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SUMMARY

In recent years, the applications of Machine Learning (ML) in the health care delivery setting have grown
to become both abundant and compelling. Regulators have taken notice of these developments and the U.S.
Food and Drug Administration (FDA) has been engaging actively in thinking about how best to facilitate
safe and effective use. Although the scope of its oversight for software-driven products is limited, if FDA
takes the lead in promoting and facilitating appropriate applications of causal inference as a part of ML
development, that leadership is likely to have implications well beyond regulated products.
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In recent years, the applications of machine learning (ML) in the health care delivery setting have grown
to become both abundant and compelling. Tools with applications ranging from the diagnosis of diabetic
retinopathy (FDA, 2018a; Gulshan and others, 2016) to software that generates an alert for urgent pneu-
mothorax findings in chest X-rays regularly make headlines, while multiple areas of medicine ranging
from psychiatry to cardiology have seen the debut and use of new ML-driven tools with potential to
improve patient care and clinician decision-making (Bzdok and Meyer-Lindenberg, 2018; Cohen, 2019;
Johnson and others, 2018).

In the United States, regulators have taken notice of these developments and the U.S. Food and Drug
Administration (FDA) has been engaging actively in thinking about how best to facilitate safe and effective
use. The FDA regulates to ensure the safety and efficacy of many health care products, including medical
devices that incorporate software and the subset of those devices with ML capabilities.

Although it may not be immediately apparent that ML-driven tools fall under the FDA’s purview, the
definition of a “medical device” is broad and includes any “instrument, apparatus, implement, machine,
contrivance, implant, in vitro reagent, or other similar or related article which is intended for use in the
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diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease,
in man or other animals” (21 U.S. Code § 321). The FDA’s definition thus includes not only physical
devices with ML software components (or software resulting from ML development) embedded in the
devices—known as software in a medical device, or SIMD—but also stand-alone software itself, known
as software as a medical device, or SaMD (International Medical Device Regulators Forum, 2014). Such
software-driven products present unique challenges—for example, cybersecurity and the management
of data collection and privacy—as well as unique opportunities for improving patient care (Gordon and
Stern, 2019).

Notably, FDA does not actively regulate two significant types of ML systems: certain types of clinical
decision support software (CDS) and laboratory-developed tests. CDS helps providers make care decisions
by, for instance, providing suggested drug dosages or alerts about drug interactions. Under § 3060 of the
2016 21st Century Cures Act, certain CDS that gives providers the opportunity to review the rationale
behind its recommendations is exempt from the definition of a medical device; FDA typically cannot
regulate such software (21 U.S. Code § 360j). Additionally, some ML systems are “laboratory-developed
tests” that are developed and used within a single health care setting, such as Hopkin’s TREWS and
Duke’s SepsisWatch system for monitoring and predicting sepsis (Henry and others, 2015; Futoma and
others, 2017). While FDA has the authority to regulate such tests, it has long held back from exercising
its authority over them (FDA, 2018b).

FDA regulators evaluating SaMD consider manufacturer-claimed functionality when assessing its risk
profile in the regulatory review process. Under an international framework developed with the assistance
of FDA regulators, SaMD is grouped into risk categories based on two features: how serious the health
condition is (non-serious, serious, or critical), and how significant the SaMD’s output is to the health care
decision (i.e., whether it informs clinical management, drives clinical management, or treats or diagnoses
directly) (FDA, 2017). FDA has emphasized the role of clinical and analytical validation in ensuring that
SaMD performs safely and effectively.

FDA has also thought proactively about the special considerations raised by ML in SaMD products.
In April 2019, FDA released a discussion paper on a “Proposed Regulatory Framework for Modifications
to Artificial Intelligence/Machine Learning (AI/ML)-based Software as a Medical Device.” Some critics
had raised early concerns that FDA would follow rigid premarket approval procedures that would slow
the ability of ML products to improve with the availability of new data and new models (Price II, 2017).
However, under the 2019 proposal, FDA put forth a framework that would allow ML product developers
to establish procedures by which ML products can be updated more flexibly and with fewer regulatory
hurdles, including with the use of real-world data and real-world evidence (FDA, 2019a). Further, FDA
officials have spoken publicly about the importance of a “reimagined approach” to regulating algorithms
(Patel, 2019).

Many substantial challenges remain in the development of safe and effective ML products. The gen-
eralizability of ML identifications, predictions, and recommendations remains questionable, particularly
in situations where ML fails to demonstrate causality—or is simply not designed to do so, as is the case
for many diagnostic tools, where algorithm developers only asking the ML to discover predictive rather
than causal relationships. Subbaswamy and Saria (2020) highlight aspects of these generalizability chal-
lenges further, discuss the statistical foundations for why these concerns arise, and present some potential
remedies. Data curation in individual health care settings is frequently ad hoc and context specific, which
raises concerns for applying algorithms outside these settings (National Academy of Medicine, 2017).
Transfer learning—defined as “the improvement of learning in a new task through the transfer of knowl-
edge from a related task that has already been learned” (Torrey and Shavlik, 2010)—also remains difficult
(Wiens and others, 2014). Biases present in training datasets can affect the resulting algorithms, aris-
ing from bias in the provision of health care itself or non-representativeness of the training environment
in terms of patient populations or care-provision resources (Robinson and others, 2020; Price 11, 2019;
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Williams and Wyatt, 2015). Causal estimation techniques can help ameliorate some of these challenges
by mitigating false attribution, though such techniques cannot fully address them.

In this complex environment, the role of regulatory leadership in ensuring safe and effective ML in health
care tools is particularly important. One of the key ways in which regulators support the development of
new regulated medical products, such as drugs, is through the qualification of biomarkers (FDA, 2019b).
According to the Biomarkers, EndpointS and other Tools (BEST) glossary, compiled by the FDA and
National Institutes of Health, a biomarker is “a defined characteristic that is measured as an indicator of
normal biological processes, pathogenic processes, or responses to an exposure or intervention, including
therapeutic interventions” (FDA-NIH Biomarker Working Group, 2016). Even in the absence of formal
regulatory qualification (which has traditionally been the domain of drug, rather than device regulation),
biomarkers require validation, which has been defined as the process of conducting “formal assessments
that show that measuring the biomarker is a reliable indicator of a patient’s clinical status or outcome”
(Hey and others, 2019).

For software-driven products, researchers have begun to rely on digital biomarkers. These are measures
that are especially compelling in that they “can support continuous measurements outside the physical
confines of the clinical environment” (Coravos and others, 2019). Many digital biomarkers will be familiar
to patients and clinicians, as they represent digital and/or remotely collectable versions of biomarkers that
have historically been collected in the absence of software, such as continuous blood glucose meters with
data transmission capabilities. Other digital biomarkers represent algorithms that quantify entirely novel
outcomes—for example, voice analysis software that can predict the progression of neurological diseases
and smartphone sensing of mobility to predict depression.

While biomarker validation is important everywhere in the clinical research endeavor, and while reg-
ulators have historically played a key role in formal biomarker qualification, causal inference may be
especially important in the establishment and validation of novel digital biomarkers. For example, an ML
algorithm that can predict which patients are likely to benefit from a therapy may not be relevant in settings
that differ meaningfully from those in which the algorithm was trained unless causal inference tools were
used in development (Shalit, 2020). In some cases, this will require more algorithmic transparency than
certain ML techniques afford, as researchers push to understand the factors that drive ML algorithms to
make specific diagnoses or treatment recommendations.

Notably, the development of digital biomarkers shares many of the more general challenges of
biomarker development with respect to incentivizing parties in the health care system to innovate and
participate (Stern and others, 2018). For example, although they may benefit from validated biomarkers,
health care providers are largely compensated for—and therefore focused on—the delivery of health care
services rather than R&D activities. And like other exercises in biomarker validation, the validation of
novel ML algorithms can have long-lasting and far-reaching implications for future product development.
As such, the thoughtful application of tools for causal inference in ML should be a priority for both the
developers of novel digital biomarkers and the regulars who may rely on such biomarkers in evaluating the
safety and effectiveness of future products. Fortunately, as other articles in this collection highlight (Rose
and Rizopolous, 2020), the statistician’s toolkit has been growing rapidly and several rigorous techniques
have been developed for causal inference in ML in the biomedical setting.

If FDA takes the lead in promoting and facilitating appropriate applications of causal inference as a
part of ML development, that leadership is likely to have implications well beyond the scope of regulated
products. For example, although many tools that apply ML in health may not go through an FDA regula-
tory approval or clearance process, including laboratory-developed tests and rationale-providing clinical
decision support software as described above, these products must still be safe and effective in order to
create value for patients and clinicians. Therefore, efforts by regulators to validate digital biomarkers
and other ML algorithms using the full statistical toolbox of causal inference techniques (Diaz, 2020)
may help further the safety and efficacy of non-regulated products by establishing standards in a nascent
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industry. Thus, the thoughtful development of ML-based medical devices may have positive spillovers
that encourage quality and establish causal inference techniques in health care ML more broadly.

Digital biomarkers have the potential to accelerate efforts to create, validate, and improve ML products
in health care, whether marketed medical devices or software developed and used solely in-house by health
care delivery organizations. Recent discussions suggest that FDA leaders are engaging thoughtfully with
open questions about the applications of ML to regulated products as well as discussing the importance
of standardized language and the establishment of “good machine learning practices” (Joseph, 2019). All
stakeholders, from FDA, to developers, to health systems, should encourage careful use of causal inference
tools in developing those digital biomarkers to ensure that ML algorithms are safe and effective.
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