

Precise Correction of A1AT E342K by Modified NGA PAM Prime Editing and Determination of Prime Editing Inhibition by TREX2

Citation

Lung, Genesis. 2021. Precise Correction of A1AT E342K by Modified NGA PAM Prime Editing and Determination of Prime Editing Inhibition by TREX2. Master's thesis, Harvard University Division of Continuing Education.

Permanent link

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37370046

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

Precise Correction of A1AT E342K by Modified NGA PAM Prime Editing and Determination of

Prime Editing Inhibition by TREX2

Genesis Lung

A Thesis in the Field of Bioengineering and Nanotechnology

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

November 2021

Copyright 2021 [Genesis Lung]

Abstract

The purpose of this research is to evaluate the potential of the CRISPR-derived class of prime editors for precise correction of the E342K mutation in Alpha-1 Antitrypsin Deficiency (A1AD) and to discover genetic dependencies of the prime editing mechanism. A1AD is thus far a disease with unmet need that remains challenging to target with genome editors which would benefit from an expanded set of editing tools. Several versions of modified prime editors targeting NGA and NGC PAMs were tested with a library of pegRNAs and nickRNAs generated through PrimeDesign, a program published by the lab which originated prime editors. In doing so, we have shown that A1AT E342K is accessible for precise correction via two NGA PAMs. As prime editing technology is new, the molecular interactions with cellular repair are as of yet only putative and require elucidation that could serve to further bolster success of this and other therapeutic applications. An siRNA library of DNA repair factors was compiled and evaluated for the ability to up- or down- regulate prime editing efficiency. Through this screen, we have discovered a gene, TREX2, which influences prime editing and have validated this through an orthogonal overexpression experiment.

Dedication

I dedicate this thesis to my late high school biology teacher Dr. Susan Offner, who first set me on the path to becoming a scientist by showing me how to use DNAMaster after school, my lifelong friend Kelly Ziyi Miao with whom I began that after school journey as my research partner for my very first scientific paper and with whom I made a pact with to go to grad school, and to my wife Knottlynn Tran, who has been my source of happiness in life and indelible rock through the challenges of working on a thesis through a pandemic.

Acknowledgments

I'd like to thank Dr. Michael S. Packer, who has been a wonderful thesis director, and prior to that, a patient and understanding mentor, and more importantly a friend. This work is made possible foremost largely through his scientific advice in innumerable ways and his communication with other teams to provide assistance. I'd also like to thank Dr. Holly Rees and Shelby Tonelli, who both worked on prime editing in different projects and contributed immensely to suggesting possible angles of exploration with data and peer review as well as by providing reagents and performing protein analysis work. The team over at Prime Medicine, with Drs. Jon Levy, Ariel Yeh, and Andrew Anzalone was also helpful with their expertise in prime medicine and with the sharing of concurrent research results and critical analysis of my data to inform decisions for this work. I also thank the Liu Group at Harvard for their contributions to prime editing technology and their communication with Beam. I'd like to also thank the whole team at Beam Therapeutics, who have contributed in varying essential capacities to generate materials with which the experiments here were conducted. I thank John Evans and Dr. Guiseppe "Pino" Ciaramella and the rest of the leadership team at Beam Therapeutics for sponsoring my thesis at Beam. I am grateful to Lo-I Cheng, who helped with cloning plasmids during experimentally intensive times, Valentina McEneany, who helped me deliver sequencing samples to Eton on days when I forgot them in the incubator, and Jason St. Laurent, who along with Valentina produced mRNA from plasmids for me. I am indebted to Thomas Fernandez and Dr. Yvonne Aratyn-Schaus, who developed the

fibroblast-HPH coculture lentivirus-transduced model. I also thank Dr. Nicole Gaudelli and Dieter Kyle Lam, whose company and occasional help in the lab were indispensable. I thank Dr. Steven Denkin for helping me review my thesis proposal and thesis draft and helping to provide direction. I also thank the Harvard Thesis committee for their understanding during this pandemic. I thank Horizon Discovery, OriGene, Eton Biosciences, Thermofisher and the scientific community for their services and products which were used in this work. There are many people who have touched this work in some way, and I apologize for my memory if I have not been able to include them all.

Table of Contents

Dedication iv
Acknowledgmentsv
List of Tablesx
List of Figures xiv
Chapter I. Introduction1
A1AD5
Current Limitations of Genome Editing Approaches Pertaining to A1AD8
Flap Excision Mechanisms Pertinent to Prime Editing11
RISC and siRNA12
Chapter II. Materials and Methods14
PhusionU PCR14
Phusion U PCR Protocol:15
USER Cloning15
USER Cloning Protocol:16
Rolling Circle Amplification and Sanger Sequencing16
Bacterial Culture Methods16
Design and Construction of Prime Editors17
Design and Construction of pegRNAs and nickRNAs
siRNA Knockdown25
RT-qPCR

Mammalian Cell Culture Methods	
Plasmid Transfection	30
RNA Transfection	31
Production of mRNA	32
Western Blots	32
MiSEQ Library Preparation, Sequencing, and Analysis	33
Chapter III A1AT E342K Prime Editing Results	36
NGA PAM PE2 Edits the A1AT E342K Locus	36
NGA PAM PE3 Competitively Edits the A1AT E342K Locus	40
Plasmid to mRNA conversion of NGA PE2/PE3 Maintains Prime Editing	r 5
Frequency	42
NGA PAM PE3 Detectably Edits A1AT E342K in Human Primary Fibro	blasts.43
Chapter IV siRNA Knockdown Prime Editing Results	46
Validation of siRNA Knockdown Timing and Influence on Gene Editing	46
siRNA Knockdown Suggests TREX2, FANCM, and LIG4 Effect on Prin	ne
Editing	51
Overexpression of TREX2 Decreases Prime Editing	60
TREX2 Plasmid increases TREX2 Protein	64
BRCA2 Knockout does not Influence Prime Editing	66
TREX2 Overexpression Decreases Prime Editing at A Variety of Target	Sites67
TREX2 Influences Prime Editing but not Base Editing	70
TREX2 Overexpression Decreases Prime Editing In Liver Context	71
Chapter V. Discussion	74

NGA PAM Prime Editing Represents a Viable Alternative for A1AD	74
TREX2 Action on Prime Editing is a Novel Mechanism	75
Limitations	77
Appendix 1. Additional Tables	81
Appendix 2. Additional Figures	107
References	123

List of Tables

Table 1. Primer list for cloning pCMV/UTR-PE2-VRQR/MQKFRAER19
Table 2. Primer pairs for cloning out BbsI sites. 19
Table 3. USER primers for cloning Miller variant VRQR/MQKFRAER prime editors19
Table 4. Protospacers for the first set of manually designed pegRNAs for E342K
correction/insertion
Table 5. pegRNA scaffold sequences. 24
Table 6 Final full sequences of tested A1AT E342K insertion/correction pegRNAs24
Table 7. List of RT-qPCR primers designed for UNG1 and UNG2 single and combined
amplicons27
Table 8. Amplicon sequences for UNG1 and UNG2 RT-qPCR. 28
Table 9. A1AT E342K lentivirus cassette sequence integrated into Hek293T cell line29
Table 10. Primer sequences for amplicon PCR for the A1AT E342K lentivirus cassette
inserted into HPH cells
Table 11. Percent editing of BE4 and BE4-noUGI with or without UNG siRNA
knockdown49
Table 12. Percent editing of PE3 under knockdown with UNG or with GFP control
transfection
Table 13. Percent editing of precise correction and undesired edits for siGENOME screen
plate 1

Table 14. Percent editing of precise correction and undesired edits for siGENOME scree	en
plate 2	52
Table 15. Percent editing of precise correction and undesired edits for siGENOME scree	en
plate 3	53
Table 16. Percent editing of precise correction and undesired edits of siGENOME scree	n
plate 4	53
Table 17. T-Tests for siGENOME plates 1-4.	56
Table 18. siGENOME plates 1-4 Bonferroni and Holm's hits	57
Table 19. Percent HBB PE3 editing of siGENOME plates 1-4 repeat screen	59
Table 20. Percent Hek2 editing in overexpression assay development for cytidine base	
editors and UNG.	61
Table 21. Percent editing in overexpression assay development for HBB PE3+plasmid.	62
Table 22. Percent editing of HEK2 by BE4 with or without TREX2	70
Table 23. Editing frequencies for the Hep G2 TREX2 experiment	72
Table 24. Primer list for USER cloning of pCMV-PE2 and pUTR-PE2	81
Table 25. Sanger sequencing primers for verification of pUTR plasmids	82
Table 26. PrimeDesign output for A1AT E342K pegRNA library	83
Table 27. Primedesign output for A1AT E342K nickRNAs.	84
Table 28. Full sequences of A1AT E342K nickRNAs.	85
Table 29. Sequences and information for synthetic peg/nickRNAs.	86
Table 30. List of differentially regulated genes between Hek239T/U2OS/HeLa	87
Table 31. Final list of genes which were selected for knockdown experimentation as	
siGENOME SMARTPool siRNAs	88

Table 32. MiSEQ target sites and associated amplicon PCR primer sequences. 89
Table 33. MiSEQ amplicon sequences. 90
Table 34. Correction percentage scores for the A1AT E342K PE2 PrimeDesign screen. 91
Table 35. Allele percentages for GL544 PAM disruption and precise correction combined
edit92
Table 36. Allele percentages for GL556 PAM disruption and precise correction combined
edit93
Table 37. Percent correction for the GL542 PrimeDesign PE2 experiment against
GL544/556 spacers
Table 38. Percent precise correction of A1AT E342K NGA PE2 vs PE3 vs PE2-Miller.95
Table 39. Percentage precise correction/insertion of GL542 PE2/PE3 vs GL544/55696
Table 40. Editing percentages of mRNA vs. plasmid correction at A1AT E342K in Hek
cells
Table 41. Editing percentages of A1AT E342K by NGA prime editors in GM11423
fibroblasts
Table 42. RT-qPCR Ct scores for UNG knockdown of various transcripts
Table 43. Ct values for UNG2 knockdown. 100
Table 44. Percent HBB PE3 editing of siGENOME plate 1 repeat screen 1101
Table 45. Percent HBB PE3 editing of siGENOME plate 1 repeat screen 2102
Table 46. List of OriGene plasmids used in the overexpression assay
Table 47. Overexpression assay HBB PE3 percent editing104
Table 48. Percent HBB PE3 editing in BRCA2 knockout cell line105

Table 49. Percentages for precise target editing with TREX2 influence on at various

get sites

List of Figures

Figure 1. Proposed mechanism for prime editing from Anzalone et al. figure 1c	4
Figure 2. A1AT Allele Serum Levels.	7
Figure 3. A1AT target site.	7
Figure 4. Position of NGG protospacers relative to the E342K SNP10)
Figure 5. Geneblock fragment 3	3
Figure 6. PAM-Interacting Domain sequence for NGA PAM recognition20)
Figure 7. PAM-Interacting Domain sequence for NGC PAM recognition20)
Figure 8. Positions of pegRNA spacers in the A1AT E342K genomic locus	3
Figure 9. Supplementary note 3 (cont.) from Anzalone et al. 2019	3
Figure 10. Amplicon sequence of the lentivirus insert transfected into the HPH-fibroblast	
coculture model)
Figure 11. A1AT E342K PE2 PrimeDesign editing	3
Figure 12. GL544 NGA A1AT E342K -3C+7G editing	9
Figure 13. GL556 A1AT E342K 3A+7G editing	9
Figure 14. GL542 vs 556/544 A1AT E342K PE2 editing)
Figure 15. GL544/556 A1AT E342K PE3 editing	1
Figure 16. GL542 vs 544/556 A1AT E342K PE3 editing	2
Figure 17. Comparison of mRNA versus plasmid correction at A1AT E342K in Hek	
cells4	3

Figure 18. Precise correction of A1AT E342K by NGA prime editors in primary
fibroblasts45
Figure 19. RT-qPCR results for UNG2 knockdown47
Figure 20. Ct scores for UNG2 in 48-well format47
Figure 21. Hek2 target site C>T versus C>G editing
Figure 22. Prime editing with PE3 at HBB 22T with UNG siRNA50
Figure 23. siGENOME plate 1 results
Figure 24. siGENOME plate 2 results
Figure 25. siGENOME plate 3 results
Figure 26. siGENOME plate 4 results
Figure 27. siGENOME plate 1 repeat knockdown prime editing
Figure 28. siGENOME plate 1 repeat 2 knockdown prime editing
Figure 29. siGENOME plate 1-4 repeat knockdown prime editing
Figure 30. UNG expression effect on Hek2 BE4 editing
Figure 31. Control plasmid effect on prime editing63
Figure 32. 24hr GFP FITC image63
Figure 33. Plasmid overexpression prime editing
Figure 34. Western blot of TREX2 protein for various cell types and transfection
conditions65
Figure 35. Results of the BRCA2 knockout cell line prime editing experiment
Figure 36. TREX2 overexpression effect on PE2/PE3 HBB prime editing68
Figure 37. TREX2 overexpression effect on PE2/PE3 editing at various target sites68
Figure 38. TREX2 knockdown effect on PE2/PE3 prime editing at various target sites69

Figure 39. TREX2 overexpression/knockdown effect on BE4 HEK2 editing	71
Figure 40. Effect of TREX2 overexpression/knockdown on HBB prime editing	g in HepG2
cells	73
Figure 41. DNA Flap Repair Mechanism.	
Figure 42. Geneblock fragment 1.	
Figure 43. Geneblock fragment 2.	
Figure 44. Plasmid map of pGL111(pUTR-Trilink-ISLAY1-monoTadA-	
ABE7.10(V82S)-MQKFRAER)	110
Figure 45. pCMV-PE2 plasmid map.	111
Figure 46. Plasmid map of pUTR-PE2-BbsI-120A	112
Figure 47. Amino acid sequence for PE2.	113
Figure 48. Amino acid sequence for PE2-VRQR	114
Figure 49. Amino acid sequence for PE2-MQKFRAER	115
Figure 50. Amino acid sequence for PE2-(I322V,S409I,E427G,R654L,R753G)-VRQR.
	116
Figure 51. Amino acid sequence for PE2-(I322V,S409I,E427G,R654L,R753G	, R1114G)-
MQKFRAER	117
Figure 52. Supplementary Note 3 from Anzalone et al. 2019.	118
Figure 53. Supplementary Note 3 (cont.) from Anzalone et al. 2019	
Figure 54. Plasmid map for pU6-pegRNA-GG-Acceptor vector.	
Figure 55. pU6-spdummy vector.	
Figure 56. Figure 1 from Cheng et al., 2018	

Chapter I.

Introduction

Since the discovery of genetics and the advent of the Human Genome Project, more than 75,000 pathogenic human genetic variants have been identified which contribute to a variety of diseases. Genetic editing aims to correct such mutations at the source rather than treating symptoms. The earliest gene editing technologies such as meganucleases, Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and CRISPR-Cas9 are able to modify genomes with varying rates of efficiency and control over editing outcomes.

Meganucleases are highly specific nucleases first isolated from yeast which target long sequences, but are difficult to engineer for custom sites (Takeuchi et al., 2014). ZFNs consist of a pair of zinc finger arrays fused to a FokI nuclease domain. Upon binding of the pair to both flanking sequences of a target site the FokI dimer can induce a double-stranded break. ZFNs are more modular than meganucleases but often exhibit sequence context dependence and can require significant protein engineering (Caroll 2011). TALENs are bacterial transcriptional activators fused to FokI in the same way as ZFNs, and are highly specific but are challenging to deliver due to size and sequence complexity (Wang et al., 2016). CRISPR Cas9 is able to make double stranded breaks via modular guide RNA sequences that are homologous to host DNA around protospaceradjacent motif (PAM) recognition sites (Adli 2018).

Regardless of the specific mode of action, all of the aforementioned genome editing tools work via the introduction of double-stranded breaks. Double stranded breaks rely on host cell recognition of the breaks and the initiation of either non-homologous end joining or homology-directed repair. For non-homologous end joining (NHEJ), the blunt ends of a strand of DNA that has been cleaved at two ends are paired and ligated. This process is error-prone and can result in deletion of intervening sequences or insertion of bases (Adli 2018). In homology-directed repair (HDR), a donor template with homology arms invades the two blunt ends up and downstream of the cut site to insert or otherwise alter a sequence (Adli 2018).

In the context of therapeutic genome editing, double-stranded breaks are problematic for a number of reasons. First, double-stranded breaks activate the P53 pathway and can increase the risk of senescence and apoptosis (Menon and Povirk, 2014). Secondly, even upon repair the rate of erroneous editing can lead to unpredictable deletions and translocations (Brunet and Jasin, 2018). In recent years base editing technology invented by the means of fusing deaminase enzymes to Cas9 and its orthologs have been able to create a system which induces transition mutations of cytosine-uridinethymine (C>U>T) and adenine-inosine-guanine (A>I>G) (Komor et al., 2016) (Gaudelli et al., 2017). While this technology is not reliant on double stranded breaks, it is limited to specific classes of transition mutations within the protospacer of the Cas9 recognition sequence. Base editing additionally operates by stochastic chemistry with the possibility of editing neighboring bystander nucleotides, with the requirement of a very short distance between the PAM and target edit site.

The Liu Group at Harvard recently published the paper "Search-and-replace genome editing without double-strand breaks or donor DNA" in Nature (Anzalone et al. 2019). The use of a nickase Cas9 (nCas9) fused to an engineered reverse transcriptase

with a modified prime editing guide RNA (pegRNA) shows great potential for precise editing with multiplex transversions, deletions, and insertions achieved at various lengths up to 44bp. Of particular interest, the system achieved 6-8% insertion editing in postmitotic non-dividing cells, which is a large hurdle for HDR systems. However, the paper surmises many of the underlying mechanics, which remain to be demystified. The authors have proposed that prime editing works through a series of hypothetical intermediates: (1) recognition of the target site and opening of the upstream guide protospacer region of the pegRNA, (2) nicking of the noncomplementary strand, (3) priming with the downstream end of the pegRNA primer binding sequence (PBS) region that extends out of the Cas9, (4) complementary extension of the nicked strand in a complementary fashion to the reverse transcription template (RT) region of the pegRNA adjacent to the PBS region by the reverse transcriptase, (5) competitive equilibrium annealing of the extended single-stranded flap to the complementary genomic strand against the downstream unextended flap, (6) preferential cleavage of the displaced unedited flap by host nucleases, and (7) DNA repair resolution of strand mismatches (Figure 1, Anzalone et al., 2019).

Figure 1. Proposed mechanism for prime editing from Anzalone et al. figure 1c.

The spacer from the pegRNA invades one strand, followed by enzymatic nicking and the attachment of the PBS to the nicked flap, with extension of the pegRNA RTT by reverse transcriptase, and including with flap equilibration and cellular repair processes which include the desired edit.

Various strategies for improving prime editing outcomes have included several iterative versions. (1) PE1, which uses the basic Cas9 fused to a wildtype reverse transcriptase a pegRNA. (2) PE2, which incorporates mutations conferring stability and activity into the reverse transcriptase. (3) PE3, which introduces a guide RNA to nick the complementary unedited genomic strand and induce favoring repair to incorporate the mutation. (4) PE3b, which introduces a nicking guide RNA similarly to the PE3 strategy but where the nicking guide protospacer is complementary only to the newly edited strand and thus nicking occurs only after editing. (5) PE3_PAM and (6) PE3b_PAM, where the PAM strategy represents a modification to the reverse transcription template that ablates the PAM recognition sequence upon extension so that the prime editing enzyme will not repeatedly bind and nick to undo its own editing.

This work aimed to apply prime editing to correct a disease-causing mutation of high unmet need that has previously been challenging to address with CRISPR HDR and base editing due to inefficiencies in DNA repair mechanisms or target site limitations, respectively. In order to accomplish this goal we first developed prime editing reagents capable of correcting this mutation in immortalized cell lines. We then evaluated these reagents in a primary cell type which exhibited a different transcriptome and cellular physiology from immortalized cell lines. Anticipating challenges in the translation of this technology between cell types, a parallel aim was to interrogate which DNA repair genes could influence rates of prime editing. To address this question, we relied upon a genetic knockdown screen accompanied by orthogonal validation methods such as overexpression and knockout.

A1AD

Alpha-1 Antitrypsin Deficiency (A1AD) is a genetic disorder caused by mutations in the SERPINA1 gene which encodes alpha-1 antitrypsin (A1AT). A1AT is predominantly produced in the liver and secreted into circulation where it serves as an essential anti-protease. This function is particularly vital in the lungs where uncontrolled elastase from migrating neutrophils will otherwise damage the structure of elastin-rich lung tissue (Stoller and Aboussouan, 2011).

The mechanism by which A1AT neutralizes elastase is through its highly unstable "mousetrap" structure which undergoes a conformational change and clamps onto elastase after binding (Stoller and Aboussouan, 2011). Due to its instability, mutations in A1AT can lead to drastic misfolding of the protein. Misfolded A1AT is unable to be secreted, and thus causes two concurrent effects. First, as mentioned above the lack of A1AT causes lung damage. Second, the hepatocytes in the liver accumulate misfolded protein leading to fibrosis and cirrhosis (Stoller and Aboussouan, 2011).

A1AT mutant alleles include PiZ, PiS, and rare Null alleles. The genotype of both alleles in a patient contribute to a codominant phenotype with a spectrum of A1AT serum levels at varying percentages of normal concentration (Brode et al., 2012). The low risk of lung disease in PiMZ heterozygotes sets a clinical "normal" threshold of 11uM serum A1AT (Figure 2). The most common genotype in clinical A1AD is the PiZZ genotype representing 10-15% of deficiency cases with an estimated 60,000 individuals in the U.S., including many undiagnosed. The PiZ allele contains a G to A single nucleotide polymorphism (SNP) resulting in the amino acid substitution E342K (Figure 3).

Figure 2. A1AT Allele Serum Levels.

Plot (Brode et al., 2012) showing the mg/dl and uM concentration of A1AT in serum for MM, MZ, SS, SZ, and ZZ genotypes. The solid line is the minimum clinically relevant target, the dotted line is the lower limit of healthy serum levels. Corresponding disease phenotypes listed at bottom.

Figure 3. A1AT target site.

The wildtype allele is depicted here. In the PiZ allele, the E(GAG) codon (blue) becomes a K(AAG) codon due to a G>A mutation (light grey).

The E342K G to A SNP is a strong candidate for the development of genome editing therapeutics due to the prevalence of the genotype among patients and the single base which needs to be changed. Additionally, due to the dual nature of the disease as a simultaneous loss-of-function and gain-of-function, simply eliminating loss of function by raising serum A1AT is insufficient, as it is necessary to not only increase the amount of circulating A1AT but also lower the amount of toxic misfolded A1AT. Correcting the PiZ allele into a wildtype PiM allele via genome editing is the ideal strategy to treat both mechanisms of the disease.

Current Limitations of Genome Editing Approaches Pertaining to A1AD

Nuclease genome editing, whether accomplished by homology-directed repair or nonhomologous end-joining, does not work with desirable frequencies in many primary cell types due to the dependency of HDR on cellular DNA repair processes that are only active in dividing cells (Nami et al., 2018). As A1AD is a disease affecting primary human hepatocytes which do not divide in culture, investigation of A1AD HDR faces limitations for cell-type relevant reagent development.

Despite these challenges, a number of research groups are exploring nuclease induced HDR as a potential therapeutic strategy for A1AD. One published study reports ~5% precise correction of the E342K PiZ mutation in a transgenic mouse model. To achieve this feat they employed dual adeno-associated viral (AAV) vectors to overcome transgene size limitations inherent to AAV. One AAV contained the donor template as well as a hU6 promoter driving expression of an sgRNA, and the second contained a staphylococcus aureus Cas9 (saCas9) (Shen et al., 2018). Several issues are readily apparent, with a high indel rate of 10-20% varying by formulation, and the introduction

of improper insertions, which themselves could introduce pathogenic misfolding consequences. The use of a dual adeno-associated viral vector requires codelivery to the same cell of both viral vectors to accomplish editing, and may result in challenging PK/PD properties. On the positive side, AAVs are clinically validated gene therapy vectors exhibiting highly efficient delivery to hepatocytes.

Lipid nanoparticle (LNP) mediated hepatic delivery of genome editing reagents offer numerous advantages over AAV. Unlike AAV, LNPs are not subject to pre-existing immunity and have the potential to be redosed. LNPs are typically used to deliver RNA reagents, resulting in transient expression of genome editing proteins. This is a particularly desirable feature to avoid accumulation of off-target edits over the course of a sustained expression which is often seen with AAVs. Unfortunately, LNPs have not been shown to be able to also deliver donor templates required to induce HDR.

Base editing however does not require a donor template and would be amenable to LNP-mediated delivery. Furthermore, the PiZ A1AT mutation is a class of transition mutation amenable to adenine base editors. However, gRNA options at this locus are limited as there is no NGG PAM in the vicinity that would position the target adenine in range of base editing (Figure 4). Additionally there are several bystander adenine bases immediately adjacent to the target SNP that if edited would yield non-synonymous changes in the A1AT gene with unknown phenotypic consequences. There is ongoing research to identify editors with altered PAM specificity and editing properties that can precisely correct PiZ A1AT.

Figure 4. Position of NGG protospacers relative to the E342K SNP.

Both are not in the optimal prime editing range. Pathogenic SNP represented by the blue triangle, with the pathogenic codon in the pink arrow.

Base editing additionally carries the risk of off-target deamination. Both cytosine base editors (CBEs) and adenine base editors (ABEs) contain deaminase domains, which retain a natural tendency to edit RNA substrates. This may cause issues for cell health due to erratic transcripts in the short term while base editors are active but the effect is expected to be transient. Base editors are additionally difficult to control, with their deaminase enzyme in an always-on configuration that often edits other nucleotides other than the intended target within the protospacer. Overexpression of CBEs, but not ABEs, has also been shown in some literature to generate genome-wide off target SNPs, (Zuo et al., 2019). Off-target analysis of all base editors is an ongoing area of research and there remains concern that off-targets could be harmful.

After work presented here had begun, several other groups have attempted to achieve prime editing of A1AT E342K. Initially, prime editing showed no detectable correction of the pathogenic SNP in liver organoids created from patients carrying the allele (Schene et al., 2020). Subsequently, a PE2 plasmid strategy with an RTT of 27bp and PBS of 13bp and NGG PAM was shown to achieve 1.9% insertion of the pathogenic SNP as PE2 which increased to 9.9% with the addition of a nicking guide, and nuclear localization signal optimization to create an editor called PE* increased insertion to 6.4% for PE2*, and 15.8% for PE3*, with lower efficiency for SaKKHPE2* at 1.1-4.4%. The same paper demonstrated split-intein prime editors delivered via AAV achieved 2.1% editing as PE2 and 6.7% as PE2* (Liu et al., 2020). Indel rates were however very high for PE2 and PE2* at 0-2.2 to 0.1-3.8% respectively in Hek293T cells and 0.4-2.7% in vivo, and the authors comment on the lack of a nearby PAM within the optimal bounds for prime editing. Another paper attempting to correct patient-derived human iPSCs with an NGG PE3 strategy found no detectable editing (Habib et al., 2021).

All of the aforementioned challenges with existing genome editing techniques suggest that a newly emergent approach such as prime editing might be well suited to addressing PiZ Alpha-1 Antitrypsin Deficiency, and that existing prime editing agents for A1AT E342K could be greatly improved with alternative engineering methods.

Flap Excision Mechanisms Pertinent to Prime Editing

Published data thus far has not demonstrated exactly which DNA repair pathways are essential for making prime edits permanent. However the proposed mechanism in the seminal publication on prime editing does implicate a number of known factors that have been studied in the context of cellular replication. Large flaps hanging from DNA are common during the formation of Okazaki fragments as part of DNA replication. Flaps of 30 or more single stranded nucleotides are recognized and bound by Replication Protein A, which melts the secondary structure of the DNA flap, recruiting Dna2. Dna2 then cleaves the flap to be shorter and under the 30nt length needed for RPA recognition, at

which point FEN1 is recruited and then cleaves the flap (Bartos et al., 2018, Figure 41). FEN1 has been indicated in the literature to recognize the 5' end of the downstream flap and the first 3' nucleotide at the end of the upstream flap, (Finger et al., 2012) and is the surmised repair mechanism proposed by Anzalone et al in the prime editing paper. Any associated DNA repair enzymes would likely be of strong interest. Similar genes could include exonuclease 1 (EXO1), DNA repair protein complementing XP-G cells (XPG), Holliday Junction 5' Flap Endonuclease (GEN1), 5'-3' exoribonuclease (Xrn1), 5'-3' exoribonuclease 2 (Rat1), and point to the need for a comprehensive screen.

RISC and siRNA

The RNA-induced silencing complex (RISC) is a ribonucleoprotein complex containing many RISC-associated proteins which is capable of incorporating singlestranded microRNA or double-stranded small interfering RNA (siRNA). Normally, the RISC complex exists in order to silence viral mRNA as part of the intracellular immune system, with the Dicer enzyme cleaving viral RNA which is then recognized by an Argonaute enzyme that uses it to hybridize to target transcripts. The RISC complex can accomplish its silencing through mRNA degradation, which is possible when the match between the target and siRNA is highly complementary, and causes the Argonaut enzyme to cleave the mRNA. This process is localized to cytoplasmic P-bodies (Dana, 2017). RISC complexes can also prevent localization of eukaryotic translation initiation factor (eIF) to the 5' cap of mRNA and can accelerate deadenylation of the 3' poly(A) tail. RISC can also compete and prevent the binding of the 60S ribosomal unit. It is also able to block translation that has already begun by causing detachment of ribosomes and slowing the elongation by attaching downstream of the start. Finally, RISC also recruits histone

methyltransferases, which silences the gene through heterochromatin formation. The biology of RISC and RNA silencing is invaluable for use as a diagnostic tool for the effects of gene knockdown.

Pre-existing work in the field of siRNA silencing has shown that siRNA screens are a useful tool for determining genetic dependencies in specific biological processes. As with all genetic screens a high-throughput functional read out is paired with a genetic perturbation, in this case knockdown of gene expression with a suite of siRNAs. This process allows for functional characterization even without complete knowledge of the behavior of the gene (Sharma and Rao, 2009). Screens have been used to discover various pathways in disease, which have eventually led to targeted therapies. A druggable target in the pyrimidine host synthesis pathway was identified in an siRNA screen of Ebola virus replication (Martin et al., 2018). 26 upregulators and 13 downregulators of TNF- α were identified in another siRNA screen to understand LPS-induced response in macrophages (Sun et al., 2017). Some siRNA screens have also been used concurrently with CRISPR in order to double down on knockdown effects, achieving a combinatorially boost to genetic suppression (Zhao et al., 2017). An siRNA screen interrogating dependencies in genome editing and more specifically prime editing could illuminate limitations of the method as well as highlight avenues for future engineering and optimization.

Chapter II.

Materials and Methods

The design and construction of prime editor materials and development of experimental protocols are described in this chapter. Design was performed either manually in benchling or via the PrimeDesign algorithm. Molecular biology techniques were used to clone all plasmids, and DNA and RNA were synthesized by a CMO. All experiments were executed in compliance with BSL2 requirements in the labs at Beam Therapeutics.

PhusionU PCR

Cloning PCRs were all performed using deoxyuridine-tolerant PhusionU polymerase to allow for uridine excision ligation with the USER enzyme (NEB M5505S) (Geu-Flores et al., 2007). All primers were designed with a target melting temperature approximating 60°C and checked for spurious priming with a minimum of no off-targets with at least 3 mismatches, length of 16-30bp, and G/C content ~50% and G end clamps where possible, with a USER junction of 6-10bp where the primer internal sequence begins with a 5' A and ends with a 3'-U followed by trailing bases. Some primers were designed with site directed mutagenesis regions.

Phusion U PCR Protocol:

- 25uL of PhusionU Green Mastermix (Thermofisher F564L)
- 1uL (100ng) template DNA
- 0.5uL 100uM primer 1
- 0.5uL 100uM primer 1
- 23uL H2O
- 95°C 2min, 30cycles(95°C 30sec, 62°C 30sec, 72°C 30sec/kb), 72C° 2min, 12°C hold.

USER Cloning

Fragments produced from Phusion U PCR were gel extracted (2% agarose gel with SYBR safe (Thermofisher S33102) running in 1X TAE at 140V, 300mA, 30min) with the Zymo DNA gel extraction kits and cloned using USER enzyme (New England Biolabs M5505S) to generate a gap at the uridine position within the primer junctions and DpnI (NEB R0176S) to digest parental methylated plasmid, and then transformed into NEB 5-alpha (C2987H), NEB stable (C3040H), or Mach1 (Thermofisher C862003) cells depending on manufacturer availability to allow for native bacterial ligation to repair the plasmid.

USER Cloning Protocol:

- 1uL Cutsmart 10X Buffer (New England Biolabs B7204S)
- 1uL 20000units/mL DpnI
- 1uL 1000units/mL USER enzyme
- 2uL H2O
- To 5uL total of equal volume for each DNA fragment
- 37°C 15min, 12°C hold for two-piece cloning
- 37C° 45min, 0.1°C/sec ramp down to 12°C hold for >2 piece cloning

Rolling Circle Amplification and Sanger Sequencing

Rolling circle amplification (RCA) from Templiphi kits (Cytiva, 25640080) was used to generate DNA for sequence verification. 5uL sample buffer was mixed with a picked colony and heated at 95°C for 3min. 5uL reaction buffer and 0.2uL enzyme were added and the solution was incubated at 30°C for 6 hours to overnight, and supplied with sequencing primers to Eton.

Bacterial Culture Methods

Bacterial transformation was used to incorporate plasmids (10min thaw, 5min incubation with 2uL USER reaction on ice, 30sec heat shock in 42°C water bath, 5min ice recovery, 15min(carb)-45min(kan) recovery in 200uL SOC media at 37°C in a bacterial shaker at 180RPM), and then transformation suspensions were plated on 100mm antibiotic resistance LB agar plates (100ug/mL carbenicillin or 50ug/mL kanamycin) and incubated overnight at 37°C. Bacterial colonies obtained from 100mM plates were picked

and seeded into 5mL or 30mL overnight cultures in LB with Carb100/Kan50 at 37°C and 230RPM in shakers. Glycerol stocks were created with 500uL of overnight culture and 500uL of 50% glycerol. Remaining culture volume was centrifuged for 10min at max (4700) RCF in benchtop centrifuges (eppendorf 2231010061), and lysis and DNA harvest was performed with Zymo plasmid prep kits according to manufacturer's protocol (Zymo Research D4208T/D4200). For multiplex cloning, 96-well format competent cells were used for transformation, and deep 2mL 96-well plates were used for mini/midiprep overnight antibiotic culture with airpore plate seals.

Design and Construction of Prime Editors

Gene blocks were designed and then synthesized by Thermofisher for PE2 (Figures 5, 42, 43). Three fragments were assembled into a pUTR backbone (Figure 44) using PhusionU PCR with custom primers (Table 24) followed by USER cloning to generate pUTR-PE2. Cloning of pCMV-PE2 was performed by a team at Beam investigating prime editing for CD34+ cells using these gene blocks and graciously provided (Figure 45). BbsI-cleavage sites were cloned out using site-directed mutagenesis with PhusionU PCR and USER cloning to enable compatibility of pUTR-PE2 with 120A restriction cloning (pUTR-PE2-BbsI--120A) in order to generate cDNA template for mRNA IVT (Table 2). Using preexisting plasmids in the Beam Therapeutics library generated in earlier work for optimized base editors which contained PAM-Interacting Domain (PID) mutations for NGC and NGA PAMS as well as pCMV/pUTR-PE2 as templates, pCMV-PE2-VRQR, pCMV-PE2-MQKFRAER, pCMV-PE2spCas9(I322V,S409I,E427G,R654L, R753G)-VRQR, pCMV-PE2spCas9(I322V,S409I,E427G,R654L, R753G)-VRQR, pCMV-PE2-

R753G, R1114G)-MQKFRAER, and pUTR-PE2-VRQR were also assembled via PhusionU PCR and USER cloning (Figures 6, 7, 46, 47, 48, 49, 50, 51) (Table 1, 3). mRNA of PE2 and PE2-VRQR were generated from the associated pUTR constructs via restriction digest linearization followed by IVT conducted by Beam's mRNA production team using a proprietary in-house method. All plasmid production and selection was performed using Mach1 or NEB 5-alpha/stable cells depending on availability during the pandemic and Carb100/Kan50 medium and plates, with sequencing confirmation performed with rolling circle amplification and sanger sequencing at Eton Biosciences with custom primers (Table 25) and plasmid extraction executed with Zymo mini/midi/gigaprep kits (Zymo Research D4208T, D4200, D4204). Sequence verification was performed by Eton Biosciences using sanger sequencing.

>PE2Frag3

ACTGATAGCCGTTATGCTTTTGCTACTGCCCATATCCATGGAGAAATATACAGAAGGCG TGGGTGGCTCACATCAGAAGGCAAAGAGATCAAAAATAAAGACGAGATCTTGGCCCTAC TAAAAGCCCTCTTTCTGCCCAAAAGACTTAGCATAATCCATTGTCCAGGACATCAAAAG GGACACAGCGCCGAGGCTAGAGGCAACCGGATGGCTGACCAAGCGGCCCGAAAGGCAGC CATCACAGAGACTCCAGACACCTCTACCCTCCTCATAGAAAATTCATCACCCTCTGGCG GCTCAAAAAGAACCGCCGACGGCAGCGAATTCGAGCCCAAGAAGAAGAGGAAAGTCTAA

Figure 5. Geneblock fragment 3.

Sequence of a section of PE2.
GL561	ACCGAGG/ideoxyU/GCAG ACAG	Connect VRQR or MQKFRAER PID of pBTX460/pGL68 to pGL155 backbone F
GL562	ACCTCGG/ideoxyU/CTTTT TCACGATAT	Connect pGL155 backbone to VRQR or MQKFRAER PID of pBTX460/pGL68 R
GL563	AGGATC/ideoxyU/AGCGG AGGATCC	Connect pGL155 backbone to VRQR or MQKFRAER PID of pBTX460/pGL68 F
GL564	AGATCC/ideoxyU/CCAGA GTCGCCTCCGAGTTGAG	Connect VRQR or MQKFRAER PID of pBTX460/pGL68 to pGL155 backbone R

Table 1. Primer list for cloning pCMV/UTR-PE2-VRQR/MQKFRAER.

Table 2. Primer pairs for cloning out BbsI sites.

Site	Primer 1	Primer 1 Sequence	Primer 2	Primer 2 Sequence
BbsI site 1	HR311	AGCGGGTGGAAGA /ideoxyU/ATCCACC	HR312	ATCTTCCACCCGC/id eoxyU/TGTTGACTTC
BbsI site 2	HR313	ACTCCTAAGACCC C/ideoxyU/CGACAA CTAAG	HR314	AGGGGTCTTAGGAG /ideoxyU/AGGCTGC

Table 3. USER primers for cloning Miller variant VRQR/MQKFRAER prime editors.

GL577	AAGAAGTAT/ideoxyU /CTATCGGACTGGC	USER cloning primer F to connect Miller spCas9 5' to VRQR/MQKFRAER backbone
GL578	AATACTTCT/ideoxyU/ GTCGACTTTCCG	USER cloning primer R to connect VRQR/MQKFRAER backbone to Miller spCas9 5'
GL579	ACCGAGG/ideoxyU/G CAGACAGG	USER cloning primer F to connect VRQR backbone to Miller spCas9 5' without PID
GL580	ACCTCGG/ideoxyU/TT TCTTCACGATAT	USER cloning primer R to connect Miller spCas9 3' without PID to VRQR backbone
GL581	ACCTGTC/ideoxyU/CA ACTCGGAGG	USER cloning primer F to connect MQKFRAER backbone to Miller spCas9 5'
GL582	AGACAGG/ideoxyU/C GATCCGTGT	USER cloning primer R to connect Miller spCas9 3' to MQKFRAER backbone

>PE2-VRQR PAM-Interacting Domain

Figure 6. PAM-Interacting Domain sequence for NGA PAM recognition.

For VRQR base editor plasmid used for cloning.

>PE2-MQKFRAER PAM-Interacting Domain

Figure 7. PAM-Interacting Domain sequence for NGC PAM recognition.

From MQKFRAER base editor plasmid used for cloning.

Design and Construction of pegRNAs and nickRNAs

A manual design method was used for the initial batch of pegRNAs for A1AT, with minimum (truncation directly after the target SNP) and recommended maximum (34bp) (Anzalone et al., 2019) lengths for the RTT and a long or short PBS at 17bp or 13bp, for a total of 2 NGG, 2 NGA, and 6NGC protospacers (Table 4). A second design method utilizing the PrimeDesign software was conducted, for either correction with the lentivirus cassette or insertion into WT genomic DNA. pegRNAs

GL556/545/600/544/549 were designed for correction while GL548/601/542 were designed for insertion. The following command was run with the target sequences for different PAMs:

For the PrimeDesign method, a total of 6 PBS lengths (8/10/12/13/14/15) and 3 RTT lengths spanning at least +2 past the pathogenic SNP and the 20bp maximum range where possible were chosen for a total of 6 novel protospacers (Figure 8). Due to limitations in the program for alternative PAMs, silent PAM disruption was added where possible manually to the RTT sequences. The protospacer from Liu et al. 2014 also had pegRNAs designed at 5 PBS lengths (8/10/13/14/15) and 4 RTT lengths (25/26/27/28) at, designated GL542. 8 nickRNAs were also returned by PrimeDesign for GL542, with 27 nickRNAs returned for NGA PAMs. Output sequences were ordered from IDT.

21

The pegRNAs were cloned into a BsaI-digested pU6-pegRNA-GG-Vector plasmid (Figure 54) via the method described in the original Anzalone paper (Figures 9, 52, 53), whereby top and bottom oligonucleotides with overhangs for the spacer, scaffold, and PBS/RTT components were annealed and cooled, then ligated with the vector (1uL T4 ligase (New England Biolabs M0202S), 1uL DpnI, 1uL Cutsmart 10X Buffer, to 10uL total reaction volume with H2O) (Table 5, 6, 25). Verification and production of guide plasmids was conducted as previously described in this work, with sequencing performed using LKO.1 '5 Eton universal primer.

Table 4. Protospacers for the first set of manually designed pegRNAs for E342K correction/insertion.

Spacer	Sequence
GL542	TCCCCTCCAGGCCGTGCATA
GL543	GGGTATGGCCTCTAAAAACA
GL544	GGCCGTGCATAAGGCTGTGC
GL545	CATAAGGCTGTGCTGACCAT
GL546	CTTCTCTCCCCTCCAGGCCG
GL547	CCCCTCCAGGCCGTGCATAA
GL548	CCAGGCCGTGCATAAGGCTG
GL549	TCTAAAAACATGGCCCCAGC
GL550	GCCTCTAAAAACATGGCCCC
GL551	GGTATGGCCTCTAAAAACAT
'GL600	GGCTGTGCTGACCATCGACa

Figure 8. Positions of pegRNA spacers in the A1AT E342K genomic locus.

PAMs are downstream of arrows. E342K in pink, pathogenic G to A SNP in blue. NGA PAMs exhibiting editing in green. NGG PAM from Liu et al. in Orange. Amplicon PCR primers in yellow.

Step 4: pegRNA assembly pegRNA Golden Gate assembly reaction	
Digested pU6-pegRNA-GG plasmid-vector - Pre-cut, isolated 2.2-kb fragment	1.00 µL @ 30 ng/µL
Annealed protospacer oligonucleotides (component 2)	1.00 μL @ 1 μM
Annealed pegRNA 3'-extension oligonucleotides (component 4)	1.00 μL @ 1 μM
sgRNA scaffold annealed oligonucleotides (component 3) - Oligonucleotides <i>must be phosphorylated</i>	1.00 μL @ 1 μM
Bsal-HFv2 (NEB)	0.25 µL
T4 DNA ligase (NEB)	0.50 µL
10x T4 DNA ligase buffer (NEB)	1.00 µL
H ₂ O	4.25 µL
Total reaction volume:	10.0 µL

Incubate at room temperature for 10 min

Following incubation, perform the following program in a thermocycler: 5 min at 37 $^\circ C$, then 5 min at 80 $^\circ C$, then hold at 12 $^\circ C$

Figure 9. Supplementary note 3 (cont.) from Anzalone et al. 2019.

Protocol adapted in this work for cloning pegRNAs.

pegRNA-scaffold-phos-F	/5Phos/AGAGCTAGAAATAGCAAGTTAAAAT AAGGCTAGTCCGTTATCAACTTGAAAAAGT GGCACCGAGTCG
pegRNA-scaffold-phos-R	/5Phos/GCACCGACTCGGTCCCACTTTTCAA GTTGATAACGGACTAGCCTTATTTTAACTTG CTATTTCTAG

Table 6 Final full sequences of tested A1AT E342K insertion/correction pegRNAs.

The nickRNAs were cloned with NEB T4 ligase and SapI-digested (New England Biolabs R0569S) pU6-spdummy plasmid (Figure 55) (Tables 27, 28). For cloning nickRNA pU6 plasmids, a simpler version of the pegRNA protocol cloning was used where only step 4 of the original Anzalone protocol was used with 0.5uL of each 100uM guide oligonucleotide and 6.25uL H2O instead, with no pre-annealing. Not all of the nickRNAs produced by PrimeDesign were compatible with their given spacers for the E342K lentivirus cassette, although all were cloned, with incompatible nickRNAs saved for potential use with genomic editing. GL544n10-16 and GL556n4-11 were found compatible and used in subsequent PE3 editing experiments.

Synthetic pegRNAs and nickRNAs for the HBB locus were graciously provided by another team at Beam that was working on the HBB sickle cell mutation and who had previously validated them after production by Agilent (Table 29). These guides were reordered as needed from Agilent. All other pegRNA and nickRNA sequences were manually converted from PrimeDesign sequences and ordered from Agilent with stabilizing modifications including a 4U tail and 2'-O-methyl and 3'-phosphorothionate linkages on the first three 5' bases and the fourth/third/second to last 3' bases.

siRNA Knockdown

Thermofisher carries a validated DNA Damage Response siRNA library known as Silencer. Similarly, Horizon Discovery retains a Dharmacon siGENOME siRNA SMARTPool DNA Damage Response library. However, the associations of these commercially available siRNA libraries with DNA damage effects was performed bioinformatically when the function of many of the genes is unknown. With the assistance of Beam's bioinformatics team, RNAseq data from the Protein Atlas was analyzed for Hek293T cells and human hepatocytes, and genes relating to DNA damage response that had divergent expression levels were added to the list (Table 30). The Thermofisher siRNA library contains 575 known DNA damage genes and 1725 siRNAs, and the Dharmacon siRNA library contains 242 genes and 968 siRNAs. The merged libraries were trimmed down to 235 genes (Table 31) to be manageable, and all were converted to manufacturer-guaranteed prevalidated SMARTPool siRNAs where possible.

25

Knockdown was performed according to manufacturer's specifications one day after seeding the cells at 7.5k or 26k cells/well in 48-well Poly-D-Lysine treated plates and after changing the media to OptiMEM (Fisher Scientific 31-985-062), using 0.5, 1, or 1.25uL 5uM siRNA and 0.2, 0.4, or 0.5uL Dharmafect 1 reagent respectively, incubated separately with 19uL OptiMEM each per well in a mastermix for all replicate wells with 10% extra volume to account for dead pipetting volume after mixing gently twice for 5min at room temperature, then combined and mixed gently twice and incubated at room temperature for 20 minutes prior to transfection of each well dropwise. The final condition chosen for the screen was 1uL 5uM siRNA and 0.4uL Dharmafect1.

RT-qPCR

Total RNA was harvested initially from samples during assay development using Zymo Direct-Zol RNA (Zymo Research R2051) kits according to manufacturer specifications for early experiments during assay development, but a switch was made to Zymo Quick-RNA (Zymo Research R1054) kits later to prevent toxicity from evaporated trizol for validating experiments. All RNA concentrations were standardized by dilution with H2O prior to RT-qPCR. RT-qPCR primer sequences were designed to target UNG1, UNG2, and the UNG1/2 shared transcript (Table 7, 8). These were converted into TaqMan probes with either VIC (for UNG1 only) or FAM channels and Nonfluorescent Quenchers (NFQ) (Thermofisher 4448508, 4331348). RT-qPCR was performed according to manufacturer's specifications using TaqPathTM 1-Step RT-qPCR Master Mix, CG (Thermofisher A15299), using a Thermofisher Quantstudio 7 Flex device (Thermofisher 4485701) with 5uL of TaqPath mastermix, 13uL H2O, 1uL probe mix,

and 1uL 20ng/uL total RNA sample.

Table 7. List of RT-qPCR primers de	esigned for UNG1	and UNG2	single and o	combined
amplicons.	-		-	

GL555	ccgcccagtttggagaac	Reverse Transcriptase RT-qPCR primer F for UNG1&2 shared large amplicon coverage F
GL556	ccaaagaaccctctatacactgac	Reverse Transcriptase RT-qPCR primer R for UNG1&2 shared large amplicon coverage R
GL557	ggccaagcaaggtgttctc	Reverse Transcriptase RT-qPCR primer F for UNG1&2 shared small amplicon coverage F
GL558	ggtgccgcttcctatcaa	Reverse Transcriptase RT-qPCR primer R for UNG1&2 shared small amplicon coverage R
GL559	gatcggccagaagacgct	Reverse Transcriptase RT-qPCR primer F for UNG2 amplicon coverage F
GL560	atggccgccgcatctc	Reverse Transcriptase RT-qPCR primer R for UNG2 amplicon coverage R
GL561	accacttgcaggccatcc	Reverse Transcriptase RT-qPCR primer F for UNG1 amplicon coverage F
GL562	atcccattagcttgataaaatacgg	Reverse Transcriptase RT-qPCR primer R for UNG1 amplicon coverage R

UNG1&2 Shared RT-qPCR large amplicon (341bp):	ccgcccagtttggagaacatttataaagagttgtctacagacatagaggattttgttca tcctggccatggagatttatctgggtgggccaagcaaggtgttctccttctcaacgct gtcctcacggttcgtgcccatcaagccaactctcataaggagcgaggctgggagc agttcactgatgcagttgtgtcctggctaaatcagaactcgaatggccttgttttcttgc tctggggctcttatgctcagaagaagggcagtgccattgataggaagcggcaccat gtactacagacggctcatccctcccctttgtcagtgtataggaggttctttgg
UNG1&2 Shared RT-qPCR small amplicon (200bp):	ggccaagcaaggtgtteteetteteaacgetgteeteacggttegtgeeeateaage caacteteataaggagegaggetgggageagtteactgatgeagttgtgteetgget aaateagaactegaatggeettgttttettgetetggggetettatgeteagaagaagg geagtgeeattgataggaageggeace
UNG2 RT-qPCR amplicon (135bp):	gateggccagaagaegetetaeteettttteteeceeageeegeeggaagegae aegeeeegageeggeegteeagggggggggg
UNG1 RT-qPCR amplicon (228):	accacttgcaggccatcccagccaagaaggccccggctgggcaggaggagcct gggacgccgccctcctcgccgctgagtgccgagcagttggaccggatccagagg aacaaggccgcggccctgctcagactcgcggcccgcaacgtgcccgtgggcttt ggagagagctggaagaagcacctcagcggggagttcgggaaaaccgtattttatca agctaatgggat

Table 8. Amplicon sequences for UNG1 and UNG2 RT-qPCR.

Used in MiSeq sequencing for alignment of clusters.

Mammalian Cell Culture Methods

All cell culture was performed in 37°C 5% CO2-controlled incubators (Thermofisher 51030401) and in tissue culture hoods, with passaging and growth in tissue-culture treated T75 flasks (Corning 430641U) and experiments conducted in 48well Poly-D-Lysine plates (Corning 354509) to encourage cell attachment. All cell detachment was performed using Tryp-LE (Thermofisher 12605010) detachment with 3-5min incubation in the incubators. Cell concentration was measured using Via2-Cassettes with a ChemoMetec NucleoCounter NC-200. Hek293T cells (ATCC CRL-3216) were grown in DMEM (Gibco 11965092) 10% FBS (Gibco A3160401) with P/S (Gibco 15140122). Hep G2 cells (ATCC HB-8065) were grown in E-MEM (ATCC 30-2003) 10% FBS with P/S. A lentivirus-transfected stable Hek293T cell line produced from prior work at Beam containing a randomly integrated cassette (Table 9) with a fragment of the A1AT gene with the pathogenic E342K G>A SNP was utilized for various prime editing correction experiments. Human primary fibroblasts were grown in E-MEM with 15% FBS, 1X NEAA supplement (Gibco 11140050), and 1mM sodium pyruvate (Gibco11360070).

A long-lived coculture model with a feeder layer of mouse fibroblasts (Harvard University Howard Lab, 3T3-J2) alongside healthy primary human hepatocytes (BioIVT, donor RSE) that was previously developed and validated for liver identity expression profile by another team at Beam was utilized, with a 24-well plating on tissue culture treated plates at 300kcells/well of HPH cells and 20kcells/well of mouse fibroblasts. Cells were kept in 500uL CP media (BioIVT Z99029) with Torpedo antibiotic (BioIVT Z990007). A lentivirus with the A1AT E342K cassette designated pLV(Exp)-EGFP-TBG>(Serp1) was provided by another team at Beam (VectorBuilder LVLP(VB190903-1054hpz)-C), and 10uL corresponding to a MOI of 40 was transfected per well to insert the pathogenic SNP via random integration (Figure 10) (Table 10). Cassette integration was confirmed visually through a GFP reporter prior to editing experiments

Table 9. A1AT E342K lentivirus cassette sequence integrated into Hek293T cell line.

	GTCACAGAGGAGGCACCCCTGAAGCTCTCCAAG
	GCCGTGCATAAGGCTGTGCTGACCATCGACAAG
	AAAGGGACTGAAGCTGCTGGGGGCCATGTTTTTA
	GAGGCCATACCCATGTCTATCCCCCCGAGGTCA
	AGTTCAACAAACCCTTTGTCTTCTTAATGATTGA
	ACAAAATACCAAGTCTCCCCTCTTCATGGGAAA
	AGTGGTGAATCCCACCCAAAAAGACCCAGCTTT
	CTTGTACAAAGTGGTTGATATCCAGCACAGTGG
	CGGCCGCTCGAGTCTAGAGGGCCCGCGGTTCGA
A1AT E342K pLenti Cassette	AGGTAAGCCTATCCCTAACCCTCTCCTCGGTCT
-	

>pLV(Exp)-EGFP-TBG>(Serp1)

CCAAGGCCGTGCATAAGGCTGTGCTGACCATCGACAAGAAAGGGACTGAAGCTGCTGGG GCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCCGAGGTCAAGTTCAACAAACC CTTTGTCTTCTTAATGATTGAACAAAATACCAAGTCTCCCCTCTTCATGGGAAAAGTGG TGAATCCCACCCAAAAAGATCCTGCATTTTTGTATAAGGTCGTTGATATCCAGCACAGT GGCG

Figure 10. Amplicon sequence of the lentivirus insert transfected into the HPH-fibroblast

coculture model.

Used for alignment of MiSeq clusters.

Table 10. Primer sequences for amplicon PCR for the A1AT E342K lentivirus cassette inserted into HPH cells.

TFYA86	TGGAGTTCAGACGTGTGCTCTTCCGATCTCGCCACTGTGCTGGATAT
TFYA87	ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCAAGGCCGT GCATAAG

Plasmid Transfection

Plasmid transfection was carried out for prime editors using 750ng or 150ng editor plasmid, 250ng or 50ng pegRNA plasmid, and 83ng nickRNA plasmid (for PE3 only for the 750/250 editor/pegRNA combination), with 1.1 or 0.3uL Lipofectamine 2000 (Thermofisher 11668019) in 10uL OptiMEM per half mix. For base editors used as controls, 150ng of editor and 50ng of gRNA were paired with 0.2uL Lipofectamine and 5uL OptiMEM per half mix. The DNA and transfection agent half mixes were combined separately in OptiMEM as mastermixes with volumes suitable for the number of wells to be transfected with 10% extra dead volume, then combined and incubated for 5min at room temperature. Transfections were performed dropwise for the 1083ng PE3, 1000ng PE2, 200ng PE3, and 200ng base editor plasmid conditions. For the overexpression assays, 200ng of expression plasmid was used with 1uL Lipofectamine 2000 and 10uL OptiMEM per half mix.

RNA Transfection

In Hek293T and Hep G2 cells, prime editor RNA (3000ng editor mRNA, 400ng synthetic pegRNA, 150ng synthetic nickRNA) and OptiMEM (19uL) and Lipofectamine MessengerMax (Thermofisher LMRNA015) (1.1uL) and OptiMEM (19uL) per well were combined separately as mastermixes with 10% extra dead volume and incubated for 10 minutes and then incubated for 5 minutes together prior to use on cells. For base editor RNA, 150ng editor mRNA and 50ng gRNA with Lipofectamine MessengerMax (0.2uL) and OptiMEM (5uL per half mix) were combined and incubated as before. DNA was harvested 3 days after transfection.

For a control in the HPH A1AT E342K cassette, a previously published adenine base editor and guideRNA from prior work, ngcABEvar9/sgRNA025 (Packer, Chowdhary, Lung, et al., 2020), was transfected in experiments at 750ng mRNA and 250 gRNA. Given that previous internal work at Beam demonstrated that 1000ng of RNA was the optimal dose to preserve cell health in HPH cells, the prime editors were transfected in a ratio to preserve the 3000/400/150ng schema from Hek293T cells for PE3, with 845/112/42ng of mRNA/pegRNA/nickRNA, respectively. PE2 was transfected with a 3000:400 ratio of mRNA to pegRNA, at 882/117ng. Media was changed the day after and harvest of gDNA was carried out 3 days after transfection.

For primary human E342K fibroblasts, transfection was performed with the same 1000ng of RNA and preserved ratios for PE2/PE3 as the human primary hepatocytes. The optimal condition from prior work for base editors was used (100ng ngcABEvar9

31

mRNA, 50ng sgRNA025). In this case, cells were first trypsinized for 7 minutes in 4mL TrypLE in the flask, then the trypsin was neutralized with an equal volume of media. The needed amount of cells was aliquoted, and spun at 120RCF for 5min. The supernatant was aspirated and the cells were resuspended and washed with 25mL DPBS (Gibco 14190144), then centrifuged and aspirated as before again. The cells were then resuspended at 7.78*10 cells/mL in Neon Transfection Buffer R (Invitrogen MPK1025) for a total of 70,000 cells per transfection well in 9uL, with an additional 1uL of RNA solution, and electroporated with the Neon system (Invitrogen MPK5000) using a protocol of 1000V, 40ms, 1 pulse before seeding into 500uL of media in 24-well tissueculture treated plates (Corning 3337).

Production of mRNA

The production of mRNA was handled by Beam's mRNA platform team. Plasmids were digested by BbsI after cloning out extra BbsI cut sites, after which a 120A tail was cloned in by ligation. These plasmids were then transformed into bacteria and grown in large media batches at low temperature to prevent replication error in the polyA tail, after which the plasmid was extracted using Zymo Maxiprep or Gigaprep kits, and linearized by digestion. The mRNA was generated by in vitro transcription, purified with LiCl precipitation, and examined for full length product yield and purity by Fragment Analyzer (Agilent M5312AA).

Western Blots

Samples for western blots were generated via cell culture and transfection protocols as previously listed using either TREX2 siRNA or plasmid. Samples were

harvested in RIPA buffer (Pierce 89901) with benzonase nuclease (Sigma E1014-5KU) and Halt protease and phosphatase inhibitor cocktail (Thermo 78441) at 1uL/mL working volume each. Western blot analysis was performed by another team at Beam. Proteins were quantified using the Pierce BCA Assay kit (Thermofisher 23227) using 10uL of protein lysate or standard with the addition of 200uL of BCA working solution, then incubated at 37°C for 30min, then analyzed on a TECAN instrument (TECAN M200) with the default BCA protocol. Samples were then standardized to 50ng/uL. The Jess Simple Western system (ProteinSimple Jess) was used to run the western blot with Jess/Wess Separation 12-230kDa ladder (ProteinSimple SM-Woo4), Chemi Detection module (ProteinSimple DM-002), and anti-rabbit secondary antibody (ProteinSimple 042-206), using two different polyclonal TREX2-specific antibodies (Promocell PK-AB718-4971, Novus NBP1-76978-0.025mg). Image analysis was performed in the Compass for Simple Western software.

MiSEQ Library Preparation, Sequencing, and Analysis

MiSEQ libraries were prepared by aspirating media and treating cells with 200uL lysis buffer (10mM Tris pH8.0, 0.05% SDS, 2.5U/uL proteinase K (Invitrogen 25530049)) followed by a 45min 37°C incubation in a benchtop incubator with occasional agitation. 100uL of the lysis supernatant were transferred to 96-well PCR plates and treated with a 15min 95°C neutralization on a heat block. Amplicon generation was performed using 25uL Q5 Hotstart 2x Mastermix (New England Biosciences M0493S) and 0.25uL of each 100uM primer (Tables 10, 32), 1uL lysis supernatant, and 23uL H2O. The PCR protocol used was 95°C 2min, 30cycles(95°C 30sec, 62°C 30sec, 72°C 30sec), 72°C 2min. Quality control was conducted with gel electrophoresis using

5uL of completed PCR solution and 1uL NEB 6X Purple Dye (B7024S). and using Thermofisher E-Gels (Thermofisher G401004, G8100, G720802, EBM03) and SYBRsafe ChemiDoc imaging (Bio-Rad 12003154) and 6x Purple Dye. Barcoding PCR was performed with 25uL Q5 Hotstart 2x Masternix, 1uL of 10uM combined barcode primer mastermix, 1uL of amplicon PCR reaction solution, and 23uL H2O, with the same PCR program but with 10 cycles instead of 30. QC was performed as before, and then the PCR reactions of amplicons of different sizes were pooled separately, mixed by vortexing, and 166uL or 333uL of the combined libraries were mixed with 33uL or 66uL 6X Purple Dye, respectively, and run on 2% agarose poured SYBR-safe gels, and gel extracted with Zymo DNA gel extraction kits, followed by another round of purification using Zymo DNA Clean and Concentrator (Zymo Research D4029) kits. The resultant product was nanodropped twice, taking the average value, and molar calculations were performed. 4nM suspensions of each library were created in 10mM Tris pH8.0 and a combined 4nM library with proportional volume of by number of samples per amplicon was subsequently created from those suspensions. 5uL of the combined 4nM library was combined with 5uL 0.2M NaOH freshly made from chilled 10M NaOH stock (to prevent loss of NaOH fidelity) and incubated to denature the libraries for 5min at room temperature. 990uL of HT1 MiSEQ buffer was added to quench the denaturation process, after which the libraries were at 20pM. 20% PhiX control was spiked into each library, using 120uL of 20pM denatured PhiX control that was generated using the same denaturation process and 480uL of the 20pM denatured sample library. All 600uL were loaded into MiSEQ cartridges and sequenced with V2 flow cells (Illumina MS-102-2003) for FASTQ data generation on an Illumina MiSEQ (Illumina SY-410-1003). Basecalls

were made by aligning reads from clusters against an amplicon sequence and searching for a target site sequence (Table 32, 33), followed by sorting and verbose output using a custom program created by Beam's bioinformatics team.

Chapter III

A1AT E342K Prime Editing Results

PE2/PE2_PAM and PE3/PE3b/PE3_PAM/PE3b_PAM strategy editor, pegRNA, and nickRNA PrimeDesign libraries were successfully designed for A1AT E342K. The experiments described herein identified NGA PAM prime editor combinations capable of precisely correcting the E342K mutation in SERPINA1.

NGA PAM PE2 Edits the A1AT E342K Locus

While several attempts in the literature have been made to prime edit the A1AT E342K locus, these attempts have focused on the usage of the canonical NGG PAM, which is problematic since the minimum RTT length for the closest NGG PAM is 25bp away from the pathogenic SNP, which is several bases out of the optimal range of 10-16bp recommended in the original Anzalone et al. paper. Therefore, in addition to designing NGG pegRNAs and cloning PE2 into a pCMV vector, VRQR and MQKFRAER variant prime editors with altered PAM-interacting domains were cloned into pCMV vectors and NGA and NGC PAM pegRNAs were cloned. Given that pegRNA PBS and RTT lengths can greatly influence the frequency of prime editing due to various causes such as internal homology of the PBS to a spacer, degradation of the RTT flap from exonucleases, etc., we sought to interrogate various pegRNA subcomponent lengths using PE2 strategy to identify candidate pegRNAs before proceeding to a PE3 strategy. The first round of pegRNAs were fixed at either 13bp or 17bp for the PBS length and with either the maximum or minimum RTT lengths as noted in the Anzalone paper. A total of 2 NGG (GL542/543), 2 NGA (GL544/545), and 6 NGC

36

(GL546/547/548/549/550/551) pegRNA spacers were included under this criteria for a total of 40 pegRNAs. Another NGA pegRNA (GL600) that was closest to the target and overlapped the pathogenic SNP was cloned with PBS lengths of 12/13/14/17bp and RTT lengths of 10/12/14/16bp. However, no detectable editing was observed with any of these pegRNAs in Hek293T cells.

In light of this negative data, a more comprehensively optimized screen was performed using the PrimeDesign software for the 6 closest protospacers on a pLenti cassette containing the E342K allele for correction. Where possible, manual design of PAM disruption was included (GL544/556/548) due to limitations of the software that prevented automated disruption of non-canonical PAMs. PBS lengths of $\frac{8}{10}$ $\frac{12}{13}$ $\frac{14}{15}$ bp and 3 RTT lengths at least +2 past the target SNP up to near the maximum optimal length (20bp) (GL544: 17/18/20, GL545: 10/14/20, GL556: 10/15/20, GL549: 23/24/25, GL548: 19/20/21). After work had begun, the GL542 spacer was shown in the literature to have activity, and a PrimeDesign was also conducted, resulting in PBS lengths of 8/10/13/14/15 bp and RTT lengths of 25/26/27/28 bp with PAM disruption. Unfortunately, GL542 lies outside of the bounds of the Lenti cassette, so the pegRNAs were designed against WT genomic DNA for insertion of the pathogenic SNP. Transfection with Lipofectamine 2000 in Hek293T cells produced significant detectable editing above background noise with two of the NGA protospacers (GL544 (~2-3%), GL556 (~0.5-1%)) and with the GL542 spacer (~1%) (Figure 11) (Table 34). Notably, the GL544 and GL556 NGA pegRNA variants which showed editing further demonstrated the incorporation of their respective PAM disruption silent mutations in the sequenced alleles (Figures 12, 13) (Tables 35, 36). Additionally, GL544 exhibited ~2-

37

fold higher editing than GL542 as PE2, and notably the leading GL542 pegRNA variant outperformed the 13bp PBS and 27bp RTT version that exhibited promising editing in the Liu et al. paper (Table 37) (Figure 14).

Figure 11. A1AT E342K PE2 PrimeDesign editing.

Percentage of alleles exhibiting precise correction of A1AT E342K following treatment by plasmid library of PrimeDesign pegRNAs and their corresponding plasmid PE2 editor variants. Each set of pegRNAs for a unique protospacer is indicated in separate boxes.

Figure 12. GL544 NGA A1AT E342K -3C+7G editing.

-3C+7G PAM disruption + precise correction allele is exhibited by the GL544 NGA pegRNA at A1AT E342K, proving specific correction.

Figure 13. GL556 A1AT E342K 3A+7G editing.

3A+7G PAM disruption+precise correction allele is exhibited by the GL556 NGA pegRNA at A1AT E342K, proving specific correction.

Figure 14. GL542 vs 556/544 A1AT E342K PE2 editing.

GL542 exhibited higher editing with the leading pegRNA candidates compared to GL556, but significantly lower (~2-fold) compared to GL544.

NGA PAM PE3 Competitively Edits the A1AT E342K Locus

Following this, nickRNAs from the PrimeDesign output were then cloned for all

three pegRNAs, with a total of 7 for GL544, 8 for GL556, and 8 for GL542.

Additionally, modified VRQR PIDs for NGA PAMs for base editors that exhibited

greater affinity for NGA PAMs as a result of select mutations

(I322V,S409I,E427G,R654L,R753G) (Miller et al. 2020) were also tested as PE2 against

the VRQR (pGL191) condition. Moving from PE2 to PE3 appeared to double correction

for GL556 and GL542, with an uncertain effect for GL544 that exhibited inconsistent

editing but which did not fall below PE2 editing (Figure 15) (Table 38) the behavior of

which is tentatively surmised to potentially be due to the cutting of multiple insertion

sites of the E342K lentivirus cassette. A direct comparison between the three PAMs revealed that the GL544 NGA PAM exceeded the editing of the GL542 NGG PAM for all conditions (Figure 16) (Table 39). However, the caveat is that the comparison is between genomic versus lentiviral loci. Unexpectedly, the heavily optimized mutant VRQR PID exhibited no detectable editing, suggesting that the mechanics of prime editing and base editing are sufficiently different that what works for one may not translate to the other. 3-5% editing was observed for GL544, 1-1.5% for GL556, and 2-3% for GL542.

Figure 15. GL544/556 A1AT E342K PE3 editing.

NGA prime editing with PE3 strategy at A1AT E342K lentivirus cassette in Hek293T, compared against PE2 editing with or without the Miller et al. PID mutations and Cas9 control. All "GLXXXn##" nickRNAs were transfected with PE2-VRQR and either GL544-13-20 or GL556-14-20, according to their respective designations.

Figure 16. GL542 vs 544/556 A1AT E342K PE3 editing.

Comparison of GL542 genomic insertion versus GL544/556 correction of lentiviral cassette for A1AT E342K in Hek293T, with both PE2 and PE3 strategies.

Plasmid to mRNA conversion of NGA PE2/PE3 Maintains Prime Editing Frequency

As plasmid is toxic in vivo and to primary cells, testing of mRNA versions of prime editors was necessary. Hek293T cells containing the E342K lentivirus cassette were transfected with either plasmid or mRNA NGA prime editors. Conversion to mRNA sometimes increases editing frequencies, however, this was not clearly observed here. For all conditions tested, t-tests suggested plasmid and mRNA generated similar editing (Table 40) (Figure 17). We suspect that there may be a small increase in editing frequency for GL556, but the low levels of editing may have caused low assay sensitivity.

Figure 17. Comparison of mRNA versus plasmid correction at A1AT E342K in Hek cells.

GL544 plasmid (yellow) and RNA (red) show comparable levels of editing, and GL556 plasmid (blue) and RNA (green) show comparable levels of editing.

NGA PAM PE3 Detectably Edits A1AT E342K in Human Primary Fibroblasts.

Finally, PE2-VRQR mRNA was tested with synthetic peg/nickRNA GL544-13-

20+GL544n11/12/13 and GL556-14-20+GL556n5/6/11 for correction in primary

fibroblasts containing the E342K pathogenic allele. The cells were treated with either a

prevalidated base editor (ngcBE4var9) and gRNA (sgRNA025) (M. Packer, V.

Chowdhary, G. Lung et al., 2020) or the NGA prime editors and respective guides for the

E324K site using electroporation. Detectable levels of editing were observed for the PE2

GL544-13-20 condition in primary fibroblasts, with one replicate generating 1.99%

editing, but with average editing at 0.836% and with a standard error of the mean of 0.58, whereas base editor generated 20% editing (Table 41) (Figure 18).

An additional attempt was made to attempt to develop an assay for human primary hepatocytes. However, these HPH cells were from healthy donors and lacked the pathogenic SNP, which needed to be inserted. Additionally, integration of a cassette with the SNP would take time longer than the lifetime of the HPH cells, which is roughly four days. Therefore a long-lived coculture model with a feeder layer of mouse fibroblasts alongside HPH cells was used, and was transfected with a lentivirus cassette containing A1AT E342K. Thereafter integration was confirmed by reporter fluorescence prior to transfection. However, control editor conditions failed to produce an acceptable baseline positive control rate of editing, likely due to the integration efficiency of the cassette, and so the assay was unable to be completed in time and was abandoned.

Figure 18. Precise correction of A1AT E342K by NGA prime editors in primary

fibroblasts.

RNA was transfected into GM11423 primary fibroblasts containing the E342K SNP. GL544-13-20 PE2 strategy generated low (<1%) but detectable editing, although this is not statistically significant over noise.

Chapter IV

siRNA Knockdown Prime Editing Results

An siRNA library and lead HBB editor/pegRNA/nickRNA combinations were successfully chosen. Plasmid overexpression vectors to orthogonally validate siRNA hits were also tested. Several genes exhibited significant influence on prime editing outcomes, including TREX2.

Validation of siRNA Knockdown Timing and Influence on Gene Editing

Hek293T cells were transfected with siGENOME SMARTPool UNG siRNA and total RNA was harvested across five days, after which one-pot RT-qPCR was performed for UNG1, UNG2, and their combined transcript, which were chosen as controls due to their properties as uracil base excision enzymes which should theoretically have no effect on prime editors but a strong effect on cytidine base editors. Knockdown was measured via cycle count surrogate and was confirmed for all three transcripts. A difference of cycle number of between ~2-3 was observed across all five days, corresponding to at least the 75% knockdown guarantee from siGENOME (Figure 19) (Table 42). However, relative knockdown decreased daily. This informed future experiments, indicating that the prime editor ought to be transfected as soon as possible after knockdown. Accordingly, the assay for sequential transfection was designed with a day 0 seeding, day 1 knockdown, and day 2 prime editor transfection. The RT-qPCR experiment was repeated as during optimization for the sequential transfection, the format was changed from 96-well to 48-well as cell density was thought to play a role, and the knockdown effect was once again confirmed (Table 43) (Figure 20).

46

Figure 19. RT-qPCR results for UNG2 knockdown.

RT-qPCR CT scores for UNG2 transcript for 24/48/72/96/120hr, indicating a marked increase in CT count for the knockdown condition, corresponding to a decrease in transcript.

Figure 20. Ct scores for UNG2 in 48-well format.

Confirmed knockdown by 1uL 5uM UNG siRNA.

To validate the protein-level effects of siRNA knockdown, UNG knockdown followed by PE3 or base editor with (BE4) or without (BE4-noUGI, aka BE3B) uracil glycosylase inhibitor (Komor et al., 2017) transfection was performed. Since UNG excises uracil, it removes uridines that cytidine base editors generate, interfering with the C>U>T conversion process. As expected, knockdown of UNG greatly increased the proper conversion of C to T by ~20% and decreased C to G by ~12%, whereas for BE4 without UGI, knockdown increased C to T conversion by ~15% and decreased C to G editing by ~2% (Figure 21) (Table 11), thus validating the functionality of the assay format for knockdown followed by gene editing. For this set of experiments, the same amount of base editor and prime editor were used (150ng editor, 50ng total guide RNA (split 100:67 molar ratio between peg/nick for PE3), and PE3 mRNA did not show a significant difference in editing outcomes between the UNG and untreated control, validating that RNA transfection alone does not alter prime editing (Figure 22) (Table 12).

Figure 21. Hek2 target site C>T versus C>G editing.

UNG siRNA knockdown followed by base editor transfection.

Table 11. Percent editing of BE4 and BE4-noUGI with or without UNG siF	N A
knockdown.	

Condition	Average C>T	Average C>G	C>T Error	C>G Error
UNG+BE4	29.20666667	1.846666667	2.742908027	0.174578858
Untreated+BE4	19.25333333	16.85666667	0.088380491	0.139323764
UNG+BE4-noUGI	11.06	36.43	1.065879918	1.339788541
Untreated+BE4-noUGI	1.886666667	39.02333333	0.244767463	4.036732727

Condition	22T Average	22T Error
Untreated	0.013333333	0.008819171
GFP	0.01	0
UNG	0.013333333	0.003333333
Untreated+PE3	12.16666667	1.482299265
GFP+PE3	9.67	2.057968254
UNG+PE3	9.72	1.081310933

Table 12. Percent editing of PE3 under knockdown with UNG or with GFP control transfection.

Figure 22. Prime editing with PE3 at HBB 22T with UNG siRNA.

Editing does not appear to be significantly affected.

siRNA Knockdown Suggests TREX2, FANCM, and LIG4 Effect on Prime Editing

Subsequently for the final screen, amounts of prime editor were increased to 3000ng of editor mRNA, 400ng of pegRNA, and 150ng of nickRNA and 1.1uL of Lipofectamine MessengerMax. A day 0 seeding at 7.5k Hek293T cells per 48-well followed by day 1 knockdown with 1uL 5uM SMARTPool siRNA and 0.4uL Dharmafect1 (Horizon Discovery T-2001-03), then a day 2 transfection with the prime editing reagents, and gDNA was harvested on day 5, after which amplicon PCR and barcoding PCR and MiSeq were performed. The screen was conducted as 4 staggered separate experiments for each 96-well of siRNAs in triplicate due to the sheer number of siRNAs involved, with 12 controls per experiment (Non-Targeting siRNA Pool #1/2, Non-Targeting siRNA #1/2/3/4/5, Lamin A/C, Cyclophilin B, GAPD Control siRNAs, Untreated+PE3, Untreated) (Figures 23, 24, 25, 26) (Tables 13, 14, 15, 16). siRNAs were selected based on an ontology sort of relevant functions to prioritize genes, with assistance from Beam's bioinformatics team to find differentially regulated genes between Hek293T/U2OS/HeLa cells, and combined with Thermofisher and Dharmacon libraries for DNA Damage siRNAs, before all were converted where available to Dharmacon siGENOME SMARTPool siRNAs.

Condition	Average 22T	Average Undesired	22T Error	Undesired Error	Condition	Average 22T	Average Undesired	22T Error	Undesired Erro	Condition	Average 22T	Average Undesired	22T Error	Undesired Error
GAPD Control siRNA	44.60333333	0.556666667	26.01520859	0.237299623	POLL	15.34333333	0.643333333	3.246805267	0.173237153	RPAIN	11.37333333	0.56	0.788972609	0.15
RAD17	44.25666667	1.513333333	23.97169048	0.52834122	XRCC5	15.15666667	0.676666667	2.196165851	0.161692438	ERCC3	11.18	0.433333333	1.498299036	0.076666667
MSH2	22.97333333	1.07	0.746688988	0.183575598	FANCA	15.09	0.693333333	1.066630208	0.158569999	OGG1	11.22	0.41	2.245818336	0.077674535
Control siRNA #5	22.58666667	0.79	0.639800316	0.055075705	MLH3	15.05666667	0.663333333	2.268790672	0.208832735	FANCL	11.12	0.436666667	0.612209115	0.018559215
ERCC2	22.79666667	1.373333333	0.382811239	0.18657736	POLB	14.87	0.536666667	1.985253972	0.133458275	NTHL1	11.47	0.763333333	1.72123018	0.156240555
EXO1	22.29	0.863333333	0.872314928	0.095974534	TP53BP1	14.61333333	0.626666667	0.884163132	0.020275875	XRCC6	10.92	0.386666667	0.551845389	0.216512766
BRCA2	21.86333333	1.013333333	1.437153823	0.247408794	POLG2	14.25333333	0.566666667	0.780220766	0.018559215	DCLRE1C	10.66	0.396666667	0.979047156	0.012018504
Untreated+PE3 Control	21.45	1.006666667	0.990420786	0.09171211	MLH1	14.51666667	0.946666667	0.935063872	0.239606158	CHEK2	10.55	0.496666667	0.798394222	0.049103066
FANCD2	21.33	0.95	0.975346092	0.096436508	Control siRNA Pool #2	14.20666667	0.563333333	1.475243859	0.092074849	POLE2	10.45	0.383333333	2.410276609	0.129142471
LIG1	20.95333333	0.756666667	0.338247115	0.089876458	MSH3	14.51666667	1.063333333	1.369359136	0.506304695	MSH6	10.54666667	0.546666667	0.964578204	0.032829526
LIG3	20.70333333	0.93	0.603995953	0.179257729	ERCC4	13.99333333	0.526666667	1.502412874	0.065659052	FANCE	10.33	0.353333333	1.226499083	0.068879928
RAD9A	20.07666667	0.873333333	1.114904082	0.143333333	POLQ	14.01333333	0.593333333	1.118158208	0.043333333	NEIL1	10.40666667	0.436666667	1.189430302	0.12251984
Lamin A/C Control siRNA	19.93666667	0.723333333	0.813333333	0.053644923	APEX2	13.9	0.586666667	3.096487257	0.127322862	NUDT1	10.19	0.323333333	0.759736797	0.060644685
POLE	19.82666667	0.806666667	1.412389622	0.141696075	RPA4	13.92333333	0.666666667	1.09138037	0.136788564	FANCE	10.29666667	0.493333333	1.44916451	0.086666667
MPG	19.16333333	0.753333333	3.067150324	0.143797697	ERCC8	13.52	0.406666667	0.23515952	0.052387445	CHEK1	10.3	0.5	0.816823114	0.09504385
RAD1	18.86	0.86	1.271154331	0.104403065	APEX1	13.69333333	0.623333333	1.123867331	0.090246576	MGMT	10.03333333	0.356666667	0.132455443	0.033333333
XRCC1	18.51	0.866666667	0.811007604	0.056960025	XRCC4	13.59333333	0.613333333	0.881709199	0.118649812	ATM	9.78	0.366666667	0.535007788	0.109898943
BRCA1	18.21	0.773333333	1.16258333	0.139562809	RAD51	13.42	0.533333333	2.726579053	0.123468395	POLH	9.736666667	0.3	0.747224494	0.03
POLM	17.58666667	0.6	0.921128535	0.06350853	DDB2	13.44333333	0.596666667	0.949075574	0.012018504	MSH5	9.863333333	0.516666667	1.710568457	0.163435342
RAD51C	17.55333333	0.68	3.155045342	0.126622799	NEIL2	13.39666667	0.573333333	0.193591781	0.074461026	RPA1	9.613333333	0.303333333	0.392612334	0.118930418
ERCC1	17.28	0.896666667	2.440409802	0.191688405	MUTYH	13.13	0.613333333	0.460470774	0.003333333	Control siRNA #2	9.503333333	0.403333333	0.980226731	0.026034166
FANCB	17.25333333	0.863333333	2.321639746	0.158569999	XRCC3	12.99	0.503333333	2.403060549	0.034801022	POLA1	9.343333333	0.37	0.58167383	0.081853528
POLI	16.94	0.64	0.441701257	0.073711148	Control siRNA #4	12.86333333	0.523333333	1.086298506	0.040960686	PNKP	9.183333333	0.256666667	0.422111096	0.08412953
Control siRNA #3	16.87333333	0.67	0.712327952	0.094516313	UNG	12.84333333	0.736666667	0.417306176	0.073333333	ERCC6	9.123333333	0.293333333	1.029924485	0.075129518
Cyclophilin B Control siRNA	16.46666667	0.656666667	0.925964962	0.053644923	ERCC5	12.58	0.52	0.516268664	0.160416126	DCLRE1A	8.613333333	0.32	1.2806422	0.047258156
FANCC	16.17	0.58	0.37072002	0.090184995	ATRX	12.47666667	0.74	1.127420852	0.136503968	MSH4	8.566666667	0.406666667	1.633527199	0.177043623
POLD1	16.25666667	0.696666667	2.134957715	0.175720738	FEN1	12.30333333	0.546666667	0.696762354	0.106822802	DDB1	8.403333333	0.396666667	1.291256924	0.124409717
TP53	16.26333333	0.716666667	0.487590447	0.118930418	DCLRE1B	12	0.566666667	0.369504172	0.117236703	LIG4	7.323333333	0.293333333	0.997084639	0.060092521
ATRIP	15.96	0.683333333	1.549913976	0.116237305	POLK	11.94	0.51	0.481283008	0.126622799	FANCM	7.2	0.3	0.731186251	0.11
Control siRNA #1	15.86	0.6	0.313209195	0.045092498	RPA2	11.79666667	0.42	0.279065902	0.089628864	Untreated Control	0.083333333	0.05	0.068394282	0.05
NEIL3	15.70666667	0.613333333	0.681428239	0.069602043	POLG	11.77666667	0.493333333	1.623836335	0.141106737					
XRCC2	15.81666667	0.686666667	1.793621414	0.109290642	ATR	11.75	0.56	0.962496753	0.115325626					
DNA2	15.42333333	0.63	2.498595161	0.213775583	Control siRNA Pool #1	11.41666667	0.406666667	1.222052008	0.091347931					

Table 13. Percent editing of precise correction and undesired edits for siGENOME screen plate 1.

Table 14. Percent editing of precise correction and undesired edits for siGENOME screen plate 2.

Designation	Average 22T	Average Undesir	22T Error	Undesired Error	Designation	Average 22T	Average Undesi	22T Error	Undesired Error Designation	Average 22T	Average Undesir	22T Error	Undesired Error
PAXIP1	16.23333	2.22	0.179475	0.072342	Control_Pool2	15.82333	2.13	0.223333	0.032146 RAD23A	15.67333	2.216667	0.112891	0.143798
SPRTN	16.16	2.043333	0.449778	0.124677	TWIST1	15.82	2.05	0.270555	0.04 BIVM	15.66667	2.13	0.184782	0.055076
APBB1	16.14	2.103333	0.310215	0.065659	RASSF7	15.81667	2.146667	0.23877	0.065659 CyclophilinB_Co	15.66333	2.11	0.28881	0.034641
Control_4	16.14	2.22	0.164418	0.089629	PML	15.81333	2.08	0.03383	0.068069 HMGA2	15.66	2.186667	0.3646	0.060645
USP16	16.10333	2.126667	0.234473	0.031798	MCM8	15.81	2.193333	0.088882	0.069602 POLD2	15.65	2.05	0.166533	0.015275
SIRT4	16.09333	2.21	0.14746	0.041633	CARM1	15.80667	2.063333	0.172466	0.052387 STK11	15.64667	1.986667	0.153442	0.036667
BCCIP	16.09	2.07	0.07	0.07	POLR2F	15.80667	2.2	0.297452	0.046188 SOX4	15.64333	2.076667	0.092616	0.040961
MDM2	16.05333	2.076667	0.121289	0.082932	POLR2H	15.80667	2.12	0.023333	0.011547 EEPD1	15.63	2.236667	0.037859	0.038442
BABAM1	16.01333	2.08	0.385155	0.170978	Control_Pool1	15.79667	2.116667	0.15836	0.008819 WRAP53	15.62667	2.123333	0.278109	0.094927
RNASEH2B	15.99333	2.246667	0.098376	0.006667	Control_2	15.79333	2.253333	0.087623	0.089505 BRSK1	15.61667	2.223333	0.235961	0.098376
PRMT1	15.97667	2.21	0.173429	0.121655	FNIP2	15.79333	2.196667	0.186577	0.112151 RAD52	15.61667	2.11	0.105251	0.100167
CXCL12	15.97667	2.21	0.057831	0.037859	MYC	15.79333	2.24	0.102035	0.015275 POLD4	15.61333	2.133333	0.082932	0.060093
SMARCB1	15.96	2.14	0.133167	0.028868	E2F8	15.79	2.086667	0.122882	0.061192 FOXO1	15.59333	2.056667	0.233548	0.083533
Control_1	15.95333	2.086667	0.058405	0.057831	FBXO18	15.79	2.226667	0.165227	0.023333 BCL2L12	15.57667	2.08	0.371678	0.055076
FMN2	15.95333	2.19	0.243607	0.081445	MCM7	15.78	2.1	0.06245	0.073711 KMT5C	15.57667	2.113333	0.248283	0.038442
RAD50	15.93667	2.14	0.065659	0.035119	GNL1	15.77333	2.156667	0.094927	0.012019 PMAIP1	15.57667	2.233333	0.131191	0.086859
NDRG1	15.92667	2.11	0.058119	0.005774	Lamin_Control	15.76667	2.096667	0.043716	0.064893 ALKBH8	15.57	2.176667	0.106927	0.044096
RAD9B	15.92667	2.043333	0.086859	0.040552	WRNIP1	15.76333	2.183333	0.226593	0.08413 RAD23B	15.54333	2.23	0.139801	0.035119
RAD54B	15.92	2.113333	0.040415	0.036667	MDM4	15.75667	2.013333	0.077531	0.033333 ELL3	15.52667	2.166667	0.144952	0.006667
CHD2	15.91667	2.19	0.221008	0.041633	RAD21	15.74667	2.083333	0.211371	0.026034 INTS3	15.52333	2.196667	0.136789	0.018559
MCM9	15.91333	2.106667	0.364067	0.057831	VAV3	15.74	2.13	0.162583	0.036056 BARD1	15.52	2.16	0.207445	0.08544
UBQLN4	15.90333	2.056667	0.273821	0.092796	RNF138	15.73667	2.203333	0.233833	0.026034 PRKCD	15.5	2.126667	0.175024	0.088192
CDC45	15.89333	2.16	0.192209	0.080829	Control_3	15.72333	2.163333	0.097011	0.069362 Untreated_PE3	15.5	2.086667	0.025166	0.01453
FANCG	15.88667	2.086667	0.104137	0.049777	CDC14B	15.72	2.06	0.242143	0.036056 AUNIP	15.49333	2.146667	0.247813	0.112891
FOXO3	15.88333	2.106667	0.108372	0.051747	DMAP1	15.71333	2.196667	0.080898	0.063333 CHD1L	15.48667	2.173333	0.143798	0.023333
EEF1E1	15.88	2.156667	0.151327	0.051747	Untreated	15.71333	2.213333	0.372439	0.056075 ANKLE1	15.48333	2.133333	0.153768	0.059255
JMY	15.88	2.18	0.170392	0.025166	GAPD_Control	15.71	2.233333	0.178979	0.078811 Control_5	15.47	2.166667	0.089629	0.046667
POLN	15.88	2.076667	0.208167	0.016667	TEX15	15.69667	2.14	0.259893	0.098658 EYA4	15.46333	2.086667	0.108372	0.038442
RAD54L	15.87	2.086667	0.225019	0.104137	PPP4C	15.69333	2.223333	0.112151	0.053645 NSMCE4A	15.45	2.23	0.196554	0.081445
TERF2IP	15.85333	2.173333	0.08838	0.023333	NUDT16L1	15.68667	2.043333	0.08838	0.026667 WDR48	15.31	2.143333	0.102144	0.044845
RAD18	15.85	2.143333	0.151327	0.078599	GINS2	15.68	2.113333	0.135769	0.0857				
ASCC2	15.84667	2.06	0.131698	0.005774	POLD3	15.67667	2.093333	0.034801	0.035277				
SESN2	15.83333	2.046667	0.188886	0.141696	COPS7B	15.67333	2.12	0.018559	0.065064				

Gene Name	Average 22T	Average Undesired	22T Error	Undesired Error	Gene Name	Average 22T	Average Undesir	22T Error	Undesired Error	Gene Name	Average 22T	Average Undesi	22T Error	Undesired Error
siRNA #5 Contro	19.71333333	0.933333333	0.029627	0.708386	SOD1	16.24666667	0.516666667	1.221697	0.131191	RUVBL2	13.65	1.53	0.969347	0.183576
CTC1	19.61666667	0.32	0.576233	0.005774	siRNA Pool #2 Co	16.22	0.186666667	0.626844	0.012019	REV3L	13.43666667	1.373333333	1.826512	0.10729
ZBTB18	19.36	1.146666667	1.084866	0.524479	CSNK1E	15.93	1.31	1.372309	0.273922	RFC3	13.42	0.84	1.697773	0.208407
MCRS1	19.3	1.003333333	0.520481	0.298682	siRNA Pool #1 Co	15.92333333	0.43	2.081829	0.160104	SPIRE2	13.33	0.643333333	1.085188	0.097011
AEN	19.22333333	0.82	1.432554	0.385011	siRNA #1 Contro	15.87	0.55	0.856757	0.108167	GTF2H5	13.01666667	0.84	1.089118	0.135277
ZSWIM7	19.07666667	0.4	0.365529	0.017321	KLHL15	15.84333333	0.67	0.641413	0.150111	MAD2L2	12.74666667	0.27	0.299128	0.005774
SETMAR	18.81	0.783333333	2.728999	0.31866	MDC1	15.69666667	0.33	0.736599	0.02	PARP2	12.66333333	1.003333333	1.524569	0.262064
PAGR1	18.70666667	1.076666667	1.436017	0.497203	UBE2B	15.62333333	0.376666667	0.496969	0.024037	BRD4	12.46666667	0.61	1.005258	0.101489
PRKCG	18.18	0.583333333	0.668905	0.269588	TDG	15.61666667	0.993333333	0.624642	0.304923	BRCC3	12.46333333	0.956666667	1.277567	0.496801
HMGB2	18.16666667	0.556666667	0.295654	0.206989	UVRAG	15.47	0.323333333	0.420159	0.023333	PER1	12.25	0.713333333	0.168622	0.05696
PMS2	18.07666667	0.953333333	3.136167	0.688485	SMC3	15.35666667	0.543333333	0.884163	0.139324	PMS1	12.14333333	0.8	0.383159	0.111355
ATF2	18.07	0.52	1.154426	0.245017	SLFN11	15.30666667	0.556666667	0.466238	0.184421	MUS81	12.07	0.846666667	1.369319	0.443784
RASSF1	17.9	0.5	1.336076	0.072111	RPS27L	15.22666667	0.546666667	0.796709	0.034801	UBA52	12.02	1.993333333	0.441928	0.566755
GADD45A	17.87333333	0.62	1.466428	0.41	GTF2H2	15.22	0.656666667	1.248319	0.123873	GTF2H4	11.76333333	0.613333333	0.165563	0.093333
AATF	17.63666667	0.913333333	1.020087	0.233833	KMT5A	14.95	1.233333333	0.395011	0.223632	TYMS	11.75333333	0.71	0.606089	0.025166
TOPBP1	17.59333333	0.54	0.621673	0.023094	DDX11	14.93	1.476666667	0.464579	0.439179	XPC	11.73	0.496666667	0.240278	0.108985
MTA1	17.56666667	0.716666667	0.047022	0.17901	Untreated+PE3	14.88666667	1.046666667	0.490725	0.786751	siRNA #2 Contro	11.66	0.55	0.735006	0.16773
GTF2H1	17.49666667	0.833333333	2.312123	0.498743	NSMCE3	14.65666667	0.4	1.547227	0.056862	WRN	11.35	0.833333333	1.598166	0.145297
siRNA #3 Contro	17.40333333	0.616666667	1.357232	0.145297	CENPX	14.59333333	0.916666667	0.849987	0.145182	RFC4	11.23333333	1.18	0.382376	0.178979
siRNA #4 Contro	17.39666667	0.32	0.874115	0.043589	TRIM28	14.43333333	0.683333333	1.600566	0.208513	RTEL1	11.00666667	0.54	1.591072	0.157162
IRF7	17.32333333	0.466666667	1.514841	0.056667	APTX	14.4	0.856666667	1.034231	0.081921	CSNK1D	10.90333333	0.433333333	0.81736	0.07513
RECQL4	17.20333333	1.096666667	1.829611	0.450568	SIRT1	14.31666667	0.476666667	1.785258	0.172272	Cyclophilin B Co	10.62	0.77	1.658805	0.050332
HUS1	17.14666667	1.076666667	0.531706	0.299017	TRIP13	14.30666667	0.52	1.460415	0.140119	RFC2	10.09666667	0.82	1.361572	0.234379
DDIT4	17.12	0.41	0.876717	0.095394	GAPD Control	14.28333333	0.91	1.357649	0.490306	ALKBH2	9.96	0.566666667	0.457639	0.201025
RECQL5	17.12	0.37	3.117761	0.037859	KDM4D	14.25666667	1.14	0.61931	0.249466	POLR2A	9.666666667	2.83	0.750341	0.278388
RECQL	17.05666667	0.44	0.628234	0.01	IGHMBP2	14.23333333	0.986666667	3.38046	0.568106	UIMC1	9.363333333	0.796666667	0.85793	0.432139
RFC1	16.92	0.72	1.591446	0.200333	Lamin A/C Contr	14.20333333	0.796666667	1.978824	0.36177	PRKDC	9.07	0.67	0.975722	0.36074
YBX1	16.84666667	0.306666667	0.793501	0.016667	LYN	14.08333333	1.076666667	1.133966	0.580153	VCP	8.37	3.776666667	0.29023	0.737119
REV1	16.78333333	0.963333333	1.214857	0.408588	FOXO4	13.99333333	0.453333333	0.413333	0.095975	XAB2	7.613333333	2.023333333	0.658846	0.295541
BIVM-ERCC5	16.55333333	0.83	1.239009	0.215484	BRIP1	13.95	0.803333333	1.667723	0.45042	Untreated	0.083333333	0.086666667	0.012019	0.008819
TREX1	16.53666667	0.843333333	2.572666	0.123468	TCEA1	13.84	0.37	1.56513	0.185023					
GPS1	16.45	0.656666667	0.554286	0.163741	TOP2A	13.8	1.053333333	1.437115	0.384895					
PARP3	16.34333333	0.8	0.791672	0.081854	CCNO	13.79666667	0.536666667	0.537907	0.058973					

Table 15. Percent editing of precise correction and undesired edits for siGENOME screen plate 3.

Table 16. Percent editing of precise correction	and undesired edits of siGENOME screen
plate 4.	

Condition	Average 22T	Average Undesir	22T Error	Undesired Error	Condition	Average 22T	Average Undesir	22T Error	Undesired Error
MEN1	30.13667	0.65	2.912057	0.147309	RRM2B	22.17	0.43	1.02528	0.055678
TREX2	29.62667	0.58	0.020276	0.181475	ALKBH1	22.15333	0.413333	2.577275	0.124141
USP1	28.18	0.72	0.756241	0.058595	EYA1	21.96667	0.48	1.498158	0.035119
ASF1A	27.50333	0.746667	0.837383	0.046308	CDKN2D	21.93667	0.386667	1.938439	0.106823
MMS19	27.13667	0.71	1.286252	0.255343	PRMT6	21.74667	0.696667	1.15779	0.118369
UBE2A	26.04667	0.666667	0.9934	0.10729	RBBP8	21.72667	0.413333	0.126667	0.063857
SMC6	25.89333	0.683333	0.325849	0.082125	DNMT1	20.54667	0.493333	1.768628	0.060645
BAZ1B	25.78	0.456667	5.127586	0.098206	HMGB1	20.40333	0.266667	1.06054	0.07513
APLF	25.59	0.536667	2.005293	0.054569	DUT	20.39	0.416667	3.838129	0.087433
RNF168	25.56	0.413333	1.337273	0.029059	CNOT7	19.99667	0.3	1.484872	0.090185
TDP1	25.34333	0.74	1.28154	0.14	MNAT1	19.53333	0.356667	2.391682	0.101379
DMC1	25.20667	0.41	0.860278	0.133167	CHAF1A	19.27667	0.486667	1.004894	0.054569
EYA3	25.13667	0.513333	1.361241	0.020276	NBN	19.20667	0.396667	1.036827	0.1424
GEN1	25.07333	0.63	0.588907	0.060277	SMC1A	19.14667	0.32	1.025643	0.066583
GTF2H3	25.07333	0.59	0.369925	0.244404	CLK2	19.04667	0.256667	1.525389	0.07796
SMUG1	24.86333	0.47	1.530537	0.065574	UBE2V1	19.03333	0.36	0.239537	0.131149
XPA	24.72	0.526667	1.958937	0.156241	PARG	18.89	0.373333	0.274287	0.060093
GADD45G	24.43333	0.906667	1.248283	0.168259	SETX	18.85333	0.31	1.65288	0.055678
CIB1	24.4	0.38	2.668539	0.109697	PRPF19	18.71667	0.753333	1.406939	0.186577
ATXN3	24.35667	1.08	1.641639	0.680098	CDK7	18.55667	0.343333	1.642522	0.163333
PCNA	23.9	0.633333	0.459674	0.173813	H2AFX	18.51	0.27	2.354082	0.05
EME2	23.89667	0.566667	0.458597	0.078599	SMARCAL1	18.17333	0.313333	2.310024	0.136423
BTG2	23.73667	0.356667	1.125231	0.101708	TNP1	18.1	0.336667	0.753945	0.08838
TP73	23.55333	0.663333	1.729724	0.129142	ALKBH3	17.86333	0.616667	1.599858	0.056075
MBD4	23.52333	0.32	0.450383	0.087178	NPM1	17.27667	0.26	1.063709	0.066583
CETN2	23.45333	0.66	1.452542	0.138564	BLM	17.15333	0.266667	1.691669	0.054569
RDM1	23.41333	0.543333	2.687206	0.16231	SPO11	16.69333	0.41	1.041671	0.030551
EME1	23.09667	0.41	1.250418	0.061101	UBE2N	16.40667	0.306667	2.443101	0.069841
CCNH	23.05667	0.593333	0.80269	0.070553	SMARCAD1	16.27667	0.356667	1.053349	0.05696
RNF8	22.83333	0.29	1.7021	0.078102	PARP1	15.88	0.303333	2.522327	0.094927
ABL1	22.23667	0.543333	2.016601	0.096148	UPF1	14.93667	0.266667	0.690515	0.063596
PALB2	22.23	0.53	1.563724	0.046188	RRM2	12.25333	0.516667	1.831906	0.274489
Untreated+PE3_	22.2065	0.454333	1.472037	0.443333	Untreated	0.646667	0.026667	0.551674	0.006667
UBE2V2	22.2	0.48	0.475079	0.191398					

Figure 23. siGENOME plate 1 results.

Knockdown-accompanied prime editing results from the first plate of siGENOME siRNAs. 22T allele represents precise insertion of HBB E6V pathogenic SNP.

Figure 24. siGENOME plate 2 results.

Knockdown-accompanied prime editing results from the second plate of siGENOME siRNAs.22T allele represents precise insertion of HBB E6V pathogenic SNP.

Figure 25. siGENOME plate 3 results.

Knockdown-accompanied prime editing results from the third plate of siGENOME siRNAs. 22T allele represents precise insertion of HBB E6V pathogenic SNP.

Figure 26. siGENOME plate 4 results.

Knockdown-accompanied prime editing results from the fourth plate of siGENOME siRNAs. 22T allele represents precise insertion of HBB E6V pathogenic SNP.

Statistical analysis showed that of the tested genes, 107/317 displayed statistically significant behavior deviating from the untreated+PE3 control at the individual t-test level (Table 17). However, once corrections were made for multiple hypotheses (Bonferroni/Holm's), only three gene hits remained statistically significant: FANCM, LIG4, and TREX2 (Table 18).

Plate1				Plate2		Plate3		Plate4	
Gene	TTEST	Gene	TTEST	Gene	TTEST	Gene Name	TTEST	Gene	TTEST
FANCM	0.000411165	Control siRNA #4	0.004613011	POLR2H	0.000890271	VCP	0.000987079	TREX2	1.11278E-20
LIG4	0.000513595	MLH1	0.004781848	RAD54B	0.001973541	XAB2	0.001278514	USP1	0.003827252
POLH	0.000834002	POLG2	0.005005589	PML	0.002379142	ALKBH2	0.001866937	ASF1A	0.010568053
POLA1	0.000839267	RPA2	0.005255841	COPS7B	0.006602022	ZSWIM7	0.00315779	SMC6	4.04975E-05
CHEK1	0.000955716	UNG	0.005415127	CXCL12	0.006602365	MCRS1	0.003544769	GEN1	0.024244068
NUDT1	0.000972757	RPA4	0.005684168	BCCIP	0.007731449	CTC1	0.003632358	GTF2H3	0.00193818
ERCC6	0.000985104	DCLRE1B	0.005884969	Control_1	0.007818926	RFC4	0.005026583	UBE2V1	8.39137E-08
CHEK2	0.001046924	FANCE	0.005980077	NDRG1	0.00899123	POLR2A	0.006793315	PARG	2.80679E-07
Control siRNA #2	0.001069614	MGMT	0.006171755	Lamin_Control	0.011245296	HMGB2	0.00823306	TNP1	0.006751263
DDB1	0.001377941	APEX1	0.006546322	RAD50	0.012988836	UIMC1	0.009651863	NPM1	0.019770617
RPAIN	0.00148424	MSH5	0.0072649	POLD3	0.01776067	siRNA #5 Contro	0.009973558	SPO11	0.013882041
MSH6	0.001502943	TP53BP1	0.00738237	RAD9B	0.03095771	XPC	0.011240661	SMARCAD1	0.012102285
PNKP	0.001558343	POLQ	0.007447655	RNASEH2B	0.031054355	UBA52	0.012538893	UPF1	0.000462821
ATM	0.001563025	ERCC3	0.007654685	MCM7	0.032462388	PMS1	0.013211758	RRM2	0.022863961
DCLRE1C	0.001566104	MSH3	0.00806081	MDM2	0.039979437	PRKDC	0.013487834		
RPA1	0.00172683	FANCA	0.009715258	TERF2IP	0.048217036	GTF2H4	0.015929551		
FANCL	0.00178797	NTHL1	0.01032317			TYMS	0.017279397		
Untreated Control	0.001860808	ERCC8	0.010623237			PRKCG	0.019549625		
ATR	0.001985713	NEIL2	0.01087751			CSNK1D	0.020977467		
NEIL1	0.002037998	POLG	0.01107417			PER1	0.023301318		
FEN1	0.002096661	NEIL3	0.011187553			siRNA #2 Contro	0.027528848		
DCLRE1A	0.002189974	TP53	0.018776186			MAD2L2	0.028538114		
FANCE	0.00223083	Control siRNA #1	0.01946952			TOPBP1	0.029145088		
XRCC6	0.002991448	Cyclophilin B Control siRNA	0.020564867			MTA1	0.030949558		
ATRX	0.003502681	Control siRNA Pool #2	0.021207866			HUS1	0.03571639		
Control siRNA Pool #1	0.003592372	ERCC4	0.021297045			ZBTB18	0.037413085		
XRCC4	0.003690038	FANCC	0.022701741						
POLK	0.003945705	Control siRNA #3	0.023100314						
DDB2	0.003993063	POLI	0.026615603						
ERCC5	0.004503704	POLE2	0.031376016						
MUTYH	0.00450567	OGG1	0.032179321						
MSH4	0.004509104								

Table 17. T-Tests for siGENOME plates 1-4.

Tests at the individual level prior to multiple hypothesis correction for genes with individual significance.

Gene	22T AVERAGE	22T ERROR	TTEST	Bonferroni Cutoff	Bonferroni P-Value	k	Holm's P-Value
FANCM	6.97	0.692411246	0.000411165	0.000520833	0.039471853	1	0.000411165
LIG4	7.073333333	0.945380582	0.000513595	0.000520833	0.049305127	2	0.000513595
TREX2	29.62666667	0.020275875	1.11278E-20	0.000520833	1.06827E-18	1	1.11278E-20
							-

Table 18. siGENOME plates 1-4 Bonferroni and Holm's hits.

Hits from the siRNA knockdown prime editing screen for all four plates passing Bonferroni and Holm's cutoff scores.

To test the replicability of these results and further investigate the experiment, several top and bottom performing siGENOME plate 1 siRNAs were tested again regardless of significance in two repeat experiments (Figures 27, 28) (Tables 44, 45), along with a followup experiment containing only the individually significant hits from all four plates (Figure 29) (Table 19). Several genes reproduced their relative positions in the siGENOME plate 1 experiment, but of the original samples, only LIG4 and RAD9A remained statistically significant by t-test at the individual level in the first repeat, and no samples were statistically significant in the second repeat. In the plate1-4 repeat, no samples were again statistically significant although TREX2 and FANCM/LIG4 maintained their relative positions. These three genes exhibited slight upward, slight downward, and strong downward regulation, respectively.

Figure 27. siGENOME plate 1 repeat knockdown prime editing.

HBB 22T precise correction. (green - high editing in original screen, red - low editing in original screen, grey - nontargeting control, black - targeting control).

Figure 28. siGENOME plate 1 repeat 2 knockdown prime editing.

HBB 22T precise correction. Replicability of the relative positions of the genes is poor.

Figure 29. siGENOME plate 1-4 repeat knockdown prime editing.

HBB 22T precise correction results. TREX2 reproduces its location.

Condition	Average 22T	Average Undesir	22T Error	Undesired Error	Condition	Average 22T	Average Undesi	22T Error	Undesired Error	Condition	Average 22T	Average Undesi	ir 22T Error	Undesired Error
TREX2	24.97667	0.513333	1.12446	0.116237	OGG1	14.16667	0.243333	1.364323	0.120324	POLG	12.06	0.223333	0.42548	0.021858
SMC6	22.86333	0.44	1.833088	0.017321	NEIL2	14.13333	0.213333	1.995999	0.08838	VCP	12.04333	0.3	1.541183	0.06245
Untreated_PE3	22.52667	0.386667	0.561733	0.053645	ERCC4	13.85333	0.316667	1.973544	0.058119	POLE2	12.00667	0.246667	7 1.781734	0.063333
GTF2H3	21.59	0.3	0.285715	0.052915	RPA1	13.64667	0.33	0.621727	0.01	UIMC1	11.99	0.183333	3 1.563682	0.01453
XRCC4	21.26333	0.403333	2.107228	0.040552	MSH5	13.56	0.35	0.757914	0.160935	CXCL12	11.72	0.183333	0.292973	0.05696
PARG	19.85667	0.353333	1.054108	0.027285	FANCL	13.47333	0.28	0.235396	0.026458	POLA1	11.66	0.316667	7 1.431829	0.06888
ASF1A	19.7	0.323333	0.86031	0.066667	GTF2H4	13.46	0.246667	2.241837	0.063333	MUTYH	11.63667	0.22	1.888927	0.005774
PML	18.82	0.49	0.715285	0.111505	MDM2	13.44333	0.18	2.016353	0.030551	ATR	11.61333	0.303333	0.700484	0.049777
UNG	18.37	0.09	1.014741	0.036056	FANCE	13.41	0.273333	0.342394	0.01453	XAB2	11.59333	0.246667	7 1.353592	0.148474
TP53BP1	18.28333	0.323333	2.198184	0.092436	CTC1	13.33	0.246667	1.007786	0.046667	APEX1	11.52333	0.226667	7 0.548402	0.039299
UBE2V1	18.02667	0.226667	1.142517	0.091348	POLG2	13.28333	0.25	0.752381	0.036056	PRKDC	11.47333	0.183333	3 1.815804	0.049103
TOPBP1	18.01333	0.263333	0.908521	0.054874	FANCC	13.27333	0.22	1.145794	0.063509	ATM	11.41667	0.163333	0.306721	0.020276
HUS1	17.85333	0.31	2.219131	0.088882	DCLRE1C	13.25333	0.49	1.403096	0.251064	RNASEH2B	11.38333	0.283333	0.846174	0.02848
GEN1	17.72333	0.34	1.604061	0.089629	DDB2	13.1	0.156667	0.977088	0.038442	NEIL1	11.25667	0.216667	7 2.274953	0.057831
FANCA	17.65333	0.373333	0.497672	0.052387	POLD3	13	0.266667	2.096163	0.063857	POLH	11.24667	0.18	B 0.278109	0.051316
RPA4	17.63667	0.48	1.076202	0.128582	NPM1	12.96333	0.2	0.597365	0.041633	RFC4	11.05667	0.216667	0.717271	0.037118
CSNK1D	17.63333	0.363333	1.124357	0.043333	CHEK2	12.95333	0.296667	0.876553	0.052387	TERF2IP	10.93333	0.153333	3 1.245958	0.031798
NEIL3	17.46333	0.393333	1.729367	0.076884	MSH6	12.95	0.18	1.92424	0.034641	TNP1	10.89333	0.263333	0.536449	0.052387
HMGB2	17.24	0.25	2.043094	0.089629	ZSWIM7	12.66333	0.173333	0.542412	0.016667	RRM2	10.51667	0.31	1.622029	0.147986
USP1	17.21667	0.333333	0.549313	0.060093	TP53	12.63667	0.373333	2.313967	0.149034	FANCE	10.26	0.21	1.252837	0.145029
ZBTB18	17.14	0.313333	1.567237	0.038442	POLQ	12.62667	0.243333	1.791427	0.043716	LIG4	10.19667	0.236667	7 0.515957	0.024037
RPAIN	17.12667	0.366667	0.543885	0.040552	XPC	12.59	0.246667	0.956312	0.008819	MSH4	10.18333	0.126667	0.725496	0.012019
PRKCG	16.60667	0.36	1.020136	0.081854	NTHL1	12.57333	0.273333	1.037085	0.131191	DDB1	10.11667	0.203333	0.857619	0.018559
MLH1	16.37	0.406667	0.671441	0.112002	ERCC6	12.54333	0.223333	0.254122	0.083533	MGMT	9.876667	0.233333	0.313546	0.037118
COPS7B	16.29667	0.493333	0.643748	0.107134	POLK	12.51333	0.28	1.510346	0.050332	CHEK1	9.716667	0.056667	7 1.219868	0.047022
PER1	16.23667	0.253333	2.064593	0.050442	RAD50	12.51	0.393333	0.797517	0.0857	POLR2A	9.546667	0.723333	1.169919	0.208673
MTA1	16.23333	0.333333	1.236667	0.069841	PMS1	12.49	0.166667	2.617677	0.063333	PNKP	9.393333	0.216667	7 1.792339	0.043716
POLI	15.97	0.313333	1.989983	0.098206	RAD9B	12.47333	0.213333	1.886676	0.013333	NDRG1	9.003333	0.106667	7 0.634043	0.037118
ERCC5	15.9	0.336667	1.605034	0.064377	RPA2	12.45	0.2	1.281614	0.091652	RAD54B	8.553333	0.146667	7 1.496934	0.052387
SMARCAD1	15.84	0.323333	0.929157	0.044845	FANCM	12.42	0.22	0.734325	0.045092	NUDT1	8.393333	0.103333	3 1.114291	0.03383
ERCC8	15.66	0.203333	1.790503	0.051747	MCRS1	12.39	0.193333	0.778481	0.024037	POLR2H	7.756667	0.233333	1.340427	0.097011
MCM7	15.36333	0.3	1.558165	0.094516	DCLRE1B	12.37	0.213333	1.385364	0.036667	UBA52	7.543333	0.08	8 0.970057	0.040415
MSH3	14.96667	0.223333	1.915379	0.036667	TYMS	12.34333	0.226667	1.002486	0.052387	MAD2L2	6.943333	0.173333	3 0.770332	0.026034
ATRX	14.66333	0.446667	0.15836	0.055478	ERCC3	12.22	0.206667	0.939521	0.02728	BCCIP	6.803333	0.163333	0.548159	0.049777
SPO11	14.64333	0.23	0.597671	0.08	UPF1	12.21333	0.2	1.165795	0.02	Untreated	0.68	0.026667	7 0.090185	0.013333
XRCC6	14.59667	0.153333	1.048369	0.037118	ALKBH2	12.18333	0.21	2.305243	0.052915					
CCA11	14 57000	0.010007	0.100577	0.13601	0.010514	10.00007	0.000007	2 2005 40	0.000000					

Table 19. Percent HBB PE3 editing of siGENOME plates 1-4 repeat screen.

Overexpression of TREX2 Decreases Prime Editing

While some genes demonstrated replicability of their relative positions, the lack of consistent statistical significance and confounding possible factors complicated interpretation of results. Therefore to address this, orthogonal validation methods were required. As it is reasonable to expect that if knockdown increases prime editing, then overexpression may have a chance to decrease prime editing or vice versa. Thus, an overexpression assay was developed. Plasmids from OriGene were purchased (Table 46), containing constitutive expression cassettes for some of the top genes from plate1 and TREX2. An assay was developed to verify the functional effect of overexpression. A day 0 seeding at 26k cells per well, day 1 transfection with 200ng expression plasmid using 1uL Lipofectamine 2000, and a day 2 transfection with either 150ng BE4 mRNA and 50ng Hek2 gRNA or 3000ng PE2 mRNA and 400ng HBB E6V pegRNA and 150ng HBB E6V nickRNA was performed. pGFPMax expression was verified through FITC imaging as a double confirmation of protein-level expression (Figure 32), and held for all days up until harvest.

Overexpression of UNG decreased the relative C>T editing of BE4 and increased C>NonT relative to GFP control (Figure 30) (Table 20), but transfection with plasmid decreased overall prime editing compared to untreated controls by about 2-fold (Figure 31) (Table 21). No notable effect was seen with BE4-noUGI. Prime editing was decreased by about 5-fold with just the control GFP DNA, which is likely due to the toxicity of DNA transfection which interrupts cell expression and DNA repair. However, these results demonstrate that the overexpression screen was valid for enabling gene cofactors to influence editing outcomes. In the full screen, the untreated+PE3 condition

was again the highest editing condition, while UNG and GFP control plasmids decreased prime editing significantly. Within the tested samples, while FANCM exhibited the highest editing compared to other tested genes as the inverse of its knockdown effect, it was not statistically significant against UNG. Only TREX2 exhibited statistically significant deviation of behavior against all three controls, with a marked decrease in prime editing (Figure 33) (Table 47). This is in line with expectations and the inverse of its knockdown effect.

Designation	Average C>T	Average C>NonT	C>T Error	C>NonT Error
Untreated+BE4	21.98667	23.89667	0.427798	0.666041
GFP+BE4	9.256667	12.91333	1.206653	1.253134
UNG+BE4	3.59	16.91667	0.246644	0.436438
Untreated+BE4-noUGI	2.406667	47.13	0.070553	1.08
GFP+BE4-noUGI	1.713333	28.07667	0.082932	1.085546
UNG+BE4-noUGI	2.503333	25.81667	0.072648	1.414983

Table 20. Percent Hek2 editing in overexpression assay development for cytidine base editors and UNG.

Condition	22T AVERAGE	22T ERROR
Untreated+PE3	25.18166667	0.245444042
GFP+PE3	6.103333333	0.615476329
UNG+PE3	8.426666667	0.395362
Untreated	0.036666667	0.008819171
UNG	0.05	0.015275252
GFP	0.063333333	0.003333333

Table 21. Percent editing in overexpression assay development for HBB PE3+plasmid.

Figure 30. UNG expression effect on Hek2 BE4 editing.

Overexpression assay development experiment confirming that UNG expression inhibits C>*T editing of BE4 relative to C*>*NonT compared to GFP.*

Figure 31. Control plasmid effect on prime editing.

Transfection of 200ng plasmid has a strong effect on decreasing prime editing, even with a control GFP plasmid.

Figure 32. 24hr GFP FITC image.

Exemplary image of expression, which held for 5 days.

Figure 33. Plasmid overexpression prime editing.

TREX2 and FANCM recapitulate the inverse of their relative positions from the siRNA screen, with TREX2 exhibiting statistically significant downregulation of prime editing.

TREX2 Plasmid increases TREX2 Protein

Protein samples for various cell types were transfected with either TREX2 siRNA or plasmid, and analyzed via western blot and microplate reader using two different antibodies. TREX2 runs at 33kDa according to the antibody manufacturer despite having a molecular weight of 26kDa, and bands were observed in the 33kDA range. While the sensitivity of the assay does not allow us to determine the baseline expression of TREX2 in the tested cell types (Hek293T/HepG2/GM11423/RSE HPH) with confidence, overexpression clearly produces an increase in protein in each of the plasmid conditions,

confirming that presence of TREX2 that may be consequential to editing outcomes (Figure 34). Some off-target binding was observed, but did not interfere with the target band interpretation. Hek293T cells, GM11423 fibroblasts, HepG2 cells, and RSE HPH cells all appear to have some baseline expression of TREX2 at 33kDA, although it is much lower than the strong overexpression seen with plasmid in Hek293T cells, and it is uncertain whether knockdown by siRNA would be consistently consequential to editing outcomes in the desired primary cell types. This additionally explains why knockdown by TREX2 only sometimes generates significant results in Hek293T cells.

Figure 34. Western blot of TREX2 protein for various cell types and transfection

conditions.

Exposure is with high dynamic range at 64sec. Hek293T, HepG2, GM11423 fibroblasts, RSE HPH cells were tested against two antibodies which both confirmed the presence of TREX2 at 33kDa

BRCA2 Knockout does not Influence Prime Editing

As knockout cell lines are a legitimate orthogonal validation method, attempts were made to procure them for hits from the siRNA screen. However, due to prohibitive timelines and cost, only a BRCA2 Hek293T knockout cell line was obtained. Seeding density conditions of 7.5/26k cells per well were tested with Hek293T parental WT and Beam's internal Hek293T WT cell lines as controls. Unfortunately, no significant difference was observed with knockout for the 7.5k cells per well condition against either control, and for 26k cells per well the BRCA2 knockout was not significant against the internal Beam WT cell line (Figure 35) (Table 48).

Figure 35. Results of the BRCA2 knockout cell line prime editing experiment.

TREX2 Overexpression Decreases Prime Editing at A Variety of Target Sites

To test if the effect of TREX2 was broadly applicable to prime editing rather than an artifact of a single target site, overexpression was performed as before with other target sites from the original Anzalone et al. paper. PE2 was also tested to determine whether the mechanism of TREX2 was specific to PE3. HBB, FANCF, and HEK3 mRNA/pegRNA/nickRNA PE2/3 strategy or A1AT E342K PE2/PE3 precise correction/insertion using pCMV-PE2-VRQR/GL544-13-20/GL544n11 were performed in Hek293T cells (Figures 36, 37) (Table 49). T-tests were significant for A1AT E342K NGG prime editing with TREX2 overexpression versus GFP for both PE2 (p-value 0.027092679) and PE3 (p-value 0.005452562). T-tests were significant for FANCF prime editing with TREX2 overexpression versus GFP for both PE2 (p-value 0.029748114) and PE3 (p-value 0.011872344). T-tests were not significant for HBB PE2, or either PE2/PE3 for HEK3 or the A1AT NGA sites, although similar relative positioning was observed. This may be due to the low levels of overall editing reducing assay sensitivity. No significant change in behavior was observed for the TREX2 siRNA knockdown prime editing positions at any of the other target sites relative to the respective UNG/GFP controls (Figure 38).

Figure 36. TREX2 overexpression effect on PE2/PE3 HBB prime editing.

TREX2 lowers editing for PE3 compared to GFP control. Error for PE2 made the results inconclusive.

Figure 37. TREX2 overexpression effect on PE2/PE3 editing at various target sites.

Overexpression of TREX2 demonstrated statistically significant decreased prime editing for both PE2 and PE3 at FANCF and A1AT NGG target sites, with similar absolute behavior at HEK3 and A1AT NGA but the variability at those sites prevented significance.

Figure 38. TREX2 knockdown effect on PE2/PE3 prime editing at various target sites.

No significant change in effect was detected for HEK3/FANCF/A1AT NGA/A1AT NGG.

TREX2 Influences Prime Editing but not Base Editing

To check whether TREX2 action was specific to normal prime editing, another experiment was conducted where the assay format was adapted for testing in Hek293T cells with a BE4 Hek2 gRNA (as used previously in this work) condition. Again, transfection of plasmid in general decreased prime editing. However, TREX2 overexpression did not demonstrate significantly different behavior from the GFP plasmid control. TREX2 knockdown also did not generate significant results against the untreated condition, while the UNG siRNA caused a large shift towards C>T as expected (Table 22) (Figure 39).

	AVERAGE		ERROR	
Condition	Total C>T	Total C>NonT	Total C>T	Total C>NonT
Untreated	0.01	0.013333333	0.005774	0.003333
Untreated+BE4 (26kcells)	31.95	29.18666667	1.504671	0.309641
GFP-Plasmid+BE4	8.39	10.91	0.522143	0.453689
TREX2-Plasmid+BE4	10.12667	14.1	0.301183	0.459021
Untreated	0.01	0.016666667	0	0.003333
Untreated+BE4 (7.5kcells)	26.48667	26.91333333	0.227327	0.167564
UNG-siRNA+BE4	49.7	2.04	6.370377	0.395095
TREX2-siRNA+BE4	28.63	30.86666667	1.278841	0.604161

Table 22. Percent editing of HEK2 by BE4 with or without TREX2.

Figure 39. TREX2 overexpression/knockdown effect on BE4 HEK2 editing.

No notable changes to editing rates were observed for either knockdown or overexpression of TREX2.

TREX2 Overexpression Decreases Prime Editing In Liver Context

The assay format from the overexpression assay was adapted for Hep G2 cells, which are relevant to liver physiology as a liver cancer derived cell line in order to check for TREX2 relevance in target cell lines for A1AT E342K. TREX2 overexpression caused a strong reduction in prime editing compared to the GFP control, from ~16% to ~6% (p-value 0.000140992) (Table 23) (Figure 40). In Hep G2 cells, GFP transfection did not seem to decrease prime editing. siRNA knockdown of TREX2 did not seem to have an effect. Literature appears to indicate that TREX2 protein of the expected size is not found in HepG2 cells (Wang et al., 2005), and data from the Protein Atlas seems to indicate that while TREX2 is expressed as RNA more strongly than in kidney cells, no protein expression has been found, while protein is found in kidney cells. Therefore while TREX2 can produce activity in HepG2 cells, knockdown is unlikely to improve prime editing rates as it might in Hek293T cells.

	AVERAGE		ERROR	
Designation	22T	Undesired	22T	Undesired
Untreated+PE3 (26K)	16.13333	2.036667	0.205291	0.097696
GFP-Plasmid+PE3	15.69	2.036667	0.450444	0.057831
TREX2-Plasmid+PE3	6.786667	0.623333	0.358345	0.219266
Untreated+PE3 (7.5K)	15.9	2.18	0.161658	0.15308
UNG-siRNA+PE3	16.03667	2.076667	0.226593	0.187735
TREX2-siRNA+PE3	15.68	2.276667	0.297041	0.170717

Table 23. Editing frequencies for the Hep G2 TREX2 experiment.

HBB E6V 22T PE3 editing is decreased by TREX2 overexpression.

Figure 40. Effect of TREX2 overexpression/knockdown on HBB prime editing in HepG2 cells.

Knockdown has no effect, which overexpression strongly decreases prime editing by more than 2-fold.

Chapter V.

Discussion

NGA PAM Prime Editing Represents a Viable Alternative for A1AD

This work has demonstrated the value of exploring direct modifications to prime editors when faced with the challenge of inaccessible target sites. The use of VRQR prime editor and NGA pegRNAs at target sites closer to the pathogenic SNP has proven that such engineering may be advantageous, even if the prime editing levels reported in this thesis are quite low at 2-6%. These reagents have also demonstrated editing ability after conversion to RNA and detectable, if low editing in primary cells. As other literature demonstrates, engineering strategies such as NLS swapping (Liu et al., 2020) or linker flexibility or inlaid enzymes (Chu et al., 2021) can be leveraged to greatly increase editing frequency for one of the pegRNAs tested here, and other such related possibilities may in the future boost the relevance of what are currently low levels of editing at alternative target sites. Here, it is hopeful that alternative prime editors may someday represent a potential cure for A1AD disease as notable baseline activity has been confirmed, although at this time a multitude of improvements would need to be realized before any sort of clinical relevance could be considered reasonable.

These results further emphasize the precision and breadth with which screens for prime editing candidate reagents must be handled, given the high levels of variability in editing with a single protospacer when the PBS and RTT lengths are modified. Somewhat counterintuitively, occasionally very long RTTs far past the pathogenic SNP provide much more robust results. This may be due to the fact that sites with low activity may

benefit from having a longer reverse transcribed 3' flap to protect the edit from exonuclease degradation and ensure incorporation into the repaired genome.

TREX2 Action on Prime Editing is a Novel Mechanism

The work here demonstrates that TREX2 is relevant to prime editing outcomes, and is a novel gene of interest in the context of genome editing. Specifically, the presence of TREX2 may decrease prime editing, and its absence may potentially aid prime editing. However, while TREX2 overexpression has a consistent and clear effect, TREX2 knockdown's prime editing impacts are sensitive to variation in conditions and its mechanics are difficult to ascertain. The identity of TREX2 has hitherto been characterized as a nuclear protein with 3' to 5' exonuclease activity with interactions on double-stranded breaks. It may interact with both DNA Polymerase Delta and have a preference for mismatched 3' termini (Mazur and Perrino, 2001) (Figure 56). Previous literature has indicated TREX2 to be relevant for interactions with Cas9, suppressing insertions and increasing the frequency of deletions (Chari et al., 2015) (Bothmer et al., 2017).

Currently no literature seems to fully characterize the action of TREX2 on long 3' flaps without double-stranded breaks. As TREX2 overexpression appears to strongly retard even PE2 editing which does not generate double-stranded breaks with high frequency, TREX2 may have additional properties as a flap exonuclease that have previously gone uncharacterized. Additionally, since knockdown and overexpression of FEN1 appeared to have no effect on prime editing, the specific type of flap generated by prime editing may have unique interactions with TREX2 and not FEN1. These results are

consequential in the broader context of understanding this emerging technology, as FEN1 was the originally surmised potential interacting enzyme with prime editing mechanics in the landmark paper detailing its invention. Literature also suggests that TREX2 knockdown reduces cell proliferation (Bothmer et al., 2017), which may account for the results seen here due to the fact that DNA repair processes are most active during cell proliferation, and thus if TREX2 knockdown has off-target connectome effects that reduce repair in general, even if the specific action of prime editing increases, overall edit incorporation may decrease as well, leading to inconsistent outcomes depending on the stages of cell culture confluence.

The translatability of these outcomes have various leverageable genome editing impacts. Optimized cotransfection of TREX2 siRNA may allow for improved prime editing frequencies, or may allow for decrease of unwanted insertions to bias for deletions if overexpressed, as shown with the reduction in editing with the HEK3 17+CTT pegRNA, in case there are target sites whose context appear to generate unwanted insertions. Additionally it can be tentatively surmised that inhibition of the specific exonuclease action of TREX2 without diminishing cell proliferation may theoretically achieve increased prime editing levels, that have been difficult to render consistently otherwise via knockdown methods presented here. Perhaps further engineering of prime editors with some TREX2-inhibiting enzyme could potentially represent a future endeavor for iterative improvement of the technology. It is currently already known that Cas9-TREX2 fusion enzymes exhibit markedly different editing outcomes, and so it is reasonable that concurrent usage of TREX2-inhibiting enzymes may allow colocalization effects to more specifically abrogate TREX2 interference than

generalized knockdown.Unfortunately, the protein expression profile and editing attempts in primary human cells appear to indicate that while editing reagents targeting A1AT E34K may be sensitive to the actions of TREX2, it is debatable whether TREX2 knockdown will be helpful in increasing prime editing for that goal due to low levels of sufficient protein presence in the primary cell type.

Limitations

The research methods are limited in terms of bandwidth by the number of samples able to be tested. Since each target site must be individually tested and screened for guides which may number in the dozens, and then for a candidate guide the length of components would be varied to ten or more subconfigurations multiplied against another ten, screening many disease target sites as would be done in an ideal case to assess the robustness of prime editing is not logistically feasible. As a result, generalization of the efficacy of prime editing to other sites is not necessarily reliably extensible, as guide efficacy in CRISPR-based technologies is heavily variable between sequence to sequence and thus between target site to target site.

Since prime editing is also not optimized, and there is no way to logistically perform a full optimization pass off all potential guides at once, it may be true that initial guide designs that were iterated off of may have skewed the data. It is possible to imagine that a full length RT/PBS guide at one spacer may not have performed well but that a shortened version may work very well and have the hidden potential to exceed the performance of other guides that appear to work better initially. By selecting candidates competitively against each other, some better guide designs may have been overlooked.

Additionally, due to the logistics involved in screening siRNAs for all of the genes involved in human DNA damage repair, it was not possible to perform a holistic all-encompassing screen of all genes. Validating over a thousand siRNAs individually and close to a thousand genes without a pre-established pipeline in all cell lines could potentially take years, so only a subset of pre-validated siRNAs were screened. This could potentially have allowed useful siRNAs to be left out and prevented understanding of the entire picture, although the data should still be valuable regardless.

It is also important to caution that all in vitro results, even those from human primary cells, do not necessarily translate into editing efficiency in vivo. There are many barriers to translating idealized lipofection into medicine, such as delivery to the correct organ, ensuring that the behavior of the cell type in vitro is representative of the behavior in vivo, and ensuring immunocompatibility. It is known that primary human hepatocytes exhibit very poor survival in vitro, and the current model only maintains cell viability about four days unless they are supplied in a coculture model to sustain them. Since other genome editing tools with well-validated expression timelines can take several days for their expression and editing followed by repair to occur, such as with 2 days for C base editors and three days for A base editors, it may be difficult to see the entire editing potential of prime editors without in situ conformation and a longer timescale. This problem could be compounded if performing a sequential transfection with siRNA followed by prime editors. Additionally, there remains the question of whether TREX2 is expressed in these cells at a transcript and protein level. The coculture model used with the primary human hepatocytes results in some degree of transfection of the mouse fibroblasts, thus allowing for the lentiviral cassette to be amplified from mouse gDNA,

resulting in some confounding of the prime editing data for A1AT E342K. Due to the difficulty in obtaining A1AT E342K pathogenic human primary hepatocytes this was a compromise that was made, but data interpretation must be taken with caution, and future work ought to be performed with E342K-carrying patient-derived hepatocytes.

No identification of off-targets beyond the alleles identified in the detectable amplicon range for MiSeq was performed. Large deletions and translocations as well as mismatched off-target sites may be difficult to detect, requiring the development of complex whole genome screening methods and were thus beyond the scope of this endeavor. This work merely assesses the feasibility of prime editing as it pertains to Alpha-1 in terms of corrective editing and other potential outcomes in the immediate locus. This limits the extensibility of conclusions due to other possible unknown negative effects.

Additionally, despite many attempts to develop a more robust assay, the siRNA cell culture knockdown sequential transfection method used in this work exhibited inconsistent editing outcomes with low overall editing that led to difficulty in extracting useful information. Such attempts constituted the bulk of the work, and is not presented here, but speaks to the challenges of reliable assay development for emergent technologies that are not yet fully understood.

Due to the limitations of the scope of this work, it was not possible to fully screen all direct comparisons of editor combinations at the A1AT E342 locus. The comparison between the correction of the E342K lenti insert by NGA pegRNAs may not be a perfect comparison against the genomic E342E insertion by NGG pegRNAs, which can lead to debate on their relative activity.

The overexpression assay utilized in this work as an orthogonal confirmation to the siRNA knockdown also presumes an opposite effect to occur with overexpression in order to generate a positive confirmation, which may not be the case mechanistically at the molecular level for various genes. It is easy to imagine a unidirectional effect where knockdown achieves an impact to prime editing whereas overexpression above baseline achieves nothing due to saturation of a genes effect even at normal expression levels. Due to logistics limitations with supply and cost, followups on other hits from the siRNA screen were not possible in more detail, which were made more unfortunate by the known deficiencies in overexpression as a confirmation method against siRNA knockdown. Constitutive knockdown by shRNA-integrated cell lines or knockout cell lines for TREX2 would have served as strong confirmation for the knockdown-specific directional effect, but were not procurable in time due to prohibitive cost and production turnover by CMOs. Additionally, the western blots performed on untreated cells indicate that TREX2 expression is possibly quite low, and the antibodies have not been fully validated beyond the manufacturer's claims for false positive results.

Work which remains to be done include the inclusion of a more robust pegRNA guide to raise the sensitivity of the knockdown assay, examination of a LIG4 or FANCM knockout cell line, protein assays of WT cell behavior for overexpression/knockdown and baseline comparisons, engineering of prime editors by rational design or directed evolution, testing of expanded pegRNA designs, and optimization of a primary human hepatocyte prime editing screen for A1AT E342K.

Appendix 1.

Additional Tables

Table 24. Primer list for USER cloning of pCMV-PE2 and pUTR-PE2.

GL496	AACCGG/ideoxyU/CATCAT CACCATCA	USER cloning primer F to connect pCMV to PE2frag3
GL497	ACCGGT/ideoxyU/AGACTT TCCTCTTCTTCTTGGG	USER cloning primer R to connect PE2frag3 to pCMV
GL498	ATACTGA/ideoxyU/AGCCG TTATGCTTTTG	USER cloning primer F to connect PE2frag3 to PE2frag2
GL499	ATCAGTA/ideoxyU/AAACA TTTAGCTTCTTACCTTCTG C	USER cloning primer R to connect PE2frag2 to PE2frag3
GL500	AACAAC/ideoxyU/ACCACC ACGCCCACGACGC	USER cloning primer F to connect PE2frag2 to PE2frag1
GL501	AGTTGT/ideoxyU/GATCTC GCGCA	USER cloning primer R to connect PE2frag1 to PE2frag2
GL502	ATGAAACG/ideoxyU/ACA GCCGAC	USER cloning primer F to connect PE2frag1 to pCMV
GL503	ACGTTTCA/ideoxyU/GGTG GCGGCTCTCC	USER cloning primer R to connect pCMV to PE2frag1
GL504	AGCCACCA/ideoxyU/GAA ACGGACAGCCGA	USER cloning primer F to connect PE2frag1 to pUTR
GL505	ATGGTGGC/ideoxyU/CTTA TATTTCTTCTTACT	USER cloning primer R to connect pUTR to PE2frag1
GL506	ATTAAT/ideoxyU/AAGCTG CCTTCTGCG	USER cloning primer F to connect pUTR to PE2frag3
GL507	AATTAA/ideoxyU/TAGACT TTCCTCTTCTTCTTGGG	USER cloning primer R to connect PE2frag3 to pUTR

GL508	TCGCGCGTTTCG GTGAT	Sequencing Primer for pUTR-PE2 constructions F1
GL509	ACCAACTCTGTG GGCTGG	Sequencing Primer for pUTR-PE2 constructions F2
GL510	ACGCCAAGGCC ATCCTG	Sequencing Primer for pUTR-PE2 constructions F3
GL511	GCAGCGGACCTT CGACA	Sequencing Primer for pUTR-PE2 constructions F4
GL512	ATACCACGATCT GCTGAAAATTAT	Sequencing Primer for pUTR-PE2 constructions F5
GL513	GCATCAAAGAG CTGGGCAG	Sequencing Primer for pUTR-PE2 constructions F6
GL514	ACAACTACCACC ACGCCC	Sequencing Primer for pUTR-PE2 constructions F7
GL515	CAGCTTCGAGAA GAATCCCA	Sequencing Primer for pUTR-PE2 constructions F8
GL516	GGAGGTGACTCT GGAGGATC	Sequencing Primer for pUTR-PE2 constructions F9
GL517	GACTCCACCCCA CCAGT	Sequencing Primer for pUTR-PE2 constructions F10
GL518	TCTAACTGCCCC AGCCCT	Sequencing Primer for pUTR-PE2 constructions F11
GL519	CGAGGTAATCTG GGCTAAAGC	Sequencing Primer for pUTR-PE2 constructions F12
GL520	GCCTGAGTAGG AAGTCTAGAGT	Sequencing Primer for pUTR-PE2 constructions F13
GL521	TTTCCCCCTGGA AGCTCC	Sequencing Primer for pUTR-PE2 constructions F14
GL522	ATCAAAAAGGA TCTTCACCTAGA TC	Sequencing Primer for pUTR-PE2 constructions F15
GL523	ACCTGGAATGCT GTTTTCCC	Sequencing Primer for pUTR-PE2 constructions F16

Table 25. Sanger sequencing primers for verification of pUTR plasmids.

Table 26. PrimeDesign output for A1AT E342K pegRNA library.

Oligonucleotides used for cloning.

pegRNA	nickRNA	Spacer_sequence	PAM_sequence	Annotation	ngRNA to pegRNA_distance	Spacer_sequence_order_TOP	Spacer_sequence_order_BOTTOM
GL544	nl	GCETEGAGEAAGGETEAEGT	GGA	PE3	77	CARGECETEGAGEAAGGETEACGT	aaacACGTGAGCCTTGCTCGAGGC
GL544	n2	GTAAGGCTGATCCCAGGCCT	CGA	PE3	61	CARGETAAGGETGATCCCAGGECT	aaarAGGCCTGGGATCAGCCTTAC
GL544	n3	GEAGAGACACGTTGTAAGGE	TGA	PE3	48	CARGEAGAGACACGTTGTAAGGC	aaarGEETTACAAEGTGTETETGE
GL544	n4	CETEGAGEGEAGAGAAGEAG	AGA	PE3	32	CARGCETEGAGGGGGAGAGAGCAG	aaacCTGCTTCTCTCCCCTCCAGGC
GL544	n5	GGCCTGGAGGGGGAGAGAAGC	AGA	PE3	30	CAREGGEETGGAGGGGGAGAGAAGE	aaacGETTETETEEEETEEAGGEE
GL544	n6	ATGCACGGCCTGGAGGGGAG	AGA	PE3	24		aaacCTCCCCTCCAGGCCGTGCATC
GL544	n7	TTATGCACGGCCTGGAGGGG	AGA	PE3	22	CAREGTTATGCACGGCCTGGAGGGG	aaacCECCTECAGGECGTGCATAAC
GL544	n8	CETTATGEACGGEETGGAGG	GGA	PE3	20	CARESCETTATGCACGGCCTGGAGG	aaacCETCEAGGEEGTGEATAAGGE
GL544	n9	CACAGEETTATGCACGGEET	GGA	PE3	15	CARGEACAGEETTATGCACGGEET	aaacAGGEEGTGEATAAGGETGTGE
61544	n10	AGETTEAGTEEETTETeGT	CGA	PE3b-seed	15	CARGAGETTEAGTEEETTETEGT	aaacAC#AGAAAGGGACTGAAGCTC
61544	011	AACTTGACCTCGGGGGGGGGAT	AGA	PE3	71	CARGAACTTGACCTCGGGGGGGGAT	aparATCCCCCCGAGGTCAAGTTC
51544	012	STIGAACTIGACCICGGGGGG	554	PER	75	PATETTSAACTTSACCTCSSSSS	ADDITICUTSASSTUAASTUAAC
61544	013	GACAAAGGGTTTGTTGAACT	TGA	PER	87	CARSACAAASSSTTISTISAACT	
61544	014	TAAGAAGACAAAGGSTTIGT	TGA	PE3		CONSTAASAASACAAASSETTIST	
61544		ATTITETICAATCATTAASA	454	PE 2	109	CHESATTTISTICAATCATTAASA	
61544	215	GETATTTESTICAATCATTA	454	852	111	CONSELECTION TO A TRATA	
GI 554	-1	GIGICLOCATGAGOCIIGCI	054	25.2		000101010000100001000	
0.000							
GLOOD	n2	CONTRACTOR ACCOUNTS	BGA TCA	nes aco	13		
GLOOD	ns	GOLUSIGLATAAGGLIGIGL	TGA CEA	nes ara			
GLSS6	n4	CATAAGGETGTGETGACCAT	CISA	ME3		CLOBEATAAGGETGTGETGAECAT	3332ATGGTCAGCACAGCCTTATGC
GLSS6	ns	GOLIGIGLIGACCATCGACg	AGA	PE3D seed	3	CACCOUNTERECTORACCATCORCE	22200TCGATGGTCAGCACAGCC
GLSS6	ns	GCTGACCATCGACgAGAAAG	GGA	PE3D seed	3	CLOGETGACEATEGACGAGAAAG	aaactitictostosatigetcage
GL556	n7	ACCATOGACgAGAAAGGGAC	TGA	PE3b nonseed	7	CLOSACCATCGACgAGAAAGGGAC	aaaoGTCCCTTTCToGTCGATGGTC
GL556	n8	GCTGCTGGGGGCCATGTTTT	AGA	PE3	31		aaacAAAAACATGGCCCCAGCAGC
GLSS6	n9	ATACCCATGTCTATCCCCCC	CGA	PE3	58	CACCENTRACCOLATIGTICTATCOCCCC	aaacGGGGGGGATAGACATGGGTATC
GL556	n10	CAAACCETTTGTCTTCTTAA	TGA	PE3	93	CACCECAAACCETTTGTCTTCTTAA	aaacTTAAGAAGACAAAGGGTTTGC
GL556	n11	CCCTTTGTCTTCTTAATGAT	TGA	PEB	97	caceSCCCTTTGTCTTCTTAATGAT	aaacATCATTAAGAAGACAAAGGGC
GL542 GL542	n1 n2	CTGATCCCAGGCCTCGAGCA	AGG	PE3 PE3		CACCEGETEGAGEAAGGETEAEG	aaartigetigageettigetegaggeet aaartigetegaggeettigggateage
GL542	n3	CACGTTGTAAGGCTGATCCC	AGG	PE3	46	CACCGCACGTTGTAAGGCTGATCCC	aaacGGGATCAGCCTTACAACGTGC
GL542	n4	AGAAGCAGAGACACGTTGTA	AGG	PE3	-35	CACCEAGAAGCAGAGACACGTTGTA	aaacTACAACGTGTCTCTGCTTCTC
GL542	nS	GCtttATGCACGGCCTGGAG	GGG	PE3b nonseed	-10	caceGCtttATGCACGGCCTGGAG	aaacCTCCAGGCCGTGCATaaaGC
GL542	-7	AGUITATGLAUGGULTGGA	AGG	PE3D nonseed		CARGEAGER AT A THE AUGULT A CARGE A CA	aaacrocAGGCCGTGCATaaaGCTC
GL542	n8	GCACAGCtttATGCACGGCC	TGG	PE3b nonseed	5	caceGCACAGCtttATGCACGGCC	aaacGGCCGTGCATaaaGCTGTGC

Table 27. Primedesign output for A1AT E342K nickRNAs.

Oligonucleotide sequences used for cloning nickRNAs into pU6 expression plasmids.

nickRNA	Spacer_sequence	Compatible with Lentivirus cassette?
GL544n1	GCCTCGAGCAAGGCTCACGT	No
GL544n2	GTAAGGCTGATCCCAGGCCT	No
GL544n3	GCAGAGACACGTTGTAAGGC	No
GL544n4	CCTGGAGGGGGAGAGAAGCAG	No
GL544n5	GGCCTGGAGGGGGAGAGAGC	No
GL544n6	ATGCACGGCCTGGAGGGGAG	No
GL544n7	TTATGCACGGCCTGGAGGGG	No
GL544n8	CCTTATGCACGGCCTGGAGG	No
GL544n9	CACAGCCTTATGCACGGCCT	No
GL544n10	AGCTTCAGTCCCTTTCTcGT	Yes
GL544n11	AACTTGACCTCGGGGGGGGAT	Yes
GL544n12	GTTGAACTTGACCTCGGGGG	Yes
GL544n13	GACAAAGGGTTTGTTGAACT	Yes
GL544n14	TAAGAAGACAAAGGGTTTGT	Yes
GL544n15	ATTTTGTTCAATCATTAAGA	Yes
GL544n16	GGTATTTTGTTCAATCATTA	Yes
GL556n1	GTGTCCACGTGAGCCTTGCT	No
GL556n2	TGAGCCTTGCTCGAGGCCTG	No
GL556n3	GGCCGTGCATAAGGCTGTGC	No
GL556n4	CATAAGGCTGTGCTGACCAT	Yes
GL556n5	GGCTGTGCTGACCATCGACg	Yes
GL556n6	GCTGACCATCGACgAGAAAG	Yes
GL556n7	ACCATCGACgAGAAAGGGAC	Yes
GL556n8	GCTGCTGGGGCCATGTTTTT	Yes
GL556n9	ATACCCATGTCTATCCCCCC	Yes
GL556n10	CAAACCCTTTGTCTTCTTAA	Yes
GL556n11	CCCTTTGTCTTCTTAATGAT	Yes
GL542n1	GGCCTCGAGCAAGGCTCACG	pegRNA not compatible
GL542n2	CTGATCCCAGGCCTCGAGCA	pegRNA not compatible
GL542n3	CACGTTGTAAGGCTGATCCC	pegRNA not compatible
GL542n4	AGAAGCAGAGACACGTTGTA	pegRNA not compatible
GL542n5	GCtttATGCACGGCCTGGAG	pegRNA not compatible
GL542n6	AGCtttATGCACGGCCTGGA	pegRNA not compatible
GL542n7	CAGCtttATGCACGGCCTGG	pegRNA not compatible
GL542n8	GCACAGCtttATGCACGGCC	pegRNA not compatible

Table 28. Full sequences of A1AT E342K nickRNAs.

Lists compatibility with the pLenti A1AT E342K cassette (Table 17) described in the mammalian cell culture methods section.

Component	Designation	Target Edit	Sequence
pegRNA	BE-Ag-021	HBB E6V 22T	mC*mA*mU*GGUGCACCUGACUCCUGGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCAGACUUCUCCACAGGAGUCAGGUGCA CmU*mU*mU*U
nickRNA	BE-Ag-010	HBB E6V 22T	mC*mC*mU*UGAUACCAACCUGCCCAGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCmU*mU*mU*U
pegRNA	sgRNA_254	FANCF +6G>C	mG*mG*mA*AUCCCUUCUGCAGCACCGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCGGAAAAGCGAUGCAGGUGCUGCAGA AGGGAmU*mU*mU*U
nickRNA	sgRNA_255	FANCF +6G>C	mG*mG*mC*GGGGUCCCAGGUGCUGACGUGUUUUAGAGCUAGA AAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAA AAGUGGCACCGAGUCGGUGCmU*mU*mU*U
pegRNA	sgRNA_256	HEK3 +1CTTin s	mG*mC*CCAGACUGAGCACGUGAGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCGCCAUCAAAGCGUGCUCAGUCUGmU* mU*mU*U
nickRNA	sgRNA_257	HEK3 +1CTTin s	mC*mU*mU*GUCAACCAGUAUCCCGGUGCGUUUUAGAGCUAGA AAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAA AAGUGGCACCGAGUCGGUGCmU*mU*mU*U
pegRNA	GL544-13-20	A1AT E342K 7A>G	mG*mC*CGUGCAUAAGGCUGUGCGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCUUUCUCGUCGAUGGUGAGCACAGCCU UAUGCACmU*mU*mU*U
nickRNA	GL544n11	A1AT E342K 7A>G	mG*mA*mA*CUUGACCUCGGGGGGGGAUGUUUUAGAGCUAGAAA UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAA GUGGCACCGAGUCGGUGCmU*mU*mU*U
nickRNA	GL544n12	A1AT E342K 7A>G	mG*mU*mU*GAACUUGACCUCGGGGGGGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCmU*mU*mU*U
nickRNA	GL544n13	A1AT E342K 7A>G	mG*mA*mC*AAAGGGUUUGUUGAACUGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCmU*mU*mU*U
pegRNA	GL556-14-20	A1AT E342K 7A>G	mA*mG*mC*UUCAGUCCCUUUCUUGUGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCGGCUGUGCUGACCAUAGACGAGAAA GGGACUGAAmU*mU*mU*U
nickRNA	GL556n5	A1AT E342K 7A>G	mG*mG*mC*UGUGCUGACCAUCGACaGUUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCmU*mU*mU*U
nickRNA	GL556n6	A1AT E342K 7A>G	mG*mC*mU*GACCAUCGACAAGAAAGGUUUUAGAGCUAGAAAU AGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAG UGGCACCGAGUCGGUGCmU*mU*mU*U
nickRNA	GL556n11	A1AT E342K 7A>G	mG*mC*mC*CUUUGUCUUCUUAAUGAUGUUUUAGAGCUAGAAA UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAA GUGGCACCGAGUCGGUGCmU*mU*mU*U
			NOTE: A preceding "m" represents a 2'-O-methyl modification to a base. A trailing "*" represents a 3'-phosphorothioate modification to a base.

Table 29. Sequences and information for synthetic peg/nickRNAs.

Here, "m" preceding a base represents a 2'-O-methyl modification and "*" trailing a base represents a 3'-phosphorothioate modification.

ensemble_id	gene_symbol	description	logFC_u	logCPM_u	F_V	PValue_u	FDR_u	logFC_h	logCPM_h	r_s	PValue_h	FDR_h	subcellular location	siRNA plate	siRNA we?	i
ENSG0000005007 12	UPF1	UPF1 RNA helicase and ATPase [Source HGNC Symbol Acc HGNC 9962]	1.31936893	7 07093352	22.1945059	0.00129584	0.03015624	1 31348631	7 07093352	36.1782615	0.0013769	0.0130503	Nucleoplasm	3		2
ENSG0000010072 16	SPRIN	Sp7-like Niterminal domain (Source HGNC Symbol Acc HGNC 25356)						1 44870564	4.19861783	27 2679648	0 00258489	0.02012461	Nucleoplasm			î
ENSG0000015475 18	HER .	BH3 interacting domain death apprint (Source HGNC Symbol Acc HGNC 1050)						1 02479037	6 00540197	17.8342987	0.00696574	0.03404219	Cytosol			
ENSG00000052795 13	FMP2	BCL2 antagonativater 1 [Source HGRC Symbol Acc HGRC 509] foliculin interacting protein 2 [Source HGRC Symbol Acc HGRC 20280]						1 93990881	2.94478666	29.923981 36.7867717	0.00216142	0.01729133	not indicated Cytosol			
ENSG0000062822.14	POLCI	DNA polymerase daita 1, catalytic subunit [Source:HGNC Symbol:Acc:HGNC:9176]	1.33621129	8.1648533	17.4119134	0.00732419	0.03956966	1.51817044	0.1640933	34.6335628	0.00133612	0.01292619	Nucleoplasm	1	1 3	1
ENSG00000064545 15 ENSG00000064655 19	E-YAD	transmembrane protein 161A (Source HGNC Symbol Acc HGNC 26/20) EYA transcriptional coactivator and photohatase 2 (Source HGNC Symbol Acc HGNC 3520)	3 89058424	6.17114239	1/5 /30/51	2.462-05	0.00331642	7 3471773	0.17114239	131 673663	5 255 05	0.03244782	Cytosol Cytosol			
ENSG0000070010 19	(FB)	ubiquitin recognition factor in ER associated degradation 1 [Source HGNC Symbol,Acc HGNC 12520]						0 74828938	8 32625182	15 1939443	0.00977476	0 04348982	Cytosol, Nucleoplasm			
ENSG00000072501.18	SMCIA	nocional poteni se kirace Ale (Source HCAC Symbol Acc HCAC 16436) structural maintenance of chromosomes 1A (Source HGAC Symbol Acc HGAC 11111)	1.38849715	8.43496458	21.1419633	0.00478908	0.03112903	11.4131378	2.53969066	270 328419	3.942-05	0.00223273	Milochondra(Nucleoplasm Nucleoplasm	3		ŝ
ENSG0000076248.10	UNG	uracil DNA glycosyfase (Source:HGNC Symbol:Acc:HGNC:12572)	1.57696717	6.65187028	15.2875838	0.00365011	0.04667962	1.79175876	6.66187028	32.508672	0.00177761	0.01540505	Cytosol	1	1	1
ENSG00000078900.15 ENSG00000081377.17	TP73 CDC148	tumor protein p73 (Source HGNC Symbol Acc:HGNC 12003) cell discum curbe 168 (Source HGNC Symbol Acc:HGNC 1719)						1.54493258	4.90397688	43 2908965	0.00089093	0.03950326	Nucleoplasm	3	-	3
ENSG0000087688.20	BAL	BCL2 associated X, apoptasis regulator [Source HGNC Symbol Acc HGNC 959]						0 96465713	6 16599128	14 5976214	0.01062281	0.04555762	est indicated			
ENSC00000088038 19	CADIN	CCR4-NOT transcription complex subunit 3 [Source:HGNC Symbol Acc:HGNC.7879]	2.07566909	7.69429425	39.5339433	0.0011115	0.01716871	2.2408965	7.69429425	77.9476397	0.00020404	0.03427024	Cytosol			
ENSG00000033009.10	CDC46	cell division cycle 45 (Saurce:HONC Symbol:Acc:HONC:1739)						1.45303588	7.07750522	57.6830244	0.00043742	0.0058657	Nucleoplasm			
ENSG0000096401.8	COOS	cell division cycle 5 like [Source HONC Symbol.Acc HONC 1743]						1.46118597	4.92861927	13.7549634	0.01200303	0.0491947	Nucleoplasm			
ENSG00000100109 17	TRIPIT	over one manes, mane associante, actin dependent regulator or chromatin, subarney a, member i (pource none, opinion vec none, i i no) tubeln interacting protein 11 (Source HGNC Symbol Acc.HGNC 17165)						1 18265018	6.48195577	16.9919378	0.00771762	0 03697292	Nucleoplasm			
ENSG00000100142.15	POLR2F	RNA polymenase II subunit F [Source HGNC Symbol Acc HGNC 9193]						1.31675159	6.52250197	43.79096	0.00086622	0.00935971	Nucleoli fibrillar center Nucleoplasm			
ENSG00000100325.15 ENSG00000102081.14	ASCC2	activating signal contegrator 1 complex subunt 2 (Source:HONC Symbol.Acc:HONC:24103) FMRP translational regulator 1 (Source:HONC Symbol.Acc:HONC:3776)	2.46407463	6.26181363	60.5731338	0.00338688	0.00919662	1.10726924	6.26181363	23.2761976	0.00386877	0.02447633	Cytosol/Focal adhesion sites Cytosol			
ENSG00000102882 12	MAPRIE	mtogen activated protein kinase 3 (Source HONC Symbol.Acc HONC 6377)	1.00687338	5.96180938	15.5530326	0.00330842	0.04529009	1 36808308	5.96180338	15.4764499	0.00940527	0.04304147	Nucleoplasm			
ENSG00000103266.11 ENSG0000010454313.20	EVAL	STIP1 homology and U-box containing protein 1 [Source HGNC Symbol Acc HGNC 11427] EXA transcriptional constructor and obsorbetana 1 [Source HGNC Symbol Acc HGNC 1619]	1 72204066	7 32853282	27 7242159	0.00258345	0.02415009	1 18880018	7.32853282	22 8810096	0 00401108	0.0250142	Cytosol Nacleoplasm Nacleoplasm	1		-
ENSG00000104419.15	NDRG1	N-myc downstream regulated 1 [Source HGNC Symbol Acc HGNC 7679]	2.70489897	8.71893367	51.5137283	0.00058015	0.01237645	2 50607285	8.71893367	79.039344	0.00019691	0.03427024	Cytosol			
ENSG00000105327.17	8603	BCL2 binding component 3 [Source HONC Symbol Acc HONC 17068]						2 12058522	3.00463571	21.8773753	0.00443684	0.02630512	Cytosol			
ENSO00000105373.19 ENSO00000105393.16	DADA01	NOPS2 Itkosome biogenesis factor [Source:HONC Symbol Acc: HONC 4333] TIRINC and TIRCA1 A complex member 1 ISource HONC Symbol Acc: HONC 25008	1.32961019	6 65055817	23 6565193	0.00371955	0.02013334	0.89334668	6.49279936	21.0970302	0.00442756	0.02630512	Nucleoli Nuclear bodies			
ENISG0000107562 16	CXCL 12	C.X.C motif chemokine ligand 12 [Source HGNC Symbol Acc: HGNC 10672]						8 39897787	0.6305059	60 5260447	0.00097014	0.0101978	not indicated			
ENSG00000107672 15 ENSG00000107649 17	NSMCE4A BCCR	NSE4 homolog A: SMC5 SMC6 complex component (Source HGNC Symbol Acc HGNC 25935) BDC42 and CDKN14 interaction instant (Source HGNC Sombol Acc HGNC 978)	1 40450039	5 06414978	24 9177521	0.00330437	0.02749238	1 81092903	5 06414978 5 95864156	66 7569667	0.00030269	0.00535827	Nucleoplasm Nucleoplasm			
ENSG00000108584.15	MAPON	Intogen-activated protein kinase Kinase 6 (Source HONC Symbol:Acc:HONC:6846)	2.77165126	3,41742606	19.5803888	0.00542815	0.03367095	0.79990404	0.70094330		0.01101102	0.04012200	Cytosol, Nucleoplasm			
ENSG00000111358.14	GTF2H0	general transcription factor IH subunit 3 [Source HONC Symbol Acc HONC 4657]						1 27503236	5.40922699	25.0965793	0 00325072	0.02235205	Nacieoplasm	3		3
ENSG00000111877 17 ENSG00000112629 10	MCM9	rendhomosome mantenance & homologous recombination repair factor [Source HONC Symbol Acc HONC 21454] F-box pretein 5 [Source HONC Symbol Acc HONC 13584]	1.30123106	3 7566 1921	14.3695235	0.01097395	0.0493631	1 10184705	5 04684581	14 8244334	0.01058255	0.04555762	Nucleoplasm Nucleoplasm			
ENSG00000112130 17	RNET	ring finger protein 8 [Source HGNC Symbol Acc HGNC 10071]						0 94917735	5 20089221	18 3643593	0 00652841	0.03289395	Nucleoplasm	3	i i	3
ENSG00000112319 19	EYAL	EYA transcriptional coactivator and phosphatase 4 [Source HGNC Symbol Acc HGNC 3522] transcriptional branc Dis 3 (Source HGNC Symbol Acc HGNC 11751)	13 8867285	6 54145561	376 379578	3.24E-05	0.00132221						Nucleoplasm			
ENSG00000114742.14	WORAS	WD repeat domain 48 (Source/HGNC Symbol/Acc.HGNC 30914)	1.33543188	5.9647078	21 9535815	0.00440235	0.03027073						Vesicles			
ENSG00000115274 15	NOIDE	IND80 complex suburit 8 [Source HSNC Symbol Acc HGNC 13324]						1.25823688	3 6245402	21.9968441	0.00438211	0.02630512	Nucleoli;Nucleoplasm			
ENSG00000116750 13 ENSG00000118046 16	STK11	ubiquita Citeminal hydrolase L5 (Source HGNC Symbol Acc HGNC 19676) serina/hydronine kease 11 (Source HGNC Symbol Acc HGNC 11389)	1.53424885	6.14098229	35.7889829	0.00141314	0.01808815	5 60367791	4 81899736	49 2550236	0.00054827	0.03829784	Mitochondna;Nucleoplasm Nucleoplasm			
ENSG00000118689.15	FOXO3	forkhead bax O3 [Source HGNC Symbol: Acc HGNC:3821]						1.79782491	5.25774593	47.9567961	0.00059268	0 00856519	Nucleoplasm			
ENSG00000122547.11	EEP01	endonuclease/exonuclease/phosphatase family domain containing 1 [Source:HGNC Symbol Acc:HGNC 22223]	0.0000000	0.0047-0047	20.017110		1.001/2012	2 98299295	1.70181445	53.8003376	0.00052069	0.00721322	Nuclear speckles			
ENSG00000124535.15	WRNP1	WRV helicase interacting protein 1 [Source:HSNC Symbol.Acc.HSNC 20876]	1.20673663	6.15056706	21.8635113	0.00444315	0.03030083	1.17683618	6.15056706	34.0629047	0.00159257	0.01422959	Nucleoplasm			
ENSG0000124766 7	SOX4	SRY-box transcription factor 4 [Source HGNC Symbol.Acc HGNC 112(0]	2.21768953	4 60758063	43.1816541	0.00089546	0.01681605	2 76023587	4 40758063	109.375663	8.52E-05	0.00287894	Nucleoplasm			
ENSC00000124802 12	EEF1E1	eukaryatic translation elongation factor 1 spolion 1 [Source HGRC Symbol Acc HGRC 3212] Interchantinal intercented portain \$28 [Source HGRC 5: 4000" (MME)	1744320	2 4616252	10.0527124	0.00543945	6 03367056	1.03042123	4 66207449	16 9768228 34 9421394	0.00773232	0.03697292	Cytosal Nacleoplasm			
ENSG00000126453.9	BCL2L12	BCL2 like 12 [Source HGNC Symbol Acc HGNC-13787]		2.42.14222	12 2421124		1 40001 4000	1 24271285	5.58764577	19.7531104	0.00556051	0.02913118	Vesicles			
ENSG00000126457.21	PRMT1	protein arginine methyltranoferase 1 (Source HGNC Symbol Acc:HGNC 5187)						2.13908931	8.66836375	53.1178928	0.00053752	0.00721322	Nucleoplasm			
ENSG00000127423.10 ENSG00000128886.12	AUNP EU.3	aurera korace A and nimen interacting protein (Source HSNC Symbol Acc HSNC 20063) elengation factor for RNA polymerate 1.3 (Source HSNC Symbol Acc HSNC 20113)	4 21695546	2 69619956	89.0053857	0.00014518	0.006679559	1.15790719	2.74206974	15.3643515	0.00952359	0.04304147	Controsome Nucleoli			
ENSG00000129173.13	E2F8	E29 ¹ transcription factor II (Source HGNC Symbol Acc HGNC 24727)						1 72977674	3 88124834	46 9375328	0.00077019	0 03859934	Nucleoli			
ENSG00000129245.12	FXR2	FMR1 autosomal homolog 2 (Source HONC Symbol Acc:HONC 4024)	1.41151063	4.51237582	20.1066519	0.00496334	0.03115736	3 3700001	4 43353307	44 +0000	0.0000408	0.03030311	Cytosol			
ENSG00000130726.12	TRIM28	tripartite motif containing 28 (Source HGNC Symbol Acc HGNC 16384)	3.20786368	10.2261475	51.7471532	0.00057366	0.01237645	3 13403589	10.2261475	88.9636709	0.00014527	0.003277709	Nucleoplasm	2		2
ENS00000130766.5	SESN2	sestrin 2 [Source HGNC Symbol Acc. HGNC 20746]						1 27995669	2.70567253	19.8274819	0.00552084	0.02913118	Cytosol			
ENS000000131153.9 ENS000000131278.19	GINS2	GINS complex subunit 2 [Source HONC Symbol Acc HONC 24575] cheenodomain belicinan DNA hirdera ontein 1 like [Source HONC Symbol Acc HONC 1998]						1.42258575	4 34459852	15.3958206	0.00550367	0.04304147	Nucleoplasm			2
ENSG00000133247 14	KMT5C	lysine methyltransferase SC [Source HONC Symbol Acc HONC 28405]	3.04043892	4.99841645	16.3279625	0.00340112	0.04210683						Nucleoplasm			
ENS00000133863.8	TEX15	testis expressed 15. meiosis and synapsis associated [Source HGNC Symbol:Acc: HGNC 11738]	12.1880487	2.88723491	165.678769	0.00011392	0.00592396	12,1580487	2.88723491	324.713327	2.64E-05	0.00219566	Cytosol, Nacleoplasm			
ENSG00000134215 16	VAV3	ww.guarine.nucleotide.exchange.factor 3 [Source HGNC Symbol.Acc: HGNC 12659]	10 8922072	2 99981623	91 5742283	0.00013492	0.00603959	1.00636013	1.16//1915	13,3430407	0.00544437	0.02913119	not indicated	3		1
ENSG0000134758 14	RNP138	nng Inger protein 138 [Source HGNC Symbol Acc HGNC 17765]						1 62605488	4 43260261	14.1007189	0 01140863	0 04789912	Mtochondria			
ENSG00000134897.14	DIVM National	basic, immunoglabulin-like variable motif containing [Source HGNC Symbol:Acc.HGNC 16034] extractionabilist intercented motals 50 (Source WGNC Source) 4/24/C Source 14/24/C 54/50 (1	1.72744525	6.17713756	32.1310173	0.00182744	0.02159592	0.00070564	4 20502102	42 0040062	0.00060110	0.012221	Nucleoplasm Monihondria			
ENS00000136104.21	RNASEH28	ribonuclease H2 subunit B [Source HONC Symbol.Acc HONC 25671]						1 14925819	7 02238439	21.8310625	0.00445796	0.02630512	Nucleoplasm			
ENSG00000136597.19	MYC	MYC proto-encogene, MILH transcription factor [Source HGNC Symbol Acc HGNC 7553]	1.15521536	8 2261393	15.901837	0.00780579	0.0413123	1.000000	6 0046 333	22.2442242			Nucleoplasm			
ENSG00000137357 15	ALKERS	mediator of DNA damage checkpoint 1 [Source/HSNC Symbol Acc HSNC 2116] alkt) homolog II. IRNA methyfranskrase (Source HSNC Symbol Acc HSNC 25119)						1.51522478	3.73723632	23 2112242	0.00418979	0.02582152	Nuclear bodies	,		1
ENSG00000139372 15	TOG	thymine DNA glycosylase [Source HGNC Symbol Acc HGNC 11700]	1.43012273	5.7680573	28.3056226	0.00246164	0.0238149	1.00473114	5 7680573	23.6162718	0.00373399	0.02427093	Nucleoplasm	2	10 D	2
ENSG00000140464.20	PML	promyelocytic leakemia (Source HGNC Symbol Acc HGNC 9113)	1 20085691	6 30091014	23.7517678	0.00368581	0.02813334				0.00000000	0.03040514	Nuclear bodies			
ENSG00000141510 17	TP63	tumor protein p53 [Source HGNC Symbol:Acc:HGNC:11998]	1.70537109	8.35064633	14.7001229	0.01047018	0.04921578	0.30474568	0.0001421	24.1300215	0.10500035	0.02643514	Nucleoplasm	1	e 2	ī
ENSG00000141682 11	PMAIP1	phorbol-12-mynistate-13-acetate-induced protein 1 [Source HGNC Symbol:Acc: HGNC:9108]	1 38628799	5 38874399	24 1704372	0.00354222	0.02793433	2 71736134	5.38874399	138 746417	4 585-05	0.00238131	Vescles			
ENSG00000142453 11 ENSG00000143624 14	CARM1 MTS3	coactivator associated arginine methyltransferase 1 [Source HGNC Symbol Acc HGNC 23383] Integrator complex suburit 3 [Source HGNC Source] HGNC 20153]	1 18660103	7 16848310	17.0396122	0.00267152	0.041068	1.06863203	5 96275955	16.0547497	0.00870666	0.04030402	Nucleoplasm Nucleoplasm			
ENSG00000143799 13	PARPI	poly(ADP-shose) polymerase 1 [Source HGNC Symbol Acc HGNC 270]						1 72645863	7.93837323	35.0342572	0.0014872	0.01359724	Nucleoplasm	3	Ú ()	3
ENSG00000144524 17	COPS79	COP9 signalosome subunit 7B [Source HONC Symbol Acc HONC 16760]						1.20018333	6.81542436	45.3442833	0.00079521	0.02891053	Nucleoplasm		. 7	4
ENSG00000147231 14	RADX	RPA1 related single stranded DNA binding protein, X-Inited (Source:HGNC Symbol;Acc:HGNC 25486)	3 81550549	5 06316858	55 9250874	0.00347267	0.01081275	9 89585771	5.06316858	318.269237	5.08E-06	0.03140878	not indicated	- 1		ć
ENSG0000149269 9	PART	p21 (RAC1) actuated kinase 1 [Source HGNC Symbol Acc HGNC 8510]						1 33062708	5.77369179	19.7592082	0 00556292	0.02913118	Cytosol,Plasma membrane			
ENSG00000149923 14 ENSG00000149948 13	HMGA2	protein phospitatase 4 catalytic subart (Ssurce HCRC Symbol Acc HCRC 9319) high mobility group AT-hook 2 ISource HCRC Symbol Acc HCRC 50091	1.40203988	7.22.969.96	28.3421983	0.002454254	0.0238349	7 24918961	4.86255986	174 860283	2.49E-05	0.03219566	Nucleoplasm Nucleoplasm			
ENS/00000150507.10	FOX01	forkhead bax O1 [Source HONC Symbol: Acc:HONC:3019]	2.42645021	2.40998864	25.0373281	0.00326836	0.02745745	2.83047166	2.40998864	56.9829847	0.00045101	0.03654836	Cytosol Nucleoplasm			
ENSG00000152409.9	JMY	junction mediating and regulatory protein, p53 cofactor [Saurce:HGNC Symbol.Acc:HGNC 28916]	1.05858916	3.38341547	23.4117701	0.00300035	0.02854549		-		-	0.0037047000	Nucleoplasm			
ENSG00000155229 21	MMS19	MMS19 homolog, cytosolic iron-sufur assembly component (Seurce HGNC Symbol Acc HGNC 13824)	1 42528802	7 11369779	28 8831361	0.0023483	0.02353958	0 85272463	7 11369779	17.5486532	0 00720204	0.0350415	Nucleepkasm	3	i 7	3
ENSG00000155816 28	FMN2	formin 2 [Source HCINC Symbol Acc HCINC 14074]	4.8418456	1.75967316	77 2772099	0.0302386	0.00694211	2 91916325	1.76967316	70 2256823	0.00026615	0.03481388	Actin filaments Plasma membrane			
ENSG00000157212.19	PAGP1	uoiquitin specific peptidase te (Source-HUNC Symbol.Acc.HUNC 12614) PAX interactina antain 1 (Source-HUNC Symbol.Acc.HUNC.9624)	3.45926662	5.31641393	61.3407058	0.00037481	0.00919662	0 83780126	6.35159163	14.0430235	0.01150488	0.04789912	Nucleoplasm: Vesicles			
ENSG00000159685.11	CHORDS	colled cell-helix celled cell-helix domain containing 6 [Source HONC Symbol Acc HONC 28184]						1 36441964	3.38862358	16.045188	0.00871752	0.04030402	Mitochondria			
ENSG00000150117.16	ANKLE1	ankyrin repeat and LEM domain containing 1 [Source:HGNC Symbol: Acc: HGNC 26812] DR assessMemories laters 1 (Source: HGNC Symbol: Acc: HGNC 19904)	3.5921338	3.46056793	21.0304459	0.00484581	0.03115736	3 76560700	2 10242244	03 4545447	0.00010217	0.03422024	Cytosel, Nacleoplasm			
ENSG00000160803.8	UBQLNA	ubiquin 4 [Source HGNC Symbol:Acc HGNC 1237]						0.9295878	4.67264553	16.89794	0.00780563	0 03712923	Nucleoplasm			
ENSG000E0163E71.11	SPATAM	spermatogenesis associated 18 [Source HONC Symbol,Acc HONC 29579]	4.29124076	-0.0569771	23.7631661	0.00534395	0.03665399	9.09877144	-0.0569771	72.5862205	0.00066374	0.03836714	Mtochondria			
ENS00000163832.15	PRKCD	NNA polymetase il subunit il (source HONC Symbol Acc HONC 9195) protein kinase C detta (Source HONC Symbol Acc HONC 9399)	1.74355683	5.22786418	24.5922219	0.0034052	0.02793433	1.36327344	6.93631926	41.6256245	0.20038256	0.01019/8	Nucleoplasm Cytopol			
ENSG0000164205 13	CASHS	caspase 3 [Source HGNC Symbol Acc HGNC 1504]						1.36393497	4.83880572	29 6069727	0.00221611	0.01739913	Mtochondria;Nacleoplasm		_	
EnsG00000166199 13 EnsG00000166111 19	APR81	anto homorog J, apna helogiutaratedependent dioxygenase [Source HGNC Symbol Acc HGNC 30141] amidaid beta precursor optein bioding family B member 1 (Source HGNC Symbol Acc HGNC 30141)	1.72006006	4 47660655	27 7627945	u 00257511	¢ 02415089	1 84325282	4 47660555	53 204927	9.00E-06	0.00721322	Nucleoplasm Plasma membrane	1	1 3	1
ENSG00000166848.7	TERF2P	TERF2 interacting protein (Source-HONC Symbol Acc: HGNC 19246)						1.18186444	4.42834852	22 1753045	0.00430424	0.02630512	Nuclear bodies.Nucleoplasm			
ENS00000168101.14	NUDT16L1	nudix hydrolase 16 like 1 [Source HONC Symbol Acc HONC 20154]						1.01155228	4.24478455	14.1740311	0.01120639	0.04789912	Cytosol Plasma membrane			
ENSG00000169689 15	CENPX	UNA damage inductive transcript a [Source HONC Symbol.Acc HONC 2004] centromere protein X [Source HONC Symbol.Acc HONC 11422]	0 92568375	6.45581973	14.4163714	0.01090054	0.0453531	1 13646827	6.46581973	34 5522095	0.00153731	0.01390261	not indicated			
ENSG00000169727 12	GPS1	G protein pathway suppressor 1 [Source HGNC Symbol.Acc HGNC 4549]	1 20930723	8 54537595	14 704203	0 01046402	0.04921578	1 48209124	0 54537595	35 5758219	0 00143363	0.01325221	Cytosel Nucleoplasm			
ENSG00000172716.16 ENSG00000174010.9	SLEN11	schlafen family member 11 [Source HGNC Symbol Acc HGNC 28633] balch Bis family member 15 [Source HGNC Symbol Acc HGNC 28631]	8 44872063	5 65654326	399 395481	2 77E-06 0 00100851	0.00132221	6 66365382	5 65654326	697 221474	9.41E-07	0 00058427	Nucleoplasm			
ENSO0000174371 17	EX01	exonuclease 1 [Source HONC Symbol Acc HONC 3511]	£.0£0700005				0.01112.01	0.88054554	5.78394336	18.3205162	0.00656237	0.03269395	Nucleoplasm	1	1	i
ENS00000175104.15	TRAFE	TNF receptor associated factor 6 [Source HONC Symbol.Acc. HONC 12036]						1 20295949	3 50465887	19.3597581	0.0056182	0.02959781	Mtochondria			
ENSG00000179262 10	RADZIA	CST technice replication complex component 1 [Source HGNC Symbol Acc HGNC 20109] RAD23 homolog A, nucleictide exclusion repair protein [Source HGNC Symbol Acc HGNC 9812]	1.33368642	7.67869548	17.54279	0.00720725	0.03956966						Nucleoplasm	2		2
ENSG00000179456 10	28TB18	zinc finger and BTB domain containing 18 [Source HGNC Symbol Acc HGNC 13030]						2 56828782	3 70949546	27.4229619	0.00264983	0.02004234	Nuclear speckles			
ENSG00000179965.12	254771	zinc finger protein 771 [Source HGNC Symbol Acc HGNC 29653]	2 01974503	2 28243969	25 1489645	0.00323523	0.02745643	3.81065811	2.28243369	124 062733	6.14E-05	0.03244782	Nucleoi/Nucleoplasm			
ENSG00000181026.15	AEN	apoptosis enhancing nuclease (Source HGNC Symbol Acc:HGNC 25722)	2.01320103	0.00020000	23.0332104			1 10689935	5.72202844	20 000811	0.00541593	0.02913118	Nucleoplasm			
ENSG0000181218.5	H2AW	H2A W histone [Source HSNC Symbol Acc HGNC 20507]	10.9360066	1.79658803	118.829321	6.875-05	0.00505486	3 25324979	1.79658803	79.1570249	0 00019616	0.00427024	nst indicated			
ENSG00000181222 17 ENSG00000182979 18	MTA1	Hrsh polymerase a sussifit A (Source PGHC Symbol Acc HGHC 9187) metastatis associated 1 [Source HGNC Symbol Acc HGHC 7410]	0 99/88548	6 96743632	15 1097186 34.0565112	0.00159017	0.01974653						Nucleoplasm			
ENSG00000183765 22	CHEK2	checkpoint kinase 2 [Source HGNC Symbol Acc HGNC 16627]	1.16152531	6 14195601	18 0369316	0.00578797	0.03868213	0.8339538	6 14195601	15 3482531	0.00957052	0.04304147	Nucleoplasm	1	() ()	i
ENSG00000183955 13	KMT5A	lysine methyltransfarase 5A (Source:HGNC Symbol:Acc:HGNC:29489) feddaad bax (M. Faramaki/Al/), Sumbol:Acc:HGNC:21381	2.0407444	3 77244477	£2 60 Mar	0.00031017	6.00011101	0.87434846	6.14593878	14.2183844	0.01121544	0.04785255	Nucleoplasm Nucleoplasm			
ENSG0000186115.6	NSMCET	NSE3 hamolog, SMC5 SMC6 camplex component [Source HGNC Symbol Acc HGNC 7677]	2.90025854	3.112805/2	Siz. 2925964	v.00035052	2.00911362	1 64177647	2.36141368	25.4591475	0.00314565	0 02199239	not indicated			
ENSG00000185507.21	IRF7	Interferon regulatory factor 7 (Source HGNC Symbol Acc HGNC 5122)	9,21092161	3 52194422	45.7214325	0.00373875	0.01463432						Nucleoplasm			
ENSG0000186280 7 ENSG0000186868 44	NAME:	ysane demethysase 42 (Source HGNC Symbol Acc HGNC 25498) microtubule associated protein tau (Source HGNC Symbol Acc HGNC 58/3)	2.8497602*	3.20627639	38.457780+	0.00118758	0.01715274	2 61373779 3 82426626	0.68907643 3.20827622	40.1094288	0.00107318 8.44F.04	0.0110233	Nucleoplasm Plasma membrane			
ENSG0000187778.14	MCRS1	microspherule protein 1 (Source:HGNC Symbol;Acc:HGNC 6960)	1.14175503	7.04178993	19.6712915	0.00561777	0.03436753	1.10975401	7.04178993	30.2687137	0.00210386	0.01699425	Nucleoplasm			
ENSG00000188486.3	TI2AX	HZAX variant historia (Source: HGNC Symbol Acc HGNC 4735) areasty addied (FXH) domine contaction 3 (Source 4624) Symbol Acc (4744)						3 00558698	5.31816676	176.7393	2.42E-05	0.03219566	not indicated			
ENSG00000196586 16	MYDE	mytein V [Sauros HCNC Symbol Acc HCNC 7605]						3 07072564	7 76008457	72.8520422	0.00024246	0 03458462	Nucleoplasm			
ENSG00000197061.4	H4C3	H4 clustered historie 3 [Source HGNC Symbol Acc HGNC 4787]						3 7143336	0 5879416	22 0478017	0 00436031	0 02630512	not indicated			
ENSG00000198369.10 ENSG00000254556.12	GHL1	sprouty reated screet domain containing 2 (Source HONC Symbol Acc HONC 17722) C protein nucleolar 1 (putative) (Source HONC Symbol Acc HONC 4413)						1 2/856196	4.94952798	24.3992907 15.1511743	0.00346695	0.02326214	Nucleoplasm Vesicles	2		2
ENSG00000204591.11	SPIRE2	spire type actin nucleation factor 2 [Source:HGNC Symbol.Acc HGNC.30623]	2.18283701	3.33652627	16.2587344	0.00347711	0.04223325						Nucleoplasm		-	1
ENSG00000214541.8	ZSWIM7 UBAS2	zino finger SWMM-type containing 7 [Source HONC Symbol Acc HONC 2003] ubioutin A 52 minister ribournal protein fusion product 1 Elicence HONC Read-Acc HONC 12848	1.66255917	4.04552915	17 8889302	0.00500995	0.03880827						Cytosol Cytosol Endoolaarme astronom			
ENSG00000240572 2	10	macrophage migration inhibitory factor (Source HGNC Symbol Acc HGNC 7097)	2 19476575	7.19011577	50.77409	0.00360136	0.01250838	3 27839221	7 19011577	178 094272	2 37E-05	0 00219566	Cytosol			
ENS00000254087 8	LYN	LYN proto-oncogene. Sic family tytraiste kinase [Source HCRIC Symbol Acc HCRIC 6735] BRANERCCC westerners (Source HCRIC Symbol Acc HCRIC 47699)	1 37/ 10000	5 235660	14 8007003	0.010000	0.04907007	2 02394896	4.27466819	18.8996203	0.0061326	0.03111174	Goigi apparatus, Plasma membrane Neclaredaam			
ENS00000275700.5	AATF	apoptosis antagonizing transcription factor [Source HONC Symbol Acc. HONC 19235]	1.31410826	exception in	14.500(363	0.0103225	2.0407863	0 99813332	5.38053518	16.1148621	0.00853807	0.04030482	Nucleoli			
ENSG0000280785.2	PAGR1	PA0P1 associated glutamate rich protein 1 [Source HONC Symbol Acc HONC 28707]	1.77284652	3 83847504	26.7780324	0.00280001	0.02514327						not indicated			

Table 30. List of differentially regulated genes between Hek239T/U2OS/HeLa.

(Produced with the BeamTX bioinformatics team)

UNG	FAN CA	ERCC 8	MSH 3	POL Q	MCM8	NSMC E4A	TEX15	ANKL E1	NSM CE3	REV1	PMS1	SOD1	RRM2 B	DNM T1	EME1
FEN1	FAN CB	APEX 1	MSH 4	RAD 1	MDM4	BCCIP	VAV3	BRSK1	IRF7	REV3 L	HMGB 2	CSN K1D	GEN1	USP1	ALKBH 3
RPA1	FAN CC	APEX 2	MSH 5	RAD 9A	POLD 2	MCM9	RNF13 8	UBQL N4	KDM 4D	RUV BL2	GADD 45A	XAB 2	TDP1	EYA1	SMC1A
RPA2	FAN CD2	DDB1	MSH 6	RAD 17	POLD 3	EYA4	BIVM	POLR2 H	MCR S1	PRK CG	IGHM BP2	CCN O	GADD 45G	RDM 1	CDK7
RPA4	FAN CE	DDB2	MUT YH	RAD 21	POLD 4	WDR4 8	RNASE H2B	PRKC D	SPIR E2	TCE A1	PMS2	GTF2 H2	EYA3	CIB1	SETX
RPAI N	FAN CF	ATR	NUD T1	RAD 23A	POLN	STK11	MYC	APBB1	ZSWI M7	RTEL 1	CSNK 1E	YBX 1	XPA	BTG2	UBE2V 2
DNA 2	FAN CL	ATRX	OGG 1	RAD 23B	RAD1 8	FOXO 3	ALKB H8	TERF2 IP	UBA 52	APT X	BRIP1	GTF2 H1	UBE2 A	TNP1	SMUG1
BRC A1	FAN CM	ATRIP	PNK P	RAD 52	RAD5 0	EEPD1	PML	NUDT 16L1	LYN	GTF2 H5	SMC3	MUS 81	PRMT 6	PALB 2	DUT
BRC A2	XRC C1	DCLR E1A	POL A1	RAD 54B	RAD9 B	TWIST	WRAP5 3	DDIT4	BIV M- ERC C5	UBE2 B	TRIP1 3	UIM C1	RNF8	CNO T7	BLM
EXO1	XRC C2	DCLR E1B	POL B	RAD 54L	SPRT N	WRNI P1	PMAIP 1	CENP X	AAT F	MDC 1	TYMS	TRIM 28	MMS1 9	CDK N2D	CLK2
LIG1	XRC C3	DCLR E1C	POL D1	RASS F7	FNIP2	SOX4	CARM 1	GPS1	PAG R1	SIRT 1	XPC	BRC C3	EME2	PARP 1	NPM1
LIG3	XRC C4	NEIL1	POL E	MDM 2	CDC14 B	EEF1E 1	INTS3	SLFN1 1	RASS F1	TRE X1	HUS1	UVR AG	APLF	UPF1	ASF1A
LIG4	XRC C5	NEIL2	POL E2	FAN CG	SIRT4	BCL2L 12	COPS7 B	KLHL1 5	RFC1	WRN	RPS27 L	TRE X2	MNAT 1	NBN	H2AFX
CHE K1	XRC C6	NEIL3	POL G	BAR D1	CDC45	PRMT 1	PPP4C	CTC1	RFC2	DDX 11	MAD2 L2	MBD 4	SMC6	DMC 1	UBE2N
CHE K2	ERC C1	NTHL 1	POL G2	CHD 1L	SMAR CB1	AUNIP	HMGA 2	ZBTB1 8	RFC3	TDG	SETM AR	RNF1 68	CCNH	PCNA	RRM2
ATM	ERC C2	MGM T	POL H	CHD 2	POLR2 F	ELL3	FOXO1	AEN	RFC4	TOPB P1	PRKD C	PRPF 19	RBBP 8	BAZ1 B	SMARC AD1
TP53	ERC C3	MLH1	POLI	DMA P1	ASCC 2	E2F8	JMY	POLR2 A	BRD4	ATF2	PARP2	ATX N3	ABL1	ALK BH1	SMARC AL1
TP53 BP1	ERC C4	MLH3	POL K	FBX O18	NDRG 1	SESN2	FMN2	MTA1	REC QL	VCP	TOP2 A	CET N2	HMGB 1	PARG	
RAD 51	ERC C5	MPG	POL L	GNL 1	BABA M1	GINS2	USP16	KMT5 A	REC QL5	ALK BH2	PER1	TP73	CHAF 1A	UBE2 V1	
RAD 51C	ERC C6	MSH2	POL M	MCM 7	CXCL 12	KMT5 C	PAXIP1	FOXO 4	REC QL4	GTF2 H4	PARP3	MEN 1	SPO11	GTF2 H3	

Table 31. Final list of genes which were selected for knockdown experimentation as siGENOME SMARTPool siRNAs

Pooled from a combination of Thermofisher Silencer, Dharmacon siGENOME, and Beam's differential expression screen and trimmed using ontology relevance.

Target Site Name	Target Site Sequence	Amplicon Primer 1	Amplicon Primer 1 Sequence	Amplicon Primer 2	Amplicon Primer 2 Sequence
HBB Genomic	CCATGGTG CACCTGAC TCCTGAGG	HR323	ACACTCTTTCCCTA CACGACGCTCTTCC GATCTNNNAGGG TTGGCCAATCTACT CCC	HR324	TGGAGTTCAGA CGTGTGCTCTTC CGATCTGTCTTC TCTGTCTCCACA TGCC
A1AT E342 Genomic	ATCGACGA GAAAGGGA CTGAAGC	BEAM54	TGGAGTTCAGACG TGTGCTCTTCCGAT CTGGGTGGGATTC ACCACTTTTCCCAT G	BEAM1704	ACACTCTTTCCC TACACGACGCT CTTCCGATCTNN NNAGGTGTCCA CGTGAGCCTTG
A1AT E342K Lenti Cassette	ATCGACAA GAAAGGGA CTGAAGC	BEAM800	TGGAGTTCAGACG TGTGCTCTTCCGAT CTAGACCGAGGAG AGGGTTAGGGATA G	BEAM801	ACACTCTTTCCC TACACGACGCT CTTCCGATCTNN NNGTCACAGAG GAGGCACCCCT G
HEK2 Genomic	GAACACAA AGCATAGA CTGCGGG	HR043	ACACTCTTTCCCTA CACGACGCTCTTCC GATCTNNNNTGAA TGGATTCCTTGGAA ACAATG	HR044	TGGAGTTCAGA CGTGTGCTCTTC CGATCTCCAGCC CCATCTGTCAAA CT
FANCF Genomic	GGAATCCC TTCTGCAG CACCTGG	ST023_Fwd	ACACTCTTTCCCTA CACGACGCTCTTCC GATCTNNNNATAG CATTGCAGAGAGG CGT	ST023_Rev	TGGAGTTCAGA CGTGTGCTCTTC CGATCTGACCA AAGCGCCGATG GAT
HEK3 Genomic	GGCCCAGA CTGAGCAC GTGATGGC AGAGGAAA GGAAGCCC	HR459	ACACTCTTTCCCTA CACGACGCTCTTCC GATCTNNNNATGT GGGCTGCCTAGAA AGG	HR460	TGGAGTTCAGA CGTGTGCTCTTC CGATCTCCCAGC CAAACTTGTCA ACC
GL544 pegRNA	GACCATCG ACAAGAAA GGGACTGA	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette
GL556 pegRNA	AGCTTCAG TCCCTTTCT TGT	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette	Same as A1AT E342K Lenti Cassette

Table 32. MiSEQ target sites and associated amplicon PCR primer sequences.

The spacer sequences define the numbering of the bases in the editing frequency tables.

Table 33. MiSEQ amplicon sequences.

Target Site								
Name	Amplicon Sequence							
	AGGGTTGGCCAATCTACTCCCAGGAGCAGGGAGGGCAGGAGC							
	CAGGGCTGGGCATAAAAGTCAGGGCAGAGCCATCTATTGCTT							
	ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAAC							
	AGACACCATGGTGCACCTGACTCCTGAGGAGAAGTCTGCCGT							
	TACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGG							
ממנו								
HBB	IAAGGAGACCAAIAGAAACIGGGCAIGIGGAGACAGAGAAG							
Genomic								
	AGGTGTCCACGTGAGCCTTGCTCGAGGCCTGGGATCAGCCTTA							
A1AT								
F3/2								
Genomic	CCAAGTCTCCCCTCTTCATGGGAAAAGTGGTGAATCCCACCC							
	GGGGCCATGTTTTTAGAGGCCATACCCATGTCTATCCCCCCG							
	AGGTCAAGTTCAACAAACCCTTTGTCTTCTTAATGATTGAACA							
A1AT	AAATACCAAGTCTCCCCTCTTCATGGGAAAAGTGGTGAATCCC							
E342K	ACCCAAAAAGACCCAGCTTTCTTGTACAAAGTGGTTGATATCC							
Lenti	AGCACAGTGGCGGCCGCTCGAGTCTAGAGGGCCCGCGGTTCG							
Cassette	AAGGTAAGCCTATCCCTAACCCTCTCCTCGGTCT							
	TGAATGGATTCCTTGGAAACAATGATAACAAGACCTGGCTGA							
	GCTAACTGTGACAGCATGTGGTAATTTTCCAGCCCGCTGGCCC							
	TGTAAAGGAAACTGGAACACAAAGCATAGACTGCGGGGCGG							
HEK2	GCCAGCCIGAATAGCIGCAAACAAGIGCAGAATATCIGATGA							
Genomic	IGICATACGCACAGITIGACAGATGGGGCIGG							
	ATAGCATTGCAGAGAGGGCGTATCATTTCGCGGATGTTCCAATC							
	AGTACGCAGAGAGTCGCCGTCTCCAAGGTGAAAGCGGAAGTA							
FANCE								
Genomic	GCGCGCTACCTGCGCCACATCCATCGGCGCTTTGGTC							
	ACATACTAGCCCCTGTCTAGGAAAAGCTGTCCTGCGACGCCCT							
	CTGGAGGAAGCAGGGCTTCCTTTCCTCTGCCATCACGTGCTCA							
	GTCTGGGCCCCAAGGATTGACCCAGGCCAGGGCTGGAGAAGC							
	AGAAAAAAGCATCAAGCCTACAAATGCATGCTTACTTGCAG							
HEK3	CAGAAATAGACTAATTGCATGGGCGTTTCCCTGGGATCCCTGT							
Genomic	CTCCAGGCTTCTCTCATCCATGCCTTTCTAGGCAGCCCACAT							
Condition	Average 7G Correction	7G Error	Condition	Average 7G Correction	7G Error	Condition	Average 7G Correction	7G Error
-------------	--------------------------	----------	-------------	--------------------------	----------	-----------------	--------------------------	----------
GL545-8-10	0.03	0	GL600-12-15	0.055	0.005	GL556-12-20	0.015	0.005
GL545-10-10	0.01	N/A	GL600-13-15	0.035	0.025	GL556-13-20	0.485	0.135
GL545-12-10	0.03	0.01	GL600-14-15	0.015	0.005	GL556-14-20	1.185	0.415
GL545-15-10	0.025	0.005	GL600-15-15	0.035	0.005	GL556-15-20	0.105	0.005
GL545-8-14	0.18	0.03	GL600-8-20	0.13	0	GL549-8-23	0.045	0.045
GL545-10-14	0.135	0.045	GL600-10-20	0.48	0.09	GL549-10-23	0.02	0.01
GL545-12-14	0.025	0.005	GL600-12-20	0.29	0.08	GL549-12-23	0.065	0.025
GL545-13-14	0.07	0.03	GL600-13-20	0.355	0.235	GL549-13-23	0.045	0.005
GL545-14-14	0.08	0.05	GL600-14-20	0.38	0.17	GL549-14-23	0.02	0
GL545-15-14	0.15	0.11	GL600-15-20	0.05	0	GL549-15-23	0.02	N/A
GL545-8-20	0.285	0.115	GL556-8-10	0.045	0.025	GL549-8-24	0.09	0.05
GL545-10-20	0.015	0.005	GL556-10-10	0.255	0.215	GL549-10-24	0.03	0.02
GL545-12-20	0.035	0.025	GL556-12-10	0.11	0.1	GL549-12-24	0.2	0.08
GL545-13-20	0.05	0.03	GL556-13-10	0.04	0	GL549-13-24	0.28	0.17
GL545-14-20	0.075	0.045	GL556-14-10	0.13	0.09	GL549-14-24	0.12	0.03
GL545-15-20	0.03	0.01	GL556-15-10	0.07	0.03	GL549-15-24	0.035	0.015
GL600-8-10	0.13	0.02	GL556-8-15	0.12	0.01	GL549-8-25	0.045	0.025
GL600-10-10	0.34	0.2	GL556-10-15	0.02	0	GL549-10-25	0.01	N/A
GL600-12-10	0.29	0.04	GL556-12-15	0.03	0.01	GL549-12-25	0.445	0.375
GL600-13-10	0.165	0.085	GL556-13-15	0.19	0.05	GL549-13-25	0.01	N/A
GL600-14-10	0.15	0.07	GL556-14-15	0.2	0.02	GL549-14-25	0.03	N/A
GL600-15-10	0.17	0.01	GL556-15-15	0.02	N/A	GL549-15-25	0.035	0.005
GL600-8-15	0.11	0.04	GL556-8-20	0.165	0.105	GFP_lenti	0.02	N/A
GL600-10-15	0.07	0.05	GL556-10-20	0.03	0	Untreated_lenti	0.01	0

Table 34. Correction percentage scores for the A1AT E342K PE2 PrimeDesign screen.

"N/A" means that only one sample had detectable reads so no error was calculable.

ProtospacerID-PRSlength-RTTlength	Average -3C+7G	-3C+7G Error
GL544-8-17	0	0
GL544-10-17	0.025	0.025
GL544-12-17	0.005	0.005
GL544-13-17	0	0
GL544-14-17	0.005	0.005
GL544-15-17	0.08	0.01
GL544-8-18	0.025	0.025
GL544-10-18	0.025	0.025
GL544-12-18	0.005	0.005
GL544-13-18	0.025	0.005
GL544-14-18	0.1	0.05
GL544-15-18	0.04	0.03
GL544-8-20	0.12	0.04
GL544-10-20	0.485	0.455
GL544-12-20	0.88	0.34
GL544-13-20	1.55	1.14
GL544-14-20	1.025	0.235
GL544-15-20	0.13	0.04

Table 35. Allele percentages for GL544 PAM disruption and precise correction combined edit.

Designations described via the legend in the upper left box.

ProtospacerID-PBSlength-RTTlength	Average 3A+7G	3A+7G Error
GL556-8-10	0.03	0.02
GL556-10-10	0.245	0.215
GL556-12-10	0.1	0.09
GL556-13-10	0.02	0.01
GL556-14-10	0.13	0.09
GL556-15-10	0.06	0.04
GL556-8-15	0.1	0.02
GL556-10-15	0.01	0
GL556-12-15	0	0
GL556-13-15	0.16	0.02
GL556-14-15	0.18	0
GL556-15-15	0	N/A
GL556-8-20	0.16	0.1
GL556-10-20	0.015	0.005
GL556-12-20	0.01	0
GL556-13-20	0.47	0.14
GL556-14-20	1.145	0.385
GL556-15-20	0.095	0.005

Table 36. Allele percentages for GL556 PAM disruption and precise correction combined edit.

"N/A" means that only one sample had detectable reads so no error was calculable.

ProtospacerID-PBSlength-RTTlength	Average Precise Correction/Insertion	Error
pGL542-8-25	0.08	0.017321
pGL542-8-26	0.093333	0.008819
pGL542-8-27	0.19	0.015275
pGL542-8-28	1.103333	0.079652
pGL542-10-25	0.123333	0.008819
pGL542-10-26	0.053333	0.008819
pGL542-10-27	0.283333	0.003333
pGL542-10-28	1.036667	0.131698
pGL542-13-25	0.136667	0.008819
pGL542-13-26	0.04	0.01
pGL542-13-27	0.053333	0.01453
pGL542-13-28	0.476667	0.037565
pGL542-14-25	0.066667	0.003333
pGL542-14-26	0.053333	0.008819
pGL542-14-27	0.123333	0.008819
pGL542-14-28	0.2	0.01
pGL542-15-25	0.06	0.005774
pGL542-15-26	0.033333	0.008819
pGL542-15-27	0.086667	0.018559
pGL542-15-28	0.286667	0.017638
pGL542Msi	0.033333	0.003333
pGL544-13-20	2.31	0.824197
pGL556-14-20	0.513333	0.11348
pHRB241	0.03	0
Untreated	0.03	0
Untreated_NGA	0.01	0

Table 37. Percent correction for the GL542 PrimeDesign PE2 experiment against GL544/556 spacers.

	Average			Average	
Condition	Correction	Error	Condition	Correction	Error
GL544n1	5.956666667	1.166223725	GL556n2	1.163333333	0.609927136
GL544n2	5.826666667	2.60834771	GL556n3	0.3966666667	0.12251984
GL544n3	2.436666667	0.537969433	GL556n4	0.84	0.380175398
GL544n4	3.526666667	1.320509161	GL556n5	2.2766666667	1.62670765
GL544n5	1.816666667	0.210739439	GL556n6	1.436666667	0.504160468
GL544n6	5.2766666667	2.389437405	GL556n7	0.493333333	0.204640606
GL544n7	4.386666667	1.382779005	GL556n8	0.416666667	0.11780398
GL544n8	1.81	0.427200187	GL556n9	0.253333333	0.125476868
GL544n9	3.3766666667	0.853020776	GL556n10	0.486666667	0.110201835
GL544n10	3.646666667	0.809739327	GL556n11	1.566666667	0.661118581
GL544n11	3.963333333	2.351923563	PE2(GL544)	3.873333333	1.383730867
GL544n12	4.64	2.110505469	PE2(Miller)(GL544)	0.043333333	0.014529663
GL544n13	10.37333333	7.366619155	PE2(GL556)	0.783333333	0.16596519
GL544n14	3.476666667	1.977846753	PE2(Miller)(GL556)	0.02	0
GL544n15	2.83	1.332153645	spCas9(GL542M)	0.01	0
GL544n16	3.746666667	2.168396745	Untreated	0.03	
GL556n1	0.49	0.015275252			

Table 38. Percent precise correction of A1AT E342K NGA PE2 vs PE3 vs PE2-Miller.

Condition	Precise Correction/Insertion	Error
542-10-28	1.026667	0.115662
542-10-28+n1	2.226667	0.093512
542-10-28+n2	2.07	0.011547
542-10-28+n3	2.33	0.243379
542-10-28+n4	2.873333	0.173813
542-10-28+n5	1.14	0.015275
542-10-28+n6	1.656667	0.052387
542-10-28+n7	1.356667	0.082125
542-10-28+n8	1.456667	0.093868
542-8-28	1.076667	0.049777
542-8-28+n1	2.886667	0.102035
542-8-28+n2	2.28	0.115326
542-8-28+n3	2.67	0.136137
542-8-28+n4	3.023333	0.17901
542-8-28+n5	1.17	0.052915
542-8-28+n6	1.95	0.079373
542-8-28+n7	1.366667	0.016667
542-8-28+n8	1.426667	0.115662
WT Untreated	0.05	0.005774
544-13-20	3.373333	0.170229
544-13-20+n11	4.61	1.454522
544-13-20+n12	3.586667	0.478063
544-13-20+n13	3.683333	1.095389
556-14-20	1.103333	0.248283
556-14-20+n11	1.276667	0.222586
556-14-20+n5	1.553333	0.48074
556-14-20+n6	1.41	0.579396
Lenti Untreated	0.013333	0.003333

Table 39. Percentage precise correction/insertion of GL542 PE2/PE3 vs GL544/556.

Condition	Average 7G	7G Error	TTEST P-Value
ngcABEvar9+sgRNA025	28.75	6.792896	
PE2-VRQR+GL544-13-20(Plasmid)	3.566666667	0.847945	
PE2-VRQR+GL544-13-20/n11(Plasmid)	2.47	0.570468	
PE2-VRQR+GL544-13-20/n12(Plasmid)	7.94	5.736282	
PE2-VRQR+GL544-13-20/n13(Plasmid)	3.243333333	1.036731	
PE2-VRQR+GL544-13-20(RNA)	4.4	1.876708	0.714795914
PE2-VRQR+GL544-13-20/n11(RNA)	2.23	0.960226	0.842627459
PE2-VRQR+GL544-13-20/n12(RNA)	4.506666667	1.206874	0.613094569
PE2-VRQR+GL544-13-20/n13(RNA)	3.886666667	1.533431	0.747980439
PE2-VRQR+GL556-14-20(Plasmid)	0.85	0.228108	
PE2-VRQR+GL556-14-20/n5(Plasmid)	0.37	0.083267	
PE2-VRQR+GL556-14-20/n6(Plasmid)	1.403333333	0.69451	
PE2-VRQR+GL556-14-20/n11(Plasmid)	0.833333333	0.156773	
PE2-VRQR+GL556-14-20(RNA)	2.626666667	0.715945	0.120514194
PE2-VRQR+GL556-14-20/n5(RNA)	1.183333333	0.368299	0.152181226
PE2-VRQR+GL556-14-20/n6(RNA)	2.733333333	0.471393	0.197792627
PE2-VRQR+GL556-14-20/n11(RNA)	3.216666667	1.578199	0.269452796
Untreated	0.023333333	0.003333	

Table 40. Editing percentages of mRNA vs. plasmid correction at A1AT E342K in Hek cells.

T-test values for difference between RNA and plasmid paired conditions was not significant.

Table 41. Editing percentages of A1AT E342K by NGA prime editors in GM1142	23
fibroblasts.	

Designation	7G AVERAGE	7G ERROR
ngcABEvar9+sgRNA025	20.14666667	0.21789396
PE2-VRQR+GL544-13-20	0.836666667	0.579549634
PE2-VRQR+GL544-13-20+n11	0.136666667	0.012018504
PE2-VRQR+GL544-13-20+n12	0.163333333	0.040960686
PE2-VRQR+GL544-13-20+n13	0.103333333	0.020275875
PE2-VRQR+GL556-14-20	0.253333333	0.052387445
PE2-VRQR+GL556-14-20+n5	0.286666667	0.068394282
PE2-VRQR+GL556-14-20+n6	0.15	0.005773503
PE2-VRQR+GL556-14-20+n11	0.296666667	0.080897741
Untreated	0.096666667	0.023333333

Tar get	Samp le	Aver age Ct	SD	Tar get	Samp le	Aver age Ct	SD	Target	Samp le	Aver age Ct	SD	Target	Samp le	Aver age Ct	SD
UN G1	24hr+	31.4 0209	0.35 4229	UN G2	24hr+	30.3 7754	0.44 9261	UNG1 _2_L	24hr+	35.6 8135	0.75 0496	UNG1 _2_S	24hr+	29.3 7316	0.46 1284
UN G1	48hr+	30.5 0991	0.11 3681	UN G2	48hr+	29.0 8256	0.38 0299	UNG1 _2_L	48hr+	33.5 9191	0.43 3163	UNG1 _2_S	48hr+	27.6 4209	0.42 0182
UN G1	72hr+	29.0 9341	0.23 7939	UN G2	72hr+	27.4 1338	0.34 5403	UNG1 _2_L	72hr+	31.7 8099	0.24 7661	UNG1 _2_S	72hr+	25.8 3984	0.31 7827
UN G1	96hr+	28.0 7385	0.29 7139	UN G2	96hr+	26.5 2611	0.27 3933	UNG1 _2_L	96hr+	30.6 2184	0.28 502	UNG1 _2_S	96hr+	24.7 696	0.25 9469
UN G1	120hr +	27.5 9835	0.12 0746	UN G2	120hr +	26.7 1687	0.14 6243	UNG1 _2_L	120hr +	31.0 2448	0.18 7379	UNG1 _2_S	120hr +	24.9 3341	0.08 4557
UN G1	24hr-	30.0 845	0.51 8052	UN G2	24hr-	27.1 8532	0.56 6783	UNG1 _2_L	24hr-	31.3 1104	0.50 3946	UNG1 _2_S	24hr-	25.4 5825	0.47 3891
UN G1	48hr-	28.7 3899	0.10 0962	UN G2	48hr-	25.8 1702	0.16 6214	UNG1 _2_L	48hr-	29.9 5921	0.28 7532	UNG1 _2_S	48hr-	24.2 1514	0.19 9509
UN G1	72hr-	27.2 3985	0.21 9548	UN G2	72hr-	25.2 6531	0.24 586	UNG1 _2_L	72hr-	29.3 2939	0.09 247	UNG1 _2_S	72hr-	23.4 8414	0.20 2226
UN G1	96hr-	26.5 3816	0.24 7153	UN G2	96hr-	24.9 1523	0.33 168	UNG1 _2_L	96hr-	28.8 6352	0.09 7148	UNG1 _2_S	96hr-	22.9 1397	0.11 7838
UN G1	120hr -	26.2 8122	0.13 6696	UN G2	120hr -	25.1 5912	0.28 8487	UNG1 _2_L	120hr -	29.2 0757	0.29 9146	UNG1 _2_S	120hr -	23.2 0329	0.33 6568
UN G1	24hr GFP	29.9 3258	N/A	UN G2	24hr GFP	27.1 8782	N/A	UNG1 _2_L	24hr GFP	31.4 9147	N/A	UNG1 _2_S	24hr GFP	25.7 1425	N/A
UN G1	48hr GFP	28.5 2766	N/A	UN G2	48hr GFP	25.5 3117	N/A	UNG1 _2_L	48hr GFP	29.5 902	N/A	UNG1 _2_S	48hr GFP	24.0 011	N/A
UN G1	72hr GFP	27.7 0194	N/A	UN G2	72hr GFP	25.8 7248	N/A	UNG1 _2_L	72hr GFP	29.7 8874	N/A	UNG1 _2_S	72hr GFP	24.1 2414	N/A
UN G1	96hr GFP	26.6 8658	N/A	UN G2	96hr GFP	25.0 0686	N/A	UNG1 _2_L	96hr GFP	28.9 7398	N/A	UNG1 _2_S	96hr GFP	23.2 8731	N/A
UN G1	120hr GFP	26.2 8857	N/A	UN G2	120hr GFP	24.9 2086	N/A	UNG1 _2_L	120hr GFP	28.8 1556	N/A	UNG1 _2_S	120hr GFP	23.2 1648	N/A

Table 42. RT-qPCR Ct scores for UNG knockdown of various transcripts.

Average UNG1/2/1&2 Ct scores and standard deviations.

Name	Average CT	CT Error
24hr-1uL-UNG	29.49067942	0.379495
24hr-1.25uL-UNG	29.174263	0.103572
24hr-GFP	26.28395844	0.154252
24hr-Untreated	25.8890241	0.131328
48hr-1uL-UNG	29.91177877	0.282967
48hr-1.25uL-UNG	29.51558749	0.264475
48hr-GFP	25.87082227	0.286053
48hr-Untreated	26.05685488	0.501822
72hr-1uL-UNG	30.17690214	0.118841
72hr-1.25uL-UNG	29.71838506	0.118728
72hr-GFP	26.52925237	0.19621
72hr-Untreated	26.7971433	0.139003
96hr-1uL-UNG	29.50931803	0.310827
96hr-1.25uL-UNG	29.12909762	0.087181
96hr-GFP	27.04476992	0.101618
96hr-Untreated	26.82254219	0.535756
120hr-1uL-UNG	31.05862109	0.549356
120hr-1.25uL-UNG	30.87568283	0.156981
120hr-GFP	27.70372645	0.262739
120hr-Untreated	27.80135282	0.314483

Table 43. Ct values for UNG2 knockdown.

This experiment was validated in 48-well format.

Condition	AVERAGE 22T	ERROR
siRNA 5 ctrl	12.95333	1.040662
RAD17	11.19667	1.566411
Lamin A/C ctrl	11.07667	1.856397
RAD9A	10.53	0.725282
siRNA pool1 ctrl	9.736667	0.811672
siRNA 3 ctrl	9.556667	1.641791
siRNA 4 ctrl	8.913333	1.06021
ERCC2	8.41	0.863095
siRNA pool2 ctrl	8.393333	2.403264
BRCA2	8.02	1.000267
siRNA 1 ctrl	7.313333	1.828718
ATR	6.97	0.068069
Cyclophilin B ctrl	6.766667	0.451085
GAPD ctrl	6.643333	2.291378
EXO1	6.386667	1.052843
Untreated+PE3	6.1	1.084866
MSH3	5.466667	1.211202
DDB1	5.386667	0.308455
XRCC6	5.383333	0.570273
MSH2	5.366667	0.660614
MSH4	5.126667	0.655396
LIG1	5.076667	0.986667
siRNA2 ctrl	4.26	0.373631
POLA1	4.03	0.751953
DCLRE1A	3.826667	0.96596
PNKP	3.1	0.1823
FANCM	2.873333	0.751805
LIG4	1.846667	0.546697
Untreated	0.03	0

Table 44. Percent HBB PE3 editing of siGENOME plate 1 repeat screen 1

Table 45. Percent HBB PE3 editing of siGENOME plate 1 repeat screen 2.

Gene	AVERAGE	ERROR
Untreated	1.503333333	0.044845413
BRCA2	14.89	1.02001634
POLA1	6.666666667	0.118368539
RAD17	14.81666667	0.193419521
PNKP	7.596666667	0.259122451
FANCM	7.713333333	0.37176755
MSH2	7.89	0.65184354
MSH4	7.87	0.475709996
Cyclophilin B ctrl	7.926666667	0.198522319
DCLRE1A	8.09	0.820812605
DDB1	8.136666667	0.544834328
Lamin A/C ctrl	13.60333333	0.132455443
siRNA2 ctrl	8.473333333	0.878357052
siRNA 5 ctrl	13.17666667	0.473298121
siRNA pool1 ctrl	13.19	0.931683065
EXO1	13.06	0.50083264
LIG4	8.923333333	0.494177206
XRCC6	8.956666667	0.898337972
ERCC2	12.37333333	0.43910262
LIG1	9.283333333	1.302117933
siRNA 1 ctrl	12.34333333	1.237326868
GAPD ctrl	9.91	0.583894968
siRNA 3 ctrl	9.78	1.454922678
MSH3	11.89666667	1.589384926
siRNA pool2 ctrl	11.52	0.831444526
ATR	10.45	0.780534005
siRNA 4 ctrl	10.49333333	1.15328998
RAD9A	10.94	0.89985184
Untreated+PE3	10.86	1.54282209

Gene	Vendor	Catalogue Number	Description
RAD17	OriGene	SC120501	pCMV6-XL5 RAD17 (NM_133338) Human Untagged Clone transcript variant 1
RAD9A	OriGene	SC321679	pCMV6-AC Rad9 (RAD9A) (NM_004584) Human Untagged Clone transcript variant 1
FEN1	OriGene	SC110892	pCMV6-XL5 FEN1 (NM_004111) Human Untagged Clone
UNG	OriGene	SC109875	pCMV6-XL5 UNG (NM_080911) Human Untagged Clone transcript variant 2
ERCC2	OriGene	SC106224	pCMV6-XL4 XPD (ERCC2) (NM_000400) Human Untagged Clone transcript variant 1
LIG4	OriGene	SC118710	pCMV6-XL5 DNA Ligase IV (LIG4) (NM_002312) Human Untagged Clone transcript variant 1
FANCM	OriGene	RC211791	pCMV6-Entry FANCM (NM_020937) Human Tagged ORF Clone
POLA1	OriGene	RC214011	pCMV6-AC-Myc-DDK DNA polymerase alpha (POLA1) (NM_016937) Human Tagged ORF Clone
PNKP	OriGene	SC128040	pCMV6-XL4 PNK (PNKP) (NM_007254) Human Untagged Clone
DCLRE1A	OriGene	SC333120	pCMV6 series SNM1A (DCLRE1A) (NM_001271816) Human Untagged Clone transcript variant 1
PMS2	OriGene	SC119825	pCMV6-XL5 PMS2 (NM_000535) Human Untagged Clone
MSH6	OriGene	SC120035	pCMV6-XL5 MSH6 (NM_000179) Human Untagged Clone
MLH1	OriGene	SC323792	pCMV6-AC MLH1 (NM_000249) Human Untagged Clone
MSH2	OriGene	SC119995	pCMV6-XL5 MSH2 (NM_000251) Human Untagged Clone
TREX2	OriGene	SC309626	pCMV6-XL5 TREX2 (NM_080701) Human Untagged Clone

Table 46. List of OriGene plasmids used in the overexpression assay.

Condition	Average 22T	Average Undesired	22T Error	Undesired Error
Untreated+PE3	22.06333333	0.423333333	0.372394653	0.043716257
UNG	14.02666667	0.72	0.274246442	0.113578167
FANCM	13.94666667	0.16	0.447263283	0.045092498
MSH6	12.38	0.216666667	0.215483951	0.033333333
POLA1	11.98	0.243333333	0.367559519	0.043716257
PMS2	11.65333333	0.176666667	0.284155669	0.012018504
LIG4	11.16333333	0.126666667	0.377903574	0.016666667
MHL1	11.05333333	0.143333333	0.577042267	0.017638342
RAD17	11.04666667	0.18	0.423687516	0.011547005
FEN1	9.89	0.113333333	0.664630223	0.024037009
PNKP	9.833333333	0.183333333	0.540411366	0.020275875
MSH2	9.516666667	0.2	0.239188443	0.03
RAD9A	7.103333333	0.123333333	0.871403721	0.047022453
ERCC2	7.05	0.116666667	0.246644143	0.046666667
GFP	6.843333333	0.12	0.213098829	0.034641016
TREX2	3.503333333	0.113333333	0.149480582	0.026034166
Untreated	0.2266666667	0.03	0.046308147	0.005773503

Table 47. Overexpression assay HBB PE3 percent editing.

Condition	Average 22T	Average Undesired	22T Error	Undesired Error
Hek-BRCA2+7.5k	0.803333	0.026666667	0.211844	0.012018504
Hek-BRCA2+7.5k+PE3	16.90333	0.213333333	2.368968	0.046308147
Hek-Parental+7.5k	0.886667	0.03	0.196497	0.005773503
	17.17	0.4000000	1 (10700	0.040410462
Hek-Parental+7.5k+PE3	17.17	0.4066666667	1.613722	0.048419463
Hek-WT+7.5k	0.563333	0.026666667	0.108985	0.006666667
Hek-WT+7.5k+PE3	16.81333	0.296666667	0.462685	0.119210365
Hek-BRCA2+26k	1.08	0.06	0.068069	0.03
Hek-BRCA2+26k+PE3	23.44	0.376666667	0.972471	0.046666667
Hek-Parental+26k	1.103333	0.04	0.06888	0.011547005
	• • • •	.		
Hek-Parental+26k+PE3	28.97	0.456666667	1.157684	0.027284509
Hek-WT+26k	0.91	0.02	0.066583	0.01
Hek-WT+26k+PE3	22.78	0.336666667	1.163286	0.038441875

Condition	22T AVERAGE	22T ERROR	Condition	23C AVERAGE	23C ERROR
26k-Untreated+Untreated	0.07	0.015275	26k-Untreated+Untreated	0.023333	0.006667
26k-Untreated_HBB_PE2	1.94	0.060828	26k-Untreated+FANCF-PE2	13.19667	0.11921
GFP-Plasmid_HBB_PE2	0.97	0.085049	GFP-Plasmid+FANCF-PE2	5.19	0.052915
TREX2-Plasmid_HBB_PE2	1.773333	1.23382	TREX2-Plasmid+FANCF-PE2	2.473333	0.489535
26k-Untreated_HBB_PE3	9.21	0.07	26k-Untreated+FANCF-PE3	15.15	0.278747
GFP-Plasmid_HBB_PE3	3.563333	0.263902	GFP-Plasmid+FANCF-PE3	5.226667	0.434255
TREX2-Plasmid_HBB_PE3	1.653333	0.186667	TREX2-Plasmid+FANCF-PE3	2.613333	0.245515
Condition	Average 7G	7G ERROR	7.5k-Untreated+Untreated	0.03	0.005774
Untreated+Untreated	0.006666667	0.003333333	7.5k-Untreated+FANCF-PE2	13.69	0.786532
Untreated+pGL544-13-20	2.16	0.315330514	UNG-siRNA+FANCF-PE2	17.15	0.84309
GFP-Plasmid+pGL544-13-20	1.546666667	0.211765069	TREX2-siRNA+FANCF-PE2	16.19	0.373631
TREX2-Plasmid+pGL544-13-20	1.22	0.412431813	7.5k-Untreated+FANCF-PE3	15.99333	0.683236
UNG-siRNA+pGL544-13-20	3.073333333	0.233547521	UNG-siRNA+FANCF-PE3	19.08667	0.261683
TREX2-siRNA+pGL544-13-20	2.686666667	0.652184364	TREX2-siRNA+FANCF-PE3	17.88	0.669552
Untreated+pGL544-13-20+n11	4.44	0.572916515	Condition	AVERAGE 17+CTT	17+CTT ERROR
GFP-Plasmid+pGL544-13-20+n11	0.686666667	0.228789083	26k-Untreated	0.016666667	0.003333333
TREX2-Plasmid+pGL544-13-20+n11	0.48	0.134288247	26k-Untreated+HEK3-PE2	12.30666667	0.172851895
UNG-siRNA+pGL544-13-20+n11	3.613333333	0.972733834	GFP-Plasmid+HEK3-PE2	5.606666667	0.421676548
TREX2-siRNA+pGL544-13-20+n11	2.24	0.211266025	TREX2-Plasmid+HEK3-PE2	2.933333333	0.383941546
Condition	7A AVERAGE	7A ERROR	26k-Untreated+HEK3-PE3	13.07	0.52848841
Untreated+Untreated	0.036666667	0.003333333	GFP-Plasmid+HEK3-PE3	6.14	0.551935987
Untreated+pGL542-8-28	0.93	0.017320508	TREX2-Plasmid+HEK3-PE3	3.486666667	0.19272894
GFP-Plasmid+pGL542-8-28	0.406666667	0.066416196	7.5k-Untreated	0.03	0.005773503
TREX2-Plasmid+pGL542-8-28	0.113333333	0.043716257	7.5k-Untreated+HEK3-PE2	13.92	0.626498204
UNG-siRNA+pGL542-8-28	0.913333333	0.106822802	UNG-siRNA+HEK3-PE2	15.84666667	1.379194612
TREX2-siRNA+pGL542-8-28	0.93	0.02081666	TREX2-siRNA+HEK3-PE2	15.15333333	0.410297995
Untreated+pGL542-8-28+n11	2.246666667	0.054873592	7.5k-Untreated+HEK3-PE3	13.81333333	0.915283805
GFP-Plasmid+pGL542-8-28+n11	0.773333333	0.063333333	UNG-siRNA+HEK3-PE3	15.21333333	1.012016688
TREX2-Plasmid+pGL542-8-28+n11	0.226666667	0.029059326	TREX2-siRNA+HEK3-PE3	15.50333333	0.852766739
TREX2-siRNA+pGL542-8-28+n11	2.436666667	0.161795481			
UNG-siRNA+pGL542-8-28+n11	2.426666667	0.127191894			

Table 49. Percentages for precise target editing with TREX2 influence on at various target sites.

Appendix 2.

Additional Figures

Figure 41. DNA Flap Repair Mechanism.

Diagram (Bartos et al 2008) showing the mechanism of Okazaki fragment flap recognition by RPA followed by Dna2 binding and subsequent shortening and cleavage, completed by FEN1 cleavage of the short downstream flap in human cells. There is also the possibility that a long flag can hybridize and recombine with another nearby ssDNA. >PE2Frag1 ATGAAACGGACAGCCGACGGAAGCGAGTTCGAGTCACCAAAGAAGAAGCGGAAAGTCGACAAGAAGTACAG AGAAATTCAAGGTGCTGGGCAACACCGGCCGGCACAGCATCAAGAAGAACCTGATCGGAGCCCTGCTGTTC GACAGCGGCGAAACAGCCGAGGCCACCCGGCTGAAGAAACCGCCAGAAGAAGATACACCAGACGGAAGAA CCGGATCTGCTATCTGCAAGAGATCTTCAGCAACGAGATGGCCAAGGTGGACGACAGCTTCTTCCACAGAC TGGAAGAGTCCTTCCTGGTGGAAGAGGATAAGAAGCACGAGCGGCACCCCATCTTCGGCAACATCGTGGAC GGCCGACCTGCGGCTGATCTATCTGGCCCTGGCCCACATGATCAAGTTCCGGGGCCACTTCCTGATCGAGG GCGACCTGAACCCCGACAACAGCGACGTGGACAAGCTGTTCATCCAGCTGGTGCAGACCTACAACCAGCTG TTCGAGGAAAACCCCATCAACGCCAGCGGCGTGGACGCCAAGGCCATCCTGTCTGCCAGACTGAGCAAGAG CAGACGGCTGGAAAATCTGATCGCCCAGCTGCCCGGCGAGAAGAAGAATGGCCTGTTCGGAAACCTGATTG CCCTGAGCCTGGGCCTGACCCCCAACTTCAAGAGCAACTTCGACCTGGCCGAGGATGCCAAACTGCAGCTG AGCAAGGACACCTACGACGACGACCTGGACAACCTGCTGGCCCAGATCGGCGACCAGTACGCCGACCTGTT TCTGGCCGCCAAGAACCTGTCCGACGCCATCCTGCTGAGCGACATCCTGAGAGTGAACACCGAGATCACCA AGGCCCCCTGAGCGCCTCTATGATCAAGAGATACGACGAGCACCAGGACCTGACCCTGCTGAAAGCT CTCGTGCGGCAGCAGCTGCCTGAGAAGTACAAAGAGATTTTCTTCGACCAGAGCAAGAACGGCTACGCCGG CTACATTGACGGCGGAGCCAGCCAGGAAGAGTTCTACAAGTTCATCAAGCCCATCCTGGAAAAGATGGACG GCACCGAGGAACTGCTCGTGAAGCTGAACAGAGAGGACCTGCTGCGGAAGCAGCGGACCTTCGACAACGGC AGCATCCCCCACCAGATCCACCTGGGAGAGCTGCACGCCATTCTGCGGCGGCAGGAAGATTTTTACCCATT CCTGAAGGACAACCGGGAAAAGATCGAGAAGATCCTGACCTTCCGCATCCCCTACTACGTGGGCCCTCTGG CCAGGGGAAACAGCAGATTCGCCTGGATGACCAGAAAGAGCGAGGAAACCATCACCCCCTGGAACTTCGAG GAAGTGGTGGACAAGGGCGCTTCCGCCCAGAGCTTCATCGAGCGGATGACCAACTTCGATAAGAACCTGCC CAACGAGAAGGTGCTGCCCAAGCACAGCCTGCTGTACGAGTACTTCACCGTGTATAACGAGCTGACCAAAG TGAAATACGTGACCGAGGGAATGAGAAAGCCCGCCTTCCTGAGCGGCGAGCAGAAAAAGGCCATCGTGGAC CTGCTGTTCAAGACCAACCGGAAAGTGACCGTGAAGCAGCTGAAAGAGGACTACTTCAAGAAAATCGAGTG CTTCGACTCCGTGGAAATCTCCGGCGTGGAAGATCGGTTCAACGCCTCCCTGGGCACATACCACGATCTGC TGAAAATTATCAAGGACAAGGACTTCCTGGACAATGAGGAAAACGAGGACATTCTGGAAGATATCGTGCTG ACCCTGACACTGTTTGAGGACAGAGAGAGATGATCGAGGAACGGCTGAAAACCTATGCCCACCTGTTCGACGA CAAAGTGATGAAGCAGCTGAAGCGGCGGAGATACACCGGCTGGGGCAGGCTGAGCCGGAAGCTGATCAACG GCATCCGGGACAAGCAGTCCGGCAAGACAATCCTGGATTTCCTGAAGTCCGACGGCTTCGCCAACAGAAAC TTCATGCAGCTGATCCACGACGACGACCTGACCTTTAAAGAGGACATCCAGAAAGCCCAGGTGTCCGGCCA GGGCGATAGCCTGCACGAGCACATTGCCAATCTGGCCGGCAGCCCCGCCATTAAGAAGGGCATCCTGCAGA CAGTGAAGGTGGTGGACGAGCTCGTGAAAGTGATGGGCCGGCACAAGCCCGAGAACATCGTGATCGAAATG GCCAGAGAGAACCAGACCACCCAGAAGGGACAGAAGAACAGCCGCGAGAGAATGAAGCGGATCGAAGAGGG CATCAAAGAGCTGGGCAGCCAGATCCTGAAAGAACACCCCGTGGAAAACACCCCAGCTGCAGAACGAGAAGC TGTACCTGTACTACCTGCAGAATGGGCCGGGATATGTACGTGGACCAGGAACTGGACATCAACCGGCTGTCC GACTACGATGTGGACGCTATCGTGCCTCAGAGCTTTCTGAAGGACGACTCCATCGACAACAAGGTGCTGAC CAGAAGCGACAAGAACCGGGGGCAAGAGCGACAACGTGCCCTCCGAAGAGGTCGTGAAGAAGATGAAGAACT ACTGGCGGCAGCTGCTGAACGCCAAGCTGATTACCCAGAGAAAGTTCGACAATCTGACCAAGGCCGAGAGA GGCGGCCTGAGCGAACTGGATAAGGCCGGCTTCATCAAGAGACAGCTGGTGGAAACCCGGCAGATCACAAA GCACGTGGCACAGATCCTGGACTCCCGGATGAACACTAAGTACGACGAGAATGACAAGCTGATCCGGGAAG TGAAAGTGATCACCCTGAAGTCCAAGCTGGTGTCCGATTTCCGGAAGGATTTCCAGTTTTACAAAGTGCGC GAGATCAACAACTACCAC

Figure 42. Geneblock fragment 1.

Sequence of a section of PE2.

>PE2Frag2 CACGCCCACGACGCCTACCTGAACGCCGTCGTGGGAACCGCCCTGATCAAAAAGTACCCTAAGCTGGAAAG GCAAGGCTACCGCCAAGTACTTCTTCTACAGCAACATCATGAACTTTTTCAAGACCGAGATTACCCTGGCC AACGGCGAGATCCGGAAGCGGCCTCTGATCGAGACAAACGGCGAAACCGGGGAGATCGTGTGGGATAAGGG CCGGGATTTTGCCACCGTGCGGAAAGTGCTGAGCATGCCCCAAGTGAATATCGTGAAAAAGACCGAGGTGC GACTGGGACCCTAAGAAGTACGGCGGCTTCGACAGCCCCACCGTGGCCTATTCTGTGCTGGTGGTGGCCAA AGTGGAAAAGGGCAAGTCCAAGAAACTGAAGAGTGTGAAAGAGCTGCTGGGGATCACCATCATGGAAAGAA GCAGCTTCGAGAAGAATCCCATCGACTTTCTGGAAGCCAAGGGCTACAAAGAAGTGAAAAAGGACCTGATC ATCAAGCTGCCTAAGTACTCCCTGTTCGAGCTGGAAAACGGCCGGAAGAGAATGCTGGCCTCTGCCGGCGA AGAAGCTGAAGGGCTCCCCCGAGGATAATGAGCAGAAACAGCTGTTTGTGGAACAGCACAAGCACTACCTG GACGAGATCATCGAGCAGATCAGCGAGTTCTCCAAGAGAGTGATCCTGGCCGACGCTAATCTGGACAAAGT GCTGTCCGCCTACAACAAGCACCGGGATAAGCCCATCAGAGAGCAGGCCGAGAATATCATCCACCTGTTTA CCCTGACCAATCTGGGAGCCCCTGCCGCCTTCAAGTACTTTGACACCACCATCGACCGGAAGAGGTACACC AGCACCAAAGAGGTGCTGGACGCCACCCTGATCCACCAGAGCATCACCGGCCTGTACGAGACACGGATCGA CCTGTCTCAGCTGGGAGGTGACTCTGGAGGATCTAGCGGAGGATCCTCTGGCAGCGAGACAACAA GCGAGTCAGCAACACCAGAGAGCAGTGGCGGCAGCAGCGGCGGCAGCAGCACCCTAAATATAGAAGATGAG TATCGGCTACATGAGACCTCAAAAGAGCCAGATGTTTCTCTAGGGTCCACATGGCTGTCTGATTTTCCTCA GGCCTGGGCGGAAACCGGGGGCATGGGACTGGCAGTTCGCCAAGCTCCTCTGATCATACCTCTGAAAGCAA CCTCTACCCCCGTGTCCATAAAACAATACCCCATGTCACAAGAAGCCAGACTGGGGATCAAGCCCCACATA CAGAGACTGTTGGACCAGGGAATACTGGTACCCTGCCAGTCCCCCTGGAACACGCCCCTGCTACCCGTTAA GAAACCAGGGACTAATGATTATAGGCCTGTCCAGGATCTGAGAGAAGTCAACAAGCGGGTGGAAGACATCC ACCCCACCGTGCCCAACCCTTACAACCTCTTGAGCGGGCTCCCACCGTCCCACCAGTGGTACACTGTGCTT GATTTAAAGGATGCCTTTTTCTGCCTGAGACTCCACCCCACCAGTCAGCCTCTCTCGCCTTTGAGTGGAG AGATCCAGAGATGGGAATCTCAGGACAATTGACCTGGACCAGACTCCCACAGGGTTTCAAAAACAGTCCCA CCCTGTTTAATGAGGCACTGCACAGAGACCTAGCAGACTTCCGGATCCAGCACCCAGACTTGATCCTGCTA CAGTACGTGGATGACTTACTGCTGGCCGCCACTTCTGAGCTAGACTGCCAACAAGGTACTCGGGCCCTGTT ACAAACCCTAGGGAACCTCGGGTATCGGGCCTCGGCCAAGAAAGCCCAAATTTGCCAGAAACAGGTCAAGT TGGGTTTGCAGAAATGGCAGCCCCCTGTACCCTCTCACCAAACCGGGGACTCTGTTTAATTGGGGGCCCAG ACCAACAAAAGGCCTATCAAGAAATCAAGCAAGCTCTTCTAACTGCCCCAGCCCTGGGGTTGCCAGATTTG ACTAAGCCCTTTGAACTCTTTGTCGACGAGAAGCAGGGCTACGCCAAAGGTGTCCTAACGCAAAAACTGGG ACCTTGGCGTCGGCCGGTGGCCTACCTGTCCAAAAAGCTAGACCCAGTAGCAGCTGGGTGGCCCCCTTGCC TACGGATGGTAGCAGCCATTGCCGTACTGACAAAGGATGCAGGCAAGCTAACCATGGGACAGCCACTAGTC ATTCTGGCCCCCCATGCAGTAGAGGCACTAGTCAAACAACCCCCCGACCGCTGGCTTTCCAACGCCCGGAT GACTCACTATCAGGCCTTGCTTTTGGACACGGACCGGGTCCAGTTCGGACCGGTGGTAGCCCTGAACCCGG CTACGCTGCTCCCACTGCCTGAGGAAGGGCTGCAACAACTGCCTTGATATCCTGGCCGAAGCCCACGGA ACCCGACCCGACCTAACGGACCAGCCGCTCCCAGACGCCGACCACCTGGTACACGGATGGAAGCAGTCT CTTACAAGAGGGACAGCGTAAGGCGGGAGCTGCGGTGACCACCGAGACCGAGGTAATCTGGGCTAAAGCCC TGCCAGCCGGGACATCCGCTCAGCGGGCTGAACTGATAGCACTCACCCAGGCCCTAAAGATGGCAGAAGGT AAGAAGCTAAATGTTTAT

Figure 43. Geneblock fragment 2.

Sequence of a section of PE2.

Figure 44. Plasmid map of pGL111(pUTR-Trilink-ISLAY1-monoTadA-

ABE7.10(V82S)-MQKFRAER).

Source plasmid for pUTR backbone.

Figure 45. pCMV-PE2 plasmid map.

Figure 46. Plasmid map of pUTR-PE2-BbsI-120A.

MKRTADGSEFESPKKKRKVDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRH SIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLOEIFSNEMAKVDDSFFHR LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALA HMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSK SRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN LLAOIGDOYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHODLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNR EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAOSFIERMTNFDKNLPNEKVLPKHSL LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREM IEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENOTTOKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLON EKLYLYYLONGRDMYVDOELDINRLSDYDVDAIVPOSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQ ITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG GFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTST KEVLDATLIHQSITGLYETRIDLSQLGGDSGGSSGGSSGSETPGTSESATPESSGGSSG GSSTLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATS TPVSIK0YPMS0EARLGIKPHI0RLLD0GILVPC0SPWNTPLLPVKKPGTNDYRPV0DL REVNKRVEDIHPTVPNPYNLLSGLPPSHOWYTVLDLKDAFFCLRLHPTSOPLFAFEWRD PEMGISGQLTWTRLPQGFKNSPTLFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSE LDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWLTEARKETVMGQP TPKTPROLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDOOKAYOEIKOAL LTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCL RMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDR VQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTDGSSL LQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKKLNVYTDSRYA FATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEA RGNRMADOAARKAAITETPDTSTLLIENSSPSGGSKRTADGSEFEPKKKRKV*

Figure 47. Amino acid sequence for PE2.

>PE2

>PE2-VROR MKRTADGSEFESPKKKRKVDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRH SIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLOEIFSNEMAKVDDSFFHR LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALA HMIKFRGHFLIEGDLNPDNSDVDKLFIOLVOTYNOLFEENPINASGVDAKAILSARLSK SRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN LLAOIGDOYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHODLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNR EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAOSFIERMTNFDKNLPNEKVLPKHSL LYEYFTVYNELTKVKYVTEGMRKPAFLSGEOKKAIVDLLFKTNRKVTVKOLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREM IEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENOTTOKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLON EKLYLYYLONGRDMYVDOELDINRLSDYDVDAIVPOSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQ ITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG GFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASARELO KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRST KEVLDATLIHQSITGLYETRIDLSQLGGDSGGSSGGSSGSETPGTSESATPESSGGSSG GSSTLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATS TPVSIKOYPMSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDL REVNKRVEDIHPTVPNPYNLLSGLPPSHOWYTVLDLKDAFFCLRLHPTSOPLFAFEWRD PEMGISGQLTWTRLPQGFKNSPTLFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSE LDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWLTEARKETVMGQP TPKTPROLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDOOKAYOEIKOAL LTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCL RMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDR VQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTDGSSL LQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKKLNVYTDSRYA FATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEA RGNRMADOAARKAAITETPDTSTLLIENSSPSGGSKRTADGSEFEPKKKRKV*

Figure 48. Amino acid sequence for PE2-VRQR.

VRQR mutations enable targeting of NGA noncanonical PAMs.

>PE2-MOKFRAER MKRTADGSEFESPKKKRKVDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRH SIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLOEIFSNEMAKVDDSFFHR LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALA HMIKFRGHFLIEGDLNPDNSDVDKLFIOLVOTYNOLFEENPINASGVDAKAILSARLSK SRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN LLAOIGDOYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHODLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNR EDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAOSFIERMTNFDKNLPNEKVLPKHSL LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREM IEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGRHKPENIVIEMARENOTTOKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLON EKLYLYYLONGRDMYVDOELDINRLSDYDVDAIVPOSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQ ITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG GFSKESILPKRNSDKLIARKKDWDPKKYGGFMOPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAKFLQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPRAFKYFDTTIARKEYRST KEVLDATLIHQSITGLYETRIDLSQLGGDSGGSSGGSSGSETPGTSESATPESSGGSSG GSSTLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATS TPVSIKOYPMSQEARLGIKPHIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDL REVNKRVEDIHPTVPNPYNLLSGLPPSHOWYTVLDLKDAFFCLRLHPTSOPLFAFEWRD PEMGISGQLTWTRLPQGFKNSPTLFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSE LDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWLTEARKETVMGQP TPKTPROLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDOOKAYOEIKOAL LTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCL RMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDR VQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTDGSSL LQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKKLNVYTDSRYA FATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEA RGNRMADOAARKAAITETPDTSTLLIENSSPSGGSKRTADGSEFEPKKKRKV*

Figure 49. Amino acid sequence for PE2-MQKFRAER.

These mutations enable targeting of NGC noncanonical PAMs.

>PE2-(I322V,S409I,E427G,R654L,R753G)-VRQR MKRTADGSEFESPKKKRKVDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRH SIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLOEIFSNEMAKVDDSFFHR LEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALA HMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSK SRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDN LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMVKRYDEHHQDLTLLK ALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNR EDLLRKQRTFDNGIIPHQIHLGELHAILRRQGDFYPFLKDNREKIEKILTFRIPYYVGP LARGNSRFAWMTRKSEETITPWNFEEVVDKGASAOSFIERMTNFDKNLPNEKVLPKHSL LYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREM IEERLKTYAHLFDDKVMKQLKRLRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFAN RNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK VMGGHKPENIVIEMARENOTTOKGOKNSRERMKRIEEGIKELGSOILKEHPVENTOLON EKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKS DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQ ITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAH DAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEOEIGKATAKYFFYSNIMN FFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTG GFSKESILPKRNSDKLIARKKDWDPKKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKE LLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASARELQ KGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRV ILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKQYRST KEVLDATLIHQSITGLYETRIDLSQLGGDSGGSSGGSSGSETPGTSESATPESSGGSSG GSSTLNIEDEYRLHETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATS TPVSIK0YPMS0EARLGIKPHI0RLLD0GILVPC0SPWNTPLLPVKKPGTNDYRPV0DL REVNKRVEDIHPTVPNPYNLLSGLPPSHQWYTVLDLKDAFFCLRLHPTSQPLFAFEWRD PEMGISGQLTWTRLPQGFKNSPTLFNEALHRDLADFRIQHPDLILLQYVDDLLLAATSE LDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGYLLKEGQRWLTEARKETVMGQP TPKTPROLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNWGPDOOKAYOEIKOAL LTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYLSKKLDPVAAGWPPCL RMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLDTDR VQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTDGSSL LQEGQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKKLNVYTDSRYA FATAHIHGEIYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEA RGNRMADOAARKAAITETPDTSTLLIENSSPSGGSKRTADGSEFEPKKKRKV*

Figure 50. Amino acid sequence for PE2-(I322V,S409I,E427G,R654L,R753G)-VRQR.

These additional mutations are theorized to increase residence time of Cas9 to increase editing rates.

>PE2-(I322V,S409I,E427G,R654L,R753G, R1114G)-MQKFRAER MKRTADGSEFESPKKKRKVDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNL IGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKK HERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPD NSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLI ALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR VNTEITKAPLSASMVKRYDEHHODLTLLKALVROOLPEKYKEIFFDOSKNGYAGYIDGGASOEEF YKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGIIPHQIHLGELHAILRRQGDFYPFLKDNR EKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNL PNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKED YFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMI EERLKTYAHLFDDKVMKQLKRLRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLI HDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGGHKPENIVIE MARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYLQNGRDMYVDQE LDINRLSDYDVDHIVPOSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWROLLNAKLI TORKFDNLTKAERGGLSELDKAGFIKROLVETROITKHVAQILDSRMNTKYDENDKLIREVKVIT LKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMI AKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVL SMPQVNIVKKTEVQTGGFSKESILPKGNSDKLIARKKDWDPKKYGGFMQPTVAYSVLVVAKVEKG KSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASA KFLQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPRAFKYFDTTIARKEYRSTKEVLDATL IHQSITGLYETRIDLSQLGGDSGGSSGGSSGSETPGTSESATPESSGGSSGGSSTLNIEDEYRLH ETSKEPDVSLGSTWLSDFPQAWAETGGMGLAVRQAPLIIPLKATSTPVSIKQYPMSQEARLGIKP HIQRLLDQGILVPCQSPWNTPLLPVKKPGTNDYRPVQDLREVNKRVEDIHPTVPNPYNLLSGLPP SHOWYTVLDLKDAFFCLRLHPTSOPLFAFEWRDPEMGISGOLTWTRLPOGFKNSPTLFNEALHRD LADFRIQHPDLILLQYVDDLLLAATSELDCQQGTRALLQTLGNLGYRASAKKAQICQKQVKYLGY LLKEGQRWLTEARKETVMGQPTPKTPRQLREFLGKAGFCRLFIPGFAEMAAPLYPLTKPGTLFNW GPDQQKAYQEIKQALLTAPALGLPDLTKPFELFVDEKQGYAKGVLTQKLGPWRRPVAYLSKKLDP VAAGWPPCLRMVAAIAVLTKDAGKLTMGQPLVILAPHAVEALVKQPPDRWLSNARMTHYQALLLD TDRVQFGPVVALNPATLLPLPEEGLQHNCLDILAEAHGTRPDLTDQPLPDADHTWYTDGSSLLQE GQRKAGAAVTTETEVIWAKALPAGTSAQRAELIALTQALKMAEGKKLNVYTDSRYAFATAHIHGE IYRRRGWLTSEGKEIKNKDEILALLKALFLPKRLSIIHCPGHQKGHSAEARGNRMADQAARKAAI TETPDTSTLLIENSSPSGGSKRTADGSEFEPKKKRKV*

Figure 51. Amino acid sequence for PE2-(I322V,S409I,E427G,R654L,R753G, R1114G)-

MQKFRAER.

These additional mutations are theorized to increase residence time of Cas9 to increase editing rates.

Supplementary Note 3. Protocol for cloning 3'-extended pegRNAs into mammalian U6 expression vectors by Golden Gate assembly.

Cloning overview

- Digest pU6-pegRNA-GG-Vector plasmid (component 1) with Bsal and isolate the plasmid fragment (~2.2kb) containing the origin of replication, U6 promoter, U6 poly-T termination sequence, and Amp^R gene
- 2. Order oligonucleotides for:
 - a. The desired spacer (target) sequence flanked by indicated overhangs (component 2)
 - Use the desired target's 5'-3' sequence for the top strand oligonucleotide (inclduing the 5' CACC and 3' GTTTT overhangs) and use the reverse complement of the target sequence for the bottom strand oligonucleotide (including the 5' CTCTAAAAC overhang). Spacer sequences must begin with a G nucleotide for efficient transcription initiation.
 - b. The desired pegRNA 3' extension template flanked by the indicated overhangs (component 3)

 Use the RNA sense sequence as the top strand oligonucleotide (featuring the 5' GTGC overhang) and use the reverse complement of this sequence for the bottom strand oligonucleotide (featuring the 5' AAAA overhang).
 - c. SpCas9 sgRNA scaffold sequence featuring compatible golden gate overhangs (component 4)
 - These oligonucleotides are not the complete scaffold sequence, as overhangs from the remaining components contribute several missing nucleotides
 - Note: these oligonucleotides <u>must be 5' phosphorylated</u>. Oligonucleotides can be 5' phosphorylated by the manufacturer or 5' phosphorylated enzymatically using T4 PNK (see protocol below)
- Anneal top and bottom oligonucleotides for components 2, 3, and 4 in separate annealing reactions according to the protocol below. If the SpCas9 sgRNA scaffold sequence (component 4) was not phosphorylated, phosphorylate with T4 PNK.
- 4. Golden Gate assembly of isolated 2.2-kb fragment from component 1 with components 2, 3, and 4
- Transform the ligation product into E. coli. The antibiotic resistance conferred by component 1 from the pU6pegRNA-GG-vector plasmid is ampicillin and carbenicillin resistance.
- 6. Isolate and sequence plasmids from the resulting clonal transformants

pegRNA cloning protocol

Step 1: Digest pU6-pegRNA-GG-Vector plasmid (component 1)

Combine the following in a PCR tube:

2000 ng pU6-pegRNA-GG-Vector (component 1)	ΧμL
Bsa1-HFv2 (NEB)	1.0 µL
10x Cutsmart Buffer	3.0 µL
H ₂ O	to 30.0 µL

Total reaction volume

30.0 µL

Incubate at 37 °C for 4-16 hours Isolate ~2.2-kb fragment from cut plasmid.

Figure 52. Supplementary Note 3 from Anzalone et al. 2019.

Protocol adapted in this work for cloning pegRNAs.

Steps 2 and 3: Order and anneal oligonucleotide parts (components 2, 3, and 4)

Materials

Annealing buffer: H₂O supplemented with 10 mM Tris-Cl pH 8.5 and 50 mM NaCl Complementary oligonucleotide pairs

Protocol Combine the following in a PCR tube:

Top oligonucleotide, 100 μM	1.0 μL
Bottom oligonucleotide, 100 μM	1.0 μL
Annealing buffer (components 2, 3, and 4)	23.0 μL
Total reaction volume	25.0 µL

In thermocycler, heat at 95 °C for 3 minutes, then cool gradually (0.1 °C/s) to 22 °C

Dilute annealed oligonucleotides 1:4 by adding 75 μ L H₂O. The final concentration of each oligonucleotide will be 1 μ M after this dilution. Do not dilute the sgRNA scaffold (component 4) if phosphorylating by PNK in step 2.5.

Step 2.b.ii.: sgRNA scaffold phosphorylation (unnecessary if oligonucleotides were purchased phosphorylated)

6.25 µL

Protocol Combine the following in a PCR tube:	
4 μM oligonucleotide duplex from step 1 10x T4 DNA ligase buffer (NEB) T4 PNK (NEB)	

10x T4 DNA ligase buffer (NEB)	2.50 μL
T4 PNK (NEB)	0.50 μL
H ₂ O	15.75 μL
Total reaction volume	20.0 µL

In thermocycler, incubate at 37 °C for 60 minutes

Following this phosphorylation, annealed scaffold oligonucleotides are now at a concentration of 1 µM. Proceed to step 3.

Figure 53. Supplementary Note 3 (cont.) from Anzalone et al. 2019.

Protocol adapted in this work for cloning pegRNAs.

Figure 54. Plasmid map for pU6-pegRNA-GG-Acceptor vector.

Used for cloning mammalian expression of pegRNAs.

Figure 55. pU6-spdummy vector.

Used for cloning mammalian expression of nickRNAs.

Figure 56. Figure 1 from Cheng et al., 2018.

Depicts the structure and cleavage analysis gels of various DNA duplexes by TREX2 action.

References

- Takeuchi, Ryo et al. "Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization." *Proceedings of the National Academy of Sciences of the United States of America* vol. 111,11 (2014): 4061-6. doi:10.1073/pnas.1321030111
- Carroll, Dana. "Genome engineering with zinc-finger nucleases." *Genetics* vol. 188,4 (2011): 773-82. doi:10.1534/genetics.111.131433
- Wang, Luyao et al. "In Vivo Delivery Systems for Therapeutic Genome Editing." International journal of molecular sciences vol. 17,5 626. 27 Apr. 2016, doi:10.3390/ijms17050626
- Adli, M. The CRISPR tool kit for genome editing and beyond. *Nat Commun* 9, 1911 (2018). https://doi.org/10.1038/s41467-018-04252-2
- Menon, Vijay, and Lawrence Povirk. "Involvement of p53 in the repair of DNA double strand breaks: multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ)." *Sub-cellular biochemistry* vol. 85 (2014): 321-36. doi:10.1007/978-94-017-9211-0_17
- Brunet, Erika, and Maria Jasin. "Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding the Repair Mechanisms That Give Rise to Translocations." *Advances in experimental medicine and biology* vol. 1044 (2018): 15-25. doi:10.1007/978-981-13-0593-1_2
- Gaudelli, N., Komor, A., Rees, H. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017). https://doi.org/10.1038/nature24644
- Komor, A., Kim, Y., Packer, M. *et al.* Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. *Nature* 533, 420–424 (2016). https://doi.org/10.1038/nature17946
- Anzalone, A.V., Randolph, P.B., Davis, J.R. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). https://doi.org/10.1038/s41586-019-1711-4
- Stoller, James K., Aboussouan, Loutfi S.. "A Review of α1-Antitrypsin Deficiency." *American Journal of Respiratory and Critical Care Medicine* (2011): https://doi.org/10.1164/rccm.201108-1428CI
- Brode, Sarah K., Ling, Simon C., Chapman, Kenneth R.. "Alpha-1 antitrypsin deficiency: a commonly overlooked cause of lung disease" *CMAJ* 184 (12) 1365-1371 (2012). DOI: https://doi.org/10.1503/cmaj.111749

- Shen, Shen., Sanchez, Minerva E., Blomenkamp, Keith., Corcoran, Erik M., Marco, Eugenio., Yudkoff, Clifford J., Jiang, Haiyan., Teckman, Jeffrey H., Bumcrot, David., Albright, Charles F.. "Amelioration of Alpha-1 Antitrypsin Deficiency Diseases with Genome Editing in Transgenic Mice" Human Gene Therapy (2018) 29:8, 861-873 https://doi.org/10.1089/hum.2017.227
- Zuo, Erwei., Sun, Yidi., Wei, Wu., Yuan, Tanglong., Ying, Wenqin., Sun, Hao., Yuan, Liyun., Steinmetz, Lars M., Li, Yixue., Yang, Hui. "Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos" *Science*. (2019) : 289-292 DOI: 10.1126/science.aav9973
- Bartos, Jeremy D et al. "Catalysis of strand annealing by replication protein A derives from its strand melting properties." *The Journal of biological chemistry* vol. 283,31 (2008): 21758-68. doi:10.1074/jbc.M800856200
- Finger, L. David et al. "The wonders of flap endonucleases: structure, function, mechanism and regulation." *Sub-cellular biochemistry* vol. 62 (2012): 301-26. doi:10.1007/978-94-007-4572-8_16
- Dana, Hassan et al. "Molecular Mechanisms and Biological Functions of siRNA." International journal of biomedical science : IJBS vol. 13,2 (2017): 48-57.
- Sharma, Sonia., Rao, Anjana. "RNAi screening: tips and techniques." *Nature immunology* vol. 10,8 (2009): 799-804. doi:10.1038/ni0809-799
- Martin, S., Chiramel, A.I., Schmidt, M.L. et al. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. *Genome Med* 10, 58 (2018). https://doi.org/10.1186/s13073-018-0570-1
- Sun, Jing et al. "Genome-wide siRNA screen of genes regulating the LPS-induced TNF-α response in human macrophages." *Scientific data* vol. 4 170007. 1 Mar. 2017, doi:10.1038/sdata.2017.7
- Zhao N, Wang G, Das AT, Berkhout B. "Combinatorial CRISPR-Cas9 and RNA interference attack on HIV-1 DNA and RNA can lead to cross-resistance." *Antimicrob Agents Chemother*. 2017 61:e01486-17. https://doi.org/10.1128/AAC.01486-17.
- Schene, I.F., Joore, I.P., Oka, R. et al. Prime editing for functional repair in patientderived disease models. *Nat Commun* 11, 5352 (2020). https://doi.org/10.1038/s41467-020-19136-7
- Liu, P., Liang, SQ., Zheng, C. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. *Nat Commun* 12, 2121 (2021). https://doi.org/10.1038/s41467-021-22295-w

- Habib, O., Habib, G., Hwang, GH., Bae, S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. *bioRxiv* 439533, (2021). https://doi.org/10.1101/2021.04.12.439533
- Miller, Shannon M et al. "Continuous evolution of SpCas9 variants compatible with non-G PAMs." *Nature biotechnology* vol. 38,4 (2020): 471-481. doi:10.1038/s41587-020-0412-8
- Geu-Flores, Fernando et al. "USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products." *Nucleic acids research* vol. 35,7 (2007): e55. doi:10.1093/nar/gkm106
- Komor, Alexis C et al. "Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity." *Science advances* vol. 3,8 eaao4774. 30 Aug. 2017, doi:10.1126/sciadv.aao4774
- Nami, Fatemeharefeh et al. "Strategies for In Vivo Genome Editing in Nondividing Cells." *Trends in biotechnology* vol. 36,8 (2018): 770-786. doi:10.1016/j.tibtech.2018.03.004
- Chu, S Haihua et al. "Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation." The CRISPR journal vol. 4,2 (2021): 169-177. doi:10.1089/crispr.2020.0144
- Mazur, D J, and F W Perrino. "Excision of 3' termini by the Trex1 and TREX2 3'-->5' exonucleases. Characterization of the recombinant proteins." *The Journal of biological chemistry* vol. 276,20 (2001): 17022-9. doi:10.1074/jbc.M100623200
- Chari, Raj et al. "Unraveling CRISPR-Cas9 genome engineering parameters via a libraryon-library approach." *Nature methods* vol. 12,9 (2015): 823-6. doi:10.1038/nmeth.3473
- Bothmer, Anne et al. "Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus." *Nature communications* vol. 8 13905. 9 Jan. 2017, doi:10.1038/ncomms13905
- Cheng, Hiu-Lo, et al. "Structural insights into the duplex DNA processing of TREX2". *Nucleic Acids Research*, Volume 46, Issue 22, 14 December 2018, Pages 12166–12176, https://doi.org/10.1093/nar/gky970
- Wang, Chuan-Jen, et al. "Cellular expression and localization of DNA exonucleases, Trex, and their response to chemotherapeutic compounds in different tumor cell lines". Proc Amer Assoc Cancer Res, Volume 46, 2005. https://cancerres.aacrjournals.org/content/65/9_Supplement/418.5