for n generations

iterations, we will end up with Genomes representing much fitter Individuals than

we began with.
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Chapter IV. Experiments and Results

4.1. Evaluating the Tendency Hypothesis

A series of experiments was performed to test the “tendency hypothesis”, as

described in Section 2.5. A secondary goal of these experiments was to investigate

the relationship, if any, between genome length and the optimal number of epochs of

training.

All experiments in this section were conducted on a laptop PC with four 3.9

GHz Intel i7-7820HK CPU cores, 32 GiB of RAM, and an nVidia GeForce GTX 1070

Mobile GPU with 8 GiB of memory. The operating system was Ubuntu Linux 20.04.

The experiments were implemented in Python 3.9.5, using the PyTorch machine

learning library version 1.8.1+cu102 (Paszke et al., 2019) and CUDA 11.2 (Nickolls

et al., 2008).

The CIFAR-10 dataset (Krizhevsky, 2009b) was used for these experiments.

CIFAR-10 consists of a training dataset of 50,000 images, and a test dataset of 10,000

images. All images are color bitmaps with each pixel represented by a triplet of bytes

giving RGB values between 0 and 255 inclusive. Images are 32 pixels by 32 pixels

in size. Images are labelled with one of 10 class labels. The classes are balanced

perfectly: that is, the training dataset contains 5,000 members of each different class,

and the test dataset 1,000.

For efficiency, following the practice of Irwin-Harris et al. (Irwin-Harris et al.,
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2019), we do not use the full CIFAR-10 dataset for these tests. Rather, from the

CIFAR-10 training dataset, 450 elements of each of the 10 classes were selected to

form a 4,500 element training set. A validation set of 500 elements, disjoint from the

training set and likewise balanced between classes, was also selected. The training

and validation sets were both normalized by subtracting the mean and dividing by

the standard deviation of the full 50,000 element training set.

In each experiment, a population of 100 random CNNs was generated by

the method in Algorithm 3.1 on page 24. The genome length varied by experiment,

ranging from 5 to 30 in increments of 5–hence six experiments in total. Each CNN was

trained for 100 epochs on the training set. Minibatches consisted of 50 elements, which

number was chosen based on the memory limitations of the available hardware. The

cross-entropy loss function (Aggarwal, 2018) (Bridle, 1990) was used, and minimized

by an Adam optimizer (Kingma & Ba, 2017), with parameters α = 0.01, β1 =

0.9, β2 = 0.999, ϵ = 1e− 8.

For a given experiment, let {i0, ..., i99} be the population of CNNs. Define

tn = {tn,0, ..., tn,100}, with each tn,m being the average loss over the training set for im

after n epochs of training. Define vn similarly for the validation set.

In Figures 4.1 on page 44 and 4.2 on page 45, we plot the average of each

tn and vn, for n between 1 and 100 inclusive. We can see that, in each experiment,

the average loss on the training set continues to descend with every epoch to or

almost to the end of the experiment. However, in each case, the average loss on the

validation set descends for a number of epochs, then rises again, suggesting that past

that number of epochs the models are overfitting on the training set.

For each experiment, letm be the number of epochs that minimizes the average

loss on the validation set vn. The values of m and corresponding minimum of vn is

given in Table 4.1 on page 46. For each n ∈ [1, ...,m−1], we calculated the correlations
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Figure 4.1: Average loss on training set
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Figure 4.2: Average loss on validation set
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Genome length m vm

5 68 1.645
10 39 1.500
15 34 1.421
20 28 1.401
25 26 1.374
30 22 1.350

Table 4.1: Minimum average validation set losses by genome length

ρ(tn, vn); ρ(tn, vm); and ρ(vn, vm). These correlations are plotted in Figures 4.3–4.5

on pages 47, 48, and 49 respectively.

Past the first few epochs, we see sharp declines in ρ(tn, vn) and even more so

in ρ(tn, vm), which suggests that loss on the training set is only a weak predictor of

loss on the validation set. In contrast, ρ(vn, vm), in most cases, exhibits a pattern of

a sharp increase in the first few epochs, followed by a plateau, followed by another

sharp increase as n goes to m and ρ(vn, vm) goes to 1. In Figure 4.6 on page 50, we

consider only n ∈ [1, 10], and “zoomed in” the increase in ρ(vn, vm) in early epochs

looks less precipitous.

Based on these findings, if we have an estimate of m for a given model, and

we would like to estimate vm for that model by training the model on the training

set for a given number of epochs and then measuring the validation set loss, two

strategies suggest themselves. One is to train the model for m epochs or close to it,

and accept that the higher accuracy in our estimation of vm comes at a performance

cost. The other strategy is to train the model for very few epochs, perhaps just one,

and accept that the high performance of this strategy comes at the cost of accuracy

in our estimation of vm.

The values of ρ(v1, vm) are shown in Table 4.2 on page 47, from which we
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Figure 4.3: ρ(tn, vn)

Genome length m ρ(v1, vm)

5 68 0.615
10 39 0.573
15 34 0.539
20 28 0.540
25 26 0.550
30 22 0.625

Table 4.2: ρ(v1, vm) by genome length

47



0 10 20 30 40 50 60 70
Number of epochs of training

0.3

0.4

0.5

0.6

0.7

(tn
, v

m
) Genome length

5
10
15
20
25
30

Figure 4.4: ρ(tn, vm)

Genome length m ρ(t1, vm)

5 68 0.600
10 39 0.566
15 34 0.520
20 28 0.491
25 26 0.494
30 22 0.548

Table 4.3: ρ(t1, vm) by genome length
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Figure 4.5: ρ(vn, vm)
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can see that the measured correlations all fell in the range 0.582 ± 0.043. In our

evolutionary experiments below, when we compare the estimated validation set loss

between two models, we do so using slack binary tournament selection (see Section

3.2.2), which is designed to tolerate inaccuracy in the estimated losses of the models.

Given these, it seems reasonable to use the single-training-epoch strategy when estimating

a model’s validation loss. We will expect that, in comparison with the many-training-epochs

strategy, our evolved models will take more generations of evolution to reach an

acceptable level of performance, but each generation will require less wall-clock time.

Another advantage of this method is that it relieves us of having to know (or estimate)

m ahead of time.

Could we estimate the minimal average validation loss from average training

loss after one epoch of training, ignoring the validation set entirely? Comparing Table

4.2 on 47 to Table 4.3 on page 48, we see that, while ρ(t1, vm) is well above zero in

every case, it is also less than ρ(v1, vm) in every case. Generally, a training set for a

given problem will be larger than a validation set, so we would expect calculating the

average loss over the training set to take more computation than for the validation

set. Given that it would also lead to worse estimates of vm, we can safely ignore this

approach.

One avenue of future investigation would be to repeat these experiments,

but rather than using randomly-generated CNNs, using CNNs refined through the

evolutionary process in Chapter 3, to see if that leads to different results.
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Hyperparameter(s) Possible values

(Minimum number of genes, maximum number of genes) (10, 20), (20, 30)
Elitism fraction 0.2, 0.6
Mutation probability 0.1, 0.001
(Mean threshold, standard deviation threshold) (0.1, 0.01), (0.4, 0.04), (1.6, 0.16)

Table 4.4: Hyperparameters varied by grid search in CIFAR-10 experiment 1

4.2. Investigation of Hyperparameters

4.2.1 Experiment 1

Our first experiment in evolving CIFAR-10 classifiers used the same hardware

and software stacks as in Section 4.1. Given both the modest power of that machine,

and our lack of experience in tuning the hyperparameters for this method, this

experiment consisted of a grid search (Hutter et al., 2019) with few possible values

for each hyperparameter, but large differences between the values. In this way we

hoped to roughly determine what regions of the hyperparameter space produce good

results, with the intent of doing finer-grained explorations in those regions.

The batch size, loss function, and optimizer were all as in Section 4.1. We also

re-used the same 4,500-element training set and 500-element validation set from that

experiment. Each Population was evolved for 100 generations.

Table 4.4 on page 52 shows the different hyperparameter values used by the

grid search. Note that, in the case of minimum and maximum genome length, and

in that of the mean and standard deviation thresholds, both values are varied in

concert. Given that we have for these four sets of hyperparameters respectively 2 sets

of values, 2 sets of values, 2 sets of values, and 3 sets of values, this yields 2 * 2 * 2 *

3 = 24 unique combinations of hyperparameters, and thus this experiment evaluated

24 separate Populations.
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In Table 4.5 on page 56, we have listed the hyperparameters of each Population

used in experiment 1. We assigned a maximum accuracy score between 0 and 1

inclusive to each Population, and have sorted the table in order of descending

maximum accuracy. To compute the maximum accuracy for a Population, we

took the Individuals making up the Population, and trained each for 50 epochs

on the same 4,500-element training set used for evolving the Populations. After

every 5th epoch, we calculated the accuracy of the Individual on classifying the full

10,000-element test set. We did this, rather than simply running for a certain number

of epochs and calculating accuracy once, to inform our eventual estimation of how

many epochs of training is best. Thus, if a Population contained n Individuals,

it was associated with 10n accuracy scores, of which we use the highest as the

Population’s maximum accuracy score. The topology of the most accurate Individual

is shown in Figure 4.7 on page 54.

Note that, while accuracy is a simple and intuitive metric, it can also be

misleading in the common case that the classes in the data are imbalanced (Juba

& Le, 2019). Imagine testing a classifier on a dataset of which 99% of examples

belong to Class A, and 1% belong to Class B. A classifier that ignored its input and

predicted Class A for all examples would achieve 99% accuracy, and yet have no value

for making predictions. In this case, CIFAR-10 is balanced perfectly between classes,

as are the working subsets we selected from it, so it is safe to use accuracy.

Examining Table 4.5 on page 56, one thing becomes quickly clear. Populations

with mean threshold of 0.1 and standard deviation threshold of 0.01 all scored better

than Populations with higher threshold values. Furthermore, if we calculate the

difference in accuracy between each Population and the next-worst on the table,

we see that by far the single biggest decline in accuracy is between the worst of the

low-threshold-value Populations, and the best of the high-threshold-value Populations.
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Model input

DepSep 3/256 DepSep 5/128

DepSep 5/256

+

Global average pooling

Fully connected layer

Model output

DepSep 3/32
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DepSep 3/32
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DepSep 3/128

DepSep 5/32 DepSep 5/256

Figure 4.7: Topology of best-performing network from experiment 1. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.
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It would seem that the threshold values have significant influence on the final accuracy

score, and furthermore that the optimal threshold values might be lower than any we

tried in experiment 1. This suggests a clear direction for experiment 2.

One thing in these results that ran contrary to our intuition is that varying the

range of possible lengths of Genomes in the initial Population via min n genes and

max n genes between [10...20] and [20...30] had little effect on maximum accuracy.

We would have thought that, all else being equal, longer Genomes would lead to

higher accuracy, but this does not seem to have happened. Since there seems to be

no advantage to using the larger range, and longer Genomes require more computation

than comparable shorter ones to evaluate, we will only use that lower range in further

experiments for the time being.

4.2.2 Experiment 2

From this experiment on, we had a much more powerful computer available

than in earlier experiments. This new computer was a desktop PC with six 4.9 GHz

Intel i5-11600K CPU cores, 32 GiB of RAM, and an nVidia GeForce RTX 3090

GPU with 24 GiB of memory. The operating system was again Ubuntu Linux 20.04.

Python 3.9.5 was once again used, with version 1.9.0+cu111 of PyTorch (Paszke et

al., 2019) and CUDA 11.4 (Nickolls et al., 2008).

Based on the results of experiment 1, our goal for this experiment was to find

an appropriate order of magnitude for the mean threshold and standard deviation

threshold hyperparameters. Another grid search was carried out, using the same

method as in Section 4.2.1. However, as shown in Table 4.6 on page 57, in this

experiment we held all hyperparameters constant except for the thresholds. We used

the mean and standard deviation thresholds of 0.1 and 0.01 respectively from the

earlier experiment as our starting point, and descend logarithmically from there down
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Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.622 10 20 0.2 0.1 0.1 0.01
0.610 20 30 0.2 0.1 0.1 0.01
0.607 20 30 0.6 0.1 0.1 0.01
0.606 10 20 0.2 0.001 0.1 0.01
0.605 20 30 0.6 0.001 0.1 0.01
0.603 10 20 0.6 0.1 0.1 0.01
0.600 20 30 0.2 0.001 0.1 0.01
0.590 10 20 0.6 0.001 0.1 0.01
0.402 20 30 0.6 0.1 0.4 0.04
0.384 20 30 0.2 0.1 0.4 0.04
0.369 10 20 0.2 0.1 0.4 0.04
0.358 10 20 0.6 0.1 0.4 0.04
0.265 10 20 0.6 0.001 0.4 0.04
0.222 20 30 0.2 0.001 0.4 0.04
0.221 20 30 0.2 0.001 1.6 0.16
0.218 10 20 0.2 0.001 1.6 0.16
0.218 20 30 0.6 0.001 1.6 0.16
0.216 20 30 0.6 0.001 0.4 0.04
0.204 10 20 0.6 0.1 1.6 0.16
0.198 10 20 0.2 0.1 1.6 0.16
0.185 20 30 0.2 0.1 1.6 0.16
0.184 10 20 0.6 0.001 1.6 0.16
0.182 20 30 0.6 0.1 1.6 0.16
0.166 10 20 0.2 0.001 0.4 0.04

Table 4.5: Performance of evolved CIFAR-10 classifiers, experiment 1
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Hyperparameter(s) Possible values

(Minimum number
of genes, maximum
number of genes)

(10, 20)

Elitism fraction 0.2
Mutation probability 0.1
(Mean threshold,
standard deviation
threshold)

(0.1, 0.01), (0.01, 0.001), (0.001, 0.0001), (0.0001, 0.00001)

Table 4.6: Hyperparameters varied by grid search in CIFAR-10 experiment 2

Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.685 10 20 0.2 0.1 0.01 0.001
0.673 10 20 0.2 0.1 0.0001 0.00001
0.672 10 20 0.2 0.1 0.001 0.0001
0.622 10 20 0.2 0.1 0.1 0.01

Table 4.7: Performance of evolved CIFAR-10 classifiers, experiment 2

to 0.0001 and 0.00001 respectively. For the other hyperparameters, we used the same

values as in the Population from experiment 1 with the highest maximum accuracy

score. Thus, this experiment only evolved four separate Populations.

The results are summed up in Table 4.7 on page 57, with Figure 4.8 on page 58

showing the best generated topology. Comparing this to Table 4.5 on page 56, we see

that, consistent with our speculations after experiment 1, the hyperparameters that

yielded the best results in experiment 1 yield significantly inferior results to values an

order or orders of magnitude lower. Note also that the accuracy calculated for that

set of hyperparameters is equal to three significant figures in both experiments. The

actual difference is roughly 2 ∗ 10−4, i.e. 0.002%.
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Model input

Conv 3/256 DepSep 5/128

+

Global average pooling

Fully connected layer

Model output
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MaxPool
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Conv 3/256
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Figure 4.8: Topology of best-performing network from experiment 2. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.

Hyperparameter(s) Possible values

(Minimum number of genes, maximum number of genes) (10, 20)
Elitism fraction 0.05, 0.1, 0.2, 0.4, 0.8
Mutation probability 0.1, 0.01, 0.001
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.8: Hyperparameters varied by grid search in CIFAR-10 experiment 3

4.2.3 Experiment 3

Experiment 3 was an investigation of the effect of varying only elitism fraction

and mutation probability. Otherwise the hyperparameters from the best-performing

Population in experiment 2 were re-used. The values used are listed in Table 4.8 on

page 58; we use logarithmic series of values again.

The highest-accuracy network from this experiment is shown in Figure 4.9 on

page 61. We can see from Tables 4.7 on page 57 and 4.9 on page 60 that the population

with the best accuracy in experiment 2 had similar performance in experiment 3,

with a difference in accuracy of roughly 0.005 or 0.5% between the two experiments.
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Recall from Section 4.2.2 that the fittest population from experiment 1 also had

similar performance when reappearing in experiment 2. More experimentation would

be warranted before we could state so with confidence, but this does suggest that

it is possible that we are working on a sufficiently large scale for the law of large

numbers (Yao & Gao, 2016) to push our algorithms towards consistent, repeatable

performance.

Another notable finding from experiment 3 is that the top populations all had

mutation probability of 0.1, which, before this experiment, we had expected would

prove to be too high. This opens up the possibility that we may want to explore higher

values of mutation probability.

One thing we do not see in experiment 3 is an improvement in maximum

accuracy over experiment 2. After experiment 1, we decided to hold min n genes and

max n genes constant for all populations in the grid search. In the next experiment,

we will once again let them vary.

4.2.4 Experiment 4

As stated above, our primary intent in this experiment was to investigate

the effects of letting the bounds on the gene length vary. We are also interested in

observing the interactions between the bounds and elitism fraction. Hyperparameters

for this experiment appear in Table 4.10 on page 60.

The results of the experiment are in Table 4.11 on page 62. Unfortunately, this

experiment shows no significant improvement in accuracy over previous experiments,

nor is any connection between the varied hyperparameters and accuracy apparent.

The best individual of this experiment is too large and complex to include a

diagram without shrinking it into illegibility. That individual consisted of 93 blocks

in 8 layers, of which none were average-pool or sum blocks, 3 were max-pool blocks,

59



Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.681 10 20 0.4 0.1 0.01 0.001
0.680 10 20 0.2 0.1 0.01 0.001
0.678 10 20 0.05 0.1 0.01 0.001
0.672 10 20 0.8 0.1 0.01 0.001
0.669 10 20 0.1 0.1 0.01 0.001
0.668 10 20 0.1 0.01 0.01 0.001
0.656 10 20 0.2 0.01 0.01 0.001
0.650 10 20 0.2 0.001 0.01 0.001
0.650 10 20 0.05 0.01 0.01 0.001
0.646 10 20 0.4 0.001 0.01 0.001
0.636 10 20 0.1 0.001 0.01 0.001
0.630 10 20 0.05 0.001 0.01 0.001
0.615 10 20 0.8 0.001 0.01 0.001
0.610 10 20 0.8 0.01 0.01 0.001
0.588 10 20 0.4 0.01 0.01 0.001

Table 4.9: Performance of evolved CIFAR-10 classifiers, experiment 3

Hyperparameter(s) Possible values

(Minimum number of genes, maximum number of
genes)

(10, 20), (20, 30), (30, 40)

Elitism fraction 0.05, 0.1, 0.2, 0.4, 0.8
Mutation probability 0.1
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.10: Hyperparameters varied by grid search in CIFAR-10 experiment 4
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+
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Figure 4.9: Topology of best-performing network from experiment 3. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.
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Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.688 30 40 0.8 0.1 0.01 0.001
0.688 30 40 0.05 0.1 0.01 0.001
0.687 30 40 0.2 0.1 0.01 0.001
0.686 10 20 0.05 0.1 0.01 0.001
0.686 20 30 0.4 0.1 0.01 0.001
0.684 30 40 0.4 0.1 0.01 0.001
0.683 10 20 0.4 0.1 0.01 0.001
0.681 30 40 0.1 0.1 0.01 0.001
0.677 10 20 0.1 0.1 0.01 0.001
0.676 20 30 0.8 0.1 0.01 0.001
0.675 20 30 0.1 0.1 0.01 0.001
0.671 20 30 0.2 0.1 0.01 0.001
0.671 20 30 0.05 0.1 0.01 0.001
0.665 10 20 0.2 0.1 0.01 0.001
0.642 10 20 0.8 0.1 0.01 0.001

Table 4.11: Performance of evolved CIFAR-10 classifiers, experiment 4

5 were concatenation blocks, 9 were convolution blocks, and the remaining 76 were

depthwise seperable convolution blocks.

4.2.5 Experiment 5

At this point, we were somewhat disappointed with the accuracy of the classifiers

we had evolved. While all performed well above the chance level of 10% accuracy,

the CIFAR-10 webpage (Krizhevsky, 2009a) reports a reference CNN implementation

with “18% test error without [data] augmentation”, hence 82% accuracy, better than

our best result so far of 68.8%. The current state of the art in CIFAR-10 classifiers

is at least 97% accuracy (Kolesnikov et al., 2020).

Recall that, in all the experiments above, we used only a subset of the CIFAR-10

training data for training purposes–4,500 out of 50,000 examples, or 9%. In this
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experiment, we wanted to examine the results of taking CNNs evolved using this

cut-down training dataset, but training them for the purposes of evaluating their

final accuracy using full training data.

We took the Genomes with highest accuracy from each of the previous experiments,

and for each of those four Genomes, we once again converted it to an Individual,

trained it for 50 epochs, and recorded accuracy on the test dataset after every 5th

epoch. This time, however, each epoch of training presented the entire 50,000-image

training dataset, rather than the 4,500-image subset. In this experiment, the maximum

recorded accuracy for each of the representatives of the previous experiments was in

each case slightly higher: the CNNs from experiments 1 through 4 had maximum

accuracy of 0.7627, 0.8322, 0.8033, and 0.7943 respectively. Note that the best

network of experiment 2 (depicted in Figure 4.8 on page 58) now performs slightly

better than the aforementioned reference implementation, 83.22% versus 82%.

4.3. Testing Different Variations on the Base Algorithm

In this series of experiments, we attempt different variations on the basic

SDAG algorithm, in the hopes of improving on the best accuracies found in Section

4.2. For clarity, we refer to the different variations on the base SDAG algorithm as

“SDAG-A”, “SDAG-B”, and so on through “SDAG-F”.

4.3.1 Experiment 6

In this experiment, we explored the effects of restricting the “building blocks”

available to the algorithm. We created an algorithm SDAG-A, identical to SDAG

except for these changes:

• The only kinds of blocks used are convolution, depthwise separable convolution,
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Hyperparameter(s) Possible values

Elitism fraction 0.05, 0.1, 0.2, 0.4
Mutation probability 0.05, 0.1
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.12: Hyperparameters varied by grid search in CIFAR-10 experiment 6

and max-pooling.

• All convolution and depthwise separable convolution blocks have kernel size 3

(and consequently, no kernel-size-change mutations are used).

• Deletion mutations are not used.

• The hyperparameters min n genes and max n genes are not used. Instead, all

genomes created in the initial population have exactly one (randomly generated)

gene.

Hyperparameters for this experiment appear in Table 4.12 on page 64.

The results of the experiment are in Table 4.13 on page 66. What surprised us

in these results is that this stripped-down version of SDAG produced three separate

results with accuracy within 0.5% of 68.8%, our best accuracy from using the full

SDAG algorithm in Section 4.2. The highest-accuracy network from this experiment

is shown in Figure 4.10 on page 65.

4.3.2 Experiment 7

The algorithm for this experiment, SDAG-B, is identical to SDAG-A from

Section 4.3.1, except that sum blocks are once again used. The hyperparameters

were as in experiment 6, shown in Table 4.12 on page 64.

The results of the experiment are in Table 4.14 on page 66. Once again, the

best results from this simplified version of SDAG are comparable to, and in one case
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Model input

Conv 3/256 Conv 3/128

+

Global average pooling

Fully connected layer

Model output
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Conv 3/32 Conv 3/32 Conv 3/128

Figure 4.10: Topology of best-performing network from experiment 6. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.
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Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.687 1 1 0.4 0.1 0.01 0.001
0.686 1 1 0.05 0.05 0.01 0.001
0.684 1 1 0.1 0.1 0.01 0.001
0.669 1 1 0.1 0.05 0.01 0.001
0.667 1 1 0.4 0.05 0.01 0.001
0.656 1 1 0.05 0.1 0.01 0.001
0.648 1 1 0.2 0.05 0.01 0.001
0.642 1 1 0.2 0.1 0.01 0.001

Table 4.13: Performance of evolved CIFAR-10 classifiers, experiment 6

Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.690 1 1 0.2 0.1 0.01 0.001
0.689 1 1 0.2 0.05 0.01 0.001
0.687 1 1 0.1 0.1 0.01 0.001
0.669 1 1 0.4 0.05 0.01 0.001
0.656 1 1 0.05 0.05 0.01 0.001
0.652 1 1 0.1 0.05 0.01 0.001
0.641 1 1 0.4 0.1 0.01 0.001
0.638 1 1 0.05 0.1 0.01 0.001

Table 4.14: Performance of evolved CIFAR-10 classifiers, experiment 7

exceed, the 68.8% accuracy record set in Section 4.3. The highest-accuracy network

from this experiment is shown in Figure 4.11 on page 67. Examining both Figure

4.10 and 4.11, we note that the best CNNs in both runs use only convolution layers,

apart from the fixed tail.

4.3.3 Experiment 8

SDAG-C, the algorithm variation for this experiment, differs from SDAG-B

from Section 4.3.2 in that, when converting a genome to an individual, the “tail”
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Figure 4.11: Topology of best-performing network from experiment 7. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.

Hyperparameter(s) Possible values

Elitism fraction 0.05, 0.1, 0.2, 0.4
Mutation probability 0.05, 0.1, 0.2, 0.4
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.15: Hyperparameters varied by grid search in CIFAR-10 experiment 8

referred to in Section 3.2.1 uses no global average-pooling layer.

Hyperparameters for this experiment appear in Table 4.15 on page 67.

The results of the experiment are in Table 4.16 on page 68. All results from this

run were very poor: the best recorded accuracy is 36.1%, or just over half of current

overall best accuracy of 69%, from Section 4.3.2. The highest-accuracy network from

this experiment (such as it is) is shown in Figure 4.12 on page 69. Notably, this

network consists only of max-pooling layers.

4.3.4 Experiment 9

The basis of SDAG-D is once again the full “vanilla” version of SDAG, but

like SDAG-C in Section 4.3.3, no global average-pooling layer is used. Otherwise

SDAG-D is the same as SDAG. Hyperparameters for this experiment appear in Table

4.17 on page 68.
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Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.361 1 1 0.4 0.1 0.01 0.001
0.345 1 1 0.1 0.1 0.01 0.001
0.344 1 1 0.1 0.2 0.01 0.001
0.344 1 1 0.1 0.05 0.01 0.001
0.344 1 1 0.2 0.1 0.01 0.001
0.344 1 1 0.05 0.4 0.01 0.001
0.343 1 1 0.2 0.4 0.01 0.001
0.343 1 1 0.1 0.4 0.01 0.001
0.343 1 1 0.05 0.2 0.01 0.001
0.343 1 1 0.2 0.05 0.01 0.001
0.343 1 1 0.05 0.05 0.01 0.001
0.343 1 1 0.4 0.2 0.01 0.001
0.342 1 1 0.2 0.2 0.01 0.001
0.341 1 1 0.4 0.4 0.01 0.001
0.337 1 1 0.4 0.05 0.01 0.001
0.336 1 1 0.05 0.1 0.01 0.001

Table 4.16: Performance of evolved CIFAR-10 classifiers, experiment 8

Hyperparameter(s) Possible values

(Minimum number of genes, maximum number of genes) (10, 20)
Elitism fraction 0.05, 0.1, 0.2, 0.4
Mutation probability 0.05, 0.1, 0.2, 0.4
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.17: Hyperparameters varied by grid search in CIFAR-10 experiment 9
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Model input

MaxPool MaxPool

+

Fully connected layer

Model output

MaxPool MaxPool

MaxPool MaxPool

Figure 4.12: Topology of best-performing network from experiment 8. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.
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Maximum
accuracy

Minimum
# genes

Maximum
# genes

Elitism
fraction

Mutation
probability

Mean
threshold

Standard
deviation
threshold

0.637 10 20 0.2 0.05 0.01 0.001
0.609 10 20 0.4 0.05 0.01 0.001
0.607 10 20 0.4 0.2 0.01 0.001
0.594 10 20 0.05 0.05 0.01 0.001
0.593 10 20 0.1 0.05 0.01 0.001
0.589 10 20 0.1 0.2 0.01 0.001
0.588 10 20 0.4 0.1 0.01 0.001
0.580 10 20 0.1 0.1 0.01 0.001
0.570 10 20 0.05 0.2 0.01 0.001
0.545 10 20 0.2 0.1 0.01 0.001
0.515 10 20 0.05 0.1 0.01 0.001
0.479 10 20 0.2 0.2 0.01 0.001
0.382 10 20 0.05 0.4 0.01 0.001
0.382 10 20 0.1 0.4 0.01 0.001
0.380 10 20 0.2 0.4 0.01 0.001
0.356 10 20 0.4 0.4 0.01 0.001

Table 4.18: Performance of evolved CIFAR-10 classifiers, experiment 9

The results of the experiment are in Table 4.18 on page 70. Results here were

far better than in Section 4.3.3, but also are slightly inferior to the results from all

but one of the previous experiments.

The highest-accuracy network from this experiment is shown in Figure 4.13

on page 71. Note that both of the possible paths from the input node to the output

node run through several average-pool layers. The shorter one leads through four

average-pool layers, each of which reduces the height and width by a factor of two.

Since CIFAR-10 images are 32 pixels by 32 pixels, passing an image through four

average-pooling layers results in a tensor with height and width of 32
24

= 2 pixels.

We could say that, although we eliminated the global average-pooling layer, an

approximation of one has evolved.
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Figure 4.13: Topology of best-performing network from experiment 9. “Conv n/d”
indicates a convolutional block with an n by n kernel and d output feature maps.
“DepSep n/d” indicates likewise for depthwise separable convolutional blocks.
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4.3.5 Experiment 10

To create SDAG-E, we began with SDAG-B from Section 4.3.2, and, inspired

by Real et al.’s AmoebaNet-A classifier (Real et al., 2019), modified our tournament

algorithm to favor younger genomes. We call the new tournament method “oversampled

ageist slack binary tournament selection”.

We define the age of all genomes in the initial generation to be 0. When

breeding a new generation of genomes from an old one, if a genome is selected for

inclusion in the new generation by elitism, and it is not subjected to any mutations,

its age increases by 1. A genome selected via elitism with mutations applied, or a

genome created via crossover, has its age set to 0.

Whereas the slack binary tournament shown in Algorithm 3.9 on page 35

begins by choosing two arbitrary genomes from the current population, our variation

here chooses three arbitrary genomes instead. It then discards the genome with the

highest age (choosing randomly in case of a tie), and then proceeds as a normal slack

binary tournament with the remaining two genomes.

We made three attempts at this experiment. The first attempt was as described

above. In the second attempt, we added deletion mutations back in, set up so that

insertion mutations were twice as likely as deletion mutations. The third attempt

was the same, except with insertion mutations only 1.25 times as likely as deletion

mutations.

Each attempt ended up the same way: the amount of wall-clock time needed to

evaluate each generation kept rising over the course of each run, which is consistent

with our experiences in earlier experiments. However, this effect was much more

pronounced with SDAG-E, and each of these runs reached a point where we judged

performance to be too slow to make continuing the experiment practical, defined as
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Hyperparameter(s) Possible values

Elitism fraction 0.05, 0.1, 0.2, 0.4
Mutation probability 0.05, 0.1, 0.2, 0.4
(Mean threshold, standard deviation threshold) (0.01, 0.001)

Table 4.19: Hyperparameters varied by grid search in CIFAR-10 experiment 10

three consecutive generations each taking over 60 minutes. We did say in Section

3.2.2 that we were not overly concerned about performance in this project, but we

also do not have an unlimited amount of time to run experiments. In Chapter 5

below, we discuss some ideas for future variations on SDAG-E to keep the run time

manageable. There is also the fact that, despite the hardware upgrade mentioned in

Section 4.2.2, the amount of computing power available to us is still quite modest by

institutional standards. A researcher with access to a more powerful platform might

find SDAG-E’s performance to be satisfactory.

Hyperparameters for this experiment appear in Table 4.19 on page 73. The

same hyperparameters were used for all three attempts.

4.3.6 Experiment 11

Our final variation, SDAG-F, adds the oversampled ageist slack binary tournament

from SDAG-E in Section 4.3.5 to the base SDAG algorithm. We further varied the

algorithm by introducing a new hyperparameter, ageism factor, which should have

a value between 0 and 1 inclusive. When conducting a tournament, we still choose

three arbitrary genomes and discard the oldest as in SDAG-E, except that before

comparing the ages of the genomes, we multiply each age by ageism factor and

round down.

For example, suppose we select three candidate genomes A, B, and C, with

ages of 1, 2, and 4 respectively. If ageism factor is 0.3, then A, B, and C have

adjusted ages ⌊1 ∗ 0.3⌋ = 0, ⌊2 ∗ 0.3⌋ = 0, and ⌊4 ∗ 0.3⌋ = 1 respectively. Hence,
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Hyperparameter(s) Possible values

(Minimum number of genes, maximum number of genes) (10, 20)
Elitism fraction 0.2
Mutation probability 0.1
(Mean threshold, standard deviation threshold) (0.01, 0.001)
Ageism factor 0.125, 0.25, 0.5

Table 4.20: Hyperparameters varied by grid search in CIFAR-10 experiment 11

Max
accuracy

Ageism
factor

Min #
genes

Max #
genes

Elitism
fraction

Mutation
prob

Mean
threshold

Standard
deviation
threshold

0.690 0.5 10 20 0.2 0.1 0.01 0.001
0.685 0.25 10 20 0.2 0.1 0.01 0.001
0.678 0.125 10 20 0.2 0.1 0.01 0.001

Table 4.21: Performance of evolved CIFAR-10 classifiers, experiment 11

C would be discarded as the oldest. However, if ageism factor is 0.2, then the

adjusted ages are all 0, and so an arbitrary choice out of the three genomes would

be discarded. ageism factor thus gives us a way to adjust how much disadvantage

older genomes face during selection, by effectively mapping the large range of possible

ages to a smaller set of “stages of life”. Note that an ageism factor of 0 makes

these ageist tournaments behave like regular slack binary tournaments, effectively

reducing SDAG-F to regular SDAG. Conversely, ageism factor of 1 means that the

tournaments have the same behavior as those of SDAG-E.

Hyperparameters for this experiment appear in Table 4.20 on page 74. The

results of the experiment are in Table 4.21 on page 74. Comparing with Table 4.14

on page 66, we see that the performance of the best individual in this experiment

is identical, to three significant figures, to the best individual from experiment 7.

However, the individual in experiment 7 achieves this performance with a fraction of

the number of blocks as in this experiment.
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As in experiment 4, the best individual of this experiment is too large and

complex to reasonably represent with a diagram. That individual consisted of 131

blocks in 9 layers, of which none were max-pool, concatenation, or sum blocks; 34

were average-pool blocks; 10 were convolution blocks; and the remaining 87 were

depthwise separable convolution blocks.

4.3.7 Experiment 12

For this final experiment, we repeated the procedure from experiment 5 in

Section 4.2.5, using the best Genomes from experiments 6, 7, and 11 as described in

Sections 4.3.1, 4.3.2, and 4.3.6 respectively. The maximum recorded accuracies for

the three Genomes examined were, respectively, 0.7942, 0.8231, and 0.805. These are

comparable, though slightly inferior, to the results of experiment 5.
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Chapter V. Summary

In this project, we first tested the tendency hypothesis of Sun, Xue, Zhang, and

Yen, as described in Section 2.5.1. The evidence from those experiments suggests that

the tendency hypothesis does indeed hold, and that furthermore, when evaluating the

tendency of an individual, as little as a single epoch of training before evaluating the

individual on the validation dataset may suffice.

In the second series of experiments, we examined the effects of varying the

hyperparameters of SDAG on the performance of evolved CIFAR-10 classifiers. In

those experiments, we found that the slack thresholds and mutation probability

have the most effect upon the performance of the resulting classifiers, and the other

hyperparameters relatively little effect. We had hoped to evolve a classifier that,

evolved and trained on 10% of the CIFAR-10 dataset, could generalize to the full

CIFAR-10 test dataset with competitive accuracy. We did not succeed in that,

although in Section 4.2.5, when we used the small dataset for evolution but the full

dataset for training, we did get accuracy comparable to, and in one case exceeding,

an established baseline algorithm’s performance of 82% (Krizhevsky, 2009a). With

the current state of the art in CIFAR-10 classification being at least 97% accuracy

(Kolesnikov et al., 2020), we had hoped to find a classifier with at least 90% accuracy.

In the third series of experiments, we varied the SDAG algorithm itself. We

produced six variants on SDAG, designated SDAG-A through SDAG-F.

SDAG-A and SDAG-B were experiments which removed many primitives from
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SDAG. These simplified versions of SDAG produced results comparable to, and in

one case improving on, the best results gotten so far by SDAG. The best networks

from both of these experiments consisted only of convolution layers, suggesting that

it might be worthwhile to try an even further simplified version of SDAG in which

we cut all layer types except convolution layers, as further discussed in Section 5.1.

SDAG-C and SDAG-D were identical to SDAG-B and SDAG respectively,

but with the global average-pool layer removed from the tail of evolved individuals.

SDAG-C produced very poor results, and while SDAG-D produced much better

results than SDAG-C, they were still inferior to the results of all but one other

previous experiment. The best-performing individual also incorporated multiple

average-poooling layers, essentially mostly evolving the global average-pool layer

back. That, in conjunction with the poor results from SDAG-C, suggests to us

that SDAG variations using a global average-pool layer will generally outperform

equivalent variations without such a layer.

SDAG-E was a variation on SDAG-B that introduced an “ageism” mechanism

which biased tournament selection in favor of younger genomes. We made three

attempts to run an experiment with slightly different variations of SDAG-E, and we

aborted each of those three attempts when the experiment slowed down to a degree

that we found unacceptable.

SDAG-F was a variation on SDAG that incorporated an ageism mechanism

similar to that in SDAG-E, but with a new hyperparameter that allowed tuning of

the algorithm’s bias towards younger genomes. While the best SDAG-F network

tied with the best SDAG-B network for best accuracy of any experiment we ran in

this project, the individual generated by SDAG-F was far more complex than that

generated by SDAG-B.
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5.1. Discussion

Two of the best-performing variations of SDAG were also two of the simplest,

SDAG-A and SDAG-B in Sections 4.3.1 and 4.3.2 respectively. Although both of those

versions had multiple types of blocks at their disposal, the best results from these

two experiments used only convolution blocks. This suggests that it might be worth

trying variations on SDAG that explicitly use only convolution blocks, or convolution

blocks plus one or both of the binary-operator blocks. Another simplification of

SDAG-A and SDAG-B is that only one kernel size (3 × 3) is used; one could undo

this simplification and investigate the performance of algorithms like SDAG-A and

SDAG-B but with multiple possible kernel sizes.

Although all of the Blocks that we implemented in Chapter 3 are rather simple,

in theory we could implement Blocks that do calculations of arbitrary complexity.

Many well-known CNN architectures such as ResNet (He et al., 2016), DenseNet

(G. Huang et al., 2016), GoogLeNet (Szegedy et al., 2015), and Xception (Chollet,

2017) contain characteristic self-contained repeating motifs that we could capture in a

Block class. This suggests an experiment in which we take one of the aforementioned

network architectures or a similar one, implement Block classes for its characteristic

subnetworks, and see if improved variations on that architecture can be evolved.

Sun, Xue, Zhang, and Yen have already done some similar investigation (Sun, Xue,

Zhang, & Yen, 2020b), although in that work they use a mix of blocks from different

architectures.

Another form of evolutionary algorithm is “genetic programming”, in which

the individuals are not ANNs, but rather computer programs represented as abstract

syntax trees (ASTs) (J. R. Koza, 1992). J. Koza et al. described an enhancement to

the basic genetic programming algorithm in 1999, in which a subtree of an evolved
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AST can be extracted and turned into a re-usable function, which that AST or

another may call multiple times (J. Koza et al., 1999). This suggests to us a similar

enhancement to SDAG, in which we can extract a subgraph of a CNN for re-use.

The individuals in genetic programming are trees, so given any node in one,

there is a single well-defined subtree rooted at that node. Choosing a subtree to

extract as a function is thus as simple as picking an arbitrary node. In the case

of a DAG evolved by SDAG, however, nodes may have more than one edge leading

to them, and the best method of picking a subgraph to extract is an open and more

complex question. Alternatively, given the surprisingly good performance of SDAG-A

in Section 4.3.1, we could use that variation as the base: since all block types used in

SDAG-A have arity 1, any DAGs it generates will in fact be trees, and thus we could

pick an arbitrary node and use the subtree rooted at that node after all.

Z. Huang et al. note that ResNet (He et al., 2016) made use of two techniques

to make training of very deep CNNs possible: batch normalization, and shortcut

connections (Z. Huang et al., 2020). As stated in Sections 2.2.1 and 2.2.2, SDAG’s

convolution and depthwise separable convolution apply batch normalization. Shortcut

connections can also evolve in SDAG. Figure 5.1 shows a typical shortcut connection,

in which node A is connected indirectly to node C via node B, but also directly by

a separate connection–the shortcut connection. Note that, for SDAG to be able to

evolve this structure, node C must have arity 2, as described in Section 2.2.5.

Those authors claim that they have made alterations to ResNet that allow

“60%-80% training and inference speedup”, as well as a reduction in error rate of

up to 4.5% (Z. Huang et al., 2020). They did so by removing batch normalization

and shortcut connections, and replacing the ReLU activation function of convolution

layers with the scaled exponential linear unit (SELU) activation function, defined:
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A

B

C

Figure 5.1: Typical shortcut connection

φ(x) = λ


x if x > 0

α ex − α if x ≤ 0

(5.1)

with α ≈ 1.6733 and λ ≈ 1.0507 (Z. Huang et al., 2020).

Although this work by Z. Huang et al. is in the domain of speech recognition,

rather than image classification, the base ResNet algorithm that they modify was

developed originally for computer vision problems, and was only later found useful

for acoustic problems (Z. Huang et al., 2020). It therefore seems possible that their

alterations might prove useful if re-imported to the visual world.

With shortcut connections removed, the architecture of ResNet is simply a

chain of layers, with each layer taking exactly one input and having exactly one

output (Z. Huang et al., 2020). A variation of SDAG that integrated Z. Huang et

al.’s innovations could thus dispense with keeping track of the input indices of each
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Gene and Block, and likewise the output indices of Genome and Individual. Instead,

the order of Genes within the Genome could imply the inputs and outputs.
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