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 Abstract 

The research in this project explores the intersection of human computer 

interaction (HCI) and deep neural networks.  Advances in real-time output has reduced 

latency making webcam skeletal model output useful for fine motor skill motion 

research.  The newer Live Perception model no longer relies on distant servers resulting 

in reduction of both latency and privacy issues.  Here we take advantage of the advances 

and develop an interface with low latency and increased privacy to make predictions and 

inferences entirely with local processing.  The interface customizes JavaScript on the 

client browser to use MediaPipe Pose, TensorFlow.js and Python’s Keras.  We call the 

new interface the Foul Shot Training Mirror.  The live perception application provides a 

blueprint to create motion predictions from deep computer vision models by customizing 

the real time output. 

Using this interface, researchers can create time series analysis with the real-time 

data.  This advances HCI research by analyzing how a tight feedback loop can improve 

the fine motor skills involved in shooting a basketball.  Our methods train sequenced 

motion data from real-time vision models to optimize Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN).  Our research shows this novel approach 

to training the motion data is successful in training a Gated Recurrent Unit (GRU).  In 

this new approach, we successfully implement a prototype and use computer vision data 

from the skeletal data points and angular velocities to predict motion from the deep 

learning simulation data.  
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The interface will scale to other applications by using real-time results in a more 

private and efficient manner.  The predictions provide immediate feedback, allowing for 

immediate forward and backward chain learning.  This style of learning aids in improving 

fine motor skills, which can be used in other research, such as to improve motor skills of 

people with injuries or disabilities, or to monitor and maintain proper motor skills as 

people age. 
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Frontispiece 

  

By instantly projecting near real-time image and motion statistics in front of the foul 

shooter, they acquire a visual representation of how their mind is affecting their body’s 

motor skills.  From this perception, they immediately integrate the acquired knowledge 

and adjust their motor skills to change shooting motions to become a more consistent foul 

shooter (Appendix 3.  Projection Diagram).
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Chapter I 

Background and Significance 

In 1960, Dr. Joseph Carl Robert Licklider, a computer scientist and psychologist 

wrote “Man-Computer Symbiosis” (Licklider, 1960).  In his paper, he outlined the 

prerequisites for the relationship between man and computer as a symbiosis.  He stated, 

“The information-processing equipment, for its part, will convert hypotheses into testable 

models.”  This interesting statement made sixty years ago, are the beginnings of the 

models for data science, and the foresight of deep neural networks.  Today’s digital 

media technology in video, audio, and text combined with Deep Neural Network 

algorithms are furthering the human-computer symbiosis that Licklider laid out in his 

1960 analysis.  Licklider made important observations on how the simple clerical and 

mechanical tasks to complete research will soon be computer-driven tasks.  Our current 

research will show how these tasks are disappearing due to modern digital machines 

performing these tasks in near real time.   

Today, machines use deep neural networks and analysis by utilizing the many 

digital sensors in vision, audio and touch.  Significant advances allow the use of GPU 

speed and computational capability by using Web Graphics Libraries (WebGL) and Web 

Assembly (WASM) on client machines.  This speed and computational ability on the 

client-side allow communication of the APIs with JavaScript and use the browser to 

create advanced simulations with the aid of deep neural networks.  These continued 

advancements show the drive toward human-computer symbiosis as a driving research 
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force.  Licklider anticipated that the computer would take over these menial repetitive 

tasks, and today we see the significance of Deep Neural Networks as a representation of 

the ‘menial repetitive tasks’ in which Licklider spoke about.  Before getting into the 

design and calibrations of our digital Foul Shot Training Mirror, it is helpful to 

understand the history and development of the Deep Neural Network algorithms. 

1.1 Historical Perspective – Deep Neural Networks   

In the very beginning, Neural Networks (NN) were simple and essentially variants 

of linear regression.  In 1962, there are references to a cat’s visual cortex, which inspired 

deep neural network architectures.  In 1971, Ivakhnenko discussed the Group Method for 

Data Handling (GMDH), with eight layers.  The Neocognitron, by Fukushima in 1979 is 

the first to speak of neurophysiological insights of Convolutional Neural Networks 

(CNN).  Back Propagation (BP) received significant recognition in 1986 from Rumelhart 

by experimentally demonstrating the use of hidden layers.  It is important to realize the 

underpinnings of back propagation come from gradient descent work that started from 

Leibniz (1676), L’Hopital (1696), and Jacobian Matrix (1845) working in multivariate 

spaces.  During the 1990s and 2000s, many research issues were dealing with the long-

time lag problem of decaying and exploding gradients.  Solutions examining the gradient 

issue overcame the issue with more computer power with GPUs, and a new model called 

Long/Short-Term Memory (LSTM) which deals with the time steps to resolve the 

vanishing gradient issue (Schmidhuber, 2015).  The deep neural networks of today use 

deeper hierarchical levels of learning; they are Recurrent Neural Network (RNN), Feed 

Forward Neural Networks (FFNN), Long/Short-term Memory neural networks (LSTM), 
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and Convolutional Neural Networks (CNN).  After 2010, RNN, CNN and LSTM won 

many awards to make these models among the top focus of research.  In addition, in 2014 

the Gated Recurrent Unit (GRU) was developed and is similar to LSTM, but is somewhat 

cheaper to run and in some cases more accurate than LSTM (Junyoung Chung et al, 

December 2014).  

The DNNs for computer vision underwent several revisions of Convolutional 

Neural Networks (CNNs).  Beginning in 1998 the LeNet-5 architecture for a CNN 

proposed five weight layers, three convolutional layers and two fully connected layers 

and had 61,706 parameters (Elgendy, 2020).  In LeNet-5, a major change was to remove 

fully connected layers and instead use locally connected layers “where each plane is a 

feature map” (Lecun et al, 1998).  CNN’s extract meaningful features that separate an 

object from other images in the training set, and stack them in an array of features 

(Elgendy, 2020).  In 1998, this was novel, but the LeNet-5 only could classify grey scale 

images and could only classify ten classes.  In 2012, along came the AlexNet model that 

could classify 1,000 different classes, has about 60,000 parameters and 650,000 neurons 

and it had a larger learning capacity to understand more complex features (Elgendy, 

2020), (Krizhevsky et al, 2017).  In 2014, Visual Geometry group at Oxford University 

created VGG16 with even deeper layers (Elgendy, 2020).  Next, in 2015, the Microsoft 

Research team solved the problem of the vanishing gradient with ResNet (K. He et al, 

2016).  Next, Google creates MobileNet, which significantly reduces the number of 

parameters and balances accuracy while restricting resources so it can work on many 

digital media devices (Pujara, 2020). 
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The current architecture of MobileNet allows for comparable results to ResNet 

and allows for a quicker response that allows for more real-time feedback (Pujara, 

2020).  So we can see the jumps in technology from 1998 to 2012, then 2015 with 

ResNet and in the following years Google developed MobileNet versions 1, 2, and 3 

(Kulkarni et al, 2021).  In May 2021, Google announced a next generation pose detection 

with MoveNet, which has two variants, known as Lightning and Thunder.  “Lightning is 

intended for latency-critical applications, while Thunder is intended for applications that 

require high accuracy.  Both models run faster (30+ FPS) on most modern desktops, 

laptops, and phones, which proves crucial for live fitness, sports, and health applications”  

(Votel Ronny, 2021).  BlazePose is a current architecture released with MediaPipe in 

December 2019 “that produces 33 body key points for a single person and runs at over 30 

frames per second on a Pixel 2 phone” (Valentin Bazarevsky et al, 2020).  The current 

release used for this application is MediaPipe version 1.1624666670 released in June of 

2021 (NPM, 2021).  Google classifies the MediaPipe Pose model as Live Perception, 

which is any kind of machine learning that happens in the viewfinder.  This means it 

happens on the device, in real time, and with low latency.  All computation with Live 

Perception happen on the device with no connection to the internet, making the solution 

very privacy conscious (Brunham, Live Perception for Mobile and Web, 2020). 
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1.2 Current Research  

The focus of this research is to determine the best Deep Neural Network 

algorithms to examine human motion and teach a human to enhance their fine motor 

skills.  The motor skills to learn are the proper motions to become a better and more 

consistent basketball free-throw shooter.  The main digital machine device to collect data 

for this study is the webcam, which falls under the research category of deep learning for 

vision systems.  The current research findings for computer vision reveal that researchers 

primarily focus on certain aspects of a CNN model.  For instance, a CNN research study 

may focus solely on updating the accuracy of a skeletal model (See Figures, Figure 1 and 

Figure 2), or classifying certain objects at a high confidence level.  In all, current research 

in computer vision weighs more heavily toward object detection of a still image or object 

detection in a video stream.  A secondary focus for my research is to examine the output 

of CNN's model data to predict different types of motion and determine if these motions 

result in a successful foul shot.  For this secondary focus, we must examine a second type 

of DNN, the Recurrent Neural Network, or RNN. 

“The RNN processes sequences by iterating through the sequence elements and 

maintaining a state containing information relative to what it has seen so far.”  (Chollet, 

Deep Learning with Python, 2018, p. 196)  Most research studies with RNN are for text 

analysis, where the focus is using previous text information to summarize a document, or 

to predict the next word (Yang et al, 2021).  This study, however, will use RNN models 

to bring a memory state to the output of the computer vision data generated by the CNN 

model.  The customization of the RNN model to analyze the motion data becomes the 

focus in Chapter VI of our research.  Accelerometers are another possible interest for 
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research, because digital media devices like smartphones use an accelerometer and play a 

significant role in recognizing an individual’s physical activity.  There are many studies 

for classification of different activities, and some research even includes basketball shots 

as an activity (Lu et al, 2017).  However, most accelerometer studies classify actions or 

objects and do not predict future positions based on past results, and for this study, deep 

learning for vision systems will remain the primary focus, with RNN’s as the secondary 

data feed to our motion prediction model.  Therefore, the gap in the research for motion 

studies with CNNs, unlike text studies, is in predicting a future result by using previous 

motions.  We will use the concept of predicting the next letter result of a word and 

implement an RNN by analyzing the motion data output from our webcam CNN model to 

predict the accuracy of a basketball foul shot.  The key experiment to help understand this 

gap involves using the data output from the skeletal Pose model and training the data 

with various types of RNN deep neural network models. 

To summarize, current research of CNNs classify objects or actions to identify 

activities more accurately, but there is not much research predicting outcomes of motions, 

or actions.  In other words, there is minimal research on Deep Neural Networks to 

optimize human motion to interact in a symbiotic way and teach a human.  This research 

and application intend to help fill this gap with Google’s ecosystem.  Current technology 

with Google’s MediaPipe and TensorFlow allow the designer to use fully developed pre-

trained models to recognize key points on a human image.  To develop the model and 

web application in this paper we use models from PoseNet in TensorFlow and Pose in 

MediaPipe (Oved et al, 2018), (Google, MediaPipe Pose, 2020).  These pre-trained 

skeletal models use DNNs to classify the key points to create the superimposed skeletal 
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model of a person from a video streaming image.  Using the output of these key-points 

from the streaming image, we feed the output into our RNN model.  My development 

vision is to use machine-learning algorithms to customize the feedback to predict and 

identify key motions that will refine the motor skills to shoot a foul shot.  The output will 

teach the user to become more cognizant of their fine motor skills and enable them to 

send the basketball from the foul line into the basket in a more consistent fashion.  The 

Google ecosystem in machine learning provides the ability to customize the given pre-

trained models, and allows the deep learning engineer to add customizations when a 

specific domain requires customization.  With the ability to customize the application, we 

can now begin to explore the research gap as to whether a video device can learn the 

motions of a human, and then monitor or teach the necessary motor skills to improve the 

motion.  Comparing this to traditional ways to learn to shoot a basketball is now making 

it apparent that the machine can notice the nuances of human motion to teach fine motor 

skills.  The traditional way to learn is from a trained professional gathering data through 

visual observations and offering advice from years of experience and intuitive 

judgement.  The focal point or guiding theory comes from words inside of Liklider’s 

original paper.  He states a good measure of success will show ‘how’ our machine 

learning DNNs can come up with a “suggested course of action that agrees with the 

man’s intuitive judgment” (Licklider, 1960).  In other words, we want to show our deep 

learning model is a substitute, or at least an enhancement, to the traditional method of 

learning to develop motor skills in performing certain tasks. 

Our research goes beyond recognizing ‘only’ human activities and focuses on 

design methods to detect motion with the latest models from the Google Deep Neural 
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Network ecosystem of TensorFlow.js and MediaPipe.  It also examines the human 

learning process of training the body to learn and optimize motor skills.  Increasing the 

likelihood of scoring a foul shot is one result, but the process of increasing motor skills 

with deep neural networks is a result that adds even more value to this research.  Showing 

we can increase an individual’s motor skills to obtain a target goal, scales for many more 

domain applications, thus adding value to the current research.  Human learning is a vast 

field in itself, but in the domain of a basketball foul shot, effects on learning show 

potential for research (Mark R. Wilson et al, 2009).  Our study of the basketball foul shot 

is in a practice situation to deliver a baseline metric for measuring achievement of fine 

motor skills.  This baseline is the starting point for more advanced studies in the 

developing field of machine learning as an application to enhance fine motor skills.   

Our research develops the learning-feedback-loop by using the latest DNN 

models and near real time browser manipulation with computer vision overlaying a 

skeletal model onto a person shooting a basketball foul shot.  The feedback loop emulates 

human cognition and amplifies the learning process.  This type of forward chaining, 

exploits feature maps from our existing DNN models, to help “human beings acquire, 

represent, and integrate knowledge” (Campero et al, 2018).  The justification of our 

research is to add value and increase methods to use the real time information to make a 

human more cognizant and aware, both somatically and at a subconscious proprioception 

type of level.  The result will mesh the latest technology into a type of personal robot 

assistant to show advances toward a human-machine symbiosis.  The goal is to showcase 

these advances of machine learning, deep learning and live perception toward the human-

machine symbiosis discussed in Licklider’ s paper.  
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The broader implications and justifications for this study pertain to the 

development and design of personal robot assistants for sports analytics, recoveries from 

traumatic injuries, geriatrics, and many other domains where fine motor skills are 

involved.   

1.3 HCI and Low Latency 

Twenty years from Licklider’s explanation of symbiosis for man and computer, 

the personal computer movement is born, and helped to rename his concept to Human 

Computer Interaction (HCI).  The personal computer inspired HCI research to make 

interaction easier for the non-computer savvy users.  The next advent of human computer 

symbiosis is with the advances in Live Perception.  The reduction of latency allows more 

code customization to add predictor functions from TensorFlow.js to predict motion.  

Predicting motion from skeletal models opens up research for motion prediction.  The 

following chapter shows how human vision symbiotically connects with a real-time deep 

learning visual interface to represent the human cognitive experience.  The interface we 

develop is part of the active research for the connectedness for envisioning body 

movements from the representations of CNN and RNN models.  Metaphorically, 

computer vision from the webcam connects with human vision to enhance motor skills in 

real-time.  This is the motivation to design a useful interface to interact with real-time 

data using CNN and RNN to create the Foul Shot Training Mirror.  Human Computer 

Interaction combined with low latency computer vision opens a path for real cognitive 

experiences to enhance fine motor skills. 
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Chapter II 

HCI and Visual Interface Design 

2.1 Machine Learning Design Methods  

In our approach, we will apply Francois Chollet’s universal workflow of machine 

learning design methods to our foul shot scenario.  Using DNNs to create meaningful 

machine learning applications is an iterative approach, at first we must understand and 

formulate the problem our application is attempting to solve – we must know the 

domain.  After resolving the use case, the next steps are to make decisions to find the 

correct data, extract the data, vectorize the data, and finally evaluate and train it to make 

predictions.  A first pass of analyzing, evaluating and training also goes through initial 

evaluations and measurements of success.  Before making deployment decisions, the 

need for changes or customizations to the machine-learning model may arise, making our 

design methods an iterative process of smaller experiments.  Issues arising during these 

iterative experimental processes may deal with data scrubbing, or the business model 

needing a deeper dive, or baseline measurements needing adjustments.  Design decisions 

regarding the use of pre-trained models, transfer learning, or further customizations also 

occur in an iterative approach (Chollet, Deep Learning with Python, 2018), (Cai et al, 

2020), (Elgendy, 2020).  

Machine Learning Design Methods 
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In trying to build an understanding of the use case in the first iteration, I noticed 

there is a certain repetitive approach to a basketball foul shot.  (Appendix 5.  Initial 

Video Trials).  First the person steps up to the foul line, dribbles, sets, aims, shoots, and 

follows-through.  As a designer in the Google ecosystem, there are some design 

playgrounds to use that attempt to capture these repetitive images.  These design 

playgrounds are a first step to start testing different modeling ideas in a machine-learning 

environment.  First we have the website TeachableMachine.withgoogle.com created 

by the Google Creative Lab in 2017 which “is a web-based tool that makes creating 

machine learning models fast, easy, and accessible to everyone.”  Next is ml5js.org, 

which uses Google’s TensorFlow.js to allow machine learning in the browser with 

minimal dependencies.  These two ‘play spaces’ are a development environment to see if 

a design idea is workable.  The actual experiments and first steps to attempting to classify 

dribbling, aiming and shooting was difficult.  The video model needed more training to 

recognize all three actions while the video was streaming.  Further issues were 

predictions only dealing with classifications and not future forecasts, or time series 

analysis.   

Teachable Machine uses transfer learning of Google’s MobileNet architecture so 

you can classify your own images.  The first iteration in design consists of taking a 

sample of about 100 images of dribbling, 100 images of setting, and 100 images of 

shooting, and then loading them into Teachable Machine.  Teachable Machine trains the 

model, and then exports the weights and the model files, for deployment to our trial 

application.  This allows the designer to see if the design concept has any chance to 

become a part of the overall project. 

about:blank
about:blank
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 Examining the two images to the left, show 

the accuracy of our model is working, but 

needs more training and image data to 

increase the accuracy.  Even if this first 

model does not yield the best model for the 

use case, some good lessons come from 

developing it.  There is some excellent Python code found in the Keras community pages 

to scrape images frame by frame from an mp4 video (Keras, 2021).  This code is in 

Appendix 1 under the title Video Scraping Code.  Improving the accuracy of this model 

is possible by feeding the layered model more images of positive and negative 

results.  Improving this iteration is not the direction to go.  The focus of direction is to 

examine proper motion to send the basketball into the basket and to get feedback from 

our model to improve shooting accuracy.  Our focus is on developing the motor skills in 

the shooting aspect of the mind-body experience.  Once this is in our model, the addition 

of the action features will assure the person is following a repetitive process.  Note, 

during the calibrations and scraping of images from an mp4 streaming video, changing 

images to greyscale saves memory and computational power.  The code to assist in 

turning color to greyscale is in Appendix 1 under the Title Greyscale.  The images above 

are part of a browser application, which is fully functional and important main portions of 

the code are in Appendix 1 under the Title Foul Shot Action Classifier Code.  The focus 

is to develop the section of the app to demonstrate how the latest DNN models improve 

human motor skills with the latest in edge architecture. 
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From a purely semantic point of view, the first iteration attempt only classifies 

nouns and not verbs like shooting or aiming or setting.  Looking semantically at the use 

case, the problem may sound something like what follows.  The human steps-up to the 

foul line, dribbles until they feel comfortable, then coils in a set position to bend their 

knees, while simultaneously bending their shooting arm at an angle, to next push with 

their legs and rotate their upper arm at the correct speed and force to release the ball from 

their hand, at the optimal angle, to project the ball into the basketball hoop.  Yes, this is 

an awkward sentence, but it shows, from a semantical point of view, that our solution to 

the problem for motion is full of verbs and not nouns – and it is also a very complicated 

human motion problem.  This section points out the complexities to explore with the 

latest DNN models built by Google.  Using Teachable Machine and similar design 

playgrounds start the iterative design and development process and show how JavaScript 

works with the browser and edge architecture to work with human motion.  The next 

sections show the progressing iterative steps to customize and use well-developed 

machine learning models that are pre-trained and scalable to our examination of human 

motion with models developed with computer vision CNNs and the skeletal pose 

models.  It is not only important to iterate through the model we may use, but a re-

examination of  the business use case and domain should be looked at again to 

assure  a  machine learning model will help. 
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2.2 The Foul Shot Mirror – Interface Design 

 The Foul Shot Training Mirror has a dual purpose.  The first purpose allows an 

individual to extract data from the interface.  The second purpose is to use the data 

extracted from the CNN to train a RNN persistent bit file to make predictions for the 

interface.  The illustration below shows the completed Foul Shot Training Mirror 

interface.  Section 3.1 describes the data flow from video streaming to output. 

 

In the lower left is the output of motion predictions, key points, and key angles 

measured in real-time.  The shooter sees this output on a screen projector in their line of 

sight to allow for adjustments to their motor skills.  The predictions are of the shooter’s 

most optimal shooting mechanics, which allows immediate feedback to adjust their body 

mechanics to become a more consistent free throw shooter.  Note in the bottom right is 

the output of key points and key angles that are collected every 90 milliseconds.  The 

data from this table is then used to train the persistent RNN model.  The CNN model 
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outputs two colors, orange and aqua.  The orange is the left side of the body and the aqua 

is the right side of the body. 
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Chapter III  

Data Collection, Processing and Training 

Section 3.1 discusses the streaming video data flow from the web camera into the 

CNN and RNN to the output of the visual interface for the person shooting the foul shot.  

Section 3.2 discusses the importance of becoming an expert in the field of study to 

understand the data under analysis.  The RNN algorithms proposed need help 

understanding important pieces of the data.  Understanding the data is essential to reduce 

the number of rules before the labeling and training process begins.  As a deep learning 

engineer, reducing the hypothesis space is an essential task; otherwise, the RNN spends 

an unreasonable amount of time finding a solution. 

3.1 Video Streaming Data 

Video streaming data flows from the webcam into the web browser with 

JavaScript gluing all the pieces needed to create the visual interface.  MediaPipe Pose is 

the next important step in the data flow process.  The webcam pipes the data images into 

the CNN inside of MediaPipe’s Pose model where 33 skeletal points are determined.  Of 

the 33 points only a subset are needed to create the output for the Foul Shot Mirror.  The 

subset is determined from the observations and experiments discussed in the following 

chapters and sections.  The subset of data determines the right side of the body verses the 

left side.  It also determines significant angles used by the shooter to project the ball into 

the basket.  As outlined in the experiments section, data is collected to feed an RNN 

using TensorFlow.js.  TensorFlow.js is used because we pipe in the predictor function to 
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read our saved model stored as a bit file.  The bit file is created with Python Keras and 

converted to JavaScript with TensorFlow’s model converter.  Data is then output to the 

interface in the form of predictions, which are dribbling, pre-set, set, and a confidence 

level of success for the basketball foul shot. 

The diagram below shows the instant feedback loop.  The instant feedback loop 

enables the computer vision to interact with human vision, therefore increasing human 

cognitive awareness of fine motor skills.   

 

The above interaction and feedback loop occurs within 3,000 milliseconds.  The 

interactive sensory effect increases because of the tight feedback loop.  The 

individualized RNN model to predict optimal motions steers the behavioral changes of 

motor skills through the cognitive influences of the mirror.  As a result, the mirror-like 

interface creates a new way to study cognitive awareness of motor skills in the human 

body.  An individual can work in private, on a team, or in a larger social network to 

enhance or study their motor skills, therefore enhancing and substituting the more 

traditional methods of learning fine motor skills. 

From the experiments below, we determine the most significant key points from 

the skeletal model, and most significant angles for angular velocities to effect the success 
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of the foul shot.  The purpose of this is to pick out the skeletal points that attribute to the 

optimal body mechanics of the foul shooter.  Picking out the key points and 

understanding the data is important to lower the hypothesis space.  Lowering the 

hypothesis space reduces the cost of learning the large number of combinations presented 

to the training of the RNN.  By only presenting the RNN algorithm with solid data from 

our experiments and observations, we create a better predicting model by understanding 

the data. 

3.2 Data for Motion Monitoring 

 After working with some pre-design models, it is time to take a harder look at our 

domain and the data to extract and resolve our machine learning motion detection 

dilemma.  The first problem at hand is to design our application in such a way as to 

extract data from the shooter when they shoot a successful foul shot, secondly to provide 

feedback on how to correct body motions to improve motor skills and increase the 

percentage of a successful foul shot.  The design must scale to monitor many varieties of 

individualized shooting mechanics, so careful design choices to extract features by using 

DNN models with the ability to normalize data between varying individuals is 

important.  To understand our use case, our model will determine the important features 

from a webcam video analysis of a human shooting a foul shot.  To get a better 

understanding of the domain, listen to the referenced you-tube video to understand how a 

professional basketball player approaches the foul line (NBA_TV, 2019).  The reason 

why this is such a great video is because it represents a time before modern sports 

analytics started any discussions about DNNs working with image analysis.  The 
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important points Red Auerbach makes in his interview with Rick Barry and Jamal Wilkes 

show that these proven basketball athletes have a sort of sixth sense.  Our electronic 

personal basketball foul shot assistant will help the average person find this sixth sense, 

learn to fine tune their motor skills, optimize their motion, and become more successful at 

the foul shot.   

In the video, Red asks Rick Barry, “Why do you bounce the ball three times, not 

two, not four?”  Rick’s response is ‘repetition,’ it’s his habit.  In other words, it becomes 

part of his subconscious.  If you listen closely, Rick even says, “I think it is repetition, it’s 

the same way time after time, so that it becomes something that just gets embedded into 

your mind.”  This is why I believe part of the goal for our research is to raise cognizant 

awareness and to find ways to increase an individual’s awareness of their mind-body 

relationship.  A person can increase their cognizant awareness with the aid of the current 

technologies in Deep Neural Networks.  This human-machine symbiosis will help 

humans learn optimal motions by strengthening their mind-body connection.  The 

professionals in the video also discuss the softer touch and the backspin to help the 

likelihood of the basketball going into the hoop, which is a helpful bit of information to 

learn about the domain.  So which way should you shoot?  Both Rick and Red believe 

that you should shoot the way you feel most comfortable and have the most confidence, 

and that is why this application will use each individual shooter’s data output for training 

to personalize a shot and embed the repetitive steps into the user’s repertoire.  Next, Red 

compares the different style of shooting with Jamaal Wilkes.  Red says, “If I ever had to 

teach his way, I’d die a horrible death.”  Red finishes off by rhetorically asking, “Is there 

a right way?  I say no” Either way you shoot, it does not matter.  “The answer is do what 
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is best for you.  Do it the way you can make it.  That’s the name of the game.  Relax, 

follow-through, but make it!”  (NBA_TV, 2019) 

For those of us who are not natural athletes, and our bodies do not naturally adapt 

to Red Auerbach’s strategy of simply relaxing and following through, there are more 

formal studies of the mechanics of basketball (Marion Alexander et al, 2014).  In addition 

to personalizing the foul shot assistant, we will take advantage of the formal mechanical 

studies to get a better understanding of the domain of the mechanics of shooting a foul 

shot to include these more formal interpretations within our model.  Most studies indicate 

a repetitive repertoire is important, but the consistency of release angle, release timing, 

and minimal variability in body mechanics between shots attributed to the success of the 

foul shot.  One cannot ignore the psychological impacts of stress during any human or 

competitive sporting event.  In this experiment, the focus is on a practice shot in a non-

game situation.  There is room for future experimentation with DNNs for the effect of 

adding stressful situations to the human shooter, but we will not analyze it here.  The 

benefit to setting a baseline will help to understand stress and anxiety on the motor skills 

of an individual in future studies (David J. Wright et al, 2018).  In other studies, research 

is carried out to determine if it is possible that during the learning process in practicing a 

foul shot can increase the ability to acquire motor skills (F. MartijnVerhoeven et al, 

2016), (Kearney et al, 2017).  This is significant because if one can monitor and acquire 

motor skills to improve deficiencies, whether in sports, or for general health and 

happiness, it is a positive impact for the person and society.  The significance of motion 

studies also influences applied sciences in the manufacture of compression garments 
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(Wong et al, 2020).  Also, see Appendix 6 for list of Common errors in Free Throw 

Shooting (Marion Alexander et al, 2014). 
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Chapter IV 

Skeletal Models and Experiments 

Let us define our problem so far.  We are given these fixed foul shot variables 

consisting of a basketball measuring nine inches in diameter, weighing twenty-two 

ounces, a basket measuring eighteen inches in diameter, a foul line fifteen feet away from 

a basket ten feet in the air (Lockard, 2021).  Since these items represent our fixed 

variables, focusing the design of our machine learning algorithms is not here.  The focus 

for the machine learning design is where the feature maps need creation, meaning the 

focus is on the human motion that sends the basketball over a fixed distance into the 

basketball hoop.  This process emulates a standard physics problem of a catapult sending 

a projectile with a certain magnitude of velocity and angular velocity to reach a certain 

distance.  If we were to set a mechanical catapult arm at the foul line, we could create an 

arm that would project a basketball at the proper angle and speed to reach a high degree 

of accuracy of scoring each time.  This problem presents itself in the same way, but 

instead of a fixed mechanical arm, we have human perceptions, cognitive abilities, and 

adjustments to motor skills measured with The Foul Shot Mirror.  In fact, traditional 

ways of a human learning a foul shot is by trial and error, by shooting a foul shot in a 

repetitive way, and changing their motor skills by using their intuition and moving their 

body to score a higher percentage of foul shots.  The design of our machine learning will 

emulate the cerebral process of manipulating these body positions to optimize the motor 

skills by learning the features of a video stream of a person shooting a foul shot.   
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As discussed above, knowledge of the domain is important to pointing our 

machine learning algorithms at the correct features.  As Redman points out in a recent 

Harvard Business Review article, practical experiences of the modeler with the data 

model are important for a successful implementation of your findings (Redman, 

2018).  By actually getting out and shooting foul shots, the modeler, while learning to 

advance certain motor skills, begins to formulate a machine-learning model.  The 

experienced modeler knows the proper machine learning models to apply to the problem 

at hand, knows when to customize, and knows the systems necessary to bring the 

application to fruition.  When the data modeler observes the learning process of how to 

throw the basketball into the basketball hoop from the foul line, they realize they are 

learning to adjust certain motor skills to change their human motions to affect the flight 

of the basketball.  Human intuition applies these rules, using their mind to make their 

bodies enable the motions they believe will increase their chances to make the basketball 

fall through the hoop.  In this machine learning design, we want our machine-learning 

model and algorithms to take the rules learned intuitively and help automate the learning 

process.  Essentially, our intuition as to what makes a successful shot will result in 

labeling what makes a higher probability of a shot going into the basket, versus not 

getting to its destination.  The ability to label our intuitive thoughts against the proper 

Deep Neural Network model makes the use of DNNs a natural progression for the 

symbiosis of human and machine integration.   

Our model will take advantage of the idea of the catapult physics problem 

mentioned above and the skeletal DNNs used in Google’s skeletal simulation 

models.  The model to design will make a representation of the cerebral process 
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occurring within a basketball player routine while learning to shoot a foul shot.  The 

model will use the DNN skeletal model to measure the angular velocities and positions of 

the foul shooter. 

 

 

 

 

 

 

 

The two main actions of the shooter 

are to set-up and aim, then shooting by 

uncoiling the body to send the 

basketball on its way to the basket.  

There are three main angles to 

measure in our model.  Each angle has 

a starting and ending point.  

Traditionally, we could measure the 

speed at which the angles change to 

determine linear and angular velocity 

to understand the optimal angles and 

time to change.  However, the 

machine learning and digital video 

media with browser technology will 

measure this for us in near real-time.  

The output will provide feedback to 

the shooter to aid in their knowledge 

on how to alter their motor skills to 

increase the accuracy of their foul 

shot.  The speed at which the angles 

change are the features our model will 

learn to determine optimal speed and 

angles to successfully shoot a foul 

shot. 

Shooting 
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4.1 DNN Skeletal Architectures 

As you recall, the first iteration of our model focused on correct steps or actions 

leading up to and including the shooting of the basketball, but the next experiments will 

use pre-trained models.  The pre-trained models are the skeletal models.  This study uses 

the open source skeletal models from Google.  The current models Google has are 

PoseNet, MoveNet, and MediaPipe Pose.  The next iteration examines Google’s PoseNet, 

and the important pieces of code are located in Appendix 1 under the Title PoseNet.  This 

web application uses JavaScript, TensorFlow.js, and the PoseNet model from the pre-

trained TensorFlow PoseNet models.  The new customization is using code from a game 

demonstration that shows how to extract the key-point data from the skeletal PoseNet 

model (Rivera et al, 2020).  The point here is that a machine-learning designer must be 

able to customize pre-trained models from Google’s machine learning libraries to 

customize new ideas.  The designer must be creative because every domain will not 

exactly fit into a pre-trained model, so as the iterative process plays out, the creative 

skills must take-over.  Learning how to extract the proper key-point data is the biggest 

discovery in this iteration, this data extraction into the front-end index.html page allows 

us to follow the motions of the key-points in relation to time measured in 

milliseconds.  The projection of the seventeen key-points to skeletal points in a streaming 

video is the key to measuring motion of the human body.  Projecting the key-points onto 

the human body with deep neural network based image animation with JavaScript 

delivers near real-time results in the browser.  The JavaScript code allows you to change 

the model and use the MobileNet or ResNet architecture, while also changing the output 

stride of the CNN architecture.  Further, this model allows you to adjust the depth of the 
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layers in the transfer learning of the MobileNet CNN.  Current practices suggest that a 

multiplier of 0.75 is a sufficient depth in identifying the key-points onto the human body 

to create an accurate pose.  The results in this iteration were not impressive due to latency 

issues with the PoseNet skeletal model.  This led to more research and to a finding of a 

better skeletal model, which has 33 points and a software release in December of 

2020.  The new skeletal model is Google’s MediaPipe Pose and using it in the third 

iteration resolves the latency issue. 

The third iteration brings Google’s MediaPipe’s Pose to the forefront.  In review 

of the second iteration, we discovered the value of extracting the skeletal points from a 

live video stream.  The problems with PoseNet and MoveNet is latency in drawing and 

extracting the key-points in a near real-time manner.  Adding more customizations to the 

PoseNet model increases latency and hampered real-time progress.  As noted above, the 

two main actions of the shooter are the action of ‘set-up and aim’ and then the act of 

‘shooting.’  This breaks down to a physics type of problem, similar to measuring the 

forces and angles of shooting a projectile a certain distance.    
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These drawings to the left are 

depicting the three angles in the 

diagrams above - ‘Set up and 

Aim’ and ‘Shooting.’  The white 

angle above represents the 

Shoulder, Elbow and Wrist 

Angle in the first diagram.  

(SEW)   

 

 

 

 

 

 

 

 

 

 

 

The next angle, depicted by 

the green arrow above, starts 

in the set position and its 

final position is illustrated to 

the left, it moves from start 

to finish over a certain 

period, therefore exerting a 

certain speed or velocity to 

the ball.  Releasing the ball 

creates the shooting angle 

and projects the ball toward 

the basket.  The green arrow 

above represents this with 

labels in the diagram as the 

Wrist, Shoulder, and Right 

Toe Angle.  (WSR). 

 

 

 

 

 

 

 

 

 

 

 

 

Angle represents the Shoulder Elbow Wrist Angle.  

SEW 

 

     

 

 

 

 

 

 

Starts at this angle  Finishes at this angle 

  

Time to travel emulates speed or velocity of ball 

speed 

 

Angle represents the Wrist Shoulder Right Toe Angle.  

WSR 

                                                                                                                    

             

 

 

 

 

 

 

 

 

 

 

 

                                    

 

 

 

Finishes at this angle – this is the hand pointing at a 

launch angle from the right hand.  
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The angle in orange in the 

above diagram represents 

the Hip, Knee, Ankle angle.  

(HKA)  The force projected 

by this angular velocity acts 

as extra force to project the 

ball to the correct distance.  

The deeper the bend and 

faster the push with the legs, 

then the more distance the 

ball will travel. 

 

 

 

 

 

 

 

4.2 BlazePose architecture 

On Thursday, December 10, 2020, Google announced the release of its MediaPipe 

Pose Skeletal model with 33 pose estimation points for desktop, Android, and iOS (Ivan 

Grishchenko and Valentin Bazarevsky, 2020).  The new MediaPipe BlazePose APIs are 

ready-to-use for the web in JavaScript.  This architecture offers toe and hand Landmark 

points that will be useful in this basketball free throw analysis.  The MediaPipe 

BlazePose technology offers near real-time machine learning in the browser.  The 

architecture works best with few people, works in near real-time, uses mobile, is web-

friendly and can work accurately at a distance of 19.50 feet.  The unique architecture of 

the machine learning Landmark detection is that it uses a regression with heat-map 

supervision, deep integration with TensorFlow Lite on mobile/IoT for full HW 

acceleration (CPU, GPU, and Edge TPU) (Brunham, 2021). 

 

Angle represents the Hip Knee Ankle Angle.  HKA 

 

 

 

 

 

 

 

 

 

 

Starts at this angle  Finishes at this angle 

 

The time between these two angles gives a little more 

speed to the shot depending on how deep the bend of 

the knee angle.  Time difference represents speed and 

velocity 
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See the BlazePose Skeletal Diagram below. 

 

The actual points to draw the angles from the model map to the diagram below. 

 

Angle 

abbreviation 

 

 

Description 

BlazePose 

Landmark 

and 

Description 

BlazePose 

Landmark 

and 

Description 

BlazePose 

Landmark 

and 

Description 

 

SEW 

Shoulder, 

Elbow, Wrist 

angle 

12.  Right 

Shoulder 

14.  Right 

Elbow 

16.  Right 

Wrist 

 

WSR 

Wrist, 

Shoulder, Foot 

angle 

16.  Right 

Wrist 

12.  Right 

Shoulder 

32.  Right foot 

index  

 

HKA 

 

Hip, Knee, 

Foot angle 

24.  Right Hip 26.  Right 

Knee 

32.  Right foot 

index 

 

4.2.1 BlazePose Skeletal Diagram  

 

The Landmark 

Diagram is 

sometimes referred 

to as the skeletal 

model.  This 

model has 33 pose 

Landmark points 

Pose - MediaPipe 

(google.github.io) 

 

 

 

 

4.3 Extracting Angular Velocity from MediaPipe Pose 

In Google's MediaPipe site, there is a Web Demo link of BlazePose JavaScript 

code in CodePen (CodePen-Google, 2021).  The Web Demo code is JavaScript, and after 

examining the code and API of the BlazePose model, customizations to the code are 
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necessary.  See Appendix 1 under the Title BlazePose customization.  To properly 

extract the data and measure the angles, adding a formula to determine an angle and a 

time output in milliseconds is necessary to measure angular velocity.  To determine an 

angle, we only need three points, and there is sample code on MediaPipe’ s site, for 

proper customization to the code in the JavaScript file shown in Appendix 1 under the 

Title Angular Calculation.  The final interface is illustrated below. 

 

Illustration A is the data extraction web page.  The data table in the lower left of 

illustration A is in Illustration C, and represents the angles in the pose diagram in 

illustration A at the time 1627471972284 milliseconds.  Illustration B is the pose position 

at the time 1627471972586 milliseconds and the output is in illustration D.  The data 

table for each millisecond representing one shot is below in the Data Output Diagram. 



 

31 

 

4.3.1 Data Output Diagram 

 

 

The purpose of the above iteration is simply to verify if the output data is useful to 

build and train our DNN model.  Notice the two yellow highlighted lines above represent 

the two pose positions.  The accuracy is extraordinary; see that our model extracts three 

data points in 439 milliseconds.  The orange highlighted column entitled setting is the 

Right HKA angle, which stays at about a 160-degree angle until the legs bend to decrease 

the angle from 160 to 113 degrees.  This detailed examination of features that the human 

motion creates represents the mind-body connection to optimize the projection of the ball 

into the basketball hoop.  The near real-time feedback loop allows the human to adjust 

the positioning of their body to ‘help human beings acquire, represent, and integrate 

knowledge’ (Campero et al, 2018).  The important item to note in the column titled Angle 

to Basket and highlighted in blue, is the average angle to the basket for the angles in blue 

highlight is fifty-seven degrees.  A cross reference to ‘Mechanics of the Basketball Free 

Throw’ shows a release angle is optimal at a high point and measures about fifty-five 

degrees (Marion Alexander et al, 2014).  The fascinating point our mirror-like personal 

basketball assistant shows, is the feedback is immediate, allowing a backward or forward 

chaining learning process to occur through machine learning technology.  The result of 

this shot was a success.  These calculations are great, but we want the machine to 
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determine all of these feature map relationships for the predictor variables.  So first, let us 

follow Chollet’s model and create a commonsense baseline to see if our machine model 

will be better than our commonsense classical programming approach. 
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Chapter V 

Baseline Models 

  The actual data in Data Output of section 4.3.1 above, is only the first 

seven columns, the additional columns are transformations to test our model assumptions 

to show the application is extracting useful data.  The data, from a commonsense 

viewpoint is useful, and the programming in a manual fashion will give us a baseline to 

test our machine-learning model that we will create from this output.  This commonsense 

approach outlined in ‘the universal workflow of machine learning’ is an identifiable way 

to measure the success of the trained model from our output (Cai et al, 2020).  Our goal is 

to develop a model to beat our commonsense baseline, and to see if the machine-learning 

model is more accurate.  This commonsense baseline programming approach is a more 

traditional non-machine learning approach, using data extracted from a pre-trained 

model.  The concept behind the machine learning algorithm approach for this domain is 

the algorithm picks up dribbling when the angle illustrated in the diagram below, marked 

in green drops down to less than a twenty-five degree angle.  Unlike the classification 

model developed with the Teachable Machine design tools, the skeletal model is 

universal to different size skeletal frames, changes in scenery, and changes in people of 

different shapes and sizes.  In the skeletal model, each person will have these same 33 

data points, and the model will not need to train itself to ignore irrelevant items.  This 

shows the importance of a domain expert’s knowledge to dig into the data and extract 

items that are helpful to the machine learning training set.  The machine learning 

algorithms will take many more parameters while analyzing many relationships.  It is the 
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designer’s responsibility, in a supervised learning scenario, to give the model relevant 

scrubbed data. 

5.1 Three Key Positions 

 

See how, in these three key positions, the three angles; 

green, orange and red change relative to time.  Their change 

in position over time is a measure of angular velocity.  The 

assumption is, if the angles and time feed into a machine-

learning model, the training of the model will yield the 

parameters necessary to predict the necessary motions to 

shoot a basket at a 90% success rate.   
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5.2 Green Angle 

The green angle (WSR) between wrist, shoulder and right toe is less than 25.5 degrees so 

the Motion Prediction yields ‘Dribbling.’ 

 

 

5.3 Orange Angle 

The orange angle (HKA) is less than 143 degrees indicates a Motion Prediction of SET. 
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5.4 Green and Orange Angle changing over time 

The green angle (WSR) is greater than 130 degrees, and the orange angle (HKA) is 

greater than 160 degrees - indicating a 90 % chance of scoring. 

 

Next, let us apply the RNN machine learning algorithms to the data output from the 

above descriptions of the Pose skeletal model.  We will compare the machine-learning 

model to the commonsense baseline approach. 
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Chapter VI 

CNN and RNN Models 

What we have so far is a model pushing out data from a pre-trained Pose 

model.  The pre-trained Pose model is the creation of Google Research, developed over 

the span of several years, delivering the data, low latency and privacy we need.  Our 

challenge is to customize this well engineered model to avoid having to retrain our own 

skeletal model because it will be very expensive in time and resources.  The 

commonsense baseline, in the above chapter, creates prediction outputs using classical 

style programming to transform the output data.  Classical programming means the 

programmer enters the control statements for the conditions of the angles to output the 

predictions.  See Appendix 1 under Classical Style Programming to see the control 

statements delivering the output of the motion prediction variable in iteration two 

above.  It is impossible to use classical programming to customize all the possible 

features represented from the output of MediaPipe’s Pose skeletal model.  In addition, it 

is not feasible to reprogram the application for each new basketball shooter's style.  What 

is feasible is for the machine to take the machine-generated data and create a machine-

learning model.  The model it creates is a representation of the angular velocity 

combinations to yield a prediction of the basketball going into the basket.  We also want 

it to predict when the person is ‘dribbling’, in the ‘preset’ position, and the ‘set’ position.   

As discussed above, we know that a modern machine-learning model will use 

many thousands of parameters, neurons, and features to solve our prediction problem 

(Elgendy, 2020).  The question to answer now is which machine learning model will best 

describe our data output.  Since our angular velocity representation relies on time series 
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and needs a memory state of the previous shooting position, we choose a deep learning 

model from the Recurrent Neural Network family of models.  There are several Recurrent 

Neural Network models to choose from, namely RNN, LSTM, and GRU (Chollet, Deep 

Learning with Python, 2018) (Cai et al, 2020).  Data collection is very important, and 

good data is the difference between a good and bad model, otherwise model performance 

is low and the iterative process of development begins again (Appendix 2 Application 

and Data).  

Using Python and Keras (Keras, 2021) to build our persisting models we use a 

python converter function to convert the h5 format into a model in json format.  Since our 

customization is using python, a conversion to a JavaScript json file format is necessary 

to use in our MediaPipe Foul Shot Mirror application (TensorFlow, 2021) 

(API_TensorFlow, 2021).  Note we are using a TensorFlow script tag to pull the 

TensorFlow.js API into our model.  Now our model is using MediaPipe APIs and 

TensorFlow.js APIs, where MediaPipe is controlling the BlazePose Model and 

TensorFlow.js is controlling the RNN model predictions with data output from the 

BlazePose skeletal model.  See Appendix 1 under TensorFlow Model Predictor to see 

where prediction generates from the weights and model topology of the json file.  
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Chapter VII 

Results and Discussion 

7.1 Choosing a Model 

Taking the data from the skeletal model and labeling it to train with an RNN 

model is part of the process of hyper-parameter optimization.  “Unfortunately there is 

currently no definitive algorithm that can determine the best hyper parameters given a 

dataset and the machine-learning task involved.”  (Cai et al, 2020)  We look at three deep 

learning models to find the Gated Recurrent Unit (GRU) with Dense Layers performing 

better than the Long Short Term Memory (LSTM) and the Recurrent Neural Network 

with conv1d (Chollet, GitHub Repository, 2018), (Cai et al, 2020), (Geron, 2019).  See 

Appendix 7 Summary of Model Layers.  There is a plethora of research to compare 

different models with different data sets, and there are a few interesting studies to build 

our intuition on the subject.  One research study examines GRU vs LSTM to discover 

that GRU is just as powerful as LSTM (Chung J. G. et al, 2014).  Another study shows a 

GRU performs better than an LSTM under certain types of content.  The study goes on to 

suggest that GRU outperforms LSTM when the sample size is small (Gruber et al, 

2020).  Intuitively, a basketball foul shot sequence pattern is not a long sequence; the 

significant parts of the foul shot occur in the sequence {Dribbling, Pre-Set, Set, 

Confidence} and usually occurs in less than 3,000 milliseconds.  Therefore, this short 

sequence along with a smaller dataset may contribute to the better results of the Gated 

Recurrent Unit over the other models.  The main goal of the Foul Shot Training Mirror is 
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to show RNNs not only apply to predicting the next word in a sentence, but also predict 

the next result in a series of motions. 

Therefore, the GRU model converts to persist in json format and is now the 

predictor for the Foul Shot Training Mirror application and testing begins at the 

basketball court.  The set-up for the webcam is on a chair about eighteen inches off the 

ground, fourteen feet away and perpendicular to the foul line.  The webcam must have 

the entire body in its view; have the selfie mode on, and pointing toward the shooting 

side of the person shooting the foul shot (Appendix 8 – Set-Up Instructions).  The 

example shown is designed for a right-handed shooter.  In all, the substitution of the 

‘classical programming’ control statements with the RNN deep learning model works 

better than the commonsense baseline from iteration two above.  The illustrations below 

represent a sequence lasting 2,618 milliseconds where the GRU successfully identified 

dribbling, pre-set, set, and gave the motion sequence an 85% chance of making a 

basket.  The basketball shot did go into the basket to score the foul shot.  Showing the 

GRU is able to predict the next result in a series of motions.  The GRU model does 

perform better than the commonsense baseline proving that our deep learning model is 

the direction to go and is the cost effective alternative.  Knowing it is cost effective, we 

can expand our experiments with more data trials and more people in future 

iterations.  This will significantly increase our dataset and make our model even more 

accurate. 

A personal observation after analyzing my results from the Foul Shot Training 

Mirror is a cognitive awareness of my body mechanics.  It showed me, in a symbiotic 

way, to change my focus and to bend my knees a little deeper, push hard with my legs 
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and point my hand to a higher position pointing at the top of the backboard, then the ball 

would go in and the confidence score rises.  This cognitive action is the result of 

watching the Foul Shot Mirror and then changing my fine motor skills to affect my body 

positions.  The GRU is performing better than the baseline, because when running after 

the ball, or dribbling away from the foul line the Motion Prediction remains 

‘Empty’.  The commonsense baseline method will return predictions regardless of where 

I am standing, and return predictions if pretending to shoot the basketball.  The deep 

learning model is not only successfully predicting the sequence, but we also were able to 

add the ‘Preset’ motion as part of the predictions.  The fact this deep learning model 

works, shows the flexibility for new individual shooting styles to train their own personal 

shooting data.  Below are screenshots of live streaming webcam video while the Foul 

Shot Training Mirror is running. 

 

Dribbling at 

1629892177593 

milliseconds 
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Pre-Set at 

1629892178319 

milliseconds 

 

 

 

 

 

 

 

Set at  

1629892179642 

milliseconds 
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Predicting 85% at  

1629892180211 

milliseconds 
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7.1 Usability 

It is easy to see basketball gymnasiums may make this part of their equipment 

because the cost of this technology is low and creates an excellent learning and social 

atmosphere to learn physical skills.  In the past only professional teams or elite teams had 

exclusive use of this type of training and technology.  Tools like the Foul Shot Training 

Mirror developed with deep neural networks create a significant impact to allow better 

quality tools to a more diverse group of individuals.  The diversity will affect a coach and 

player relationship, where the coach gives instructions after reviewing the images of the 

training mirror and then the individual can go work on their own and protect the privacy 

of results.  By bringing anyone together to learn and analyze each other’s technique of 

shooting helps set the direction to continue the research of Human Computer Interaction 

into the next generation.  The ability of the tool to work privately and with low latency 

makes it a socially significant tool of the future.  These new types of interactions create 

even more data and now even more ways to analyze, predict and innovate human 

motions. 

7.2 Scaling to Other Basketball Shots 

Now that the groundwork and baseline are set for analyzing the individual foul 

shot, the next iterative step is to examine the three point shot.  The same type of 

experiments and iterative approach will work with many other shooting 

situations.  Adding another geospatial variable as another predictor to determine where a 

person is on the court is necessary, but as proven, the deep learning algorithms will 

output the proper prediction model.  Expanding the iterative process to other shots, and 
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shots with defenders, perhaps adding more predictors to identify a defender is also a 

natural next step.  Intuitively, we know if a person is defending the shooter, then it will 

lead to a lower success rate.  Again, the same iterative process works, but creativity must 

abound while designing the extra complexities.  Now with more data, other tools will 

come to fruition, for instance, with the different types of shots in our model, the training 

mirror becomes an excellent scouting tool to recognize shooters with slightly less than 

perfect shooting styles.  A top athlete with slightly less than perfect technique, while not 

standing out with high scoring percentages, will be the diamond in the rough, and easily 

recognizable for the Foul Shot Training Mirror and the scout trained to use it.  A trained 

scout can use this tool to recognize a slight change in technique will raise the quality of 

the player.  Using the tool to maintain performance is also a great benefit, because when 

the athlete begins to reduce the accuracy of their shot, they can review and compare past 

data to adjust their motor skills back to a prior state. 
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Chapter VIII 

Conclusion 

“…  Imagine sixty years from today, personal robot assistants small enough and trained to guide proper 

motions of our bodies to perform amazing feats, and aid in motion maintenance as we age or become 

injured.”              

(Zielinski, 2021) 

 

  

One of the aims of this research is to examine the best deep neural network 

models to make predictions about human motion and to teach fine motor skills to 

improve a basketball foul shot.  The approach taken is hands-on, where we discovered the 

proper motions to become a better and more consistent foul shooter.  By experimenting 

on the basketball court with a web camera, we discovered the proper motions essential to 

completing a successful shot.  The discovery yielded a sequence of steps to include, 

dribbling, pre-set, set, and shooting.  Next, we discovered the best models to use by 

applying a machine learning workflow to build the working prototype that we call The 

Foul Shot Training Mirror.  The iterative approach led to the discovery of piping both 

MediaPipe’s Pose and TensorFlow.js through the web camera.  MediaPipe’s Pose deep 

learning based image animation allows the extraction of key body points for three major 

body angles to measure while shooting the basketball.  We discovered the Pose model 

accurately pulls data from the web camera to measure the time series sequence within 

3,000 milliseconds.  The Pose model did this accurately while at a distance of 18 feet 

from the shooter.  Next, training the time series data with three RNNs led to the discovery 
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that the Gated Recurrent Unit (GRU) is the best predictor of the shooting sequence.  In 

all, MediaPipe Pose with TensorFlow.js piped through the web camera and using a Gated 

Recurrent Unit (GRU) deep learning model to make predictions with the output from the 

skeletal model is the best deep neural network set-up to examine human motion and to 

teach fine motor skills.  In other words, we discovered the best set up is the MediaPipe 

Pose CNN based deep learning model, which feeds skeletal simulation data into the 

TensorFlow.js predictor model, which then reads the GRU deep neural network model to 

make motion predictions.  Further, this prototype dissolves the roadblocks of latency and 

privacy of individual data issues by making predictions and inferences entirely with local 

processing in the client browser.  The discovery of these deep learning models enhancing 

motion detection, simulation, and cognitive awareness in a private environment all 

contribute to the advancements in the study of human computer interaction (HCI). 

Applying this quality of mirror-like feedback applies to many modalities that 

require the refinement of fine motor skills.  The mirror-like feedback also allows for 

immediate forward and backward chain learning, which is an important style of learning 

to improve fine motor skills.  This prototype can scale with many other applications.  For 

instance, applications to guide a professional or amateur athlete to learn a new skill, a 

physically impaired auto accident victim to recover from their injuries, an amputee 

learning to use a new prosthetic, an elderly patient to maintain proper walking motions 

and avoid an unnecessary fall, and even lifetime monitoring of proper body mechanics as 

humans age.  The Foul Shot Training Mirror delivers real time information making a 

person more cognizant, both somatically and at a subconscious proprioceptive level. 
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Appendix 1. 

Code Highlights 

Video Scraping Code    

import os 

import cv2 

saveTo = 'C:\\Users\\edzie\\Pictures\\Frames3' 

path = 'C:\\Users\\edzie\\Pictures\\Source' 

#def create_Frames_FromVideos(): 

for video in os.listdir(path): 

    #print (video) 

       # try: 

        # Opens the Video file 

    videoPath = os.path.join(saveTo,video) 

    print(videoPath) 

    cap= cv2.VideoCapture(videoPath) 

    i=0 

    while(cap.isOpened()): 

        ret, frame = cap.read() 

        if ret == False: 

            break 

        #savePath = os.path.join(save_to, 'frame'+str(i)+'.jpg' 

        print(savePath) 

        cv2.imwrite(os.path.join( 'C:/Users/edzie/Pictures/Frames2', 

'frame'+str(i)+'.jpg'),frame) 

        i+=1 

     #   except Exception as e: 

     #       pass 

#create_Frames_FromVideos() 

To add a row, hover your mouse to the left of one of the gray lines between or 

after rows; to add a column, hover your mouse above one of the gray lines between or  

Greyscale 

import matplotlib.image as mpimg 

import matplotlib.pyplot as plt 

%matplotlib inline 

import numpy as np 

import cv2 

%cd C:\\Users\\edzie\\ 

%ls 
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image_color = mpimg.imread(‘fileName.jpg') 

plt.imshow(image_color) 

image_color.shape 

image_gray = cv2.cvtColor(image_color, cv2.COLOR_BGR2GRAY) 

plt.imshow(image_gray, cmap = 'gray') 

image_gray.shape 

Foul Shot Action Classifier Code  

//First iteration ml5 showing DNN model use to make predictions 

const startModelClassification = () => { 

    console.log('ml5 version:', ml5.version); 

    // Initialize the variables required 

    const classifier = ml5.imageClassifier('./src/model_7/model.json', 

modelLoaded); 

    const img = document.getElementById('frameContainer'); 

//C:\Users\edzie\VideoScraping\src\model_DribNotDrib_6_2_2021 

    // When the model is loaded 

    function modelLoaded() { 

        console.log('MobileNet has been loaded!'); 

        setInterval(() => { 

            let dataurl = videoCanvas.toDataURL(); 

            img.setAttribute('src', dataurl); 

            // Make a prediction with a selected image 

            classifier.classify(img, (err, results) => { 

                if (err) { 

                    console.error(err); 

                } else { 

                    let best_result = results[0]; 

                    console.log(best_result) 

                    document.querySelector('#label').innerHTML = best_result.label; 

                    document.querySelector('#confidence').innerHTML = 

best_result.confidence.toFixed(2); 

                } 

            }); 

        }, 200) 

    } 

} 

 

const startModelClassification = () => { 

    // ml5 

    console.log('ml5 version:', ml5.version); 

    // Initialize the variables required 

    const classifier = ml5.imageClassifier('./src/model_7/model.json', 

modelLoaded); 



 

50 

 

    const img = document.getElementById('frameContainer'); 

//C:\Users\edzie\VideoScraping\src\model_DribNotDrib_6_2_2021 

    // When the model is loaded 

    function modelLoaded() { 

        console.log('MobileNet has been loaded!'); 

        setInterval(() => { 

            let dataurl = videoCanvas.toDataURL(); 

            img.setAttribute('src', dataurl); 

            // Make a prediction with a selected image 

            classifier.classify(img, (err, results) => { 

                if (err) { 

                    console.error(err); 

                } else { 

                    let best_result = results[0]; 

                    console.log(best_result) 

                    document.querySelector('#label').innerHTML = best_result.label; 

                    document.querySelector('#confidence').innerHTML = 

best_result.confidence.toFixed(2); 

                } 

            }); 

        }, 200) 

    } 

} 

PoseNet 

//Module index.js 

  async function getPose() { 

     const pose = await model.estimateSinglePose(video, { 

     flipHorizontal: true, 

   }); 

 

    drawKeypoints(pose.keypoints, MIN_CONFIDENCE, ctx); 

    drawSkeleton(pose.keypoints, MIN_CONFIDENCE, ctx); 

 

//Module draw.js 

          inputs.push({partNumber: i, score: keypoint.score, x: x, y: y, part:     

keypoints[i].part, time: time}); 

          console.log('partNumber is ' + i + 'keypoints object is ' + keypoints[i].part + 

'\n'   

          + 'score is ' + keypoint.score) 

   

 model = await posenet.load({ 

    //model = await movenet.load({ 

    architecture: 'MobileNetV1', 
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    outputStride: 16, 

    inputResolution: { width: SIZE, height: SIZE }, 

    multiplier: 0.75, 

     

  }); 

 

BlazePose customization  

    /* RIGHT side three points index */ 

    const shoulderIdx = 12; 

    const elbowIdx = 14; 

    const wristIdx = 16; 

    const rfFootIdx = 32; 

    const rHipIdx = 24; 

    const rKneeIdx = 26 

    const rAnkleIdx = 28 

    /* RIGHT side three points index */  

 

function getAngle(firstPoint, midPoint, lastPoint) { 

    console.log('shoulder x is ' + firstPoint.x + 'and y is ' + firstPoint.y) 

    let result = radians_to_degrees(Math.atan2(lastPoint.y - midPoint.y, lastPoint.x - 

midPoint.x) - 

        Math.atan2(firstPoint.y - midPoint.y, firstPoint.x - midPoint.x)); 

    result = Math.abs(result); 

    return result > 180 ? (360 - result) : result; 

}     

 

 

/* calculate angle */ 

    const shoulder = { x: results.poseLandmarks[shoulderIdx]['x'], y: 

results.poseLandmarks[shoulderIdx]['y'] }; 

    console.log('shoulder x is ' + shoulder.x + 'and y is ' + shoulder.y) 

    // document.getElementById('shoulderx').innerHTML = `${shoulder.x}`; 

    const elbow = { x: results.poseLandmarks[elbowIdx]['x'], y: 

results.poseLandmarks[elbowIdx]['y'] }; 

    console.log('elbow x is ' + elbow.x + 'and y is ' + elbow.y) 

    const wrist = { x: results.poseLandmarks[wristIdx]['x'], y: 

results.poseLandmarks[wristIdx]['y'] }; 

    console.log('wrist x is ' + wrist.x + 'and y is ' + wrist.y) 

        /*Begin calculate shooting angle  */ 

    console.log('right foot is ' + rfFootIdx) 

    const rfFoot = { x: results.poseLandmarks[rfFootIdx]['x'], y: 

results.poseLandmarks[rfFootIdx]['y'] }; 

    console.log('Right foot x is ' + rfFoot.x + 'and y is ' + rfFoot.y) 
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    /*End calculate shooting angle  */ 

     /*Begin calculate catapult angle  */ 

    console.log('right hip is ' + rHipIdx) 

    const rHip = { x: results.poseLandmarks[rHipIdx]['x'], y: 

results.poseLandmarks[rHipIdx]['y'] }; 

    console.log('Right foot x is ' + rHip.x + 'and y is ' + rHip.y) 

     

    console.log('right knee is ' + rKneeIdx) 

    const rKnee = { x: results.poseLandmarks[rKneeIdx]['x'], y: 

results.poseLandmarks[rKneeIdx]['y'] }; 

    console.log('Right foot x is ' + rKnee.x + 'and y is ' + rKnee.y) 

     

    console.log('right ankle is ' + rAnkleIdx) 

    const rAnkle = { x: results.poseLandmarks[rAnkleIdx]['x'], y: 

results.poseLandmarks[rAnkleIdx]['y'] }; 

    console.log('Right foot x is ' + rAnkle.x + 'and y is ' + rAnkle.y) 

    /*End calculate catapult angle  */   

    const angle = getAngle(shoulder, elbow, wrist); 

    const shangle = getAngle(wrist, shoulder, rfFoot) 

    const catangle = getAngle(rHip, rKnee, rAnkle)  

 

Angular Calculation 

function radians_to_degrees(radians) { 

    const pi = Math.PI; 

    return radians * (180 / pi); 

} 

 

function getAngle(firstPoint, midPoint, lastPoint) { 

    console.log('shoulder x is ' + firstPoint.x + 'and y is ' + firstPoint.y) 

    let result = radians_to_degrees(Math.atan2(lastPoint.y - midPoint.y, lastPoint.x 

- midPoint.x) - 

        Math.atan2(firstPoint.y - midPoint.y, firstPoint.x - midPoint.x)); 

    result = Math.abs(result); 

    return result > 180 ? (360 - result) : result; 

} 

Classical Style Programming 

    if (visibility >  0)  

    { 

// shangle = getAngle(wrist, shoulder, rfFoot) 
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        if (shangle < 25.5) 

        { 

            console.log('Dribbling') 

             msgAction = 'Dribbling' 

        } 

// catangle = getAngle(rHip, rKnee, rAnkle) 

        if (catangle < 143)  

        { 

            console.log('SET') 

            msgAction = 'SET' 

        } 

// shangle = getAngle(wrist, shoulder, rfFoot) 

// catangle = getAngle(rHip, rKnee, rAnkle) 

            if ((shangle >130) && (catangle > 160) ) 

            { 

                console.log('90%') 

                msgAction = '90%' 

            } 

         

    } 

TensorFlow Model Predictor 

 

// load the model 

async function loadModel(path){ 

    console.log("Model loading in progress from ".concat(path)); 

    const model =  await tf.loadLayersModel( path); 

    console.log("Model Loaded Successfully"); 

    return model; 

}   

 

  // convert the input array into tf tensor 

    var model_input_tensor = tf.tensor( model_input ); 

 

    model.then(function (res) { 

        const prediction = res.predict(model_input_tensor).dataSync(); 

        var index_max = findIndexOfGreatest( prediction ); 

        action =  label_array[index_max] ; 

 

    }, function (err) { 

        console.log(err); 

    }); 

 

    // get the predicted class 
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    msgAction = action ; 

Appendix 2. 

Application and Data 

The following links are where the Application and Data reside.  The Foul Shot 

Training Mirror is designed for a laptop, or desktop.  There are URLs to view for 

demonstration purposes, but the design’s purpose is to run locally on a client machine 

with a local server.  This is to reduce latency and eliminate privacy concerns.  See 

GitHub to review code and static web applications on Netlify below.  See ReadMe files 

in GitHub repository.   

1. Z-App-Xpert/PersonalFoulShotTrainingMirror_With_DNNsAndMachineLearning 

(github.com) 

a. This repository holds the classical programming site developed during 

the commonsense baseline iteration in Chapter V. 

b. ‘8_11_Data.csv’ resides here.  This data is used to train initial RNN 

models. 

c. Link to URL in repository.  Designed to work with a modern day 

laptop.  Full body must be in the view of the web camera. 

2.   Z-App-Xpert/Foul_Shot_Training_Mirror_with_GatedRecurrentUnit_GRU (github.com) 

a. This repository holds the Deep Learning Models for predicting the 

series, {Dribbling, Pre-Set, Set, Confidence}. 

b. Link to URL in repository.  Designed to work with a modern day 

laptop.  Full body must be in the view of the web camera. 

  

https://github.com/Z-App-Xpert/PersonalFoulShotTrainingMirror_With_DNNsAndMachineLearning
https://github.com/Z-App-Xpert/PersonalFoulShotTrainingMirror_With_DNNsAndMachineLearning
https://github.com/Z-App-Xpert/Foul_Shot_Training_Mirror_with_GatedRecurrentUnit_GRU
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Appendix 3. 

Projection Diagram 

It is an easy next step to connect an output screen closer to the shooter for more 

immediate feedback.  The projection screen may be hard wired or wireless (Images, 

2021).  The shooter will have a portable monitor within their immediate sight for an 

immediate feedback loop to deliver the critical information to adjust their fine motor 

skills and “acquire, represent, and integrate knowledge.”  (Campero et al, 2018)  Other 

types of projection screens will be larger and set up in basketball gymnasiums.  They may 

be set up right behind the basketball hoop so the shooter can see their results immediately 

to fine-tune their motor skills immediately. 
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Appendix 4. 

Definition of Terms 

Angular Velocity - the rate of rotation around an axis usually expressed in radians or 

revolutions per second or per minute (Merriam Webster Dictionary, 2021). 

 

Back Propagation – The core computer algorithm that determines the gradient descent 

in the most efficient manner.  During back propagation, the weights and biases of the 

hidden layers are adjusted with the Back- Propagation algorithm (Goodfellow et al, 

2016). 

 

Classical Programming vs Machine Learning – In relation to machine learning, 

classical programming is taking rules and data to the program with coding structures to 

create answers.  Machine learning takes data and answers and creates rules (Cai et al, 

2020, p. 7). 

 

Convolutional Neural Networks (CNN) - Specialized kind of neural network for 

processing data that has a known grid-like topology.  Examples include time-series data, 

which can be thought of as a 1-D grid taking samples at regular time intervals, and image 

data, which can be thought of as a 2-D grid of pixels.  Convolution is a specialized kind 

of linear operation.  Convolutional networks are simply neural networks that use 

convolution in place of general matrix multiplication in at least one of their layers 

(Goodfellow et al, 2016). 

 

Deep Neural Network – are neural networks with many layers.  Modern deep learning 

involves many successive layers of representations of the data and are learned 

automatically (Cai et al, 2020, p. 13). 

 

Edge Architecture – “Gartner defines edge computing as ‘a part of a distributed 

computing topology in which information processing is located close to the edge—where 
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things and people produce or consume that information.’  At its basic level, edge 

computing brings computation and data storage closer to the devices where it’s being 

gathered, rather than relying on a central location that can be thousands of miles away”  

(Gold et al, 2021).   

 

Gated Recurrent Unit – Gated recurrent unit (GRU) layers work using the same 

principle as LSTM, but they are somewhat streamlined and therefore cheaper to run.  

LSTM has more representational power, but GRU Neural Networks usually predict better 

with smaller data sets and sequences (Junyoung Chung et al, December 2014) (Chollet, 

Github Repository, 2018). 

 

Gradient Descent - Is how neural networks learn.  The concept of gradient descent is 

similar to using the chain rule of a multi-dimensional calculus problem to find the local 

minimum.  The way the computer performs this is to assign a cost to the training data to 

measure the weights and biases.  It starts at a random value and iteratively finds a local 

minimum.  The study of different algorithms to find improvements and refinements on 

the ideas of gradient descent is ongoing (Schmidhuber, 2015),  (Goodfellow et al, 2016). 

 

HW acceleration – Term used to describe tasks being off-loaded to devices and 

hardware specified for the special task.  Typically, machine-learning tasks are off-loaded 

to WebGL hardware to use GPU instead of the CPU.  HW Acceleration helps MediaPipe 

Pose model run efficiently (Brunham, Live Perception for Mobile and Web, 2020). 

 

Live Perception – Google’s definition of any kind of machine learning that happens in 

the viewfinder.  With the recent release of MediaPose, they use this term to describe the 

technology that offers the benefits of; device-local, connection-free, Privacy-conscious, 

Immediate, Create-in-viewfinder, Enables actions/control (Brunham, Live Perception for 

Mobile and Web Google Research MediaPipe, 2021). 

Python Converter function – “TensorFlow.js comes with a variety of pre-trained 

models that are ready to use in the browser - they can be found in our models repo.  

https://github.com/tensorflow/tfjs-models
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However, you may have found or authored a TensorFlow model elsewhere that you 

would like to use in your web application.  TensorFlow.js provides a model converter for 

this purpose.  The TensorFlow.js converter has two components: 

1. A command line utility that converts Keras and TensorFlow models for use in 

TensorFlow.js. 

2. An API for loading and executing the model in the browser with TensorFlow.js. 

 (Google, TensorFlow Model conversion, 2021)” (TensorFlow, 2021) 

 

Long Short-Term Memory (LSTM) – A type of Recurrent Neural Network with 

feedback connections used in time series analysis (Goodfellow et al, 2016).  It adds a way 

to carry information across many time steps.  Imagine a conveyor belt running parallel to 

the sequence you are processing.  Information for the sequence can jump onto the 

conveyor belt at any point, be transported to a later time step, and jump off.  Intact, when 

you need it.  It saves information for later, thus preventing older signals from gradually 

vanishing during processing (Chollet, Deep Learning with Python, 2018). 

 

Recurrent Neural Networks (RNN) –are a family of neural networks for processing 

sequential data (Goodfellow et al, 2016).  RNNS work by processing sequences of inputs 

one timestamp at a time and maintaining a state throughout.  A state is typically a vector 

or a set of vectors (Cai et al, 2020). 

 

   

https://github.com/tensorflow/tfjs/tree/master/tfjs-converter
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Appendix 5. 

Initial Video Trials – 12/19/2020 

Name of Video Angle Shot Miss or Make Observation 

Video_One_ShotOne Across from Foul 

Line 

Miss Writs Flick, Shoulders 

straight up from Hips. 

Wrist focused 

Video_One_ShotTwo Across from Foul 

Line 

Miss Shoulders straight up 

from hips less wrist 

flick, just short of hoop 

3 more inches 

Video_One_ShotThree Across from Foul 

Line 

Miss Wrist flick Shoulders 

straight up 

Video_One_ShotFour Across from Foul 

Line 

Miss Bounced backwards 

after the shot 

VideoOne_ShotFive Across from Foul 

Line 

Miss More are wrist flip than 

body push 

VideoTwo_ShotOne Across from Foul 

Line 

Miss 3 more inches.  Pretty 

good follow through, 

but still leaving the 

hand to early because 

of wrist flick. 

VideoTwo_ShotTwo Across from Foul 

Line 

Miss Still rolling off the 

hand too soon, wrist 

flick, not released at 

top of momentum 

VideoTwo_ShotThree Across from Foul 

Line 

Make Still off wrist to soon, 

due to flick, but it went 

in after hitting the front 

of the rim 

VideoTwo_ShotFour Across from Foul 

Line 

Make Shoulders moved 

toward the basket and 

released the ball at top 

of momentum  
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Appendix 6. 

Common Errors in Free Throw Shooting 

The error summary below comes directly from the research of Marion Alexander 

(Marion Alexander et al, 2014). 

 

1. Poor Alignment- Many shooters fail to line up the shooting side hip, knee, 

shoulder and elbow with a line through the ball to the basket.  If any of these 

joints is out of alignment the shot is more likely to be released off line and miss 

the basket. 

2. Lack of Backspin- players often apply sidespin to the ball at release; or else apply 

no spin at release.  Both of these errors will affect the flight of the ball and may 

cause it to go off line en route to the basket; or to rebound off the backboard too 

hard or sideways and not drop into the hoop. 

3. Low arc on the shot- players who do not have sufficient shoulder flexion, elbow 

extension or trunk extension during release often release the ball too flat; a high 

arc is required to ensure the ball has the maximum area of the basket to utilize on 

entry. 

4. Relaxation of the shooting arm- the shooting arm should be completely relaxed 

during the shot, with only the active mover muscles contracted and all others 

loose and relaxed.  Too much tension in the non-mover muscles of the shooting 

arm will interfere with the smooth release of the ball and shorten the follow-

through. 

5. Full follow-through after release- players should finish in the full goose neck 

position of the shooting hand with the arm pointing to the ceiling and the hand 

pointing directly to the basket. 

6. Interference from non-shooting hand -   If the non shooting hand is pronated or 

supinated at release it may move the ball out of alignment with the hoop. 

7. Ball shot too hard- When a player is excited or tired they may release the ball too 

fast and it will bounce off the back of the rim and miss the basket. 

8. Too much tension in shooting arm- shooting arm should be in full shoulder 

flexion, elbow extension and wrist flexion at release of the ball.  If muscles are 

tense it may decrease the range of motion of these joints and interfere with the 

shot 

9. Taking off at an angle- Player taking off or landing at an angle to the floor- either 

forward or backward- will produce an off center jump and apply non-vertical 

forces to the ball.  Takeoff and landing should occur from the same footprints. 

10. Leaning at Release- Player is either leaning forward, backwards or sideways 

during the release of the ball, which will produce an off center force on the ball at 

release. 
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Appendix 7. 

Summary of Model Layers 

In this stage, we evaluate the models and train the data to extract significant 

features to aid in making predictions and classifications.  First, we need to read the data, 

scale it and scrub it.  We use the sklearn library and use the function ‘StandardScalar’ to 

scale the data into a common Gaussian scale.  Important parts of code are highlighted 

below.  The full version is located here. 

Vectorize Data 

  scaler = StandardScaler() 

  data_out = scaler.fit_transform(data_in.values.reshape(-1,1)) 

 

See df_scaled output as well as the simple data visualization plot to show process of 

scaling the data.  Next, we must turn target variables into numeric values with the 

function LabelEncodeer 

le = preprocessing.LabelEncoder() 

To show a time series effect we use a vector size of 32 time events 

RNN 

We use simplernn layers to capture the time series effect of the input vector.  With the 

final layer as a dense layer to map to the final target classes.  We use the categorical cross 

entropy loss because it is a classification model. 

 

conv1d --> simple rnn layers --> dense layers 

model_rnn = tf.keras.models.Sequential([ 

  # conv 1d layer with kernel size 5                                      

  tf.keras.layers.Conv1D(filters=128, kernel_size=5, 

                      strides=1, padding="same", 

                      activation="relu", 

                      input_shape=[None, 6]), 

  # simple rnn layers 

  tf.keras.layers.SimpleRNN( 128, return_sequences=True), 

https://github.com/Z-App-Xpert/PersonalFoulShotTrainingMirror_With_DNNsAndMachineLearning/blob/main/Models/TimeSeries_Analysis_Final_Analysis.ipynb
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  tf.keras.layers.SimpleRNN(64, return_sequences=False), 

  # dense layer 

  tf.keras.layers.Dense(30, activation="relu"), 

  tf.keras.layers.Dense(9 , activation="softmax") 

 

The LSTM is similar in design to the RNN.  “It adds a way to carry information 

across many timestamps.” (Chollet, Deep Learning with Python, 2018, p. 202)  The 

LSTM can handle much more data to capture more complicated time series information.  

This data set is small, so it tends to over fit. 

LSTM 

# conv1d --> lstm layer --> dense layer 

model = tf.keras.models.Sequential([ 

  # conv 1d layer 

  tf.keras.layers.Conv1D(filters=128, kernel_size=5, 

                      strides=1, padding="same", 

                      activation="relu", 

                      input_shape=[None, 6]), 

  # lstm layers 

  tf.keras.layers.LSTM(128, return_sequences=True), 

  tf.keras.layers.LSTM(64, return_sequences=False), 

  #dense layer 

  tf.keras.layers.Dense(30, activation="relu"), 

  tf.keras.layers.Dense(9 , activation="softmax") 

]) 

 

GRU 

We have a small data set and sequenced series, so the GRU and Conv1d is the 

best choice due to training results.  The 1D convolution layers can recognize local 

patterns in a sequence, which is the type of data we have (Chollet, Github Repository, 

2018, p. 225).  “Gated Recurrent Unit (GRU) layers work using the same principle as 

LSTM, but they’re somewhat streamlined and thus cheaper to run” (Chollet, Github 

Repository, 2018, p. 215). 
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Since we have a smaller data set with smaller sequence, then the GRU becomes the 

model of choice for the Foul Shot Training Mirror. 

 

model_conv1d_gru_dense = tf.keras.models.Sequential([ 

 

  # two conv1d layers                                                        

  tf.keras.layers.Conv1D(filters=128, kernel_size=3, 

                      strides=1, padding="same", 

                      activation="relu", 

                      input_shape=[None, 6]), 

 

  tf.keras.layers.Conv1D(filters=128, kernel_size=3, 

                      strides=1, padding="same", 

                      activation="relu"), 

  # gru layers 

  tf.keras.layers.GRU(256, return_sequences=True , reset_after=False), 

  tf.keras.layers.GRU(256, return_sequences=False, reset_after=False), 

  # add dropout layers to avoid overfitting 

  tf.keras.layers.Dense(128, activation="relu"), 

  tf.keras.layers.Dropout(0.3) , 

  tf.keras.layers.Dense(64, activation="relu"), 

  tf.keras.layers.Dropout(0.5) , 

  tf.keras.layers.Dense(9 , activation="softmax") 

 

]) 
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Appendix 8. 

Set-Up Instructions 

  The webcam must have the entire body in its view; have the selfie mode on, and 

pointing toward the shooting side of the person shooting the foul shot.  The pictures 

below show the actual set-up during all development and testing.  The laptop sits on the 

small pink chair with the webcam camera 18 inches off the ground and perpendicular to 

the foul line.  The camera is 18 feet away from the shooter, and the specifications state 

the MediaPipe Pose is accurate from 19.5 feet away.  In addition, there is screen-

recording software running during testing to review the results.  The Screen recording is 

currently the feedback loop.   

 

 

 

 

 

 

The last photo on the left shows a 

mark that is on all standard basketball courts.  

The mark represents a perpendicular path 

from the foul line to the basketball hoop.  The 

shooter uses this mark to put their shooting 

foot on this mark to line up their shooting 

stance to aim at the basket. 
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Figures 

Figure 1.  PoseNet Skeletal Diagram  

 Below is the Key point Diagram, sometimes referred to as the skeletal model.  This 

model has 17 Key-points.  https://github.com/tensorflow/tfjs-models/tree/master/pose-

detection 

 
  

https://github.com/tensorflow/tfjs-models/tree/master/pose-detection
https://github.com/tensorflow/tfjs-models/tree/master/pose-detection
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Figure 2.  BlazePose  Skeletal Diagram  

Below is the Landmark Diagram, sometimes referred to as the skeletal model.  This 

model has 33 pose Landmark points.  

https://google.github.io/mediapipe/solutions/pose 

 

 

 

  

https://google.github.io/mediapipe/solutions/pose
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