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Abstract 

If I have seen further, it is by standing on the shoulders of Giants. – Sir Isaac Newton.  

 

Graph Frameworks and Databases are critical components of modern software. 

The need to analyze massive graph datasets have spurred the development of Graph 

Systems. Graph Frameworks and Libraries with tuned Graph data structures are 

continuously being developed to handle new workloads and data patterns. This presents a 

need for a Graph system that has knowledge of its design space and is capable of 

combining fundamental design constructs to generate optimal graph data structures for a 

given hardware, data pattern and workload. We propose leveraging non-graph systems 

with these capabilities and with an overlap in its design space with Graph systems, to 

bring this intelligence to Graph Systems. As a first step in this process, we have 

implemented a Key-Value Graph Generator, that demonstrates the use of key-value 

approach in designing Adjacency List and Compressed Sparse Row (CSR). Our 

hypothesis is that if we can successfully model Graph data structures using key-value 

approach then we can leverage learned key-value system and create an interactive and 

automatic Graph system.  
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Chapter I. 

 Introduction 

Graph data structures excel in modeling interactions and relationships making 

them a popular choice in most modern software. Social media Systems, Bioinformatics 

Systems, Recommendation Systems, Fraud Detection Systems, Network Systems are 

most naturally designed and modelled as a Graph. Many of the well-known and 

established data structures have evolved after many years of research, vast commercial 

adoption and iterative development. 

Growth in Data, Diverse Workloads and Specialized Solutions: Graph data 

structures are critical components of Graph Databases and Graph Frameworks. Growth in 

data, wide adoption and varied use-cases resulted in the development of specialized 

databases and frameworks, which differ both in their programming abstractions as well as 

underlying implementations.  

Development Effort and Time: Implementing specialized solutions for each use-

case requires huge development effort and time. Even these specialized systems need to 

be tuned regularly to meet the requirements of changing data patterns and workloads in 

order to maintain the performance of these systems. 
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Non-Graph Systems - Emergence of Learned Models and Automatic Design: 

To handle the growth of data, diverse workloads and hardware, we are seeing increased 

research in the use of machines learning to build intelligent systems that can automate 

some of this design process. Systems with understanding of design space and using 

machine learning to drive the design of data structure, algorithms, access patterns are 

emerging in the areas of key-value data stores (Idreos et al 2018), databases indexes 

(Kraska et al 2018) and database systems (Kraska et al 2019).  
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1.1 Towards Learned Graph Models and Interactive System Design  

 

 

Figure 1: Leveraging Learned Key-Value Systems to create Learned Graph Systems 
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Mapping the Design Space: Graph systems are typically more complex and 

mapping a complete design space ground up takes much longer and is a more involved 

process. If we could leverage a mapped design system that has an overlap in its design 

space with Graph Systems, we could rely on that system to map the overlapped design 

space. The design space specific to Graph systems could be mapped separately. We 

propose leveraging mapped Key-Value systems because of the overlap seen in the design 

space. For example, Arrays are used in the default implementation of CSR and 

Adjacency List, and they also represent a fundamental design primitive for key-value 

systems. 

 

Cost Estimation: An interactive system allows users to vary inputs to understand 

how these changes impact performance of the data structure. This requires us to be able 

to quickly estimate the cost of using a data structure for a given input and workload, 

without needing to fully create the data structure. We propose starting with a set of rules 

derived from benchmarking to estimate the cost of workload for a given set of inputs. As 

the system matures and rules becomes more complete, we can derive a mathematical 

function which can be used for cost estimation. 
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1.2 Leverage Key-Value Systems 

 

 

Graph as Key-Value Pair:  In order to enable Graph systems to use key-value 

system we need to be able to express Graph data structures via key-value data structures, 

while still keeping the properties of the original data structure in place. For example, the 

basic implementation of an Adjacency List uses Array of Arrays (or List) for modeling 

Vertices and Edges of the Graph. If we think of the Vertices of the Graph as Keys, and its 

Edges as values, we can then use any of the key-value data structures such as – Map, 

Tree, LSM - to represent a Graph. We use this analogy to model Graph data structures 

ensuring that the core properties of the original data structure are maintained. 

 

Goals: We present Key-Value Graph Generator which models this concept of 

Graph as a key-value pair. Our goals are  

1. To demonstrate the use of common key-value data structures – Array, Map and 

BplusTree, in building Adjacency List and Compressed Spare Row (CSR)  

2. Benchmark these Data Structures to determine performance impact and memory 

usage and generate rules for cost estimation. 
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1.3 Prior Work 

 

This thesis draws inspiration from research in areas of Graph Databases and 

Frameworks, Learned and Self-designing systems, Graph models and Graph data 

structures. 

Customizable Databases: Research in the area of customizable databases 

resonates with the most fundamental idea of this thesis, which is to provide optimal graph 

data structures based for a given input.  (Batory et al 1992, Batoory et al 1988, Chaudhuri 

et al 2000) presents the idea of building customizable database management systems with 

narrow interfaces to introduce modularity, and to address the issue of rising complexity in 

building database management systems ground up for each use case. 

Learned and Self-Designing Systems: This thesis also learns a great deal from 

research of Learned Systems. (Idreos et al 2018, Idreos et al 2019, Idreos et al 2019) 

discuss the idea of design continuum and self-designing key-value data stores, that are 

optimized for specific workloads. Self-tuning database management (Weikum et al 2002, 

Chaudhuri et al 2007, Idreos et al 2007, Pavlo et al 2017), Learned Databases indexes 

(Kraska et al 2018) and Learned database systems (Kraska et al 2019), all discuss how 

databases can be benefit from using the learned model.  

Graph Databases and Frameworks: Pregel (Malewicz et al, 2010), Galois 

(Pingali et al 2011), Cassovary (Gupta et al 2013), Graphmat (Sundaram et al 2015), 

Helios (Davoudian, 2019) represent some of the state-of-art Graph Processing system that 

handle very large Graph datasets efficiently. These frameworks provide different models 

which were compared (Satish et al 2014) to understand how they scale. Graph Databases 
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research and survey (Güting et al 1994, Angles et al 2008, Dominguez-Sal et al 2010, 

Angles 2012, Hong et al 2012, Miller et al 2013, Mattson et al 2013, Ghrab et al 2016, 

Rawat at al 2017, Angles 2018, Besta et al 2019) has a strong connection with this thesis 

as it brings together various data structures that have been used in building graph 

database over the years. 

Graph Modeling: In this thesis we try to model graph as key-value pair therefore, 

any research that attempts to model Graph differently is an important resource for this 

thesis. CombinatorialBLAS (Buluç et al 2011), GraphBLAS (Mattson et al 2013, Bader 

et al, 2014), introduces a new way to model Graph via common building blocks in linear 

algebra. LAGraph (Mattson et al, 2019), is a position paper to create high-level Graph 

Algorithms on top of GraphBLAS.  

Graph Data Structures: Graph Data structure research (Saad 1994, Bell et al 

2008, Bell et al 2009, Valiyev 2017) and new developments in this space also strongly 

influence this thesis. (Wheatman et al 2018), introduced a new graph storage layout - 

Packed Compressed Sparse Row, a Dynamic data structure for representing graph based 

on packed memory array. It allows for fast inserts, while maintaining good cache for fast 

searches and traversals. (Macko 2015) presents mutable Compressed Sparse Row to 

enable using Compressed Sparse Row for write operations. 
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Chapter II.  

Design of Key-Value Graph Generator 

 

Figure 2: Key-Value Graph Generator. 

 

The components of the Key-Value Graph Generator are captured in Figure 2 

(from left to right):  

• Input Processor: Input Processor validates user input to ensure it can support the 

requested graph layout, workload and parse the file format.   

• Key-Value Graph Containers: Provides the abstraction for creating Graph using 

different key-value layouts. We discuss supported containers in the following 

sections. 
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find operation for all layout of Adjacency List and CSR data structures and 

provide support for both Random probe and Range search. Write operations 

update the Graph in one of the following ways (a) Add Edges to an existing node 

(b) Add new Nodes and edges. Write operations are supported by all data layout 

of Adjacency List and all CSR layouts except Array CSR layout. The Array CSR 

layout stores the edges and vertices in Array and in order. An update to one vertex 

can result in update to all vertices and edges of the Graph, making the operation 

unscalable. 

 

 

2.1 Key-Value Graph Containers 

 

Graph Container models a Graph storage unit which determines how its vertices 

and edges are laid out. It defines an API to enable seamless interactions across various 

concrete implementations. Below we describe how Adjacency List and CSR data 

structures are modeled using three key-value layouts - Array, Map and BplusTree.  
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2.2 Adjacency List Containers  

 

An Adjacency list representation for a graph associates each vertex in the graph 

with its list of edges. An adjacency list is usually implemented as a linked list of arrays or 

array of arrays. Below we describe how we model Adjacency List using three different 

key-value containers while maintaining the key property of Adjacency List Vertex 

associated to its edges.  

 

ArrayALContainer: Using Array Container to model the vertices and edges is the default 

Adjacency List implementation. Figure 3 shows this implementation for the example 

graph. 

             

Figure 3: Graph (left) represented using Adjacency List Array Container (right). 

The default implementation of Adjacency List uses Array to store its vertices and edges. 
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HashMapALContainer:  When using Map Containers, vertices become keys of the Map 

and its list of edges the Map values. A key (vertex) with no edges has an empty list as its 

value. Figure 4 shows this implementation for the example graph.  

 

Figure 4: Graph (left) represented using Adjacency List Map Container (right). 

Map layout for Adjacency List – Keeping vertex associated to its edges by using vertex as 
keys and its list of edges as values. 
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BplusTreeALContainer:  To represent an Adjacency List using a BplusTree, we store the 

vertex in index and leaf nodes, and the list of edges as the data of the leaf nodes. A vertex 

with no edges points it data to an empty list. Figure 5 shows this implementation for the 

example graph. 

       

Figure 5: Graph (left) represented using Adjacency List BplusTree Container (right). 

BplusTree layout for Adjacency List –vertex association with its edges is maintained 
through the Leaf Node’s value and data. Navigation to Leaf Node is through Index 
Nodes. 
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2.3 CSR Containers  

 

A CSR representation for a graph uses at least 2 arrays to stores it vertices and 

edges. Each vertex has the start index, which points to the index in the edges array where 

its edges start. Below we describe how we model CSR using three different key-value 

containers while maintaining the key property of CSR of using different data structure to 

hold vertices and edges, and the Vertex has information of where in the edges structure 

its edges live.  

 

ArrayCSRContainer: This is the default implementation of CSR, and it uses two Arrays 

to model the vertices and edges of the Graph. Figure 6 shows this implementation for the 

example graph. 

           

Figure 6: Graph (left) represented using CSR Array Container (right). 

The default implementation of CSR uses at least 2 Array to store its vertices and edges. 
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HashMapCSRContainer: The Map based implementation of CSR uses two maps - one for 

Vertex and one for list of Edges. The vertex map uses vertex as key, and a String 

consisting of - VertexId and the first EdgeId - as the value. This value of the vertex map 

forms the key of the EdgeMap. The values of the edges map are the list of edges 

themselves. Figure 6 shows this implementation for the example graph. 

        

Figure 7: Graph (left) representation using CSR Map Container (right). 

Maintains properties of CSR – by using different data structures for vertex and edges. 
The values of vertex map are the keys of the edge map and the list of edges are the values 
of edge map. 
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BplusTreeCSRContainer: To model CSR using BplusTree, we store the vertex in the 

Index and the Leaf nodes. The edges are in a separate array and the leaf nodes data is the 

index in the edges array that has the edges for that vertex. Figure 8 shows this 

implementation for the example graph. 

       

Figure 8: Graph (left) representation using CSR BplusTree Container (right). 

Maintaining properties of CSR – by using different data structures for vertex and edges. 
Index and Leaf nodes of the BplusTree stores the vertex. Data of Leaf nodes is index of 
edges array that stores the edges for that leaf node (i.e., vertex) 

. 
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Chapter III. 

  Cost Estimation by Benchmarking 

We benchmark data structures to derive a set of rules which will allow us to infer 

the cost of performance and memory used by a data structure for a given workload, data 

size, hardware, programming runtime. As these rules grow in complexity and as we 

continue to benchmark across more diverse set of data, we can use these to train models 

and build a Learned Cost model which can be expressed through a mathematical 

function.  

Scala: We chose Scala, a language which bring together the concept of object 

oriented and functional program, to code Key-Value Graph Generator. Ease of 

development, a strongly typed system and a build system that can support multiple sub-

projects using the same build file were some of the key drivers for this choice. 

 

Benchmarking Code running on JVM:  Scala relies on the JVM (Java virtual 

machine) runtime. Benchmarking JVM code using the Stopwatch benchmarking 

approach may not produce accurate results because of the Just-In-Time (JIT) 

optimization that can be done by the virtual machine. The many optimizations done by 

the JVM makes it difficult to ensure that what we are benchmarking is actually what we 

expect to benchmark. 
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3.1 Performance benchmarks – Java Microbenchmark Harness (JMH) 

 

JMH (OpenJDK/JMH) is Java harness library for writing benchmarks on the JVM 

developed as part of the OpenJDK project. JMH provides a foundation for writing and 

running benchmarks and ensuring results are not diluted due to virtual machine 

optimizations.  

 

SBT-JMH: In this project JMH library is made available via sbt-jmh, a sbt plugin 

which brings the jmh tool more natively to the scala ecosystem. All the JMH benchmarks 

are recorded with the following setup 

• 2 warm up iterations. 

• 3 iterations  

• 1 fork.  

• 1 thread  

•  max jvm heap size - 12 gb  

3.2 Memory Footprint – Java Object Layout (JOL) 

 

 JOL (OpenJDK/JOL) is a Java library to analyze object layout on JVMs and is 

developed as part of the OpenJDK project. It provides a more reliable way of measuring 

the footprint of java objects on the JVM, when compared to taking heap dumps or using 

other libraries.  
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3.3 Benchmarking Engine 

 

Figure 9: Benchmark Engine.  

The dotted lines show how components of Benchmarking engine leverages different 
components of Key-Value Graph Generator to benchmark a workload. 

The Benchmarking Engine (as shown in Figure 9) is responsible for the logic 

needed to interact with the benchmarking libraries, generate test data and to deliver these 

recorded benchmarks. It provides a consistent API for benchmarking different workloads 

across different layout of Adjacency List and CSR. The engine depends on the Graph 

Generator for file processing, graph creation and operations required to run the workload. 

We benchmark the Key-Value Graph Generator using both Real-world Graphs and 
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(Stanford Large Network Dataset Collection). For the Synthetic Graphs the Engine has a 

built in Graph Generator. 

 

Decoupling and Better Abstractions: In order to provide better abstractions and 

interaction with these benchmarking libraries, we have modeled Benchmarking Engine 

and Key-Value Graph Generator as sub-projects in the scala build system. This set up 

also allows us to manage and use Key-Value Graph Generator on its own. The 

benchmark engine also benefits from this decoupling as a change to any internal 

workings and implementation in Graph Generator doesn’t require a change in the 

benchmark engine.  

 

Synthetic Graph Generator: The Benchmarking Engine has a 

RandomGraphGenerator which is used to generate graphs with variable number of nodes 

and edges. It is based on Robert Floyd's sampling algorithm to generate edges in the 

graph uniformly at random 
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Figure 10: Random Graph Generator. 
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Chapter IV. 

 Experimental Setup 

All Key-Value Graph layouts are evaluated for performance and space usage. 

Load, Find and Write workloads are triggered to measure performance of the Graph 

operations with different layouts. For Write operations, we do not include CSR Array 

layout, due to its inability to scale for write operations. We also exclude Real-World 

graphs from the write operations. 

We run our experiments both on generated graphs and real-world graphs. The 

goal is to measure  

• Scalability - How different graph layouts scale for different Graphs sizes (nodes) 

and Graph connectivity (edges). 

• Suitability – Determine which layouts is better suited for a given workload.  

4.1 System 

 

All experiments are run on mac with 4 cores, 2.3GHz clock speed and 16GB of 

RAM. It has 32K of L1 cache, 256K of L2 cache, and 6000K of L3 cache. All code – 

Graph Generator and Benchmarking - are written in scala (2.12) and compiled and run 

using sbt (1.4.4).  
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4.2 Test Data Files. 

 

In order to study how different layouts scaled for different sizes of nodes and 

edges, we generated graphs starting with 1K nodes, increasing the nodes by factor of 10 

until we got to 10mm nodes. Each of these graphs have edges starting at 1K, increasing 

by a factor of 10 until we reach 10mm edges. This allows us to test graphs with low to 

high connectivity for varying graphs sizes. In total we generated 25 different Graphs 

(Table 1) to capture varying sizes and connectivity. We also use 3 Real-world graphs 

(Stanford Large Network Dataset Collection) listed below (Table 2).  

We ran 7 different kinds of experiments against these generated graphs and Real-

world graphs. Six of these were to measure performance of different graph operations, 

and the last one was to measure the memory usage of the layouts. 

Nodes Edges FileName 
1K 1K generated1000_1000.txt 
1K 10K generated1000_10000.txt 
1K 100K generated1000_100000.txt 
1K 1MM generated1000_1000000.txt 
1K 10MM generated1000_10000000.txt 
10K 1K generated10000_1000.txt 
10K 10K generated10000_10000.txt 
10K 100K generated10000_100000.txt 
10K 1MM generated10000_1000000.txt 
10K 10MM generated10000_10000000.txt 
100K 1K generated100000_1000.txt 
100K 10K generated100000_10000.txt 
100K 100K generated100000_100000.txt 
100K 1MM generated100000_1000000.txt 
100K 10MM generated100000_10000000.txt 
1MM 1K generated1000000_1000.txt 
1MM 10K generated1000000_10000.txt 
1MM 100K generated1000000_100000.txt 
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Table 1: Generated Graphs used in Benchmarking 

 

 

Nodes Edges FileName 
1,134,890 2,987,624 com-youtube.ungraph.txt 
36,692 367,662 email-Enron.txt 
403,394 3,387,388 amazon0601.txt 
27,770 352,807 cit-HepTh.txt 

Table 2: Real-world Graphs used in Benchmarking 

 

4.3 Memory Footprint 

 

We profile the memory used by different graph layouts, in order to understand 

how each of these scale with increasing number of Nodes and Edges in a Graph. We used 

28 files, 25 of these contain generated graphs and 3 of these are the real-world graphs. 

Each file generates 6 graphs (using 6 layouts) and memory usage in bytes were recorded.  

 

 

1MM 1MM generated1000000_1000000.txt 
1MM 10MM generated1000000_10000000.txt 
10MM 1K generated10000000_1000.txt 
10MM 10K generated10000000_10000.txt 
10MM 100K generated10000000_100000.txt 
10MM 1MM generated10000000_1000000.txt 
10MM 10MM generated10000000_10000000.txt 
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4.4 Performance Benchmarks  

 

Load Times:  Next we benchmark the time taken (in ms) to generate these 

graphs. Once again, all 28 files are used as inputs and each file generates 6 graphs (using 

6 layouts). Here we are trying to understand how load times vary across graph types 

using different layouts.  

 

Find Edges of Random Nodes: We choose a set of 100 random nodes for 

generated data and real-world data. For generated graphs random nodes are chosen by 

total number of nodes in a graph. So, a generated graph with same nodes and varying 

edges uses exactly the same random nodes.  

 

Find Edges of Range of Nodes: We also record the time taken to find edges of a 

range of nodes. Once again, for generated graphs range is chosen by total number of 

nodes in a graph. So, a generated graph with same nodes and varying edges uses exactly 

the same range. When choosing the range, we ensure that that range isn’t so large that it 

covers 90% of total nodes in the graph or so small to make only 5% of the total nodes in 

the graph. We aim to get a range which is between 50-60% of the total nodes in the 

graph.  
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Add Edges to existing nodes in the Graph: We choose a set of 100 random 

nodes and add 5 edges to each of them. Random nodes are chosen by total number of 

nodes in a graph. So, a graph with same nodes and varying edges uses exactly the same 

random nodes.  

 

Add Nodes and Edges: Next, we benchmark adding new nodes and edges to the 

graph. We create 100 new nodes with 5 edges each. A graph with same nodes and 

varying edges uses exactly the same set of new nodes.  
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Chapter V. 

 Results  

5.1 Memory Footprint 

 

CSR Array Layout: We observe that CSR data structure using Array layout 

(CSRArray) scales best across varying Graph Sizes and Graph connectivity. (Figure 11) 

shows CSRArray having the lowest memory footprint across all Graphs and also within a 

Graph (with varying edges). The BplusTree layout for Adjancency List and CSR has the 

largest memory requirements, followed by Map layouts and Adjacency List Array layout. 

We also note that the growth in memory with increasing edges is higher for smaller graph 

size. At 10mm nodes in Graph the memory usage doesn’t vary much as edges are 

increased from 1K to 10mm. 
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Figure 11: Memory footprint - Generated Graphs.  

(in MB) using log scale 
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Figure 12: Memory footprint - Real-world Graphs.  

(in MB) using log scale. 

5.2 Load Times 

 

CSR Array Layout: Once again we observe that CSR data structure using Array 

layout (CSRArray) takes the least time to load across Graph Sizes and Graph 

connectivity (Figure 13). BplusTree layout for Adjacency List (ALTree) and CSR 

(CSRTree) take the most time to load. Each addition of a node or edge in the tree requires 

tree traversal to identify the right position in the tree where the node or edge will be 

added, which explains some of the latency we see in layouts using BplusTree. We also 

note that the connectivity of the Graph (i.e., number of edges) has a larger impact on the 

latency on smaller Graph size when compared to larger Graphs 

0.01

0.1

1

10

100

1000

10000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

Amazon Enron CitFiles



 

38 

 

Figure 13: Load Latency - Generated Graphs.  

Time to load (in MilliSeconds) using log scale.  
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Figure 14: Load Latency - Real-world Graphs. 

Time to load (in MilliSeconds) using log scale. 

5.3 Find Edges – Random Nodes 

 

Adjacency List – Array Layout: When searching for edges of random nodes in 

a graph the Adjacency List Array (ALArray) layout performance best across graph sizes 

and graph connectivity (Figure 15). The Map layout for Adjacency List (ALMap) also 

scales well and requires almost constant time to find the edges on a graph, even as the 

number of edges vary. CSR Array layout has a varying performance, with higher cost on 

smaller Graphs with high connectivity and lower cost for larger Graphs.  
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Figure 15: Find Edges Random Nodes - Generated Graphs. 

Time to find 100 random nodes (in MilliSeconds) using log scale. 
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Figure 16: Find Edges Random Nodes - Real-world Graphs.  

Time to find 100 random nodes (in MilliSeconds) using log scale. 

 

5.4 Find Edges – Range of Nodes 

 

BplusTree Layout - Adjacency List and CSR: Searching for edges of Range of 

nodes scales best with a BplusTree layout of both Adjacency List and CSR data 

structures (Figure 17), doing noticeably better for smaller graphs. Adjacency List Array 

also scales well and does slightly better than the BplusTree layout for larger graphs. CSR 

Array shows varying performance across graph sizes and connectivity. 
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Figure 17: Range Search – Generated Graphs. 

Time to find a range of nodes (in MilliSeconds) using log scale. 
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Figure 18: Range Search - Real-world Graphs. 

Time to find a range of nodes (in MilliSeconds) using log scale. 
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5.5 Update – Add Nodes and Edges 

 

Map Layout - Adjacency List and CSR: We observe that the update operation 

of adding new nodes with edges to the Graph, was handled best by Map layouts of both   

Adjacency List and CSR data structures (Figure 19). BplusTree layouts displays stable 

performance without any sudden spikes across Graph size and connectivity. Adjacency 

List Array layout shows spikes for small Graphs and then it stabilizes as the size of the 

Graph increases. 

 

 

5.6 Update – Add Edges to existing Nodes  

 

There is no single layout for all sizes and connectivity: Our results (Figure 20) 

show that the size of the Graph and Graph Connectivity greatly impacts which layout is 

more efficient. For example, we notice that Map layout for Adjacency List does well for 

Graph with 1MM Nodes but not for Graph with 10MM nodes. 
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Figure 19: Add Nodes and Edges - Generated Graphs.  

Time to add 100 new nodes with 5 edges each (in MilliSeconds) using log scale. 
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Figure 20: Add Edges - Generated Graphs.  

Time to update edges of 100 random nodes (in MilliSeconds) using log scale. 
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5.7 Results Summary and Cost Estimation Rules. 

 

 The table below summarizes observations from all benchmarking experiments 

mentioned in the earlier sections. These rules can be used to find optimal Graph data 

structure in the context of performance and memory costs for a given set of inputs. They 

also allow us to reason about using a layout and a data structure without actually building 

the data structure or running the workload. For example, when we are looking for low 

memory and load costs – a CSR with Array Layout would be an optimal choice, and if 

the requirement is for most efficient way to find edges of random nodes, we would go 

with Adjacency List with Array or Map Layout. 

 

Cost Optimal Layout 
Memory Footprint  CSR - Array Layout  
Load Latency CSR – Array Layout 
Find Edges Latency –Random Nodes Adjacency List – Array Layout, 

Adjacency List – Map Layout 
Find Edges Latency–Range of Nodes Adjacency List - Bplus Tree, 

CSR – Bplus Tree 
Update Latency– Add New Nodes and 
Edges 

Adjacency List – Map Layout, 
CSR – Map Layout 

Update Latency – Add Edges to Existing 
Nodes 

No single layout that is best for all 
sizes and connectivity 

 

Table 3: Derived Cost Estimation Rules  
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Chapter VI. 

 Conclusion 

6.1 Summary 

 

In our pursuit for interactive and automatic graph data systems, Key-Value Graph 

Generator is a good starting point. It demonstrates the use of key-value approach in 

designing Graph Data Structures. We model Adjacency List and Compressed Sparse Row 

(CSR), using Array, Map and BplusTree. Performance and Memory benchmarks of these 

data structures confirm that different workloads can benefit from using different layouts. 

Cost estimation rules derived from these benchmarks, allow us to reason about data 

structures without building them and having to running a workload.  

 

6.2 Future Work 

 

Key-Value Graph Generator has the potential of working well with interactive 

and learned key-value systems, as it has been designed with this objective in mind. Using 

an interactive and learned key-value system with Key-Value Graph Generator is a natural 

extension to this project and a definitive future line of work. We would start by creating 

an API that can be used for communicating between the interactive Key-Value System 

and the Key-Value Graph Generator. We would also need interfaces in the Key-Value 

Generator which can pass the user requirement to the interactive Key-Value system and  
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use the output from that system to create the recommended Graph Data Structure. We can 

then validate this recommendation using the cost estimation rules from our benchmarking 

as described in Section 5.7. Once we establish a working version of interactive Graph 

Data Structure Generator, we need to increase the surface area of modeling options 

available by adding more key-value constructs and Graph data structures to the 

framework.  

Benchmarking performance with more datasets, graph algorithms (Page Rank, 

DFS), hardware, programming language (Rust or C) to understand how these may affect 

costs. All of these inputs will not only help the Graph Data Structure Generator to be 

more comprehensive, but also drive the creation of learned cost model and more reliable 

cost estimations. 
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Appendix 

All source code can be found on github - https://github.com/RshaHvd/graphdatastructure. 

In this appendix we provide code sample used during benchmarking using JMH and JOL 

libraries. These samples show how benchmarking using these libraries is different from 

the usual Stopwatch benchmarking approach. 

 

Load benchmark code snippet for Adjacency List Containers. 
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  Find Edges of Random Nodes for Adjacency List Containers. 



 

56 

 

Find Edges of a Range of Nodes from CSR Containers. 

 

Add Edges to existing nodes of Adjacency List Containers. 
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Add Nodes and Edges to Adjacency List Array Container. 

 

 Memory benchmark for Adjacency List Containers. 


