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Abstract 

Most case law decisions are divided into discrete sections that address specific 

legal issues.  But even though those sections are generally independent from one another, 

unrefined machine learning and natural language processing techniques treat those 

sections as a single document.  Moreover, caselaw decisions contain citations to 

precedential caselaw decisions. But the tokens comprising those citations provide 

minimal value to the machine learning process.   

This project explores these observations by creating corpus of documents where 

each document is a specific section from a case law decision, and where each citation is 

replaced with a unique n-gram or, “citegram.”  The results demonstrate that isolating 

specific caselaw sections facilitates document similarity operations and that citegrams 

ably capture semantic information.   
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Chapter I  

Introduction 

Caselaw decisions and their features.  In the case of State v. Rivera, 221 A.3d 359 

(R.I. 2019), a defendant was convicted of several crimes including burglary and using a 

firearm.   He appealed his convictions to the Rhode Island Supreme Court.  There, he 

argued that (1) a recorded phone call and its associated transcript were improperly 

introduced at the trial and (2) the trial justice should have declared a mistrial because, 

during the pretrial discovery process, his attorney did not receive all the necessary 

preparation materials.  The Court issued a caselaw decision denying both claimed issues.  

For each issue, the Court expressly set forth the issue, recited the governing law, and 

applied that law to the facts of the dispute.            

In other words, Rivera was a single caselaw decision that addressed several 

discrete legal issues.  The question of whether the recording should have been introduced 

was an evidentiary issue, grounded in the Rules of Evidence.  The discovery issue was 

governed by the Rules of Criminal Procedure.  And while both issues were subject to the 

Rhode Island Supreme Court’s previous decisions, the particular precedent applicable to 

each issue was itself discretely related to each issue.  For example, when the Court 

analyzed the transcript issue, it relied on State v. Ahmadjian, 428 A.2d. 1070 (R.I. 1982).  

The Ahmadjian case involved the admission of transcripts and thus shed light on the first 

issue, but it was completely irrelevant to the discovery issue.    
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  Like Rivera, many caselaw decisions address multiple discrete legal issues, 

which are totally unrelated besides the fact that they arose during the same case.  To an 

attorney, the presence of multiple unrelated issues within the same caselaw document is 

unremarkable.  It is routine for an attorney to find a case and then home in on the 

pertinent issues.  But the fact that multiple discrete issues are frequently contained in one 

caselaw document is an impediment for machine learning.   

Artificial Intelligence and machine learning.  Machine learning falls within the 

field of Artificial Intelligence and is a fundamental component of the burgeoning data 

science industry.  Machine learning attempts to imitate the way humans learn.  It involves 

applying statistical algorithms to data, in order to make classifications, predictions, and to 

unearth nonobvious patterns and features.  Machine learning itself contains several 

subsets:  Supervised Machine Learning, Unsupervised Machine Learning, Semi-

supervised Machine Learning, Reinforcement Learning, and Deep Learning.  (IBM, 

Machine Learning). 

In Supervised Machine Learning, a model is trained using labeled data.  When the 

training is complete, the model can be used to classify new, never-before-seen data.  In 

Unsupervised Machine Learning, there are no predetermined labels.  The algorithms 

analyze and cluster data by extracting patterns and features, with limited need for human 

assistance.  Given that capability, Unsupervised Learning lends itself to tasks such as 

exploratory data analysis and pattern recognition.  Semi-supervised Learning offers a 

happy medium between Supervised and Unsupervised learning.  It uses a small set of 

labeled data to guide classification and feature extraction form a larger set of unlabeled 

data.  Reinforcement Learning is a behavioral machine learning model, which learns over 
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time by a process of trial and error, instead of by sample training data.  (IBM, Machine 

Learning).   

In Deep Learning, which is the approach used in this paper, a model is trained 

using a complex artificial neural network.  It is possible for one of the previously 

discussed machine learning techniques to leverage a neural network.  (IBM, Supervised 

Learning).  Deep learning differs because it uses a deep neural network, that contains at 

least three layers.  By adding layers, accuracy is generally improved.  (IBM, Deep 

Learning).  

Neural networks are comprised of several layers, including an input layer, one or 

more hidden layers, and an output layer.  Each layer has a collection of nodes, or neurons, 

that interact with all the neurons in all the other layers.  The input layer is where data 

enters the network.  The output layer emits the output of data that has passed through the 

network.  The hidden layer(s) lie between the input and output layers.  They are 

responsible for extracting features from the data and deriving the relationships between 

the input and output.  (Ravichandiran, 2019).   

Similar to the human brain, the actual learning occurs through the union of 

forward and backpropagation.  (Ravichandiran, 2019).  During the process of forward 

propagation, data enters the input layer and is propagated through the hidden layers to the 

output layer.  At each layer, the data is adjusted by randomly set weights and biases.  It is 

then passed to the nodes within the next layer, where it is input to the activation function 

of a particular node.  If a node’s activation function is satisfied, the node passes the data 

to the next layer of the network where it is once again adjusted by a weight and bias and 

subjected to an activation function.  (IBM, Machine Learning).  The output generated by 
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the network is assessed by a loss function.  Depending on the results of the loss function, 

the randomly initialized weights are adjusted through the process of backpropagation and 

gradient descent.  Working together through many iterations, forward and 

backpropagation are used to optimize the weights within the network.  (Ravichandiran, 

2019).     

How machine learning applies to caselaw in the scope of this paper.  This 

machine learning discussion is basic and general, but it helps illuminate how the format 

of caselaw decisions can frustrate the machine learning process.  When treating the 

Rivera case as a single document, text from multiple discrete issues is blended in a single 

instance of data.  As a result, the data includes multiple discrete issues, which are 

unrelated to each other and unlikely to appear together in other caselaw documents.  

Given that the goal of machine learning is to extract features and patterns, that 

arrangement is suboptimal.     

The presence of citations poses similar impediments.  To an attorney, citations are 

informative features that add semantic value and (hopefully) legitimize the propositions 

that they support.  For example, if two caselaw decisions both cite to the same 

precedential case, there is a greater probability that both cases are addressing the same 

issue.  But to the learning machine, citations are merely a series of word tokens.  Because 

those tokens are ubiquitous over a collection of caselaw documents, they do not 

necessarily form a data feature that can be used to optimize a model.  

The outline of this paper. This project ventures to probe these barriers by 

transforming caselaw documents into section documents and replacing citations with n-

grams that are globally unique to a given caselaw decision.  The next chapter presents 
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background information about caselaw decisions, with particular focus on sections and 

citations.  It then presents a history of the machine learning advancements that inspired 

this project.  The chapter concludes with a discussion of the motivations and goals of this 

project.  In chapter three, discussion turns to the design of the system that was developed 

to achieve those goals.  Chapter four details how the system was implemented and used 

to produce three different models.  Those models include the Base Model, which was 

trained using entire caselaw documents; the Section Model, which was trained using 

specific sections from caselaw documents; and the Citegram Model, which was trained 

using the same sections, but with specific n-grams (citegrams) in place of citations.   

In chapter five, I use these models to conduct several experiments and present the 

results and evaluations.  I conclude that models trained using specific caselaw sections 

generally outperforms those trained on entire caselaw decisions.  I also conclude that 

once transformed into citegrams, citations are able capture the semantic meaning of the 

cases that they represent.  In the concluding remarks, I suggest potential avenues of future 

research.  
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Chapter II 

Background 

This section provides background information on the caselaw features and 

machine learning techniques that inspired this project.  The first section describes the 

relevant caselaw features.  The second section catalogs prior work in the fields of natural 

language processing and machine learning.  On the bases of those discussions, this 

section concludes with the motivations and goals of this paper.     

2.1 Relevant caselaw features 

Caselaw decisions are frequently divided into specific sections.  They also contain 

citations to other relevant caselaw decisions.  These two features are key to this project.  

2.1.1 Sections and section headings 

By rule and in practice, legal writings are frequently divided into sections.  

Sections can be thought of as a caselaw document’s constituent objects.  There are 

frequently recurring major sections, which typically include a procedural history section, 

a facts section, an analysis section, and a conclusion.  At least some courts require parties 

to submit briefs and memoranda including most or all these sections.  For example, Rule 

16 of the Rhode Island Supreme Court’s Rules of Appellate Procedure requires a brief to 

contain procedural history, facts, legal analysis, and a conclusion. 

Sections are often denoted by descriptive headings and/or identifying symbols.  

For example, the sections of a legal brief or caselaw decision are likely to be structured 

along the lines of: 
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I. Procedural History 
II. Facts 
III. Analysis 
IV. Conclusion 

The analysis section is the meat and potatoes of a caselaw document.  It sets forth 

the applicable law and applies it to the specific instance of facts presented in a case.  The 

analysis section itself follows certain conventions.  Typically, the analysis section 

articulates the legal issue, discusses the law applicable to that issue, compares that law to 

an instant set of facts, and ends with a conclusion on that issue. 

If there are multiple issues in a case, the analysis section is likely to contain 

distinct subsections which address those issues.  Those subsections are themselves often 

identified by headings and symbols.  Opposed to the major sections, these subsections 

frequently include a uniquely descriptive title.  For example, the Rivera case discussed in 

the introduction contains the following structure: 

I. Facts and Travel 
A. The Evidence 
B. The Motion for a Mistrial 

 
II. Discussion  

A. Admission of the ATF Call Recording and 
Transcript 

1. Standard of Review 
2. Analysis 

B. Motion for a Mistrial 
1. Standard of Review 
2. Analysis 

C. Motion for a New Trial 
 

III. Conclusion 
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In this example, the major sections are represented by roman numerals and 

descriptive headings.  At the next hierarchy level, capital letters and descriptions are used 

to identify the sections.  The descriptions in the second level, particularly the description 

attending to section “A.”, are unique descriptions of the events in the Rivera case. At the 

third level, numbers are used to identify sections.  In this example, the descriptions of 

those sections – Standard of Review and Analysis – are non-unique frequently recurring 

descriptions.  That is not true of every case, however.  Depending on how the sections are 

structured, lower-level sections may contain unique descriptions.   

2.1.2 Citations 

A citation is a reference to another legal document.  Citations reference different 

types of legal documents including statutes, court rules, law review articles, and other 

types of secondary sources.  This project focuses on the type of citation that most 

frequently adorns the body of caselaw decisions, case citations.  A case citation includes 

three elements: (1) the name of the case, (2) reporters and other sources, and (3) a 

parenthetical indicating the court and year of the decision.  (The Blue Book, 2020, p. 11):   

 

The name refers is the title of the case, which is usually the parties to the dispute.  

(The Blue Book, 2020, p. 97).  In some instances, the name might consist of a different 

description, for example, in rem jurisdiction cases begin with the phrase, “In re.”  [The 

Blue Book, 2020, p. 98).  Reporters are series of books that contain caselaw decisions.  In 

the United States, there are commercially published regional reporters and official state 
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reporters.  The reporters and other sources field indicates the published or unpublished 

source where a case can be found, including the identity of a specific reporter and the 

volume and page numbers.  (The Blue Book, 2020, pp. 11, 103).   The first number in this 

field is the volume of the reporter that contains the case.  The second number refers to the 

first page of the case within the reporter.  The first page number may be followed by a 

pincite, which refers to the specific page that the citation is referencing: 

 

The rules of a particular jurisdiction dictate what reporter should appear in a 

citation.  Some states require that citations reference both regional reporters and state 

reporters.  For example, a state’s rules might require a citation to first list the official state 

reporter, followed by a “parallel citation” to a regional reporter.  (The Blue Book, 2020, 

p. 103).  As a result, some citations include references to multiple reporters: 

 

A case citation might also include two additional elements: (4) explanatory 

parenthetical information, and/or (5) the prior history or subsequent history of a case.  

(The Blue Book, 2020, pp. 11, 95): 
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To this point, the discussion has exclusively focused on full citations.  There are 

also short citations. Once a full citation to authority has been provided, subsequent 

references to that authority can take the form of short citations.  (The Blue Book, 2020, p. 

16).  A short citation typically abbreviates the name of the case and the reporter, and 

includes the word “at” followed by a pincite to the specifically referenced page(s): 

Thompson, 174 P.3d at 125. 

Short citations can also include parallel citations: 

Doyle, 54 R.I. at 70, 170 A. at 91. 

When referring to an immediately preceding citation, a citation can be abbreviated 

with the token “Id.”  (The Blue Book, 2020, p. 17).  On its lonesome, “Id.” refers to the 

same pincite as the prior citation.  To refer to a different page within the immediately 

preceding authority, the word “at” and the particular pincite are added: 

“The rights of the targets of the investigation are deserving 
of consideration and cannot be overlooked.” Mora, 821 F.2d 
at 869. That is why “any doubts about the integrity of the 
evidence should be laid at law enforcement’s doorstep.”     
Id. at 868. “It would be illogical (and unfair) to ask an 
accused to prove affirmatively that tampering has occurred.” 
Id. 

A citation can be inserted into the text of a document in one of two ways. (The 

Blue Book, 2020, p. 4).  Most typically, citations appear in citation sentences that follow 

a substantive sentence.  One citation sentence may contain multiple citations separated by 

semicolons: 

The U.S. Supreme Court has the power to invalidate statutes 
that are repugnant to the U.S. Constitution.  Marbury v. 
Madison, 5 U.S. 137, 177-79 (1803); Fletcher v. Peck, 10 
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U.S. 87, 139 (1810); Dred Scott v. Sanford, 60 U.S. 393, 449 
(1856). 
 

Where a citation only relates to part of a sentence, the citation can appear as a 

citation clause. Citation clauses are set off from the text by commas and immediately 

follow the proposition to which they relate: 

The Supreme Court adopted a broad reading of the 
Commerce Clause during the New Deal, Wickard v. Filburn, 
317 U.S. 111, 128-29 (1942), though in recent years the 
Supreme Court has reigned in its broad reading somewhat, 
United States v. Lopez, 514 U.S. 549, 624 (1995). 
 

A citation can also be qualified by a signal, which is a shorthand message that 

alerts the reader to the relationship between a proposition and the source of authority for 

that proposition.  For example, the signal “See” alerts the reader that the cited authority 

supports, but does not directly state, a proposition.  Other signals include See, See also, 

Cf., Compare, E.g., Accord, Contra, But see, But cf., and See generally.  (The Blue Book, 

2020, p. 5) 

2.2 Prior work in natural language processing and machine learning 

Several milestone achievements in the field of natural language processing and 

machine learning are germane to this project. 

2.2.1 Bag-of-words and bag-of-n-grams 

To apply neural network methods to text-based data, the text must be transformed 

into a fixed-length vector representation.  At the genesis, vector transformation was 

achieved by applying the bag-of-words and bag-of-n-grams approaches.  (Harris, 1954). 
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The bag-of-words method produces a vector that captures how frequently specific 

words occur within a document.  It is based on the intuition that documents containing 

similar proportions of the same words are themselves likely to be similar.  The same 

intuition underlies the bag-of-n-gram approach.  An n-gram is a sequence of n tokens, 

which is processed so that it appears as a single word within the vocabulary.  By 

converting a frequently occurring sequence of tokens into a single token, a new word is 

included within the bag-of-words. 

To enhance computational efficiency, the words within the vocabulary can be 

subjected to preprocessing techniques, such as removing stop words, fixing misspelled 

words, and stemming.  By thus decreasing the vocabulary, vector sparsity and 

computational overhead are reduced.  (Le & Mikolov, 2014).  Either method can also be 

enhanced by term frequency – inverse document frequency (“tf-idf”).  In tf-idf, words 

and n-grams are weighted based on the number of times they appear in a document.  That 

weight is offset by the number of documents in the corpus that contain the word. (Le & 

Mikolov, 2014). 

Both bag-of approaches are limited by their inability to capture semantic meaning.  

The approaches simply tally the words within a document, with no consideration of word 

order.  As a result, semantic meaning is discarded.  (Le & Mikolov, 2014).  Take for 

example, the sentences “The old man drove the car.” and “The man drove the old car.”  

Despite their distinct meanings, each sentence produces the same vector.   

By adding n-sequences of words into the mix, the bag-of-n-grams approach 

preserves some semblance of word order.  But it only does so in short spurts and leaves a 

lot to be desired.  Once again, documents composed of the same words and/or n-grams 
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produce the same vector representations, even where those sentences have entirely 

different meanings.   

Like bag-of-words then, bag-of-n-grams fails to capture the “distances between 

the words.”  (Le & Mikolov, 2014).  “This means that words ‘powerful’, ‘strong’ and 

‘Paris’ are equally distant, despite the fact that semantically, ‘powerful’ should be closer 

to ‘strong’ than ‘Paris.’” (Le & Mikolov, 2014).  Bag-of-n-grams also comes at a 

computational cost.  When n-grams are added to the vocabulary, the vocabulary and 

vocabulary vector expands. (Le & Mikolov, 2014). 

2.2.2 Latent Dirichlet allocation 

Whereas the bag-of techniques treat documents as a collection of words, Latent 

Dirichlet Allocation (“LDA”) views documents as a collection of topics, which are in 

turn composed of a collection of words.  (Blei, et al, 2003).  Given a collection of 

documents and specified number of topics, LDA determines which words frequently 

appear together.  Based on that determination, LDA establishes which words fall within 

the same topic.  When a new document is analyzed, the topics within that document can 

be inferred.  (Blei, et al, 2003). 

2.2.3 Word embeddings 

In 2013, (Mikolov, et al, 2013a) introduced word2vec, an unsupervised machine 

learning model that transforms words into vectors.  Each word is represented by a vector, 

wherein each point captures part of that word’s meaning.  To populate each point, 

word2vec marshals the distributional hypothesis.  Namely, word2vec leverages the 

observation that words which appear in similar locations are more likely to share the 
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same meaning.  Unlike bag-of-words and bag-of-n-grams, it follows, word2vec preserves 

differences in syntax and semantics.  (Le, et al, 2014). 

(Mikolov, et al, 2013a) established two log-linear models to generate word 

vectors: continuous bag-of-words (WV-CBOW) and skip-gram.  In WV-CBOW, vectors 

are generated by predicting a single word from a window of context words surrounding 

it.  Using eight context words, for example, WV-CBOW selects a target word, the four 

preceding (history) words, and the four proceeding (future) words.  The history and 

future words are passed as input into a neural network. The model is trained by correctly 

classifying the middle word.   

The skip-gram model works somewhat in reverse.  In the skip-gram model, a 

central word is passed as input and the model is trained by predicting words within a 

specified range.   

 

Figure 1: Illustration of word2vec WV-CBOW and Skip-gram methods (Mikolov, et al, 2013a). 
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Under either approach, the result is a collection of word vectors.  Semantically 

similar words have similar vector representations and therefore appear in similar 

locations within the vector space.  For example, the vector representation for the word 

“strong” is close to that of the word “powerful.”  The word vectors can also be subjected 

to vector operations, to reveal subtle semantic relationships between words.  For 

example, vector operations and reveal a city and the country it belongs to: “France is to 

Paris as Germany is to Berlin.”  (Mikolov, et al, 2013a). 

2.2.4 Sentence and document embedding 

After the success of word embeddings, researchers began developing way to map 

larger units of text into a vector space.  Several document embedding techniques were 

developed in the following years.   

The seminal document embedding research is set forth in (Le & Mikolov, 2014).  

That work, widely referred to as doc2vec, introduced the Paragraph Vector.  The 

Paragraph Vector is “an unsupervised algorithm that learns fixed-length feature 

representations from variable-length pieces of text such as sentences, paragraphs, and 

documents.”  (Le & Mikolov, 2014).  Despite its name then, Paragraph Vector can 

generate a vector from any piece of text.  Indeed, (Le & Mikolov, 2014) chose the name 

“Paragraph Vector” to emphasize that the method can be applied to variable-length pieces 

of text.   

Marshalling the word2vec approaches, (Le & Mikolov, 2014) developed two 

Paragraph Vector models: Paragraph Vector Distributed Memory Model (PV-DM) and 

Paragraph Vector Distributed Bag of Words model (PV-DBOW).   
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In PV-DM, every document is mapped to a unique vector which is inserted into 

matrix D.  For their part, every word is mapped to a unique vector represented by a 

column in Matrix W.  With N paragraphs each mapped to p dimensions, and M words 

each mapped to q dimensions, the model has a total of N * p + M * q parameters.  As in 

WV-CBOW, a paragraph vector is produced by training a neural network on the task of 

predicting a center word within a window of context words.  But in PV-DM, the 

document’s id is also used in the prediction task.  The paragraph vector is shared across 

all the context windows generated from that same document, but not across all the 

documents.  The word vector matrix, in contrast, is shared among all the documents.    

 As illustrated below, the paragraph vector and word vectors are averaged or 

concatenated to predict the missing word.  

 

Figure 2: PV-DM model (Le & Mikolov, 2014). 

Both paragraph vectors and word vectors are trained using stochastic gradient 

descent and backpropagation.  At every step of the gradient descent, a context is sampled 

from a random document and used to compute an error gradient and update the model 
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parameters.  At prediction time, a paragraph vector is inferred for a new document 

through gradient descent.  In that procedure, more columns are added to D, while W, U, 

and b are held fixed.     

 In the PV-DBOW approach, paragraph vectors are trained by predicting a target 

word from a randomly sampled text window.  At each iteration of stochastic gradient 

descent, a text window is sampled and a random word is taken from that window.  A 

classification task is then formed, using the specific document vector.  PV-DBOW is thus 

similar to the word2vec skip-gram approach. 

 

Figure 3: PV-DBOW (Le & Mikolov, 2014). 

 

 (Le & Mikolov, 2014) tested the Paragraph Vector approaches by conducting 

classification tasks.  They took the top ten snippets that resulted from 1 million popular 

search queries.  For each query, they created a set of three documents: two paragraphs 

extracted from results produced by the same query, and one paragraph that resulted from 
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a different query.  Upon that triplet fixation, the researchers sought to identify which 

paragraphs were produced from the same query.  They concluded that Paragraph Vector 

was proficient in understanding the meaning of documents and that it demonstrated a 

32% relative improvement in error rate compared to traditional approaches such as bag-

of-words, bag-of-n-grams, and weighted bag-of-bigrams. 

One year later, (Dai et al., 2015) applied PV-DBOW to document similarity tasks.  

In their first set of experiments, (Dai et al, 2015) examined 4,490,000 Wikipedia articles, 

processed them, and ultimately obtained a vocabulary of 915,715 words.  They trained 

Paragraph Vectors on the articles and, as demonstrated in Figure 4, confirmed that similar 

categories were grouped together.  

 

Figure 4: Visualization of Wikipedia paragraph vectors 

(Dai et al, 2015) then examined nearest neighbors of the Wikipedia articles and 

compared them to the nearest neighbors that were produced by LDA.  The analysis 
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demonstrated that the Paragraph Vector produced more accurate nearest neighbors.  For 

example, when comparing the neighbors nearest to the Wikipedia “Machine learning” 

article, Paragraph Vector did not yield any false positives, whereas LDA produced four. 

 

Figure 5: The nearest neighbor results to the Wikipedia article on "Machine Learning."  Bold face text indicates 
articles that (Dai et al, 2015) found to be unrelated. 

(Dai et al, 2015) next demonstrated that, like word2vec, vector operations can be 

applied to Paragraph Vectors to detect and manipulate semantic meaning.  First, (Dai et 

al, 2015) found articles relating to “Lady Gaga” by measuring the cosine similarity 

between the documents.  They then demonstrated that vector operations can be used to 

find equivalent documents.  More specifically, they found the Japanese equivalent of 

“Lady Gaga” by taking the “Lady Gaga” paragraph vector, subtracting the “American” 
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word vector, and adding the “Japanese” word vector:, i.e,  pv(“Lady Gaga”) - 

wv(“American”) + wv(“Japanese”).  Such operations could be useful, the researchers 

suggested, to applications relating to corpus navigation, dataset exploration, or book 

recommendations. 

 In their next experiment, (Dai et al, 2015) constructed two datasets composed of 

Wikipedia article triplets.  Using those datasets, they compared Paragraph Vector to 

benchmark document embedding methods including LDA and bag-of-words.  Where 

appropriate, the researchers varied the number of embedding dimensions.  They found 

that Paragraph Vector was more accurate than the benchmark methods and that Paragraph 

Vector was most accurate when using 10,000 dimensions/topics.  They further concluded 

that Paragraph Vector’s accuracy improved where model training included the joint 

training of word vectors. 

The first dataset was handpicked.  It contained 172 triplets of articles that the 

researchers knew were related, based on their domain knowledge.  For example, “‘Deep 

learning’ is closer to ‘Machine learning’ than ‘Computer network.’”  (Dai et al, 2015).   

In analyzing that dataset, Paragraph Vector achieved 93% accuracy with a dimensionality 

of 10,000 embeddings.  The second dataset included 19,786 triplets.  Two articles within 

each set were taken from the same Wikipedia category and were thus close in meaning, 

whereas the third article was randomly selected.  Against that dataset, Paragraph Vector 

achieved 78.8% accuracy on a dimensionality of 10,000. 

  In addition to Wikipedia articles, (Dai et al, 2015) performed experiments 

wherein they used Paragraph Vector to find related scholarly articles.  In those 

experiments, the researchers extracted text from 886,000 scholarly articles and applied a 
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minimum frequency cutoff to obtain a vocabulary of 969,894 words.  They then obtained 

the nearest neighbors to both (Le et al, 2013) and (Dai et al, 2015).  In accordance with 

their projections, the nearest neighbor of (Dai et al, 2015) was in fact (Le et al, 2013). 

 To gauge the performance of the different models in comparing the academic 

papers, (Dai et al, 2015) divided the papers into 20,000 triplets, where each triplet 

contained two papers sharing at least one subject, and the third paper was chosen at 

random from papers that contained no shared subjects.  They determined that Paragraph 

Vector performed on par with LDA’s best performing number of topics, and that 

Paragraph Vector was less sensitive to differences in embedding size.  Using the research 

papers as data, both LDA and Paragraph Vector performed best with a parameter of 100 

dimensions.  

2.2.5 Unsupervised models that leverage sentence ordering 

(Kiros et al, 2015) introduced the Skip-Thought model which, unlike the 

Paragraph Vector, is trained on the order of sentences within a corpus.  The Skip-

Thought model is like the previously discussed skip-gram models.  But instead of using a 

word to predict the surrounding context, a sentence is used to predict the sentences 

around it.  The Skip-Thought model has three components:  The Encoder Network; 

Previous Decoder Network; and the Next Decoder Network.  The Encoder takes a given 

sentence, x(i), and generates the fixed-length vector representation, z(i).  The Previous 

Decoder Network takes z(i) and attempts to generate the sentence preceding x(i); whereas 

the Next Decoder Network attempts to generate the sentence following x(i).  When 

training is completed, the Encoder can be used to generate fixed length sentence 

representations, which can be used for various tasks including classification.  In the 
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reported results, (Kiros et al, 2015) demonstrated that skip-thought vectors ably captured 

both semantics and syntax of encoded sentences.  

 FastSent (Hill et al, 2016) is similar to Skip-Thought, in that it uses adjacent 

sentences as a prediction target and word sequences to help capture semantics.  Similarly, 

(Pagliardini et al, 2018) introduced sent2vec, which extended the (Mikolov et al, 2013a, 

2013b) C-BOW method to the sentence level.  Like doc2vec, sent2vec produces 

embeddings of collections of words by averaging the word embeddings for unigrams and 

n-grams present within a sentence.  But unlike doc2vec, sent2vec accounts for the 

sequence of the groups of words. 

2.3 Motivation and Goals 

It comes as no surprise that embedding approaches have been applied within the 

legal domain.  But while significant attention has been directed to machine learning 

within the legal industry, the available literature suggests that some opportunities have 

been overlooked.   

From all that appears, no research project has been constructed using the same 

document types from the same legal jurisdiction.  For example, (Chalkidis, 2019) used 

various types of legal documents (a mixture of statutes, caselaw decisions, and executive 

orders) from various international jurisdictions.  While (Nay, 2016) strictly used United 

States federal government documents, the approach comingled documents from the three 

government branches.  At least one project appears to have focused exclusively on United 

States caselaw, the document type that this study focuses on.  (Sugathadasa et al, 2018).  

But it is unclear if that caselaw came from a single legal jurisdiction.   
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This is a notable oversight given the conventions and idiosyncrasies of specific 

courts.  In Rhode Island, for example, the Supreme Court systematically uses specific 

terms such as “trial justice,” and abbreviations such as “PCR” (for postconviction-relief 

application).  In addition, Rhode Island cases contain citations to specific Rhode Island 

statutes, which are unlikely to arise with any frequency in other jurisdictions.  By using a 

mixture of caselaw from multiple jurisdictions then, a model is likely to be trained on 

words that have no meaning across a great number of documents within the corpus.        

Beyond that, these approaches yield vectors that are overly inclusive in terms of 

topics and/or legal issues.  As discussed in section 2.1.1, a given caselaw decision is 

likely to address various issues, which should each be viewed as a discrete document.  

But in the aforementioned projects, document vectors were created using the entire 

collection of words over each document, with no regard to the structure of caselaw.  By 

categorizing multiple unrelated issues within the same document, the prior approaches 

mash together various legal topics which have no meaningful correlation to each other.           

The prior approaches also fail to account for citations.  Because specific legal 

issues rely on the same authoritative caselaw decisions, a collection of similar issues is 

likely to contain at least some of the same citations.  That said, the raw format of citations 

isn’t helpful to the machine learning process.  A citation is composed of individual 

tokens.  In and of themselves, those tokens do not provide context to the machine 

learning process.  Take for example the citation State v. Rivera, 221 A.3d 359 (R.I. 

2019).  During the training process, each word in the citation is tokenized into a list of 

words:  

[“State”, “v.”, “Rivera,” “221”, “A.3d”, “359”, “(R.I.”, “2019)”] 
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Thus tokenized, the citation becomes a list of words that are both ubiquitous and 

infrequent.  The word “State” will appear in almost every citation to a Rhode Island 

criminal case; the word “v.” will appear in virtually every citation; the word “A.3d” will 

appear in every case that cites to the third version of the Atlantic Reporter; and the words 

“(R.I.” and “2019)” will appear in every citation to a Rhode Island case in the year 2019.  

The remaining words, “221” and “359” are non-descriptive and are unlikely to appear 

unless another case cites to State v. Rivera. 

To be sure, (Sugathadasa et al, 2018) observed that citations reference other legal 

decisions which may be relevant to the given case.  (Sugathadasa et al, 2018) also 

accounted for citations by recording them within an index object.  But unlike this project, 

(Sugathadasa et al, 2018) did not leverage citations to inject additional semantic meaning 

within the text of the documents.  Nor did (Sugathadasa et al, 2018) attempt to process 

away the tokens composing the actual citation.  And because (Sugathadasa et al, 2018) 

did not treat cases as individual sections, the citations that it associated with each case 

likely contained citations to different legal issues that were unrelated to each other.  

The goal of this project is to explore those oversights and train a model that can 

more accurately infer related legal issues. 

 

 
 
 
 
 

  



 

25 

Chapter III  

Design 

 In this section, I detail the requirements necessary to achieve my stated goals.  I 

then provide an overview of a system that addresses the requirements, with discussion of 

the three major components.  In the final section, I provide descriptions of the packages 

that my components depended on.   

3.1 Requirements 

Certain requirements were necessary to achieve my stated goals:   

1. Collect caselaw documents from one specific legal jurisdiction.  Due to personal 

familiarity, I used caselaw decisions from the Rhode Island Supreme Court.  

2. Create a service that parses individual sections from the caselaw documents. 

3. Create a service to locate citations within caselaw documents and replace them 

with citegrams that are unique to the specific case. 

4. Create three corpora to train three specific models.  Namely, create a corpus of 

caselaw documents; a corpus of individual sections from the caselaw documents; 

and a corpus of individual sections from the caselaw documents with the citations 

replaced by citegrams.   

5. Train three models on each respective corpus and evaluate the results. 
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3.2 Systems overview 

 
The following component diagram shows the overall design of the system: 

 

Figure 6: Component diagram of issue2vec system. 

There are two principal components, the Data Service and Model Service.  The 

Data Service is responsible for transposing text documents into Law objects, which are 

subsequently used to train the models.  The Data Service itself contains two components.  

The Section Service is used to locate sections within a case and populate those sections 

with the underlying text.  It is complemented by the Citation Service, which is used to 

locate citations and create corresponding Cite objects.  The Citation Service can also be 
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called to replace citations with citegrams.  To ensure that the citegrams for a given citation 

are universally consistent, the Cite Service has access to a database of metadata. 

 

Figure 7: Data Service class diagram. 

 As depicted in Figure 7, the Data Service is used to create and access Law objects.  

The Case class, which inherits from the Law class, is the focus of this project.  A Case 

object is composed of Opinions, which are in turn composed of Sections.  Most caselaw 

documents have a single opinion.  However, when a justice or justices publish a 

concurrence or dissent, the caselaw document has multiple opinions.  Sections are 

composed of Paragraph objects, which represent a textual paragraph.  In turn, Paragraph 

objects contain lists of Cite objects.  Those Cite objects contain data about a particular 

citation, including the citegram of that citation.    

The Model Service is responsible for training the models that form the basis of 

evaluation for this project.  By calling the Data Service, the Model Service can compose 

the corpora necessary to train each respective model.  For example, the Model Service can 

call the Data Service to return the entire text of a Case object.  It can alternatively call the 
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Data Service to return the specific sections of that Case object.  It can also call the Data 

Service to return the text with citegrams appearing in place of the citations within the text.      

3.3 Dependencies 

The program was written in python.  It relied on several dependency packages, 

most notably including: 

• Gensim (v. 3.8.3):  Gensim is an open-source library used for unsupervised topic 

modeling and natural language processing.  It is particularly suited for this 

project.  It includes implementations of word2vec, doc2vec, latent semantic 

analysis, non-negative matrix factorization, LDA, and td-idf.  According to 

Wikipedia, Gensim, as of 2018, has been used and cited in over 1400 commercial 

and academic applications.  See https://pypi.org/project/gensim. 

• Natural Language Toolkit (v. 3.5):  NLTK is a suite of libraries used for natural 

language processing.  NLTK supports integral NLP tasks, such as classification, 

tokenization, stemming, tagging, parsing, and semantic reasoning.  See 

https://www.nltk.org. 
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Chapter IV 

 Implementation 

In this section, I describe how I implemented the project.  The discussion includes 

details about the main algorithm of each service, including challenges and design choices 

that arose during implementation.  

4.1 Collecting the caselaw documents 

I created an account at Harvard Law School’s Case Access Project (CAP), 

www.case.law, a service which publicizes United States caselaw decisions in JSON 

format.  I created a script to download CAP cases.  Due to personal familiarity, I used 

Rhode Island Supreme Court decisions as the data.  In total, I downloaded 18,691 Rhode 

Island caselaw decisions.  To create the corpora to train the respective models, I 

implemented the Section Service and Citation Service, as described below.   

4.2 Algorithm descriptions and challenges 

This project involves three major modules, each of which was integral to the 

project.  Developing these modules was a non-trivial task, with considerable challenges 

and design choices. 

4.2.1 Section Service 

The Section Service is responsible for dividing a caselaw decision into specific 

sections.  As discussed in chapter 2.1.1, individual sections within cases are frequently 

signified by symbols, keywords, or a combination of thereof.  Leveraging those features, 
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I created an algorithm to identify and extract individual sections from caselaw decisions.  

In pseudocode, my approach was to: 

Create sections: 

 Create sections using headings within the case: 

Create sections by identifying symbols and key 
phrases 
 
If there are no symbols or key phrases, save entire 
case opinion as a single section 

 
Optionally organize sections into subsections 
 

Developing a functional Section Service was complicated by the fact that the 

Rhode Island Supreme Court is inconsistent with its use of symbols.  Some caselaw 

documents are not explicitly divided into sections.  Even when the caselaw documents 

are divided into sections, the hierarchical use of symbols and keywords is inconsistent.  

For example, one case might organize symbols in a hierarchy of: Roman Numeral, 

Lower-Case Letter, Number.  But in another caselaw document, the symbol hierarchy 

might appear as Upper-Case letter, Number, Lower-Case letter.  This inconsistent 

formatting complicated the organization of subsections. To arrange sections into nested 

subsections, it was necessary to determine the hierarchy of the symbols in each caselaw 

document.   

In yet other instances, sections are only identified by keywords and headings; they 

are not signified by symbols at all.  In those instances, there was no reliable 

programmatic way to determine if the sections were organized into a hierarchy of 

subsections.  Note that the Rhode Island Supreme Court often denotes sections by 

centering the text and using bold font.  Unfortunately, that metadata was is not available 

in the CAP documents.     
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Another challenge was that individual sections may or may not pertain to the 

same legal issue.  The case of Tempest v. State, 141 A.3d 677, 691 (R.I. 2016), is a 

helpful example.  In that case, the State raised the defense of laches.  To establish the 

defense, the State is required to prove that (1) the opposing party unreasonably delayed 

seeking relief and (2) the State was prejudiced by the delay.  In its opinion, the Rhode 

Island Supreme Court set forth the issue in one section, and then addressed each 

requirement in independent subsections.  As a result, the Tempest case has three different 

sections addressing the laches issue.  But in other instances where the Court addressed 

the issue of laches, such as Raso v. Wall, 884 A.2d 391, 395 (R.I. 2005), all the legal 

discussion was set forth in a single section.   

The inconsistent formatting necessitated a design choice: Whether to train the 

model by passing an entire section and its nested subsections or to pass only individual 

subsections.  I implemented a parameter that allows the Section Service to be run with or 

without the use of subsections.  In my initial tests, each training document was composed 

of a section and its nested subsections.  That approach resulted in a corpus of 27,131 

documents.  After evaluating models trained using that corpus, I decided to treat each 

individual section and subsection as its own document.  That approach was more in-line 

with my motivation and goal; namely, parsing cases into discrete sections.  Using that 

approach, I created a corpus of 37,954 documents. 

4.2.2 Citation Service 

Using my knowledge of legal citation format, I developed a dictionary of regular 

expressions to locate citations within a text.  The dictionary contains 103 patterns, 

capturing almost all relevant reporter publications.  Composing it was a non-trivial task.  
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I also developed a suite of functions to pinpoint the beginning and end of the citations; 

that is, the names and parentheticals.  My ultimate approach, in pseudocode, was to: 

Get the full cites: 

Locate the full citations in each paragraph by using 
regular expressions to search for reporter patterns 

 
Eliminate duplicate full cites 
 
Instantiate a new citation object for each non-duplicate 
match: 

 
Find the end of the citation 
 
Extract the reporters (including parallel citations, 
if present) 
 
Extract the case name/locate start of citation: 

 
Create SQL queries using reporter cite and 
select case name from database 
 
Using the case name, find the beginning of the 
citation 

 
Locate and record explanatory parentheticals 
 
Get the citegram: 

 
Create SQL query using reporters and select 
citegram from database 

 
 
Get short cites: 
 

For each full cite, extract volume and source from each 
reporter and create regex search patterns using the volume 
and source information 

 
For each regex match, extract the text of the short 
cite: 

 
In case of short cite with parallel citations, 
find the beginning of the first reporter within 
the text 

 
Using name of the full cite, find the name of 
the short cite within the text 
 
Find end of the short cite within the text 
 
Instantiate the short cite: 
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Copy relevant information from the full 
cite, including the reporters and 
citegram 
 
Record the indexes of where the text of 
the short cite falls within the text 

 
Get abbreviations: 

 
Use regular expressions to match “Id.” within the text 

 
For each match, instantiate a Cite object: 

 
Record the indices of where the text of the 
abbreviated cite falls within the document 

 
Determine the citation to which the abbreviation refers: 

 
Combine all the citations into an ordered list 
 
Update each abbreviation with the appropriate 
citegram 
 

Producing the algorithm was a non-trivial task that required significant 

development and debugging.  The different types of citations – full citations, short 

citations, and abbreviations – each presented unique challenges that required finetuning 

of the search and parsing techniques.  The algorithm also had to be flexible enough to 

handle both citation sentences and citation clauses.  The task was further complicated by 

the fact that legal citation styles have changed over the years.  Now, for the most part, the 

Rhode Island Supreme Court’s caselaw decisions include citations that adhere to the 

format delineated by (The Blue Book, 2020).  Locating and parsing those citations was 

relatively straightforward.  However, citations from prior generations were more difficult 

to handle.  Locating those citations using regular expressions was rather straightforward.  

But parsing the citations to extract the captions and parentheticals required significant 

testing and reworking.  

The presence of duplicate full citations and distinct citations to the same reporter 

and volume posed further difficulties.  In a small number of cases, documents included 
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multiple full citations to the same case.  It was necessary to record the presence of 

duplicate full cites to avoid misidentifying them as short cites.  Similarly, a small number 

of cases included citations to cases that were published in the same volume of the same 

reporter.  It was necessary to note those occurrences, to ensure that the appropriate short 

citations were located. 

In developing the Citation Service, I realized that the citegram of the case being 

processed would never appear in the actual text of that case.  This is because a caselaw 

decision would never cite to itself.  However, for the purposes of creating citegrams that 

provide additional semantic meaning to the text of a caselaw decision, it was desirable to 

have the citegram of the given case within the text of itself.  For that reason, I appended 

the citegram of the case being processed to any paragraph that contained other citegrams.     

The system that I ultimately implemented was a considerable improvement upon 

my initial version.  In the initial version, I created catch-all regex patterns for full cites 

and short cites.  The patterns included capture groups for all the portions of a full cite, 

including the name, reporters, and parenthetical information.  That approach proved 

overly rigid, and it also allowed a significant number of citations to slip through.  Upon 

further reflection, I realized that this process could be improved.  It was overkill to 

capture all the components of a cite in a single regular expression, as locating a full 

reporter citation is sufficient to locate full cites.  I therefore abandoned my dictionary of 

regex expressions in favor of a new one that only included reporter patterns.  Using (The 

Bluebook, 2020), I created dictionary entries for nearly all regional and state reporters.  

That said, there were benefits to my initial approach.  Namely, matching a whole citation 

alleviated the need for further parsing of the text.  When I abandoned that approach in 
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favor of locating the reporters, I had to develop a suite of functions to parse the text and 

retrieve the name, end of the cite, and parentheticals.   

My initial version involved many calls to a metadata database, which proved 

costly in terms of time.  In my initial approach, I made calls to the database for every full 

cite and short cite.  I then iterated through the resulting match objects, passing them to a 

series of functions designed to extract the citations and ensure that I found correct results.  

To streamline this process, I created a slimmer database table, using only the required 

columns.  I also restricted database calls to full cites.  I then stored the reporter 

information as a property within the full cite objects and used that information to locate 

short cites.  More specifically, I used the reporter information within each full cite to 

populate regex patterns that I used to locate short cite patterns within the text. 

Using my initial version, it took about five days to execute the program over the 

copra, resulting with 72,875 citations being located and replace them with citegrams.  

Using the modified approach, it took about two days to insert 180,930 citegrams. 

4.2.3 Model Service 

After the documents were transformed into objects, I used those objects and the 

Model Service to create three different models: 

• Base Model:  In this model no sections were used.  Instead, the training 
documents contained the full text of each case.  Similarly, no citegrams 
were inserted, so the citations within the documents appear as they normally 
would in a caselaw decision. 
  

• Section Model:  This model was trained using the same collection of cases.  
However, each section of each case was passed to the model as its own 
document.  No citegrams were inserted into the text, so the citations within 
the documents appear as they normally would. 
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• Citegram Model: This model was trained using the same section 
documents as the Section Model.  In this model however, citegrams were 
inserted in place of the citations. 
  

Trialing revealed that the best results were produced by training the model with a vector 

size of 100 dimensions, 30 epochs, in DBOW mode.   

In each case, all words were lower-cased and stemmed.  In addition, I created my 

own collections of stopwords, “law stopwords.”  It contains terms that frequently appear 

in caselaw decisions.  Using my legal knowledge and familiarity with Rhode Island 

Supreme Court decisions, I also created a dictionary object of law-bigrams, which was 

used to replace frequently occurring bigrams with a single token.  I also created a list of 

Rhode Island Supreme Court Justice’s and removed those strings from the training text. 
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Chapter V 

Results and Evaluation 

I conducted several evaluations to compare the Base model, Section Model, and 

Citegram Model.  In the first set of evaluations, I selected a case that discussed multiple 

unrelated legal issues and used it to evaluate each model.  I appraised the models by 

creating visualizations of the vector spaces that each generated.  Those visualizations 

reveal that Section Model and Citegram Model outperform the Base Model in the task of 

clustering relevant texts.  I confirmed the results by retrieving the nearest neighbor 

documents and manually inspecting them.  To further evaluate how each model 

performed in identifying documents, I hand chose a specific section from a recently 

published decision and used it as test data.  Once again, the Section Model and Citegram 

Model outperformed the Base Model in the task of identifying similar legal texts.  

Finally, I evaluated triplets of legal documents.  For each of five arbitrarily selected legal 

issues, I created a triplet of documents.  Each triplet contained two documents that 

discuss the issue, as well as a randomly selected document. The results once again 

demonstrate that the Citegram and Section Models do a superior job in identifying similar 

legal text. 

In the next set of evaluations, I assessed the semantic information captured by 

citegrams.  I chose citegrams that represented well-known cases and, from the vocabulary 

of the Citegram Model, obtained the nearest neighbor citegrams.  I manually reviewed 

the results to determine if the nearest neighbor citegrams discussed the same issues that 

were discussed in the well-known case citegrams.  With varying success, the nearest 

neighbor citegrams were from cases that discussed the same legal issues.  In a second 
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experiment, I created triplets of citegrams where two citegrams represented cases 

discussing the same legal issue.  I measured the distance between those citegrams and a 

randomly selected citegram.  The results demonstrated that citegrams were able to 

capture the issues of the cases that they discussed. 

In my final evaluation, I applied the services to another collection of caselaw 

decisions, CAP’s collection of United States Supreme Court decisions.  My evaluations 

revealed that the Section and Citegram Services were able to handle the United States 

Supreme Court caselaw decisions.  It also reinforced the finding that dividing cases into 

sections bolsters document similarity operations.  Namely, United States Supreme Court 

decisions tend to address single legal issues.  Dividing those cases into sections did not 

demonstrate the improvements that were observed using the Rhode Island Supreme Court 

cases.  While the Section Service did not bolster document similarity operations, the 

citegrams once again captured semantic information.   

5.1 Evaluating the models using visualizations and nearest neighbors 

To determine if dividing cases into sections produced more accurate document 

groupings, I used the case of State v. von Bulow, 475 A.2d 995 (R.I. 1984).  The case 

addresses several distinct legal issues, and the analysis section is composed of four 

primary sections.  The first section is itself divided into two subsections, each of which 

addresses attorney-client privilege issues.  (Id. at 1003-12).  The second and third 

sections relate to Fourth Amendment search warrant issues.  (Id. at 1012-21).  The second 

section is also divided into subsections. 
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5.1.1 Vector space visualizations 

I first created visualizations of the vector space for each model, specifically 

highlighting cases that contained choice phrases.  I also specifically highlighted von 

Bulow.   

The visualization of the Citegram Model demonstrates that the specific von Bulow 

sections are appropriately clustered with similar sections.  More specifically, the von 

Bulow sections pertaining to attorney-client privilege appear near other cases discussing 

attorney-client privilege; and the von Bulow sections discussing Fourth Amendment 

issues are proximate to other sections discussing Fourth Amendment issues. 

 
Figure 8: Visualization of the Citegram Model. 
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The same can be said of the Section Model: 

 
Figure 9: Visualization of the Section Model. 

In contrast, when using the Base Model and passing the entire case as a document, 

von Bulow is plotted in an inexact area.  It appears on the fringe of Fourth Amendment 

and warrantless search cases.  The von Bulow case is not noticeably close to attorney-

client privilege cases, even though that issue makes up a significant portion of the case.   

 
Figure 10: Visualization of the Base Model. 
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In some sense, Figure 10 reveals that the Base Model does a commendable job in 

clustering the caselaw documents.  But that wouldn’t ring true to a researcher attempting 

to find similar attorney-client privilege cases.  In practice, attorneys address issues one-

by-one.  It is unlikely that an attorney would be interested in finding a collection of cases 

that discuss two unrelated issues, such as Fourth Amendment searches and attorney-client 

privilege. 

5.1.2 Nearest neighbors 

A qualitative inspection of the nearest neighbors reinforces the tale told by the 

visualizations.  Using the von Bulow attorney-client privilege section as input, I retrieved 

the ten nearest neighbors for each of the three models.  I manually inspected each 

resulting case to determine if it contained relevant attorney-client privilege discussion.   

Both the Citegram Model and Section Model outperformed the Base model.  Of 

the top ten nearest neighbors that were produced by the Base model, only two contained 

relevant documents.     

Table 1: The Base Model’s nearest neighbors to von Bulow attorney-client privilege section. Relevant results appear in 
bold. 

Base Model 
Case Citation Cosine Similarity 

Rosati v. Kuzman, 660 A.2d 263 (R.I. 1995) 0.813 
State v. Juarez, 570 A.2d 1118 (R.I. 1990) 0.764 
R.I. Grand Jury v. Doe, 641 A.2d 1295 (R.I. 1994) 0.7084 
State v. Almonte, 644 A.2d 295 (R.I. 1994) 0.689 
In re Doe, 717 A.2d 1129, 1134 (R.I. 1998) 0.667 
State v. Brouillard, 745 A.2d 759 (R.I. 2000) 0.657 
State v. Yarborough, 636 A.2d 1333, 1334 (R.I. 1994) 0.655 
State v. Barkmeyer, 949 A.2d 984, 989 (R.I. 2008) 0.652 
In re Grand Jury Subpoena, 748 A.2d 821 (R.I. 2000) 0.646 
Tona, Inc. v. Evans, 590 A.2d 873 (R.I. 1991) 0.645 
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On the other hand, both the Section Model and Citegram Model returned six 

relevant results.  Between those two contestants, the Citegram Model generally 

outperformed the Section Model, yielding four relevant documents within the top five 

results. 

Table 2: The Section Model’s nearest neighbors to von Bulow attorney-client privilege section. Relevant results appear 
in bold. 

Section Model 

Case Citation Cosine 
Similarity 

Rosati v. Kuzman, 660 A.2d 263 (R.I. 1995) 0.793 
State v. Marrapese, 583 A.2d 537 (R.I. 1990) 0.768 
State v. Juarez, 570 A.2d 1118 (R.I. 1990) 0.733 
R.I. Grand Jury v. Doe, 641 A.2d 1295 (R.I. 1994) 0.692 
State v. Patino, 93 A.3d 40, 54 (R.I. 2014) 0.687 
DeCurtis v. Visconti, et al., 152 A.3d 413 (R.I. 2017) 0.663 
Capuano v. Outlet Co., 579 A.2d 469 (R.I. 1990) 0.663 
State v. Fuentes, 433 A.2d 184 (R.I. 1981) 0.662 
In re Doe, 717 A.2d 1129, 1134 (R.I. 1998) 0.662 
State v. Guido, 698 A.2d 729 (R.I. 1997) 0.658 

 
 
Table 3: The Citegram Model’s nearest neighbors to von Bulow attorney-client privilege section. Relevant results 
appear in bold. 

Citegram Model 

Case Citation Cosine 
Similarity 

Rosati v. Kuzman, 660 A.2d 263 (R.I. 1995) 0.788 
State v. Marrapese, 583 A.2d 537 (R.I. 1990) 0.78 
State v. Juarez, 570 A.2d 1118 (R.I. 1990) 0.729 
State v. Patino, 93 A.3d 40, 54 (R.I. 2014) 0.674 
DeCurtis v. Visconti, et al., 152 A.3d 413 (R.I. 2017) 0.669 
State v. Fuentes, 433 A.2d 184 (R.I. 1981) 0.641 
State v. Leuthavone, 640 A.2d 515 (R.I. 1994) 0.639 
State v. Tassone, 749 A.2d 1112 (R.I. 2000) 0.634 
Mortg. & Title Co. v. Cunha, 745 A.2d 156 (R.I. 2000) 0.633 
State v. Guido, 698 A.2d 729, 734 (R.I. 1997) 0.632 
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In the case of the Base Model, it is important to note that a section – opposed to 

an entire document – was used to infer the nearest neighbors.  As it turns out then, the 

Base Model’s performance was aided by the Section Service.  As noted above, the Base 

Model returned two relevant documents when it was passed the specific von Bulow 

attorney-client privilege section.  When it was passed the entire von Bulow case, it 

returned the same documents.  However, the documents appeared lower in the results and 

had lesser cosine similarities. 

Table 4: Base Model's nearest neighbors when passed the entire von Bulow document. Relevant results appear in bold. 

Base Model 

Case Citation Cosine 
Similarity 

State v. Eiseman, 461 A.2d 369 (R.I. 1983) 0.725 
State v. Wyche, 518 A.2d 907 (R.I. 1986) 0.719 
State v. Barkmeyer, 949 A.2d 984 (R.I. 2008) 0.717 
State v. Juarez, 570 A.2d 1118 (R.I. 1990) 0.712 
State v. Smith, 512 A.2d 818 (R.I. 1986) 0.709 
State v. Brouillard, 745 A.2d 759 (R.I. 2000) 0.702 
State v. Almonte, 644 A.2d 295 (R.I. 1994) 0.699 
State v. Dufour, 99 R.I. 120, 206 A.2d 82 (1965) 0.697 
Rosati v. Kuzman, 660 A.2d 263 (R.I. 1995) 0.684 
State v. Guido, 698 A.2d 729 (R.I. 1997) 0.681 

 

5.2 Searching using unseen test data 

To further assess the models, I selected issues from a recently published case, 

State v. Segrain, 252 A.3d 1255 (R.I. 2021), and used them as test data.  The first issue 

involves a defendant’s motion to suppress eyewitness identification.  I isolated the issue 

in its own document, transformed it into a vector, and passed it to each model to obtain 

the nearest neighbors.  For each result, I manually inspected the caselaw document and 
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determined if there was on-point legal analysis.   The Citegram Model and Section Model 

easily outperformed the Base Model in this task.  As shown in Table 5, each of the top 

ten results in the Citegram model contained on-point legal analysis.  The Section Model 

contained returned eight on-point analysis sections.  The Base Model only returned four. 

Table 5: Citegram Model Top ten nearest neighbors for State v. Segrain eyewitness suppression issue. Relevant results 
appear in bold. 

Citegram Model 

Case Citation Cosine 
Similarity 

 
State v. Imbruglia, 913 A.2d 1022 (R.I. 2007) 0.813  

State v. Lynch, 770 A.2d 840 (R.I. 2001) 0.776  

State v. Wray, 38 A.3d 1102 (R.I. 2012) 0.765  

State v. Courteau, 461 A.2d 1358 (R.I. 1983) 0.758  

State v. Addison, 748 A.2d 814 (R.I. 2000) 0.755  

State v. Luciano, 739 A.2d 222 (R.I. 1999) 0.733  

State v. Rodriquez, 478 A.2d 171 (R.I. 1984) 0.723  

State v. Cline, 122 R.I. 297, 405 A.2d 1192 (1979) 0.716  

State v. Ivy, 558 A.2d 209 (R.I. 1989) 0.714  

State v. Texter, 923 A.2d 568 (R.I. 2007) 0.714  

 

Table 6: Section Model Top ten nearest neighbors for Segrain eyewitness suppression issue. Relevant results in bold. 

Section Model 

Case Citation Cosine Similarity 
 

State v. Wray, 38 A.3d 1102 (R.I. 2012) 0.805  

State v. Luciano, 739 A.2d 222 (R.I. 1999) 0.775  

State v. Imbruglia, 913 A.2d 1022, 1028 (R.I. 2007) 0.77  

State v. Washington, 42 A.3d 1265, 1271 (R.I. 2012) 0.766  

State v. Addison, 748 A.2d 814 (R.I. 2000) 0.757  

State v. Nabe, 92 A.3d 205 (R.I. 2014) 0.756  

State v. Lynch, 770 A.2d 840 (R.I. 2001) 0.752  

State v. Washington, 655 A.2d 701 (R.I. 1995) 0.746  

State v. Grant, 840 A.2d 541 (R.I. 2004)  0.747  

State v. Davis, 131 A.3d 679 (R.I. 2016) 0.741  
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Table 7: Base Model top ten nearest neighbors for State v. Segrain eyewitness suppression issue. Relevant results 
appear in bold. 

Base Model 

Case Citation Cosine 
Similarity 

 
State v. Wray, 38 A.3d 1102 (R.I. 2012) 0.812  

State v. Imbruglia, 913 A.2d 1022 (R.I. 2007) 0.785  

State v. Roldan, 131 A.3d 711 (R.I. 2016) 0.734  

State v. Ivy, 558 A.2d 209 (R.I. 1989) 0.733  

State v. Rivera, 839 A.2d 497 (R.I. 2003) 0.732  

State v. Nabe, 92 A.3d 205 (R.I. 2014) 0.731  

State v. Gallop, 89 A.3d 795 (R.I. 2014) 0.723  

State v. Silva, 84 A.3d 411 (R.I. 2014) 0.723  

State v. Pona, 66 A.3d 454 (R.I. 2013) 0.723  

State v. Pona, 926 A.2d 592 (R.I. 2007) 0.721  

 

5.3 Triplet evaluation of legal issues 

In this experiment, I arbitrarily chose five legal issues.  For each legal issue, I 

created a triplet of caselaw documents.   In each triplet, the first two documents were the 

results of manual legal research.  More specifically, I found two cases with representative 

discussions of the particular issue.  The third document was randomly selected from the 

CAP collection of Rhode Island Supreme Court decisions.   

Similar to (Le & Mikolov, 2014) the goal of the experiment is to identify which 

model best identifies the same legal issue.  A better model is one that achieves a small 

distance for the same-issue cases, and a larger distance between the same-issue cases and 

random case.  To achieve this, I passed each document to each model and inferred a new 

vector.  In the case of the Base Model, the new vector was inferred from the entire 

caselaw document.  In the case of the Section Model, the new vector was inferred from 

the specifically relevant section.  The vector inferred from the Citegram Model was also 



 

46 

based on the relevant section, but citegrams were inserted in place of citations prior to 

inference.     

To score the performances, I computed a ratio of same-issue distance : random-

issue distance.  The random-issue distance measure is the average distances between each 

same-issue case and the randomly selected case.  A lower ratio reflects that the model 

performed better at achieving a small distance between the same-issues cases and a larger 

distance between the randomly selected cases. 

As the results in Table 8 reflect, the Citegram and Section Models outperformed 

the Base Model on average.  The Citegram Model demonstrated the best performance in 

three of the five instances. 

Table 8: Triplet evaluations for five legal issues.  The best scores appear in bold. 

model 
average 

score 
custodial 

interrogation 

expert 
testimony 

/malpractice 
adverse 

possession libel 
speedy 

trial 
citegram 0.7232 0.5828 0.6679 0.7042 0.8204 0.8407 
section 0.7352 0.5882 0.6787 0.6850 0.7947 0.9296 
base 0.7406 0.5832 0.6798 0.6714 0.8167 0.9517 

5.4 Citegram semantics 

To evaluate the use of citegrams, I assessed whether citegrams, as word vectors, 

were able to capture semantic information of the cases that they represent.  I conducted 

two evaluations to this end.  First, I manually selected citegrams that represented well-

known and oft cited caselaw decisions.  I obtained the nearest neighbor citegrams and 

read each case to determine if the citegram represented a case with a relevant legal 

discussion.  I then created triplets of citegrams, where two represented cases discussing 

the same legal issue and the third was randomly selected.  I concluded that citegrams 

captured semantic information and are thereby a useful feature. 
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5.4.1 Citegram nearest neighbors 

To gauge the semantic information captured by citegrams, I selected well-known 

cases and used the corresponding citegram to find the nearest neighbors of the citegram 

within the vocabulary of word vectors.  I then inspected the nearest neighbor citegrams, 

to determine if they were relevant to the issue discussed in the well-known case.  The 

results largely demonstrate that the most similar citegrams to a given citegram are other 

citegrams representing cases that discuss similar issues.   

In Miranda v. Arizona, 383 U.S. 436 (1966), the United States Supreme Court 

held that the Fifth Amendment requires police to advise defendants of their constitutional 

rights when questioning them in police-dominated atmospheres.  The citegram 

representing Miranda is cg_miranda_v_arizona_384_us_426.  As demonstrated in Table 

9, the most similar words to the Miranda citegram were mostly other citegrams relating 

to the custodial interrogation issue. 

Table 9: Nearest citegrams to Miranda v. Arizona. Citegrams representing cases with relevant legal discussions 
appear in bold. 

Citegram Cosine 
Similarity 

cg_edwards_v_arizona_451_us_477 0.747 
cg_state_v_espinosa_283_a2d_465 0.728 
cg_state_v_lachapelle_308_a2d_467 0.714 
cg_johnson_v_zerbst_304_us_458 0.712 
cg_brewer_v_williams_430_us_387 0.687 
cg_fare_v_michael_c_442_us_707 0.669 
cg_massiah_v_united_states_377_us_201 0.654 
cg_state_v_brown_399_a2d_1222 0.651 
cg_state_v_ferola_518_a2d_1339 0.638 
cg_johnson_v_new_jersey_384_us_719 0.628 

  
In Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579 (1993), the United States 

Supreme Court held that: (1) general acceptance is not a necessary precondition to 
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admissibility of scientific evidence under Federal Rules of Evidence, and (2) a trial judge 

is obligated to ensure that an expert’s testimony rests on a reliable foundation and is 

relevant to task at hand.  The citegram representing Daubert is cg_daubert_v_merrell 

_dow_pharmaceuticals_inc_509_us_579.  The most similar citegrams to the Daubert 

citegram included a mixed bag.  Only five of the citegrams represented cases that dealt 

with the admissibility of expert testimony.  It is notable that the five relevant citegrams 

were all Rhode Island Supreme Court cases, on which the vocabulary was trained. 

Table 10: Nearest citegrams to Daubert. Citegrams representing cases with relevant legal discussions appear in bold. 

Citegram Cosine 
Similarity 

cg_metro_properties_inc_v_national_union_fire_ 
insurance_co_of_pittsburgh_pa_934_a2d_204 0.687 
cg_state_v_correia_600_a2d_279 0.684 
cg_gallucci_v_humbyrd_709_a2d_1059 0.673 
cg_barcon_associates_inc_v_tricounty_asphalt_corp_86_nj_179 0.661 
cg_state_v_gardner_616_a2d_1124 0.643 
cg_state_v_traficante_636_a2d_692 0.637 
cg_blockburger_v_united_states_284_us_299 0.636 
cg_state_v_morales_621_a2d_1247 0.633 
cg_parcell_v_state_228_kan_794 0.630 
cg_aguilar_v_texas_378_us_108 0.626 

 

5.4.2 Citegram triplet evaluation 

To further evaluate how well citegrams capture the cases that they represent, I 

conducted triplet evaluation.  I took the same arbitrary legal issues used in section 4.3 and 

manually selected citegrams of two cases discussing each issue.  I then created a triplet of 

citegrams for each issue.  In each triplet, the first two citegrams were the results of 

manual legal research. The third citegram was randomly selected from the Citegram 

Model’s vocabulary.  The distances between the manually selected citegrams was smaller 
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than the distances between the manually selected citegrams and randomly selected 

citegram.  The results thereby indicate that the semantic information captured by each 

citegram produces a useful representation of the given case.  

Table 11: Results for citegram triplets, where a and b represent the manually selected citegrams and c represents a 
randomly selected citegram.  Smallest distances appear in bold. 

distance 
between 

citegrams 

custodial 
interrogation 

expert 
testimony 

/malpractice 

adverse 
possession libel speedy 

trial 

a to b 0.424 0.525 0.328 0.740 0.594 
a to c 0.736 0.628 0.825 0.804 0.809 
b to c 0.879 0.649 0.854 0.799 0.629 

 

5.5 United States Supreme Court caselaw vectors 

As mentioned throughout this paper, this project was tailored to Rhode Island 

Supreme Court decisions.  Hence, the functions that constitute the Section Service and 

Citation Service were developed and debugged using Rhode Island Supreme Court cases. 

That said, an exploration into United States Supreme Court cases is a fitting end.  It also 

provides a means to evaluate how the services perform on cases from another 

jurisdiction.   

Using CAP’s collection of United States Supreme Court decisions, I created 

43,797 caselaw objects, with 87,543 distinct sections.  I used those objects to train three 

additional models that mirror those from the previous evaluations.  A visualization of the 

models demonstrates that the Section Service was flexible enough to treat United States 

Supreme Court decisions.  I also evaluated the models by comparing triplets of cases.  

The triplet evaluation demonstrates that the unique nature of United States Supreme 

Court cases diminishes the value of parsing caselaw into sections.  Because United States 
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Supreme Court decisions are generally limited to single legal issues, dividing them into 

specific sections did not result in the same improvements observed in the Rhode Island 

Supreme Court cases. 

5.5.1 Bill of Rights visualizations      

The United States Bill of Rights guarantees citizens certain freedoms by placing 

limits on the government’s power.  It is composed by the first ten amendments to the 

United States Constitution.  The Bill of Rights remains a celebrated step forward in the 

field of human rights.  The following figures include visualizations of three models – a 

base model, section model and citegram model – which were trained using United States 

Supreme Court decisions.  Each case and/or section that discusses one of the amendments 

within the Bill of Rights is highlighted.   

The visualizations demonstrate that the Section Service was flexible enough to 

handle the collection of United States Supreme Court decisions.  Indeed, 87,543 sections  

were extracted from the 43,797 case objects.  And when one compares Figure 10 to 

Figures 11 and 12, it is apparent that the Section Service was able to parse individual 

sections that pertained to each amendment.  Furthermore, the sections that were parsed 

into documents appear in close, dense groupings.   
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Figure 10: Visualization of Bill of Rights Base Model. 

 
Figure 11: Visualization of Bill of Rights Section Model 
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Figure 12: Visualization of Bill of Rights Citegram Model. 

5.5.2 Bill of Rights Triplet evaluation 

That said, the Section Service and Citegram Service provide minimal value in the 

task of clustering United States Supreme Court decisions.  Given the nature of United 

States Supreme Court decisions, this outcome is relatively unsurprising.  A considerable 

number of United States Supreme Court decisions are single issue cases.  That being the 

case, the value of distilling the caselaw decisions into discrete sections is minimal. 

This observation was produced by triplet evaluation.  I selected five landmark 

decisions from the United States Supreme Court.  For each case, I conducted legal 

research and found another case that addresses the landmark case.  I then created five 

triplets of cases, where each triplet contained the landmark case, the related case, and a 

randomly selected case. Applying the same scoring process as in section 5.3, I measured 

the cosine distances between the related cases and random case and assigned a score.  In 

contrast to the results presented in 5.3, the Base Model outperformed both the Section 

and Citegram Models. 
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Table 12: Triplet evaluation of United States Supreme Court vectors for landmark cases.  The best performance 
appears in bold. 

5.5.3 Bill of Rights citegram triplets 

 The results in Table 12 demonstrate that there was minimal value in parsing 

United States Supreme Court decisions into sections.  However, the results also indicate 

that citegrams provide value to the semantic calculus.  The Citegram Model placed 

second in each of the five triplet evaluations, outperforming the Section Model by a 

significant margin.   

A triplet evaluation of citegrams used in the preceding case triplet evaluation 

confirms that citegrams provide semantic value within the realm United States Supreme 

Court decisions.  In Roper v. Simmons, 543 U.S. 551 (2005), the United States Supreme 

Court found that the Eighth Amendment precluded the government from sentencing a 

juvenile to death.  The Court therefore communicated the punishment against the juvenile 

defendant, Christopher Simmons.  As show in Table 13, the top ten citegram neighbors to 

the Simmons citegram, cg_roper_v_simmons_543_us_551, include nine Eight 

Amendment cases.  More pointedly, several of the top results are cases dealing with the 

issue of cruel and unusual punishment applied to children or mentally incapacitated 

adults.   

model average 
score 

tinker v. des 
moines (first 
amendment) 

mcdonald v 
chicago 
(second 

amendment) 

terry v. ohio 
(fourth 

amendment) 

gideon v. 
wainwright 

(sixth 
amendment) 

ropper v. 
simmons 
(eighth 

amendment) 

citegram 0.641 0.635 0.650 0.713 0.671 0.534 

section 0.706 0.687 0.724 0.758 0.758 0.601 

base 0.612 0.594 0.605 0.675 0.664 0.521 
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Table 13: Top ten closest citegrams to cg_roper_v_simmons_543_us_551.  Relevant cases appear in bold.  Cases 
addressing juveniles or mental incapacity appear in bold/italics. 

Citation Cosine 
Similarity 

Graham v. Fla., 560 U.S. 48 (2010) 0.74394202 
Stanford v. Kentucky, 492 U.S. 361 (1989) 0.67567396 
Kennedy v. Louisiana, 554 U.S. 407 (2008) 0.67567396 
Atkins v. Virginia, 536 U.S. 304 (2002) 0.66732603 
Tison v. Arizona, 481 U.S. 137 (1987) 0.63798869 
Eutzy v. Fla., 471 U.S. 1045 (1985) 0.62468052 
Powell v. State of Tex., 392 U.S. 514 (1968) 0.61934489 
H. L. v. Matheson, 450 U.S. 398 (1981) 0.61463583 
Penry v. Lynaugh, 492 U.S. 302 (1990) 0.61215293 
Roach v. Aiken, 474 U.S. 1039 (1986) 0.59880459 
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Chapter VI  

Conclusions and Future Work 

We observed that machine learning can be used to detect patterns within in a 

collection of data and that it can be used in combination with natural language 

processing.  Standing on the shoulders of machine learning and natural language 

approaches, this project has demonstrated that unique features of caselaw decisions can 

be leveraged to improve the machine learning process.  By parsing caselaw decisions into 

individual sections, a single caselaw decision can be transformed into several documents, 

which address discrete legal issues.  Working with Rhode Island Supreme Court caselaw 

decisions, it was observed that the streamlined section documents improve document 

similarity operations.  That observation was reinforced by evaluating United States 

Supreme Court decisions, which generally address a single legal issue.  In those 

evaluations, dividing caselaw decisions into discrete sections did not improve similarity 

operations.  We also saw that by transforming citations into unique n-grams, the citations 

within the text of a caselaw decision can be used as additional vocabulary words that 

provide semantic value. 

This project opens the door to several avenues of future work.  The methods and 

results of this work are plainly applicable to legal research and writing and can be further 

developed towards those ends.  The Section Service and Citation Service were developed 

using Rhode Island Supreme Court cases.  While they were versatile enough to treat 

United States Supreme Court decisions, it stands to reason that the services would need to 

be tailored to handle cases from other jurisdictions.  Similarly, the caselaw documents 

used in this project were all in plaintext; any bold, italicized, underlined, or centered font 
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used in the published decisions were not present.  Because specialized fonts and spacing 

are used to identify both sections and citations, those features could be leveraged to 

improve the Section Service.  The Paragraph Vector techniques used to develop the 

models were based on the research of (Le & Mikolov, 2014).  Unlike the Skip-Thought 

(Kiros et al, 2015) and FastSent (Hill et al, 2016), these models do not account for 

sentence order.  The services developed in this project could be extended to those models.  

Finally, we observed that the identifying and symbols and descriptions of sections are 

useful to the process of natural language processing and machine learning.  We also 

observed that, from case to case, courts are inconsistent with their use of those symbols 

and headings.  To assist machine learning, it would be helpful for Courts to consistently 

employ symbols in the same hierarchy in each one of their caselaw decisions.          
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