
Towards Interactive Design of Graph Data
Structures

Citation
Sha, Rachna. 2021. Towards Interactive Design of Graph Data Structures. Master's thesis,
Harvard University Division of Continuing Education.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369098

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37369098
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Towards%20Interactive%20Design%20of%20Graph%20Data%20Structures&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=9c4a2f00a5859af50cf0e868508100dd&department
https://dash.harvard.edu/pages/accessibility

Rachna Sha

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2021

Towards Interactive Design of Graph Data Structures

Graph Data Structures - A preliminary study for self designing and adaptive Graph based

systems

Copyright 2021 Rachna Sha

Abstract

If I have seen further, it is by standing on the shoulders of Giants. – Sir Isaac Newton.

Graph Frameworks and Databases are critical components of modern software.

The need to analyze massive graph datasets have spurred the development of Graph

Systems. Graph Frameworks and Libraries with tuned Graph data structures are

continuously being developed to handle new workloads and data patterns. This presents a

need for a Graph system that has knowledge of its design space and is capable of

combining fundamental design constructs to generate optimal graph data structures for a

given hardware, data pattern and workload. We propose leveraging non-graph systems

with these capabilities and with an overlap in its design space with Graph systems, to

bring this intelligence to Graph Systems. As a first step in this process, we have

implemented a Key-Value Graph Generator, that demonstrates the use of key-value

approach in designing Adjacency List and Compressed Sparse Row (CSR). Our

hypothesis is that if we can successfully model Graph data structures using key-value

approach then we can leverage learned key-value system and create an interactive and

automatic Graph system.

Dedication

Dedicated to my beloved parents, who have raised me to be the person I am. My

father, who changed my life in grade 7 by teaching me math and science in a way that I

fell in love and never looked back, and my mother who gave me the foundation on which

my life exists. Thank you can never be enough for all the sacrifices you made to give me

and my sisters the best education possible, for your unconditional love, your prayers and

most of all for your belief in us.

Forever in Gratitude.

Acknowledgments

This thesis would not be possible without the help and support of so many

wonderful people who guided me in many ways.

I would like to start by thanking my Guruji first and foremost for all his blessings,

guidance and support - RadhaSwami Maharaj.

My sincere thanks and deepest regards to Professor Stratos for serving as my

Thesis Director. I could not have written this thesis without his guidance, feedback,

expertise and valuable time. Thank you so much Professor Stratos.

I want to thank my Research Advisor, Professor Hongming Wang for her

feedback, guidance and for helping me stay on track during the whole process. Thanks

also to my Research Advisor, Professor Sylvain Jaume for his inputs and guidance in

developing the thesis topic. Thanks also to my Academic Advisors, Nada El-Newahy and

Maura B. McGlame, who provided guidance in navigating the degree program and

answering my numerous questions.

Thank you to my 4-year-old, who never failed to put a smile on my face through

those long days-nights. I am so grateful to my sisters for reviewing my draft multiple

times without complaining, for providing me actionable feedback and for their

motivation. And finally, thanks to my husband for all his sacrifice and support in making

this a reality.

Table of Contents

Dedication ... iv

Acknowledgments ... v

List of Tables ... viii

List of Figures ... 9

Chapter I.

Introduction ... 10

1.1 Towards Learned Graph Models and Interactive System Design 12

1.2 Leverage Key-Value Systems ... 14

1.3 Prior Work ... 15

Chapter II.

Design of Key-Value Graph Generator ... 17

2.1 Key-Value Graph Containers .. 18

2.2 Adjacency List Containers .. 19

2.3 CSR Containers ... 22

Chapter III.

Cost Estimation by Benchmarking .. 25

3.1 Performance benchmarks – Java Microbenchmark Harness (JMH) 26

3.2 Memory Footprint – Java Object Layout (JOL) .. 26

3.3 Benchmarking Engine ... 27

Chapter IV.

Experimental Setup ... 30

4.1 System ... 30

4.2 Test Data Files. .. 31

4.3 Memory Footprint ... 32

4.4 Performance Benchmarks .. 33

Chapter V.

Results ... 35

5.1 Memory Footprint ... 35

5.2 Load Times .. 37

5.3 Find Edges – Random Nodes .. 39

5.4 Find Edges – Range of Nodes ... 41

5.5 Update – Add Nodes and Edges .. 44

5.6 Update – Add Edges to existing Nodes ... 44

5.7 Results Summary and Cost Estimation Rules. .. 47

Chapter VI.

Conclusion ... 48

6.1 Summary .. 48

6.2 Future Work ... 48

References ... 50

Appendix ... 54

List of Tables

Table 1: Generated Graphs used in Benchmarking ... 32

Table 2: Real-world Graphs used in Benchmarking ... 32

Table 3: Derived Cost Estimation Rules ... 47

List of Figures

Figure 1: Leveraging Learned Key-Value Systems to create Learned Graph Systems 12

Figure 2: Key-Value Graph Generator. ... 17

Figure 3: Graph (left) represented using Adjacency List Array Container (right). 19

Figure 4: Graph (left) represented using Adjacency List Map Container (right). 20

Figure 5: Graph (left) represented using Adjacency List BplusTree Container (right). 21

Figure 6: Graph (left) represented using CSR Array Container (right). 22

Figure 7: Graph (left) representation using CSR Map Container (right). 23

Figure 8: Graph (left) representation using CSR BplusTree Container (right). 24

Figure 9: Benchmark Engine. .. 27

Figure 10: Random Graph Generator. ... 29

Figure 11: Memory footprint - Generated Graphs. ... 36

Figure 12: Memory footprint - Real-world Graphs. .. 37

Figure 13: Load Latency - Generated Graphs. .. 38

Figure 14: Load Latency - Real-world Graphs. ... 39

Figure 15: Find Edges Random Nodes - Generated Graphs. .. 40

Figure 16: Find Edges Random Nodes - Real-world Graphs. ... 41

Figure 17: Range Search – Generated Graphs. ... 42

Figure 18: Range Search - Real-world Graphs. ... 43

Figure 19: Add Nodes and Edges - Generated Graphs. ... 45

Figure 20: Add Edges - Generated Graphs. ... 46

10

Chapter I.

 Introduction

Graph data structures excel in modeling interactions and relationships making

them a popular choice in most modern software. Social media Systems, Bioinformatics

Systems, Recommendation Systems, Fraud Detection Systems, Network Systems are

most naturally designed and modelled as a Graph. Many of the well-known and

established data structures have evolved after many years of research, vast commercial

adoption and iterative development.

Growth in Data, Diverse Workloads and Specialized Solutions: Graph data

structures are critical components of Graph Databases and Graph Frameworks. Growth in

data, wide adoption and varied use-cases resulted in the development of specialized

databases and frameworks, which differ both in their programming abstractions as well as

underlying implementations.

Development Effort and Time: Implementing specialized solutions for each use-

case requires huge development effort and time. Even these specialized systems need to

be tuned regularly to meet the requirements of changing data patterns and workloads in

order to maintain the performance of these systems.

11

Non-Graph Systems - Emergence of Learned Models and Automatic Design:

To handle the growth of data, diverse workloads and hardware, we are seeing increased

research in the use of machines learning to build intelligent systems that can automate

some of this design process. Systems with understanding of design space and using

machine learning to drive the design of data structure, algorithms, access patterns are

emerging in the areas of key-value data stores (Idreos et al 2018), databases indexes

(Kraska et al 2018) and database systems (Kraska et al 2019).

12

1.1 Towards Learned Graph Models and Interactive System Design

Figure 1: Leveraging Learned Key-Value Systems to create Learned Graph Systems

Graph Systems

Graph Data Structures

Compressed Sparse
Column (CSC)

Compressed
Sparse Row (CSR)

Adjacency
List (AL)

Key-Value InteracAve and
Learned System

OpAmal
Graph Data
Structure

Graph Data Structure with Key-value layouts Workload
Hardware
Data Size Arrays

AL
(Map)

CSC
(Map) BplusTree

MapWorkload
Hardware
Data Size

Costs EsAmaAon Rules

Performance and
memory cost

Workload
Hardware
Data Size

AL
(Map)

Data1
Hardware1

AL
(Tree)

CSR
(Map)

OpAmal
Key-Value
Data
Structure

LSM

Graph Data Structure with
opAonal key-value layout

CSR
(Tree)

CSC
(Tree)

CSC
(Map) Data2

Programming
language,
run2me

Hardware2

13

Mapping the Design Space: Graph systems are typically more complex and

mapping a complete design space ground up takes much longer and is a more involved

process. If we could leverage a mapped design system that has an overlap in its design

space with Graph Systems, we could rely on that system to map the overlapped design

space. The design space specific to Graph systems could be mapped separately. We

propose leveraging mapped Key-Value systems because of the overlap seen in the design

space. For example, Arrays are used in the default implementation of CSR and

Adjacency List, and they also represent a fundamental design primitive for key-value

systems.

Cost Estimation: An interactive system allows users to vary inputs to understand

how these changes impact performance of the data structure. This requires us to be able

to quickly estimate the cost of using a data structure for a given input and workload,

without needing to fully create the data structure. We propose starting with a set of rules

derived from benchmarking to estimate the cost of workload for a given set of inputs. As

the system matures and rules becomes more complete, we can derive a mathematical

function which can be used for cost estimation.

14

1.2 Leverage Key-Value Systems

Graph as Key-Value Pair: In order to enable Graph systems to use key-value

system we need to be able to express Graph data structures via key-value data structures,

while still keeping the properties of the original data structure in place. For example, the

basic implementation of an Adjacency List uses Array of Arrays (or List) for modeling

Vertices and Edges of the Graph. If we think of the Vertices of the Graph as Keys, and its

Edges as values, we can then use any of the key-value data structures such as – Map,

Tree, LSM - to represent a Graph. We use this analogy to model Graph data structures

ensuring that the core properties of the original data structure are maintained.

Goals: We present Key-Value Graph Generator which models this concept of

Graph as a key-value pair. Our goals are

1. To demonstrate the use of common key-value data structures – Array, Map and

BplusTree, in building Adjacency List and Compressed Spare Row (CSR)

2. Benchmark these Data Structures to determine performance impact and memory

usage and generate rules for cost estimation.

15

1.3 Prior Work

This thesis draws inspiration from research in areas of Graph Databases and

Frameworks, Learned and Self-designing systems, Graph models and Graph data

structures.

Customizable Databases: Research in the area of customizable databases

resonates with the most fundamental idea of this thesis, which is to provide optimal graph

data structures based for a given input. (Batory et al 1992, Batoory et al 1988, Chaudhuri

et al 2000) presents the idea of building customizable database management systems with

narrow interfaces to introduce modularity, and to address the issue of rising complexity in

building database management systems ground up for each use case.

Learned and Self-Designing Systems: This thesis also learns a great deal from

research of Learned Systems. (Idreos et al 2018, Idreos et al 2019, Idreos et al 2019)

discuss the idea of design continuum and self-designing key-value data stores, that are

optimized for specific workloads. Self-tuning database management (Weikum et al 2002,

Chaudhuri et al 2007, Idreos et al 2007, Pavlo et al 2017), Learned Databases indexes

(Kraska et al 2018) and Learned database systems (Kraska et al 2019), all discuss how

databases can be benefit from using the learned model.

Graph Databases and Frameworks: Pregel (Malewicz et al, 2010), Galois

(Pingali et al 2011), Cassovary (Gupta et al 2013), Graphmat (Sundaram et al 2015),

Helios (Davoudian, 2019) represent some of the state-of-art Graph Processing system that

handle very large Graph datasets efficiently. These frameworks provide different models

which were compared (Satish et al 2014) to understand how they scale. Graph Databases

16

research and survey (Güting et al 1994, Angles et al 2008, Dominguez-Sal et al 2010,

Angles 2012, Hong et al 2012, Miller et al 2013, Mattson et al 2013, Ghrab et al 2016,

Rawat at al 2017, Angles 2018, Besta et al 2019) has a strong connection with this thesis

as it brings together various data structures that have been used in building graph

database over the years.

Graph Modeling: In this thesis we try to model graph as key-value pair therefore,

any research that attempts to model Graph differently is an important resource for this

thesis. CombinatorialBLAS (Buluç et al 2011), GraphBLAS (Mattson et al 2013, Bader

et al, 2014), introduces a new way to model Graph via common building blocks in linear

algebra. LAGraph (Mattson et al, 2019), is a position paper to create high-level Graph

Algorithms on top of GraphBLAS.

Graph Data Structures: Graph Data structure research (Saad 1994, Bell et al

2008, Bell et al 2009, Valiyev 2017) and new developments in this space also strongly

influence this thesis. (Wheatman et al 2018), introduced a new graph storage layout -

Packed Compressed Sparse Row, a Dynamic data structure for representing graph based

on packed memory array. It allows for fast inserts, while maintaining good cache for fast

searches and traversals. (Macko 2015) presents mutable Compressed Sparse Row to

enable using Compressed Sparse Row for write operations.

17

Chapter II.

Design of Key-Value Graph Generator

Figure 2: Key-Value Graph Generator.

The components of the Key-Value Graph Generator are captured in Figure 2

(from left to right):

• Input Processor: Input Processor validates user input to ensure it can support the

requested graph layout, workload and parse the file format.

• Key-Value Graph Containers: Provides the abstraction for creating Graph using

different key-value layouts. We discuss supported containers in the following

sections.

• Data Access Operations: This module provides various Data Access operations

that can be used to Load, Find and Update the Graph. The framework supports

Input Processor Key-Value Graph Containers Data Access Opera:ons

G
R
A
P
H

File
Processing
Engine

Adjacency List CSR Find Edges Update

A
L
A
r
r
a
y

C
S
R
A
r
r
a
y

C
S
R
M
A
P

C
S
R
B
T
R
E
E

A
L
M
A
P

A
L
B
T
R
E
E

Input

File
Layout
Workload

Random
Nodes
Edges

Range
Nodes
Edges

Add New
Nodes
Edges

Update
Nodes
Edges

String
Processing
Engine Key-Value Data Access Opera:onsKey-Value Data Structures

Random
Probe

A
RR

AY

M
A

P

BT
RE

E Range Update

18

find operation for all layout of Adjacency List and CSR data structures and

provide support for both Random probe and Range search. Write operations

update the Graph in one of the following ways (a) Add Edges to an existing node

(b) Add new Nodes and edges. Write operations are supported by all data layout

of Adjacency List and all CSR layouts except Array CSR layout. The Array CSR

layout stores the edges and vertices in Array and in order. An update to one vertex

can result in update to all vertices and edges of the Graph, making the operation

unscalable.

2.1 Key-Value Graph Containers

Graph Container models a Graph storage unit which determines how its vertices

and edges are laid out. It defines an API to enable seamless interactions across various

concrete implementations. Below we describe how Adjacency List and CSR data

structures are modeled using three key-value layouts - Array, Map and BplusTree.

19

2.2 Adjacency List Containers

An Adjacency list representation for a graph associates each vertex in the graph

with its list of edges. An adjacency list is usually implemented as a linked list of arrays or

array of arrays. Below we describe how we model Adjacency List using three different

key-value containers while maintaining the key property of Adjacency List Vertex

associated to its edges.

ArrayALContainer: Using Array Container to model the vertices and edges is the default

Adjacency List implementation. Figure 3 shows this implementation for the example

graph.

Figure 3: Graph (left) represented using Adjacency List Array Container (right).

The default implementation of Adjacency List uses Array to store its vertices and edges.

Node
1

Node
3

Node
4 Node

5

Node
2

Node1 Node3 Node4

Node2Node4

Node5

Node1

Node2

Node3

Nil

Node5 Vertex
Array

Edges
Array

20

HashMapALContainer: When using Map Containers, vertices become keys of the Map

and its list of edges the Map values. A key (vertex) with no edges has an empty list as its

value. Figure 4 shows this implementation for the example graph.

Figure 4: Graph (left) represented using Adjacency List Map Container (right).

Map layout for Adjacency List – Keeping vertex associated to its edges by using vertex as
keys and its list of edges as values.

Node
1

Node
3

Node
4 Node

5

Node
2

Keys

Node1

Node5

Values

Node4 Node5

Node1 Node2

Edges

Node3

Node3 Node2

Node4

Nil

Vertex

Vertex-Edges Map

21

BplusTreeALContainer: To represent an Adjacency List using a BplusTree, we store the

vertex in index and leaf nodes, and the list of edges as the data of the leaf nodes. A vertex

with no edges points it data to an empty list. Figure 5 shows this implementation for the

example graph.

Figure 5: Graph (left) represented using Adjacency List BplusTree Container (right).

BplusTree layout for Adjacency List –vertex association with its edges is maintained
through the Leaf Node’s value and data. Navigation to Leaf Node is through Index
Nodes.

Node
1

Node
3

Node
4 Node

5

Node
2

Node5

Node1 Node4Node3 Node5

Node4

Node1

Nil

Index Node
(Vertex)

Leaf Nodes
(Vertex)

Node5

Node2
Node2

Node3

Leaf
Data
(Edges)

22

2.3 CSR Containers

A CSR representation for a graph uses at least 2 arrays to stores it vertices and

edges. Each vertex has the start index, which points to the index in the edges array where

its edges start. Below we describe how we model CSR using three different key-value

containers while maintaining the key property of CSR of using different data structure to

hold vertices and edges, and the Vertex has information of where in the edges structure

its edges live.

ArrayCSRContainer: This is the default implementation of CSR, and it uses two Arrays

to model the vertices and edges of the Graph. Figure 6 shows this implementation for the

example graph.

Figure 6: Graph (left) represented using CSR Array Container (right).

The default implementation of CSR uses at least 2 Array to store its vertices and edges.

Node
1

Node
3

Node
4 Node

5

Node
2

Has no edge

Node1
0

Node3
2

Node4
-1

Node4 Node5

Node5
3FirstEdgeIndex

Edges

Node1 Node3 Node5

Node1 Node2Node2 Node3

Vertex
Array

Edges
Array

23

HashMapCSRContainer: The Map based implementation of CSR uses two maps - one for

Vertex and one for list of Edges. The vertex map uses vertex as key, and a String

consisting of - VertexId and the first EdgeId - as the value. This value of the vertex map

forms the key of the EdgeMap. The values of the edges map are the list of edges

themselves. Figure 6 shows this implementation for the example graph.

Figure 7: Graph (left) representation using CSR Map Container (right).

Maintains properties of CSR – by using different data structures for vertex and edges.
The values of vertex map are the keys of the edge map and the list of edges are the values
of edge map.

Node
1

Node
3

Node
4 Node

5

Node
2

Node3

Keys Values

“V3_E2”

Node1 “V1_E4”

Node4

Keys

“V1_E4”

“V3_E2”

Values

“-1”

Node4 Node5

Node2

Vertex Map Edges MapNodeIId
and
First
EdgeId

NodeId
Array
Of
Edges Edges

“V5_E1”Node5 “V5_E1” Node1 Node2 Node3

Vertex

24

BplusTreeCSRContainer: To model CSR using BplusTree, we store the vertex in the

Index and the Leaf nodes. The edges are in a separate array and the leaf nodes data is the

index in the edges array that has the edges for that vertex. Figure 8 shows this

implementation for the example graph.

Figure 8: Graph (left) representation using CSR BplusTree Container (right).

Maintaining properties of CSR – by using different data structures for vertex and edges.
Index and Leaf nodes of the BplusTree stores the vertex. Data of Leaf nodes is index of
edges array that stores the edges for that leaf node (i.e., vertex)

.

Node
1

Node
3

Node
4 Node

5

Node
2

Node5

Node1 Node3 Node4 Node5

4 -12 1

20 1 3 4 5

Node1 Node2

Index Node

Leaf Nodes
(Vertex)

Leaf NodeData
(Index of Edges
Array)

Edges Array

Node2

Node2

Node4

Node5

Edges

Edges Index

25

Chapter III.

 Cost Estimation by Benchmarking

We benchmark data structures to derive a set of rules which will allow us to infer

the cost of performance and memory used by a data structure for a given workload, data

size, hardware, programming runtime. As these rules grow in complexity and as we

continue to benchmark across more diverse set of data, we can use these to train models

and build a Learned Cost model which can be expressed through a mathematical

function.

Scala: We chose Scala, a language which bring together the concept of object

oriented and functional program, to code Key-Value Graph Generator. Ease of

development, a strongly typed system and a build system that can support multiple sub-

projects using the same build file were some of the key drivers for this choice.

Benchmarking Code running on JVM: Scala relies on the JVM (Java virtual

machine) runtime. Benchmarking JVM code using the Stopwatch benchmarking

approach may not produce accurate results because of the Just-In-Time (JIT)

optimization that can be done by the virtual machine. The many optimizations done by

the JVM makes it difficult to ensure that what we are benchmarking is actually what we

expect to benchmark.

26

3.1 Performance benchmarks – Java Microbenchmark Harness (JMH)

JMH (OpenJDK/JMH) is Java harness library for writing benchmarks on the JVM

developed as part of the OpenJDK project. JMH provides a foundation for writing and

running benchmarks and ensuring results are not diluted due to virtual machine

optimizations.

SBT-JMH: In this project JMH library is made available via sbt-jmh, a sbt plugin

which brings the jmh tool more natively to the scala ecosystem. All the JMH benchmarks

are recorded with the following setup

• 2 warm up iterations.

• 3 iterations

• 1 fork.

• 1 thread

• max jvm heap size - 12 gb

3.2 Memory Footprint – Java Object Layout (JOL)

 JOL (OpenJDK/JOL) is a Java library to analyze object layout on JVMs and is

developed as part of the OpenJDK project. It provides a more reliable way of measuring

the footprint of java objects on the JVM, when compared to taking heap dumps or using

other libraries.

27

3.3 Benchmarking Engine

Figure 9: Benchmark Engine.

The dotted lines show how components of Benchmarking engine leverages different
components of Key-Value Graph Generator to benchmark a workload.

The Benchmarking Engine (as shown in Figure 9) is responsible for the logic

needed to interact with the benchmarking libraries, generate test data and to deliver these

recorded benchmarks. It provides a consistent API for benchmarking different workloads

across different layout of Adjacency List and CSR. The engine depends on the Graph

Generator for file processing, graph creation and operations required to run the workload.

We benchmark the Key-Value Graph Generator using both Real-world Graphs and

Synthetic Graphs. Real-world datasets consist of social network graphs of varying sizes

KEY-VALUE GRAPH GENERATOR

Graph Type

ALArray

ALMap

ALTree

CSRArray

CSRTree

CSRMap

Generated
Graphs

Real World
Graphs

File

BENCHMARK ENGINE

Benchmark

Memory
Benchmark

Performance Benchmarks

JMH

Load Find Write

JOL

Input Processor Key-Value Graph Containers Data Access Opera:onsGraph

28

(Stanford Large Network Dataset Collection). For the Synthetic Graphs the Engine has a

built in Graph Generator.

Decoupling and Better Abstractions: In order to provide better abstractions and

interaction with these benchmarking libraries, we have modeled Benchmarking Engine

and Key-Value Graph Generator as sub-projects in the scala build system. This set up

also allows us to manage and use Key-Value Graph Generator on its own. The

benchmark engine also benefits from this decoupling as a change to any internal

workings and implementation in Graph Generator doesn’t require a change in the

benchmark engine.

Synthetic Graph Generator: The Benchmarking Engine has a

RandomGraphGenerator which is used to generate graphs with variable number of nodes

and edges. It is based on Robert Floyd's sampling algorithm to generate edges in the

graph uniformly at random

29

Figure 10: Random Graph Generator.

30

Chapter IV.

 Experimental Setup

All Key-Value Graph layouts are evaluated for performance and space usage.

Load, Find and Write workloads are triggered to measure performance of the Graph

operations with different layouts. For Write operations, we do not include CSR Array

layout, due to its inability to scale for write operations. We also exclude Real-World

graphs from the write operations.

We run our experiments both on generated graphs and real-world graphs. The

goal is to measure

• Scalability - How different graph layouts scale for different Graphs sizes (nodes)

and Graph connectivity (edges).

• Suitability – Determine which layouts is better suited for a given workload.

4.1 System

All experiments are run on mac with 4 cores, 2.3GHz clock speed and 16GB of

RAM. It has 32K of L1 cache, 256K of L2 cache, and 6000K of L3 cache. All code –

Graph Generator and Benchmarking - are written in scala (2.12) and compiled and run

using sbt (1.4.4).

31

4.2 Test Data Files.

In order to study how different layouts scaled for different sizes of nodes and

edges, we generated graphs starting with 1K nodes, increasing the nodes by factor of 10

until we got to 10mm nodes. Each of these graphs have edges starting at 1K, increasing

by a factor of 10 until we reach 10mm edges. This allows us to test graphs with low to

high connectivity for varying graphs sizes. In total we generated 25 different Graphs

(Table 1) to capture varying sizes and connectivity. We also use 3 Real-world graphs

(Stanford Large Network Dataset Collection) listed below (Table 2).

We ran 7 different kinds of experiments against these generated graphs and Real-

world graphs. Six of these were to measure performance of different graph operations,

and the last one was to measure the memory usage of the layouts.

Nodes Edges FileName
1K 1K generated1000_1000.txt
1K 10K generated1000_10000.txt
1K 100K generated1000_100000.txt
1K 1MM generated1000_1000000.txt
1K 10MM generated1000_10000000.txt
10K 1K generated10000_1000.txt
10K 10K generated10000_10000.txt
10K 100K generated10000_100000.txt
10K 1MM generated10000_1000000.txt
10K 10MM generated10000_10000000.txt
100K 1K generated100000_1000.txt
100K 10K generated100000_10000.txt
100K 100K generated100000_100000.txt
100K 1MM generated100000_1000000.txt
100K 10MM generated100000_10000000.txt
1MM 1K generated1000000_1000.txt
1MM 10K generated1000000_10000.txt
1MM 100K generated1000000_100000.txt

32

Table 1: Generated Graphs used in Benchmarking

Nodes Edges FileName
1,134,890 2,987,624 com-youtube.ungraph.txt
36,692 367,662 email-Enron.txt
403,394 3,387,388 amazon0601.txt
27,770 352,807 cit-HepTh.txt

Table 2: Real-world Graphs used in Benchmarking

4.3 Memory Footprint

We profile the memory used by different graph layouts, in order to understand

how each of these scale with increasing number of Nodes and Edges in a Graph. We used

28 files, 25 of these contain generated graphs and 3 of these are the real-world graphs.

Each file generates 6 graphs (using 6 layouts) and memory usage in bytes were recorded.

1MM 1MM generated1000000_1000000.txt
1MM 10MM generated1000000_10000000.txt
10MM 1K generated10000000_1000.txt
10MM 10K generated10000000_10000.txt
10MM 100K generated10000000_100000.txt
10MM 1MM generated10000000_1000000.txt
10MM 10MM generated10000000_10000000.txt

33

4.4 Performance Benchmarks

Load Times: Next we benchmark the time taken (in ms) to generate these

graphs. Once again, all 28 files are used as inputs and each file generates 6 graphs (using

6 layouts). Here we are trying to understand how load times vary across graph types

using different layouts.

Find Edges of Random Nodes: We choose a set of 100 random nodes for

generated data and real-world data. For generated graphs random nodes are chosen by

total number of nodes in a graph. So, a generated graph with same nodes and varying

edges uses exactly the same random nodes.

Find Edges of Range of Nodes: We also record the time taken to find edges of a

range of nodes. Once again, for generated graphs range is chosen by total number of

nodes in a graph. So, a generated graph with same nodes and varying edges uses exactly

the same range. When choosing the range, we ensure that that range isn’t so large that it

covers 90% of total nodes in the graph or so small to make only 5% of the total nodes in

the graph. We aim to get a range which is between 50-60% of the total nodes in the

graph.

34

Add Edges to existing nodes in the Graph: We choose a set of 100 random

nodes and add 5 edges to each of them. Random nodes are chosen by total number of

nodes in a graph. So, a graph with same nodes and varying edges uses exactly the same

random nodes.

Add Nodes and Edges: Next, we benchmark adding new nodes and edges to the

graph. We create 100 new nodes with 5 edges each. A graph with same nodes and

varying edges uses exactly the same set of new nodes.

35

Chapter V.

 Results

5.1 Memory Footprint

CSR Array Layout: We observe that CSR data structure using Array layout

(CSRArray) scales best across varying Graph Sizes and Graph connectivity. (Figure 11)

shows CSRArray having the lowest memory footprint across all Graphs and also within a

Graph (with varying edges). The BplusTree layout for Adjancency List and CSR has the

largest memory requirements, followed by Map layouts and Adjacency List Array layout.

We also note that the growth in memory with increasing edges is higher for smaller graph

size. At 10mm nodes in Graph the memory usage doesn’t vary much as edges are

increased from 1K to 10mm.

36

Figure 11: Memory footprint - Generated Graphs.

(in MB) using log scale

0.01

0.1

1

10

100

1000

10000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1K Nodes
1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10K Nodes
1K 10K 100K 1MM 10MM

0.01

0.1

1

10

100

1000

10000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

100K Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1MM Nodes

1K 10K 100K 1MM 10MM

0.01

0.1

1

10

100

1000

10000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10MM Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

37

Figure 12: Memory footprint - Real-world Graphs.

(in MB) using log scale.

5.2 Load Times

CSR Array Layout: Once again we observe that CSR data structure using Array

layout (CSRArray) takes the least time to load across Graph Sizes and Graph

connectivity (Figure 13). BplusTree layout for Adjacency List (ALTree) and CSR

(CSRTree) take the most time to load. Each addition of a node or edge in the tree requires

tree traversal to identify the right position in the tree where the node or edge will be

added, which explains some of the latency we see in layouts using BplusTree. We also

note that the connectivity of the Graph (i.e., number of edges) has a larger impact on the

latency on smaller Graph size when compared to larger Graphs

0.01

0.1

1

10

100

1000

10000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

Amazon Enron CitFiles

38

Figure 13: Load Latency - Generated Graphs.

Time to load (in MilliSeconds) using log scale.

1

10

100

1000

10000

100000

1000000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1K Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10K Nodes

1K 10K 100K 1MM 10MMEdges

1

10

100

1000

10000

100000

1000000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

100K Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1MM Nodes

1K 10K 100K 1MM 10MMEdges

1

10

100

1000

10000

100000

1000000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10MM Nodes
1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

39

Figure 14: Load Latency - Real-world Graphs.

Time to load (in MilliSeconds) using log scale.

5.3 Find Edges – Random Nodes

Adjacency List – Array Layout: When searching for edges of random nodes in

a graph the Adjacency List Array (ALArray) layout performance best across graph sizes

and graph connectivity (Figure 15). The Map layout for Adjacency List (ALMap) also

scales well and requires almost constant time to find the edges on a graph, even as the

number of edges vary. CSR Array layout has a varying performance, with higher cost on

smaller Graphs with high connectivity and lower cost for larger Graphs.

1

10

100

1000

10000

100000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

Amazon Enron Cit

La
te

nc
y

(m
s)

Files

40

Figure 15: Find Edges Random Nodes - Generated Graphs.

Time to find 100 random nodes (in MilliSeconds) using log scale.

0.0001

0.001

0.01

0.1

1

10

100

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1K Nodes

1k Series2 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10K Nodes

1K 10K 100K 1MM 10MMEdges

0.0001

0.001

0.01

0.1

1

10

100

ALArray ALMap ALTree CSRArray CSRMap CSRTree

100K Nodes
1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1MM Nodes
Series1 Series2 Series3 Series4 Series5Edges

0.0001

0.001

0.01

0.1

1

10

100

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10MM Nodes
1K 10K 100K 1MM 10MMEdges

La
te

nc
y

(m
s)

41

Figure 16: Find Edges Random Nodes - Real-world Graphs.

Time to find 100 random nodes (in MilliSeconds) using log scale.

5.4 Find Edges – Range of Nodes

BplusTree Layout - Adjacency List and CSR: Searching for edges of Range of

nodes scales best with a BplusTree layout of both Adjacency List and CSR data

structures (Figure 17), doing noticeably better for smaller graphs. Adjacency List Array

also scales well and does slightly better than the BplusTree layout for larger graphs. CSR

Array shows varying performance across graph sizes and connectivity.

0.0001

0.001

0.01

0.1

1

10

100

ALArray ALMap ALTree CSRArray CSRMap CSRTree

Amazon Enron Cit

La
te

nc
y

(m
s)

42

Figure 17: Range Search – Generated Graphs.

Time to find a range of nodes (in MilliSeconds) using log scale.

0.1

1

10

100

1000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1K Nodes

1K 10K 100K 1MM 10MMEdges

La
te

nc
y

(m
s)

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10K Nodes

1K 10K 100K 1MM 10MMEdges

0.1

1

10

100

1000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

100K Nodes
1K 10K 100K 1MM 10MMEdges

La
te

nc
y

(m
s)

ALArray ALMap ALTree CSRArray CSRMap CSRTree

1MM Nodes
1K 10K 100K 1MM 10MMEdges

0.1

1

10

100

1000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

10MM Nodes
1K 10K 100K 1MM 10MMEdges

La
te

nc
y

(m
s)

43

Figure 18: Range Search - Real-world Graphs.

Time to find a range of nodes (in MilliSeconds) using log scale.

0.1

1

10

100

1000

ALArray ALMap ALTree CSRArray CSRMap CSRTree

Amazon Enron Cit

La
te

nc
y

(m
s)

Files

44

5.5 Update – Add Nodes and Edges

Map Layout - Adjacency List and CSR: We observe that the update operation

of adding new nodes with edges to the Graph, was handled best by Map layouts of both

Adjacency List and CSR data structures (Figure 19). BplusTree layouts displays stable

performance without any sudden spikes across Graph size and connectivity. Adjacency

List Array layout shows spikes for small Graphs and then it stabilizes as the size of the

Graph increases.

5.6 Update – Add Edges to existing Nodes

There is no single layout for all sizes and connectivity: Our results (Figure 20)

show that the size of the Graph and Graph Connectivity greatly impacts which layout is

more efficient. For example, we notice that Map layout for Adjacency List does well for

Graph with 1MM Nodes but not for Graph with 10MM nodes.

45

Figure 19: Add Nodes and Edges - Generated Graphs.

Time to add 100 new nodes with 5 edges each (in MilliSeconds) using log scale.

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

1K Nodes
1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRMap CSRTree

10K Nodes

1K 10K 100K 1MM 10MMEdges

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

100K Nodes
1K 10K 100K 1MM 10MMEdges

ALArray ALMap ALTree CSRMap CSRTree

1MM Nodes
1K 10K 100K 1MM 10MMEdges

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

10MM Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

46

Figure 20: Add Edges - Generated Graphs.

Time to update edges of 100 random nodes (in MilliSeconds) using log scale.

.

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

1K Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRMap CSRTree

10K Nodes

1K 10K 100K 1MM 10MMEdge
s

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

100K Nodes

1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

ALArray ALMap ALTree CSRMap CSRTree

1MM Nodes

1K 10K 100K 1MM 10MMEdges

0.01

0.1

1

10

ALArray ALMap ALTree CSRMap CSRTree

10MM Nodes
1K 10K 100K 1MM 10MM

La
te

nc
y

(m
s)

Edges

47

5.7 Results Summary and Cost Estimation Rules.

 The table below summarizes observations from all benchmarking experiments

mentioned in the earlier sections. These rules can be used to find optimal Graph data

structure in the context of performance and memory costs for a given set of inputs. They

also allow us to reason about using a layout and a data structure without actually building

the data structure or running the workload. For example, when we are looking for low

memory and load costs – a CSR with Array Layout would be an optimal choice, and if

the requirement is for most efficient way to find edges of random nodes, we would go

with Adjacency List with Array or Map Layout.

Cost Optimal Layout
Memory Footprint CSR - Array Layout
Load Latency CSR – Array Layout
Find Edges Latency –Random Nodes Adjacency List – Array Layout,

Adjacency List – Map Layout
Find Edges Latency–Range of Nodes Adjacency List - Bplus Tree,

CSR – Bplus Tree
Update Latency– Add New Nodes and
Edges

Adjacency List – Map Layout,
CSR – Map Layout

Update Latency – Add Edges to Existing
Nodes

No single layout that is best for all
sizes and connectivity

Table 3: Derived Cost Estimation Rules

48

Chapter VI.

 Conclusion

6.1 Summary

In our pursuit for interactive and automatic graph data systems, Key-Value Graph

Generator is a good starting point. It demonstrates the use of key-value approach in

designing Graph Data Structures. We model Adjacency List and Compressed Sparse Row

(CSR), using Array, Map and BplusTree. Performance and Memory benchmarks of these

data structures confirm that different workloads can benefit from using different layouts.

Cost estimation rules derived from these benchmarks, allow us to reason about data

structures without building them and having to running a workload.

6.2 Future Work

Key-Value Graph Generator has the potential of working well with interactive

and learned key-value systems, as it has been designed with this objective in mind. Using

an interactive and learned key-value system with Key-Value Graph Generator is a natural

extension to this project and a definitive future line of work. We would start by creating

an API that can be used for communicating between the interactive Key-Value System

and the Key-Value Graph Generator. We would also need interfaces in the Key-Value

Generator which can pass the user requirement to the interactive Key-Value system and

49

use the output from that system to create the recommended Graph Data Structure. We can

then validate this recommendation using the cost estimation rules from our benchmarking

as described in Section 5.7. Once we establish a working version of interactive Graph

Data Structure Generator, we need to increase the surface area of modeling options

available by adding more key-value constructs and Graph data structures to the

framework.

Benchmarking performance with more datasets, graph algorithms (Page Rank,

DFS), hardware, programming language (Rust or C) to understand how these may affect

costs. All of these inputs will not only help the Graph Data Structure Generator to be

more comprehensive, but also drive the creation of learned cost model and more reliable

cost estimations.

50

References

Angles, R., & Gutierrez, C. (2008). Survey of graph database models. ACM Computing
Surveys (CSUR), 40(1), 1-39.

Angles, R. (2012, April). A comparison of current graph database models. In 2012 IEEE
28th International Conference on Data Engineering Workshops (pp. 171-177).
IEEE.

Angles, R., & Gutierrez, C. (2018). An introduction to graph data management. In Graph
Data Management (pp. 1-32). Springer, Cham.

Bader, D., Buluç, A., Gilbert, J., Gonzalez, J., Kepner, J., & Mattson, T. (2014, July). The
Graph BLAS effort and its implications for Exascale. In SIAM Workshop on
Exascale Applied Mathematics Challenges and Opportunities (EX14)

Batory, D., & O'malley, S. (1992). The design and implementation of hierarchical
software systems with reusable components. ACM Transactions on Software
Engineering and Methodology (TOSEM), 1(4), 355-398.

Batoory, D. S., Barnett, J. R., Garza, J. F., Smith, K. P., Tsukuda, K., Twichell, B. C., &
Wise, T. E. (1988). GENESIS: An extensible database management system. IEEE
Transactions on Software Engineering, 14(11), 1711-1730.

Bell, N., & Garland, M. (2008). Efficient sparse matrix-vector multiplication on
CUDA (Vol. 2, No. 5). Nvidia Technical Report NVR-2008-004, Nvidia
Corporation.

Bell, N., & Garland, M. (2009, November). Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the
conference on high performance computing networking, storage and analysis (pp.
1-11).

Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Podstawski, M., Barthels, C., ... &
Hoefler, T. (2019). Demystifying graph databases: Analysis and taxonomy of data
organization, system designs, and graph queries. arXiv preprint
arXiv:1910.09017.

Buluç, A., & Gilbert, J. R. (2011). The Combinatorial BLAS: Design, implementation,
and applications. The International Journal of High Performance Computing
Applications, 25(4), 496-509.

51

Chaudhuri, S., & Weikum, G. (2000, September). Rethinking Database System
Architecture: Towards a Self-Tuning RISC-Style Database System. In VLDB (pp.
1-10).

Chaudhuri, S., & Narasayya, V. (2007, September). Self-tuning database systems: a
decade of progress. In Proceedings of the 33rd international conference on Very
large data bases (pp. 3-14).

Davoudian, A. (2019, June). Helios: An adaptive and query workload-driven partitioning
framework for distributed graph stores. In Proceedings of the 2019 International
Conference on Management of Data (pp. 1820-1822).

Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vanó, A., Gómez-Villamor, S.,
Martínez-Bazan, N., & Larriba-Pey, J. L. (2010, July). Survey of graph database
performance on the hpc scalable graph analysis benchmark. In International
Conference on Web-Age Information Management (pp. 37-48). Springer, Berlin,
Heidelberg.

Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., & Zimányi, E. (2016). Grad: On graph
database modeling. arXiv preprint arXiv:1602.00503.

Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., & Zadeh, R. (2013, May). Wtf: The
who to follow service at twitter. In Proceedings of the 22nd international
conference on World Wide Web (pp. 505-514).

Güting, R. H. (1994, September). GraphDB: Modeling and querying graphs in databases.
In VLDB (Vol. 94, pp. 12-15).

Hong, S., Chafi, H., Sedlar, E., & Olukotun, K. (2012, March). Green-Marl: a DSL for
easy and efficient graph analysis. In Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and Operating
Systems (pp. 349-362).

Idreos, S., Kersten, M. L., & Manegold, S. (2007, January). Database Cracking.
In CIDR (Vol. 7, pp. 68-78).

Idreos, S., Zoumpatianos, K., Hentschel, B., Kester, M. S., & Guo, D. (2018). The
Internals of The Data Calculator. arXiv preprint arXiv:1808.02066.

Idreos, S., Dayan, N., Qin, W., Akmanalp, M., Hilgard, S., Ross, A., ... & Zhu, Z. (2019,
January). Design Continuums and the Path Toward Self-Designing Key-Value
Stores that Know and Learn. In CIDR.

Idreos, S., & Kraska, T. (2019, June). From auto-tuning one size fits all to self-designed
and learned data-intensive systems. In Proceedings of the 2019 International
Conference on Management of Data (pp. 2054-2059).

52

Kraska, T., Alizadeh, M., Beutel, A., Chi, H., Kristo, A., Leclerc, G., ... & Nathan, V.
(2019, January). Sagedb: A learned database system. In CIDR.

Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N. (2018, May). The case for
learned index structures. In Proceedings of the 2018 International Conference on
Management of Data (pp. 489-504).

Macko, P. (2015). Llama: A persistent, mutable representation for graphs (Doctoral
dissertation).

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., &
Czajkowski, G. (2010, June). Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data (pp. 135-146).

Mattson, T., Bader, D., Berry, J., Buluc, A., Dongarra, J., Faloutsos, C., ... & Yoo, A.
(2013, September). Standards for graph algorithm primitives. In 2013 IEEE High
Performance Extreme Computing Conference (HPEC) (pp. 1-2). IEEE.

Mattson, T., Davis, T. A., Kumar, M., Buluc, A., McMillan, S., Moreira, J., & Yang, C.
(2019, May). LAGraph: A community effort to collect graph algorithms built on
top of the GraphBLAS. In 2019 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (pp. 276-284). IEEE.

Miller, J. J. (2013, March). Graph database applications and concepts with Neo4j.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA (Vol. 2324, No. 36).

OpenJDK/JOL, https://openjdk.java.net/projects/code-tools/jol/

OpenJDK/JMH, https://openjdk.java.net/projects/code-tools/jmh/

Pavlo, A., Angulo, G., Arulraj, J., Lin, H., Lin, J., Ma, L., ... & Zhang, T. (2017,
January). Self-Driving Database Management Systems. In CIDR (Vol. 4, p. 1).

Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M. A., Kaleem, R., ... &
Sui, X. (2011, June). The tao of parallelism in algorithms. In Proceedings of the
32nd ACM SIGPLAN conference on Programming language design and
implementation (pp. 12-25).

Rawat, D. S., & Kashyap, N. K. (2017). Graph database: a complete GDBMS survey. Int.
J, 3, 217-226.

Saad, Y. (1994). SPARSKIT: a basic tool kit for sparse matrix computations-Version 2.

53

Satish, N., Sundaram, N., Patwary, M. M. A., Seo, J., Park, J., Hassaan, M. A., ... &
Dubey, P. (2014, June). Navigating the maze of graph analytics frameworks using
massive graph datasets. In Proceedings of the 2014 ACM SIGMOD international
conference on Management of data (pp. 979-990).

Stanford Large Network Dataset Collection, https://snap.stanford.edu/data/

Sundaram, N., Satish, N. R., Patwary, M. M. A., Dulloor, S. R., Vadlamudi, S. G., Das,
D., & Dubey, P. (2015). Graphmat: High performance graph analytics made
productive. arXiv preprint arXiv:1503.07241.

Valiyev, M. (2017). Graph Storage: How good is CSR really?. dated Dec, 10, 8.

Weikum, G., Moenkeberg, A., Hasse, C., & Zabback, P. (2002, January). Self-tuning
database technology and information services: from wishful thinking to viable
engineering. In VLDB'02: Proceedings of the 28th International Conference on
Very Large Databases (pp. 20-31). Morgan Kaufmann.

Wheatman, B., & Xu, H. (2018, September). Packed Compressed Sparse Row: A
Dynamic Graph Representation. In 2018 IEEE High Performance extreme
Computing Conference (HPEC) (pp. 1-7). IEEE.

54

Appendix

All source code can be found on github - https://github.com/RshaHvd/graphdatastructure.

In this appendix we provide code sample used during benchmarking using JMH and JOL

libraries. These samples show how benchmarking using these libraries is different from

the usual Stopwatch benchmarking approach.

Load benchmark code snippet for Adjacency List Containers.

55

 Find Edges of Random Nodes for Adjacency List Containers.

56

Find Edges of a Range of Nodes from CSR Containers.

Add Edges to existing nodes of Adjacency List Containers.

57

Add Nodes and Edges to Adjacency List Array Container.

 Memory benchmark for Adjacency List Containers.

