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Abstract

Genome-wide association studies (GWAS) have implicated thousands of complex trait-variant
associations, an estimated 90% of which reside in the noncoding genome. While noncoding variants
generally have poorly understood regulatory function, previous work has shown that disease-driving
genetic variation often affects cell-type-specific gene regulation, such as transcription factor (TF) binding.
However, maps of TF-mediated cell-type-specific regulation are currently incomplete due to limited
amounts of experimental data. In this thesis, | introduce a novel strategy to annotate the noncoding
genome with cell-type-specific regulatory element probabilities via integration and modeling of thousands
of publicly available epigenetic datasets. | show that these functional annotations in the disease-driving
cell type are more highly enriched for disease heritability than experimentally derived functional
annotations. Next, | use these functional annotations to prioritize disease-relevant variants in the context
of polygenic risk score (PRS) models. | show that this approach improves the trans-ethnic portability of
PRS by reducing the confounding effects of population-specific linkage disequilibrium. Lastly, | introduce
a novel strategy to leverage the unprecedented resolution of single cell data to elucidate
cell-state-specific activity of trait-driving variants identified by polygenic fine-mapping data from GWAS.
This strategy consists of calculating cell-specific enrichments of genome-wide genetic variation in
functional regions and then associating these enrichments with polygenic regulatory programs. | show
that this approach identifies heterogeneity of risk variant accessibility, nominating putatively causal cell
states and regulatory mechanisms. Altogether, this work demonstrates the importance of comprehensive
functional annotations to better understand disease and trait etiology.



Table of Contents
Title page
Copyright

Abstract

Table of Contents
Acknowledgements

Chapter 1 Introduction

iv

Chapter 2 IMPACT: Genome-wide annotation of cell-state-specific regulatory elements

inferred from the epigenome of bound transcription factors

11

Chapter 3 Improving the trans-ethnic portability of polygenic risk scores by prioritizing

variants in predicted cell type regulatory elements

52

Chapter 4 Leveraging single cell chromatin accessibility and genome-wide fine-mapping

to study complex trait and disease genetics
Chapter 5 Discussion

Appendix A Supplemental information for Chapter 2
Appendix B Supplemental information for Chapter 3
Appendix C Supplemental information for Chapter 4

Appendix D Bibliography

102

128

131

150

186

188



Acknowledgments

| would like to thank my advisor Soumya Raychaudhuri for his support, mentorship and
guidance during these last five years. | would also like to thank Alkes Price for his
continued support, active interest, and collaborative role in supervising my work through
the many scientific links between our groups. | would also like to thank Kazuyoshi
Ishigaki, Steven Gazal, Bryce van de Geijn, Yang Luo, and Emma Davenport, my main
collaborators and co-authors on published work. | am thankful for my family, especially
my fiancé Eric Bartell, who has been an inspirational support system for me during my
PhD and endured far too many practice presentations and brainstorming sessions.



Chapter 1

Introduction

This thesis outlines the research | have led while advised by Professor Soumya Raychaudhuri
at Harvard Medical School toward unraveling the biological mechanisms driving human disease.
The genetic code in our DNA predisposes us to different traits and diseases. For many traits
and diseases, multiple factors contribute to this predisposition. Knowledge of the biological
mechanisms affected by these factors can enhance our understanding of these diseases and
ultimately propose hypotheses guiding the development of therapeutic treatments. In this thesis,
| will focus on specifically the genetic factors, as opposed to environmental, that regulate human
traits and diseases. For a minority of traits and diseases these genetic factors and their
biological mechanisms are well understood. However, for human traits and diseases driven by
multiple genetic factors, biological explanations for the coordinated and genome-wide roles
played by these factors are not well understood. This is largely due to incomplete biological or
functional annotation of the majority of the genome, which is precisely the area to which | hope
my thesis work has contributed. | will begin with an introduction to the area of human genetics
that is relevant to this work in order to evaluate the potentials for advancement of knowledge
that | pursued in my thesis work regarding functional characterization of genetic variation.
Complex traits and diseases are a class of phenotypes driven by multiple genetic and
environmental factors '. These are in contrast to Mendelian traits and diseases that are driven
by a single genetic determinant. Human Mendelian traits and diseases were extensively studied

during the early years of human genetics predominantly by linkage studies, in which familial
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inheritance patterns of genetic markers indicating the approximate locations of genes could be
traced. Linkage studies revealed large effect genetic determinants of complex traits and
diseases, but could not reveal the multiple other smaller genome-wide effects. For this reason,
the mechanisms underpinning complex traits and diseases are far less well understood that
those of Mendelian traits. For example, early studies of rheumatoid arthritis (RA) using
serological typing revealed that human leukocyte antigen (HLA) genes within the major
histocompatibility complex (MHC) were strongly associated with the disease 2. This association
was later confirmed by familial linkage studies ®. The ensuing years of research revealed that
the MHC alone was not sufficient to explain the genetic variation observed in RA patients,
suggesting that other genetic determinants of smaller effect that were missed by linkage studies
also contributed.

Linkage studies failed to reveal genetic determinants of smaller effect for several
reasons. First, linkage studies often identified large linkage peaks which implicated many genes
which were difficult to prioritize. Second, at the time when linkage studies were most prevalent,
gene annotations were limited and incomplete compared to the annotation of current day,
biasing the associations to well-annotated genes with nearby traceable genetic markers. In
order to identify the genetic determinants of complex traits and diseases missed by linkage
studies, Botstein and colleagues proposed in 2003 that genome-wide single nucleotide
polymorphism (SNP) association studies must be prioritized over linkage studies *. These
studies provided a framework to test for the association between phenotypes and genotyped
SNPs, rather than a limited set of candidate genes as in linkage studies, with the possibility to
nominate a causal gene or related regulatory region. SNP-level association studies propelled
our understanding of complex traits and diseases. For example, associations with RA were

identified in genes beyond the MHC including PTPN22, PADI4, and CTLA4 >’. However, the
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ability to identify these genetic determinants of smaller effect using genome-wide SNP-level
association studies greatly depended on the number of individuals in the study. As a
consequence, many early association studies reported what were later identified as
irreproducible findings due to power limitations.

In the coming years, two foundational projects would lay the groundwork for performing
the high-powered, large scale genome-wide association studies (GWAS) that we are familiar
with today. First, the completion of the Human Genome Project in 2001 revealed for the first
time 94% of the base pairs in the human genome and 1.4 million SNPs 8. Performing whole
genome sequencing on so many variants with the large sample size required to confidently
identify associations with complex traits and diseases would be prohibitively expensive.
However, there is substantial correlational structure of variants across the genome and this
could be leveraged to reduce costs. Regions of the genome that undergo less recombination
are inherited together, resulting in blocks of SNPs with highly correlated genotypes. This
phenomenon is called linkage disequilibrium (LD). To mitigate the costs of GWAS, the
International HapMap Project then proposed designing a genotyping chip with a subset of
representative SNPs, each marking a different LD block. Identified associated variants would
point to a candidate causal locus, and further statistical or functional work would need to be
done to identify the true causal SNP in the locus. This enabled an era of high-powered GWAS in
which thousands of individuals could be genotyped at reasonable cost, exponentially adding to
the list of putatively causal genetic determinants of complex traits and diseases.

Although the number of genome-wide significant associations were quickly increasing for
complex traits and diseases, the understanding of the mechanisms through which these
variants act was only slowly advancing. This is because the noncoding genome harbors an

estimated 90% of genome-wide significant variants. For the approximately 10% of associated


https://paperpile.com/c/s2XIAj/wrFg

variants that reside in coding regions, it is more straightforward to hypothesize mechanisms
involving the implicated gene. Noncoding variation is challenging to understand because the
noncoding genome is less well annotated, for example, with enhancers, promoters, and
important regulatory elements and their cell-type-specific counterparts, than the coding genome,
with genes. Understanding the mechanisms of noncoding variation is crucial to understanding
the biology underlying complex traits and diseases. More than a decade ago, the field of human
genetics began producing strategies to link noncoding variants to functional biology, as outlined
below.

Most strategies to mechanistically link noncoding variants to complex traits and diseases
try to understand the effect of the noncoding variation on gene expression. Colocalization
studies of genome-wide significant noncoding variants with expression quantitative trait loci
(eQTLs) nominated novel candidate causal genes. For example, studies of RA found novel
importance in CCR6 °, AOAH '°, BLK, C50rf30, GSDMB, IRF5, and PLEK . However, simple
colocalization does not imply the same causal genetic driver. In 2017, Chun and colleagues
devised a strategy to test if the GWAS association signal and eQTL association signal were
produced by the same genetic determinant '2. They found that a discouragingly small proportion
(~25%) of noncoding variation can be attributed to modulating gene expression levels, as
measured in an eQTL study.

While colocalization studies considered biological mechanisms of noncoding variants
from the perspective of specific genes, more recent studies considered biological mechanisms
from the perspective of the cell type specificity of gene expression programs. For example, the
genes identified by eQTL colocalization studies of RA had implicated many different immune
cell types, but there was no quantitative understanding of the relative contributions of these cell

types. Moreover, eQTLs are more likely to be cell-type-nonspecific, as we are less powered to
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identify cell-type-specific signals. Work from our group hypothesized that genetic risk factors for
non-systemic diseases and traits act via mechanisms that affect a small set of tissues or cell
types . In this study, Hu and colleagues assessed the enrichment of cell-type-specific gene
expression in RA risk loci, revealing CD4+ effector memory T cells as the strongest candidate
causal cell type.

Studies based on gene expression were inherently limited to noncoding variation that
could be associated with genes, which in the case of eQTL colocalization preferentially selected
noncoding variation proximal to the gene. If genes with cell-type-specific expression profiles
were enriched for complex trait and disease risk loci, then cell-type-specific gene regulatory
elements should as well. The advantage to this perspective was that noncoding genetic
variation could be more comprehensively studied. As a result, many studies assessed the
colocalization of cell-type-specific epigenetic marks with complex trait and disease risk loci. A
study from our group identified the strongest colocalization of RA risk loci with H3K4me3 from
CD4+ regulatory T cells '*. Another study investigated the colocalization of risk loci with DNase
hypersensitivity sites (DHSs), which they correlated with gene expression to ultimately link the
risk locus to a putative target gene '°. A third study coupled statistical fine-mapping, a strategy
to deconvolute the correlation between variant associations due to LD and identify the most
likely causal variant, with epigenetic colocalization '®. Considering 21 autoimmune diseases, this
study found that 60% of fine-mapped putatively causal variants colocalized with CD4+ T cell
enhancers.

While epigenetic marks may colocalize even with each other, it is of interest to know
which regulatory annotation distinguishes best between causal and non-causal variants. For
example, transcription factors (TFs) often bind in cell-type-specific manners. If a set of disease

risk loci colocalize with ChlP-seq peaks of a particular TF, this might implicate the TF in a causal
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disease-driving mechanism. However, TF ChIP-seq peaks often colocalize with gene promoters
and enhancers, as TFs are precisely recruited there to modulate gene expression. Therefore,
colocalization of risk loci with TF ChlP-seq peaks might be the result of unaccounted and
stronger colocalization with gene promoters in general. Thus, we must ask if the enrichment of
risk variants in TF ChIP-seq peaks is still significant once conditioning on the promoter
association. Prior work from our group addressed this question with a method called Genomic
Annotation Shifter (GoShifter) . This approach statistically quantifies the enrichment of risk loci
in regulatory annotations via permutation, while explicitly controlling for two sources of
confounding bias: 1) LD and 2) coincidental colocalization of the query regulatory annotation
with an annotation that better distinguishes casual from non-causal variants.

Thus far, the discussed strategies to link noncoding genetic variation to functional
mechanisms have relied on the identification of genome-wide significant variants identified by
GWAS. For many complex traits and diseases, there are too few genome-wide significant
variants to perform the aforementioned strategies. For example, GWAS of schizophrenia
historically reveal few genome-wide significant variants at best. A previous GWAS, with over
6,000 individuals, identified no genome-wide significant variants . For complex traits and
diseases driven by many small genetic effects across the genome, GWAS with current sample
sizes are not powered to confidently identify these associations. While the total genetic
variance, or heritability, for many traits and diseases had been estimated in familial studies in
past years, the proportion of total heritability explained by genome-wide significant variants
turned out to be discouragingly low. This phenomenon was coined as the problem of “missing
heritability”. While there are many possible explanations for this, including 1) causal variants of
small effect size cannot be identified with current GWAS sample sizes, 2) heritability quantified

in familial studies may be overestimated, and 3) genotyping chips exclude low frequency
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variants, rare variants, and copy number variants. The same study that turned up no
genome-wide significant variants in a schizophrenia GWAS estimated that at least one-third of
the liability of the disease is attributable to common polygenic variation, undetected by GWAS.
Moreover, the authors demonstrated that schizophrenia cases had higher genetic risk scores,
an aggregate score of one’s genotype weighted by variant effect size, than controls.

These challenges in studying complex traits and diseases led to strategies that model
association statistics from common variants irrespective of their genome-wide significance. In
RA genetics, one such strategy took a similar approach to the previously discussed
schizophrenia GWAS study. In 2012, Stahl and colleagues used a polygenic risk score
approach to attribute 20% of RA heritability to 2.5 million common variants, a contribution
independent of the 25% of RA heritability attributed to the MHC . Around the same time, Yang
and colleagues devised an approach to estimate the total SNP heritability of complex traits and
diseases by computing the association between groups of variants and phenotypes, as opposed
to the traditional GWAS approach which finds associations between single SNPs and
phenotypes %. This approach, widely referred to as GCTA, established a new gold standard for
total SNP heritability estimates, replacing estimates from family studies. With GCTA, not only
was it possible to estimate the total SNP heritability of a trait, but also the relative contribution of
categories of SNPs, for example, implicating functional or regulatory programs. In 2012, Lee
and colleagues found that specifically expressed genes in the central nervous system were
disproportionately enriched for schizophrenia heritability 2. Then Gusev and colleagues found
that variants residing in cell-type-specific regulatory elements were strongly enriched for
heritability of a variety of complex traits ?. These studies began to not only identify but quantify

the contribution of different biological processes underpinning complex traits and diseases.
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Soon thereafter, Bulik-Sullivan and colleagues devised a faster and more accessible
approach called LD score regression (LDSC) to quantify the total common SNP heritability of
complex traits and diseases ?°. Concurrently, Finucane and colleagues developed a derivative
approach called stratified LDSC (S-LDSC) to quantify the contribution of different categories of
variants to that total SNP heritability . These approaches revolutionized the study of complex
traits and diseases by overcoming many of the shortcomings of previous methods. First, LDSC
and derivative methods considered all SNPs genome-wide irrespective of GWAS association,
but usually enforcing a minor allele frequency (MAF) lower bound. Second, these methods did
not assume one causal variant per locus as did strategies considering only genome-wide
significant variants and further restricting to the lead association or lead fine-mapped variant in
the locus. Third, these methods utilized summary association statistics from the GWAS and did
not require individual-level genotyping data, which often do not exist in the public domain. In this
thesis, we will use S-LDSC as the state-of-the-art approach to partition the heritability of
complex traits and diseases by functional category of SNPs.

Studies that partitioned the common SNP heritability of complex traits and diseases with
functional annotations indicating cell-type-specific histone marks?, cell-type-specifically
expressed gene sets?, and directional effects of TF binding®® shed light on the biological
mechanisms of coordinated genetic variation. However, the functional annotations of these
studies are limited in their specificity to disease-relevant biological processes. For example,
presence of the H3K4me3 histone mark indicating active promoters and enhancers in CD4+
regulatory T cells might be enriched for RA heritability, but do not mark regions specific to CD4+
regulatory T cells. These active promoters and enhancers comprise two categories: 1) those
associated with cell-type-nonspecific cell cycle and housekeeping processes and 2) those

associated with the difference in lineage specification of CD4+ regulatory T cells from other
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memory T cells. Therefore, we hypothesized that the functional annotation that best captures
disease heritability would be the one implicating pathogenic and cell-type-specific activity within
the disease-driving cell type. In order to focus on the regulatory elements that confer pathogenic
identity to disease-driving cell types, we focus on the targets of master regulator TFs that
specify differentiation paths of naive cell types to mature lineages. We further aimed to create
functional annotations that could prioritize risk variants, and thus would consist of probabilistic
SNP-level scores, as opposed to binary membership to the functional category as in previous
studies®*?. We also aimed to create functional annotations that would aggregate in silico via
predictive modeling thousands of experimental datasets to produce a comprehensive track of
disease-relevant cell-type-specific regulatory activity, as opposed to the common use of
individual experimental datasets, susceptible to noise and variation.

In this thesis, | describe the many genetic and genomic applications of designing
functional annotations that better capture both disease-relevant and cell-type-specifying
regulatory elements.

In Chapter 2, | describe our strategy to identify regulatory elements that capture
substantially larger proportions of complex trait and disease heritability than commonly used
functional annotations and the generalizability of our approach to any complex trait or disease.
Briefly, we utilize genome-wide protein occupancy profiles of master regulator transcription
factors as a basis to learn an epigenetic signature that might be representative of all
cell-type-defining regulatory elements. We demonstrate the validity of this approach by the
improvement of captured polygenic heritability compared to widely used functional annotations
derived from experiments, including histone modification ChIP-seq and RNA-sequencing.

In Chapter 3, | describe our use of these functional annotations to reduce confounding

bias in genetic association data to improve multi-ethnic transferability and study shared
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regulatory mechanisms. When quantifying the contributions of cell-type-specific regulatory
mechanisms, modeled by IMPACT, to a diverse set of complex traits and diseases, we identified
an overwhelmingly strong concordance between European and East Asian populations. We
then found that prioritizing variants in predicted disease-driving cell-type-specific regulatory
elements improved the predictive accuracy of PRS models built using European genetic data
and applied to an East Asian population.

In Chapter 4, | describe our approach to leverage single cell epigenetic data in order to
identify cellular subpopulations with different pathogenic potentials. Specifically, we perform
multi-modal data integration involving polygenic fine-mapping, single cell chromatin accessibility
assays, and functional annotation data. Our analysis revealed potential trait-driving regulatory
mechanisms of identified cellular subpopulations.

Finally, in Chapter 5, | discuss the broader implications and limitations of this work as a

whole as well as potential future directions.

10



Chapter 2

IMPACT: Genome-wide annotation of cell-state-specific
regulatory elements inferred from the epigenome of bound
transcription factors

The material in this chapter appeared in the May 2019 edition of the American Journal of
Human Genetics as “IMPACT: Genome-wide annotation of cell-state-specific regulatory

elements inferred from the epigenome of bound transcription factors” by Amariuta et al*’.

11
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Abstract

Despite significant progress in annotating the genome with experimental methods, much of the
regulatory noncoding genome remains poorly defined. Here we assert that regulatory elements
may be characterized by leveraging local epigenomic signatures where specific transcription
factors (TFs) are bound. To link these two features, we introduce IMPACT, a genome annotation
strategy which identifies regulatory elements defined by cell-state-specific TF binding profiles,
learned from 515 chromatin and sequence annotations. We validate IMPACT using multiple
compelling applications. First, IMPACT distinguishes between bound and unbound TF motif
sites with high accuracy (average AUPRC 0.81, s.e. 0.07; across 8 tested TFs) and outperforms
state-of-the-art TF binding prediction methods, MocapG, MocapS, and Virtual ChlP-seq.
Second, in eight tested cell types, RNA polymerase Il IMPACT annotations capture more
cis-eQTL variation than sequence-based annotations, such as promoters and TSS windows
(25% average increase in enrichment). Third, integration with rheumatoid arthritis (RA)
summary statistics from European (N=38,242) and East Asian (N=22,515) populations revealed
that the top 5% of CD4+ Treg IMPACT regulatory elements capture 85.7% of RA h2, the most
comprehensive explanation for RA h2 to date. In comparison, the average RA h2 captured by
compared CD4+ T histone marks is 42.3% and by CD4+ T specifically expressed gene sets is
36.4%. Lastly, we find that IMPACT may be used in many different cell types to identify complex

trait associated regulatory elements.

12



Introduction

Transcriptional regulation is the foundation for many complex biological phenotypes, from gene
expression to disease susceptibility. However, the complexity of gene regulation, controlled by

more than 1,600 human transcription factors (TFs)?®

influencing some 20,000 protein coding
genes, has made functional annotation of the regulome difficult. Tens of thousands of genomic
annotations have been experimentally generated, enabling the success of unsupervised
methods such as chromHMM? and Segway*° to identify global chromatin patterns that better
characterize genomic function. However, linking specific regulatory processes to these identified
patterns is challenging. Furthermore, although genome-wide association studies (GWAS) have

identified ~10,000 trait associated variants across hundreds of polygenic traits®', most variants

lie in noncoding regulatory regions with uncertain function.

With continually increasing numbers of genomic annotations generated from high-throughput
experimental assays, in-silico functional characterization of variants has growing potential.
These assays include genome-wide open chromatin, histone mark, and RNA expression
profiling, each separately possible at the single cell level. Initially contributed by genomic
consortia, such as ENCODE?®*? and Roadmap®, these assays have become more common place
as easy-to-implement protocols have been developed, thereby contributing to the growing rate

of genomic annotation generation.

Recently, integration of datasets, particularly those indicating regulatory elements, with GWAS
data has successfully led to the identification of categories of disease-driving variants enriched
for genetic heritability (h2)**#3*. Such regulatory annotations identify active promoters and

enhancers through open chromatin or histone mark occupancy assays in a cell type of

13
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interest''024%5_ However, these annotations include both cell-type-specific and nonspecific
elements, the latter of which may affect a wide range of cellular functions that are not
necessarily intrinsic to disease-driving cell-states. Therefore, we hypothesized that the
identification of regulatory elements specifically driving functional states would help us to not
only better characterize regulatory elements genome-wide, but also better capture polygenic h2
of complex traits and diseases. Once the most enriched classes of regulatory elements are
recognized, then it may become possible to generate biologically-founded mechanistic

hypotheses.

Here, we introduce IMPACT (Inference and Modeling of Phenotype-related ACtive
Transcription), a diversely applicable genome annotation strategy to predict cell-state-specific
regulatory elements. We take a two-step approach to define IMPACT regulatory elements. First,
we choose a single key TF, known to regulate a cell-state-specific process, and then identify
binding motif sites genome-wide, distinguishing between those that are bound and unbound
using genomic occupancy identified by ChlP-seq in the corresponding cell-state. Here, the term
“cell-state-specific” refers to the observed experimental binding sites of a key TF, which itself
may not be entirely cell-state-specific, assayed in the target cell-state. Second, IMPACT predicts
TF occupancy at binding motif sites by aggregating and performing feature selection on 503
cell-type-specific epigenomic features and 12 sequence features in an elastic net logistic
regression model. The IMPACT model framework can easily be expanded to accommodate
thousands of epigenomic annotations and is amenable to increasing rates of data generation.
From this regression we learn a TF binding chromatin profile, which IMPACT uses to
probabilistically annotate the genome at nucleotide-resolution. We refer to high scoring regions

as cell-state-specific regulatory elements (Figure 2-1). With this approach, we aim to better

14
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pinpoint sites of causal variation of gene expression and polygenic trait heritability by modeling

trait-driving cell-state-specific regulatory processes.
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Figure 2-1. IMPACT: a genome annotation strategy to identify cell-state-specific regulatory elements.
IMPACT learns a chromatin profile of cell-state-specific regulation, distinguishing master TF (red)
regulatory elements (TF-bound motif sites, blue) from inactive regulatory elements (unbound motif sites,
purple). Here, cell-state-specific open chromatin and cell-state-specific H3K4me1 are strong predictors of
cell-state-specific regulatory elements. Cell-state-nonspecific open chromatin and nonspecific H3K4me1
are less informative, marking all types of regulatory elements, while H3K9me3 strongly implicates inactive
regulatory elements. IMPACT should re-identify regulatory elements marked by master TF binding (peak
1) and those with similar chromatin profiles, presumably sites of related cell-state-specific processes
(peak 2). IMPACT should not predict regulation at cell-state-nonspecific elements (peak 3), such as

promoters of housekeeping genes.
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Material and Methods

Data
Genome-wide Annotation Data. We obtained publicly available genome-wide epigenomic
annotations including ATAC-seq, DNase-seq, FAIRE-seq, HiChIP, polymerase and elongation

factor ChlP-seq, and histone modification ChlP-seq assayed in hematopoietic, adrenal, brain,

cardiovascular, gastrointestinal, skeletal, and other cell types for the GRCh37 (hg19) assembly

(Table A-1). Sequence annotations, downloaded from UCSC, include Phastcons conservation,

exons, introns, intergenic regions, 3'UTR (untranslated region), 5UTR, promoter-TSS
(transcription start site), TTS (transcription termination site), and CpG islands. For
benchmarking IMPACT against MocapG>®, MocapS*?, and Virtual ChlP-seq®, we additionally
acquired corresponding cell-type-specific open chromatin and gene expression where
applicable (Table A-3). For models trained on Pol Il ChiP-seq, we removed Pol Il and

elongation factor ChiP-seq feature tracks from the feature library before running IMPACT.

TF ChIP-seq data. We determined genome-wide TF occupancy from publicly available
ChlIP-seq (Table A-4) of 13 key regulators (T-BET*"*8, GATA3%*, STAT3*, FOXP3*!, STAT5*,
IRF5%, IRF1%, CEBPB*, PAX5%, REST*, RXRA%, HNF4A*, TCF7L2%) assayed in primary
cell-states which they have been observed to regulate: Th1, Th2, Th17, Tregs, Tregs,
macrophages, monocytes, monocytes, B cells, fetal brain cells, brain cells, liver cells, and
pancreatic cells, respectively. We additionally acquired ChlP-seq of RNA polymerase Il in

peripheral blood/lymphocytes, fibroblasts, stomach, liver, left ventricle heart, sigmoid colon,

pancreas, and CD4+ T cells®****4"_ All ChIP-seq peaks were called by macs*® [v1.4.2 20120305]

(all P < 1e-5).
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cis eQTL data. We acquired SNP-level summary statistics from three independent studies. First,
we obtained data from 3,754 peripheral blood samples*® in which 7,025 unique genes had
measurements. As some genes were represented by several array probes, we retained only
summary statistics on one probe, selected randomly, per gene. Second, we obtained data from
GTEx V7 (Web Resources) in the following 6 cell types with the number of samples listed in
parentheses: transformed fibroblasts (300), stomach (237), liver (153), left ventricle of heart
(272), sigmoid colon (203), and pancreas (220). On average across these cell types,
approximately 22,000 genes had measurements in the GTEx data. Third, we obtained eQTL
data from CD4+ T cells in East Asian individuals (N=103) with expression measurements for
20,107 genes®. For each gene, we truncated the genome-wide summary statistics to a cis

window of 1 Mb upstream and downstream of the gene TSS.

Genome-wide association data used in S-LDSC analyses. We collected RA GWAS summary
statistics®' for 38,242 European individuals, combined cases and controls, and 22,515 East
Asian individuals, comprised of 4,873 RA cases and 17,642 controls®®. We estimated total
genome-wide polygenic RA h2 to be about 18% for EUR and 21% for EAS. We further collected
41 other complex trait summary statistics® >, Reference SNPs, used to estimate European LD
scores, were the set of 9,997,231 SNPs with minor allele count greater or equal than five in a
set of 659 European samples from phase 3 of 1000 Genomes Projects®®. The regression
coefficients were estimated using 1,125,060 HapMap3 SNPs and heritability was partitioned for
the 5,961,159 reference SNPs with MAF = 0.05. Reference SNPs, used to estimate East Asian
LD scores, were the set of 8,768,561 SNPs with minor allele count greater or equal than five in
a set of 105 East Asian samples from phase 3 of 1000 Genomes Projects®. The regression

coefficients were estimated using 1,026,051 HapMap3 SNPs and heritability was partitioned for

17


https://paperpile.com/c/s2XIAj/TFUh
https://paperpile.com/c/s2XIAj/FWfZ
https://paperpile.com/c/s2XIAj/XnKE
https://paperpile.com/c/s2XIAj/YOuz
https://paperpile.com/c/s2XIAj/3LaA+A6Hm+65GI
https://paperpile.com/c/s2XIAj/AdCZ
https://paperpile.com/c/s2XIAj/AdCZ

the 5,469,053 reference SNPs with MAF = 0.05. Frequency and weight files (1000G EUR

phase3, 1000G EAS phase3) are publicly available and may be found in our Web Resources.

Fine-mapped RA causal variation. Previous work from our group aimed to define the most likely
causal RA variant for each locus harboring a genome-wide significant variant®, identified by a
GWAS of 11,475 European RA cases and 15,870 controls®’. To this end, causal posterior
probabilities were computed with the approximate Bayesian factor (ABF), assuming one causal

variant per locus. The posteriors were defined as:
n
P, = ABFi/kZ:OABFk :

where i is the " variant and n is the total number of variants in the locus. As such, the ABF over

all variants in a locus sum to 1.

Statistical Methods

IMPACT Model. We build a model that predicts TF binding on a motif site by learning the
epigenomic profiles of the TF binding sites. We use logistic regression to model the log odds of
TF binding on a motif site, or putative binding site, based on a linear combination of the effects

[3,. of the j epigenomic or sequence features (Table A-1), where f3, is an intercept:

log (%) = ﬁO + BIXI + [:’)ZXZ + ...+ B]X]’
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where Xj is a value defining some relationship between feature j and the motif site and p is the

probability of TF binding at the motif site. From the log odds, which ranges from negative to

positive infinity, we compute the probability of TF binding, ranging from 0 to 1:

a 1
P = eGP X, +B,Xo 4B X))

We use a logistic regression framework with elastic net regularization implemented by the

cv.gimnet R [v1.0.143] package®, in which optimal [ are fit according to the following

objective function,

argming = ([Y = XBII" + 31 — I+ [IBID.

where Y represents the binary vector indicating TF bound or unbound motif sites, X is a matrix

defining the feature characterization of each motif site, and a is the mix term between the ridge
(L2), |IBII*, and lasso (L1), ||B]|. penalties, where 0 < o <1. We find that no a significantly
outperforms the others (Figure A-1). Therefore, we select a = 0.5 to make a compromise

between sparsity and information content; enforcing sparsity with lasso performs feature
selection thereby helping to avoid overfitting. However, excessive feature selection may remove
important information. We use elastic net regularization for two reasons: 1) our model has a
large number of features (N > 500) which may result in overfitting if feature selection is not
performed (L1 penalty) and 2) the L2 penalty makes the objective function convex, with one

stable solution.
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Training IMPACT. For each cell-state that we model, we train IMPACT to distinguish
cell-state-specific regulatory from non-specific or inactive regulatory regions based on
cell-state-specific binding of a single key TF. For training, we define the cell-state-specific
regulatory class as TF-bound motif sites and the non-specific or inactive regulatory class as
unbound motif sites. To define TF-bound motif sites, we use HOMER®*[v4.8.3] to scan TF
ChlIP-seq peaks for k-mers with a sequence similarity score, computed from the PWM (position
weight matrix) across k nucleotides, that is greater than or equal to the TF binding motif
detection threshold, empirically determined by HOMER. Specifically, this log-odds detection
threshold is equal to the maximum achievable log odds (computed from the PWM) minus an
empirically derived acceptable degree of mismatches. A detailed description of this calculation
may be found in the HOMER documentation (Web Resources). We have observed that at most
3 well tolerated nucleotide mismatches are permitted for every 10 nucleotides. HOMER then
scans the genome to assess if a putative motif site exceeds the detection threshold. The
motif-specific detection threshold for each TF used in this study can be found in Table A-2. To
test how sensitive our selection of training data and genomic annotation is to this parameter, we
iterated over multiple motif detection thresholds ranging from lenient to strict (Figure A-2). We
observe that small changes in the motif log-odds detection threshold lead to modest changes in
the proportion of peaks with a detectable motif. For example, decreasing the threshold by 0.5,
leads to an increase of at most 10% of ChlP-seq peaks with a detectable motif and increasing
the threshold by 0.5, leads to a decrease of at most 12% of ChlP-seq peaks with a detectable
motif. Regarding genomic annotation, we used IFN-G, the quintessential target gene of the TF
T-BET, to demonstrate how IMPACT regulatory element probabilities changed in this locus as a
result of changing the motif detection threshold (Figure A-2). For the following thresholds 4, 5,

6, 6.2 (0.5 lower than the default T-BET detection threshold), 6.7 (default threshold), 7.2 (0.5
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greater than the default threshold), 8, and 9, we find that IMPACT regulatory element
probabilities do not significantly vary over the IFN-G locus, suggesting that IMPACT genomic

annotation is not sensitive to the motif detection threshold parameter.

For each ChlP-seq peak with at least one motif match, we retain only the coordinates of the
highest scoring motif match to use in our training set. This ensures that each instance of a
bound motif site is in a separate ChlP-seq peak, which avoids double counting ChlP-seq peaks.
In terms of training a logistic regression model, this helps to ensure that no two motif instances
are in overlapping or proximal genomic coordinates and may be considered independent. We

randomly select 1,000 TF-bound motif sites in each training instance.

To define unbound motif sites, we use the genome-wide TF motif scan performed above and
select motif matches that do not overlap the corresponding TF ChlP-seq peaks. Then, we retain
the genomic coordinates of these matches. We randomly select 10,000 unbound motif sites in
each training instance. We select 1,000 bound motif sites and 10,000 unbound motif sites for
the following two reasons. First, of all tested TFs, the smallest dataset contained just over 1,000
bound motif sites. Therefore, to uniformly train IMPACT models across TFs, we required the
same number of bound motif sites be used in each instance. Second, for the purpose of
genome-wide regulatory annotation, we attempt to make our training data represent
hypothesized genome-wide regulatory proportions. To this end, we arbitrarily required 10 times
as many unbound motif sites as bound motif sites to reflect an approximate genome-wide ratio
of non-regulatory to regulatory elements, respectively®®®'. For the purposes of benchmarking
IMPACT against state-of-the-art methods, we assessed each model’s performance on the same

sets of motif sites.
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IMPACT is trained to distinguish TF-bound motif sites from unbound motif sites by their
epigenomic and sequence feature characterization. We build a feature matrix by reporting
overlap of an annotation and a motif site with a value of 1 and no overlap with a value of 0.
Each feature characterization is represented twice in the model, first with respect to local
regions, and second with respect to distal regions. In the local case, for each motif site and for
each feature, we quantify direct positional overlap. In the distal case, we quantify feature
overlap with a distal nucleotide relative to the motif site. We reason that although a motif site
may not directly overlap a particular feature, such as a promoter, it may be informative to know
that there is one nearby. For example, we might look 1,000 nucleotides away from the motif site
and report feature overlap at either the upstream or downstream position with a single value of 1
or overlap at neither with a value of 0. After parameter optimization, we set this distance value
to 1,000 nucleotides (Figure A-1). We do not use absolute distance between annotation and
motif site to characterize our feature space in the interest of computational efficiency with
specific regard to nucleotide-based genome-wide annotation. Furthermore, IMPACT prediction
performance for no TF is significantly improved by using the absolute distance feature

characterization strategy (all P > 0.60) (Figure A-3).

We note that using motif site-centric gold standards has multiple advantages over predicting TF
binding on entire ChIP-seq peak regions. First, using motif sites serves as a quality control for
pioneer TF ChIP-seq data, in which case we know the TF is interacting directly with the DNA.
Second, it provides an intuitive interpretation for binary labeling as a motif site may be either
bound or unbound. Such binary interpretation is not applicable to ChlP-seq peaks which can

each implicate hundreds of nucleotides. Rather than a TF binding uniformly throughout the
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peak, it is more likely that the ChIP-seq signal is coming from a smaller region of TF binding
within the peak, making the use of motif sites an attractive strategy to better localize the signal.
Third, it provides TF-specificity by focusing on sequences within the peak that only the TF of
interest may interact with, whereas within the coordinates of one ChIP-seq peak multiple TFs
may be binding. We also observed that on average IMPACT predicts TF binding significantly
better when using motif site-centric gold standards according to the AUPRC performance metric
(0.18 average increase in AUPRC; all student’s t-test P < 8.3e-36, except for TCF7L2) (Figure
A-3). Moreover, we find that IMPACT regulatory element probabilities are significantly higher (all
P < 0.05, student’s t-test) at nucleotides located in both a motif site and a ChIP-seq peak
(Figure A-3), suggesting that motif sites provide a non-redundant layer of regulatory information
beyond ChlP-seq peak signal. These results suggest that IMPACT’s ability to score motif sites
with higher regulatory potential might be used as a strategy to perform quality control on

ChlP-seq peaks.

To train the elastic net logistic regression model, we partition the sets of TF-bound and unbound
motif sites by randomly sampling 80% of each set, to be used for 10-fold cross validation (CV),
in which these subsets are further partitioned into 90% for training and 10% for testing. The
remaining 20%, completely unseen by the CV and not overlapping with the initial 80%, is used
as a validation set. In this binary classification problem, probabilistic outputs from the logistic
regression are made binary by applying thresholds in the CV. The threshold vector is a
sequence from 0 to 1, with resolution of 0.0025, resulting in 401 applied thresholds. We applied
IMPACT genome-wide to assign nucleotide-resolution cell-state-specific regulatory element

probabilities, using the model learned from the elastic net logistic regression CV.
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Interpreting IMPACT regulatory element probabilities. Genome-wide, IMPACT evaluates each
nucleotide’s regulatory element potential with respect to a particular TF/cell-state pair and
assigns a probability to each nucleotide. In order to understand these probabilities, we compare
their distribution across the bound motif site class and the unbound class. As expected, we
observe significantly higher IMPACT predictions at TF-bound motif sites compared to unbound
motif sites (all P < 1e-3, student’s t-test); unbound motif sites have regulatory probabilities near
0 (Figure A-4). This separation informs the interpretation of genome-wide predictions: truly
inactive/non-specific regulatory elements are expected to have predicted values close to 0,

rather than an arbitrary or uninterpretable non-zero decision boundary.

cis eQTL causal variation enrichment. We computed a genome-wide enrichment of cis eQTL
causal association across various functional annotations. To this end, we gathered gene-based
cis-window summary statistics. Then, for each gene and for each annotation, an enrichment

was calculated explicitly as:

N
(Xx°8)/N

Enrichment, , = —r—,
(.lezg)/ M
J=

where g is the gene, a is the annotation, N is the number of variants within annotation a, M is
the number of variants outside annotation a, i is the i variant, j is the j" variant, and %2 is the
chi-squared statistic of the association between gene g and SNP j or j. We then computed
genome-wide standard errors by block jackknifing the genome into 200 adjacent bins and
computed a distribution of enrichment values when leaving one bin out at a time?*. This strategy

is designed to prevent the genes of any one region of the genome from dominating the
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enrichment statistic. Furthermore, we used a permutation strategy to establish a null distribution.
To this end, we randomly permuted the chi-squared associations in the cis-window of each gene
1,000 times, while matching on 50 LD bins across the cis-window, and recomputed the
enrichment with each of the functional annotations. We estimated enrichment significance

based on how extreme our result was compared to the permutation distributions.

Partitioning heritability with S-LDSC. We apply S-LDSC* (stratified linkage disequilibrium (LD)
score regression) [v1.0.0], a method developed to partition polygenic trait heritability by one or
more functional annotations, to quantify the contribution of IMPACT cell-state-specific regulatory
annotations to 42 complex traits. We annotate common SNPs (MAF = 0.05) with regulatory
element probabilities based on cell-state-specific IMPACT models. Then, we run S-LDSC once
on the annotated SNPs to compute population-specific LD scores and again to quantify the
complex trait heritability captured by our IMPACT annotations. Here, the two statistics we use to
evaluate how well our annotations capture causal variation are enrichment and standardized

effect size (1 ¥).

If a; is the value of annotation ¢ for SNP j, we assume the variance of the effect size of SNP j

depends linearly on the contribution of each annotation c:

Var(ﬁj) = XYa,t,.
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where 1. is the per-SNP contribution from one unit of the annotation a. to heritability. To

estimate 1., S-LDSC estimates the marginal effect size of SNP j in the sample from the

chi-squared GWAS statistic ij. ;

Considering the expectation of Xf and following the derivation from Gazal et al 2017,

)= N Tt Xacbrg) + 1.

Ely1= N YrlG.o) + 1,

where N is the sample size of the GWAS, [(j,¢) is the LD score of SNP j with respect to

annotation ¢, and r/?k is the true, e.g. population-wide, genetic correlation of SNPs j and k. We

define enrichment of an annotation as the proportion of heritability explained by the annotation

divided by the average value of the annotation across the M common (MAF > 0.05) SNPs.

Enrichment may be computed for binary or probabilistic annotations according to the equation

below, where hé(c) is the h2 explained by SNPs in annotation c:

Zac (j)f(,/ZZdC (e
Enrichment = (@) / By = 1<

Yac () /M Yac () /M
J J
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Since 1. is not comparable between annotations or traits, t; is defined as the per-annotation
standardized effect size, or the proportionate change in per-SNP h2 associated with a one

standard deviation increase in the value of the annotation®. 1. is a function of the standard

deviation of the annotation ¢, sd(c), the trait-specific SNP-heritability estimated by LDSC, h2 :

and the total number of reference common SNPs used to compute h; , M =5,961,159 in

Europeans (EUR) and 5,469,053 in East Asians (EAS):

« _ sd(o)t,

T * captures the unique contribution of an annotation to capturing h2 in the S-LDSC model,
conditional on other provided annotations. Specifically, a T * of 0, means that the annotation
does not change per-SNP h2, a strongly negative t * means that membership to the categorical
annotation decreases per-SNP h2, and a strongly positive T * means that membership to the
annotation increases per-SNP h2. The significance of t * is computed based on a test of how
different from 0 the t * is. We emphasize that enrichment does not quantify effects that are
unique to a given annotation, whereas t * does. When conditionally comparing two annotations,
say A and B, in a joint S-LDSC model, both annotations may have similar enrichments if they
are highly correlated. However, the t * for the annotation with greater true causal variant
membership will be larger and more significantly positive. Previous work has reported that the

threshold for impactful values of |t *| is approximately 0.24*.
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Each S-LDSC analysis conditions IMPACT annotations on 69 baseline annotations, a subset of
the 75 annotations referred to as the baseline-LD model**; we removed 6 annotations including
T cell enhancers, since IMPACT T cell-state annotations are likely correlated. The 69
annotations consist of 53 cell-type-nonspecific annotations?, which include histone marks and
open chromatin, 10 MAF bins, and 6 LD-related annotations® to assess if functional enrichment
is cell-type-specific and to control for the effect of MAF and LD architecture. Consistent inclusion
of MAF and LD associated annotations in the baseline model is the standard recommended

practice of using S-LDSC.

Fine-mapped RA posterior probability enrichment in IMPACT regions. For each of 20 chosen
RA-associated loci®®, we computed the enrichment of posterior probabilities in the top 1% of

cell-state-specific IMPACT regulatory elements. For each RA-associated locus /, we define

M,
2P0

Enrichment = 7 ,
> /M,

where P (i) is the posterior causal probability of SNP /, such that i belongs to the top 1% of the
cell-state-specific IMPACT annotation ¢, M, is the number of SNPs in locus / for which we
previously computed a posterior probability®®. The denominator represents the null hypothesis
that each SNP in a locus is equally causal. We computed the average of these enrichment
values over the 20 RA-associated loci. We assessed significance based on comparison to
10,000 permutation distributions, designed by computing an average enrichment value over

these 20 loci, in which random posterior probabilities (of the same quantity A, ) were selected.
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Results

IMPACT accurately predicts transcription factor binding

The IMPACT model assumes that cell-state-specific TF binding sites and related regulation may
be characterized by a quantitative epigenomic signature. If this is true, IMPACT might predict
cell-state-specific genome-wide TF occupancy with high accuracy, which has proven to be a
challenging task (see ENCODE-DREAM challenge in Web Resources), leading to a diverse set
of TF binding prediction strategies®®2%® To test this model assumption, we used IMPACT to
predict regulatory elements based on experimental binding identified via ChlP-seq of eight
tested TFs assayed in eight different cell-states: T-BET, GATA3, STAT3, FOXP3, REST, HNF4A,
TCF7L2, and RNA polymerase (Pol) Il in CD4+ Th(T helper)1, CD4+ Th2, CD4+ Th17, CD4+
Treg (T regulatory), fetal brain, liver, pancreatic, and lymphocytic cells, respectively®?*"=14¢ (see
Material and Methods). We observe that IMPACT predicts TF occupancy with high accuracy
across 8 tested TFs. The average area under the precision-recall curve (AUPRC) over 50
random sampling trials is 0.81 (s.e. 0.07), computed via 10-fold cross validation on 80% of data,
with AUPRC evaluated on the withheld 20%, Figure 2-2A. We additionally evaluate IMPACT
using Matthew’s correlation coefficient (MCC), mean MCC 0.70 (s.e. 0.08), and show full
precision-recall curves (Figure A-5). Next, we compared IMPACT TF binding prediction
performance to several recent state-of-the-art methods MocapG*°, MocapS*®, and Virtual
ChIP-seq®. Briefly, MocapG is an unsupervised TF binding prediction method that models “cut
counts” from cell-type-specific open chromatin (DNase-seq) with negative binomial distributions.
MocapS is a supervised sparse logistic regression approach that predicts TF binding using
cell-type-specific DNase-seq cut count modeling from MocapG, TF footprint scores from the
same DNase-seq data, conservation scores, GC content, CpG island information, sequence

mappability scores, and distance to nearest TSS. Virtual ChlP-seq is a multi-layer perceptron
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that predicts TF binding, which similarly uses conservation, cell-type-specific DNase-seq, but
also leverages cell-type-specific gene expression from RNA-seq and TF-specific ChlP-seq data
over a range of cell types and cell lines. While benchmarking, each method had access to the
same training and testing data to ensure fair comparison. We observe that on average, across
the 8 tested TFs, IMPACT outperforms all 3 methods: AUPRC IMPACT > MocapG (all P <
1.5e-16, student’s t-test; 0.23 average increase in AUPRC), IMPACT > MocapS (all P < 5.4e-30,
except for FOXP3 (P = 0.15); 0.24 average increase in AUPRC), IMPACT > Virtual ChlP-seq (all
P < 8.5e-98; 0.62 average increase in AUPRC) (Figure 2-2A). We note that using Virtual
ChlIP-seq we were only able to predict binding for GATA3, REST, and Pol Il due to data
limitations. In light of this, we predicted Pol Il binding in 6 additional cell types: sigmoid colon,
fibroblast, left ventricle heart, liver, pancreas, and stomach. We observed that on average,
IMPACT outperforms Virtual ChlP-seq according to the AUPRC (all P < 4.9e-38, student’s t-test;
0.48 average increase in AUPRC) (Figure 2-2B). We additionally used MCC as a metric to
compare TF binding prediction performance, in which IMPACT also on average outperforms the
competing methods (all P < 2.0e-39 for MocapG, 0.30 average increase in MCC; all P < 1.2e-22
for MocapS, 0.29 average increase in MCC; all P < 1.2e-77 for Virtual ChiP-seq, 0.49 average
increase in MCC), with the following exceptions: MCC FOXP3 IMPACT < MocapG (P <

4.3e-18), Mocap$ (P < 3.9e-19) (Figure A-6).
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Figure 2-2. IMPACT outperforms state-of-the-art TF binding prediction methods. (a) IMPACT outperforms
MocapG, MocapS, and Virtual ChlP-seq in predicting cell-state-specific TF binding across 8 TFs,
illustrated by AUPRCs on the same training and testing data across 50 trials, with the exception of the
MocapS model for FOXP3. (b) Prediction of Pol Il binding in 6 cell types reveals that IMPACT outperforms

Virtual ChlP-seq.

Genome-wide IMPACT regulatory annotations

For each of the 8 tested TFs, we created genome-wide IMPACT regulatory annotations.
Focusing on the four CD4+ T cell-state IMPACT annotations, we illustrate that IMPACT
regulatory element probabilities vary dynamically within TF ChiP-seq peaks near canonical
CD4+ T cell-state genes. This reflects the high resolution information that is gained by
integrating hundreds of epigenomic and sequence annotations (Figure 2-3A, Figure A-7).

Furthermore, we observe that the most heavily weighted features from the logistic regression,
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indicating TF binding, include cell-state-specific open chromatin and activating histone
modifications, as expected (Figure 2-3B). When training on entire ChiP-seq peaks rather than
motif sites within peaks, top weighted features generally have less relevant cell-state-specificity
(Figure A-8), possibly due to high correlation of ChlP-seq signal between CD4+ T cell-states.
For example, most regulatory elements across CD4+ T cell-states may be near similar target
genes. While the motif site regions used to train each model are TF-specific, independent and
non-overlapping, we still observe relatively high correlations between CD4+ T cell-state IMPACT

annotations compared to the epigenomic annotations used to train the models (Figure A-9).
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Figure 2-3. IMPACT genome-wide regulatory tracks. (a) Cell-state-specific regulatory element IMPACT
predictions for canonical target genes of T-BET, GATA3, STAT3, and FOXP3. (b) Highly weighted features

of Th1, Th2, Th17, and Treg IMPACT annotations.

The IMPACT epigenomic feature library contains 515 features across many cell and assay
types but the importance of annotation categories is not immediately clear. To this end, we
systematically removed categories of annotations and retrained TF/cell-state models (Figure
A-10). First, we observed that TF binding predictive performance significantly decreases upon
removal of cell-type-specific features for four of seven TFs (all P < 8.1e-4, student’s t-test). For
the three TFs with no significant decrease in performance, this result suggests that presence of
annotations from biologically similar cell-states may be sufficient to train a high-performing
IMPACT model, without requiring annotations specifically assayed in the target cell-state.
Second, using just histone modification tracks resulted in significantly decreased performance
on average (all P < 6.3e-06), while using just open chromatin tracks led to decreased
performance for 5 of 7 tested TFs (all P < 2.1e-05) and did not significantly affect the
performance for STAT3 and FOXP3. Third, we observed significantly lower performance when
restricting to cell-type-specific H3K4me1 (all P < 2.0e-13), except for STAT3 where we observe
significantly higher performance (P < 2.5e-44), suggesting that using cell-type-specific features
only are generally less informative than a diversity of cell types and assay types. Fourth, we
observed that using only cell-type-specific open chromatin results in significantly lower
performance for T-BET, TCF7L2, and HNF4A (all P < 4.9e-17), while, for GATA3 and REST,
performance improved (both P < 4.5e-3); no comparison could be made for STAT3 or FOXP3
because there were no Th17 or Treg open chromatin annotations to begin with. From this, we

learn that integration of diverse cell types and assays generally leads to improved predictive
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performance. In the case of GATA3, STAT3, and REST, where the use of only cell-type-specific
annotations resulted in improved performance over the canonical IMPACT model, such models
may overfit to training data and misrepresent true TF binding patterns genome-wide. Therefore,
further assessment is necessary, specifically involving training and testing across multiple

datasets from the same cell type, which was not possible in this study due to scarcity of primary

cell TF ChlIP-seq data.

Improved enrichment of gene expression causal variation

We developed IMPACT to model regulation specific to a functional cell-state, the most general
of which may be active cellular transcription. Expression quantitative trait loci (eQTLs) are
genetic variations that modulate transcription®. Most cis eQTLs map to TSS and promoter
annotations, and more rarely to the 5° UTR®. We hypothesized that an IMPACT annotation
tracking active transcription, trained on RNA polymerase (Pol) Il binding sites, would capture cis
eQTL causal variation better than the most strongly enriched canonical eQTL-related

annotations.

We obtained SNP-level summary statistics from three independent sources: first, from a large
and previously published eQTL analysis on 3,754 peripheral blood samples*®; second, from
GTEXx V7 across 6 tissue types (average sample size = 231): transformed fibroblasts, stomach,
liver, left ventricle heart, sigmoid colon, and pancreas; and third, from a CD4+ T cell eQTL
analysis on 103 East Asian individuals®. We then used IMPACT to annotate SNPs tested in the
eQTL analysis with RNA Pol Il specific regulatory element probabilities, separately for each
tissue or cell type. In this analysis, we were limited by the availability of Pol Il ChlP-seq, for

which there is an abundance of tissue-specific data but rarely more specific cell-type level data.

34


https://paperpile.com/c/s2XIAj/Meyl
https://paperpile.com/c/s2XIAj/S2t8
https://paperpile.com/c/s2XIAj/TFUh
https://paperpile.com/c/s2XIAj/FWfZ

While tissues may contain many different cell types, we expect IMPACT to learn an epigenomic
signature as general or as specific as the training data provided. For the peripheral blood
IMPACT annotation, we combined sites of Pol Il binding in both T cells and B cells, the
predominant cell populations of peripheral blood, and trained a single IMPACT model. Next, we
computed a genome-wide enrichment (see Material and Methods) of chi-squared cis eQTL
association statistics, averaged over all genes with at least one significant eQTL, across Pol |l
IMPACT, Pol Il ChiP-seq, and several sequenced-based annotations, such as TSS windows,
promoters, and enhancers. We observed that on average Pol I IMPACT across all cell types
was more enriched for chi-squared association than the Pol Il ChlP-seq used for training (paired
t-test P < 7.7e-4, 7.3% average increase in enrichment). To compute this, we thresholded each
Pol Il ChlP-seq dataset by peak score, considering 11 uniformly spaced cutoffs, ranging from
highest scoring ChIP-seq peaks to lowest scoring, while still significant, peaks. To directly
compare with IMPACT, we appropriately thresholded each Pol || IMPACT annotation by
matching on size, e.g. the genome-wide proportion of SNPs annotated (Figure A-11). We also
computed enrichment for IMPACT at 5 other annotation size thresholds (0.5%, 1%, 2.5%, 5%,
and 10%), which resulted in larger enrichments than achievable by any thresholding of the
ChlIP-seq data. Furthermore, we observe that Pol Il IMPACT captures more chi-squared
association than sequenced-based functional annotations (student’s t-test p<4.8e-4) with the
highest performing IMPACT annotations providing a 25% average increase in enrichment over
the sequenced-based annotations (Figure 2-4). For each of the eight tissues or cell types
tested, the most enriched Pol Il IMPACT annotation outperformed all sequenced-based
functional annotations. Specifically, in peripheral blood, Pol Il IMPACT introduced a 1.7x
enrichment (permutation P < 1e-3), corresponding to a 24% average increase in enrichment

compared to the tested sequence-based functional annotations. Similarly, for transformed
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fibroblasts, Pol Il IMPACT introduced a 1.7x enrichment (30% increase); for stomach, a 1.5x
enrichment (22% increase); for liver, a 1.5x enrichment (25% increase); for left ventricle heart, a
1.5x enrichment (22% increase); for sigmoid colon, a 1.5x enrichment (22% increase); for

pancreas, a 1.5x enrichment (18% increase); and for CD4+ T cells, a 1.8x enrichment (41%

increase).
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Figure 2-4. Pol Il IMPACT captures cis eQTL causal variation better than sequence-based annotations
across 8 cell and tissue types. Enrichment of cis eQTL chi-squared association values with Pol Il IMPACT
annotations, created for peripheral blood (a), fibroblasts (b), stomach (c), liver (d), left ventricle heart (e),
sigmoid colon (f), pancreas (g), and CD4+ T cells (h), highlighting top performing IMPACT annotation
compared to enrichments of sequence-based functional annotations. Values in parentheses after
annotation name are the average annotation value across all common variants, e.g. the effective size of
the annotation. * denotes permutation P < 0.05, ** permutation P < 0.01, *** permutation P < 0.001.

Intervals at the top of each bar represent the 95% confidence interval of the enrichment estimate.

Improved capture of rheumatoid arthritis causal variation

We previously hypothesized that IMPACT annotations of pathogenic cell-states would more
precisely capture polygenic trait h2, compared to regulatory annotations that don’t resolve
cell-states. Testing this hypothesis requires a polygenic trait with a well-studied disease-driving
cell type. Genetic studies of rheumatoid arthritis (RA), an autoimmune disease that attacks
synovial joint tissue leading to permanent joint damage and disability®®, have suggested a
critical role by CD4+ T cellg''*16:17.24.2567-69 'Haowever, CD4+ T cells are extremely
heterogeneous: naive CD4+ T cells may differentiate into memory T cells, and then into effector
T cells including Th1, Th2, and Th17 and T regulatory cells, requiring the action of a limited
number of key transcription factors (TFs): T-BET or STAT4, GATA3 or STAT6, STAT3 or RORt,
FOXP3 or STAT5, respectively™. As these CD4+ T effector cell-states contribute to RA

risk™ "% we hypothesized that CD4+ T cell-state-specific IMPACT regulatory element
annotations would better capture RA h2 than annotations that generalize CD4+ T cells and

ignore the differential functionality of effector cell-states.
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To this end, we built IMPACT annotations in four CD4+ T cell-states, Th1, Th2, Th17, and Treg.
We then integrated S-LDSC?* with publicly available European (EUR, N = 38,242)*°'and East
Asian (EAS, N = 22,515)°2 RA GWAS summary statistics to partition the common SNP h2 of
RA. We use two metrics to evaluate how well our IMPACT annotations capture RA h2:

enrichment and per-annotation standardized effect size, T * (see Material and Methods).

Briefly, enrichment is defined as the proportion of h2 divided by the genome-wide proportion of

SNPs in the annotation, and T * is defined as the proportionate change in per-SNP h2

associated with a one standard deviation increase in the value of the annotation®*.

We observe that each CD4+ T cell-state-specific IMPACT annotation is significantly enriched
with RA h2 in both EUR and EAS populations (average enrichment = 20.05, all P < 1.9e-04,

Figure 2-5A, Table A-5). Furthermore, we find that T * is significantly positive for all CD4+ T

IMPACT annotations separately conditioned on the cell-type-nonspecific baseline-LD
annotations (all P < 2.1e-03, Figure 2-5B, Figure A-12), supporting the CD4+ T cell-specific
role in RA. We then selected the top 5% of regulatory SNPs according to each CD4+ T IMPACT
annotation and find that all the CD4+ T cell-state annotations explain a large proportion of RA
h2, but the Treg annotation explains the greatest proportion, capturing 85.7% (s.e. 19.4%,
enrichment P < 1.6e-5) of RA h2 meta-analyzed between both EUR and EAS populations
(Figure 2-5C). Furthermore, we observe that the top 9.8% of CD4+ Treg IMPACT regulatory
elements, consisting of all SNPs with a non-zero annotation value, capture 97.3% (s.e. 18.2%,
enrichment P < 7.6e-7) of RA h2 in EUR. This powerful result is the most comprehensive

explanation for RA h2, to our knowledge, to date.

38


https://paperpile.com/c/s2XIAj/viis
https://paperpile.com/c/s2XIAj/viis+XnKE
https://paperpile.com/c/s2XIAj/YOuz
https://paperpile.com/c/s2XIAj/3LaA

W EUR

€ N W EAS
g 8q"EWR -
5 = EAS
E 8 o |
w -
g g
= o S 2
Th1 Th2 Th17 Treg s
3% 3% 1% 2% 5 ol
‘-"o. =]
B g
“ o <
3 o
% _®EUR o
é@ = EAS S
= <
8
:"g ~ g n
5 Treg Th2 Thi7 Thi
< Thi Th2 Th17 Treg IMPACT annotation
top 5%

Figure 2-5. CD4+ T cell-state IMPACT annotations are strongly enriched for RA heritability. (a)
Enrichment of RA h2 in CD4+ T IMPACT for EUR and EAS populations. Values below cell-states are the

average annotation value across all common (MAF = 0.05) SNPs, e.g. the effective size of the annotation.
(b) Standardized annotation effect size (T *) of each annotation separately conditioned on annotations
from the baseline-LD model. For panels a and b, *** denotes P < 0.001. (c) Proportion of total causal RA

h2 explained by the top 5% of SNPs in each IMPACT annotation. For all panels, 95% CI represented by

black lines.

We then assessed if CD4+ T IMPACT annotations offered improved enrichments of RA h2
compared to canonical CD4+ T cell functional annotations, using S-LDSC and EUR RA
summary statistics (Figure 2-6A, Figure A-13). Here, we highlight our comparison of the CD4+
Treg IMPACT annotation to FOXP3 binding motif sites, genome-wide FOXP3 ChlP-seq, the
“Averaged Tracks” annotation, which assigns each SNP a value proportional to the number of

overlapping IMPACT epigenomic features, the five largest T * CD4+ T cell-specific histone mark
annotations®, the five largest T * CD4+ T cell-specifically expressed gene sets?®, and CD4+ T

cell super enhancers’’. We observe that the CD4+ Treg IMPACT annotation (enrichment = 22.9,

s.e. 4.8, P <5.2e-08) is significantly more enriched (P < 0.05) for RA h2 than the FOXP3 motif
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site annotation (enrichment not significantly different from 0), the “Averaged Tracks” annotation
(enrichment = 7.0, s.e. 1.4), all CD4+ T cell-specifically expressed gene sets (average
enrichment = 2.9, s.e. 0.8), and CD4+ T cell super enhancers (enrichment = 8.1, s.e. 1.3). On
the other hand, the FOXP3 ChlP-seq annotation (enrichment = 173.3, s.e. 58.3), which is used
to train the CD4+ Treg IMPACT model, is more strongly enriched (P < 0.05) for RA h2 than the
CD4+ Treg IMPACT annotation itself. We additionally created functional annotations
representing the overlap of TF ChlP-seq with TF motif sites, as such a combination might
improve the enrichment observed for TF ChlP-seq alone. However, these annotations are very
small (average annotation size = 0.004% of SNPs) and resulted in non-significant enrichments
in the S-LDSC framework. Finally, we observe that all compared CD4+ T cell histone mark
annotations are similarly enriched for RA h2, relative to the CD4+ Treg IMPACT annotation
(23.4x on average compared to 22.9x, respectively). We note that the average RA h2 captured
by these CD4+ T histone mark annotations, ranging in size from 1-3% of SNPs, is 42.3%; and,
the average RA h2 captured by these CD4+ T specifically expressed gene set annotations,
ranging in size from 11-13% of SNPs, is 36.4%. In terms of total RA h2 explained by a single
annotation, these values pale in comparison to the 85.7% of RA h2 captured by the top 5% of

SNPs in the Treg IMPACT annotation.
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Figure 2-6. CD4+ Treg IMPACT annotation significantly captures RA heritability conditional on strongly
enriched CD4+ T cell regulatory annotations. (a) RA h2 enrichment of the CD4+ Treg IMPACT annotation
and compared T cell functional annotations. Values below cell-states represent the effective size of the
annotation. From left to right, we compare Treg IMPACT to genome-wide FOXP3 motif sites, FOXP3
ChiIP-seq, the “Averaged Tracks” annotation, which assigns each SNP a value proportional to the number

of overlapping IMPACT epigenomic features, the top 5 cell-type-specific histone modification annotations,

in terms of independent T *, the top 5 cell-type-specifically expressed gene sets, in terms of independent
*, and T cell super enhancers. (b) CD4+ Treg IMPACT annotation standardized effect size (T *, teal)

conditional on other T cell related functional annotations (coral). T * for independent analyses are

denoted by the top of each black bar, as a reference for the conditional analyses, denoted by the top of

each colored bar. For panels a) and b), * P < 0.05, ** P < 0.01, *** P < 0.001.
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Next, in order to quantify annotation-specific effects of capturing RA h2, we computed the
per-annotation standardized effect size, T *, of each annotation from the previous analysis,
conditioned on baseline-LD annotations. We then separately conditioned each CD4+ T
cell-state IMPACT annotation jointly on the compared annotations and baseline-LD annotations.

Larger and more significantly positive T * identifies the annotation that better captures RA h2.
We observe that the T * of both CD4+ Treg and Th2 IMPACT annotations are larger and more
significantly positive (all Treg T *> 1.9, P<5.0e-3; all Th2 T *> 1.7, P<0.01) than compared T

cell annotations, excluding H3K27ac in Th2 cells, illustrated by taller teal bars than coral bars
(Figure 2-6B, Figure A-13). Here, we specifically highlight the CD4+ Treg IMPACT annotation;
although the FOXP3 ChiIP-seq annotation was more strongly enriched for RA h2 than CD4+
Treg IMPACT, the T * of the IMPACT annotation is larger and more significantly positive.
Overall, these results suggest that IMPACT annotates areas of concentrated RA h2 that other T

cell regulatory annotations do not.

IMPACT annotation effect sizes across 42 polygenic traits

We next applied our CD4+ T IMPACT annotations to 41 additional polygenic traits®°*** and
observed consistently significantly positive per-annotation standardized effect sizes, T *, for
immune-mediated traits, such as Crohn’s, “all autoimmune disease”, respiratory ear/nose/throat,
and “allergy and eczema” (mean T *=3.2; all P<5.9e-4, P < 1.9e-5, P < 3.6e-3, P < 1.7e-3,
respectively), and for several blood traits, eosinophil and white blood cell counts (mean T * =
2.5; all P < 1.6e-11, P < 0.02, respectively), but not for non-immune-mediated traits (Figure
2-7A, Table A-6). We then created several different cell-state-specific IMPACT annotations

targeting h2 in a range of traits; and, we highlight a few examples. For a liver IMPACT
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annotation, trained on HNF4A (hepatocyte nuclear factor 4A), T * is positive for
liver-associated traits*®*"? LDL and HDL (mean T * =2.0; P < 0.02, P < 1.2e-3, respectively). For
a macrophage IMPACT annotation, trained on IRF5*, T *is positive for some immune-mediated
and blood traits (mean T * = 2.8, all P < 8.2e-3) and intriguingly also for schizophrenia (T * =

0.9, P < 4.9e-5), supported by studies implicating a putative MHC association™. Finally, for a
CD4+ Treg IMPACT annotation, trained on STAT5*!, an alternative key TF for Tregs, the values
of T * across all traits resemble that of FOXP3. This suggests that IMPACT is capturing RA
polygenic h2 by annotating loci important to Treg function, rather than TF-specific loci. To
ensure that IMPACT annotations were an improvement over the original ChlP-seq used to train

each model, we compute T * across the same 42 traits for annotations created from the training

TF ChlP-seq data (Figure 2-7B). We observe fewer significant effect sizes, with the exception
of stronger T * in the T-BET ChIP-seq compared to the T-BET (Th1) IMPACT annotation, first
identified in the conditional analysis in Figure A-13. Overall, this suggests that IMPACT is a

promising strategy to identify complex trait associated regulatory elements across a range of

cell-states.
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Figure 2-7. IMPACT cell-state-specific regulatory element annotation effect sizes across 42 polygenic

traits. (a) Signed log,, P values of T * for 42 traits across 13 cell-state-specific IMPACT annotations,

capturing h2 in distinct sets of complex traits, shown by significantly positive T *. Each IMPACT

annotation is described by its target cell-state and key TF used for training in parentheses. (b) Signed

log,, P values of T * for 42 traits across annotations representing the TF ChlP-seq used to train the

corresponding IMPACT annotations. ChlP-seq annotations are described by the cell-state in which the

particular TF (in parentheses) was assayed. For both panels, color shown only if P value of T * < 0.025

after multiple hypothesis correction.

A priori functional characterization of variants

We next hypothesized that improved genomic annotation provided by IMPACT might inform

functional variant fine-mapping. Using a GWAS of 11,475 European RA cases and 15,870
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controls®, an independent study from the European RA summary statistics used in our h2
analyses, our group recently fine-mapped a subset of 20 RA risk loci, each with a manageable
number of putatively causal variants, and created 90% credible sets of these SNPs*®. We
computed the enrichment of fine-mapped causal probabilities across these 20 loci in the top 1%
of our CD4+ T cell-state-specific IMPACT annotations (see Material and Methods). We found
that the Treg annotation is significantly enriched (2.87, permutation P < 1.8e-02) while other
annotations are not (Table A-7). The Treg IMPACT annotation may thus be useful to prune
putatively causal RA variants. Furthermore, we observe uniquely high Treg enrichment in the
BACH?2 and IRF5 loci (16.2 and 8.1, respectively, Figure 2-8A), suggesting putatively causal

SNPs in these loci may function in a Treg-specific context.
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Figure 2-8. IMPACT a priori identifies variants with measured functionality. (a) Enrichment of posterior
probabilities of putatively causal RA SNPs in the top 1% of SNPs with CD4+ Treg regulatory element
probabilities highlights the BACH2, ANKRD55, CTLA4/CD28, IRF5, and TNFAIP3 loci. (b,c) IMPACT
regulatory element probabilities (black) at putatively causal SNPs with experimentally validated differential
enhancer activity (bolded) and other 90% credible set SNPs (unbolded) at two RA-associated loci,

CTLA4/CD28 and TNFAIP3.
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In the same study, our group observed both differential binding of CD4+ T nuclear extract via
EMSA and differential enhancer activity via luciferase assays at two credible set SNPs,
narrowing down the list of putatively causal variants in the CD28/CTLA4 and TNFAIP3 loci*®. We
observed that both variants with functional activity were located at high probability IMPACT
regulatory elements, suggesting that IMPACT may be used to narrow down credible sets to
reduce the amount of experimental follow up. First, at the CD28/CTLA4 locus, IMPACT predicts
high probability regulatory elements across the four CD4+ T cell-states at the functional SNP
rs117701653 and lower probability regulatory elements at other credible set SNPs rs55686954
and rs3087243 (Figure 2-8B). Second, at the TNFAIP3 locus, we observe high probability
regulatory elements at the functional SNP rs35926684 and other credible set SNP rs6927172
(Figure 2-8C) and do not predict regulatory elements at the other 7 credible set SNPs. The
CD4+ Th1 specific regulatory element at rs35926684 suggests that this SNP may alter gene
regulation specifically in Th1 cells and hence, we suggest any functional follow-up be done in
this cell-state. Fewer than 11% of the credible set SNPs in the other 18 fine-mapped loci have

high IMPACT cell-state-specific regulatory element probabilities (Figures A-14 to A-16).

Discussion

In summary, we assume that cell-state-specific regulation may be characterized by an
epigenomic signature that may be captured by the cell-state-specific binding sites of a single
key TF. To this end, we designed IMPACT to predict cell-state-specific regulatory elements
based on epigenomic and sequence profiles of experimental cell-state-specific TF binding by
performing a logistic regression on 515 such features. We specifically chose not to employ a
deep learning approach in order to retain interpretability of learned annotation weights.

Knowledge of which epigenomic or sequence feature annotations are most informative for
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predicting transcriptional regulation, which varies among cell-states, can guide where

experimental assay resources might be invested to learn more about the regulome.

We demonstrated the versatility of IMPACT as a genome annotation strategy with several
compelling applications. First, we observed that the robust epigenomic footprint of TF binding
sites allows for accurate binding prediction. Furthermore, IMPACT outperformed three
state-of-the-art methods, MocapG, MocapS, and Virtual ChlP-seq which use a compendium of
sequence-based, open chromatin and gene expression annotations to predict cell-state-specific
TF binding. We believe that this increased predictive power comes from the way in which
IMPACT learns which genomic annotations are correlated with TF binding, without knowledge of
the cell type or cell-state of interest. This is contrary to the compared methods where
cell-type-specific DNase-seq or ATAC-seq must be provided as a reference. Moreover, IMPACT
provides epigenomic annotations from a wide variety of cell types and assay types which
provide complimentary information. We note that we restrict binding prediction to motif sites for
each TF in a given cell type. Moreover, validation in a completely independent ChlP-seq dataset

was not possible due to the scarcity of primary cell TF ChlP-seq data.

Second, using Pol Il IMPACT annotations, for eight tested tissue and cell types, we more
precisely captured causal variation of gene expression than by using Pol || ChlP-seq and
sequence-based annotations. Our results argue that Pol || IMPACT regions better localize active
promoter and proximal regulatory regions driving eQTLs than the compared canonical genomic
annotations, which may be less specific due to their larger sizes and restrictive binary
characterization. This suggests that IMPACT may be more effective at prioritizing causal SNP

variation when fine-mapping eQTLs. These results also argue that the biological basis of eQTLs
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are related to Pol Il binding regions, which is a refinement over previous observations that eQTL

causal variation is concentrated near and around TSS and promoter regions.

Third, we more precisely captured causal variation of complex traits. Our CD4+ T IMPACT
annotations capture more RA h2 than most canonical CD4+ T cell regulatory annotations. Our
findings further reinforce that IMPACT annotations, as an aggregation of hundreds of regulatory
annotations, are more informative than single annotations. This is exemplified by the finding that
FOXP3 ChlIP-seq is strongly enriched for RA h2; and, while this annotation was used as training
data for IMPACT, the CD4+ Treg IMPACT annotation captured more RA h2, evident by a larger,

more significant annotation effect size, T *, in the joint analysis. Furthermore, we showed that

CD4+ T cell IMPACT annotations explain similar proportions of RA heritability in both European
and East Asian populations, suggesting that biological mechanisms driving RA may have similar
genetic and regulatory bases in these two populations. We also demonstrated that our approach

is generalizable to other trait-driving cell types by showing significantly positive T * of IMPACT

annotations for 21 of 42 tested complex traits. In particular, CD4+ T IMPACT annotations also
captured significant h2 of autoimmune and immune-mediated traits, which is expected given the
central role of CD4+ T cells to the immune system and perhaps shared genetic architecture of
these traits. We find that h2 of intuitively brain-related traits such as schizophrenia, anorexia,
and autism is not captured by brain IMPACT annotations, perhaps suggesting that more
complex, cross-cell-type regulatory networks are core to the genetic risk of these traits. Rather,
brain IMPACT annotations capture h2 of traits such as menarche age, smoking, and height. We
note that we targeted specific polygenic traits using a priori knowledge of the cell-states that
were most likely to be driving causal biology. To better refine or inform the choice of relevant cell

type, we recommend integrating IMPACT with previously published approaches, such as

48



RolyPoly™, which prioritizes cell types with respect to a particular trait, based on linking single
cell gene expression to GWAS summary statistics. We note that S-LDSC analyses exclude the
major histocompatibility complex due to its extremely high gene density and outlier LD structure,
which is thought to be the strongest contributor to RA disease h2'°. However, our work supports

the notion that there is an undeniably large amount of RA h2 located outside of the MHC.

Lastly, we demonstrated that IMPACT may identify functional variants a priori and suggest the
relevant cell-state contexts in which these functional variants may act. We note that
disease-relevant IMPACT functional annotations may be integrated with existing functional fine
mapping methods, like PAINTOR or CAVIARBF"’, to assign causal posterior probabilities to

variants.

We recognize several important limitations to our work. First, we have not experimentally
validated the activity of any of our predicted regulatory elements. Second, predicted regulatory
elements are limited to genomic regions that have been epigenetically assayed. Third, IMPACT
as presented in this study, is limited to cell-states in which ChlP-seq of a key TF has been
performed. Furthermore, some TFs are key regulators in more than one cell type or cell-state,
which should not compromise the cell-state-specificity of the learned IMPACT annotation. We
note that cell-state-specificity is not gained from the TF itself, but from the unique binding
patterns of the TF in a modeled cell-state. For example, the CD4+ T cell TFs, for which we
create IMPACT annotations, are also key regulators in analogous cell-states of ILCs (innate
lymphoid cells)’®. Under the assumption that these key TFs regulate different sets of genes in
the analogous cell-states, cell-state-specific IMPACT annotations learned from, for example,

T-BET in CD4+ Th1s should be distinguishable from an annotation learned for T-BET in ILC1s.
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Due to the lack of functional data on ILCs, we were not able to test this claim. However, as more
cell-state and cell type data is generated, especially on more fine resolution cellular populations,
better regulatory annotations may be produced. Moreover, these new functional annotations
might nominate other or more precise cellular populations, compared to the ones considered in
this study, for explaining polygenic trait heritability and capturing fine-mapped causal variation.
While we highlight strong enrichments of IMPACT models trained on CD4+ T cell TFs,
especially FOXP3, we acknowledge that it is certainly possible that other cell types and factors
play important roles that we have not explored in this study. Fourth, S-LDSC heritability
analyses results may be sensitive to the size of the annotation and we recommend enforcing
reasonably large annotation sizes, for example at least 0.1% of the genome (Figure A-17). In
light of these limitations, IMPACT is an emerging strategy for identifying trait associated
regulatory elements and generating hypotheses about the cell-states in which variants may be
functional, motivating the need to develop therapeutics that target specific disease-driving

cell-states.

Web Resources

1. S-LDSC tutorial and instructions: github.com/bulik/Idsc

2. 1000G: www.1000genomes.org

3. RA EUR summary statistics:
http://plaza.umin.ac.jp/yokada/datasource/software.htm

4. RA EAS summary statistics: http://jenger.riken.jp/en/result

5. 1000G Phase 3 LD scores, CD4+ T cell specifically expressed genes (binary
functional annotations): http://data.broadinstitute.org/alkesgroup/LDSCORE/

6. Immgen.tsv: https://gist.github.com/nachocab/3d9f374e0ade031c475a
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7. GTEx data: https://gtexportal.org/home/
8. HOMER: http://homer.ucsd.edu/homer/motif/

9. IMPACT GitHub repository: https://github.com/immunogenomics/IMPACT
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Chapter 3

Improving the trans-ethnic portability of polygenic risk
scores by prioritizing variants in predicted cell type
regulatory elements

The material in this chapter appeared on bioRxiv on February 28, 2020 and is currently in

revision at Nature Genetics.
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Abstract

Poor trans-ethnic portability of polygenic risk score (PRS) models is an important issue caused
in part by Eurocentric genetic studies and in part by limited knowledge of causal variants shared
among populations. Hence, leveraging noncoding regulatory annotations that capture genetic
variation across populations has the potential to enhance the trans-ethnic portability of PRS. To
this end, we constructed a unique resource of 707 cell-type-specific IMPACT regulatory
annotations by aggregating 5,345 public epigenetic datasets to predict binding patterns of 142
cell-type-regulating transcription factors across 245 cell types. With this resource, we partitioned
the common SNP heritability of diverse polygenic traits and diseases from 111 GWAS summary
statistics of European (EUR, average N=180K) and East Asian (EAS, average N=157K) origin.
For 95 traits, we were able to identify a single IMPACT annotation most strongly enriched for
trait heritability. Across traits, these annotations captured an average of 43.3% of heritability
(sem = 2.8%) with the top 5% of SNPs. Strikingly, we observed highly concordant polygenic trait
regulation between populations: the same regulatory annotations captured statistically
indistinguishable SNP heritability (fitted slope = 0.98, sem = 0.04). Since IMPACT annotations
capture both large and consistent proportions of heritability across populations, prioritizing
variants in IMPACT regulatory elements may improve the trans-ethnic portability of PRS.
Indeed, we observed that EUR PRS models more accurately predicted 21 tested phenotypes of
EAS individuals when variants were prioritized by key IMPACT tracks (49.9% mean relative
increase in R* ). Notably, the improvement afforded by IMPACT was greater in the trans-ethnic
EUR-to-EAS PRS application than in the EAS-to-EAS application (47.3% vs 20.9%, one-tailed
paired wilcoxon P < 0.012). Overall, our study identifies a crucial role for functional annotations

such as IMPACT to improve the trans-ethnic portability of genetic data.
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Introduction

An important challenge for complex trait genetics is that there is no clear framework to
transfer population-specific genetic data, such as GWAS results, to individuals of other
ancestries’®'. The importance of this challenge is accentuated by the fact that approximately
80% of all genetic studies have been performed with individuals of European ancestry,
accounting for a minority of the world’s population®. This is exacerbated by the fact that
population-specific linkage disequilibrium (LD) between variants confounds inferences about
causal cell types and variants (Figure 3-1A)*2*%_ GWAS have the potential to revolutionize the
clinical application and utility of genetic data to the individual, exemplified by current polygenic
risk score (PRS) models'®'*%*% However, while the utility of PRS models relies on accurate
estimation of allelic effect sizes from GWAS and benefits from genetic similarity between the
target cohort and the training GWAS cohort, recent studies have explicitly observed a lack of
trans-ethnic portability'®°818391.92 The Eurocentric GWAS bias has led PRS to be more
predictive in European populations, as the largest training data comes from European
GWAS?18386:9394  Ag g result, variants used in European PRS tend to be more common among
Europeans and less common among non-Europeans. Common variants carry greater disease
predictive power which directly contributes to Eurocentric bias in PRS accuracy®'. The
trans-ethnic portability of PRS would not be as critical an issue if large GWAS were performed
in all non-EUR populations. Previous studies have extensively shown that functional annotations
can improve PRS models when learned and applied to the same population®*®, by introducing
biologically-relevant priors on causal effect sizes and compensating for inflation of association

statistics by LD. However, the potential for functional annotations to improve trans-ethnic PRS
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frameworks, where the influences of population-specific LD are more profound, has not yet

been extensively investigated.
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Figure 3-1. Study design to identify regulatory annotations that prioritize regulatory variants in a
multi-ethnic setting. A) Population-specific LD confounding and subsequent inflation of GWAS
associations complicate the interpretation of summary statistics and transferability to other populations;
functional data may help improve trans-ethnic genetic portability. B) Prism of functional data in IMPACT
model: 707 genome-wide TF occupancy profiles (green), 5,345 genome-wide epigenomic feature profiles
(blue), and fitted weights for these features (pink) to predict TF binding by logistic regression. Using
IMPACT annotations, we investigate 111 GWAS summary datasets (yellow) of EUR and EAS origin. C)
Compendium of 707 genome-wide cell-type-specific IMPACT regulatory annotations. D) Annotations that
prioritize common regulatory variants must |) capture large proportions of heritability in both populations,
II) account for consistent marginal effect size estimations between populations and Ill) improve the

trans-ethnic application of PRS.
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However, designing functional annotations that may improve PRS models is challenging.
Functional annotations that best capture polygenic trait genetic variation must identify a large
number of functional variants genome-wide without compromising specificity for trait-relevant
regulatory programs. Pinpointing these mechanisms is especially difficult despite the fact that
genome-wide association studies (GWAS) have identified thousands of genetic associations
with complex phenotypes'®*'*2% |t has been estimated that about 90% of these associations
reside in protein noncoding regions of the genome, making their mechanisms difficult to
interpret'®>®®. Defining the etiology of complex traits and diseases requires knowledge of
phenotyping-driving cell types in which these associated variants act. Transcription factors (TFs)
are poised to orchestrate large polygenic regulatory programs as genetic variation in their target
regions can modulate gene expression, often in cell-type-specific contexts?**°. Genomic
annotations marking the precise location of TF-mediated cell type regulation can be exploited to
elucidate the genetic basis of polygenic traits.

To overcome these challenges, we previously developed IMPACT, a genome-wide
cell-type-specific regulatory annotation strategy that models the epigenetic pattern around TF
binding using linear combinations of functional annotations?. In rheumatoid arthritis (RA),
IMPACT CD4+ T cell annotations captured substantially more heritability than functional
annotations derived from single experiments, including TF and histone modification ChIP-seq®.
In this study, we expanded this approach by aggregating 5,345 functional annotations with an
identical implementation of the IMPACT model framework using the same set of optimized
parameters as previously calibrated. We created a powerful and generalizable resource of 707
cell-type-specific gene regulatory annotations (Web Resources) based on binding profiles of
142 TFs across 245 cell types (Figure 3-1B,C). This study builds on our previous work?” in

which we created 13 annotations (13 TF-cell type pairs) based on 515 functional annotations;
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we observed remarkable consistency of IMPACT predictions for the same TF-cell type pair
despite different training data and epigenetic features (Figure B-1). Assuming that causal
variants are largely shared between populations®'®°, we hypothesized that restricting PRS
models to variants within trait-relevant IMPACT annotations, which are more likely to have
regulatory roles and less likely to be solely associated via linkage, will especially improve their
trans-ethnic portability.

In this study, we identify key IMPACT regulatory annotations that capture genome-wide
polygenic mechanisms underlying a diverse set of complex traits, supported by population
non-specific enrichments of genetic heritability, multi-ethnic marginal effect size correlation (a
possible mechanism of improved PRS), and improved trans-ethnic portability of PRS models
(Figure 3-1D). Here, we defined and employed our compendium of 707 IMPACT regulatory
annotations to study polygenic traits and diseases from 111 GWAS summary datasets of
European (EUR) and East Asian (EAS) origin. Assuming shared causal variants between
populations, annotations that prioritize shared regulatory variants must (1) capture
disproportionately large amounts of genetic heritability in both populations, (2) be enriched for
multi-ethnic marginal effect size correlation, and (3) improve the trans-ethnic applicability of
population-specific PRS models. Using our compendium of regulatory annotations, we identified
key annotations for each polygenic trait and demonstrated their utility in each of these three
applications toward prioritization of shared regulatory variants. Overall, this work improves the
interpretation and trans-ethnic portability of genetic data and provides implications for future

clinical implementations of risk prediction models.
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Material and Methods

Data

TF ChIP-seq data. On October 15, 2015, we downloaded all available transcription factor (TF)
chromatin immunoprecipitation followed by sequencing (ChlP-seq) data derived from human
primary cells or cell lines deposited on NCBI GEO (n = 13,732 datasets). Then we retained
accessions for which input ChlP-seq (control data) were also generated and made publicly
available (n = 3,181 of 13,732). We downloaded raw sequencing data in SRA format from NCBI
GEO, then converted the data to FASTQ format using the SRA Toolkit function fastg-dump,
used FastQC for quality assessment of sequencing reads, and finally mapped reads to the
human genome (hg19/GRCh37) with Bowtie2 [v2.2.5] using default parameters. All ChlP-seq
datasets were matched to corresponding control data from which peaks were called with macs
[v2.1] with q value < 0.01 under a bimodal model, producing 3,181 bed file-formatted files''"".
For compatibility with the IMPACT method, we selected TFs with a known sequence motif, as
recorded in the MEME database. Of the 442 TFs represented by the 3,181 TF ChIP-seq
datasets, only 142 matched a known sequence motif, narrowing down the total number of
considered datasets to 1,542. There was no dataset removal based on cell type classification.
Of the 1,542 datasets (each characterized by a TF-cell type pair), there were 728 unique TF-cell
type pairs, meaning many pairs have been assayed more than once. As described below in
Statistical Methods: Training IMPACT, we took the union of peaks among different
experiments of the same TF-cell type pair. Therefore, the number of consolidated TF ChIP-seq
datasets (n = 728 is < 1,542). Then for each of 728 datasets, we scanned TF ChIP-seq peaks
for corresponding TF motifs, as described below in Statistical Methods: Training IMPACT. We

removed consolidated datasets with fewer than 7 peaks with TF motifs, the lower bound at

which the logistic regression could converge, resulting in 707 consolidated datasets. Regarding
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the corresponding GEO accessions, this removal reduced the 1,542 utilized GEO accessions to
1,511. The 1,511 datasets account for 707 unique TF-cell type pairs, 142 unique TFs and 245
unique cell types or cell lines. These 1,511 datasets selected for use with our IMPACT model

framework are described in Table B-1, including accession codes and experimental details.

Genome-wide annotation data. We augmented our set of 515 publicly available epigenomic
and sequence feature annotations from our previous study?” with 116 personally curated
datasets from NCBI, 2,593 ENCODE histone ChIP-seq datasets and 2,121 ENCODE open
chromatin DNase-seq datasets ', all publicly available at the accessions provided in Table B-2.
All files were collected in 6-column standard bed file format. This augmentation brought the total

number of features to 5,345.

Genome-wide association data. We collected publicly available summary statistics data for
111 genome-wide association studies (GWAS) across separate cohorts of East Asian and
European individuals®3*'%, East Asian GWAS data were collected from Biobank Japan (BBJ)
while European GWAS data were collected from either UKBioBank (UKBB) or the GWAS
catalog, referred to as PASS (publicly available summary statistics) (Table B-3). Since our
analysis utilized S-LDSC which is based on the polygenic inheritance model, it is crucial to
include summary statistics of GWAS conducted in large-scale samples®. First, we included
summary statistics of EUR GWAS in which biologically plausible polygenic signals were
confirmed in previous studies (Table B-3), beginning with the set of summary statistics (n = 42)
we had previously downloaded from the Price Lab (Web Resources) and used in our previous
work?’. Next, we included additional diseases/traits for which both EAS (specifically BBJ) and

EUR GWAS summary statistics are available. We chose to focus this study on EUR and EAS
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populations, as there is a very limited number of large GWAS in populations other than EUR
and EAS®1%41%5 As plood quantitative trait GWAS and disease GWAS were available from BBJ,
we sought to collect matching EUR GWAS datasets to maximize phenotype overlap between
populations. We included studies where cases were diagnosed by a physician and excluded
studies which utilized self-reported cases, aiming to prepare comparable phenotypes between
EAS and EUR GWAS. We downloaded such data from Riken, the Neale Lab, and the GWAS
Catalog (Web Resources). In summary, we collected summary statistics of 42 EAS and 69
EUR GWAS. All summary statistics used had an observed scale heritability z-score > 1.96 as
estimated by S-LDSC. All GWAS summary statistics were reformatted to be compatible with
S-LDSC (see below) and thus contained the following information for each SNP (per row): rsiD,
A1 (reference allele), A2 (alternative allele), GWAS sample size (effective sample size per SNP,
may vary with genotyping), chi-square statistic, z-score. For multi-ethnic genetic correlation and
polygenic risk score prediction, all GWAS summary statistics were reformatted to contain the
SNP ID (chr_position_A1_A2), chromosome, base pair, A1, A2, effect size estimate, effect size

estimate standard error, and P-value.

Cell-type-specifically expressed gene set (SEG) and cell-type-specific histone
modification (CTS) annotations. We downloaded 513 publicly available SEG annotations for
European SNPs from phase 3 of 1000 Genomes (see Web Resources)®. SEG annotations are
binary; each SNP is assigned a 1 or a 0, indicating that the SNP does or does not lie,
respectively, within 100 kb of the gene body of the corresponding gene set®. We downloaded
220 publicly available CTS annotations of peak data in bed file format, from which we annotated

106 (

European SNPs from phase 3 of 1000 Genomes'® (see Web Resources)*. These annotations

are also binary, in which case each SNP is designated a 1 or a 0, indicating that the SNP does
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or does not like, respectively, within the peak of histone modification. We also acquired the
corresponding SEG and CTS SNP-level annotations for East Asian SNPs from phase 3 of 1000
Genomes from a previous study'®. For all annotations, we used S-LDSC to compute LD scores
and partitioned heritability using a customized version of the baselineLD annotations as

described below.

Deep Learning annotations from DeepSEA and Basenji. For each commonly varying
SNP, we assigned a sequence-mediated predicted activity score using two pre-trained

deep learning models, DeepSEA'" and Basen;ji'®

. We assigned two types of activity
scores; 1) allelic-effect and 2) variant level, as per the nomenclature previously used'®.
For the DeepSEA model, the allelic-effect annotations represent the predicted change in
the probability of TF binding, histone marks or DHS of the region around the SNP as a
result of the change from reference to alternative allele. Similarly, for the Basenji model,
the allelic-effect annotations represent the predicted change in aligned fragments to the
region around the SNP as a result of the change from reference to alternative allele for
DHSes, histone marks, or CAGE features. In both cases, we used pre-trained models
from the respective studies with the recommended parameter settings used in the model
training. These computations were performed using 1 GPU Tesla M40 card. For the
allelic-effect activity score at a SNP, we take an ensemble of the predictions for the SNP
over sequences with the SNP at the center, shifted 1 position to the left, or shifted 1
position to the right. For variant level predictions, we compared allelic-effect scores with
the predicted epigenomic accessibility, characterized either by predicted number of

aligned fragments for histone marks, DHS or CAGE features (as in Baseniji) or predicted

probability of TF binding, histone marks, or DHS (as in DeepSEA), in a 1 kb window
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around a SNP. These predictions are a denoised estimate of the Roadmap peak

intensities as learned from sequence'®.

We downloaded 32 publicly available deep learning annotations for European SNPs from
phase 3 of 1000 Genomes and used S-LDSC to compute LD scores (see Web
Resources). The 32 annotations were comprised of Basenji'® and DeepSEA'” deep
learning predictions corresponding to DHSes, H3K27ac, H3K4me1, and H3K4me3
meta-analyzed separately for blood and brain cell types and computed for both allelic

effect and variant level models'®

. Additionally, we analyzed 78 new tissue-specific variant
level and allelic effect annotations from DeepSEA and Basenji models. These 78
annotations corresponded to cell types that we identified as drivers of any of the five
representative traits (asthma, height, MCV, RA, and PrCa). These 78 annotations extend

beyond histone marks and DHS features used previously'®

, accounting also for TF
binding (DeepSEA) and CAGE features (Basenji). All 78 annotations are reported in

Table B-11.

We also trained new allelic effect DeepSEA models on the TF ChlP-seq used to train
what we identified as lead IMPACT annotations (13 unique) for the 21 traits investigated
in the PRS analysis. We employed DeepSEA as previously described using default
parameters, 1 Quadro GV100 (NVIDIA) GPU, Selene (v0.4.7), PyTorch (v1.3.1) """ For
training the DeepSEA model, we used the genomic sequences corresponding to each of
the 13 TF ChlP-seq peak sets as well as any regions where ENCODE or the Roadmap
Epigenomics DeepSEA dataset contained at least one TF binding event. As done in the

original DeepSEA study, we randomly sampled 1 kb sequences (hg19) from regions
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included ENCODE, Roadmap, or our TF ChlP-seq data. Considering each training TF
ChlIP-seq dataset separately, we determine positive samples as follows as done in the
original DeepSEA study: if more than 100 bp of the center 200 bp of the 1kb sequence
falls in our provided TF ChlP-seq peaks, this sequence is labeled with a 1, else 0.
DeepSEA accurately predicted TF binding, average AUROC = 0.93, sem = 0.007; training
was performed on chromosomes 1-5 and 10-22, testing was performed on chromosomes

8-9, and validation was performed on chromosomes 6-7.

BioBank Japan data. For PRS analysis, we utilized phenotype and genotype data of the
BioBank Japan Project (BBJ)""""2. All of the calculations related to PRS were conducted on the
RIKEN computing server. BBJ is a biobank that collaboratively collects DNA and serum samples
from 12 medical institutions in Japan. This project recruited approximately 200,000 patients with
the diagnosis of at least one of 47 diseases. Informed consent was obtained from all
participants by following the protocols approved by their institutional ethical committees. We
obtained approval from the ethics committees of the RIKEN Center for Integrative Medical

Sciences and the Institute of Medical Sciences at the University of Tokyo.

Statistical Methods
IMPACT Model. We implemented our previously defined model to predict TF binding on a motif
site. This model regresses the likelihood (p) of a binding event on the epigenomic profile of the

motif site, in a logistic regression framework over j epigenomic features as follows:

log (]_—pp) = BO —+ lel + [32X2 + +I?)JXI
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We use a weighted average of ridge and lasso regularization terms in the objective function to
restrict the magnitude of fit coefficients and enforce sparsity to reduce overfitting, respectively,

as follows:

argming = (||Y — XBIP* + 10 - WIBI” + o [IBID-

Training IMPACT. We trained an IMPACT model for each unique cell type-TF pair present in
our data collection. Our collection consists of 3,181 TF ChlP-seq profiles, representing 442 TFs,
296 cell types, and 24 tissues. The IMPACT model requires that the assayed TF has a distinct
binding motif and so we removed all ChiP-seq datasets corresponding to a TF that did not have
a known sequence motif in MEME, Jaspar, or Transfac databases. This resulted in 1,542 TF
ChlIP-seq profiles across 142 TFs, 245 cell types, 23 tissues, and 728 unique combinations of
TFs and cell types. As we did in our previous study®’, we merged experiments of the same
TF-cell type combination by taking the union of the peaks. We next identified motif sites bound
by a TF by using HOMER [v4.8.3]""® to scan ChlIP-seq peaks for motif matches exceeding the
empirically determined motif detection threshold. Similarly, we identified motif sites not bound by
a TF by using HOMER to scan the entire genome for sequence matches. 21 of these models
did not contain sufficient overlap between TF sequence motifs and ChlP-seq peaks which would
lead to underfitting in the logistic regression (fewer than 7), thereby resulting in 707 total
possible IMPACT annotations. We then trained 707 IMPACT models using up to 1,000
TF-bound sequence motifs (evidenced by ChlP-seq) and 10,000 unbound sequence motifs. To
assess the predictive accuracy of IMPACT, we evaluated the AUPRC (area under the
precision-recall curve) which is appropriate for classification tasks with considerable class

imbalance. Accounting for the true ratio of bound to unbound motifs genome-wide, which is
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unique to each model but averages to 0.03, the average AUPRC was 0.53 (sem = 0.01). Using
the class imbalance defined by the model (1,000 / 10,000 = 0.1), the average AUPRC was 0.74
(sem = 0.008). For each of 707 TF-cell type pairs, we learned a predictive model of TF binding

and annotated SNPs genome-wide for both EUR and EAS populations, with a mean regulatory

probability per nucleotide of 0.02 (sem = 7.5e-4).

Assessing cell type specificity of IMPACT tracks. We acquired lists of specifically expressed
genes in 9 different cell types: T cells, B cells, fibroblasts, monocytes, brain, liver, colon,
prostate, and breast according to differential gene expression t-statistics from previous work?®,
specifically labeled as T.4+8int.Th, B.Fo.LN, Cells_Transformed_fibroblasts, Mo.6C+lI-.LN,
Brain_Cortex, Liver, Colon_Transverse, Prostate, Breast Mammary_Tissue, respectively from
either ImmGen or GTEx databases. Large and positive t-statistics represent greater specificity
of gene expression in the target cell type, large but negative t-statistics represent specifically
repressed genes, and t-statistics near 0 represent nonspecific gene expression, representing
commonly expressed genes. For each cell type, we selected the 100 genes with highest
t-statistics, e.g. specifically expressed (SE) genes, and 100 genes such that -0.5 < t-statistic <
0.5, e.g. not specifically expressed genes (NS). For each cell type separately, we collected all
related IMPACT annotations from the compendium of 707 total annotations. Then for each
annotation separately, we computed the average IMPACT score over all EUR SNPs from phase
3 of 1000 Genomes within 2kb of each SE or NS gene body. Finally, we computed the average

across all 100 SE and 100 NS genes, separately.

Partitioning heritability with S-LDSC. We applied S-LDSC [v1.0.0]* to partition the common

(MAF > 5%) SNP heritability of 111 polygenic traits and diseases, with significantly non-zero
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heritability estimates (P < 0.05). Here, the term heritability is defined as previously?, referring to
inferences made by S-LDSC about heritability causally explained by common SNPs. This is a
different quantity than genotyping-array-based SNP-heritability"*"°. We partitioned heritability
using a customized version of the baselineLD model, in which we excluded cell-type-specific
regulatory annotations (as we would be testing the enrichment of such annotations from
IMPACT). In total, we used 69 cell-type-nonspecific baselineLD annotations and added one or
more IMPACT annotations to the model to test for cell-type-specific enrichment. We use three
metrics to evaluate how well our IMPACT annotations capture polygenic heritability:
enrichment®, the proportion of heritability explained by the top 5% of SNPs?*, and
per-annotation standardized effect size, t ***. Briefly, enrichment is defined as the proportion of
common SNP heritability divided by the genome-wide proportion of SNPs in the annotation, for
continuous annotations this is the average annotation value across SNPs. t * represents the
average per-SNP heritability of a category of SNPs, where a single SNP may claim membership
to one or more categories. 1 * is defined as the proportionate change in per-SNP heritability
associated with a one standard deviation increase in the value of the annotation. The sum of the
T * over categories of SNPs equals the total estimated heritability of the trait. T * has units of
heritability and is comparable between traits, annotations, and populations, because it is
normalized for the total heritability (indicative of the power of the GWAS), the dispersion of the
annotation values (annotation size), and the number of common SNPs (population-specific)
considered in the model, respectively. T, the precursor of t *, is the coefficient estimated in the
S-LDSC regression. T and t * are conditionally dependent on the provided baselineLD
annotations. Therefore, the t * estimate for an IMPACT annotation is considered a measure of
cell-type-specific or annotation-specific SNP heritability, as the remaining annotations in the

model (baselineLD) are not cell-type-specific. Significance of t * is computed using a z-test of
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how different the t * estimate is from 0; the significance of strictly positive t * estimates are
reported in our study. A negative t * would indicate a depletion of heritability, suggesting that

lower values of the annotation are more enriched for trait-associated genetic variation.

Measuring heritability in top X% of SNPs of a continuous annotation. To partition the
heritability captured by various top echelons of SNPs of a given continuous annotation, we used
the same strategy as in a previous study**. By this strategy, the proportion of heritability
explained by a set of SNPs is the sum over all SNPs of the product of the t * of each category
in the S-LDSC model, e.g. baselineLD plus IMPACT annotation, and the SNP membership to
that category (1 or 0 in the case of binary annotations, continuous values in the case of

continuous annotations) divided by the same metric for all SNPs genome-wide.

Conditional S-LDSC analysis to identify independent annotation-trait associations. Due to
the redundancy in modeled cell type programs and inherent covariance of IMPACT annotations
(Figure B-3), the T * associations we find with S-LDSC cannot be independent. To this end, for
each of 95 traits across EUR and EAS for which we identified a lead IMPACT annotation,
reported in Table B-9, we performed a series of conditional analyses using S-LDSC. For each
trait with more than one significant t * association, we created S-LDSC models consisting of the
69 baselineLD annotations, the lead annotation for that trait, and separately, each remaining
significant IMPACT annotation. We kept annotations that retained their t * significance when
conditioned on the lead annotation(s), which we also required to retain significance. We
iteratively performed these conditional analyses until we were no longer able to identify

independent t * associations.
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Deming regression of EUR t * on EAS t * As there is significant correlation among IMPACT
annotations, due to redundancy in cell type regulatory elements, we used an iterative pruning
approach, similar to LD-pruning, to identify independent IMPACT annotations. For each trait, we
ranked all 707 IMPACT annotations by their t * significance values. Then, we selected the lead
annotation, removed all annotations correlated with Pearson r > 0.5, and selected the next lead
annotation, and so on. This approach produced a set of relatively independent annotations, for
which the assumptions of Deming, or any, regression would not be violated. For each trait, we
ran Deming regression over approximately 100 independent IMPACT annotations using the R
function deming within the package deming. Across independent observations for all traits, we
tested the null hypothesis that the slope of the Deming regression, which considers standard

errors on both the predictor (EUR t *) and response variables (EAS t *), is equal to 1.

Multi-ethnic and within-population genetic correlation. We computed the genetic correlation
(R, ) between pairs of 29 traits for which we acquired EUR and EAS GWAS using Popcorn
[v.0.9.6]"® with default parameters, including maximum likelihood estimation as opposed to
regression®’. First, we computed cross-population scores between the two populations using the
compute flag with the popcorn executable, indicating approximately the correlation between LD
at each SNP using EUR and EAS reference LD panels from phase 3 of 1000 Genomes. Then,
we used the fit flag with the popcorn executable to compute the multi-ethnic genetic correlation
of these 29 traits. R, estimates computed after restricting to MAF > 5% did not significantly
differ from no MAF restriction. Popcorn computes R, using either “genetic impact” (effect sizes
normalized by allele frequency) or “genetic effect” (unmodified effect sizes). We observed no
significant heterogeneity between the R, computed using “genetic impact” and “effect”,

although “genetic effect” estimates were consistently but not significantly larger.
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We then computed cross-trait cross-population genetic correlations across 21 traits for
which we observed at least one significant IMPACT annotation association in both EUR and
EAS. Therefore, in total we computed the genetic correlation among 42 traits (21 phenotypes x
2 populations). For pairs of traits with one from EUR and one from EAS, we used Popcorn as
described above with MAF threshold of 5% and “genetic impact”. For pairs of traits from the
same population we used LDSC [v.1.0.0]. First we used the munge sumstats.py script to make
the direction of allelic effect consistent in the GWAS summary statistics while also restricting to
well-imputed Hapmap3 SNPs. Then, we used the /dsc.py script with the -rg flag to compute the
genetic correlation using EUR and EAS reference LD panels from phase 3 of 1000 Genomes

where appropriate.

Multi-ethnic marginal effect size correlation, heterozygosity correlation, and F ,. \We
acquired GWAS summary statistics for each of 21 shared traits between EUR and EAS for
which there was at least one significant IMPACT association in each population. Then, we
restricted to SNPs shared between EUR and EAS GWAS summary statistics. Next, we
performed stringent iterative LD clumping with PLINK [v1.90b3]""" using EUR summary statistics
(selecting the most significant SNP, then removing all SNPs in LD with > > 0.1 within 1 Mb,
then selecting the next most significant SNP, and so on). This step satisfies the assumption of
independence in the Pearson correlation that we will compute among marginal effect sizes. We
selected our initial set of SNPs under three scenarios: (1) using no functional inference, (2)
using the top 5% of SNPs according to the trait’s lead EUR IMPACT annotation, and (3) using
the bottom 95% of SNPs according to the trait’s lead EUR IMPACT annotation (mutually
exclusive with scenario 2). With our set of independent SNPs for each trait and under each of

three scenarios, we compute a Pearson correlation between the estimated effect sizes, while
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further stratifying loci on 17 EUR P-values (1, 0.3, 0.1, 0.03, 0.01, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5,
1e-5, 3e-6, 1e-6, 3e-7, 1e-7, 3e-8, 1e-8). For example, stratum with P = 0.1 includes all SNPs
with EUR GWAS P < 0.1. Similarly, we computed the Pearson correlation of the EUR and EAS
heterozygosity, defined as 2pq, where p is the reference allele frequency and q is the alternative
allele frequency, using the same sets of variants as described above. Furthermore, we

computed the F ,, where large values indicate a reduction in heterozygosity, at each variant

st

and average F , for each set of variants at each P value threshold for each of 21 considered
traits. To this end, we collected the alternative allele frequencies from 1000G for EUR (EUR, )

and EAS (EAS, ) populations and defined F, as the following:

F, =(EUR,. — EAS,:)" [ (2p(1 —p)),

where p is the average between EUR,, and EAS,; .

Polygenic risk score calculation. In this study, we utilized pruning and thresholding (P+T) for
the calculation of PRS. We constructed PRS models from either EUR summary statistics or
EAS summary statistics and evaluated their predictive performance on individual EAS
phenotypes. Here, we define within-population PRS as PRSEAs and trans-ethnic PRS as
PRSEUR to avoid confusion. For PRSEUR, we utilized genome-wide summary statistics from
EUR as reported in their publicly available version. For PRSEas, we held out 5,000 individuals
for PRS analysis and conducted GWAS using the remaining individuals to avoid overfitting (see
next section). For each trait separately, we restricted our analysis to variants that exist in both
GWAS summary statistics and post-imputation genotype data of EAS individuals used for PRS
analysis (imputation quality of »> > 0.3 in minimac3). A detailed description related to the
genotyping platform and imputation strategy is provided in a previous report’'. We excluded the

MHC region in this analysis.
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We designed PRS models using two strategies: standard PRS and functionally-informed
PRS. For standard PRSEUR, we performed conventional LD clumping to acquire sets of
independent SNPs using EUR LD reference panels from phase3 of 1000 Genomes. Similarly for
PRSEas, we utilized EAS LD reference panels from phase3 of 1000 Genomes. We used PLINK
[v1.90b3]"" to remove variants in LD with 2> > 0.2 with a significance threshold for index SNPs
of P = 0.5. For functionally-informed PRS, we restricted the analysis to variants with high
IMPACT score according to the lead IMPACT annotation before conducting LD clumping. As
before, we define the lead annotation as the one with the largest t * estimate that was
significantly greater than 0. When we designed PRSEUR, we utilized the lead IMPACT
annotation in EUR GWAS summary statistics (EAS summary statistics were not taken into
account to avoid overfitting). Similarly, when we design PRSEUR, we utilized the lead IMPACT
annotation in EAS GWAS summary statistics for which 5,000 EAS individuals for PRS analysis
were removed to avoid overfitting. We performed LD clumping using variants within a
predefined top percentage of IMPACT scores. This was determined by the percentage that
captured the closest to 50% of total trait heritability; considered percentages included the top
1%, 5%, 10%, and 50%.

We evaluated PRS performance using EAS individuals. First, we used all individuals in
the BBJ cohort for PRSEUR testing. Second, we compared the improvement afforded by
IMPACT in PRSEUR relative to PRSEAs models using 5,000 randomly selected individuals in
BBJ; specifically for case-control GWAS, we randomly selected 1,000 cases and 4,000 controls.

For all models, we built a PRS for each individual j in our test set (in all cases, there is
no overlap between GWAS samples and PRS samples) using variant effect size estimates from

GWAS as follows:
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M
PRS; = ;Aj,i *Py (Equation 1)

Where M is the total number of SNPs shared between GWAS summary statistics and

post-imputation genotype data of EAS individuals, iis the i SNP in the model, A,; isthe

allelic dosage of the trait-increasing allele i in individual j, and § ;is the estimated effect size of
allele i from GWAS. We calculated PRS using PLINK2.

For QC of quantitative phenotypes, we excluded (1) related samples (PI_HAT > 0.187
estimated by PLINK), (2) samples with age < 18 and age > 85, and (3) samples with measured
values outside three interquartile ranges (IQR) of the upper or lower quartiles. The effect of sex,
age, age’, the top 10 PCs, and affection status of 47 diseases were removed by linear
regression, and the residuals were further normalized by the rank-based inverse normal
transformation (see Equation 3 below). For QC of case/control phenotypes, we excluded (1)
related samples (PI_HAT > 0.187 estimated by PLINK) and (2) samples with age < 18 and age

> 85.
We then regressed our phenotype of interest (Y), a measured quantitative trait or a

diagnosed disease among the PRS samples, on the per-individual PRS as follows:

For diseases,
Y, ~ PRS; +sex+age + Geno PC1 + ... + Geno PC10. (Equation 2)
For quantitative traits,

Normalized Y ; ~ PRS;. (Equation 3)
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We then report the variance explained; for quantitative traits, this is the variance
explained by a linear model and for diseases, the variance explained is from a logistic model

2

(Nagelkerke R*)®°8""8 which we convert to liability scale pseudo R* such that R* values are

comparable among both quantitative and case/control phenotypes. We used various GWAS P
value thresholds (0.1, 0.03, 0.01, 0.003, 0.001, 3e-4, 1e-4, 3e-5, 1e-5) to assess the predictive
performance of our PRS. For each model, we reported in the text the largest R* achieved
across the nine P value thresholds. For case/control traits, while R? estimates are reported on
the liability scale, effect size estimates were derived on the logistic scale. To ensure the
robustness of our results to the scale on which effect sizes are estimated, we converted logistic
B to probit and then to liability scale, using this previously published conversion'®. For EAS
traits, the disease prevalence required for conversion from logistic to probit was derived from
the Japanese epidemiological census'® and for EUR traits, the prevalences were derived from
previous studies: for asthma'', for RA'??, for PrCa'?, for CAD'?*, and for T2D"'?°. The allele
frequencies required for conversion from probit to liability were derived from 1000 Genomes of
the corresponding population.

To estimate confidence intervals of PRS performance (R*, as explained above), we
conducted 1,000 bootstraps using the R package boot. We also conducted 10,000 bootstraps to
evaluate whether the R’ difference between two PRS models (functionally-informed - standard)
is significantly greater than 0; we calculated the R* difference between two PRS models in each
round of bootstrapping (delta R? ), and assess its distribution in 10,000 bootstraps. If we let N be
the frequency of delta R* < 0, we define one-tailed P values for delta R*> 0 as (N + 1)/10,000.
We also estimated confidence intervals of PRS performance using a block jackknife across the

genome as previously done®, using 200 adjacent genomic bins of equal size. Then iteratively,
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one bin of variants was removed from the PRS model and the R’ estimate was recalculated to
establish a confidence interval around the original estimate. We additionally estimated
confidence intervals around the difference between IMPACT PRS R* and standard P+T R?

using a block jackknife.

Genome-wide association studies in BBJ. As described in the previous section, we held out
5,000 randomly selected individuals for the PRS analysis and performed GWAS on the
remaining individuals (sample sizes are provided in ST16-17). GWAS was conducted with
PLINK2 using the same imputed dosages as used in the PRS analysis. For quantitative traits,
normalized residuals were analyzed by a linear regression model. For diseases, affection status
was analyzed by a logistic regression model using age, sex, and the top 10 genotype PCs as

covariates.

PRS distributions in 1000G subpopulations. To address if there was any global bias in PRS
distributions that IMPACT variant prioritization could mitigate, we computed PRS based on EUR
and EAS summary statistics as done above and allelic dosages of five different 1000 Genomes
populations (AFR, AMR, EAS, EUR, and SAS). Then we used anova to compute the F-statistic
indicative of the inter-population variance and compared PRS with IMPACT prioritization to

those with no variant prioritization.
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Results

Building a compendium of in silico gene regulatory annotations

To capture genetic heritability of diverse polygenic diseases and quantitative traits, we
constructed a comprehensive compendium of 707 cell type regulatory annotation tracks. To do
this, we applied the IMPACT?# framework to 707 unique TF-cell type pairs obtained from a total
of 3,181 TF ChlP-seq datasets from NCBI, representing 245 cell types and 142 TFs with known
sequence motifs (Figure 3-1B, Material and Methods, Web Resources, Table B-1, Figure
B-2)'. We provide publicly available open-source software (see Web Resources)
corresponding to the analyses presented in this manuscript. We caution that the 707 TF/cell
type pairs represented in publicly available data is a small fraction of the total possible pairs of
142 TFs and 245 cell types (n = 34,790), although there are several experimental and practical
reasons why this theoretical maximum is not reached (Discussion). Briefly, IMPACT learns an
epigenetic signature of active TF binding evidenced by ChlP-seq, differentiating bound from
unbound TF sequence motifs using logistic regression. We derive this signature from 5,345
epigenetic and sequence features, predominantly generated by ENCODE'* and Roadmap'?
(Material and Methods, Table B-2); these data were drawn from diverse cell types,
representing the biological range of the 707 candidate models. IMPACT then probabilistically
annotates the genome, e.g. on a scale from 0 to 1, without using the TF motif, identifying
regulatory regions that are similar to those that the TF binds.

To assess the specificity of our IMPACT annotations, we test whether they (1) accurately
predict binding of the modeled TF, (2) share cell-type-specific characteristics with other tracks of
the same cell type, and (3) score cell-type-specifically expressed genes higher than nonspecific
genes. The 707 models that we defined had a high TF binding prediction accuracy with mean

AUPRC = 0.54 (sem = 0.01, Material and Methods, Figure B-3) using cross-validation.
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Annotations segregated by cell type rather than by TF, excluding CTCF, suggesting the same
TF may bind to different enhancers in different cell types (Figure 3-2A). On average, we
observed that annotations of the same cell types were more strongly correlated genome-wide
(Pearson r = 0.56, sem = 0.02) than annotations of different cell types (Pearson r = 0.48, sem =
0.01, one-tailed difference of means P < 0.001, Figure B-3). Furthermore, the covariance
structure between TF ChIP-seq training datasets is similar to that of corresponding IMPACT
annotations, indicating that the IMPACT model does not introduce spurious correlations among
unrelated ChIP-seq datasets (Figure B-3). Lastly, for nine different cell types, we examined
cell-type-specifically expressed genes from Finucane et al®® and corresponding differential
expression t-statistics. For each of nine cell types, we observed larger cell-type-specific IMPACT
probabilities at SNPs in and near cell-type-specific genes compared to generally expressed
genes (mean fold-change across 10 to 99 cell-type-specific IMPACT tracks ranged from 1.08 to
1.96 across nine cell types, one-tailed paired wilcoxon P < 0.04 for seven of nine cell types,
Figure 3-2B, Figure B-3, Material and Methods), suggesting that IMPACT annotates relevant

cell type regulatory elements.
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Figure 3-2. IMPACT annotates relevant cell type regulatory elements. A) Low-dimensional embedding
and clustering of 707 IMPACT annotations using uniform manifold approximation projection (UMAP).
Annotations colored by cell type category; TF groups indicated where applicable. B) IMPACT annotates

cell type specifically expressed genes with higher scores than nonspecific genes. C) Biologically distinct

regulatory modules revealed by cell type-trait associations with significantly nonzero t *. Shown here are

the 5 representative EUR complex traits and the 4 leading IMPACT annotations for each, resulting in 20

IMPACT annotations highlighted from 707 total. Color indicates t * value. D) Lead IMPACT annotations

capture more heritability than lead cell-type-specific histone modifications across 60 of 69 EUR summary

statistics for which a lead IMPACT annotation was identified. T * indicates heritability estimate difference

of means P < 0.05. Gray segments indicate the 95% CI around the heritability estimate.
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Partitioning common SNP heritability of 111 GWAS summary statistics in EUR and EAS

We obtained summary statistics from 111 publicly available GWAS for diverse polygenic
traits and diseases. For narrative purposes throughout the text, we use five genetically
uncorrelated (R, point estimates between traits ranged from -0.08 to 0.20, Table B-3, although
no R, was significantly different from 0, all two-tailed z test P > 0.40 after Bonferroni correction
for 10 pairs) and biologically diverse traits that capture the spectrum of summary statistics
analyzed in order to exemplify our results in addition to reporting metrics averaged over all traits
analyzed. These five traits include an allergic phenotype: asthma, an autoimmune disease: RA,
a neoplastic type: prostate cancer (PrCa), a hematological quantitative trait: mean corpuscular
volume (MCV), and an anthropometric trait: height. These included 69 from EUR participants?-
(average N = 180K, average heritability z-score = 12.9, 41/69 from UK BioBank)?*'*" and 42
from EAS participants of BioBank Japan®"'°"12812 (gverage N = 157K, average heritability
z-score = 6.6)* (Table B-3). We chose to focus our study on EUR and EAS populations, as
there is a limited number of large GWAS in populations other than EUR and EAS82104195 A|| of
the summary statistics used were generated from studies that had a sample size greater than
10,000 individuals and also had a significantly non-zero heritability (z-score > 1.97). There are
29 phenotypes for which we obtained summary statistics in both EUR and EAS. We were
interested to see if any traits had a multi-ethnic genetic correlation that deviated from 1.
Therefore, we explicitly tested this and found that 16 traits have mul