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Abstract 

 

Genome-wide association studies (GWAS) have implicated thousands of complex trait-variant 

associations, an estimated 90% of which reside in the noncoding genome. While noncoding variants 

generally have poorly understood regulatory function, previous work has shown that disease-driving 

genetic variation often affects cell-type-specific gene regulation, such as transcription factor (TF) binding. 

However, maps of TF-mediated cell-type-specific regulation are currently incomplete due to limited 

amounts of experimental data. In this thesis, I introduce a novel strategy to annotate the noncoding 

genome with cell-type-specific regulatory element probabilities via integration and modeling of thousands 

of publicly available epigenetic datasets. I show that these functional annotations in the disease-driving 

cell type are more highly enriched for disease heritability than experimentally derived functional 

annotations. Next, I use these functional annotations to prioritize disease-relevant variants in the context 

of polygenic risk score (PRS) models. I show that this approach improves the trans-ethnic portability of 

PRS by reducing the confounding effects of population-specific linkage disequilibrium. Lastly, I introduce 

a novel strategy to leverage the unprecedented resolution of single cell data to elucidate 

cell-state-specific activity of trait-driving variants identified by polygenic fine-mapping data from GWAS. 

This strategy consists of calculating cell-specific enrichments of genome-wide genetic variation in 

functional regions and then associating these enrichments with polygenic regulatory programs. I show 

that this approach identifies heterogeneity of risk variant accessibility, nominating putatively causal cell 

states and regulatory mechanisms. Altogether, this work demonstrates the importance of comprehensive 

functional annotations to better understand disease and trait etiology.  
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Chapter   1   
 
Introduction  

 
This   thesis   outlines   the   research   I   have   led   while   advised   by   Professor   Soumya   Raychaudhuri  

at   Harvard   Medical   School   toward   unraveling   the   biological   mechanisms   driving   human   disease.  

The   genetic   code   in   our   DNA   predisposes   us   to   different   traits   and   diseases.   For   many   traits  

and   diseases,   multiple   factors   contribute   to   this   predisposition.   Knowledge   of   the   biological  

mechanisms   affected   by   these   factors   can   enhance   our   understanding   of   these   diseases   and  

ultimately   propose   hypotheses   guiding   the   development   of   therapeutic   treatments.   In   this   thesis,  

I   will   focus   on   specifically   the   genetic   factors,   as   opposed   to   environmental,   that   regulate   human  

traits   and   diseases.   For   a   minority   of   traits   and   diseases   these   genetic   factors   and   their  

biological   mechanisms   are   well   understood.   However,   for   human   traits   and   diseases   driven   by  

multiple   genetic   factors,   biological   explanations   for   the   coordinated   and   genome-wide   roles  

played   by   these   factors   are   not   well   understood.   This   is   largely   due   to   incomplete   biological   or  

functional   annotation   of   the   majority   of   the   genome,   which   is   precisely   the   area   to   which   I   hope  

my   thesis   work   has   contributed.   I   will   begin   with   an   introduction   to   the   area   of   human   genetics  

that   is   relevant   to   this   work   in   order   to   evaluate   the   potentials   for   advancement   of   knowledge  

that   I   pursued   in   my   thesis   work   regarding   functional   characterization   of   genetic   variation.   

Complex   traits   and   diseases   are   a   class   of   phenotypes   driven   by   multiple   genetic   and  

environmental   factors    1 .   These   are   in   contrast   to   Mendelian   traits   and   diseases   that   are   driven  

by   a   single   genetic   determinant.   Human   Mendelian   traits   and   diseases   were   extensively   studied  

during   the   early   years   of   human   genetics   predominantly   by   linkage   studies,   in   which   familial  

1  
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inheritance   patterns   of   genetic   markers   indicating   the   approximate   locations   of   genes   could   be  

traced.   Linkage   studies   revealed   large   effect   genetic   determinants   of   complex   traits   and  

diseases,   but   could   not   reveal   the   multiple   other   smaller   genome-wide   effects.   For   this   reason,  

the   mechanisms   underpinning   complex   traits   and   diseases   are   far   less   well   understood   that  

those   of   Mendelian   traits.   For   example,   early   studies   of   rheumatoid   arthritis   (RA)   using  

serological   typing   revealed   that   human   leukocyte   antigen   ( HLA )   genes   within   the   major  

histocompatibility   complex   (MHC)   were   strongly   associated   with   the   disease    2 .   This   association  

was   later   confirmed   by   familial   linkage   studies    3 .   The   ensuing   years   of   research   revealed   that  

the   MHC   alone   was   not   sufficient   to   explain   the   genetic   variation   observed   in   RA   patients,  

suggesting   that   other   genetic   determinants   of   smaller   effect   that   were   missed   by   linkage   studies  

also   contributed.  

  Linkage   studies   failed   to   reveal   genetic   determinants   of   smaller   effect   for   several  

reasons.   First,   linkage   studies   often   identified   large   linkage   peaks   which   implicated   many   genes  

which   were   difficult   to   prioritize.   Second,   at   the   time   when   linkage   studies   were   most   prevalent,  

gene   annotations   were   limited   and   incomplete   compared   to   the   annotation   of   current   day,  

biasing   the   associations   to   well-annotated   genes   with   nearby   traceable   genetic   markers.   In  

order   to   identify   the   genetic   determinants   of   complex   traits   and   diseases   missed   by   linkage  

studies,   Botstein   and   colleagues   proposed   in   2003   that   genome-wide   single   nucleotide  

polymorphism   (SNP)   association   studies   must   be   prioritized   over   linkage   studies    4 .   These  

studies   provided   a   framework   to   test   for   the   association   between   phenotypes   and   genotyped  

SNPs,   rather   than   a   limited   set   of   candidate   genes   as   in   linkage   studies,   with   the   possibility   to  

nominate   a   causal   gene   or   related   regulatory   region.   SNP-level   association   studies   propelled  

our   understanding   of   complex   traits   and   diseases.   For   example,   associations   with   RA   were  

identified   in   genes   beyond   the   MHC   including    PTPN22 ,    PADI4 ,   and    CTLA4    5–7 .   However,   the  

2  
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ability   to   identify   these   genetic   determinants   of   smaller   effect   using   genome-wide   SNP-level  

association   studies   greatly   depended   on   the   number   of   individuals   in   the   study.   As   a  

consequence,   many   early   association   studies   reported   what   were   later   identified   as  

irreproducible   findings   due   to   power   limitations.   

In   the   coming   years,   two   foundational   projects   would   lay   the   groundwork   for   performing  

the   high-powered,   large   scale   genome-wide   association   studies   (GWAS)   that   we   are   familiar  

with   today.   First,   the   completion   of   the   Human   Genome   Project   in   2001   revealed   for   the   first  

time   94%   of   the   base   pairs   in   the   human   genome   and   1.4   million   SNPs    8 .   Performing   whole  

genome   sequencing   on   so   many   variants   with   the   large   sample   size   required   to   confidently  

identify   associations   with   complex   traits   and   diseases   would   be   prohibitively   expensive.  

However,   there   is   substantial   correlational   structure   of   variants   across   the   genome   and   this  

could   be   leveraged   to   reduce   costs.   Regions   of   the   genome   that   undergo   less   recombination  

are   inherited   together,   resulting   in   blocks   of   SNPs   with   highly   correlated   genotypes.   This  

phenomenon   is   called   linkage   disequilibrium   (LD).   To   mitigate   the   costs   of   GWAS,   the  

International   HapMap   Project   then   proposed   designing   a   genotyping   chip   with   a   subset   of  

representative   SNPs,   each   marking   a   different   LD   block.   Identified   associated   variants   would  

point   to   a   candidate   causal   locus,   and   further   statistical   or   functional   work   would   need   to   be  

done   to   identify   the   true   causal   SNP   in   the   locus.   This   enabled   an   era   of   high-powered   GWAS   in  

which   thousands   of   individuals   could   be   genotyped   at   reasonable   cost,   exponentially   adding   to  

the   list   of   putatively   causal   genetic   determinants   of   complex   traits   and   diseases.   

Although   the   number   of   genome-wide   significant   associations   were   quickly   increasing   for  

complex   traits   and   diseases,   the   understanding   of   the   mechanisms   through   which   these  

variants   act   was   only   slowly   advancing.   This   is   because   the   noncoding   genome   harbors   an  

estimated   90%   of   genome-wide   significant   variants.   For   the   approximately   10%   of   associated  

3  
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variants   that   reside   in   coding   regions,   it   is   more   straightforward   to   hypothesize   mechanisms  

involving   the   implicated   gene.   Noncoding   variation   is   challenging   to   understand   because   the  

noncoding   genome   is   less   well   annotated,   for   example,   with   enhancers,   promoters,   and  

important   regulatory   elements   and   their   cell-type-specific   counterparts,   than   the   coding   genome,  

with   genes.   Understanding   the   mechanisms   of   noncoding   variation   is   crucial   to   understanding  

the   biology   underlying   complex   traits   and   diseases.   More   than   a   decade   ago,   the   field   of   human  

genetics   began   producing   strategies   to   link   noncoding   variants   to   functional   biology,   as   outlined  

below.   

Most   strategies   to   mechanistically   link   noncoding   variants   to   complex   traits   and   diseases  

try   to   understand   the   effect   of   the   noncoding   variation   on   gene   expression.   Colocalization  

studies   of   genome-wide   significant   noncoding   variants   with   expression   quantitative   trait   loci  

(eQTLs)   nominated   novel   candidate   causal   genes.   For   example,   studies   of   RA   found   novel  

importance   in    CCR6     9 ,    AOAH     10 ,    BLK ,    C5orf30 ,    GSDMB ,    IRF5 ,   and    PLEK     11 .   However,   simple  

colocalization   does   not   imply   the   same   causal   genetic   driver.   In   2017,   Chun   and   colleagues  

devised   a   strategy   to   test   if   the   GWAS   association   signal   and   eQTL   association   signal   were  

produced   by   the   same   genetic   determinant    12 .   They   found   that   a   discouragingly   small   proportion  

(~25%)   of   noncoding   variation   can   be   attributed   to   modulating   gene   expression   levels,   as  

measured   in   an   eQTL   study.   

While   colocalization   studies   considered   biological   mechanisms   of   noncoding   variants  

from   the   perspective   of   specific   genes,   more   recent   studies   considered   biological   mechanisms  

from   the   perspective   of   the   cell   type   specificity   of   gene   expression   programs.   For   example,   the  

genes   identified   by   eQTL   colocalization   studies   of   RA   had   implicated   many   different   immune  

cell   types,   but   there   was   no   quantitative   understanding   of   the   relative   contributions   of   these   cell  

types.   Moreover,   eQTLs   are   more   likely   to   be   cell-type-nonspecific,   as   we   are   less   powered   to  
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identify   cell-type-specific   signals.   Work   from   our   group   hypothesized   that   genetic   risk   factors   for  

non-systemic   diseases   and   traits   act   via   mechanisms   that   affect   a   small   set   of   tissues   or   cell  

types    13 .   In   this   study,   Hu   and   colleagues   assessed   the   enrichment   of   cell-type-specific   gene  

expression   in   RA   risk   loci,   revealing   CD4+   effector   memory   T   cells   as   the   strongest   candidate  

causal   cell   type.  

Studies   based   on   gene   expression   were   inherently   limited   to   noncoding   variation   that  

could   be   associated   with   genes,   which   in   the   case   of   eQTL   colocalization   preferentially   selected  

noncoding   variation   proximal   to   the   gene.   If   genes   with   cell-type-specific   expression   profiles  

were   enriched   for   complex   trait   and   disease   risk   loci,   then   cell-type-specific   gene   regulatory  

elements   should   as   well.   The   advantage   to   this   perspective   was   that   noncoding   genetic  

variation   could   be   more   comprehensively   studied.   As   a   result,   many   studies   assessed   the  

colocalization   of   cell-type-specific   epigenetic   marks   with   complex   trait   and   disease   risk   loci.   A  

study   from   our   group   identified   the   strongest   colocalization   of   RA   risk   loci   with   H3K4me3   from  

CD4+   regulatory   T   cells    14 .   Another   study   investigated   the   colocalization   of   risk   loci   with   DNase  

hypersensitivity   sites   (DHSs),   which   they   correlated   with   gene   expression   to   ultimately   link   the  

risk   locus   to   a   putative   target   gene    15 .   A   third   study   coupled   statistical   fine-mapping,   a   strategy  

to   deconvolute   the   correlation   between   variant   associations   due   to   LD   and   identify   the   most  

likely   causal   variant,   with   epigenetic   colocalization    16 .   Considering   21   autoimmune   diseases,   this  

study   found   that   60%   of   fine-mapped   putatively   causal   variants   colocalized   with   CD4+   T   cell  

enhancers.   

While   epigenetic   marks   may   colocalize   even   with   each   other,   it   is   of   interest   to   know  

which   regulatory   annotation   distinguishes   best   between   causal   and   non-causal   variants.   For  

example,   transcription   factors   (TFs)   often   bind   in   cell-type-specific   manners.   If   a   set   of   disease  

risk   loci   colocalize   with   ChIP-seq   peaks   of   a   particular   TF,   this   might   implicate   the   TF   in   a   causal  
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disease-driving   mechanism.   However,   TF   ChIP-seq   peaks   often   colocalize   with   gene   promoters  

and   enhancers,   as   TFs   are   precisely   recruited   there   to   modulate   gene   expression.   Therefore,  

colocalization   of   risk   loci   with   TF   ChIP-seq   peaks   might   be   the   result   of   unaccounted   and  

stronger   colocalization   with   gene   promoters   in   general.   Thus,   we   must   ask   if   the   enrichment   of  

risk   variants   in   TF   ChIP-seq   peaks   is   still   significant   once   conditioning   on   the   promoter  

association.   Prior   work   from   our   group   addressed   this   question   with   a   method   called   Genomic  

Annotation   Shifter   (GoShifter)    17 .   This   approach   statistically   quantifies   the   enrichment   of   risk   loci  

in   regulatory   annotations   via   permutation,   while   explicitly   controlling   for   two   sources   of  

confounding   bias:   1)   LD   and   2)   coincidental   colocalization   of   the   query   regulatory   annotation  

with   an   annotation   that   better   distinguishes   casual   from   non-causal   variants.   

Thus   far,   the   discussed   strategies   to   link   noncoding   genetic   variation   to   functional  

mechanisms   have   relied   on   the   identification   of   genome-wide   significant   variants   identified   by  

GWAS.   For   many   complex   traits   and   diseases,   there   are   too   few   genome-wide   significant  

variants   to   perform   the   aforementioned   strategies.   For   example,   GWAS   of   schizophrenia  

historically   reveal   few   genome-wide   significant   variants   at   best.   A   previous   GWAS,   with   over  

6,000   individuals,   identified   no   genome-wide   significant   variants    18 .   For   complex   traits   and  

diseases   driven   by   many   small   genetic   effects   across   the   genome,   GWAS   with   current   sample  

sizes   are   not   powered   to   confidently   identify   these   associations.   While   the   total   genetic  

variance,   or   heritability,   for   many   traits   and   diseases   had   been   estimated   in   familial   studies   in  

past   years,   the   proportion   of   total   heritability   explained   by   genome-wide   significant   variants  

turned   out   to   be   discouragingly   low.   This   phenomenon   was   coined   as   the   problem   of   “missing  

heritability”.   While   there   are   many   possible   explanations   for   this,   including   1)   causal   variants   of  

small   effect   size   cannot   be   identified   with   current   GWAS   sample   sizes,   2)   heritability   quantified  

in   familial   studies   may   be   overestimated,   and   3)   genotyping   chips   exclude   low   frequency  

6  

https://paperpile.com/c/s2XIAj/6uco
https://paperpile.com/c/s2XIAj/vcj9


 

variants,   rare   variants,   and   copy   number   variants.   The   same   study   that   turned   up   no  

genome-wide   significant   variants   in   a   schizophrenia   GWAS   estimated   that   at   least   one-third   of  

the   liability   of   the   disease   is   attributable   to   common   polygenic   variation,   undetected   by   GWAS.  

Moreover,   the   authors   demonstrated   that   schizophrenia   cases   had   higher   genetic   risk   scores,  

an   aggregate   score   of   one’s   genotype   weighted   by   variant   effect   size,   than   controls.   

These   challenges   in   studying   complex   traits   and   diseases   led   to   strategies   that   model  

association   statistics   from   common   variants   irrespective   of   their   genome-wide   significance.   In  

RA   genetics,   one   such   strategy   took   a   similar   approach   to   the   previously   discussed  

schizophrenia   GWAS   study.   In   2012,   Stahl   and   colleagues   used   a   polygenic   risk   score  

approach   to   attribute   20%   of   RA   heritability   to   2.5   million   common   variants,   a   contribution  

independent   of   the   25%   of   RA   heritability   attributed   to   the   MHC    19 .   Around   the   same   time,   Yang  

and   colleagues   devised   an   approach   to   estimate   the   total   SNP   heritability   of   complex   traits   and  

diseases   by   computing   the   association   between   groups   of   variants   and   phenotypes,   as   opposed  

to   the   traditional   GWAS   approach   which   finds   associations   between   single   SNPs   and  

phenotypes    20 .   This   approach,   widely   referred   to   as   GCTA,   established   a   new   gold   standard   for  

total   SNP   heritability   estimates,   replacing   estimates   from   family   studies.   With   GCTA,   not   only  

was   it   possible   to   estimate   the   total   SNP   heritability   of   a   trait,   but   also   the   relative   contribution   of  

categories   of   SNPs,   for   example,   implicating   functional   or   regulatory   programs.   In   2012,   Lee  

and   colleagues   found   that   specifically   expressed   genes   in   the   central   nervous   system   were  

disproportionately   enriched   for   schizophrenia   heritability    21 .   Then   Gusev   and   colleagues   found  

that   variants   residing   in   cell-type-specific   regulatory   elements   were   strongly   enriched   for  

heritability   of   a   variety   of   complex   traits    22 .   These   studies   began   to   not   only   identify   but   quantify  

the   contribution   of   different   biological   processes   underpinning   complex   traits   and   diseases.  
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Soon   thereafter,   Bulik-Sullivan   and   colleagues   devised   a   faster   and   more   accessible  

approach   called   LD   score   regression   (LDSC)   to   quantify   the   total   common   SNP   heritability   of  

complex   traits   and   diseases    23 .   Concurrently,   Finucane   and   colleagues   developed   a   derivative  

approach   called   stratified   LDSC   (S-LDSC)   to   quantify   the   contribution   of   different   categories   of  

variants   to   that   total   SNP   heritability    24 .   These   approaches   revolutionized   the   study   of   complex  

traits   and   diseases   by   overcoming   many   of   the   shortcomings   of   previous   methods.   First,   LDSC  

and   derivative   methods   considered   all   SNPs   genome-wide   irrespective   of   GWAS   association,  

but   usually   enforcing   a   minor   allele   frequency   (MAF)   lower   bound.   Second,   these   methods   did  

not   assume   one   causal   variant   per   locus   as   did   strategies   considering   only   genome-wide  

significant   variants   and   further   restricting   to   the   lead   association   or   lead   fine-mapped   variant   in  

the   locus.   Third,   these   methods   utilized   summary   association   statistics   from   the   GWAS   and   did  

not   require   individual-level   genotyping   data,   which   often   do   not   exist   in   the   public   domain.   In   this  

thesis,   we   will   use   S-LDSC   as   the   state-of-the-art   approach   to   partition   the   heritability   of  

complex   traits   and   diseases   by   functional   category   of   SNPs.   

Studies   that   partitioned   the   common   SNP   heritability   of   complex   traits   and   diseases   with  

functional   annotations   indicating   cell-type-specific   histone   marks 24 ,   cell-type-specifically  

expressed   gene   sets 25 ,   and   directional   effects   of   TF   binding 26    shed   light   on   the   biological  

mechanisms   of   coordinated   genetic   variation.   However,   the   functional   annotations   of   these  

studies   are   limited   in   their   specificity   to   disease-relevant   biological   processes.   For   example,  

presence   of   the   H3K4me3   histone   mark   indicating   active   promoters   and   enhancers   in   CD4+  

regulatory   T   cells   might   be   enriched   for   RA   heritability,   but   do   not   mark   regions   specific   to   CD4+  

regulatory   T   cells.   These   active   promoters   and   enhancers   comprise   two   categories:   1)   those  

associated   with   cell-type-nonspecific   cell   cycle   and   housekeeping   processes   and   2)   those  

associated   with   the   difference   in   lineage   specification   of   CD4+   regulatory   T   cells   from   other  
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memory   T   cells.   Therefore,   we   hypothesized   that   the   functional   annotation   that   best   captures  

disease   heritability   would   be   the   one   implicating   pathogenic   and   cell-type-specific   activity   within  

the   disease-driving   cell   type.   In   order   to   focus   on   the   regulatory   elements   that   confer   pathogenic  

identity   to   disease-driving   cell   types,   we   focus   on   the   targets   of   master   regulator   TFs   that  

specify   differentiation   paths   of   naive   cell   types   to   mature   lineages.   We   further   aimed   to   create  

functional   annotations   that   could   prioritize   risk   variants,   and   thus   would   consist   of   probabilistic  

SNP-level   scores,   as   opposed   to   binary   membership   to   the   functional   category   as   in   previous  

studies 24,25 .   We   also   aimed   to   create   functional   annotations   that   would   aggregate    in   silico    via  

predictive   modeling   thousands   of   experimental   datasets   to   produce   a   comprehensive   track   of  

disease-relevant   cell-type-specific   regulatory   activity,   as   opposed   to   the   common   use   of  

individual   experimental   datasets,   susceptible   to   noise   and   variation.   

In   this   thesis,   I   describe   the   many   genetic   and   genomic   applications   of   designing  

functional   annotations   that   better   capture   both   disease-relevant   and   cell-type-specifying  

regulatory   elements.   

In   Chapter   2,   I   describe   our   strategy   to   identify   regulatory   elements   that   capture  

substantially   larger   proportions   of   complex   trait   and   disease   heritability   than   commonly   used  

functional   annotations   and   the   generalizability   of   our   approach   to   any   complex   trait   or   disease.  

Briefly,   we   utilize   genome-wide   protein   occupancy   profiles   of   master   regulator   transcription  

factors   as   a   basis   to   learn   an   epigenetic   signature   that   might   be   representative   of   all  

cell-type-defining   regulatory   elements.   We   demonstrate   the   validity   of   this   approach   by   the  

improvement   of   captured   polygenic   heritability   compared   to   widely   used   functional   annotations  

derived   from   experiments,   including   histone   modification   ChIP-seq   and   RNA-sequencing.   

In   Chapter   3,   I   describe   our   use   of   these   functional   annotations   to   reduce   confounding  

bias   in   genetic   association   data   to   improve   multi-ethnic   transferability   and   study   shared  
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regulatory   mechanisms.   When   quantifying   the   contributions   of   cell-type-specific   regulatory  

mechanisms,   modeled   by   IMPACT,   to   a   diverse   set   of   complex   traits   and   diseases,   we   identified  

an   overwhelmingly   strong   concordance   between   European   and   East   Asian   populations.   We  

then   found   that   prioritizing   variants   in   predicted   disease-driving   cell-type-specific   regulatory  

elements   improved   the   predictive   accuracy   of   PRS   models   built   using   European   genetic   data  

and   applied   to   an   East   Asian   population.   

In   Chapter   4,   I   describe   our   approach   to   leverage   single   cell   epigenetic   data   in   order   to  

identify   cellular   subpopulations   with   different   pathogenic   potentials.   Specifically,   we   perform  

multi-modal   data   integration   involving   polygenic   fine-mapping,   single   cell   chromatin   accessibility  

assays,   and   functional   annotation   data.   Our   analysis   revealed   potential   trait-driving   regulatory  

mechanisms   of   identified   cellular   subpopulations.   

Finally,   in   Chapter   5,   I   discuss   the   broader   implications   and   limitations   of   this   work   as   a  

whole   as   well   as   potential   future   directions.   
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Chapter   2  
 
IMPACT:   Genome-wide   annotation   of   cell-state-specific  
regulatory   elements   inferred   from   the   epigenome   of   bound  
transcription   factors  

 
The   material   in   this   chapter   appeared   in   the   May   2019   edition   of   the    American   Journal   of  

Human   Genetics    as   “IMPACT:   Genome-wide   annotation   of   cell-state-specific   regulatory  

elements   inferred   from   the   epigenome   of   bound   transcription   factors”   by   Amariuta   et   al 27 .   
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Abstract  

 

Despite   significant   progress   in   annotating   the   genome   with   experimental   methods,   much   of   the  

regulatory   noncoding   genome   remains   poorly   defined.   Here   we   assert   that   regulatory   elements  

may   be   characterized   by   leveraging   local   epigenomic   signatures   where   specific   transcription  

factors   (TFs)   are   bound.   To   link   these   two   features,   we   introduce   IMPACT,   a   genome   annotation  

strategy   which   identifies   regulatory   elements   defined   by   cell-state-specific   TF   binding   profiles,  

learned   from   515   chromatin   and   sequence   annotations.   We   validate   IMPACT   using   multiple  

compelling   applications.   First,   IMPACT   distinguishes   between   bound   and   unbound   TF   motif  

sites   with   high   accuracy   (average   AUPRC   0.81,   s.e.   0.07;   across   8   tested   TFs)   and   outperforms  

state-of-the-art   TF   binding   prediction   methods,   MocapG,   MocapS,   and   Virtual   ChIP-seq.  

Second,   in   eight   tested   cell   types,   RNA   polymerase   II   IMPACT   annotations   capture   more  

cis-eQTL   variation   than   sequence-based   annotations,   such   as   promoters   and   TSS   windows  

(25%   average   increase   in   enrichment).   Third,   integration   with   rheumatoid   arthritis   (RA)  

summary   statistics   from   European   (N=38,242)   and   East   Asian   (N=22,515)   populations   revealed  

that   the   top   5%   of   CD4+   Treg   IMPACT   regulatory   elements   capture   85.7%   of   RA   h2,   the   most  

comprehensive   explanation   for   RA   h2   to   date.   In   comparison,   the   average   RA   h2   captured   by  

compared   CD4+   T   histone   marks   is   42.3%   and   by   CD4+   T   specifically   expressed   gene   sets   is  

36.4%.   Lastly,   we   find   that   IMPACT   may   be   used   in   many   different   cell   types   to   identify   complex  

trait   associated   regulatory   elements.  
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Introduction  
 
Transcriptional   regulation   is   the   foundation   for   many   complex   biological   phenotypes,   from   gene  

expression   to   disease   susceptibility.   However,   the   complexity   of   gene   regulation,   controlled   by  

more   than   1,600   human   transcription   factors   (TFs) 28     influencing   some   20,000   protein   coding  

genes,   has   made   functional   annotation   of   the   regulome   difficult.   Tens   of   thousands   of   genomic  

annotations   have   been   experimentally   generated,   enabling   the   success   of   unsupervised  

methods   such   as   chromHMM 29    and   Segway 30    to   identify   global   chromatin   patterns   that   better  

characterize   genomic   function.   However,   linking   specific   regulatory   processes   to   these   identified  

patterns   is   challenging.   Furthermore,   although   genome-wide   association   studies   (GWAS)   have  

identified   ~10,000   trait   associated   variants   across   hundreds   of   polygenic   traits 31 ,   most   variants  

lie   in   noncoding   regulatory   regions   with   uncertain   function.  

 

With   continually   increasing   numbers   of   genomic   annotations   generated   from   high-throughput  

experimental   assays,    in-silico    functional   characterization   of   variants   has   growing   potential.  

These   assays   include   genome-wide   open   chromatin,   histone   mark,   and   RNA   expression  

profiling,   each   separately   possible   at   the   single   cell   level.   Initially   contributed   by   genomic  

consortia,   such   as   ENCODE 32    and   Roadmap 33 ,   these   assays   have   become   more   common   place  

as   easy-to-implement   protocols   have   been   developed,   thereby   contributing   to   the   growing   rate  

of   genomic   annotation   generation.  

  

Recently,   integration   of   datasets,   particularly   those   indicating   regulatory   elements,   with   GWAS  

data   has   successfully   led   to   the   identification   of   categories   of   disease-driving   variants   enriched  

for   genetic   heritability   (h2) 24,25,34 .   Such   regulatory   annotations   identify   active   promoters   and  

enhancers   through   open   chromatin   or   histone   mark   occupancy   assays   in   a   cell   type   of  
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interest 14–16,24,25 .   However,   these   annotations   include   both   cell-type-specific   and   nonspecific  

elements,   the   latter   of   which   may   affect   a   wide   range   of   cellular   functions   that   are   not  

necessarily   intrinsic   to   disease-driving   cell-states.   Therefore,   we   hypothesized   that   the  

identification   of   regulatory   elements   specifically   driving   functional   states   would   help   us   to   not  

only   better   characterize   regulatory   elements   genome-wide,   but   also   better   capture   polygenic   h2  

of   complex   traits   and   diseases.   Once   the   most   enriched   classes   of   regulatory   elements   are  

recognized,   then   it   may   become   possible   to   generate   biologically-founded   mechanistic  

hypotheses.  

  

Here,   we   introduce   IMPACT   (Inference   and   Modeling   of   Phenotype-related   ACtive  

Transcription),   a   diversely   applicable   genome   annotation   strategy   to   predict   cell-state-specific  

regulatory   elements.   We   take   a   two-step   approach   to   define   IMPACT   regulatory   elements.   First,  

we   choose   a   single   key   TF,   known   to   regulate   a   cell-state-specific   process,   and   then   identify  

binding   motif   sites   genome-wide,   distinguishing   between   those   that   are   bound   and   unbound  

using   genomic   occupancy   identified   by   ChIP-seq   in   the   corresponding   cell-state.   Here,   the   term  

“cell-state-specific”   refers   to   the   observed   experimental   binding   sites   of   a   key   TF,   which   itself  

may   not   be   entirely   cell-state-specific,   assayed   in   the   target   cell-state.   Second,   IMPACT   predicts  

TF   occupancy   at   binding   motif   sites   by   aggregating   and   performing   feature   selection   on   503  

cell-type-specific   epigenomic   features   and   12   sequence   features   in   an   elastic   net   logistic  

regression   model.   The   IMPACT   model   framework   can   easily   be   expanded   to   accommodate  

thousands   of   epigenomic   annotations   and   is   amenable   to   increasing   rates   of   data   generation.  

From   this   regression   we   learn   a   TF   binding   chromatin   profile,   which   IMPACT   uses   to  

probabilistically   annotate   the   genome   at   nucleotide-resolution.   We   refer   to   high   scoring   regions  

as   cell-state-specific   regulatory   elements   ( Figure   2-1 ).   With   this   approach,   we   aim   to   better  
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pinpoint   sites   of   causal   variation   of   gene   expression   and   polygenic   trait   heritability   by   modeling  

trait-driving   cell-state-specific   regulatory   processes.  

 

Figure   2-1.   IMPACT:   a   genome   annotation   strategy   to   identify   cell-state-specific   regulatory   elements.  

IMPACT   learns   a   chromatin   profile   of   cell-state-specific   regulation,   distinguishing   master   TF   (red)  

regulatory   elements   (TF-bound   motif   sites,   blue)   from   inactive   regulatory   elements   (unbound   motif   sites,  

purple).   Here,   cell-state-specific   open   chromatin   and   cell-state-specific   H3K4me1   are   strong   predictors   of  

cell-state-specific   regulatory   elements.   Cell-state-nonspecific   open   chromatin   and   nonspecific   H3K4me1  

are   less   informative,   marking   all   types   of   regulatory   elements,   while   H3K9me3   strongly   implicates   inactive  

regulatory   elements.   IMPACT   should   re-identify   regulatory   elements   marked   by   master   TF   binding   (peak  

1)   and   those   with   similar   chromatin   profiles,   presumably   sites   of   related   cell-state-specific   processes  

(peak   2).   IMPACT   should   not   predict   regulation   at   cell-state-nonspecific   elements   (peak   3),   such   as  

promoters   of   housekeeping   genes.  
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Material   and   Methods  

Data  

Genome-wide   Annotation   Data.    We   obtained   publicly   available   genome-wide   epigenomic  

annotations   including   ATAC-seq,   DNase-seq,   FAIRE-seq,   HiChIP,   polymerase   and   elongation  

factor   ChIP-seq,   and   histone   modification   ChIP-seq   assayed   in   hematopoietic,   adrenal,   brain,  

cardiovascular,   gastrointestinal,   skeletal,   and   other   cell   types   for   the   GRCh37   (hg19)   assembly  

( Table   A-1 ).   Sequence   annotations,   downloaded   from   UCSC,   include   Phastcons   conservation,  

exons,   introns,   intergenic   regions,   3’UTR   (untranslated   region),   5’UTR,   promoter-TSS  

(transcription   start   site),   TTS   (transcription   termination   site),   and   CpG   islands.   For  

benchmarking   IMPACT   against   MocapG 35 ,   MocapS 35 ,   and   Virtual   ChIP-seq 36 ,   we   additionally  

acquired   corresponding   cell-type-specific   open   chromatin   and   gene   expression   where  

applicable   ( Table   A-3 ).   For   models   trained   on   Pol   II   ChIP-seq,   we   removed   Pol   II   and  

elongation   factor   ChIP-seq   feature   tracks   from   the   feature   library   before   running   IMPACT.  

  

TF   ChIP-seq   data.    We   determined   genome-wide   TF   occupancy   from   publicly   available  

ChIP-seq   ( Table   A-4 )   of   13   key   regulators   (T-BET 37,38 ,   GATA3 39 ,   STAT3 40 ,   FOXP3 41 ,   STAT5 41 ,  

IRF5 42 ,   IRF1 43 ,   CEBPB 44 ,   PAX5 45 ,   REST 32 ,   RXRA 32 ,   HNF4A 46 ,   TCF7L2 32 )   assayed   in   primary  

cell-states   which   they   have   been   observed   to   regulate:   Th1,   Th2,   Th17,   Tregs,   Tregs,  

macrophages,   monocytes,   monocytes,   B   cells,   fetal   brain   cells,   brain   cells,   liver   cells,   and  

pancreatic   cells,   respectively.   We   additionally   acquired   ChIP-seq   of   RNA   polymerase   II   in  

peripheral   blood/lymphocytes,   fibroblasts,   stomach,   liver,   left   ventricle   heart,   sigmoid   colon,  

pancreas,   and   CD4+   T   cells 32,38,47 .   All   ChIP-seq   peaks   were   called   by   macs 48    [v1.4.2   20120305]  

(all    P    <   1e-5).  
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cis   eQTL   data.    We   acquired   SNP-level   summary   statistics   from   three   independent   studies.   First,  

we   obtained   data   from   3,754   peripheral   blood   samples 49    in   which   7,025   unique   genes   had  

measurements.   As   some   genes   were   represented   by   several   array   probes,   we   retained   only  

summary   statistics   on   one   probe,   selected   randomly,   per   gene.   Second,   we   obtained   data   from  

GTEx   V7   ( Web   Resources )   in   the   following   6   cell   types   with   the   number   of   samples   listed   in  

parentheses:   transformed   fibroblasts   (300),   stomach   (237),   liver   (153),   left   ventricle   of   heart  

(272),   sigmoid   colon   (203),   and   pancreas   (220).   On   average   across   these   cell   types,  

approximately   22,000   genes   had   measurements   in   the   GTEx   data.   Third,   we   obtained   eQTL  

data   from   CD4+   T   cells   in   East   Asian   individuals   (N=103)   with   expression   measurements   for  

20,107   genes 50 .   For   each   gene,   we   truncated   the   genome-wide   summary   statistics   to   a   cis  

window   of   1   Mb   upstream   and   downstream   of   the   gene   TSS.  

 

Genome-wide   association   data   used   in   S-LDSC   analyses.    We   collected   RA   GWAS   summary  

statistics 51    for   38,242   European   individuals,   combined   cases   and   controls,   and   22,515   East  

Asian   individuals,   comprised   of   4,873   RA   cases   and   17,642   controls 52 .   We   estimated   total  

genome-wide   polygenic   RA   h2   to   be   about   18%   for   EUR   and   21%   for   EAS.   We   further   collected  

41   other   complex   trait   summary   statistics 34,53,54 .   Reference   SNPs,   used   to   estimate   European   LD  

scores,   were   the   set   of   9,997,231   SNPs   with   minor   allele   count   greater   or   equal   than   five   in   a  

set   of   659   European   samples   from   phase   3   of   1000   Genomes   Projects 55 .   The   regression  

coefficients   were   estimated   using   1,125,060   HapMap3   SNPs   and   heritability   was   partitioned   for  

the   5,961,159   reference   SNPs   with   MAF   ≥   0.05.   Reference   SNPs,   used   to   estimate   East   Asian  

LD   scores,   were   the   set   of   8,768,561   SNPs   with   minor   allele   count   greater   or   equal   than   five   in  

a   set   of   105   East   Asian   samples   from   phase   3   of   1000   Genomes   Projects 55 .   The   regression  

coefficients   were   estimated   using   1,026,051   HapMap3   SNPs   and   heritability   was   partitioned   for  
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the   5,469,053   reference   SNPs   with   MAF   ≥   0.05.   Frequency   and   weight   files   (1000G   EUR  

phase3,   1000G   EAS   phase3)   are   publicly   available   and   may   be   found   in   our    Web   Resources .  

 

Fine-mapped   RA   causal   variation.    Previous   work   from   our   group   aimed   to   define   the   most   likely  

causal   RA   variant   for   each   locus   harboring   a   genome-wide   significant   variant 56 ,   identified   by   a  

GWAS   of   11,475   European   RA   cases   and   15,870   controls 57 .   To   this   end,   causal   posterior  

probabilities   were   computed   with   the   approximate   Bayesian   factor   (ABF),   assuming   one   causal  

variant   per   locus.   The   posteriors   were   defined   as:  

 

ABF ,P i  =   i / ∑
n

k = 0
ABF k    

 

where    i    is   the    i th     variant   and    n    is   the   total   number   of   variants   in   the   locus.   As   such,   the   ABF   over  

all   variants   in   a   locus   sum   to   1.   

 

Statistical   Methods  

IMPACT   Model.    We   build   a   model   that   predicts   TF   binding   on   a   motif   site   by   learning   the  

epigenomic   profiles   of   the   TF   binding   sites.   We   use   logistic   regression   to   model   the   log   odds   of  

TF   binding   on   a   motif   site,   or   putative   binding   site,   based   on   a   linear   combination   of   the   effects  

of   the    j    epigenomic   or   sequence   features   ( Table   A-1 ),   where   is   an   intercept: βj β0  

 

, og ( )  β X X .. Xl p
1 p =   0 + β1 1 + β2 2 + . + βj j  
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where   is   a   value   defining   some   relationship   between   feature    j    and   the   motif   site   and    p    is   the  Xj  

probability   of   TF   binding   at   the   motif   site.   From   the   log   odds,   which   ranges   from   negative   to  

positive   infinity,   we   compute   the   probability   of   TF   binding,   ranging   from   0   to   1:   

 

.  p =   1
1+exp( (β +β X +β X +...+β X ))0 1 1 2 2 j j

 

  

We   use   a   logistic   regression   framework   with   elastic   net   regularization   implemented   by   the  

cv.glmnet    R   [v1.0.143]   package 58 ,   in   which   optimal     are   fit   according   to   the   following β     

objective   function,  

 

  (||Y   Xβ||   (1  α)||β||    ||β||).   argminβ =     2 +   2
1   2 + α  

 

where   Y   represents   the   binary   vector   indicating   TF   bound   or   unbound   motif   sites,   X   is   a   matrix  

defining   the   feature   characterization   of   each   motif   site,   and     is   the   mix   term   between   the   ridge α  

(L2),   ,   and   lasso   (L1),   ,   penalties,   where   0       1.   We   find   that   no     significantly |β||| 2 |β|||  ≤ α  ≤ α  

outperforms   the   others   ( Figure   A-1 ).   Therefore,   we   select      =   0.5   to   make   a   compromise α  

between   sparsity   and   information   content;   enforcing   sparsity   with   lasso   performs   feature  

selection   thereby   helping   to   avoid   overfitting.   However,   excessive   feature   selection   may   remove  

important   information.   We   use   elastic   net   regularization   for   two   reasons:   1)   our   model   has   a  

large   number   of   features   (N   >   500)   which   may   result   in   overfitting   if   feature   selection   is   not  

performed   (L1   penalty)   and   2)   the   L2   penalty   makes   the   objective   function   convex,   with   one  

stable   solution.   
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Training   IMPACT.    For   each   cell-state   that   we   model,   we   train   IMPACT   to   distinguish  

cell-state-specific   regulatory   from   non-specific   or   inactive   regulatory   regions   based   on  

cell-state-specific   binding   of   a   single   key   TF.   For   training,   we   define   the   cell-state-specific  

regulatory   class   as   TF-bound   motif   sites   and   the   non-specific   or   inactive   regulatory   class   as  

unbound   motif   sites.   To   define   TF-bound   motif   sites,   we   use   HOMER 59     [v4.8.3]   to   scan   TF  

ChIP-seq   peaks   for    k -mers   with   a   sequence   similarity   score,   computed   from   the   PWM   (position  

weight   matrix)   across    k    nucleotides,   that   is   greater   than   or   equal   to   the   TF   binding   motif  

detection   threshold,   empirically   determined   by   HOMER.   Specifically,   this   log-odds   detection  

threshold   is   equal   to   the   maximum   achievable   log   odds   (computed   from   the   PWM)   minus   an  

empirically   derived   acceptable   degree   of   mismatches.   A   detailed   description   of   this   calculation  

may   be   found   in   the   HOMER   documentation   ( Web   Resources ).   We   have   observed   that   at   most  

3   well   tolerated   nucleotide   mismatches   are   permitted   for   every   10   nucleotides.   HOMER   then  

scans   the   genome   to   assess   if   a   putative   motif   site   exceeds   the   detection   threshold.   The  

motif-specific   detection   threshold   for   each   TF   used   in   this   study   can   be   found   in    Table   A-2 .   To  

test   how   sensitive   our   selection   of   training   data   and   genomic   annotation   is   to   this   parameter,   we  

iterated   over   multiple   motif   detection   thresholds   ranging   from   lenient   to   strict   ( Figure   A-2 ).   We  

observe   that   small   changes   in   the   motif   log-odds   detection   threshold   lead   to   modest   changes   in  

the   proportion   of   peaks   with   a   detectable   motif.   For   example,   decreasing   the   threshold   by   0.5,  

leads   to   an   increase   of   at   most   10%   of   ChIP-seq   peaks   with   a   detectable   motif   and   increasing  

the   threshold   by   0.5,   leads   to   a   decrease   of   at   most   12%   of   ChIP-seq   peaks   with   a   detectable  

motif.   Regarding   genomic   annotation,   we   used   IFN-G,   the   quintessential   target   gene   of   the   TF  

T-BET,   to   demonstrate   how   IMPACT   regulatory   element   probabilities   changed   in   this   locus   as   a  

result   of   changing   the   motif   detection   threshold   ( Figure   A-2 ).   For   the   following   thresholds   4,   5,  

6,   6.2   (0.5   lower   than   the   default   T-BET   detection   threshold),   6.7   (default   threshold),   7.2   (0.5  

20  

https://paperpile.com/c/s2XIAj/m72K


 

greater   than   the   default   threshold),   8,   and   9,   we   find   that   IMPACT   regulatory   element  

probabilities   do   not   significantly   vary   over   the   IFN-G   locus,   suggesting   that   IMPACT   genomic  

annotation   is   not   sensitive   to   the   motif   detection   threshold   parameter.   

  

For   each   ChIP-seq   peak   with   at   least   one   motif   match,   we   retain   only   the   coordinates   of   the  

highest   scoring   motif   match   to   use   in   our   training   set.   This   ensures   that   each   instance   of   a  

bound   motif   site   is   in   a   separate   ChIP-seq   peak,   which   avoids   double   counting   ChIP-seq   peaks.  

In   terms   of   training   a   logistic   regression   model,   this   helps   to   ensure   that   no   two   motif   instances  

are   in   overlapping   or   proximal   genomic   coordinates   and   may   be   considered   independent.   We  

randomly   select   1,000   TF-bound   motif   sites   in   each   training   instance.  

 

To   define   unbound   motif   sites,   we   use   the   genome-wide   TF   motif   scan   performed   above   and  

select   motif   matches   that   do   not   overlap   the   corresponding   TF   ChIP-seq   peaks.   Then,   we   retain  

the   genomic   coordinates   of   these   matches.   We   randomly   select   10,000   unbound   motif   sites   in  

each   training   instance.   We   select   1,000   bound   motif   sites   and   10,000   unbound   motif   sites   for  

the   following   two   reasons.   First,   of   all   tested   TFs,   the   smallest   dataset   contained   just   over   1,000  

bound   motif   sites.   Therefore,   to   uniformly   train   IMPACT   models   across   TFs,   we   required   the  

same   number   of   bound   motif   sites   be   used   in   each   instance.   Second,   for   the   purpose   of  

genome-wide   regulatory   annotation,   we   attempt   to   make   our   training   data   represent  

hypothesized   genome-wide   regulatory   proportions.   To   this   end,   we   arbitrarily   required   10   times  

as   many   unbound   motif   sites   as   bound   motif   sites   to   reflect   an   approximate   genome-wide   ratio  

of   non-regulatory   to   regulatory   elements,   respectively 60,61 .   For   the   purposes   of   benchmarking  

IMPACT   against   state-of-the-art   methods,   we   assessed   each   model’s   performance   on   the   same  

sets   of   motif   sites.  
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IMPACT   is   trained   to   distinguish   TF-bound   motif   sites   from   unbound   motif   sites   by   their  

epigenomic   and   sequence   feature   characterization.   We   build   a   feature   matrix   by   reporting  

overlap   of   an   annotation   and   a   motif   site   with   a   value   of   1   and   no   overlap   with   a   value   of   0.  

Each   feature   characterization   is   represented   twice   in   the   model,   first   with   respect   to   local  

regions,   and   second   with   respect   to   distal   regions.   In   the   local   case,   for   each   motif   site   and   for  

each   feature,   we   quantify   direct   positional   overlap.   In   the   distal   case,   we   quantify   feature  

overlap   with   a   distal   nucleotide   relative   to   the   motif   site.   We   reason   that   although   a   motif   site  

may   not   directly   overlap   a   particular   feature,   such   as   a   promoter,   it   may   be   informative   to   know  

that   there   is   one   nearby.   For   example,   we   might   look   1,000   nucleotides   away   from   the   motif   site  

and   report   feature   overlap   at   either   the   upstream   or   downstream   position   with   a   single   value   of   1  

or   overlap   at   neither   with   a   value   of   0.   After   parameter   optimization,   we   set   this   distance   value  

to   1,000   nucleotides   ( Figure   A-1 ).   We   do   not   use   absolute   distance   between   annotation   and  

motif   site   to   characterize   our   feature   space   in   the   interest   of   computational   efficiency   with  

specific   regard   to   nucleotide-based   genome-wide   annotation.   Furthermore,   IMPACT   prediction  

performance   for   no   TF   is   significantly   improved   by   using   the   absolute   distance   feature  

characterization   strategy   (all    P    >   0.60)   ( Figure   A-3 ).  

 

We   note   that   using   motif   site-centric   gold   standards   has   multiple   advantages   over   predicting   TF  

binding   on   entire   ChIP-seq   peak   regions.   First,   using   motif   sites   serves   as   a   quality   control   for  

pioneer   TF   ChIP-seq   data,   in   which   case   we   know   the   TF   is   interacting   directly   with   the   DNA.  

Second,   it   provides   an   intuitive   interpretation   for   binary   labeling   as   a   motif   site   may   be   either  

bound   or   unbound.   Such   binary   interpretation   is   not   applicable   to   ChIP-seq   peaks   which   can  

each   implicate   hundreds   of   nucleotides.   Rather   than   a   TF   binding   uniformly   throughout   the  
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peak,   it   is   more   likely   that   the   ChIP-seq   signal   is   coming   from   a   smaller   region   of   TF   binding  

within   the   peak,   making   the   use   of   motif   sites   an   attractive   strategy   to   better   localize   the   signal.  

Third,   it   provides   TF-specificity   by   focusing   on   sequences   within   the   peak   that   only   the   TF   of  

interest   may   interact   with,   whereas   within   the   coordinates   of   one   ChIP-seq   peak   multiple   TFs  

may   be   binding.   We   also   observed   that   on   average   IMPACT   predicts   TF   binding   significantly  

better   when   using   motif   site-centric   gold   standards   according   to   the   AUPRC   performance   metric  

(0.18   average   increase   in   AUPRC;   all   student’s   t-test    P    <   8.3e-36,   except   for   TCF7L2)   ( Figure  

A-3 ).   Moreover,   we   find   that   IMPACT   regulatory   element   probabilities   are   significantly   higher   (all  

P    <   0.05,   student’s   t-test)   at   nucleotides   located   in   both   a   motif   site   and   a   ChIP-seq   peak  

( Figure   A-3 ),   suggesting   that   motif   sites   provide   a   non-redundant   layer   of   regulatory   information  

beyond   ChIP-seq   peak   signal.   These   results   suggest   that   IMPACT’s   ability   to   score   motif   sites  

with   higher   regulatory   potential   might   be   used   as   a   strategy   to   perform   quality   control   on  

ChIP-seq   peaks.  

 

To   train   the   elastic   net   logistic   regression   model,   we   partition   the   sets   of   TF-bound   and   unbound  

motif   sites   by   randomly   sampling   80%   of   each   set,   to   be   used   for   10-fold   cross   validation   (CV),  

in   which   these   subsets   are   further   partitioned   into   90%   for   training   and   10%   for   testing.   The  

remaining   20%,   completely   unseen   by   the   CV   and   not   overlapping   with   the   initial   80%,   is   used  

as   a   validation   set.   In   this   binary   classification   problem,   probabilistic   outputs   from   the   logistic  

regression   are   made   binary   by   applying   thresholds   in   the   CV.   The   threshold   vector   is   a  

sequence   from   0   to   1,   with   resolution   of   0.0025,   resulting   in   401   applied   thresholds.   We   applied  

IMPACT   genome-wide   to   assign   nucleotide-resolution   cell-state-specific   regulatory   element  

probabilities,   using   the   model    learned   from   the   elastic   net   logistic   regression   CV.  
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Interpreting   IMPACT   regulatory   element   probabilities.    Genome-wide,   IMPACT   evaluates   each  

nucleotide’s   regulatory   element   potential   with   respect   to   a   particular   TF/cell-state   pair   and  

assigns   a   probability   to   each   nucleotide.   In   order   to   understand   these   probabilities,   we   compare  

their   distribution   across   the   bound   motif   site   class   and   the   unbound   class.   As   expected,   we  

observe   significantly   higher   IMPACT   predictions   at   TF-bound   motif   sites   compared   to   unbound  

motif   sites   (all    P    <   1e-3,   student’s   t-test);   unbound   motif   sites   have   regulatory   probabilities   near  

0   ( Figure   A-4 ).   This   separation   informs   the   interpretation   of   genome-wide   predictions:   truly  

inactive/non-specific   regulatory   elements   are   expected   to   have   predicted   values   close   to   0,  

rather   than   an   arbitrary   or   uninterpretable   non-zero   decision   boundary.  

  

cis   eQTL   causal   variation   enrichment.    We   computed   a   genome-wide   enrichment   of   cis   eQTL  

causal   association   across   various   functional   annotations.   To   this   end,   we   gathered   gene-based  

cis-window   summary   statistics.   Then,   for   each   gene   and   for   each   annotation,   an   enrichment  

was   calculated   explicitly   as:  

 

,  Enrichmentg,a =  
( g )   N∑
N

i= 1
χ2 /

( g )   M∑
M

j= 1
χ2 /

 

 
where    g    is   the   gene,    a    is   the   annotation,    N    is   the   number   of   variants   within   annotation    a ,    M    is  

the   number   of   variants   outside   annotation    a ,    i    is   the    i    th     variant,    j    is   the    j    th     variant,   and     is   the χ2  

chi-squared   statistic   of   the   association   between   gene    g    and   SNP    i    or    j .   We   then   computed  

genome-wide   standard   errors   by   block   jackknifing   the   genome   into   200   adjacent   bins   and  

computed   a   distribution   of   enrichment   values   when   leaving   one   bin   out   at   a   time 24 .   This   strategy  

is   designed   to   prevent   the   genes   of   any   one   region   of   the   genome   from   dominating   the  
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enrichment   statistic.   Furthermore,   we   used   a   permutation   strategy   to   establish   a   null   distribution.  

To   this   end,   we   randomly   permuted   the   chi-squared   associations   in   the   cis-window   of   each   gene  

1,000   times,   while   matching   on   50   LD   bins   across   the   cis-window,   and   recomputed   the  

enrichment   with   each   of   the   functional   annotations.   We   estimated   enrichment   significance  

based   on   how   extreme   our   result   was   compared   to   the   permutation   distributions.  

  

Partitioning   heritability   with   S-LDSC.    We   apply   S-LDSC 24    (stratified   linkage   disequilibrium   (LD)  

score   regression)   [v1.0.0],   a   method   developed   to   partition   polygenic   trait   heritability   by   one   or  

more   functional   annotations,   to   quantify   the   contribution   of   IMPACT   cell-state-specific   regulatory  

annotations   to   42   complex   traits.     We   annotate   common   SNPs   (MAF   ≥   0.05)   with   regulatory  

element   probabilities   based   on   cell-state-specific   IMPACT   models.   Then,   we   run   S-LDSC   once  

on   the   annotated   SNPs   to   compute   population-specific   LD   scores   and   again   to   quantify   the  

complex   trait   heritability   captured   by   our   IMPACT   annotations.   Here,   the   two   statistics   we   use   to  

evaluate   how   well   our   annotations   capture   causal   variation   are   enrichment   and   standardized  

effect   size   ( *). τ  

 

If    a cj    is   the   value   of   annotation    c    for   SNP    j ,   we   assume   the   variance   of   the   effect   size   of   SNP    j  

depends   linearly   on   the   contribution   of   each   annotation    c :  

 

ar(β )  τ .V j =  ∑
 

c
acj c  
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where     is   the   per-SNP   contribution   from   one   unit   of   the   annotation     to   heritability.   To τ c  ac  

estimate   ,   S-LDSC   estimates   the   marginal   effect   size   of   SNP    j    in   the   sample   from   the τ c  

chi-squared   GWAS   statistic   : χj
2  

 

N  βχj
2 =  

︿
j
2

 

 

Considering   the   expectation   of     and   following   the   derivation   from   Gazal   et   al   2017 34 , χj
2   

 

] N[χj
2 =   (τ (a (k)r )  1,∑

 

c
c∑

 

k
c

2
jk +       

[χ ] NE j
2 =   l(j, )  1,∑

 

c
τ c c +       

 

where    N    is   the   sample   size   of   the   GWAS,     is   the   LD   score   of   SNP    j    with   respect   to (j, )  l c  

annotation    c ,   and     is   the   true,   e.g.   population-wide,   genetic   correlation   of   SNPs    j    and    k .   We r2jk  

define   enrichment   of   an   annotation   as   the   proportion   of   heritability   explained   by   the   annotation  

divided   by   the   average   value   of   the   annotation   across   the    M    common   (MAF     0.05)   SNPs.  ≥  

Enrichment   may   be   computed   for   binary   or   probabilistic   annotations   according   to   the   equation  

below,   where     is   the   h2   explained   by   SNPs   in   annotation    c : (c)h2g  

 

nrichment . E =   h (c)   h2
g / 2

g

 (j)   M∑
 

j
ac /

=
 (j)   M∑

 

j
ac /

 (j)τ  (j)τ∑
 

j
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︿
c / ∑

 

j
∑
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︿
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Since     is   not   comparable   between   annotations   or   traits,   is   defined   as   the   per-annotation τ c    τ c  

standardized   effect   size,   or   the   proportionate   change   in   per-SNP   h2   associated   with   a   one  

standard   deviation   increase   in   the   value   of   the   annotation 34 .     is   a   function   of   the   standard  τ c  

deviation   of   the   annotation    c ,    sd(c) ,   the   trait-specific   SNP-heritability   estimated   by   LDSC,   , h2g  

and   the   total   number   of   reference   common   SNPs   used   to   compute   ,    M   =    5,961,159   in h2g  

Europeans   (EUR)   and   5,469,053   in   East   Asians   (EAS):  

 

.  τ c =   h M2
g/

sd(c)τ  c   

 

*   captures   the   unique   contribution   of   an   annotation   to   capturing   h2   in   the   S-LDSC   model, τ  

conditional   on   other   provided   annotations.   Specifically,   a   *   of   0,   means   that   the   annotation τ  

does   not   change   per-SNP   h2,   a   strongly   negative   *   means   that   membership   to   the   categorical τ  

annotation   decreases   per-SNP   h2,   and   a   strongly   positive   *   means   that   membership   to   the τ  

annotation   increases   per-SNP   h2.   The   significance   of   *   is   computed   based   on   a   test   of   how τ  

different   from   0   the   *   is.   We   emphasize   that   enrichment   does   not   quantify   effects   that   are τ  

unique   to   a   given   annotation,   whereas   *   does.   When   conditionally   comparing   two   annotations, τ  

say   A   and   B,   in   a   joint   S-LDSC   model,   both   annotations   may   have   similar   enrichments   if   they  

are   highly   correlated.   However,   the   *   for   the   annotation   with   greater   true   causal   variant τ  

membership   will   be   larger   and   more   significantly   positive.   Previous   work   has   reported   that   the  

threshold   for   impactful   values   of   | *|   is   approximately   0.24 34 . τ  
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Each   S-LDSC   analysis   conditions   IMPACT   annotations   on   69   baseline   annotations,   a   subset   of  

the   75   annotations   referred   to   as   the   baseline-LD   model 34 ;   we   removed   6   annotations   including  

T   cell   enhancers,   since   IMPACT   T   cell-state   annotations   are   likely   correlated.   The   69  

annotations   consist   of   53   cell-type-nonspecific   annotations 24 ,   which   include   histone   marks   and  

open   chromatin,   10   MAF   bins,   and   6   LD-related   annotations 34    to   assess   if   functional   enrichment  

is   cell-type-specific   and   to   control   for   the   effect   of   MAF   and   LD   architecture.   Consistent   inclusion  

of   MAF   and   LD   associated   annotations   in   the   baseline   model   is   the   standard   recommended  

practice   of   using   S-LDSC.  

  

Fine-mapped   RA   posterior   probability   enrichment   in   IMPACT   regions.    For   each   of   20   chosen  

RA-associated   loci 56 ,   we   computed   the   enrichment   of   posterior   probabilities   in   the   top   1%   of  

cell-state-specific   IMPACT   regulatory   elements.   For   each   RA-associated   locus    l,    we   define  

 

, nrichment   E =
M∑

Ml

i
1/ l

(i)∑
Ml

i
P c

 

 

where     is   the   posterior   causal   probability   of   SNP    i ,   such   that    i    belongs   to   the   top   1%   of   the (i)  P c  

cell-state-specific   IMPACT   annotation    c ,     is   the   number   of   SNPs   in   locus    l    for   which   we Ml  

previously   computed   a   posterior   probability 56 .   The   denominator   represents   the   null   hypothesis  

that   each   SNP   in   a   locus   is   equally   causal.   We   computed   the   average   of   these   enrichment  

values   over   the   20   RA-associated   loci.   We   assessed   significance   based   on   comparison   to  

10,000   permutation   distributions,   designed   by   computing   an   average   enrichment   value   over  

these   20   loci,   in   which   random   posterior   probabilities   (of   the   same   quantity   )   were   selected. Ml  
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Results  

IMPACT   accurately   predicts   transcription   factor   binding  

The   IMPACT   model   assumes   that   cell-state-specific   TF   binding   sites   and   related   regulation   may  

be   characterized   by   a   quantitative   epigenomic   signature.   If   this   is   true,   IMPACT   might   predict  

cell-state-specific   genome-wide   TF   occupancy   with   high   accuracy,   which   has   proven   to   be   a  

challenging   task   (see   ENCODE-DREAM   challenge   in    Web   Resources ),   leading   to   a   diverse   set  

of   TF   binding   prediction   strategies 35,36,62,63 .   To   test   this   model   assumption,   we   used   IMPACT   to  

predict   regulatory   elements   based   on   experimental   binding   identified   via   ChIP-seq   of   eight  

tested   TFs   assayed   in   eight   different   cell-states:   T-BET,   GATA3,   STAT3,   FOXP3,   REST,   HNF4A,  

TCF7L2,   and   RNA   polymerase   (Pol)   II   in   CD4+   Th(T   helper)1,   CD4+   Th2,   CD4+   Th17,   CD4+  

Treg   (T   regulatory),   fetal   brain,   liver,   pancreatic,   and   lymphocytic   cells,   respectively 32,37–41,46    (see  

Material   and   Methods ).   We   observe   that   IMPACT   predicts   TF   occupancy   with   high   accuracy  

across   8   tested   TFs.   The   average   area   under   the   precision-recall   curve   (AUPRC)   over   50  

random   sampling   trials   is   0.81   (s.e.   0.07),   computed   via   10-fold   cross   validation   on   80%   of   data,  

with   AUPRC   evaluated   on   the   withheld   20%,    Figure   2-2A .   We   additionally   evaluate   IMPACT  

using   Matthew’s   correlation   coefficient   (MCC),   mean   MCC   0.70   (s.e.   0.08),   and   show   full  

precision-recall   curves   ( Figure   A-5 ).   Next,   we   compared   IMPACT   TF   binding   prediction  

performance   to   several   recent   state-of-the-art   methods   MocapG 35 ,   MocapS 35 ,   and   Virtual  

ChIP-seq 36 .   Briefly,   MocapG   is   an   unsupervised   TF   binding   prediction   method   that   models   “cut  

counts”   from   cell-type-specific   open   chromatin   (DNase-seq)   with   negative   binomial   distributions.  

MocapS   is   a   supervised   sparse   logistic   regression   approach   that   predicts   TF   binding   using  

cell-type-specific   DNase-seq   cut   count   modeling   from   MocapG,   TF   footprint   scores   from   the  

same   DNase-seq   data,   conservation   scores,   GC   content,   CpG   island   information,   sequence  

mappability   scores,   and   distance   to   nearest   TSS.   Virtual   ChIP-seq   is   a   multi-layer   perceptron  
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that   predicts   TF   binding,   which   similarly   uses   conservation,   cell-type-specific   DNase-seq,   but  

also   leverages   cell-type-specific   gene   expression   from   RNA-seq   and   TF-specific   ChIP-seq   data  

over   a   range   of   cell   types   and   cell   lines.   While   benchmarking,   each   method   had   access   to   the  

same   training   and   testing   data   to   ensure   fair   comparison.   We   observe   that   on   average,   across  

the   8   tested   TFs,   IMPACT   outperforms   all   3   methods:   AUPRC   IMPACT   >   MocapG   (all    P    <  

1.5e-16,   student’s   t-test;   0.23   average   increase   in   AUPRC),   IMPACT   >   MocapS   (all    P    <   5.4e-30,  

except   for   FOXP3   ( P    =   0.15);   0.24   average   increase   in   AUPRC),   IMPACT   >   Virtual   ChIP-seq   (all  

P    <   8.5e-98;   0.62   average   increase   in   AUPRC)   ( Figure   2-2A ).   We   note   that   using   Virtual  

ChIP-seq   we   were   only   able   to   predict   binding   for   GATA3,   REST,   and   Pol   II   due   to   data  

limitations.   In   light   of   this,   we   predicted   Pol   II   binding   in   6   additional   cell   types:   sigmoid   colon,  

fibroblast,   left   ventricle   heart,   liver,   pancreas,   and   stomach.   We   observed   that   on   average,  

IMPACT   outperforms   Virtual   ChIP-seq   according   to   the   AUPRC   (all    P    <   4.9e-38,   student’s   t-test;  

0.48   average   increase   in   AUPRC)   ( Figure   2-2B ).   We   additionally   used   MCC   as   a   metric   to  

compare   TF   binding   prediction   performance,   in   which   IMPACT   also   on   average   outperforms   the  

competing   methods   (all    P    <   2.0e-39   for   MocapG,   0.30   average   increase   in   MCC;   all    P    <   1.2e-22  

for   MocapS,   0.29   average   increase   in   MCC;   all    P    <   1.2e-77   for   Virtual   ChIP-seq,   0.49   average  

increase   in   MCC),   with   the   following   exceptions:   MCC   FOXP3   IMPACT   <   MocapG   ( P    <  

4.3e-18),   MocapS   ( P    <   3.9e-19)   ( Figure   A-6 ).  
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Figure   2-2.   IMPACT   outperforms   state-of-the-art   TF   binding   prediction   methods.   (a)   IMPACT   outperforms  

MocapG,   MocapS,   and   Virtual   ChIP-seq   in   predicting   cell-state-specific   TF   binding   across   8   TFs,  

illustrated   by   AUPRCs   on   the   same   training   and   testing   data   across   50   trials,   with   the   exception   of   the  

MocapS   model   for   FOXP3.   (b)   Prediction   of   Pol   II   binding   in   6   cell   types   reveals   that   IMPACT   outperforms  

Virtual   ChIP-seq.  

 

Genome-wide   IMPACT   regulatory   annotations  

For   each   of   the   8   tested   TFs,   we   created   genome-wide   IMPACT   regulatory   annotations.  

Focusing   on   the   four   CD4+   T   cell-state   IMPACT   annotations,   we   illustrate   that   IMPACT  

regulatory   element   probabilities   vary   dynamically   within   TF   ChIP-seq   peaks   near   canonical  

CD4+   T   cell-state   genes.   This   reflects   the   high   resolution   information   that   is   gained   by  

integrating   hundreds   of   epigenomic   and   sequence   annotations   ( Figure   2-3A ,    Figure   A-7 ).  

Furthermore,   we   observe   that   the   most   heavily   weighted   features   from   the   logistic   regression,  
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indicating   TF   binding,   include   cell-state-specific   open   chromatin   and   activating   histone  

modifications,   as   expected   ( Figure   2-3B ).   When   training   on   entire   ChIP-seq   peaks   rather   than  

motif   sites   within   peaks,   top   weighted   features   generally   have   less   relevant   cell-state-specificity  

( Figure   A-8 ),   possibly   due   to   high   correlation   of   ChIP-seq   signal   between   CD4+   T   cell-states.  

For   example,   most   regulatory   elements   across   CD4+   T   cell-states   may   be   near   similar   target  

genes.   While   the   motif   site   regions   used   to   train   each   model   are   TF-specific,   independent   and  

non-overlapping,   we   still   observe   relatively   high   correlations   between   CD4+   T   cell-state   IMPACT  

annotations   compared   to   the   epigenomic   annotations   used   to   train   the   models   ( Figure   A-9 ).  
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Figure   2-3.     IMPACT   genome-wide   regulatory   tracks.   (a)   Cell-state-specific   regulatory   element   IMPACT  

predictions   for   canonical   target   genes   of   T-BET,   GATA3,   STAT3,   and   FOXP3.   (b)   Highly   weighted   features  

of   Th1,   Th2,   Th17,   and   Treg   IMPACT   annotations.  

  

The   IMPACT   epigenomic   feature   library   contains   515   features   across   many   cell   and   assay  

types   but   the   importance   of   annotation   categories   is   not   immediately   clear.   To   this   end,   we  

systematically   removed   categories   of   annotations   and   retrained   TF/cell-state   models   ( Figure  

A-10 ).   First,   we   observed   that   TF   binding   predictive   performance   significantly   decreases   upon  

removal   of   cell-type-specific   features   for   four   of   seven   TFs   (all    P    <   8.1e-4,   student’s   t-test).   For  

the   three   TFs   with   no   significant   decrease   in   performance,   this   result   suggests   that   presence   of  

annotations   from   biologically   similar   cell-states   may   be   sufficient   to   train   a   high-performing  

IMPACT   model,   without   requiring   annotations   specifically   assayed   in   the   target   cell-state.  

Second,   using   just   histone   modification   tracks   resulted   in   significantly   decreased   performance  

on   average   (all    P    <   6.3e-06),   while   using   just   open   chromatin   tracks   led   to   decreased  

performance   for   5   of   7   tested   TFs   (all    P    <   2.1e-05)   and   did   not   significantly   affect   the  

performance   for   STAT3   and   FOXP3.   Third,   we   observed   significantly   lower   performance   when  

restricting   to   cell-type-specific   H3K4me1   (all    P    <   2.0e-13),   except   for   STAT3   where   we   observe  

significantly   higher   performance   ( P    <   2.5e-44),   suggesting   that   using   cell-type-specific   features  

only   are   generally   less   informative   than   a   diversity   of   cell   types   and   assay   types.   Fourth,   we  

observed   that   using   only   cell-type-specific   open   chromatin   results   in   significantly   lower  

performance   for   T-BET,   TCF7L2,   and   HNF4A   (all    P    <   4.9e-17),   while,   for   GATA3   and   REST,  

performance   improved   (both    P    <   4.5e-3);   no   comparison   could   be   made   for   STAT3   or   FOXP3  

because   there   were   no   Th17   or   Treg   open   chromatin   annotations   to   begin   with.   From   this,   we  

learn   that   integration   of   diverse   cell   types   and   assays   generally   leads   to   improved   predictive  
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performance.   In   the   case   of   GATA3,   STAT3,   and   REST,   where   the   use   of   only   cell-type-specific  

annotations   resulted   in   improved   performance   over   the   canonical   IMPACT   model,   such   models  

may   overfit   to   training   data   and   misrepresent   true   TF   binding   patterns   genome-wide.   Therefore,  

further   assessment   is   necessary,   specifically   involving   training   and   testing   across   multiple  

datasets   from   the   same   cell   type,   which   was   not   possible   in   this   study   due   to   scarcity   of   primary  

cell   TF   ChIP-seq   data.  

 

Improved   enrichment   of   gene   expression   causal   variation  

We   developed   IMPACT   to   model   regulation   specific   to   a   functional   cell-state,   the   most   general  

of   which   may   be   active   cellular   transcription.   Expression   quantitative   trait   loci   (eQTLs)   are  

genetic   variations   that   modulate   transcription 64 .   Most   cis   eQTLs   map   to   TSS   and   promoter  

annotations,   and   more   rarely   to   the   5’   UTR 65 .   We   hypothesized   that   an   IMPACT   annotation  

tracking   active   transcription,   trained   on   RNA   polymerase   (Pol)   II   binding   sites,   would   capture   cis  

eQTL   causal   variation   better   than   the   most   strongly   enriched   canonical   eQTL-related  

annotations.  

  

We   obtained   SNP-level   summary   statistics   from   three   independent   sources:   first,   from   a   large  

and   previously   published   eQTL   analysis   on   3,754   peripheral   blood   samples 49 ;   second,   from  

GTEx   V7   across   6   tissue   types   (average   sample   size   =   231):   transformed   fibroblasts,   stomach,  

liver,   left   ventricle   heart,   sigmoid   colon,   and   pancreas;   and   third,   from   a   CD4+   T   cell   eQTL  

analysis   on   103   East   Asian   individuals 50 .   We   then   used   IMPACT   to   annotate   SNPs   tested   in   the  

eQTL   analysis   with   RNA   Pol   II   specific   regulatory   element   probabilities,   separately   for   each  

tissue   or   cell   type.   In   this   analysis,   we   were   limited   by   the   availability   of   Pol   II   ChIP-seq,   for  

which   there   is   an   abundance   of   tissue-specific   data   but   rarely   more   specific   cell-type   level   data.  
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While   tissues   may   contain   many   different   cell   types,   we   expect   IMPACT   to   learn   an   epigenomic  

signature   as   general   or   as   specific   as   the   training   data   provided.   For   the   peripheral   blood  

IMPACT   annotation,   we   combined   sites   of   Pol   II   binding   in   both   T   cells   and   B   cells,   the  

predominant   cell   populations   of   peripheral   blood,   and   trained   a   single   IMPACT   model.   Next,   we  

computed   a   genome-wide   enrichment   (see   Material   and   Methods)   of   chi-squared   cis   eQTL  

association   statistics,   averaged   over   all   genes   with   at   least   one   significant   eQTL,   across   Pol   II  

IMPACT,   Pol   II   ChIP-seq,   and   several   sequenced-based   annotations,   such   as   TSS   windows,  

promoters,   and   enhancers.   We   observed   that   on   average   Pol   II   IMPACT   across   all   cell   types  

was   more   enriched   for   chi-squared   association   than   the   Pol   II   ChIP-seq   used   for   training   (paired  

t-test    P    <   7.7e-4,   7.3%   average   increase   in   enrichment).   To   compute   this,   we   thresholded   each  

Pol   II   ChIP-seq   dataset   by   peak   score,   considering   11   uniformly   spaced   cutoffs,   ranging   from  

highest   scoring   ChIP-seq   peaks   to   lowest   scoring,   while   still   significant,   peaks.   To   directly  

compare   with   IMPACT,   we   appropriately   thresholded   each   Pol   II   IMPACT   annotation   by  

matching   on   size,   e.g.   the   genome-wide   proportion   of   SNPs   annotated   ( Figure   A-11 ).   We   also  

computed   enrichment   for   IMPACT   at   5   other   annotation   size   thresholds   (0.5%,   1%,   2.5%,   5%,  

and   10%),   which   resulted   in   larger   enrichments   than   achievable   by   any   thresholding   of   the  

ChIP-seq   data.   Furthermore,   we   observe   that   Pol   II   IMPACT   captures   more   chi-squared  

association   than   sequenced-based   functional   annotations   (student’s   t-test   p<4.8e-4)   with   the  

highest   performing   IMPACT   annotations   providing   a   25%   average   increase   in   enrichment   over  

the   sequenced-based   annotations   ( Figure   2-4 ).   For   each   of   the   eight   tissues   or   cell   types  

tested,   the   most   enriched   Pol   II   IMPACT   annotation   outperformed   all   sequenced-based  

functional   annotations.   Specifically,   in   peripheral   blood,   Pol   II   IMPACT   introduced   a   1.7x  

enrichment   (permutation    P    <   1e-3),   corresponding   to   a   24%   average   increase   in   enrichment  

compared   to   the   tested   sequence-based   functional   annotations.   Similarly,   for   transformed  
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fibroblasts,   Pol   II   IMPACT   introduced   a   1.7x   enrichment   (30%   increase);   for   stomach,   a   1.5x  

enrichment   (22%   increase);   for   liver,   a   1.5x   enrichment   (25%   increase);   for   left   ventricle   heart,   a  

1.5x   enrichment   (22%   increase);   for   sigmoid   colon,   a   1.5x   enrichment   (22%   increase);   for  

pancreas,   a   1.5x   enrichment   (18%   increase);   and   for   CD4+   T   cells,   a   1.8x   enrichment   (41%  

increase).  
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Figure   2-4.   Pol   II   IMPACT   captures   cis   eQTL   causal   variation   better   than   sequence-based   annotations  

across   8   cell   and   tissue   types.   Enrichment   of   cis   eQTL   chi-squared   association   values   with   Pol   II   IMPACT  

annotations,   created   for   peripheral   blood   (a),   fibroblasts   (b),   stomach   (c),   liver   (d),   left   ventricle   heart   (e),  

sigmoid   colon   (f),   pancreas   (g),   and   CD4+   T   cells   (h),   highlighting   top   performing   IMPACT   annotation  

compared   to   enrichments   of   sequence-based   functional   annotations.   Values   in   parentheses   after  

annotation   name   are   the   average   annotation   value   across   all   common   variants,   e.g.   the   effective   size   of  

the   annotation.   *   denotes   permutation    P    <     0.05,   **   permutation    P    <     0.01,   ***   permutation    P    <     0.001.  

Intervals   at   the   top   of   each   bar   represent   the   95%   confidence   interval   of   the   enrichment   estimate.  

 

Improved   capture   of   rheumatoid   arthritis   causal   variation  

We   previously   hypothesized   that   IMPACT   annotations   of   pathogenic   cell-states   would   more  

precisely   capture   polygenic   trait   h2,   compared   to   regulatory   annotations   that   don’t   resolve  

cell-states.   Testing   this   hypothesis   requires   a   polygenic   trait   with   a   well-studied   disease-driving  

cell   type.   Genetic   studies   of   rheumatoid   arthritis   (RA),   an   autoimmune   disease   that   attacks  

synovial   joint   tissue   leading   to   permanent   joint   damage   and   disability 66 ,   have   suggested   a  

critical   role   by   CD4+   T   cells 13,14,16,17,24,25,67–69 .   However,   CD4+   T   cells   are   extremely  

heterogeneous:   naive   CD4+   T   cells   may   differentiate   into   memory   T   cells,   and   then   into   effector  

T   cells   including   Th1,   Th2,   and   Th17   and   T   regulatory   cells,   requiring   the   action   of   a   limited  

number   of   key   transcription   factors   (TFs):   T-BET   or   STAT4,   GATA3   or   STAT6,   STAT3   or   RORt,  

FOXP3   or   STAT5,   respectively 70 .   As   these   CD4+   T   effector   cell-states   contribute   to   RA  

risk 14,17,24 ,   we   hypothesized   that   CD4+   T   cell-state-specific   IMPACT   regulatory   element  

annotations   would   better   capture   RA   h2   than   annotations   that   generalize   CD4+   T   cells   and  

ignore   the   differential   functionality   of   effector   cell-states.  
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To   this   end,   we   built   IMPACT   annotations   in   four   CD4+   T   cell-states,   Th1,   Th2,   Th17,   and   Treg.  

We   then   integrated   S-LDSC 24    with   publicly   available   European   (EUR,   N   =   38,242) 24,51     and   East  

Asian   (EAS,   N   =   22,515) 52    RA   GWAS   summary   statistics   to   partition   the   common   SNP   h2   of  

RA.   We   use   two   metrics   to   evaluate   how   well   our   IMPACT   annotations   capture   RA   h2:  

enrichment   and   per-annotation   standardized   effect   size,   *   (see    Material   and   Methods ).  τ  

Briefly,   enrichment   is   defined   as   the   proportion   of   h2   divided   by   the   genome-wide   proportion   of  

SNPs   in   the   annotation,   and   *   is   defined   as   the   proportionate   change   in   per-SNP   h2  τ  

associated   with   a   one   standard   deviation   increase   in   the   value   of   the   annotation 34 .  

  

We   observe   that   each   CD4+   T   cell-state-specific   IMPACT   annotation   is   significantly   enriched  

with   RA   h2   in   both   EUR   and   EAS   populations   (average   enrichment   =   20.05,   all    P    <   1.9e-04,  

Figure   2-5A ,    Table   A-5 ).   Furthermore,   we   find   that   *   is   significantly   positive   for   all   CD4+   T  τ  

IMPACT   annotations   separately   conditioned   on   the   cell-type-nonspecific   baseline-LD  

annotations   (all    P    <   2.1e-03,    Figure   2-5B,   Figure   A-12 ),   supporting   the   CD4+   T   cell-specific  

role   in   RA.   We   then   selected   the   top   5%   of   regulatory   SNPs   according   to   each   CD4+   T   IMPACT  

annotation   and   find   that   all   the   CD4+   T   cell-state   annotations   explain   a   large   proportion   of   RA  

h2,   but   the   Treg   annotation   explains   the   greatest   proportion,   capturing   85.7%   (s.e.   19.4%,  

enrichment    P    <   1.6e-5)   of   RA   h2   meta-analyzed   between   both   EUR   and   EAS   populations  

( Figure   2-5C ).   Furthermore,   we   observe   that   the   top   9.8%   of   CD4+   Treg   IMPACT   regulatory  

elements,   consisting   of   all   SNPs   with   a   non-zero   annotation   value,   capture   97.3%   (s.e.   18.2%,  

enrichment    P    <   7.6e-7)   of   RA   h2   in   EUR.   This   powerful   result   is   the   most   comprehensive  

explanation   for   RA   h2,   to   our   knowledge,   to   date.  
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Figure   2-5.   CD4+   T   cell-state   IMPACT   annotations   are   strongly   enriched   for   RA   heritability.   (a)  

Enrichment   of   RA   h2   in   CD4+   T   IMPACT   for   EUR   and   EAS   populations.   Values   below   cell-states   are   the  

average   annotation   value   across   all   common   (MAF   ≥   0.05)   SNPs,   e.g.   the   effective   size   of   the   annotation.  

(b)   Standardized   annotation   effect   size   ( *)   of   each   annotation   separately   conditioned   on   annotations  τ  

from   the   baseline-LD   model.   For   panels   a   and   b,   ***   denotes    P    <   0.001.   (c)   Proportion   of   total   causal   RA  

h2   explained   by   the   top   5%   of   SNPs   in   each   IMPACT   annotation.   For   all   panels,   95%   CI   represented   by  

black   lines.  

 

We   then   assessed   if   CD4+   T   IMPACT   annotations   offered   improved   enrichments   of   RA   h2  

compared   to   canonical   CD4+   T   cell   functional   annotations,   using   S-LDSC   and   EUR   RA  

summary   statistics   ( Figure   2-6A,   Figure   A-13 ).   Here,   we   highlight   our   comparison   of   the   CD4+  

Treg   IMPACT   annotation   to   FOXP3   binding   motif   sites,   genome-wide   FOXP3   ChIP-seq,   the  

“Averaged   Tracks”   annotation,   which   assigns   each   SNP   a   value   proportional   to   the   number   of  

overlapping   IMPACT   epigenomic   features,   the   five   largest   *   CD4+   T   cell-specific   histone   mark  τ  

annotations 24 ,   the   five   largest   *   CD4+   T   cell-specifically   expressed   gene   sets 25 ,   and   CD4+   T  τ  

cell   super   enhancers 71 .   We   observe   that   the   CD4+   Treg   IMPACT   annotation   (enrichment   =   22.9,  

s.e.   4.8,     P    <     5.2e-08)   is   significantly   more   enriched   ( P    <   0.05)   for   RA   h2   than   the   FOXP3   motif  
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site   annotation   (enrichment   not   significantly   different   from   0),   the   “Averaged   Tracks”   annotation  

(enrichment   =   7.0,   s.e.   1.4),   all   CD4+   T   cell-specifically   expressed   gene   sets   (average  

enrichment   =   2.9,   s.e.   0.8),   and   CD4+   T   cell   super   enhancers   (enrichment   =   8.1,   s.e.   1.3).   On  

the   other   hand,   the   FOXP3   ChIP-seq   annotation   (enrichment   =   173.3,   s.e.   58.3),   which   is   used  

to   train   the   CD4+   Treg   IMPACT   model,   is   more   strongly   enriched   ( P    <   0.05)   for   RA   h2   than   the  

CD4+   Treg   IMPACT   annotation   itself.   We   additionally   created   functional   annotations  

representing   the   overlap   of   TF   ChIP-seq   with   TF   motif   sites,   as   such   a   combination   might  

improve   the   enrichment   observed   for   TF   ChIP-seq   alone.   However,   these   annotations   are   very  

small   (average   annotation   size   =   0.004%   of   SNPs)   and   resulted   in   non-significant   enrichments  

in   the   S-LDSC   framework.   Finally,   we   observe   that   all   compared   CD4+   T   cell   histone   mark  

annotations   are   similarly   enriched   for   RA   h2,   relative   to   the   CD4+   Treg   IMPACT   annotation  

(23.4x   on   average   compared   to   22.9x,   respectively).   We   note   that   the   average   RA   h2   captured  

by   these   CD4+   T   histone   mark   annotations,   ranging   in   size   from   1-3%   of   SNPs,   is   42.3%;   and,  

the   average   RA   h2   captured   by   these   CD4+   T   specifically   expressed   gene   set   annotations,  

ranging   in   size   from   11-13%   of   SNPs,   is   36.4%.   In   terms   of   total   RA   h2   explained   by   a   single  

annotation,   these   values   pale   in   comparison   to   the   85.7%   of   RA   h2   captured   by   the   top   5%   of  

SNPs   in   the   Treg   IMPACT   annotation.  
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Figure   2-6.   CD4+   Treg   IMPACT   annotation   significantly   captures   RA   heritability   conditional   on   strongly  

enriched   CD4+   T   cell   regulatory   annotations.   (a)   RA   h2   enrichment   of   the   CD4+   Treg   IMPACT   annotation  

and   compared   T   cell   functional   annotations.   Values   below   cell-states   represent   the   effective   size   of   the  

annotation.   From   left   to   right,   we   compare   Treg   IMPACT   to   genome-wide   FOXP3   motif   sites,   FOXP3  

ChIP-seq,   the   “Averaged   Tracks”   annotation,   which   assigns   each   SNP   a   value   proportional   to   the   number  

of   overlapping   IMPACT   epigenomic   features,   the   top   5   cell-type-specific   histone   modification   annotations,  

in   terms   of   independent   *,   the   top   5   cell-type-specifically   expressed   gene   sets,   in   terms   of   independent  τ  

*,   and   T   cell   super   enhancers.   (b)   CD4+   Treg   IMPACT   annotation   standardized   effect   size   ( *,   teal)  τ  τ  

conditional   on   other   T   cell   related   functional   annotations   (coral).   *   for   independent   analyses   are  τ  

denoted   by   the   top   of   each   black   bar,   as   a   reference   for   the   conditional   analyses,   denoted   by   the   top   of  

each   colored   bar.   For   panels   a)   and   b),   *    P    <   0.05,   **    P    <   0.01,   ***    P    <   0.001.  
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Next,   in   order   to   quantify   annotation-specific   effects   of   capturing   RA   h2,   we   computed   the  

per-annotation   standardized   effect   size,   *,   of   each   annotation   from   the   previous   analysis,  τ  

conditioned   on   baseline-LD   annotations.   We   then   separately   conditioned   each   CD4+   T  

cell-state   IMPACT   annotation   jointly   on   the   compared   annotations   and   baseline-LD   annotations.  

Larger   and   more   significantly   positive   *   identifies   the   annotation   that   better   captures   RA   h2.  τ  

We   observe   that   the   *   of   both   CD4+   Treg   and   Th2   IMPACT   annotations   are   larger   and   more  τ  

significantly   positive   (all   Treg   *   >   1.9,    P    <   5.0e-3;   all   Th2   *   >   1.7,    P    <   0.01)   than   compared   T  τ  τ  

cell   annotations,   excluding   H3K27ac   in   Th2   cells,   illustrated   by   taller   teal   bars   than   coral   bars  

( Figure   2-6B,   Figure   A-13 ).   Here,   we   specifically   highlight   the   CD4+   Treg   IMPACT   annotation;  

although   the   FOXP3   ChIP-seq   annotation   was   more   strongly   enriched   for   RA   h2   than   CD4+  

Treg   IMPACT,   the   *   of   the   IMPACT   annotation   is   larger   and   more   significantly   positive.  τ  

Overall,   these   results   suggest   that   IMPACT   annotates   areas   of   concentrated   RA   h2   that   other   T  

cell   regulatory   annotations   do   not.  

 

IMPACT   annotation   effect   sizes   across   42   polygenic   traits  

We   next   applied   our   CD4+   T   IMPACT   annotations   to   41   additional   polygenic   traits 34,53,54    and  

observed   consistently   significantly   positive   per-annotation   standardized   effect   sizes,   *,   for  τ  

immune-mediated   traits,   such   as   Crohn’s,   “all   autoimmune   disease”,   respiratory   ear/nose/throat,  

and   “allergy   and   eczema”   (mean   *   =   3.2;   all    P    <   5.9e-4,    P    <   1.9e-5,    P    <   3.6e-3,    P    <   1.7e-3,  τ  

respectively),   and   for   several   blood   traits,   eosinophil   and   white   blood   cell   counts   (mean   *   =  τ  

2.5;   all    P    <   1.6e-11,    P    <   0.02,   respectively),   but   not   for   non-immune-mediated   traits   ( Figure  

2-7A,   Table   A-6 ).   We   then   created   several   different   cell-state-specific   IMPACT   annotations  

targeting   h2   in   a   range   of   traits;   and,   we   highlight   a   few   examples.   For   a   liver   IMPACT  
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annotation,   trained   on   HNF4A 32    (hepatocyte   nuclear   factor   4A),   *   is   positive   for  τ  

liver-associated   traits 46,72    LDL   and   HDL   (mean   *   =   2.0;    P    <   0.02,    P    <   1.2e-3,   respectively).   For  τ  

a   macrophage   IMPACT   annotation,   trained   on   IRF5 42 ,   *   is   positive   for   some   immune-mediated  τ  

and   blood   traits   (mean   *   =   2.8,   all    P    <   8.2e-3)   and   intriguingly   also   for   schizophrenia   ( *   =  τ  τ  

0.9,    P    <   4.9e-5),   supported   by   studies   implicating   a   putative   MHC   association 73 .   Finally,   for   a  

CD4+   Treg   IMPACT   annotation,   trained   on   STAT5 41 ,   an   alternative   key   TF   for   Tregs,   the   values  

of   *   across   all   traits   resemble   that   of   FOXP3.   This   suggests   that   IMPACT   is   capturing   RA  τ  

polygenic   h2   by   annotating   loci   important   to   Treg   function,   rather   than   TF-specific   loci.   To  

ensure   that   IMPACT   annotations   were   an   improvement   over   the   original   ChIP-seq   used   to   train  

each   model,   we   compute   *   across   the   same   42   traits   for   annotations   created   from   the   training  τ  

TF   ChIP-seq   data   ( Figure   2-7B ).   We   observe   fewer   significant   effect   sizes,   with   the   exception  

of   stronger   *   in   the   T-BET   ChIP-seq   compared   to   the   T-BET   (Th1)   IMPACT   annotation,   first  τ  

identified   in   the   conditional   analysis   in    Figure   A-13 .   Overall,   this   suggests   that   IMPACT   is   a  

promising   strategy   to   identify   complex   trait   associated   regulatory   elements   across   a   range   of  

cell-states.  
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Figure   2-7.   IMPACT   cell-state-specific   regulatory   element   annotation   effect   sizes   across   42   polygenic  

traits.   (a)   Signed   log 10     P    values   of   *   for   42   traits   across   13   cell-state-specific   IMPACT   annotations,  τ  

capturing   h2   in   distinct   sets   of   complex   traits,   shown   by   significantly   positive   *.   Each   IMPACT  τ  

annotation   is   described   by   its   target   cell-state   and   key   TF   used   for   training   in   parentheses.   (b)     Signed  

log 10     P    values   of   *   for   42   traits   across   annotations   representing   the   TF   ChIP-seq   used   to   train   the  τ  

corresponding   IMPACT   annotations.   ChIP-seq   annotations   are   described   by   the   cell-state   in   which   the  

particular   TF   (in   parentheses)   was   assayed.   For   both   panels,   color   shown   only   if    P    value   of   *   <   0.025  τ  

after   multiple   hypothesis   correction.  

 

A   priori   functional   characterization   of   variants  

We   next   hypothesized   that   improved   genomic   annotation   provided   by   IMPACT   might   inform  

functional   variant   fine-mapping.   Using   a   GWAS   of   11,475   European   RA   cases   and   15,870  
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controls 57 ,   an   independent   study   from   the   European   RA   summary   statistics   used   in   our   h2  

analyses,   our   group   recently   fine-mapped   a   subset   of   20   RA   risk   loci,   each   with   a   manageable  

number   of   putatively   causal   variants,   and   created   90%   credible   sets   of   these   SNPs 56 .   We  

computed   the   enrichment   of   fine-mapped   causal   probabilities   across   these   20   loci   in   the   top   1%  

of   our   CD4+   T   cell-state-specific   IMPACT   annotations   (see   Material   and   Methods).   We   found  

that   the   Treg   annotation   is   significantly   enriched   (2.87,   permutation    P    <     1.8e-02)   while   other  

annotations   are   not   ( Table   A-7 ).   The   Treg   IMPACT   annotation   may   thus   be   useful   to   prune  

putatively   causal   RA   variants.   Furthermore,   we   observe   uniquely   high   Treg   enrichment   in   the  

BACH2    and    IRF5    loci   (16.2   and   8.1,   respectively,    Figure   2-8A ),   suggesting   putatively   causal  

SNPs   in   these   loci   may   function   in   a   Treg-specific   context.  

 

 

Figure   2-8.   IMPACT   a   priori   identifies   variants   with   measured   functionality.   (a)   Enrichment   of   posterior  

probabilities   of   putatively   causal   RA   SNPs   in   the   top   1%   of   SNPs   with   CD4+   Treg   regulatory   element  

probabilities   highlights   the    BACH2 ,    ANKRD55 ,    CTLA4/CD28 ,    IRF5 ,   and    TNFAIP3    loci.   (b,c)   IMPACT  

regulatory   element   probabilities   (black)   at   putatively   causal   SNPs   with   experimentally   validated   differential  

enhancer   activity   (bolded)   and   other   90%   credible   set   SNPs   (unbolded)   at   two   RA-associated   loci,  

CTLA4/CD28    and    TNFAIP3 .  
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In   the   same   study,   our   group   observed   both   differential   binding   of   CD4+   T   nuclear   extract   via  

EMSA   and   differential   enhancer   activity   via   luciferase   assays   at   two   credible   set   SNPs,  

narrowing   down   the   list   of   putatively   causal   variants   in   the    CD28/CTLA4    and    TNFAIP3    loci 56 .   We  

observed   that   both   variants   with   functional   activity   were   located   at   high   probability   IMPACT  

regulatory   elements,   suggesting   that   IMPACT   may   be   used   to   narrow   down   credible   sets   to  

reduce   the   amount   of   experimental   follow   up.   First,   at   the    CD28/CTLA4    locus,   IMPACT   predicts  

high   probability   regulatory   elements   across   the   four   CD4+   T   cell-states   at   the   functional   SNP  

rs117701653   and   lower   probability   regulatory   elements   at   other   credible   set   SNPs   rs55686954  

and   rs3087243   ( Figure   2-8B ).   Second,   at   the    TNFAIP3    locus,   we   observe   high   probability  

regulatory   elements   at   the   functional   SNP   rs35926684   and   other   credible   set   SNP   rs6927172  

( Figure   2-8C )   and   do   not   predict   regulatory   elements   at   the   other   7   credible   set   SNPs.   The  

CD4+   Th1   specific   regulatory   element   at   rs35926684   suggests   that   this   SNP   may   alter   gene  

regulation   specifically   in   Th1   cells   and   hence,   we   suggest   any   functional   follow-up   be   done   in  

this   cell-state.   Fewer   than   11%   of   the   credible   set   SNPs   in   the   other   18   fine-mapped   loci   have  

high   IMPACT   cell-state-specific   regulatory   element   probabilities   ( Figures   A-14   to   A-16 ).  

 

Discussion  

In   summary,   we   assume   that   cell-state-specific   regulation   may   be   characterized   by   an  

epigenomic   signature   that   may   be   captured   by   the   cell-state-specific   binding   sites   of   a   single  

key   TF.   To   this   end,   we   designed   IMPACT   to   predict   cell-state-specific   regulatory   elements  

based   on   epigenomic   and   sequence   profiles   of   experimental   cell-state-specific   TF   binding   by  

performing   a   logistic   regression   on   515   such   features.   We   specifically   chose   not   to   employ   a  

deep   learning   approach   in   order   to   retain   interpretability   of   learned   annotation   weights.  

Knowledge   of   which   epigenomic   or   sequence   feature   annotations   are   most   informative   for  
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predicting   transcriptional   regulation,   which   varies   among   cell-states,   can   guide   where  

experimental   assay   resources   might   be   invested   to   learn   more   about   the   regulome.  

  

We   demonstrated   the   versatility   of   IMPACT   as   a   genome   annotation   strategy   with   several  

compelling   applications.   First,   we   observed   that   the   robust   epigenomic   footprint   of   TF   binding  

sites   allows   for   accurate   binding   prediction.   Furthermore,   IMPACT   outperformed   three  

state-of-the-art   methods,   MocapG,   MocapS,   and   Virtual   ChIP-seq   which   use   a   compendium   of  

sequence-based,   open   chromatin   and   gene   expression   annotations   to   predict   cell-state-specific  

TF   binding.   We   believe   that   this   increased   predictive   power   comes   from   the   way   in   which  

IMPACT   learns   which   genomic   annotations   are   correlated   with   TF   binding,   without   knowledge   of  

the   cell   type   or   cell-state   of   interest.   This   is   contrary   to   the   compared   methods   where  

cell-type-specific   DNase-seq   or   ATAC-seq   must   be   provided   as   a   reference.   Moreover,   IMPACT  

provides   epigenomic   annotations   from   a   wide   variety   of   cell   types   and   assay   types   which  

provide   complimentary   information.   We   note   that   we   restrict   binding   prediction   to   motif   sites   for  

each   TF   in   a   given   cell   type.   Moreover,   validation   in   a   completely   independent   ChIP-seq   dataset  

was   not   possible   due   to   the   scarcity   of   primary   cell   TF   ChIP-seq   data.  

  

Second,   using   Pol   II   IMPACT   annotations,   for   eight   tested   tissue   and   cell   types,   we   more  

precisely   captured   causal   variation   of   gene   expression   than   by   using   Pol   II   ChIP-seq   and  

sequence-based   annotations.   Our   results   argue   that   Pol   II   IMPACT   regions   better   localize   active  

promoter   and   proximal   regulatory   regions   driving   eQTLs   than   the   compared   canonical   genomic  

annotations,   which   may   be   less   specific   due   to   their   larger   sizes   and   restrictive   binary  

characterization.   This   suggests   that   IMPACT   may   be   more   effective   at   prioritizing   causal   SNP  

variation   when   fine-mapping   eQTLs.   These   results   also   argue   that   the   biological   basis   of   eQTLs  
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are   related   to   Pol   II   binding   regions,   which   is   a   refinement   over   previous   observations   that   eQTL  

causal   variation   is   concentrated   near   and   around   TSS   and   promoter   regions.  

  

Third,   we   more   precisely   captured   causal   variation   of   complex   traits.   Our   CD4+   T   IMPACT  

annotations   capture   more   RA   h2   than   most   canonical   CD4+   T   cell   regulatory   annotations.   Our  

findings   further   reinforce   that   IMPACT   annotations,   as   an   aggregation   of   hundreds   of   regulatory  

annotations,   are   more   informative   than   single   annotations.   This   is   exemplified   by   the   finding   that  

FOXP3   ChIP-seq   is   strongly   enriched   for   RA   h2;   and,   while   this   annotation   was   used   as   training  

data   for   IMPACT,   the   CD4+   Treg   IMPACT   annotation   captured   more   RA   h2,   evident   by   a   larger,  

more   significant   annotation   effect   size,   *,   in   the   joint   analysis.   Furthermore,   we   showed   that  τ  

CD4+   T   cell   IMPACT   annotations   explain   similar   proportions   of   RA   heritability   in   both   European  

and   East   Asian   populations,   suggesting   that   biological   mechanisms   driving   RA   may   have   similar  

genetic   and   regulatory   bases   in   these   two   populations.   We   also   demonstrated   that   our   approach  

is   generalizable   to   other   trait-driving   cell   types   by   showing   significantly   positive   *   of   IMPACT  τ  

annotations   for   21   of   42   tested   complex   traits.   In   particular,   CD4+   T   IMPACT   annotations   also  

captured   significant   h2   of   autoimmune   and   immune-mediated   traits,   which   is   expected   given   the  

central   role   of   CD4+   T   cells   to   the   immune   system   and   perhaps   shared   genetic   architecture   of  

these   traits.   We   find   that   h2   of   intuitively   brain-related   traits   such   as   schizophrenia,   anorexia,  

and   autism   is   not   captured   by   brain   IMPACT   annotations,   perhaps   suggesting   that   more  

complex,   cross-cell-type   regulatory   networks   are   core   to   the   genetic   risk   of   these   traits.   Rather,  

brain   IMPACT   annotations   capture   h2   of   traits   such   as   menarche   age,   smoking,   and   height.   We  

note   that   we   targeted   specific   polygenic   traits   using   a   priori   knowledge   of   the   cell-states   that  

were   most   likely   to   be   driving   causal   biology.   To   better   refine   or   inform   the   choice   of   relevant   cell  

type,   we   recommend   integrating   IMPACT   with   previously   published   approaches,   such   as  
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RolyPoly 74 ,   which   prioritizes   cell   types   with   respect   to   a   particular   trait,   based   on   linking   single  

cell   gene   expression   to   GWAS   summary   statistics.   We   note   that   S-LDSC   analyses   exclude   the  

major   histocompatibility   complex   due   to   its   extremely   high   gene   density   and   outlier   LD   structure,  

which   is   thought   to   be   the   strongest   contributor   to   RA   disease   h2 75 .   However,   our   work   supports  

the   notion   that   there   is   an   undeniably   large   amount   of   RA   h2   located   outside   of   the   MHC.  

  

Lastly,   we   demonstrated   that   IMPACT   may   identify   functional   variants   a   priori   and   suggest   the  

relevant   cell-state   contexts   in   which   these   functional   variants   may   act.   We   note   that  

disease-relevant   IMPACT   functional   annotations   may   be   integrated   with   existing   functional   fine  

mapping   methods,   like   PAINTOR 76    or   CAVIARBF 77 ,   to   assign   causal   posterior   probabilities   to  

variants.  

  

We   recognize   several   important   limitations   to   our   work.   First,   we   have   not   experimentally  

validated   the   activity   of   any   of   our   predicted   regulatory   elements.   Second,   predicted   regulatory  

elements   are   limited   to   genomic   regions   that   have   been   epigenetically   assayed.   Third,   IMPACT  

as   presented   in   this   study,   is   limited   to   cell-states   in   which   ChIP-seq   of   a   key   TF   has   been  

performed.   Furthermore,   some   TFs   are   key   regulators   in   more   than   one   cell   type   or   cell-state,  

which   should   not   compromise   the   cell-state-specificity   of   the   learned   IMPACT   annotation.   We  

note   that   cell-state-specificity   is   not   gained   from   the   TF   itself,   but   from   the   unique   binding  

patterns   of   the   TF   in   a   modeled   cell-state.   For   example,   the   CD4+   T   cell   TFs,   for   which   we  

create   IMPACT   annotations,   are   also   key   regulators   in   analogous   cell-states   of   ILCs   (innate  

lymphoid   cells) 78 .   Under   the   assumption   that   these   key   TFs   regulate   different   sets   of   genes   in  

the   analogous   cell-states,   cell-state-specific   IMPACT   annotations   learned   from,   for   example,  

T-BET   in   CD4+   Th1s   should   be   distinguishable   from   an   annotation   learned   for   T-BET   in   ILC1s.  
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Due   to   the   lack   of   functional   data   on   ILCs,   we   were   not   able   to   test   this   claim.   However,   as   more  

cell-state   and   cell   type   data   is   generated,   especially   on   more   fine   resolution   cellular   populations,  

better   regulatory   annotations   may   be   produced.   Moreover,   these   new   functional   annotations  

might   nominate   other   or   more   precise   cellular   populations,   compared   to   the   ones   considered   in  

this   study,   for   explaining   polygenic   trait   heritability   and   capturing   fine-mapped   causal   variation.  

While   we   highlight   strong   enrichments   of   IMPACT   models   trained   on   CD4+   T   cell   TFs,  

especially   FOXP3,   we   acknowledge   that   it   is   certainly   possible   that   other   cell   types   and   factors  

play   important   roles   that   we   have   not   explored   in   this   study.   Fourth,   S-LDSC   heritability  

analyses   results   may   be   sensitive   to   the   size   of   the   annotation   and   we   recommend   enforcing  

reasonably   large   annotation   sizes,   for   example   at   least   0.1%   of   the   genome   ( Figure   A-17 ).   In  

light   of   these   limitations,   IMPACT   is   an   emerging   strategy   for   identifying   trait   associated  

regulatory   elements   and   generating   hypotheses   about   the   cell-states   in   which   variants   may   be  

functional,   motivating   the   need   to   develop   therapeutics   that   target   specific   disease-driving  

cell-states.  

 

Web   Resources  

1. S-LDSC   tutorial   and   instructions:   github.com/bulik/ldsc  

2. 1000G:    www.1000genomes.org  

3. RA   EUR   summary   statistics:  

  http://plaza.umin.ac.jp/yokada/datasource/software.htm  

4. RA   EAS   summary   statistics:    http://jenger.riken.jp/en/result  

5. 1000G   Phase   3   LD   scores,   CD4+   T   cell   specifically   expressed   genes   (binary  

  functional   annotations):    http://data.broadinstitute.org/alkesgroup/LDSCORE/  

6. Immgen.tsv:    https://gist.github.com/nachocab/3d9f374e0ade031c475a  
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7. GTEx   data:     https://gtexportal.org/home/  

8. HOMER:     http://homer.ucsd.edu/homer/motif/  

9. IMPACT   GitHub   repository:   https://github.com/immunogenomics/IMPACT  
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Chapter   3  
 
Improving   the   trans-ethnic   portability   of   polygenic   risk  
scores   by   prioritizing   variants   in   predicted   cell   type  
regulatory   elements  
 
The   material   in   this   chapter   appeared   on   bioRxiv   on   February   28,   2020   and   is   currently   in  

revision   at    Nature   Genetics .   
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Abstract  

 
 
Poor   trans-ethnic   portability   of   polygenic   risk   score   (PRS)   models   is   an   important   issue   caused  

in   part   by   Eurocentric   genetic   studies   and   in   part   by   limited   knowledge   of   causal   variants   shared  

among   populations.   Hence,   leveraging   noncoding   regulatory   annotations   that   capture   genetic  

variation   across   populations   has   the   potential   to   enhance   the   trans-ethnic   portability   of   PRS.   To  

this   end,   we   constructed   a   unique   resource   of   707   cell-type-specific   IMPACT   regulatory  

annotations   by   aggregating   5,345   public   epigenetic   datasets   to   predict   binding   patterns   of   142  

cell-type-regulating   transcription   factors   across   245   cell   types.   With   this   resource,   we   partitioned  

the   common   SNP   heritability   of   diverse   polygenic   traits   and   diseases   from   111   GWAS   summary  

statistics   of   European   (EUR,   average   N=180K)   and   East   Asian   (EAS,   average   N=157K)   origin.  

For   95   traits,   we   were   able   to   identify   a   single   IMPACT   annotation   most   strongly   enriched   for  

trait   heritability.   Across   traits,   these   annotations   captured   an   average   of   43.3%   of   heritability  

(sem   =   2.8%)   with   the   top   5%   of   SNPs.   Strikingly,   we   observed   highly   concordant   polygenic   trait  

regulation   between   populations:   the   same   regulatory   annotations   captured   statistically  

indistinguishable   SNP   heritability   (fitted   slope   =   0.98,   sem   =   0.04).   Since   IMPACT   annotations  

capture   both   large   and   consistent   proportions   of   heritability   across   populations,   prioritizing  

variants   in   IMPACT   regulatory   elements   may   improve   the   trans-ethnic   portability   of   PRS.  

Indeed,   we   observed   that   EUR   PRS   models   more   accurately   predicted   21   tested   phenotypes   of  

EAS   individuals   when   variants   were   prioritized   by   key   IMPACT   tracks   (49.9%   mean   relative  

increase   in   ).   Notably,   the   improvement   afforded   by   IMPACT   was   greater   in   the   trans-ethnic  R2  

EUR-to-EAS   PRS   application   than   in   the   EAS-to-EAS   application   (47.3%   vs   20.9%,   one-tailed  

paired   wilcoxon    P    <   0.012).   Overall,   our   study   identifies   a   crucial   role   for   functional   annotations  

such   as   IMPACT   to   improve   the   trans-ethnic   portability   of   genetic   data.  
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Introduction   

 
An   important   challenge   for   complex   trait   genetics   is   that   there   is   no   clear   framework   to  

transfer   population-specific   genetic   data,   such   as   GWAS   results,   to   individuals   of   other  

ancestries 79–81 .   The   importance   of   this   challenge   is   accentuated   by   the   fact   that   approximately  

80%   of   all   genetic   studies   have   been   performed   with   individuals   of   European   ancestry,  

accounting   for   a   minority   of   the   world’s   population 82 .   This   is   exacerbated   by   the   fact   that  

population-specific   linkage   disequilibrium   (LD)   between   variants   confounds   inferences   about  

causal   cell   types   and   variants   ( Figure   3-1A ) 23,24,83 .   GWAS   have   the   potential   to   revolutionize   the  

clinical   application   and   utility   of   genetic   data   to   the   individual,   exemplified   by   current   polygenic  

risk   score   (PRS)   models 18,19,83–90 .   However,   while   the   utility   of   PRS   models   relies   on   accurate  

estimation   of   allelic   effect   sizes   from   GWAS   and   benefits   from   genetic   similarity   between   the  

target   cohort   and   the   training   GWAS   cohort,   recent   studies   have   explicitly   observed   a   lack   of  

trans-ethnic   portability 18,80,81,83,91,92 .   The    Eurocentric   GWAS   bias   has   led   PRS   to   be   more  

predictive   in   European   populations,   as   the   largest   training   data   comes   from   European  

GWAS 81,83,86,93,94 .   As   a   result,   variants   used   in   European   PRS   tend   to   be   more   common   among  

Europeans   and   less   common   among   non-Europeans.   Common   variants   carry   greater   disease  

predictive   power   which   directly   contributes   to   Eurocentric   bias   in   PRS   accuracy 81 .   The  

trans-ethnic   portability   of   PRS   would   not   be   as   critical   an   issue   if   large   GWAS   were   performed  

in   all   non-EUR   populations.    Previous   studies   have   extensively   shown   that   functional   annotations  

can   improve   PRS   models   when   learned   and   applied   to   the   same   population 95,96 ,   by   introducing  

biologically-relevant   priors   on   causal   effect   sizes   and   compensating   for   inflation   of   association  

statistics   by   LD.   However,   the   potential   for   functional   annotations   to   improve   trans-ethnic   PRS  
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frameworks,   where   the   influences   of   population-specific   LD   are   more   profound,   has   not   yet  

been   extensively   investigated.  

 

 

Figure   3-1.   Study   design   to   identify   regulatory   annotations   that   prioritize   regulatory   variants   in   a  

multi-ethnic   setting.   A)   Population-specific   LD   confounding   and   subsequent   inflation   of   GWAS  

associations   complicate   the   interpretation   of   summary   statistics   and   transferability   to   other   populations;  

functional   data   may   help   improve   trans-ethnic   genetic   portability.   B)   Prism   of   functional   data   in   IMPACT  

model:   707   genome-wide   TF   occupancy   profiles   (green),   5,345   genome-wide   epigenomic   feature   profiles  

(blue),   and   fitted   weights   for   these   features   (pink)   to   predict   TF   binding   by   logistic   regression.   Using  

IMPACT   annotations,   we   investigate   111   GWAS   summary   datasets   (yellow)   of   EUR   and   EAS   origin.   C)  

Compendium   of   707   genome-wide   cell-type-specific   IMPACT   regulatory   annotations.   D)   Annotations   that  

prioritize   common   regulatory   variants   must   I)   capture   large   proportions   of   heritability   in   both   populations,  

II)   account   for   consistent   marginal   effect   size   estimations   between   populations   and   III)   improve   the  

trans-ethnic   application   of   PRS.  

 

55  



 

However,   designing   functional   annotations   that   may   improve   PRS   models   is   challenging.  

Functional   annotations   that   best   capture   polygenic   trait   genetic   variation   must   identify   a   large  

number   of   functional   variants   genome-wide   without   compromising   specificity   for   trait-relevant  

regulatory   programs.    Pinpointing   these   mechanisms   is   especially   difficult   despite   the   fact   that  

genome-wide   association   studies   (GWAS)   have   identified   thousands   of   genetic   associations  

with   complex   phenotypes 18,51,52,97 .   It   has   been   estimated   that   about   90%   of   these   associations  

reside   in   protein   noncoding   regions   of   the   genome,   making   their   mechanisms   difficult   to  

interpret 15,98 .   Defining   the   etiology   of   complex   traits   and   diseases   requires   knowledge   of  

phenotyping-driving   cell   types   in   which   these   associated   variants   act.   Transcription   factors   (TFs)  

are   poised   to   orchestrate   large   polygenic   regulatory   programs   as   genetic   variation   in   their   target  

regions   can   modulate   gene   expression,   often   in   cell-type-specific   contexts 26,99 .   Genomic  

annotations   marking   the   precise   location   of   TF-mediated   cell   type   regulation   can   be   exploited   to  

elucidate   the   genetic   basis   of   polygenic   traits.   

To   overcome   these   challenges,   we   previously   developed   IMPACT,   a   genome-wide  

cell-type-specific   regulatory   annotation   strategy   that   models   the   epigenetic   pattern   around   TF  

binding   using   linear   combinations   of   functional   annotations 27 .   In   rheumatoid   arthritis   (RA),  

IMPACT   CD4+   T   cell   annotations   captured   substantially   more   heritability   than   functional  

annotations   derived   from   single   experiments,   including   TF   and   histone   modification   ChIP-seq 24 .  

In   this   study,   we   expanded   this   approach   by   aggregating   5,345   functional   annotations   with   an  

identical   implementation   of   the   IMPACT   model   framework   using   the   same   set   of   optimized  

parameters   as   previously   calibrated.   We   created   a   powerful   and   generalizable   resource   of   707  

cell-type-specific   gene   regulatory   annotations   ( Web   Resources )   based   on   binding   profiles   of  

142   TFs   across   245   cell   types   ( Figure   3-1B,C ).   This   study   builds   on   our   previous   work 27    in  

which   we   created   13   annotations   (13   TF-cell   type   pairs)   based   on   515   functional   annotations;  
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we   observed   remarkable   consistency   of   IMPACT   predictions   for   the   same   TF-cell   type   pair  

despite   different   training   data   and   epigenetic   features   ( Figure   B-1 ).   Assuming   that   causal  

variants   are   largely   shared   between   populations 51,80 ,   we   hypothesized   that   restricting   PRS  

models   to   variants   within   trait-relevant   IMPACT   annotations,   which   are   more   likely   to   have  

regulatory   roles   and   less   likely   to   be   solely   associated   via   linkage,   will   especially   improve   their  

trans-ethnic   portability.   

In   this   study,   we   identify   key   IMPACT   regulatory   annotations   that   capture   genome-wide  

polygenic   mechanisms   underlying   a   diverse   set   of   complex   traits,   supported   by   population  

non-specific   enrichments   of   genetic   heritability,   multi-ethnic   marginal   effect   size   correlation   (a  

possible   mechanism   of   improved   PRS),   and   improved   trans-ethnic   portability   of   PRS   models  

( Figure   3-1D ).   Here,   we   defined   and   employed   our   compendium   of   707   IMPACT   regulatory  

annotations   to   study   polygenic   traits   and   diseases   from   111   GWAS   summary   datasets   of  

European   (EUR)   and   East   Asian   (EAS)   origin.   Assuming   shared   causal   variants   between  

populations,   annotations   that   prioritize   shared   regulatory   variants   must   (1)   capture  

disproportionately   large   amounts   of   genetic   heritability   in   both   populations,   (2)   be   enriched   for  

multi-ethnic   marginal   effect   size   correlation,   and   (3)   improve   the   trans-ethnic   applicability   of  

population-specific   PRS   models.   Using   our   compendium   of   regulatory   annotations,   we   identified  

key   annotations   for   each   polygenic   trait   and   demonstrated   their   utility   in   each   of   these   three  

applications   toward   prioritization   of   shared   regulatory   variants.   Overall,   this   work   improves   the  

interpretation   and   trans-ethnic   portability   of   genetic   data   and   provides   implications   for   future  

clinical   implementations   of   risk   prediction   models.  
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Material   and   Methods  

Data  

TF   ChIP-seq   data.     On   October   15,   2015,   we   downloaded   all   available   transcription   factor   (TF)  

chromatin   immunoprecipitation   followed   by   sequencing   (ChIP-seq)   data   derived   from   human  

primary   cells   or   cell   lines   deposited   on   NCBI   GEO   (n   =   13,732   datasets).   Then   we   retained  

accessions   for   which   input   ChIP-seq   (control   data)   were   also   generated   and   made   publicly  

available   (n   =   3,181   of   13,732).   We   downloaded   raw   sequencing   data   in   SRA   format   from   NCBI  

GEO,   then   converted   the   data   to   FASTQ   format   using   the   SRA   Toolkit   function   fastq-dump,  

used   FastQC   for   quality   assessment   of   sequencing   reads,   and   finally   mapped   reads   to   the  

human   genome   (hg19/GRCh37)   with   Bowtie2   [v2.2.5]   using   default   parameters.   All   ChIP-seq  

datasets   were   matched   to   corresponding   control   data   from   which   peaks   were   called   with   macs  

[v2.1]   with   q   value   <   0.01   under   a   bimodal   model,   producing   3,181   bed   file-formatted   files 100,101 .  

For   compatibility   with   the   IMPACT   method,   we   selected   TFs   with   a   known   sequence   motif,   as  

recorded   in   the   MEME   database.   Of   the   442   TFs   represented   by   the   3,181   TF   ChIP-seq  

datasets,   only   142   matched   a   known   sequence   motif,   narrowing   down   the   total   number   of  

considered   datasets   to   1,542.   There   was   no   dataset   removal   based   on   cell   type   classification.  

Of   the   1,542   datasets   (each   characterized   by   a   TF-cell   type   pair),   there   were   728   unique   TF-cell  

type   pairs,   meaning   many   pairs   have   been   assayed   more   than   once.   As   described   below   in  

Statistical   Methods:    Training   IMPACT ,   we   took   the   union   of   peaks   among   different  

experiments   of   the   same   TF-cell   type   pair.   Therefore,   the   number   of   consolidated   TF   ChIP-seq  

datasets   (n   =   728   is   <   1,542).   Then   for   each   of   728   datasets,   we   scanned   TF   ChIP-seq   peaks  

for   corresponding   TF   motifs,   as   described   below   in    Statistical   Methods:    Training   IMPACT .   We  

removed   consolidated   datasets   with   fewer   than   7   peaks   with   TF   motifs,   the   lower   bound   at  

which   the   logistic   regression   could   converge,   resulting   in   707   consolidated   datasets.   Regarding  
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the   corresponding   GEO   accessions,   this   removal   reduced   the   1,542   utilized   GEO   accessions   to  

1,511.   The   1,511   datasets   account   for   707   unique   TF-cell   type   pairs,   142   unique   TFs   and   245  

unique   cell   types   or   cell   lines.   These   1,511   datasets   selected   for   use   with   our   IMPACT   model  

framework   are   described   in    Table   B-1 ,   including   accession   codes   and   experimental   details.  

 

Genome-wide   annotation   data.     We   augmented   our   set   of   515   publicly   available   epigenomic  

and   sequence   feature   annotations   from   our   previous   study 27    with   116   personally   curated  

datasets   from   NCBI,   2,593   ENCODE   histone   ChIP-seq   datasets   and   2,121   ENCODE   open  

chromatin   DNase-seq   datasets 102 ,   all   publicly   available   at   the   accessions   provided   in    Table   B-2 .  

All   files   were   collected   in   6-column   standard   bed   file   format.   This   augmentation   brought   the   total  

number   of   features   to   5,345.  

 

Genome-wide   association   data.     We   collected   publicly   available   summary   statistics   data   for  

111   genome-wide   association   studies   (GWAS)   across   separate   cohorts   of   East   Asian   and  

European   individuals 24,34,103 .   East   Asian   GWAS   data   were   collected   from   Biobank   Japan   (BBJ)  

while   European   GWAS   data   were   collected   from   either   UKBioBank   (UKBB)   or   the   GWAS  

catalog,   referred   to   as   PASS   (publicly   available   summary   statistics)   ( Table   B-3 ).    Since   our  

analysis   utilized   S-LDSC   which   is   based   on   the   polygenic   inheritance   model,   it   is   crucial   to  

include   summary   statistics   of   GWAS   conducted   in   large-scale   samples 24 .   First,   we   included  

summary   statistics   of   EUR   GWAS   in   which   biologically   plausible   polygenic   signals   were  

confirmed   in   previous   studies   ( Table   B-3 ),   beginning   with   the   set   of   summary   statistics   (n   =   42)  

we   had   previously   downloaded   from   the   Price   Lab   ( Web   Resources )   and   used   in   our   previous  

work 27 .   Next,   we   included   additional   diseases/traits   for   which   both   EAS   (specifically   BBJ)   and  

EUR   GWAS   summary   statistics   are   available.   We   chose   to   focus   this   study   on   EUR   and   EAS  
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populations,   as   there   is   a   very   limited   number   of   large   GWAS   in   populations   other   than   EUR  

and   EAS 82,104,105 .   As   blood   quantitative   trait   GWAS   and   disease   GWAS   were   available   from   BBJ,  

we   sought   to   collect   matching   EUR   GWAS   datasets   to   maximize   phenotype   overlap   between  

populations.   We   included   studies   where   cases   were   diagnosed   by   a   physician   and   excluded  

studies   which   utilized   self-reported   cases,   aiming   to   prepare   comparable   phenotypes   between  

EAS   and   EUR   GWAS.   We   downloaded   such   data   from   Riken,   the   Neale   Lab,   and   the   GWAS  

Catalog   ( Web   Resources ).   In   summary,   we   collected   summary   statistics   of   42   EAS   and   69  

EUR   GWAS.   All   summary   statistics   used   had   an   observed   scale   heritability   z-score   >   1.96   as  

estimated   by   S-LDSC.    All   GWAS   summary   statistics   were   reformatted   to   be   compatible   with  

S-LDSC   (see   below)   and   thus   contained   the   following   information   for   each   SNP   (per   row):   rsID,  

A1   (reference   allele),   A2   (alternative   allele),   GWAS   sample   size   (effective   sample   size   per   SNP,  

may   vary   with   genotyping),   chi-square   statistic,    z -score.   For   multi-ethnic   genetic   correlation   and  

polygenic   risk   score   prediction,   all   GWAS   summary   statistics   were   reformatted   to   contain   the  

SNP   ID   (chr_position_A1_A2),   chromosome,   base   pair,   A1,   A2,   effect   size   estimate,   effect   size  

estimate   standard   error,   and    P -value.   

 

Cell-type-specifically   expressed   gene   set   (SEG)   and   cell-type-specific   histone  

modification   (CTS)   annotations.     We   downloaded   513   publicly   available   SEG   annotations   for  

European   SNPs   from   phase   3   of   1000   Genomes   (see    Web   Resources ) 25 .   SEG   annotations   are  

binary;   each   SNP   is   assigned   a   1   or   a   0,   indicating   that   the   SNP   does   or   does   not   lie,  

respectively,   within   100   kb   of   the   gene   body   of   the   corresponding   gene   set 25 .   We   downloaded  

220   publicly   available   CTS   annotations   of   peak   data   in   bed   file   format,   from   which   we   annotated  

European   SNPs   from   phase   3   of   1000   Genomes 106    (see    Web   Resources ) 24 .   These   annotations  

are   also   binary,   in   which   case   each   SNP   is   designated   a   1   or   a   0,   indicating   that   the   SNP   does  
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or   does   not   like,   respectively,   within   the   peak   of   histone   modification.   We   also   acquired   the  

corresponding   SEG   and   CTS   SNP-level   annotations   for   East   Asian   SNPs   from   phase   3   of   1000  

Genomes   from   a   previous   study 103 .   For   all   annotations,   we   used   S-LDSC   to   compute   LD   scores  

and   partitioned   heritability   using   a   customized   version   of   the   baselineLD   annotations   as  

described   below.  

 

Deep   Learning   annotations   from   DeepSEA   and   Basenji.    For   each   commonly   varying  

SNP,   we   assigned   a   sequence-mediated   predicted   activity   score   using   two   pre-trained  

deep   learning   models,   DeepSEA 107    and   Basenji 108 .   We   assigned   two   types   of   activity  

scores;   1)   allelic-effect   and   2)   variant   level,   as   per   the   nomenclature   previously   used 109 .  

For   the   DeepSEA   model,   the   allelic-effect   annotations   represent   the   predicted   change   in  

the   probability   of   TF   binding,   histone   marks   or   DHS   of   the   region   around   the   SNP   as   a  

result   of   the   change   from   reference   to   alternative   allele.   Similarly,   for   the   Basenji   model,  

the   allelic-effect   annotations   represent   the   predicted   change   in   aligned   fragments   to   the  

region   around   the   SNP   as   a   result   of   the   change   from   reference   to   alternative   allele   for  

DHSes,   histone   marks,   or   CAGE   features.   In   both   cases,   we   used   pre-trained   models  

from   the   respective   studies   with   the   recommended   parameter   settings   used   in   the   model  

training.   These   computations   were   performed   using   1   GPU   Tesla   M40   card.   For   the  

allelic-effect   activity   score   at   a   SNP,   we   take   an   ensemble   of   the   predictions   for   the   SNP  

over   sequences   with   the   SNP   at   the   center,   shifted   1   position   to   the   left,   or   shifted   1  

position   to   the   right.   For   variant   level   predictions,   we   compared   allelic-effect   scores   with  

the   predicted   epigenomic   accessibility,   characterized   either   by   predicted   number   of  

aligned   fragments   for   histone   marks,   DHS   or   CAGE   features   (as   in   Basenji)   or   predicted  

probability   of   TF   binding,   histone   marks,   or   DHS   (as   in   DeepSEA),   in   a   1   kb   window  
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around   a   SNP.   These   predictions   are   a   denoised   estimate   of   the   Roadmap   peak  

intensities   as   learned   from   sequence 109 .  

 

We   downloaded   32   publicly   available   deep   learning   annotations   for   European   SNPs   from  

phase   3   of   1000   Genomes   and   used   S-LDSC   to   compute   LD   scores   (see    Web  

Resources ).   The   32   annotations   were   comprised   of   Basenji 108    and   DeepSEA 107    deep  

learning   predictions   corresponding   to   DHSes,   H3K27ac,   H3K4me1,   and   H3K4me3  

meta-analyzed   separately   for   blood   and   brain   cell   types   and   computed   for   both   allelic  

effect   and   variant   level   models 109 .   Additionally,   we   analyzed   78   new   tissue-specific   variant  

level   and   allelic   effect   annotations   from   DeepSEA   and   Basenji   models.   These   78  

annotations   corresponded   to   cell   types   that   we   identified   as   drivers   of   any   of   the   five  

representative   traits   (asthma,   height,   MCV,   RA,   and   PrCa).   These   78   annotations   extend  

beyond   histone   marks   and   DHS   features   used   previously 109 ,   accounting   also   for   TF  

binding   (DeepSEA)   and   CAGE   features   (Basenji).   All   78   annotations   are   reported   in  

Table   B-11 .   

 

We   also   trained   new   allelic   effect   DeepSEA   models   on   the   TF   ChIP-seq   used   to   train  

what   we   identified   as   lead   IMPACT   annotations   (13   unique)   for   the   21   traits   investigated  

in   the   PRS   analysis.   We   employed   DeepSEA   as   previously   described   using   default  

parameters,   1   Quadro   GV100   (NVIDIA)   GPU,   Selene   (v0.4.7),   PyTorch   (v1.3.1)    107,110 .   For  

training   the   DeepSEA   model,   we   used   the   genomic   sequences   corresponding   to   each   of  

the   13   TF   ChIP-seq   peak   sets   as   well   as   any   regions   where   ENCODE   or   the   Roadmap  

Epigenomics   DeepSEA   dataset   contained   at   least   one   TF   binding   event.   As   done   in   the  

original   DeepSEA   study,   we   randomly   sampled   1   kb   sequences   (hg19)   from   regions  
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included   ENCODE,   Roadmap,   or   our   TF   ChIP-seq   data.   Considering   each   training   TF  

ChIP-seq   dataset   separately,   we   determine   positive   samples   as   follows   as   done   in   the  

original   DeepSEA   study:   if   more   than   100   bp   of   the   center   200   bp   of   the   1kb   sequence  

falls   in   our   provided   TF   ChIP-seq   peaks,   this   sequence   is   labeled   with   a   1,   else   0.  

DeepSEA   accurately   predicted   TF   binding,   average   AUROC   =   0.93,   sem   =   0.007;   training  

was   performed   on   chromosomes   1-5   and   10-22,   testing   was   performed   on   chromosomes  

8-9,   and   validation   was   performed   on   chromosomes   6-7.  

 

BioBank   Japan   data.    For   PRS   analysis,   we   utilized   phenotype   and   genotype   data   of   the  

BioBank   Japan   Project   (BBJ) 111,112 .   All   of   the   calculations   related   to   PRS   were   conducted   on   the  

RIKEN   computing   server.   BBJ   is   a   biobank   that   collaboratively   collects   DNA   and   serum   samples  

from   12   medical   institutions   in   Japan.   This   project   recruited   approximately   200,000   patients   with  

the   diagnosis   of   at   least   one   of   47   diseases.   Informed   consent   was   obtained   from   all  

participants   by   following   the   protocols   approved   by   their   institutional   ethical   committees.   We  

obtained   approval   from   the   ethics   committees   of   the   RIKEN   Center   for   Integrative   Medical  

Sciences   and   the   Institute   of   Medical   Sciences   at   the   University   of   Tokyo.  

 

Statistical   Methods  

IMPACT   Model.     We   implemented   our   previously   defined   model   to   predict   TF   binding   on   a   motif  

site.   This   model   regresses   the   likelihood   ( p )   of   a   binding   event   on   the   epigenomic   profile   of   the  

motif   site,   in   a   logistic   regression   framework   over    j    epigenomic   features   as   follows:   

og ( )  β X X .. X . l p
1 p =   0 + β1 1 + β2 2 + . + βj j  
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We   use   a   weighted   average   of   ridge   and   lasso   regularization   terms   in   the   objective   function   to  

restrict   the   magnitude   of   fit   coefficients   and   enforce   sparsity   to   reduce   overfitting,   respectively,  

as   follows:   

 

  (||Y   Xβ||   (1  α)||β||    ||β||).     argminβ =     2 +   2
1   2 + α  

 

Training   IMPACT.     We   trained   an   IMPACT   model   for   each   unique   cell   type-TF   pair   present   in  

our   data   collection.   Our   collection   consists   of   3,181   TF   ChIP-seq   profiles,   representing   442   TFs,  

296   cell   types,   and   24   tissues.   The   IMPACT   model   requires   that   the   assayed   TF   has   a   distinct  

binding   motif   and   so   we   removed   all   ChIP-seq   datasets   corresponding   to   a   TF   that   did   not   have  

a   known   sequence   motif   in   MEME,   Jaspar,   or   Transfac   databases.   This   resulted   in   1,542   TF  

ChIP-seq   profiles   across   142   TFs,   245   cell   types,   23   tissues,   and   728   unique   combinations   of  

TFs   and   cell   types.   As   we   did   in   our   previous   study 27 ,   we   merged   experiments   of   the   same  

TF-cell   type   combination   by   taking   the   union   of   the   peaks.   We   next   identified   motif   sites   bound  

by   a   TF   by   using   HOMER   [v4.8.3] 113    to   scan   ChIP-seq   peaks   for   motif   matches   exceeding   the  

empirically   determined   motif   detection   threshold.   Similarly,   we   identified   motif   sites   not   bound   by  

a   TF   by   using   HOMER   to   scan   the   entire   genome   for   sequence   matches.   21   of   these   models  

did   not   contain   sufficient   overlap   between   TF   sequence   motifs   and   ChIP-seq   peaks   which   would  

lead   to   underfitting   in   the   logistic   regression   (fewer   than   7),   thereby   resulting   in   707   total  

possible   IMPACT   annotations.   We   then   trained   707   IMPACT   models   using   up   to   1,000  

TF-bound   sequence   motifs   (evidenced   by   ChIP-seq)   and   10,000   unbound   sequence   motifs.   To  

assess   the   predictive   accuracy   of   IMPACT,   we   evaluated   the   AUPRC   (area   under   the  

precision-recall   curve)   which   is   appropriate   for   classification   tasks   with   considerable   class  

imbalance.   Accounting   for   the   true   ratio   of   bound   to   unbound   motifs   genome-wide,   which   is  
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unique   to   each   model   but   averages   to   0.03,   the   average   AUPRC   was   0.53   (sem   =   0.01).   Using  

the   class   imbalance   defined   by   the   model   (1,000   /   10,000   =   0.1),   the   average   AUPRC   was   0.74  

(sem   =   0.008).   For   each   of   707   TF-cell   type   pairs,   we   learned   a   predictive   model   of   TF   binding  

and   annotated   SNPs   genome-wide   for   both   EUR   and   EAS   populations,   with   a   mean   regulatory  

probability   per   nucleotide   of   0.02   (sem   =   7.5e-4).   

 

Assessing   cell   type   specificity   of   IMPACT   tracks.    We   acquired   lists   of   specifically   expressed  

genes   in   9   different   cell   types:   T   cells,   B   cells,   fibroblasts,   monocytes,   brain,   liver,   colon,  

prostate,   and   breast   according   to   differential   gene   expression    t -statistics   from   previous   work 25 ,  

specifically   labeled   as   T.4+8int.Th,   B.Fo.LN,   Cells_Transformed_fibroblasts,   Mo.6C+II-.LN,  

Brain_Cortex,   Liver,   Colon_Transverse,   Prostate,   Breast_Mammary_Tissue,   respectively   from  

either   ImmGen   or   GTEx   databases.   Large   and   positive    t -statistics   represent   greater   specificity  

of   gene   expression   in   the   target   cell   type,   large   but   negative    t -statistics   represent   specifically  

repressed   genes,   and    t -statistics   near   0   represent   nonspecific   gene   expression,   representing  

commonly   expressed   genes.   For   each   cell   type,   we   selected   the   100   genes   with   highest  

t -statistics,   e.g.   specifically   expressed   (SE)   genes,   and   100   genes   such   that   -0.5   <    t -statistic   <  

0.5,   e.g.   not   specifically   expressed   genes   (NS).   For   each   cell   type   separately,   we   collected   all  

related   IMPACT   annotations   from   the   compendium   of   707   total   annotations.   Then   for   each  

annotation   separately,   we   computed   the   average   IMPACT   score   over   all   EUR   SNPs   from   phase  

3   of   1000   Genomes   within   2kb   of   each   SE   or   NS   gene   body.   Finally,   we   computed   the   average  

across   all   100   SE   and   100   NS   genes,   separately.   

 

Partitioning   heritability   with   S-LDSC.     We   applied   S-LDSC   [v1.0.0] 24    to   partition   the   common  

(MAF   >   5%)   SNP   heritability   of   111   polygenic   traits   and   diseases,   with   significantly   non-zero  
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heritability   estimates   ( P    <   0.05).   Here,   the   term   heritability   is   defined   as   previously 24 ,   referring   to  

inferences   made   by   S-LDSC   about   heritability   causally   explained   by   common   SNPs.   This   is   a  

different   quantity   than   genotyping-array-based   SNP-heritability 114,115 .   We   partitioned   heritability  

using   a   customized   version   of   the   baselineLD   model,   in   which   we   excluded   cell-type-specific  

regulatory   annotations   (as   we   would   be   testing   the   enrichment   of   such   annotations   from  

IMPACT).   In   total,   we   used   69   cell-type-nonspecific   baselineLD   annotations   and   added   one   or  

more   IMPACT   annotations   to   the   model   to   test   for   cell-type-specific   enrichment.   We   use   three  

metrics   to   evaluate   how   well   our   IMPACT   annotations   capture   polygenic   heritability:  

enrichment 24 ,   the   proportion   of   heritability   explained   by   the   top   5%   of   SNPs 24 ,   and  

per-annotation   standardized   effect   size,   * 34 .   Briefly,   enrichment   is   defined   as   the   proportion   of τ  

common   SNP   heritability   divided   by   the   genome-wide   proportion   of   SNPs   in   the   annotation,   for  

continuous   annotations   this   is   the   average   annotation   value   across   SNPs.   *   represents   the τ  

average   per-SNP   heritability   of   a   category   of   SNPs,   where   a   single   SNP   may   claim   membership  

to   one   or   more   categories.   *   is   defined   as   the   proportionate   change   in   per-SNP   heritability τ  

associated   with   a   one   standard   deviation   increase   in   the   value   of   the   annotation.   The   sum   of   the  

*   over   categories   of   SNPs   equals   the   total   estimated   heritability   of   the   trait.   *   has   units   of τ τ  

heritability   and   is   comparable   between   traits,   annotations,   and   populations,   because   it   is  

normalized   for   the   total   heritability   (indicative   of   the   power   of   the   GWAS),   the   dispersion   of   the  

annotation   values   (annotation   size),   and   the   number   of   common   SNPs   (population-specific)  

considered   in   the   model,   respectively.   ,   the   precursor   of   *,   is   the   coefficient   estimated   in   the τ τ  

S-LDSC   regression.     and   *   are   conditionally   dependent   on   the   provided   baselineLD τ τ  

annotations.   Therefore,   the   *   estimate   for   an   IMPACT   annotation   is   considered   a   measure   of τ  

cell-type-specific   or   annotation-specific   SNP   heritability,   as   the   remaining   annotations   in   the  

model   (baselineLD)   are   not   cell-type-specific.   Significance   of   *   is   computed   using   a    z -test   of τ  
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how   different   the   *   estimate   is   from   0;   the   significance   of   strictly   positive   *   estimates   are τ τ  

reported   in   our   study.   A   negative   *   would    indicate   a   depletion   of   heritability,   suggesting   that τ  

lower   values   of   the   annotation   are   more   enriched   for   trait-associated   genetic   variation.  

 

Measuring   heritability   in   top   X%   of   SNPs   of   a   continuous   annotation.    To   partition   the  

heritability   captured   by   various   top   echelons   of   SNPs   of   a   given   continuous   annotation,   we   used  

the   same   strategy   as   in   a   previous   study 34 .   By   this   strategy,   the   proportion   of   heritability  

explained   by   a   set   of   SNPs   is   the   sum   over   all   SNPs   of   the   product   of   the   *   of   each   category τ  

in   the   S-LDSC   model,   e.g.   baselineLD   plus   IMPACT   annotation,   and   the   SNP   membership   to  

that   category   (1   or   0   in   the   case   of   binary   annotations,   continuous   values   in   the   case   of  

continuous   annotations)   divided   by   the   same   metric   for   all   SNPs   genome-wide.   

 

Conditional   S-LDSC   analysis   to   identify   independent   annotation-trait   associations.     Due   to  

the   redundancy   in   modeled   cell   type   programs   and   inherent   covariance   of   IMPACT   annotations  

( Figure   B-3 ),   the *   associations   we   find   with   S-LDSC   cannot   be   independent.   To   this   end,   for τ     

each   of   95   traits   across   EUR   and   EAS   for   which   we   identified   a   lead   IMPACT   annotation,  

reported   in    Table   B-9 ,   we   performed   a   series   of   conditional   analyses   using   S-LDSC.   For   each  

trait   with   more   than   one   significant   *   association,   we   created   S-LDSC   models   consisting   of   the τ  

69   baselineLD   annotations,   the   lead   annotation   for   that   trait,   and   separately,   each   remaining  

significant   IMPACT   annotation.   We   kept   annotations   that   retained   their   *   significance   when τ  

conditioned   on   the   lead   annotation(s),   which   we   also   required   to   retain   significance.   We  

iteratively   performed   these   conditional   analyses   until   we   were   no   longer   able   to   identify  

independent   *   associations. τ   
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Deming   regression   of   EUR   *   on   EAS   *.    As   there   is   significant   correlation   among   IMPACT τ τ  

annotations,   due   to   redundancy   in   cell   type   regulatory   elements,   we   used   an   iterative   pruning  

approach,   similar   to   LD-pruning,   to   identify   independent   IMPACT   annotations.   For   each   trait,   we  

ranked   all   707   IMPACT   annotations   by   their   *   significance   values.   Then,   we   selected   the   lead τ  

annotation,   removed   all   annotations   correlated   with   Pearson    r    >   0.5,   and   selected   the   next   lead  

annotation,   and   so   on.   This   approach   produced   a   set   of   relatively   independent   annotations,   for  

which   the   assumptions   of   Deming,   or   any,   regression   would   not   be   violated.   For   each   trait,   we  

ran   Deming   regression   over   approximately   100   independent   IMPACT   annotations   using   the   R  

function    deming    within   the   package    deming .   Across   independent   observations   for   all   traits,   we  

tested   the   null   hypothesis   that   the   slope   of   the   Deming   regression,   which   considers   standard  

errors   on   both   the   predictor   (EUR   *)   and   response   variables   (EAS   *),   is   equal   to   1. τ τ  

 

Multi-ethnic   and   within-population   genetic   correlation.     We   computed   the   genetic   correlation  

( )   between   pairs   of   29   traits   for   which   we   acquired   EUR   and   EAS   GWAS   using   Popcorn Rg  

[v.0.9.6] 116    with   default   parameters,   including   maximum   likelihood   estimation   as   opposed   to  

regression 81 .   First,   we   computed   cross-population   scores   between   the   two   populations   using   the  

compute    flag   with   the    popcorn    executable,   indicating   approximately   the   correlation   between   LD  

at   each   SNP   using   EUR   and   EAS   reference   LD   panels   from   phase   3   of   1000   Genomes.   Then,  

we   used   the    fit    flag   with   the    popcorn    executable   to   compute   the   multi-ethnic   genetic   correlation  

of   these   29   traits.     estimates   computed   after   restricting   to   MAF   >   5%   did   not   significantly Rg  

differ   from   no   MAF   restriction.   Popcorn   computes     using   either   “genetic   impact”   (effect   sizes Rg  

normalized   by   allele   frequency)   or   “genetic   effect”   (unmodified   effect   sizes).   We   observed   no  

significant   heterogeneity   between   the     computed   using   “genetic   impact”   and   “effect”, Rg  

although   “genetic   effect”   estimates   were   consistently   but   not   significantly   larger.   
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  We   then   computed   cross-trait   cross-population   genetic   correlations   across   21   traits   for  

which   we   observed   at   least   one   significant   IMPACT   annotation   association   in   both   EUR   and  

EAS.   Therefore,   in   total   we   computed   the   genetic   correlation   among   42   traits   (21   phenotypes   x  

2   populations).   For   pairs   of   traits   with   one   from   EUR   and   one   from   EAS,   we   used   Popcorn   as  

described   above   with   MAF   threshold   of   5%   and   “genetic   impact”.   For   pairs   of   traits   from   the  

same   population   we   used   LDSC   [v.1.0.0].   First   we   used   the    munge_sumstats.py    script   to   make  

the   direction   of   allelic   effect   consistent   in   the   GWAS   summary   statistics   while   also   restricting   to  

well-imputed   Hapmap3   SNPs.   Then,   we   used   the    ldsc.py    script   with   the    -rg    flag   to   compute   the  

genetic   correlation   using   EUR   and   EAS   reference   LD   panels   from   phase   3   of   1000   Genomes  

where   appropriate.   

 

Multi-ethnic   marginal   effect   size   correlation,   heterozygosity   correlation,   and   .     We  F st  

acquired   GWAS   summary   statistics   for   each   of   21   shared   traits   between   EUR   and   EAS   for  

which   there   was   at   least   one   significant   IMPACT   association   in   each   population.   Then,   we  

restricted   to   SNPs   shared   between   EUR   and   EAS   GWAS   summary   statistics.   Next,   we  

performed   stringent   iterative   LD   clumping   with   PLINK   [v1.90b3] 117    using   EUR   summary   statistics  

(selecting   the   most   significant   SNP,   then   removing   all   SNPs   in   LD   with     >   0.1   within   1   Mb,  r2  

then   selecting   the   next   most   significant   SNP,   and   so   on).   This   step   satisfies   the   assumption   of  

independence   in   the   Pearson   correlation   that   we   will   compute   among   marginal   effect   sizes.   We  

selected   our   initial   set   of   SNPs   under   three   scenarios:   (1)   using   no   functional   inference,   (2)  

using   the   top   5%   of   SNPs   according   to   the   trait’s   lead   EUR   IMPACT   annotation,   and   (3)   using  

the   bottom   95%   of   SNPs   according   to   the   trait’s   lead   EUR   IMPACT   annotation   (mutually  

exclusive   with   scenario   2).   With   our   set   of   independent   SNPs   for   each   trait   and   under   each   of  

three   scenarios,   we   compute   a   Pearson   correlation   between   the   estimated   effect   sizes,   while  
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further   stratifying   loci   on   17   EUR    P -values   (1,   0.3,   0.1,   0.03,   0.01,   3e-3,   1e-3,   3e-4,   1e-4,   3e-5,  

1e-5,   3e-6,   1e-6,   3e-7,   1e-7,   3e-8,   1e-8).   For   example,   stratum   with    P    =   0.1   includes   all   SNPs  

with   EUR   GWAS    P    <   0.1.   Similarly,   we   computed   the   Pearson   correlation   of   the   EUR   and   EAS  

heterozygosity,   defined   as   2pq,   where   p   is   the   reference   allele   frequency   and   q   is   the   alternative  

allele   frequency,   using   the   same   sets   of   variants   as   described   above.   Furthermore,   we  

computed   the   ,   where   large   values   indicate   a   reduction   in   heterozygosity,    at   each   variant  F st  

and   average     for   each   set   of   variants   at   each    P    value   threshold   for   each   of   21   considered  F st  

traits.   To   this   end,   we   collected   the   alternative   allele   frequencies   from   1000G   for   EUR   ( ) EURAF  

and   EAS   ( )   populations   and   defined     as   the   following:  EASAF  F st   

     (2p(1 )),  F st = (EUR   EAS )AF   AF
2 / p  

where    p    is   the   average   between     and   . EURAF  EASAF   

 

Polygenic   risk   score   calculation.     In   this   study,   we   utilized   pruning   and   thresholding   (P+T)   for  

the   calculation   of   PRS.   We   constructed   PRS   models   from   either   EUR   summary   statistics   or  

EAS   summary   statistics   and   evaluated   their   predictive   performance   on   individual   EAS  

phenotypes.   Here,   we   define   within-population   PRS   as   PRS EAS    and   trans-ethnic   PRS   as  

PRS EUR    to   avoid   confusion.   For   PRS EUR ,   we   utilized   genome-wide   summary   statistics   from  

EUR   as   reported   in   their   publicly   available   version.   For   PRS EAS ,   we   held   out   5,000   individuals  

for   PRS   analysis   and   conducted   GWAS   using   the   remaining   individuals   to   avoid   overfitting   (see  

next   section).   For   each   trait   separately,   we   restricted   our   analysis   to   variants   that   exist   in   both  

GWAS   summary   statistics   and   post-imputation   genotype   data   of   EAS   individuals   used   for   PRS  

analysis   (imputation   quality   of     >   0.3   in   minimac3).   A   detailed   description   related   to   the  r2  

genotyping   platform   and   imputation   strategy   is   provided   in   a   previous   report 101 .   We   excluded   the  

MHC   region   in   this   analysis.   
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We   designed   PRS   models   using   two   strategies:   standard   PRS   and   functionally-informed  

PRS.   For   standard   PRS EUR ,   we   performed   conventional   LD   clumping   to   acquire   sets   of  

independent   SNPs   using   EUR   LD   reference   panels   from   phase3   of   1000   Genomes.   Similarly   for  

PRS EAS ,   we   utilized   EAS   LD   reference   panels   from   phase3   of   1000   Genomes.   We   used   PLINK  

[v1.90b3] 117    to   remove   variants   in   LD   with     >   0.2   with   a   significance   threshold   for   index   SNPs  r2  

of    P    =   0.5.   For   functionally-informed   PRS,   we   restricted   the   analysis   to   variants   with   high  

IMPACT   score   according   to   the   lead   IMPACT   annotation   before   conducting   LD   clumping.   As  

before,   we   define   the   lead   annotation   as   the   one   with   the   largest   *   estimate   that   was τ  

significantly   greater   than   0.   When   we   designed   PRS EUR ,   we   utilized   the   lead   IMPACT  

annotation   in   EUR   GWAS   summary   statistics   (EAS   summary   statistics   were   not   taken   into  

account   to   avoid   overfitting).   Similarly,   when   we   design   PRS EUR ,   we   utilized   the   lead   IMPACT  

annotation   in   EAS   GWAS   summary   statistics   for   which   5,000   EAS   individuals   for   PRS   analysis  

were   removed   to   avoid   overfitting.   We   performed   LD   clumping   using   variants   within   a  

predefined   top   percentage   of   IMPACT   scores.   This   was   determined   by   the   percentage   that  

captured   the   closest   to   50%   of   total   trait   heritability;   considered   percentages   included   the   top  

1%,   5%,   10%,   and   50%.   

We   evaluated   PRS   performance   using   EAS   individuals.   First,   we   used   all   individuals   in  

the   BBJ   cohort   for   PRS EUR    testing.   Second,   we   compared   the   improvement   afforded   by  

IMPACT   in   PRS EUR    relative   to   PRS EAS    models   using   5,000   randomly   selected   individuals   in  

BBJ;   specifically   for   case-control   GWAS,   we   randomly   selected   1,000   cases   and   4,000   controls.   

For   all   models,   we   built   a   PRS   for   each   individual    j    in   our   test   set   (in   all   cases,   there   is  

no   overlap   between   GWAS   samples   and   PRS   samples)   using   variant   effect   size   estimates   from  

GWAS   as   follows:   
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  =   , PRSj   β ∑
M

i
A j,i    i                  (Equation   1)  

 

Where   M   is   the   total   number   of   SNPs   shared   between   GWAS   summary   statistics   and  

post-imputation   genotype   data   of   EAS   individuals,    i    is   the     SNP   in   the   model,     is   the  ith  A j,i  

allelic   dosage   of   the   trait-increasing   allele    i    in   individual    j ,   and   is   the   estimated   effect   size   of    β i  

allele    i    from   GWAS.   We   calculated   PRS   using   PLINK2.  

For   QC   of   quantitative   phenotypes,   we   excluded   (1)   related   samples   (PI_HAT   >    0.187  

estimated   by   PLINK),   (2)   samples   with   age   <   18   and   age   >   85,   and   (3)   samples   with   measured  

values   outside   three   interquartile   ranges   (IQR)   of   the   upper   or   lower   quartiles.   The   effect   of   sex,  

age,   ,   the   top   10   PCs,   and   affection   status   of   47   diseases   were   removed   by   linear  age2  

regression,   and   the   residuals   were   further   normalized   by   the   rank-based   inverse   normal  

transformation   (see   Equation   3   below).   For   QC   of   case/control   phenotypes,   we   excluded   (1)  

related   samples   (PI_HAT   >    0.187   estimated   by   PLINK)   and   (2)   samples   with   age   <   18   and   age  

>   85.   

We   then   regressed   our   phenotype   of   interest   (Y),   a   measured   quantitative   trait   or   a  

diagnosed   disease   among   the   PRS   samples,   on   the   per-individual   PRS   as   follows:   

 

For   diseases,   

                ~   Y j ex ge  Geno PC1  ...  eno PC10.PRSj + s + a +   +   + G                 (Equation   2)  

For   quantitative   traits,   

  ~   Normalized Y j .PRSj     (Equation   3)  
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We   then   report   the   variance   explained;   for   quantitative   traits,   this   is   the   variance  

explained   by   a   linear   model   and   for   diseases,   the   variance   explained   is   from   a   logistic   model  

(Nagelkerke   ) 80,81,118    which   we   convert   to   liability   scale   pseudo     such   that     values   are  R2  R2  R2  

comparable   among   both   quantitative   and   case/control   phenotypes.   We   used   various   GWAS    P  

value   thresholds   (0.1,   0.03,   0.01,   0.003,   0.001,   3e-4,   1e-4,   3e-5,   1e-5)   to   assess   the   predictive  

performance   of   our   PRS.   For   each   model,   we   reported   in   the   text   the   largest   achieved  R2  

across   the   nine   P   value   thresholds.   For   case/control   traits,   while     estimates   are   reported   on  R2  

the   liability   scale,   effect   size   estimates   were   derived   on   the   logistic   scale.   To   ensure   the  

robustness   of   our   results   to   the   scale   on   which   effect   sizes   are   estimated,   we   converted   logistic  

to   probit   and   then   to   liability   scale,   using   this   previously   published   conversion 119 .   For   EAS  β  

traits,   the   disease   prevalence   required   for   conversion   from   logistic   to   probit   was   derived   from  

the   Japanese   epidemiological   census 120    and   for   EUR   traits,   the   prevalences   were   derived   from  

previous   studies:   for   asthma 121 ,   for   RA 122 ,   for   PrCa 123 ,   for   CAD 124 ,   and   for   T2D 125 .   The   allele  

frequencies   required   for   conversion   from   probit   to   liability   were   derived   from   1000   Genomes   of  

the   corresponding   population.   

To   estimate   confidence   intervals   of   PRS   performance   ( ,   as   explained   above),   we  R2  

conducted   1,000   bootstraps   using   the   R   package    boot .   We   also   conducted   10,000   bootstraps   to  

evaluate   whether   the   difference   between   two   PRS   models   (functionally-informed   -   standard)  R2  

is   significantly   greater   than   0;   we   calculated   the difference   between   two   PRS   models   in   each  R2  

round   of   bootstrapping   (delta   ),   and   assess   its   distribution   in   10,000   bootstraps.   If   we   let   N   be  R2  

the   frequency   of   delta   <   0,   we   define   one-tailed    P    values   for   delta   >   0   as   (N   +    1)/10,000.  R2  R2  

We   also   estimated   confidence   intervals   of   PRS   performance   using   a   block   jackknife   across   the  

genome   as   previously   done 23 ,   using   200   adjacent   genomic   bins   of   equal   size.   Then   iteratively,  
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one   bin   of   variants   was   removed   from   the   PRS   model   and   the     estimate   was   recalculated   to  R2  

establish   a   confidence   interval   around   the   original   estimate.   We   additionally   estimated  

confidence   intervals   around   the   difference   between   IMPACT   PRS     and   standard   P+T    R2  R2  

using   a   block   jackknife.   

 

Genome-wide   association   studies   in   BBJ.    As   described   in   the   previous   section,   we   held   out  

5,000   randomly   selected   individuals   for   the   PRS   analysis   and   performed   GWAS   on   the  

remaining   individuals   (sample   sizes   are   provided   in    ST16-17 ).   GWAS   was   conducted   with  

PLINK2   using   the   same   imputed   dosages   as   used   in   the   PRS   analysis.   For   quantitative   traits,  

normalized   residuals   were   analyzed   by   a   linear   regression   model.   For   diseases,   affection   status  

was   analyzed   by   a   logistic   regression   model   using   age,   sex,   and   the   top   10   genotype   PCs   as  

covariates.  

 

PRS   distributions   in   1000G   subpopulations.    To   address   if   there   was   any   global   bias   in   PRS  

distributions   that   IMPACT   variant   prioritization   could   mitigate,   we   computed   PRS   based   on   EUR  

and   EAS   summary   statistics   as   done   above   and   allelic   dosages   of   five   different   1000   Genomes  

populations   (AFR,   AMR,   EAS,   EUR,   and   SAS).   Then   we   used   anova   to   compute   the   F-statistic  

indicative   of   the   inter-population   variance   and   compared   PRS   with   IMPACT   prioritization   to  

those   with   no   variant   prioritization.  
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Results  
 
Building   a   compendium   of    in   silico    gene   regulatory   annotations  

 
To   capture   genetic   heritability   of   diverse   polygenic   diseases   and   quantitative   traits,   we  

constructed   a   comprehensive   compendium   of   707   cell   type   regulatory   annotation   tracks.   To   do  

this,   we   applied   the   IMPACT 27    framework   to   707   unique   TF-cell   type   pairs   obtained   from   a   total  

of   3,181   TF   ChIP-seq   datasets   from   NCBI,   representing   245   cell   types   and   142   TFs   with   known  

sequence   motifs   ( Figure   3-1B ,    Material   and   Methods ,    Web   Resources ,    Table   B-1 ,    Figure  

B-2 ) 100 .   We   provide   publicly   available   open-source   software   (see    Web   Resources )  

corresponding   to   the   analyses   presented   in   this   manuscript.   We   caution   that   the   707   TF/cell  

type   pairs   represented   in   publicly   available   data   is   a   small   fraction   of   the   total   possible   pairs   of  

142   TFs   and   245   cell   types   (n   =   34,790),   although   there   are   several   experimental   and   practical  

reasons   why   this   theoretical   maximum   is   not   reached   ( Discussion ).   Briefly,   IMPACT   learns   an  

epigenetic   signature   of   active   TF   binding   evidenced   by   ChIP-seq,   differentiating   bound   from  

unbound   TF   sequence   motifs   using   logistic   regression.   We   derive   this   signature   from   5,345  

epigenetic   and   sequence   features,   predominantly   generated   by   ENCODE 102    and   Roadmap 126  

( Material   and   Methods ,    Table   B-2 );   these   data   were   drawn   from   diverse   cell   types,  

representing   the   biological   range   of   the   707   candidate   models.   IMPACT   then   probabilistically  

annotates   the   genome,   e.g.   on   a   scale   from   0   to   1,   without   using   the   TF   motif,   identifying  

regulatory   regions   that   are   similar   to   those   that   the   TF   binds.   

To   assess   the   specificity   of   our   IMPACT   annotations,   we   test   whether   they   (1)   accurately  

predict   binding   of   the   modeled   TF,   (2)   share   cell-type-specific   characteristics   with   other   tracks   of  

the   same   cell   type,   and   (3)   score   cell-type-specifically   expressed   genes   higher   than   nonspecific  

genes.   The   707   models   that   we   defined   had   a   high   TF   binding   prediction   accuracy   with   mean  

AUPRC   =   0.54   (sem   =   0.01,    Material   and   Methods ,    Figure   B-3 )   using   cross-validation.  
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Annotations   segregated   by   cell   type   rather   than   by   TF,   excluding   CTCF,   suggesting   the   same  

TF   may   bind   to   different   enhancers   in   different   cell   types   ( Figure   3-2A ).   On   average,   we  

observed   that   annotations   of   the   same   cell   types   were   more   strongly   correlated   genome-wide  

(Pearson    r    =   0.56,   sem   =   0.02)   than   annotations   of   different   cell   types   (Pearson    r    =   0.48,   sem   =  

0.01,   one-tailed   difference   of   means    P    <   0.001,    Figure   B-3 ).   Furthermore,   the   covariance  

structure   between   TF   ChIP-seq   training   datasets   is   similar   to   that   of   corresponding   IMPACT  

annotations,   indicating   that   the   IMPACT   model   does   not   introduce   spurious   correlations   among  

unrelated   ChIP-seq   datasets   ( Figure   B-3 ).   Lastly,   for   nine   different   cell   types,   we   examined  

cell-type-specifically   expressed   genes   from   Finucane   et   al 25    and   corresponding   differential  

expression    t -statistics.   For   each   of   nine   cell   types,   we   observed   larger   cell-type-specific   IMPACT  

probabilities   at   SNPs   in   and   near   cell-type-specific   genes   compared   to   generally   expressed  

genes   (mean   fold-change   across   10   to   99   cell-type-specific   IMPACT   tracks   ranged   from   1.08   to  

1.96   across   nine   cell   types,   one-tailed   paired   wilcoxon    P    <   0.04   for   seven   of   nine   cell   types,  

Figure   3-2B ,    Figure   B-3 ,    Material   and   Methods ),   suggesting   that   IMPACT   annotates   relevant  

cell   type   regulatory   elements.  
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Figure   3-2.   IMPACT   annotates   relevant   cell   type   regulatory   elements.   A)   Low-dimensional   embedding  

and   clustering   of   707   IMPACT   annotations   using   uniform   manifold   approximation   projection   (UMAP).  

Annotations   colored   by   cell   type   category;   TF   groups   indicated   where   applicable.   B)   IMPACT   annotates  

cell   type   specifically   expressed   genes   with   higher   scores   than   nonspecific   genes.   C)   Biologically   distinct  

regulatory   modules   revealed   by   cell   type-trait   associations   with   significantly   nonzero   *.   Shown   here   are τ  

the   5   representative   EUR   complex   traits   and   the   4   leading   IMPACT   annotations   for   each,   resulting   in   20  

IMPACT   annotations   highlighted   from   707   total.   Color   indicates   *   value.   D)   Lead   IMPACT   annotations τ  

capture   more   heritability   than   lead   cell-type-specific   histone   modifications   across   60   of   69   EUR   summary  

statistics   for   which   a   lead   IMPACT   annotation   was   identified.   *   indicates   heritability   estimate   difference τ  

of   means    P    <   0.05.   Gray   segments   indicate   the   95%   CI   around   the   heritability   estimate.  

77  



 

 

Partitioning   common   SNP   heritability   of   111   GWAS   summary   statistics   in   EUR   and   EAS   
 

We   obtained   summary   statistics   from   111   publicly   available   GWAS   for   diverse   polygenic  

traits   and   diseases.   For   narrative   purposes   throughout   the   text,   we   use   five   genetically  

uncorrelated   point   estimates   between   traits   ranged   from   -0.08   to   0.20,    Table   B-3 ,   although (Rg  

no     was   significantly   different   from   0,   all   two-tailed   z   test    P    >   0.40   after   Bonferroni   correction Rg  

for   10   pairs)   and   biologically   diverse   traits   that   capture   the   spectrum   of   summary   statistics  

analyzed   in   order   to   exemplify   our   results   in   addition   to   reporting   metrics   averaged   over   all   traits  

analyzed.   These   five   traits   include   an   allergic   phenotype:   asthma,   an   autoimmune   disease:   RA,  

a   neoplastic   type:   prostate   cancer   (PrCa),   a    hematological   quantitative   trait:    mean   corpuscular  

volume   (MCV),   and   an    anthropometric   trait:    height.   These   included   69   from   EUR   participants 27,34  

(average   N   =   180K,   average   heritability   z-score   =   12.9,   41/69   from   UK   BioBank) 24,127    and   42  

from   EAS   participants   of   BioBank   Japan 81,101,128,129    (average   N   =   157K,   average   heritability  

z-score   =   6.6) 52    ( Table   B-3 ).   We   chose   to   focus   our   study   on   EUR   and   EAS   populations,   as  

there   is   a   limited   number   of   large   GWAS   in   populations   other   than   EUR   and   EAS 82,104,105 .   All   of  

the   summary   statistics   used   were   generated   from   studies   that   had   a   sample   size   greater   than  

10,000   individuals   and   also   had   a   significantly   non-zero   heritability   (z-score   >   1.97).   There   are  

29   phenotypes   for   which   we   obtained   summary   statistics   in   both   EUR   and   EAS.   We   were  

interested   to   see   if   any   traits   had   a   multi-ethnic   genetic   correlation   that   deviated   from   1.  

Therefore,   we   explicitly   tested   this   and   found   that   16   traits   have   multi-ethnic     that   does   not Rg  

deviate   from   1   (one-tailed   z   test    P    >   0.05/29   tested   traits),   while   13   traits   have   multi-ethnic   Rg  

that   does   deviate   from   1   (one-tailed   z   test    P    <   0.05/29   tested   traits).    Overall   we   observed   high  

  for   most   traits,   supporting   our   assumption   that   causal   variants   are   generally   shared   across Rg  

populations   ( Material   and   Methods ,    Figure   B-4 ) 130 .   At   two   extremes,   basophil   count   has   a   low  
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multi-ethnic     of   0.32   (sd   =   0.10),   while   atrial   fibrillation   has   a   high   multi-ethnic     of   0.98   (sd Rg Rg  

=   0.11),   consistent   with   previous   observations   made   using    Popcorn ,   but   using   different  

parameter   estimation   strategies   ( Material   and   Methods ) 81 .  

We   then   partitioned   the   common   SNP   (minor   allele   frequency   (MAF)   >   5%)   heritability   of  

these   111   datasets   using   S-LDSC 24    with   an   adapted   baseline-LD   model   excluding  

cell-type-specific   annotations 27,34    ( Figure   B-4,   Material   and   Methods ).   Here,   heritability   refers  

to   the   inferences   made   by   S-LDSC   about   the   heritability   causally   explained   by   common   SNPs  

as   defined   previously 24 ,   as   opposed   to   genotyping-array-based   SNP-heritability 114,115    or   other  

definitions.   We   caution   that   the   results   presented   herein   are   a   consequence   of   the   analyzed  

GWAS   populations,   polygenic   traits   and   diseases,   and   available   experimental   data   to   create  

functional   annotations.   Next,   we   tested   each   of   the   traits   against   each   of   the   707   IMPACT  

annotations,   assessing   the   significance   of   a   non-zero   *,   which   is   defined   as   the   proportionate τ  

change   in   per-SNP   heritability   associated   with   a   one   standard   deviation   increase   in   the   value   of  

the   annotation   ( Material   and   Methods ) 34 .   Of   707   by   111   (n   =   78,477)   possible   associations  

subjected   to   5%   FDR,   we   detected   7,993   associations,   5%   of   which   we   expect   to   be   false  

positives.   We   observed   that   95   phenotypes   had   at   least   one   significant   annotation-trait  

association   ( *   >   0,   two-tailed   z   test    P    <   0.05   at   5%   FDR,    Ext.   Data   B-1,   Material   and τ  

Methods ,    Tables   B-4-8 ).   Here,   we   highlight   the   four   leading   IMPACT   annotations   associated  

with   EUR   summary   statistics   for   each   of   the   five   exemplary   phenotypes   mentioned   above:  

asthma,   RA,   PrCa,   MCV,   and   height   ( Figure   3-2C ,   associations   between   all   traits   and  

annotations   in    Ext.   Data   B-1 ).   Consistent   with   known   biology,   B   and   T   cells   were   strongly  

associated   with   asthma 131 ,   RA 1 ,   and   MCV 132,133    while   other   blood   cell   regulatory   annotations  

predominantly   derived   from   GATA   factors   were   also   associated   with   MCV.   Prostate   cancer   cell  

lines   were   associated   with   PrCa,   while   many   cell   types   including   myoblasts 134 ,   fibroblasts 135 ,   and  
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adipocytes 136,137 ,   lung   cells,   and   endothelial   cells   were   associated   with   height,   perhaps   related   to  

musculo-skeletal   developmental   pathways.   

For   each   trait,   we   defined   the   lead   IMPACT   regulatory   annotation   as   the   annotation  

capturing   the   greatest   per-SNP   heritability,   e.g.   the   largest,   while   significant,   *   estimate   ( Table τ  

B-9 ).   With   the   top   5%   of   SNPs,   lead   IMPACT   annotations   captured   an   average   of   43.3%   of  

common   SNP   heritability   (sem   =   2.8%)   across   these   95   polygenic   traits   ( Figure   B-5 ,    Material  

and   Methods ),   with   more   than   25%   of   heritability   captured   for   two-thirds   of   the   tested   summary  

statistics   (73/111   traits)   and   more   than   50%   captured   for   28%   (31/111).   Identifying   functional  

annotations   that   capture   large   proportions   of   heritability   is   an   important   step   to   understanding  

biological   mechanisms   of   genetic   variation.   We   observed   higher   heritability   enrichments   for  

autoimmune   diseases   and   hematological   traits,   likely   due   to   the   abundance   of   blood   cell   types  

represented   by   our   IMPACT   annotations   and   possibly   due   to   a   single   or   a   few   related   causal  

cell   types.   On   the   other   hand,   we   observed   lower   heritability   enrichment   for   brain-related,  

lung-related,   and   adrenal   traits,   likely   due   to   the   underrepresentation   of   relevant   tissue   or   cell  

types   in   the   TF   ChIP-seq   data   and   possibly   due   to   multiple   different   causal   cell   types.   We  

observed   significantly   greater   *   of   lead   IMPACT   annotations   among   traits   with   lower   estimated τ  

polygenicity   (linear   regression   coefficient   =    -0.11,    P    <   3.97e-5) .   Traits   with   higher   polygenicity  

may   be   driven   by   more   than   one   causal   cell   type;   therefore   a   single   IMPACT   annotation   may  

capture   a   smaller   proportion   of   total   common   SNP   heritability.   Returning   to   our   five   exemplary  

phenotypes,   with   the   top   5%   of   EUR   SNPs,   IMPACT   captured   97.1%   (sd   =   17.6%)   of   asthma  

heritability   with   the   T-bet   Th1   annotation,   65.9%   (sd   =   12.1%)   of   RA   heritability   with   the   B   cell  

TBP   annotation,   60.4%   (sd   =   8.9%)   of   PrCa   heritability   with   the   prostate   cancer   cell   line  

(LNCAP)   TFAP4   annotation,   72.4%   (sd   =   6.0%)   of   MCV   heritability   with   the   GATA1   PBMC  

annotation,   and   lastly   31.6%   (sd   =   3.0%)   of   height   heritability   with   the   lung   MXI1   annotation  
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( Figure   3-2D ).   While   the   observed   association   between   lung   and   height   is   not   intuitive,   within  

the   MXI1   gene   lies   a   genome-wide   significant   variant   associated   with   height 138 .     

To   demonstrate   the   value   of   IMPACT   tracks,   we   compared   them   to   annotations   derived  

from   single   experimental   assays   and   from   machine   learning   models.   For   example,   since   each   of  

the   IMPACT   tracks   was   trained   on   TF   ChIP-seq   data,   we   compared   the   per-annotation  

standardized   effect   sizes   ( *   )   achieved   by   both   annotation   types.   We   observed   that   on τ  

average   the   *   of   lead   IMPACT   annotations   (mean   *   =   3.53,   sem   =   0.91)   was   greater   than   by τ τ  

the   analogous   TF   ChIP-seq   used   in   training   (mean   *   =   1.71,   sem   =   0.94,   across   95   traits τ  

one-tailed   paired   wilcoxon    P    <   2.6e-16).   We   then   compared   IMPACT   tracks   to   histone   marks,  

which   are   commonly   used   to   quantify   cell   type   heritability 24 .   From   220   publicly   available  

cell-type-specific   histone   mark   ChIP-seq   annotations   of   EUR   SNPs 24 ,   we   selected   the   lead  

histone   mark   track   for   each   of   69   EUR   summary   statistics   ( Material   and   Methods ).   Restricting  

to   the   top   5%   of   SNPs,   we   observed   that   the   mean   EUR   heritability   captured   by   lead   IMPACT  

annotations   (49.5%,   sem   =   3.2%)   was   on   average   greater   than   by   lead   histone   mark  

annotations   (29.1%,   sem   =   2.5%,   one-tailed   paired   wilcoxon    P    <   8.8e-12,    Figure   3-2D,   Table  

B-10 ).   For   example,   the   lead   IMPACT   annotation   for   asthma   captured   64.2%   (sd   =   15.5%)   of  

heritability,   1.5x   more   heritability   than   the   lead   histone   mark   annotation   (H3K27ac   in   CD4+   Th2).  

Similarly,   IMPACT   captured   1.7x   more   RA   heritability   than   H3K4me3   in   CD4+   Th17s;   IMPACT  

captured   1.4x   more   MCV   heritability   than   H3K4me3   in   CD34+   cells;   IMPACT   captured   2.3x  

more   PrCa   heritability   than   H3K4me3   in   CD34+   cells;   and   IMPACT   captured   3.1x   more   height  

heritability   than   H3K4me3   in   lung   cells.   In   terms   of   *,   IMPACT   also   captured   more   per-SNP τ  

heritability   than   histone   marks   (one-tailed   paired   wilcoxon    P    <   9.1e-9,   mean   *   fold   change τ  

across   traits   =   1.38x,    Figure   B-6 ).   We   further   compared   the   heritability   captured   by   IMPACT   to  

annotations   created   from   state-of-the-art   deep   learning   algorithms   trained   to   predict   various  
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regulatory   element   marks,   Basenji 108    and   DeepSEA 107 .   Performing   a   comprehensive   analysis   is  

challenging   for   two   reasons.   First,   there   is   a   limited   set   of   genome-wide   SNP-level   deep  

learning   predictions   in   the   public   domain   with   the   exception   of   a   few   studies 109 .   Second,   as   deep  

learning   models   are   specific   to   a   particular   functional   mark,   comprehensive   genome-wide  

cataloging   is   a   combinatorially   large   problem   which   grows   with   the   number   of   tested   cell   types,  

functional   marks,   and   model   types.   Therefore,   we   performed   the   most   comprehensive   analysis  

that   was   feasible,   focusing   on   the   five   representative   traits.   To   this   end,   we   collected   123  

relevant   deep   learning   annotations   to   target   these   traits   ( Table   B-11,   Material   and   Methods )  

and   selected   the   lead   deep   learning   track   for   each   trait   ( Material   and   Methods ).   We   observed  

that   for   each   of   five   traits,   the   lead   IMPACT   annotation   generally   captured   more   heritability   in  

the   top   5%   of   SNPs   (mean   =   65.4%,   sem   =   10.9%)   and   resulted   in   generally   larger   *   (mean   = τ  

4.4,   sem   =   0.70)   than   the   lead   deep   learning   annotations   (heritability   mean   =   39.1%,   sem   =  

1.9%,   *   mean   =   1.6,   sem   =   0.30,   one-tailed   paired   wilcoxon    P    =   0.031   for   both   heritability   and τ  

*,    Figure   B-7 ).   Although   limited   by   the   availability   of   deep   learning   annotations,   we   further τ  

compared   lead   IMPACT   annotations   to   lead   deep   learning   annotations   across   all   69   EUR   traits  

and   in   all   cases   IMPACT   trended   toward   higher   heritability   and   *   (Basenji   heritability τ  

comparison   one-tailed   paired   wilcoxon    P    <   2.0e-11,   DeepSEA   heritability   comparison    P    <  

1.4e-10,   Basenji   *   comparison   one-tailed   paired   wilcoxon    P    <   3.4e-11,   DeepSEA   * τ τ  

comparison    P    <   8.8e-12,    Appendix   B ,    Figure   B-8 ,    Table   B-13 ).  

Since   some   of   our   IMPACT   annotations   are   similar   to   each   other   ( Figure   B-3 ),   we  

performed   serial   conditional   analyses   in   order   to   identify   IMPACT   annotations   explaining  

heritability   independently   from   one   another   ( Material   and   Methods ).   This   strategy   might   identify  

complex   traits   for   which   several   distinct   biological   mechanisms   are   independently   regulated   by  

genetic   variation.   Indeed,   we   identified   30   EUR   phenotypes   and   8   EAS   phenotypes   with   multiple  
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independent   IMPACT   associations   ( Figure   B-9 ,    Table   B-14-15 ).   For   example,   four   IMPACT  

annotations   were   independently   associated   with   EUR   PrCa:   prostate   (TFAP4),   prostate  

(RUNX2),   mesendoderm   (PDX1),   and   cervix   (NFYB).   Moreover,   for   seven   EUR   traits,   three  

IMPACT   annotations   were   independently   associated:   height   (adipocytes,   fibroblasts,   lung),  

neutrophil   count   (monocytes,   adipocytes,   B   cells),   osteoporosis   (myoblasts,   mesenchymal   stem  

cells,   cervix),   IBD   (T   cells   and   two   B   cell   annotations),   platelet   count   (PBMCs,   hematopoietic  

progenitors,   muscle),   systolic   blood   pressure   (endothelial,   mesenchymal   stem   cells,   fibroblasts),  

and   white   blood   cell   count   (B   cells,   adipocytes,   hematopoietic   progenitors).   Among   functionally  

correlated   traits,   we   observed   consistency   in   the   independently   associated   IMPACT  

annotations,   proposing   a   biological   basis   for   genetic   correlation   ( Appendix   B ).   In   general,  

identifying   functional   concordance   among   traits   with   genetic   correlation   less   than   1   provides   a  

quantitative   biological   basis   for   the   dissimilarity   between   traits   that   is   orthogonal   to   genetic  

correlation   approaches 130,139–142 .   We   found   that   the   heritability   z-score,   an   index   correlated   with  

the   power   of   S-LDSC 24 ,   is   strongly   predictive   of   the   number   of   independent   regulatory  

associations   (linear   regression   coefficient   =   0.06,    P    <   1.2e-5),   while   sample   size   is   not   (linear  

regression    P    =   0.59)   ( Figure   B-10 ).   Our   findings   suggest   that   multiple   independent   regulatory  

programs   can   contribute   to   the   heritability   of   complex   traits,   and   we   can   detect   them   when  

phenotypes   are   sufficiently   heritable   and   the   GWAS   provide   accurate   effect   size   estimation.  

 

Concordance   of   polygenic   regulation   between   European   and   East   Asian   populations  
 
Previous   studies   have   shown   concordance   of   polygenic   effects   between   EUR   and   EAS  

individuals   in   RA 79    and   between   EUR   and   African   American   individuals   in   PrCa 143 .   However,   to  

our   knowledge,   the   extent   of   these   shared   effects   has   not   yet   been   comprehensively  

investigated   across   many   functional   annotations   and   in   diverse   traits.   Assuming   shared   causal  
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variants   in   EUR   and   EAS,   IMPACT   annotations   that   best   prioritize   shared   genomic   regions  

regulating   a   phenotype   presumably   also   disproportionately   capture   similar   amounts   of  

heritability   in   both   EUR   and   EAS   ( Figure   3-1D-I ,    Figure   3-3A ).   Here,   we   quantified   the   SNP  

heritability   ( *)   of   29   traits   in   EUR   and   EAS   captured   by   a   set   of   approximately   100 τ  

independent   IMPACT   regulatory   annotations   ( Figure   3-3B,   Figure   B-11,   Material   and  

Methods ).   Briefly,   we   selected   independent   annotations   using   an   iterative   pruning   approach:   for  

each   trait,   we   ranked   all   annotations   by   *   and   removed   any   annotation   correlated   with τ  

Pearson      >   0.5   to   the   lead   annotation   and   then   repeated.   As   IMPACT   annotations   are  r2  

independent   of   population-specific   factors   including   LD   and   allele   frequencies   ( Figure   B-4 ),  

they   are   poised   to   capture   the   genome-wide   distribution   of   regulatory   variation   in   a  

population-independent   manner.   We   observed   that   *   estimates   across   annotations   for   EUR τ  

and   EAS   are   strikingly   similar,   with   a   regression   coefficient   that   is   consistent   with   identity   (slope  

=   0.98,   sem   =   0.04).   For   example,   we   observed   a   strong   Pearson   correlation   of   *   between τ  

EUR   and   EAS   for   asthma   ( r    =   0.98),   RA   ( r    =   0.87),   MCV   ( r    =   0.96),   PrCa   ( r    =   0.90),   and   height   ( r  

=   0.96).   Cross-ancestry   functional   concordance   is   not   specific   to   IMPACT   annotations   as   we  

observed   a   similar   relationship   among   cell-type-specific   histone   marks   using   the   same   strategy  

( Figure   B-12 ) 52 .   Additionally   considering   513   cell-type-specifically   expressed   gene   sets  

(SEG) 25,52 ,   we   could   not   observe   cross-ancestry   concordance   due   to   too   few   significant  

associations   shared   between   populations.   Furthermore,   we   found   that   none   of   our   *   estimates τ  

show   evidence   of   population   heterogeneity   (all   two-tailed   difference   of   means    P    >   0.56   at   5%  

FDR).   This   might   be   a   result   of   noise   around   the   *   estimates,   such   that   true   heterogeneity   is τ  

too   subtle   to   detect   in   this   regime.   Overall,   our   results   suggest   that   regulatory   variants   in   EUR  

and   EAS   populations   are   equally   enriched   within   the   same   classes   of   regulatory   elements.   This  

does   not   exclude   the   possibility   of   population-specific   variants   or   causal   effect   sizes,   as  
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evidenced   by   13   traits   with   multi-ethnic   genetic   correlation   significantly   less   than   1   ( P    <   0.05/29  

tested   traits).   Rather,   these   results   suggest   that   causal   biology,   including   disease-driving   cell  

types   and   their   regulatory   elements,   underlying   polygenic   traits   and   diseases,   is   largely   shared  

between   these   populations.  
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Figure   3-3.   Multi-ethnic   concordance   of   regulatory   elements   defined   by   IMPACT.   A)   Illustrative   concept   of  

concordance   versus   discordance   of   *   between   populations.   Concordance   implies   a   similar   distribution τ  

of   causal   variants   and   effects   captured   by   the   same   annotation.   The   implications   of   discordant   *   are   not τ  

as   straightforward.   B)   Common   per-SNP   heritability   ( *)   estimate   for   sets   of   independent   IMPACT τ  

annotations   across   29   traits   shared   between   EUR   and   EAS.   Left:   color   indicates   *   significance   ( * τ τ  

greater   than   0   at   5%   FDR)   in   both   populations   (blue),   significant   in   only   EUR   (green),   significant   in   only  

EAS   (red),   significant   in   neither   (gray).   Line   of   best   fit   through   annotations   significant   in   both   populations  

(dark   purple   line,   95%   CI   in   light   purple).   Black   dotted   line   is   the   identity   line,   y   =   x.   Right:   color   indicates  

association   to   one   of   five   exemplary   traits.  

 

Assessing   variant   prioritization   with   IMPACT   toward   improving   polygenic   risk   score  
models  
 

PRS   models   have   great   clinical   potential:   previous   studies   have   shown   that   individuals  

with   higher   PRS   have   increased   risk   for   disease 18,19,84–86 .   In   the   future,   polygenic   risk  

assessment   may   become   as   common   as   screening   for   known   mutations   of   monogenic   disease,  

especially   as   it   has   been   shown   that   individuals   with   severely   high   PRS   may   be   at   similar   risk   to  

disease   as   are   carriers   of   rare   monogenic   mutations 86 .   However,   since   PRS   heavily   rely   on  

GWAS   with   large   sample   sizes   to   accurately   estimate   effect   sizes,   there   is   specific   demand   for  

the   transferability   of   PRS   from   populations   with   larger   GWAS   to   populations   underrepresented  

by   GWAS 18,80,81,83,91,92,96 .   As   we   would   like   to   investigate   the   ability   of   IMPACT   annotations   to  

improve   the   trans-ethnic   application   of   PRS,   we   chose   pruning   and   thresholding   (P+T)   as   our  

model 18,81 .   P+T   models,   as   the   name   suggests,   select   an   independent   subset   of   all   SNPs  

genome-wide   by   pruning   away   SNPs   correlated   by   LD   and   then   further   thresholding   on   GWAS  

P    value.   We   elected   to   use   P+T   rather   than   LDpred 83,96    or   AnnoPred 95 ,   which   compute   a  

posterior   effect   size   estimate   for   all   SNPs   genome-wide   based   on   membership   to   functional  
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categories.   With   P+T,   we   can   partition   the   genome   by   IMPACT-prioritized   and   deprioritized  

SNPs,   whereas   the   assumptions   of   the   LDpred   and   AnnoPred   models   do   not   support   the  

removal   of   variants,   making   it   difficult   to   directly   assess   improvement   due   to   IMPACT  

prioritization.   Moreover,   these   models   have   not   been   explicitly   designed   or   tested   for   the  

trans-ethnic   application   of   PRS   and   thus   are   beyond   the   scope   of   our   work.   We   conventionally  

define   PRS   as   the   product   of   marginal   SNP   effect   size   estimates   and   imputed   allelic   dosage  

(ranging   from   0   to   2),   summed   over   M   SNPs   in   the   model.   Conventional   P+T   utilizes   marginal  

effect   size   estimates   and   therefore   is   susceptible   to   selecting   a   tagging   variant   over   the   causal  

one   guided   by   GWAS    P    values   which   are   inflated   by   LD.   Therefore,   we   hypothesized   that   any  

observed   improvement   due   to   incorporation   of   IMPACT   annotations   could   result   from  

prioritization   of   variants   with   higher   marginal   multi-ethnic   effect   size   correlation   ( Figure   3-1D-II ),  

suggesting   these   SNPs   are   less   likely   to   be   solely   associated   by   linkage.   

Hence,   we   tested   this   hypothesis   before   assessing   PRS   performance.   We   selected   21   of  

29   summary   statistics   shared   between   EUR   and   EAS   with   an   identified   lead   IMPACT  

association   in   both   populations.   Then,   using   EUR   lead   IMPACT   annotations   for   each   trait   ( Table  

B-9 ),   we   partitioned   the   genome   in   three   ways:   (1)   the   SNPs   within   the   top   5%   of   the   IMPACT  

annotation,   (2)   the   SNPs   within   the   bottom   95%   of   the   IMPACT   annotation,   and   (3)   the   set   of   all  

SNPs   genome-wide   (with   no   IMPACT   prioritization).   We   then   performed   stringent   LD   pruning  

<   0.1   from   EUR   individuals   of   phase   3   of   1000   Genomes 106 ),   guided   by   the   EUR   GWAS    P  (r2  

value,   to   acquire   sets   of   independent   SNPs   in   order   to   compute   a   EUR-EAS   marginal   effect   size  

estimate   correlation   ( Material   and   Methods ).   

For   example,   in   height,   EUR-EAS   effect   size   estimates   of   SNPs   in   the   top   5%   partition  

are   2.1-fold   more   similar   (Pearson    r    =   0.29,    Figure   3-4A )   than   those   in   the   bottom   95%   partition  

( r    =   0.14,    Figure   3-4B )   and   1.6-fold   more   similar   than   the   set   of   all   SNPs   ( r    =   0.18).   For   each   of  
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17   GWAS    P    value   thresholds,   the   marginal   multi-ethnic   effect   size   correlation   among   the   top   5%  

of   IMPACT   SNPs   tended   to   be   greater   than   the   set   of   all   SNPs   genome-wide   across   21   traits  

(all   17   one-tailed   paired   wilcoxon    P    <   6.9e-4)   ( Figure   3-4C-D ).   Furthermore,   this   observation  

was   consistent   across   individual   traits   ( Figure   B-13 ).   For   comparison,   we   performed   a   similar  

analysis   restricted   to   the   five   representative   traits   using   alternative   functional   annotations:   lead  

annotations   from   513   cell-type-specifically   expressed   gene   sets   (SEG) 25    and   220  

cell-type-specific   histone   mark   annotations   (CTS) 24    ( Figure   B-14 ).   Marginal   effect   size  

correlation   with   IMPACT   was   comparable   to   CTS   when   comparing   the   top   5%   of   SNPs   to   the  

set   of   all   SNPs   (at   each   of   17   GWAS    P    value   thresholds,   one-tailed   paired   wilcoxon    P    >   0.16,  

Figure   B-15 ).   Similarly   assessing   marginal   effect   size   correlation,   IMPACT   prioritization   was  

comparable   to   SEG   prioritization   (at   each   of   17   GWAS    P    value   thresholds,   one-tailed   paired  

wilcoxon    P    >   0.06,    Figure   B-15 ).   Overall,   our   results   suggest   that   we   might   anticipate   improved  

trans-ethnic   portability   of   PRS   models   by   prioritizing   SNPs   in   key   functional   annotations   by  

decreasing   the   likelihood   of   selecting   SNPs   solely   associated   by   linkage.  
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Figure   3-4.   Mechanism   by   which   IMPACT   prioritization   of   shared   regulatory   variants   might   improve  

trans-ethnic   PRS   performance.   A)   Estimated   effect   sizes   of   variants   from   genome-wide   EUR   and   EAS  

height   summary   statistics   in   the   top   5%   of   the   lead   IMPACT   annotation   for   EUR   height.   Proportions   of  

variants   in   each   quadrant   indicated   in   light   blue.   B)   Estimated   effect   sizes   from   genome-wide   EUR   and  

EAS   height   summary   statistics   of   variants   in   the   bottom   95%   of   the   same   lead   IMPACT   annotation   for  

height;   mutually   exclusive   with   SNPs   in   A).   C)   Meta-analysis   of   multi-ethnic   marginal   effect   size  

correlations   between   populations   across   21   traits   shared   between   EUR   and   EAS   cohorts   over   17   GWAS  

P    value   thresholds   (with   reference   to   the   EUR   GWAS).   Vertical   bars   indicate   the   95%   CI   around   the  

Pearson    r    estimate.   D)   Number   of   SNPs   (log10   scale)   at   each    P    value   threshold   for   each   partition   of   the  

genome   corresponding   to   C).  

 

While   increased   concordance   of   marginal   effect   size   estimates   might   lead   to   improved  

trans-ethnic   portability,   increased   concordance   of   allelic   heterozygosity   could   also   play   a   role,   as  

allele   frequency   greatly   affects   disease   predictive   power.   To   this   end,   we   computed   the  
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correlation   of   EUR   and   EAS   heterozygosity   ( Material   nd   Methods ),   defined   as   2pq,   across   the  

same   sets   of   variants   and   traits   considered   in    Figure   3-4 .   We   observed   IMPACT-selected  

variants   tended   to   have   lower   concordance   of   heterozygosity   than   conventional   P+T   selected  

variants   for   each   of   17   GWAS    P    value   thresholds   across   21   traits   (all   one-tailed   paired   wilcoxon  

P    <   0.05,    Figure   B-16,   Figure   B-17 ).   This   is   likely    due   to   an   enrichment   of   common   variants  

among   IMPACT-prioritized   SNPs   and   a   depletion   of   rare   or   low   frequency   variants   ( Figure  

B- 16 ).    We   then   considered   ,   a   measure   of   the   reduction   of   heterozygosity   and   an   indicator  F st  

of   population   divergence,   among   IMPACT-selected   SNPs   ( Material   and   Methods ).   Although  

  trended   higher   among   IMPACT-selected   SNPs   than   among   conventional   P+T   selected  F st  

variants   across   21   traits   at   each    P    value   threshold   (all   one-tailed   paired   wilcoxon    P    <   0.03),   the  

large   confidence   intervals   of   the   meta-analyzed     across   traits   suggest   that   this   trend   does  F st  

not   indicate   substantial   differences   (across   each   of   17    P    value   thresholds,   all   two-tailed  

difference   of   means    P    >   0.98,    Figure   B-18,   Figure   B-19 ).    These   results   suggest   that   neither  

increased   concordance   of    heterozygosity   nor   substantial   difference   in     is   a   consequence   of  F st  

IMPACT   prioritization.   

 

Models   incorporating   IMPACT   functional   annotations   improve   the   trans-ethnic   portability  

of   polygenic   risk   scores  

Finally,   we   addressed   our   hypothesis   that   IMPACT   annotations   improve   the   trans-ethnic  

portability   of   PRS   ( Figure   3-1D-III ).   For   each   of   the   21   previously   analyzed   traits,   we   built   a  

PRS   using   effect   size   estimates   from   EUR   summary   statistics   and   applied   it   to   predict  

phenotypes   of   EAS   individuals   from   BioBank   Japan   (BBJ)   ( Figure   3-5A ).   Here,   we   compare  

two   PRS   models,   both   blind   to   any   EAS   genetic   or   functional   information   and   removing   SNPs  

with   LD   >   0.2,   according   to   European   individuals   from   phase   3   of   1000    Genomes 106 :   (i)  r2  
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standard   P+T   PRS   and   (ii)   functionally-informed   P+T   PRS   using   a   subset   of   SNPs   prioritized   by  

the   lead   EUR   IMPACT   annotation   ( Material   and   Methods ).   In   functionally-informed   PRS  

models,   for   each   trait   separately,   we    a   priori    selected   the   subset   of   top-ranked   IMPACT   SNPs  

(top   1%,   5%,   10%,   or   50%)   which   explained   the   closest   to   50%   of   common   SNP   heritability  

( Material   and   Methods ).   This   ensures   that   functional   prioritization   captures   approximately   the  

majority   of   trait-relevant   genetic   variation   and   the   cumulative   genetic   signal   among  

functionally-prioritized   variants   was   consistent   across   traits,   allowing   for   varying   degrees   of  

polygenicity.   For   all   PRS   models,   we   report   results   from   the   most   accurate   model   across   nine  

EUR   GWAS    P    value   thresholds.  

  

 

Figure   3-5.   Identifying   shared   regulatory   variants   with   IMPACT   annotations   to   improve   the   trans-ethnic  

portability   of   PRS.   A)   Study   design   applying   EUR   summary   statistics-based   PRS   models   to   all   individuals  
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in   the   BBJ   cohort.   (B)   Phenotypic   variance   (R 2 )   of   BBJ   individuals   explained   by   EUR   PRS   using   two  

methods:   functionally-informed   PRS   with   IMPACT   (pink)   and   standard   PRS   (blue).   Error   bars   indicate  

95%   CI   calculated   via   1,000   bootstraps.   C)   Phenotypic   variance   (R 2 )   of   BBJ   individuals   across   5  

exemplary   traits   explained   by   EUR   IMPACT   annotations   relative   to   lead   deep   learning   annotations   (DL),  

cell-type-specific   histone   modification   annotations   (CTS),   and   lead   cell-type-specifically   expressed   gene  

sets   (SEG).   Error   bars   indicate   95%   CI   calculated   via   1,000   bootstraps.   D)   Study   design   to   compare  

trans-ethnic   (EUR   to   EAS)   to   within-population   (EAS   to   EAS)   improvement   afforded   by  

functionally-informed   PRS   models.   For   each   trait,   5,000   randomly   selected   individuals   from   BBJ  

designated   as   PRS   samples.   Remaining   BBJ   individuals   used   for   GWAS   to   derive   EAS   summary  

statistics-based   PRS;   no   shared   individuals   between   GWAS   samples   and   PRS   samples.   E)   Improvement  

from   standard   PRS   to   functionally-informed   PRS   compared   between   trans-ethnic   (EUR   to   EAS)   and  

within-population   models   (EAS   to   EAS)   using   the   study   design   in   D).   In   boxplots,   center   line   indicates   the  

median   value;   box   limits   indicate   the   upper   (third)   and   lower   (first)   quartiles;   the   length   of   whiskers  

indicate   values   up   to   1.5   times   the   interquartile   range   in   either   direction.   

 

For   each   of   21   tested   traits,   we   observed   that   functionally-informed   PRS   using   IMPACT  

captured   more   phenotypic   variance   than   standard   PRS   (49.9%   mean   relative   increase   in   ,  R2  

Figure   3-5B ,    Figure   B-20 ,    Tables   B-16-18 ).   The   mean   phenotypic   variance   explained   across  

traits   by   functionally-informed   PRS   ( =   2.1%,   sem   =   0.4%)   was   greater   than   by   standard   PRS  R2  

( =   1.5%,   sem   =   0.3%,   one-tailed   paired   wilcoxon    P    <   4.8e-7).   For   19   of   21   traits,  R2  

IMPACT-informed   PRS   significantly   outperformed   standard   PRS   (19   one-tailed   difference   of  

means    P    <   0.05);   for   platelet   count    P    =   0.052   and   for   basophil   count    P    =   0.40.   Using   10,000  

bootstraps   of   the   PRS   sample   cohort,   we   found   that   the   IMPACT-informed   PRS     estimate  R2  

was   consistently   greater   than   the   standard   PRS   estimate   for   all   traits   except   basophil   count   (all  

bootstrap    P    <   0.004,    Table   B-18 ).   Intriguingly,   we   found   a   strong   correlation   between   the  
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IMPACT-informed   PRS     estimate   and   the   EAS   heritability   captured   by   the   top   5%   of   SNPs  R2  

according   to   the   lead   EUR   IMPACT   annotation   (Pearson    r    =   0.60,    P    =   0.004,    Table   B-19 ).   While  

EAS   heritability   metrics   did   not   influence   the   choice   of   lead   IMPACT   annotation   (EUR-based),  

this   result   is   unsurprising   given   the   strong   multi-ethnic   regulatory   concordance   we   observed  

previously   ( Figure   3-3C )   in   which   annotations   that   capture   more   heritability   in   EUR   tend   to  

capture   more   in   EAS.    Even   though   IMPACT-informed   PRS   models   include   between   7.5%   and  

79.1%   of   the   total   number   of   SNPs   included   in   standard   P+T   models,   the   increased   prediction  

  indicates   that   prioritization   of   putatively   functional   variants   over   tagging   variation  R2  

compensates   for   the   reduction   of   included   loci.    We   observed   the   largest   improvement   for   RA  

from     =   1.4%   (sd   =   0.33%)   in   the   standard   PRS   to     =   4.1%   (sd   =   0.53%,   one-tailed  R2  R2  

difference   of   means    P    <   9.8e-6)   in   the   functionally-informed   PRS   using   the   B   cell   TBP   IMPACT  

annotation.   For   asthma,     =   0.37%   (sd   =   0.10%)   in   the   standard   PRS   versus     =   0.75%   (sd  R2  R2  

=   0.14%,    P    <   0.013)   in   the   functionally-informed   PRS.   For   MCV,     =   3.0%   (sd   =   0.10%)   in   the  R2  

standard   PRS   versus     =   4.1%   (sd   =   0.12%,    P    <   1.2e-13)   in   the   functionally-informed   PRS.  R2  

For   PrCa,   =   4.5%   (sd   =   0.36%)   in   the   standard   PRS   versus     =   6.4%   (sd   =   0.45%,    P    <  R2  R2  

6.1e-4)   in   the   functionally-informed   PRS.   For   height,   =   4.2%   (sd   =   0.10%)   in   the   standard  R2  

PRS   versus     =   5.6%   (sd   =   0.12%,    P    <   8.7e-20)   in   the   functionally-informed   PRS.   We  R2  

observed   significantly   greater   PRS   improvement   among   traits   with   lower   estimated   polygenicity  

(linear   regression   coefficient   =    -0.02,    P    <   0.006) .   As   previously   stated,   more   highly   polygenic  

traits   may   be   driven   by   multiple   cell   types,   of   which   only   one   may   be   captured   by   the   lead  

IMPACT   annotation.   

For   our   five   representative   traits   asthma,   RA,   MCV,   PrCa,   and   height,   we   further  

compared   functionally-informed   PRS EUR    using   IMPACT   to   models   using   123   DeepSEA   and  
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Basenji   deep   learning   annotations 107–110 ,   220   cell-type-specifically   expressed   genes   (SEG) 25    and  

513   cell-type-specific   histone   modification   tracks   (CTS) 24    ( Figure   3-5C ,    Table   B-11,   Table   B-20,  

Material   and   Methods ).   To   our   knowledge,   deep   learning   annotations   have   not   previously   been  

applied   to   improving   PRS   model   performance.   IMPACT   explained   greater   phenotypic   variance  

on   average   (mean =   4.2%,   sem   =   1.0%)   than   the   top   deep   learning   annotations   (3.2%,   sem   =  R2  

0.8%,   one-tailed   paired   wilcoxon    P    =   0.03)   and   was   a   significant   improvement   for   four   of   five  

traits   (four   one-tailed   difference   of   means    P    <   0.006),   while   only   trending   higher   for   asthma   ( P    =  

0.13).   IMPACT   also   explained   greater   phenotypic   variance   on   average   than   SEG   (0.9%,   sem   =  

0.2%,   one-tailed   paired   wilcoxon    P    =   0.03)   and   this   difference   was   individually   detected   for   each  

of   five   traits   (all   one-tailed   difference   of   means    P    <   3.4e-6).   This   trend   was   not   as   strong   when  

comparing   IMPACT   to   CTS   ( =   2.6%,   sem   =   0.5%,   one-tailed   paired   wilcoxon    P    =   0.06),  R2  

although   this   difference   was   individually   detected   for   three   of   five   traits   (three   one-tailed  

difference   of   means    P    <   1.1e-4).   We   performed   a   similar   bootstrap   analysis   as   above,   yielding  

similar   results;   for   only   RA   and   asthma   did   IMPACT-PRS   not   produce   consistently   greater    R2

estimates   than   CTS-PRS   ( Table   B-20 ).   

Functionally-informed   PRS   might   to   some   extent   compensate   for   population-specific   LD  

differences   between   populations.   Hence,   we   hypothesized   that   IMPACT-informed   PRS   would  

improve   standard   PRS   moreso   in   the   trans-ethnic   prediction   framework,   in   which   EUR   PRS  

models   predict   EAS   phenotypes,   than   in   a   within-population   framework,   in   which   EAS   PRS  

models   predict   EAS   phenotypes.   Here,   we   define   within-population   PRS   as   PRS EAS    and  

trans-ethnic   PRS   as   PRS EUR    to   avoid   confusion.   In   order   to   directly   compare   PRS   model  

improvements   between   PRS EAS    and   PRS EUR ,   we   evaluated   prediction   accuracy   on   the   same  

individuals.   Briefly,   we   partitioned   the   BBJ   cohort   to   reserve   5,000   individuals   for   PRS   testing,  

derived   GWAS   summary   statistics   from   the   remaining   individuals,   and   performed   P+T   PRS  
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modeling   and   prediction   as   done   above   ( Figure   5D,   Figures   B-21-23,   Tables   B-21-22,  

Material   and   Methods ).   For   functionally-informed   PRS EAS ,   we   selected   lead   IMPACT  

annotations   from   S-LDSC   results   using   GWAS   summary   statistics,   as   done   above,   on   the  

partition   of   the   BBJ   cohort   excluding   the   5,000   PRS   test   individuals.   We   defined   improvement  

as   the   percent   increase   in     from   standard   to   functionally-informed   PRS;   therefore,   differences  R2  

in   PRS   performance   due   to   intrinsic   factors,   such   as   GWAS   power   or   genotyping   platform,  

cancel   out.   In   both   scenarios,   we   observed   substantial   positive   improvements:   averaged   across  

the   21   traits   in   the   trans-ethnic   setting   (mean   percent   increase   in   =   47.3%,   sem   =   8.1%,  R2  

one-tailed   z   test    P    <   2.7e-9)   and   in   the   within-population   setting   (mean   percent   increase   in   =  R2  

20.9%,   sem   =   6.6%,   one-tailed   z   test    P    <   7.5e-4).   Indeed,   this   revealed   a   significantly   greater  

improvement   in   the   trans-ethnic   application   than   in   the   within-population   application   across   the  

21   traits   (one-tailed   paired   wilcoxon    P    <   0.012,    Figure   3-5E ).   To   ensure   that   the   disease  

predictive   power   of   our   PRS   models   was   not   driven   by   a   few   loci   of   large   effect,   we   performed   a  

block   jackknife   over   the   genome   to   establish   confidence   intervals   around   the     estimates   as  R2  

well   as   the   relative   improvement   of   IMPACT   PRS   over   standard   P+T   PRS     estimates  R2  

( Material   and   Methods,   Figure   B-24 ).   We   observed   narrow   intervals   around   the   estimates;   for  

functionally-informed   PRS EUR    and   functionally-informed   PRS EAS ,   we   observed   the   average  

95%   confidence   interval   around     estimates   to   be   0.001   and   around   the   relative    R2  R2  

improvement   to   be   0.11   in   PRS EUR    and   0.07   in   PRS EAS .   These   results   suggest   that   the   disease  

predictive   power   of   IMPACT-informed   P+T   models   are   not   driven   by   a   few   loci   of   large   effect.  

Moreover,   our   results   for   case/control   diseases   are   not   affected   by   estimating   marginal   effect  

sizes   on   the   logistic   scale,   rather   than   the   liability   scale 119    ( Material   and   Methods,   Figure   B-25,  

Figure   B-26,   Appendix   B ).   
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Overall,   our   results   reveal   that   functional   prioritization   of   SNPs   using   IMPACT   improves  

both   trans-ethnic   and   within-population   PRS   models,   but   is   especially   advantageous   for   the  

trans-ethnic   application   of   PRS.   We   believe   there   are   at   least   three   important   mechanisms   at  

play   leading   to   this   improvement.   First,   restricting   P+T   PRS   to   variants   that   are   more   likely   to   be  

functional   increases   the   likelihood   of   selecting   a   causal   variant   with   disease   predictive   power   in  

the   target   population.   Previous   studies   support   that   the   identification   of   causal   variants   can  

improve   PRS   accuracy 81,83,144 .   Second,   as   shown   in    Figure   3-3B ,   the   per-SNP   heritability  

captured   by   IMPACT   annotations   tends   to   be   similar   in   EUR   and   EAS   populations,   thereby  

ensuring   that   IMPACT-informed   SNP   prioritization   schemes   using   EUR   data   are   still   effective   in  

EAS.   Third,   as   shown   in    Figure   3-4C ,   SNPs   prioritized   by   IMPACT   have   more   consistent  

multi-ethnic   marginal   effect   sizes,   which   means   that   these   SNPs   are   less   likely   to   be   solely  

associated   by   linkage   and   therefore   might   improve   performance.   In   conclusion,   our   results  

nominate   the   prioritization   of   SNPs   according   to   functional   annotations,   especially   using  

IMPACT,   as   a   potential   tentative   solution   for   the   lack   of   trans-ethnic   portability   of   PRS   models.  

While   individuals   of   European   ancestry   dominate   current   genetic   studies,   population-nonspecific  

cell-type-specific   IMPACT   annotations   can   help   transfer   highly   powered   EUR   genetic   data   to  

study   still   underserved   populations.   

 
Discussion  
 

In   this   study,   we   created   a   compendium   of   707   cell-type-specific   regulatory   annotations  

( Web   Resources )   capturing   disproportionately   large   amounts   of   polygenic   heritability   in   95  

complex   traits   and   diseases   in   EUR   and   EAS   populations.   We   then   proposed   a   three-step  

framework   to   assess   how   well   prioritization   of   regulatory   variants   with   functional   data   can  

improve   multi-ethnic   genetic   comparisons.   First,   we   showed   that   heritability-enriched   regulatory  
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elements   between   EUR   and   EAS   populations   capture   indistinguishable   proportions   of  

heritability   across   29   complex   traits.   Second,   we   showed   that   functional   prioritization   of   variants  

selects   those   with   more   highly   correlated   marginal   effect   sizes   between   populations,   while  

negligibly   affecting   the   distribution   of   ;   this   might   explain   the   improvement   driven   by  F st  

functional   prioritization   in   P+T   PRS   models   which   use   marginal   effect   sizes.   Third,   we   showed  

that   variant   prioritization   with   IMPACT   annotations   results   in   consistently   improved   PRS  

prediction   accuracy,   especially   for   the   trans-ethnic   application;   potentially   due   to   overcoming  

large   population-specific   influences   such   as   LD   which   is   an   important   challenge   of  

multi-population   models.   

Designing   genetic   models   for   each   complex   trait   or   disease   that   capture   risk   for   the   full  

diversity   of   the   human   population   will   be   challenging.   This   necessitates   approaches   that  

effectively   transfer   predictive   genetic   information   from   well   studied   populations   to   less   well  

studied   populations.   Without   such   approaches,   the   potential   clinical   benefits   of   PRS   risk   to  

preferentially   benefit   populations   with   larger   training   GWAS   datasets,   e.g.   European  

populations.   As   it   will    ultimately   be   useful   to   develop   PRS   scores   that   can   be   applied   widely   to  

many   populations   and   admixed   individuals 145,146 ,   IMPACT   may   have   the   potential   to   be   a   tool  

that   can   prioritize   key   variants   for   this   purpose.    We   argue   for   the   use   of   biologically   diverse  

IMPACT   annotations   to   capture   relevant   genetic   signal   and   compensate,   to   some   extent,   for  

differences   in   LD   across   populations.   To   begin   to   address   this,   we   investigated   PRS   using   EUR  

summary   statistics   and   genotyping   data   from   five   populations   (AFR,   AMR,   EAS,   EUR,   and   SAS)  

in   1000   Genomes   and   found   that   IMPACT-informed   PRS   moderately   reduces   the  

inter-population   variation   of   PRS   values   compared   to   standard   P+T   (one-tailed   paired   wilcoxon  

P    =   0.003,   52.0%   reduction   in   mean   F-statistic   for   EUR   PRS   ( Figure   B-27 )   and   one-tailed  

paired   wilcoxon    P    =   0.002,   64.6%   reduction   in   mean   F-statistic   for   EAS   PRS   ( Figure   B-28 )),  
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suggesting   functional   prioritization   can   stabilize   PRS   values   ( Material   and   Methods ).    However,  

other   challenges   such   as   differences   in   allele   frequencies   will   need   to   be   addressed   in   future  

studies.   

Our   work   and   that   of   others   advocate   for   larger   genetic   studies   in   understudied  

populations 81    and   the   use   of   orthogonal   LD-independent   functional   data   to   improve   the   disease  

predictive   power   of   genetic   models   in   such   populations,   as   even   increasing   GWAS   power  

cannot   mitigate   the   bias   introduced   by   LD.    Our   study   should   not   in   any   way   be   interpreted   as   a  

justification   for   reducing   the   emphasis   on   the   need   for   diversity   in   human   genetic   studies.    A  

future   which   offers   high   powered   GWAS   in   understudied   populations   will   transform   the   study   of  

trans-ethnic   portability   from   an   issue   of   EUR-biased   health   disparities   to   a   question   of  

population-specific   genetic   and   environmental   effects.  

Our   work   provides   insight   into   the   potential   clinical   implementation   of   PRS   and   broader  

genetic   applications   that   aim   to   integrate   multi-ethnic   data.   This   study   suggests   that   functional  

data   may   be   leveraged   to   improve   portability   of   genetic   models;   however,   the   issue   of   portability  

need   not   be   restricted   to   two   different   continental   populations   as   shown   in   this   study,   but   rather  

will   be   relevant   to   any   PRS   model   in   which   the   target   individual   is   not   perfectly   matched   to   the  

ancestry   of   the   training   population.   While   we   did   not   assess   a   PRS   model   using   meta-analyzed  

summary   statistics   from   two   or   more   populations   in   this   study,   we   believe   that   this   approach  

could   be   effective   in   identifying   shared   regulatory   variants,   especially   for   populations   with   limited  

GWAS   sample   size.   

We   believe   that   IMPACT   may   prioritize   phenotype-driving   regulatory   variation.   We   have  

shown   IMPACT   to   be   more   effective   at   capturing   genetic   variation   of   complex   traits   than  

commonly   used   functional   annotations   such   as   experimentally-derived   cell-type-specific   histone  

marks,   gene   sets,   and   deep   learning   regulatory   annotations.   We   hypothesize   the   utility   of  
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IMPACT   comes   from   1)   cell-type-specificity   of   TF   binding   models   which   locate   key   classes   of  

regulatory   elements   and   2)   the   integration   of   thousands   of   experimentally-derived   annotations,  

which   presumably   removes   noise   and   enriches   for   biological   signal   present   in   each   individual  

annotation.   Here,   we   did   not   demonstrate   the   potential   utility   of   IMPACT   to   perform   functional  

fine-mapping   to   reduce   credible   sets   beyond   our   previous   work 27 ,   due   to   lack   of   sufficient   gold  

standards   with   causal   experimental   validation   and   the   limitation   to   genome-wide   significant  

variants.   The   specific   application   of   IMPACT   in   multi-ethnic   fine-mapping   needs   to   be   further  

investigated.  

We   must   consider   several   important   limitations   of   our   work.   First,   our   functional   insights  

are   limited   by   biases   in   publicly   available   TF   ChIP-seq   data,   as   IMPACT   cannot   evaluate   TF-cell  

type   pairs   for   which   training   data   does   not   exist.   These   biases   include   preference   toward  

workhorse   cell   lines   over   primary   cells   or   cell   types   that   are   rarer   or   more   difficult   to   assay.  

Furthermore,   these   biases   include   preference   toward   TFs   with   evidence   of   cell   type   expression  

and   regulation,   specific   antibodies,   and   known   sequence   motifs   for   compatibility   with   IMPACT.  

These   biases   directly   affect    our   ability   to   capture   trait-relevant   biology,   leading   to   systematically  

better   heritability   enrichment   for   autoimmune   diseases   and   hematological   traits   for   which   the  

relevant   cell   type   is   easier   to   assay,   e.g.   blood,   and   worse   enrichment   for   brain-related   traits   for  

which   the   relevant   tissue   is   difficult   to   assay.   Future   work   may   be   needed   to   adapt   the   IMPACT  

framework   to   model   the   epigenetic   signatures   of   functional   marks   beyond   TF   binding   to   capture  

a   broader   array   of   trait-relevant   biological   processes.    In   the   future,   the   cell-type-specific  

functional   training   data   for   IMPACT   may   be   replaced   by   newer   experimental   strategies   to   map  

enhancers.   For   example,   high-throughput   CRISPR   screens   paired   with   assays   for   open  

chromatin   could   be   used   to   precisely   redefine   regulatory   landscapes.   Second,   we   used  

multi-ethnic   data   to   argue   for   the   utility   of   our   approach.   However,   the   robustness   of   multi-ethnic  
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comparisons   for   a   given   phenotype   rely   on   properties   surrounding   the   recruitment   of   individuals  

or   the   exact   genotyping   platform   used   in   various   biobanks,   which   may   result   in   cohort-bias   that  

inflates   within-population   PRS   prediction   accuracy.   For   example,   BBJ   is   a   disease  

ascertainment   cohort,   in   which   each   individual   has   any   one   of   47   common   diseases 111,112 ;  

therefore,   BBJ   control   samples   are   not   comparable   to   healthy   controls   of   UKBB.   Other   biases  

may   arise   from   clinical   differences   in   phenotyping.   Also,   we   only   considered   a   single   non-EUR  

population   in   this   study,   although   the   disparity   in   trans-ethnic   portability,   and   hence   resulting  

benefit   from   functional   annotations,   may   be   greater   in   other   non-EUR   populations.   Therefore,  

the   results   presented   here   may   only   be   used   to   interpret   the   improved   portability   of   genetic   data  

between   EUR   and   EAS   populations.   Further   work   is   required   to   assess   potential   improvements  

in   portability   between   EUR   and   other   populations.   

In   conclusion,   we   demonstrated   that   IMPACT   annotations   improve   the   comparison   of  

genetic   data   between   populations   and   trans-ethnic   portability   of   PRS   models   using   ancestrally  

unmatched   data.   While   a   long-term   goal   of   the   field   must   be   to   diversify   GWAS   and   other  

genetic   studies   in   non-European   populations,   it   is   imperative   that   genetic   models   be   developed  

that   work   in   multiple   populations.   Such   initiatives   will   necessitate   the   use   of  

population-independent   functional   annotations,   such   as   IMPACT,   in   order   to   capture   shared  

biological   mechanisms   regulated   by   complex   genetic   variation.   
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Chapter   4  
 
Leveraging   single   cell   epigenomics   and   genome-wide  
fine-mapping   to   study   complex   trait   and   disease   genetics  
 
The   material   in   this   chapter   is   unpublished   and   not   peer-reviewed.   
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Abstract  

Complex   traits   and   diseases   are   often   driven   by   key   cell-type-specific   regulatory   mechanisms.  

However,   canonical   trait-associated   cell   types   may   be   composed   of   cell-states   with   variable  

contribution   to   trait   etiology.   Moreover,   cell-states   across   canonical   cell   types   may   coordinate  

trait-driving   regulatory   activities.   Single   cell   technologies   are   poised   to   elucidate   complex   trait  

genetics   by   providing   an   unprecedented   resolution   of   cell-states   within   a   cell   type.   However,   few  

studies   have   successfully   linked   the   polygenic   effects   measured   by   GWAS   to   regulatory  

mechanisms   at   single   cell   resolution.   Current   single   cell   assays   produce   data   that   is   extremely  

sparse,   which   creates   statistical   challenges.   We   propose   a   unique   solution   to   leverage  

genome-wide   fine-mapping   to   interpret   chromatin   accessibility   in   single   cells.   To   this   end,   we  

collected   PolyFun   fine-mapping   results   for   5   immune-mediated   diseases   and   6   blood  

quantitative   traits   and   7,811   publicly   available   Treg,   B   cell,   and   monocyte   profiles   from   single  

cell   ATAC-seq   (assay   for   transposase-accessible   chromatin   +   sequencing).   Here,   we   define  

cell-specific   trait   scores   as   the   genome-wide   average   of   fine-mapped   associations   weighted   by  

chromatin   accessibility.   After   identifying   heterogeneity   of   cell-specific   trait   scores   within   and  

across   cell   types,   we   sought   to   explain   this   heterogeneity   by   regressing   trait   scores   on  

cell-specific   regulatory   program   activity   scores.   We   considered   regulatory   programs   defined   by  

immune-related   gene   sets   or   IMPACT   cell-type-specific   regulatory   elements.   Across   11   traits  

and   45   regulatory   programs,   we   identified   133   cell-type-specific   trait/regulatory   program  

associations   and   3   associations   in   which   two   different   cell   types   coordinate   regulatory   activity.  

Our   study   reveals   prominent   factors   of   trait   etiology   and   provides   a   biological   and   regulatory  

basis   for   heterogeneity   in   trait   scores   within   and   across   canonical   cell   types.  
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Introduction  
 

Within   the   last   decade,   single   cell   genomics   technologies   have   rapidly   accelerated   the  

field   of   functional   genomics 147,148 .   These   technologies   assay   a   diverse   set   of   biological  

phenomena   including   gene   expression,   chromatin   accessibility,   protein   expression,   protein  

binding,   whole-genome   DNA   sequencing,   DNA   methylation,   spatial   gene   expression,   and  

spatial   chromatin   accessibility 148 .   All   of   these   single   cell   technologies   can   offer   orthogonal  

understanding   of   human   disease.   As   approximately   90%   of   disease-associated   variants   found  

by   GWAS   reside   in   the   noncoding   genome 15,16 ,   technologies   that   measure   regulatory   activity  

genome-wide,   e.g.   not   just   at   genes,   might   be   most   helpful   in   understanding   human   disease.  

The   assay   for   transposase-accessible   chromatin   followed   by   high-throughput   sequencing   of  

single   cells   (scATAC-seq) 149    identifies   genomic   regions   where   DNA   is   accessible   to   regulatory  

factors.   Also,   as   many   noncoding   variants   are   thought   to   have   cell-type-specific   effects 17,24 ,  

scATAC-seq   provides   unprecedented   oppportunities   to   interrogate   the   cell-type-specific  

accessibility   and   therefore   regulatory   potential   of   associated   variants   at   remarkably   high  

resolution.   

Previous   studies   have   demonstrated   the   utility   of   bulk   ATAC-seq 150,151    to   explain  

regulatory   effects   on   gene   expression 152    and   genetic   effects   on   complex   traits   and   diseases 153 .  

However,   bulk   experiments,   in   which   immunophenotypically   identical   cells   are   sorted   and  

assayed 150 ,   average   together   measurements   of   regulatory   activity   and   possibly   obscure  

underlying   cell-states   of   varying   pathogenicity   or   contribution   to   trait   etiology.   More   recent  

studies   have   demonstrated   the   utility   of   scATAC-seq   in   identifying   both    cis -   and    trans -acting  

regulators   of   gene   expression   in   cell-type-specific   contexts 154,155 .   Studies   attempting   to   leverage  

single   cell   chromatin   accessibility   data   to   dissect   GWAS   associations   have   applied   clustering  

strategies   to   create   pseudo-bulk   populations   of   single   cells   and   then   partitioned   complex   trait  
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and   disease   heritability   according   to   functional   categories   of   SNPs   in   cluster-specific   regulatory  

regions 156,157 .   However,   approaches   utilizing   cluster-to-cluster   heterogeneity   do   not   leverage   the  

power   gained   by   single   cell   epigenomic   experiments   to   detect   cell-to-cell   heterogeneity.   Fully  

leveraging   the   power   of   cell-specific   measurements,   a   recent   study   incorporated   genetic  

fine-mapping   with   scATACseq,   revealing   the   activity   of   putatively   causal   variants   within   specific  

hematopoietic   lineages 158 .   However,   this   study   was   limited   to   consideration   of   genome-wide  

significant   variants   and   unlike   blood   quantitative   traits,   many   complex   traits   and   diseases   do   not  

have   sufficient   numbers   of   genome-wide   significant   variants   to   perform   meaningful   analyses.  

Ideally,   a   polygenic   model   could   have   been   employed   to   leverage   chromatin   accessibility   across  

the   full   spectrum   of   risk   variants   genome-wide.   

It   is   now   critical   to   use   scATACseq   to   identify   cell-specific   asociations   with   complex   traits  

and   diseases   under   a   polygenic   inheritance   model   using   a   cluster-free   approach.   However,   this  

requires   overcoming   the   following   challenges:   the   sparse   architecture   of   scATACseq   data   and  

the   computational   inefficiency   of   testing   thousands   of   cell-specific,   genome-wide   functional  

annotations   for   heritability   enrichment   across   a   set   of   complex   traits   and   diseases.   First,   the  

sparse   architecture   of   scATACseq   data   may   violate   the   assumptions   of   a   polygenic   inheritance  

model,   as   count   data   might   reflect   an   oligogenic   architecture   due   to   technical   drop   out.  

scATACseq   data   is   inherently   sparse   due   to   limitations   of   DNA   copy   number;   in   a   diploid  

genome,   the   Tn5   transposase   can   only   integrate   into   0,   1,   or   at   most   2   copies   of   DNA.   Previous  

studies   have   developed   methods   to   address   sparsity,   most   of   which   use   feature   selection  

sometimes   paired   with   imputation   in   order   to   prioritize   relevant   genomic   regions    a   priori    and  

summarize   accessibility   over   these   regions 159,160 .   Second,   it   is   computationally   prohibitive   to   test  

hundreds   of   functional   annotations   across   a   wide   variety   of   complex   traits   and   diseases   using  

strategies   to   partition   genome-wide   SNP   heritability,   such   as   stratified   LD   score   regression  
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(S-LDSC).   scATACseq   datasets   typically   assay   thousands,   if   not   tens   of   thousands   of   cells.  

Using   S-LDSC   to   first   compute   weighted   LD   scores   for   each   specific   cell   and   then   test   for  

heritability   enrichment   against   a   set   of   GWAS   summary   statistics   would   be   intractable.   For  

example,   consider   the   computation   of   weighted   LD   scores,   which   takes   ~   2   CPU   minutes,  

compounded   by   22   chromosomes,   and   by   10,000   cells.   In   fact,   many   newly   published   single  

cell   datasets   profile   hundreds   of   thousands   of   cells   across   clinical   cohorts   of   modest   size 161 .  

Next,   consider   we’d   like   to   partition   heritability   for   100   complex   traits   and   diseases   and   each  

analysis   takes   ~   2   CPU   minutes.   Although   this   can   be   parallelized,   2.4   million   CPU   hours   would  

be   necessary   to   perform   such   an   analysis.   

  Here,   we   focus   on   immune   cell   populations   and   immune-mediated   diseases   and   traits.  

We   collected   relevant   genome-wide   scATACseq   profiles   and   polygenic   fine-mapping   data   in  

order   to   define   cell-specific   trait   scores   ( Figure   4-1 ).   Then,   in   order   to   identify   regulatory  

processes   associated   with   the   variability   in   cell-specific   trait   scores,   we   computed   cell-specific  

regulatory   program   scores.   We   define   these   scores   using   cell-type-specific   functional  

annotations,   including   IMPACT   tracks   and   MSigDB   gene   sets.   Our   cluster-free   approach  

leverages   the   full   power   of   single   cell   measurements   and   can   identify   regulatory   mechanisms  

not   only   specific   to   subsets   of   canonical   cell   types,   but   also   specific   to   cell-states   implicating  

coordinated   regulation   in   two   or   more   cell   types,   i.e.   a   Treg/B   cell   cell-state   with   upregulation   of  

interferon   signaling.   Our   approach   to   integrate   single   cell   chromatin   accessibility   with   GWAS  

data   has   the   potential   to   elucidate   the   biological   mechanisms   underpinning   complex   traits   as  

well   as   nominate   novel   candidate   disease-driving   cell   states.  
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Figure   4-1   legend.   Study   design   schematic.   First,   we   collect   publicly   available   scATACseq   data.  

Second,   we   define   cell-specific   trait   scores   as   a   genome-wide   average   of   genetic   association  

statistics   weighted   by   chromatin   accessibility.   Third,   we   test   for   associations   between  

cell-specific   trait   scores   and   regulatory   programs   and   then   characterize   the   cell-type-specificity  

of   these   associations.   
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Material   and   Methods  

Data  

scATACseq   data.    We   collected   publicly   available   scATACseq   data   consisting   of   a   list   of  

fragments   with   corresponding   cell   barcodes   and   hg19   mapped   genomic   positions 162 .   We  

collected   3   separate   experiments   consisting   of   single   cell   measurements   for   2,661   CD4+   T  

regulatory   cells,   3,155   B   cells,   and   1,995   monocytes.   From   this   data,   we   constructed   a   sparse  

bin   (M   =   2,881,044)   by   cell   (N   =   7,811)   matrix   of   fragment   counts,   which   we   then   normalized   to  

represent   as   a   rate   of   fragments   per   million   (FPM).   To   obtain   2,881,044   bins,   we   binned   the  

genome   in   1   kb   adjacent   intervals;   intervals   do   not   cross   chromosomes.   We   then   filtered   out  

bins   with   non-zero   fragment   counts   in     10   cells,   bins   overlapping   the   ENCODE   blacklist   ( Web  ≤  

Resources ),   and   the   top   5%   of   bins   with   highest   representation   across   the   cells   to   remove  

invariable   regulatory   elements   such   as   promoters   for   housekeeping   genes,   as   previously  

done 163 .   The   final   bin   count   in   the   QC-ed   dataset   was   622,624   bins.   

 

IMPACT   cell-type-specific   regulatory   element   annotation   data.    We   selected   37   independent   (  r2  

<   0.5)   IMPACT   annotations,   as   referenced   above,   from   140   annotations   for   which   we   computed  

genome-wide   base   pair   resolution   scores.   These   annotations   spanned   a   diverse   set   of   cell  

types:   T   cells,   B   cells,   monocytes,   PBMCs,   myeloid,   adipocytes,   liver,   lung,   colon,   breast,  

prostate,   stem   cell,   plasma,   myotube,   mesendoderm,   and   ectoderm.   

 

Gene   sets.    We   collected   eight   separate   gene   sets   representing   biological   processes   related   to  

immune   cell   functions.   First,   we   defined   an   interferon   (IFN)   signature   using   a   panel   of   11   genes  

from   a   previous   study 64 :    HERC5,   IFI27,   IRF7,   ISG15,   LY63,   MX1,   OAS2,   OAS3,   RSAD2,  

USP18,    and    GBP5 .   Second,   we   defined   an   effector   T   cell   cytokine   signature   using   a   panel   of   8  
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genes   from   a   previous   study 164 :    IL10,   TGFB1,   TGFB2,   TGFB3,   IL4,   IL5,   IL9,    and    IL13.    Third,   we  

downloaded   six   MSigDB   gene   sets:   IL2-STAT5   (n   =   199   genes),   Inflammatory   response   (n   =  

200   genes),   IFN-   (n   =   97   genes),   IFN-   (n   =   200   genes),   TGF-   (n   =   54),   TNF-   (n   =   200  α γ  β  α  

genes).   

 

Statistical   Methods  

Computing   cell-specific   regulatory   program   activity   scores   defined   by   IMPACT   annotations.    Per  

cell,   scATACseq   fragment   counts   follow   a   negative   binomial   distribution   ( Figure   C-1 ).   To  

associate   IMPACT   regulatory   programs   with   single   cell   accessibility   profiles,   we   build   a   negative  

binomial   model   that   regresses   cell-specific   fragment   count   data   per   bin   ( )   on    j FPMi  

independent   (   <   0.5)   cell-type-specific   regulatory   element   annotations   ( Table   C-1 ),   where  r2 Xj  

is   a   vector   of   average   IMPACT   per-nucleotide   probabilities   per   bin   for   annotation    j    ,   is   an Xj β0  

intercept,   is   the   mean   incidence   rate   (or   risk   of   additional   occurrence)   of   fragment   counts   per μ    i  

unit   of   exposure   and   is   the   exposure   time 165 :  ti   

 

. μ    exp(ln(t β X X .. X ))    i =   i  +   0 + β1 1 + β2 2 + . + βj j  

  

We   use   a   negative   binomial   regression   framework   implemented   by   the    glm.nb    R   [v1.0.143]  

package 58 .   We   then   assess   the   goodness   of   fit   of   the   model   using   a   proportion   of  

pseudo-variance   explained.   In   a   linear   model,   the   proportion   of   variance   is   defined   as   the  

squared   Pearson   correlation   between   the   response   variable   (y)   and   the   predicted   value   using  

the   coefficient   fits   ( ) .   Here,   we   computed   the   squared   Pearson   correlation   between   the  y 
︿

 

  of   cell    i    with   ,    the   predicted   values.   We   first   computed   the   training-based og (FPM   1)  l i +   βX  
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pseudo-variance   explained,   which   is   susceptible   to   overfitting.   To   ensure   that   the   regression  

converged   in   a   timely   manner,   we   downsampled   the   622,624   bins   that   passed   filtering   (see  

Data    below)   to   100,000   randomly   selected   bins   genome-wide.   We   regressed   fragment   counts  

on   37   independent   IMPACT   regulatory   element   annotations   comprising   a   variety   of   cell   types   in  

a   multivariate   regression.   We   next   computed   the   validation   set   pseudo-variance   explained,  

where   training   was   performed   on   odd   chromosomes   to   learn     and   bins   from   even β  

chromosomes   were   used   to   establish   the     and     values   in   the    calculation   of og (FPM   1)  l i +   X  

the   pseudo-variance   explained.  

 

Computing   cell-specific   regulatory   program   activity   scores   defined   by   gene   sets.    We   defined  

cell-specific   regulatory   scores   according   to   average   chromatin   accessibility   at   sets   of   genes  

related   to   immune   function   as   follows:   

 

, ( ( f ragment )   B )   G  Regulatory score cell   = ∑
G

g= 1
∑
B

b= 1

 

 

 

cell,b / /  

where   G   is   the   total   number   of   genes   in   each   gene   set.  

 

Genome-wide   cell-specific   SNP-level   annotation   of   fragment   counts.    As   our   scATACseq   data   is  

represented   by   a   bin   by   cell   matrix   of   fragment   counts,   we   annotated   SNPs   genome-wide   by  

identifying   the   bin   in   which   each   SNP   resides   and   then   annotating   that   SNP   with   the   cell-specific  

fragment   count   of   that   single   cell.   Each   bin   is   1   kb   wide   and   SNPs   within   the   same   bin   will   be  

assigned   the   same   fragment   count.   The   result   is   a   matrix   of   SNPs   and   cells,   where   the   matrix  

values   are   fragment   counts.  
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Computing   cell-specific   mean   chi-squared   statistics   across   genome-wide   fine-mapping   data.  

With   the   S-LDSC   framework,   we   may   have   defined   cell-specific   functional   annotations   as   binary  

indications   of   chromatin   accessibility   and   then   tested   these   annotations   against   various   complex  

traits   and   diseases   for   heritability   enrichments.   Given   the   computationally   prohibitive   nature   of  

using   S-LDSC   to   test   thousands   of   cell-specific   functional   annotations,   we   needed   to   acquire  

genetic   association   data   that   1)   could   be   expeditiously   analyzed   against   thousands   of   cell  

accessibility   profiles   and   2)   was   not   susceptible   to   statistical   inflation   by   LD,   which   is   explicitly  

regressed   out   in   the   S-LDSC   framework.   We   collected   11   previously   published   genome-wide  

fine-mapped   summary   statistics   from   the   PolyFun   method 166 ,   which   considers   all   loci  

genome-wide   instead   of   exclusively   genome-wide   significant   loci   as   do   most   fine-mapping  

studies 16,56 .   PolyFun   uses   the   S-LDSC   framework   to   specify   prior   causal   probabilities  

(proportional   to   the   per-SNP   heritability   explained   by   the   variant)   as   the   input   for   conventional  

fine-mapping   tools,   such   as   Susie 167    and   FINEMAP 168 .   This   makes   PolyFun   rapidly   scalable   to  

millions   of   variants   genome-wide.   These   datasets   include   variants   with   a   posterior   squared  

effect   size   >   1e-8,   with   an   absolute   value   of   posterior   effect   size   >   1e-4,   that   are   found   in   any  

95%   credible   set,   or   that   have   a   posterior   inclusion   probability   (PIP)   >   0.01.   For   each   of   11  

datasets   and   across   all   included   variants,   we   compute   a   posterior   chi-squared   association  

statistic   as   the   square   of   the   mean   posterior   effect   size   estimate   divided   by   its   standard   error.  

We   define   a   cell-specific   trait   score   as   the   genome-wide   average   across    M    variants   of  

fine-mapped   association   statistics   weighted   by   cell-specific   chromatin   accessibility   quantified   by  

fragment   counts:  

 

. f ragment       )   MMean χ2cell   = ∑
M

i= 1
( χi

2    cell,i / ∑
M

i= 1
f ragmentcell,i /   
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We   establish   a   null   distribution   for   each   trait   by   shuffling   the   fragment   count   matrix   10,000  

times.  

 

Linear   models   to   identify   regulatory   program   associations   with   trait   scores .   We   were   interested  

to   know   if   variability   in   cell-specific   trait   scores   could   be   explained   by   regulatory   program   activity  

at   the   single   cell   level.   We   regressed   cell-specific   trait   scores,   as   computed   above,   on   various  

cell-specific   regulatory   program   scores.   Calculation   of   IMPACT   cell-type-specific   regulatory  

program   scores   and   gene   set   program   scores   are   described   above.   We   first   tested   for   global  

association   signal,   e.g.   across   all   cells,   using   the   following   model:   

 

,   F   Lab  X  y =   +   +      

where   y   is   a   vector   of   cell-specific   trait   scores,   F   is   a   vector   of   cell-specific   total   fragment   counts  

over   all   bins,   Lab   is   a   categorical   vector   of   cell   type   labels:   Tregs,   B   cells,   Monocytes,   and   X   is   a  

vector   of   cell-specific   regulatory   program   scores.   

 

Then,   we   identified   cell-type-specific   associations,   e.g.   either   further   characterizing   global  

associations   or   identifying   associations   that   were   not   detected   globally.   To   do   this,   for   each  

phenotype   and   regulatory   program   pair   that   we   tested,   we   created   three   separate   cell   type  

models.   We   elected   to   use   separate   cell   type   models,   as   opposed   to   modifying   the   linear   model  

to   include   cell   type   interaction   terms.   This   was   because   the   fragment   count   variable   was  

modestly   correlated   with   the   cell   type   label,   with   monocytes   having   greater   fragment   counts  

than   Tregs   and   B   cells,   which   made   the   designation   of   reference   cell   type   for   the   interaction  

terms   bias   the   estimates.   
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Results  

Cell-specific   fragment   count-weighted   GWAS   association   statistics   

We   aimed   to   leverage   the   power   of   single   cell   resolution   chromatin   accessibility   data   to   facilitate  

the   identification   of   noncoding   regulatory   mechanisms   driving   complex   traits   and   diseases.  

Here,   we   specifically   focus   on   immune   cell   types   and   immune-mediated   phenotypes.   To   this  

end,   we   acquired   polygenic   fine-mapping   results,   e.g.   not   restricted   to   genome-wide   significant  

loci,   from   the   PolyFun   method   for   12   complex   traits   and   diseases   from   UK   BioBank 166 :   all  

autoimmune   disease,   allergy   and   eczema,   asthma,   psoriasis,   respiratory   ear/nose/throat,  

eosinophil   count,   lymphocyte   count,   mean   platelet   volume,   platelet   count,   monocyte   count,  

white   blood   cell   count,   and   body   height   as   a   quantitative   trait   not   thought   to   be   associated   with  

these   cell   types,   e.g   a   negative   control.   Using   posterior   effect   size   estimates   and   their   standard  

errors,   we   computed   posterior   chi-squared   association   statistics,   which   are   no   longer   inflated   by  

LD   ( Material   and   Methods ).   We   also   collected   7,811   single   cell   chromatin   accessibility   profiles  

from   a   previous   study 162    composed   of   2,661   Tregs,   3,155   B   cells,   and   1,995   monocytes.   For  

each   cell,   we   defined   a   cell-specific   trait   score   as   the   genome-wide   average   of   posterior  

chi-squared   values   over   approximately   19   million   variants   fine-mapped   with   PolyFun,   weighted  

by   the   proportion   of   SNP-hitting   fragments   in   that   cell   and   at   that   variant   ( Material   and  

Methods ).   We   collected   cell-specific   trait   scores   for   each   cell   across   each   of   12   traits.   Using  

trait-specific   null   distributions   of   randomized   fragment   counts   over   10,000   trials,   we   determined  

the   signal-to-noise   threshold   as   cell-specific   trait   scores   that   were   below   the   95th   percentile   of  

the   null   distribution.   We   estimated   such   cell-specific   trait   scores   as   0;   no   more   than   0.2%   of  

values   for   any   trait   were   nullified   based   on   this   criterion.   To   compare   cell-specific   trait   scores  

between   traits   that   have   varying   degrees   of   polygenicity,   we   normalized   these   scores   by   the  

trait-specific   average   chi-squared   value   across   the   ~19   million   variants.   We   found   that  
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meta-analysis   of   these   cell-specific   trait   scores   revealed   expected   cell-type-specific   patterns   of  

biology   ( Figure   4-2A ).   For   example,   cell-specific   scores   for   asthma,   a   T   cell-driven   disease,  

were   1.4-fold   (one-tailed   difference   of   means    P    <   1.3e-16)   and   1.6-fold   (one-tailed   difference   of  

means    P    <   2.1e-23)   larger   in   Tregs   than   B   cells   and   monocytes,   respectively.   Similarly,   for  

allergy   and   eczema,   cell-specific   scores   among   Tregs   were   2.1-fold   (one-tailed   difference   of  

means    P    <   2.4e-34)   larger   than   in   B   cells   and   2.7-fold   (one-tailed   difference   of   means    P    <  

8.7e-49)   larger   than   in   monocytes,   respectively.   Expectedly,   monocyte   count   scores   were  

2.3-fold   (one-tailed   difference   of   means    P    <   1.9e-50)   and   1.4-fold   (one-tailed   difference   of  

means    P    <   1.2e-14)   higher   among   monocytes   than   among   Tregs   or   B   cells,   respectively.  

Projecting   this   data   into   a   UMAP   using   the   top   10   PCs   revealed   heterogeneity   among   single  

cells   that   was   obscured   by   the   meta-analysis   ( Figure   4-2B-K ).   For   example,   “all   autoimmune  

disease”-high   cells   seem   to   implicate   subsets   of   B   cells   and   Tregs   ( Figure   4-2C ),   platelet  

count-high   cells   seem   to   comprise   a   specific   subset   of   monocytes   ( Figure   4-2E ),   and  

allergy/eczema-high   cells   account   for   a   fraction   of   Tregs   ( Figure   4-2F )   compared   to  

asthma-high   cells   which   seem   to   comprise   most   Tregs   ( Figure   4-2G ).  
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Figure   4-2   legend.   Cell-specific   trait   scores.   A)   Meta   analysis   of   single   cell   scores   by   sorted   cell  

types.   B-K)   UMAP   projection   of   10   PCs   of   cells   (N   =   7,811)   by   traits   (N   =   12)   matrix.   In   B)   colors  

indicate   sorted   cell   type.   In   C-K)   color   intensity   indicates   cell-specific   trait   scores   across   nine  

selected   traits,   with   higher   values   represented   by   red   and   lower   values   represented   by   light  

blue.   

 

Differential   enhancer   accessibility   associated   with   heterogeneity   in   cell-specific   trait  

scores  

We   sought   to   explain   the   heterogeneity   of   cell-specific   trait   scores   observed   in    Figure   4-2    by  

differential   accessibility   at   enhancer   elements   or   gene   promoters.   To   this   end,   we   selected   traits  

with   notable   heterogeneity   in   phenotype   scores   within   cell   types:   “all   autoimmune   disease”  

(Tregs   and   B   cells),   platelet   count   (monocytes),   and   allergy/eczema   (Tregs).   Then,   we  
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dichotomized   cells   into   trait-high   and   trait-low   based   on   the   UMAP   and   for   each   1   kb   wide   bin  

genome-wide,   we   performed   a   two-tailed   wilcoxon   test   to   assess   differential   accessibility  

between   the   two   classes   of   cells.   To   characterize   the   differentially   accessible   bins   as   putative  

enhancers,   we   identified   the   nearest   gene.   First,   for   “all   autoimmune   disease”,   we   identified  

trait-high   B   cells   (n   =   893)   and   trait-low   B   cells   (n   =   2,093).   We   found   4   differentially   accessible  

bins   at   5%   FDR,   all   with   increased   accessibility.   Notably,   one   differentially   accessible   bin   (9.0  

log   fold   change,   FDR   5%   adjusted    P    <   0.006)   was   located   186   Mb   from   the    TYK2    gene,   a  

tyrosine   kinase   active   in   interferon   signaling   pathways   and   reported   to   be   associated   with  

multiple   immunodeficiency   diseases   include   lupus,   rheumatoid   arthritis,   inflammatory   bowel  

disease,   type   1   diabetes,   Crohn’s   disease,   multiple   sclerosis,   psoriasis,   primary   biliary   cirrhosis,  

and   others 127 .   We   also   identified   differentially   accessible   bins   between   trait-high   Tregs   (n   =   547)  

and   trait-low   Tregs   (n   =   1,995).   Consistent   with   our   observations   among   B   cells,   the   same  

enhancer   element   186   Mb   away   from    TYK2    was   differentially   accessible   among   the   Tregs   (8.9  

log   fold   change,   FDR   5%   adjusted    P    <   2.1e-5).   Second,   for   platelet   count,   we   identified  

trait-high   monocytes   (n   =   354)   and   trait-low   monocytes   (n   =   1572).   We   found   53   differentially  

accessible   bins   at   5%   FDR,   all   with   increased   accessibility.   Notably,   one   differentially   accessible  

bin   (3.2   log   fold   change,   FDR   5%   adjusted    P    =   0.043)   was   located   approximately   6   kb   upstream  

of   the    DGKD    gene,   a   gene   that   encodes   a   phosphorylating   enzyme   that   acts   on   diacylglycerol  

and   has   been   implicated   in   a   GWAS   measuring   the   proportion   of   platelets   in   blood 127 .   A   second  

notable   bin   resides   59   Mb   away   from    TNFAIP3    (4.5   log   fold   change,    P    =   0.043)   perhaps  

revealing   increased   production   of   the   monocyte/macrophage-specific   inflammatory   cytokine  

TNF- .   Lastly,   a   differentially   accessible   bin   located   164   Mb   away   from    RUNX3    (7.1   log   fold  α  

change,    P    =   0.049)   suggests   downregulation   of   CXCL12,   a   RUNX3   inhibitor,   and   its  

immunosuppressive   monocytic   functions 169 .   Third,   for   allergy/eczema,   we   identified   trait-high  
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Tregs   (n   =   938)   and   trait-low   Tregs   (n   =   1,604).   We   found   2   differentially   accessible   bins   at   5%  

FDR,   both   with   increased   accessibility.   The   first   bin   (21.1   log   fold   change,    P    <   3.6e-7)   resides  

approximately   8   Mb   away   from   the    GAL3ST2    gene,   a   galactose   sulfotransferase,   which   has  

been   observed   to   be   associated   with   allergy   and   asthma   in   multiple   GWAS   studies,   including  

childhood   onset   and   adult   onset   asthma 127 .   The   second   differentially   accessible   bin   (22.8   log  

fold   change,    P    <   2.6e-8)   resides   133   Mb   away   from   the    SMARCE1    gene,   which   has   been  

implicated   by   separate   GWAS   for   eczema   and   asthma 127    and   is   involved   with   chromatin  

remodeling   permitting   expression   of   generally   repressed   genes.   

 

Identifying   regulatory   programs   associated   with   increased   cell-specific   trait   scores  

The   identification   of   differentially   accessible   bins   above   has   implicated   enhancer   elements  

involved   in   known   trait-relevant   biological   processes.   However,   since   this   analysis   tested  

differences   at   each   individual   bin   genome-wide,   we   are   powered   to   only   detect   large   effects  

which   are   scarce   in   scATACseq   data   due   to   sparsity   and   relatively   low   signal   to   noise   ratio.  

Therefore,   we   sought   to   leverage   the   cumulative   changes   in   accessibility   between   cell   states  

across   many   gene   loci   implicated   by   various   regulatory   programs.   Thus,   we   might   be   able   to  

associate   changes   in   cell-specific   trait   scores   with   the   activity   level   of   these   regulatory  

programs.   

To   this   end,   we   defined   continuous-valued   cell-specific   scores   representing   the   activity  

level   of   45   regulatory   programs   ( Material   and   Methods ).   Of   these   45,   we   investigated   37  

independent   regulatory   programs   defined   by    in   silico    cell-type-specific   IMPACT   regulatory  

element   annotations   across   a   variety   of   cell   types.   To   compute   cell-specific   IMPACT   scores,   for  

each   of   7,811   single   cell   chromatin   accessibility   profiles,   we   regressed   fragment   counts   on   37  

independent   IMPACT   annotations   averaged   over   genomic   bins   corresponding   to   the  
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scATACseq   data   in   a   negative   binomial   regression   model   ( Material   and   Methods ).   For   each  

cell   and   for   each   of   37   IMPACT   annotations,   we   obtained   a   set   of   regression   coefficients   and  

their   standard   errors.   However,   the   IMPACT   regression   models   explained   a   small   amount   of  

pseudo-variance   ( Material   and   Methods )   in   the   fragment   count   data   (within-training:   mean   =  

0.0002,   se   =   2.0e-5,   validation   (odd   vs   even   chromosomes):   mean   =   0.01,   se   =   5.1e-4).   Next,  

for   two   regulatory   programs,   we   defined   an   interferon   gene   signature    64    and   an   immune-related  

cytokine   gene   signature 164 .   Lastly,   we   downloaded   six   hallmark   gene   sets   ( Materials   and  

Methods )   related   to   immune   cell   regulation   from   the   MSigDB   database   ( Web   Resources ):  

IL2-STAT5,   IFN- ,   IFN- ,   TGF- ,   TNF- ,   and   interferon   response.   We   define   cell-specific  α γ  β  α  

gene   set   scores   as   the   average   fragment   count   across   bins   overlapping   the   corresponding  

genes.  

  We   then   used   a   linear   regression   model   to   assess   the   association   of   cell-specific   trait  

scores   with   each   of   these   regulatory   programs,   while   accounting   for   total   fragment   count   per   cell  

and   cell   type   as   covariates   ( Material   and   Methods ).   We   then   created   cell-type-specific   models  

to   further   characterize   the   cell-type-specificity   of   the   associated   regulatory   programs   ( Material  

and   Methods ).   In   total,   we   identified   76   trait-increasing   associations   in   the   cell-type-nonspecific  

models   and   133   trait-increasing   associations   in   the   cell-type-specific   models   with   anova    P    <  

0.05   at   5%   FDR   (test   model   compared   to   null   model).   Consistent   with   what   we   observed   in   the  

bin-based   differential   accessibility   analysis,   “all   autoimmune   disease”   scores   are   significantly  

associated   with   greater   accessibility   at   interferon   response   genes   (   =   0.02   (se   =   0.009),   5%  β  

FDR   adjusted    P    =   0.037),   however   this   association   was   not   detected   in   the   Treg-   and   B  

cell-specific   analyses.   Also   consistent   with   our   previous   analysis,   platelet   count   scores   are  

significantly   associated   with   greater   accessibility   at   genes   involved   in   the   TNF-   pathway   (   =  α  β  

0.04   (se   =   0.009),   5%   FDR   adjusted    P    =   6.2e-4).   Moreover,   this   TNF-   association   was   found  α  
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to   be   specific   to   monocytes   in   the   cell-type-specific   analysis   (   =   0.07   (se   =   0.02),   5%   FDR  β  

adjusted    P    =   6.2e-3),   e.g.   no   detectable   association   in   Tregs   or   B   cells.  

Next,   we   report   the   top   associated   regulatory   program   for   each   trait   ( Table   4-1 ).  

Intriguingly,   TNF-   specifically   in   monocytes   was   the   top   associated   regulatory   program   for  α  

nine   of   eleven   considered   traits.   This   suggests   that   monocytes   with   higher   phenotype   scores  

have   increased   enhancer   activity   related   to   the   TNF-   regulatory   program.   This   is   reasonable  α  

as   monocytes   serve   as   the   primary   producers   of   TNF-   in   humans 170 ;   thus   higher   TNF-  α  α  

scores   might   indicate   stronger   monocytic   identity   and   function.   

 

Trait  Top   regulatory  
program  

beta  SE  FDR-adjusted  
P   <   

All   AID  TNF-   (Mono)  α  0.05  0.01  0.006  

Eosino   count  TNF-   (Mono)  α  0.08  0.02  0.0001  

Lym   count  TNF-   (Mono)  α  0.05  0.02  0.01  

Plt   Volume  TNF-   (Mono)  α  0.10  0.02  4.2e-5  

Monocyte   count  TNF-   (Mono)  α  0.08  0.02  0.003  

Plt   count  IFN-   (Mono)  α  0.07  0.02  0.01  

WBC  TNF-   (Mono)  α  0.08  0.02  8.2e-5  

Allergy/eczema  TNF-   (Mono)  α  0.04  0.02  0.03  

Asthma  IFN-   (Mono) γ  0.07  0.03  0.04  

Psoriasis  TNF-   (Mono)  α  0.05  0.01  0.002  

Resp   ENT  TNF-   (Mono)  α  0.06  0.02  0.005  
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Table   4-1   legend.   Top   regulatory   program   association   of   gene   sets   and   IMPACT   annotations   for  

each   of   eleven   traits   from   linear   regression   model.   Program   further   described   by   the  

cell-type-specific   model   in   which   it   was   identified,   e.g.   monocytes.   Top   association   chosen   by  

largest     whose   FDR   5%   adjusted    P    <   0.05,   where   the   P   value   is   computed   using   an   anova  β  

between   the   null   and   test   models.   

 

To   summarize   our   findings,   we   separately   visualized   gene   set   regulatory   program   results  

( Figure   4-3A )   and   IMPACT   regulatory   annotation   results   ( Figure   4-3B ).   The     attributable   to  β  

the   regulatory   programs   defined   by   gene   sets   (mean   =   0.04,   sd   =   0.002)   were   12.8-fold   greater  

on   average   than   those   attributable   to   IMPACT   regulatory   annotations   (mean   =   0.003,   sd   =  

0.0001).   Generally,   we   found   that   associations   with   TNF- ,   IFN- ,   IFN- ,   and   TGF-   gene  α  α γ  β  

sets   were   often   detected   in   monocyte-specific   models   and   that   these   associations   were   among  

the   strongest   in   magnitude.   In   fact,   about   half   of   these   associations   were   not   detected   in   the  

cell-type-nonspecific   models.   These   results   suggest   cell-specific   trait   score   heterogeneity   in  

monocytes   is   proportional   to   enhancer   accessibility   at   TNF- ,   IFN,   and   TGF-   genes   across   a  α  β  

wide   range   of   blood   traits   and   immune   diseases.   Next,   associations   with   IL2-STAT5   were   mostly  

detected   in   Treg-specific   and   B   cell-specific   models   and   a   fraction   of   the   time   only   detected   in  

cell-type-nonspecific   models.   This   suggests   common   regulatory   activity   within   Tregs   and   B   cells  

in   which   increased   enhancer   accessibility   at   genes   related   to   the   IL2-STAT5   pathway   explains  

some   of   the   etiology   of   both   blood   traits   and   immune   diseases   alike.   Next,   the   smaller   gene  

panels,   IFN   and   T   cell   cytokines,   from   previous   studies   resulted   in   weaker   associations.  

However,   first,   the   only   cell-type-specific   associations   with   the   IFN   panel   implicate   B   cells,  

whereas   B   cells   were   not   implicated   by   any   other   IFN-related   pathway,   e.g.   IFN- ,   IFN- ,   or  α γ  

interferon   response   (except   in   the   case   of   white   blood   cell   count).   Second,   the   cytokine   panel,  
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although   defined   based   on   effector   T   cells,   was   subtly   associated   in   monocyte-specific   models  

with   lymphocyte   count   and   “all   autoimmune   disease”.   

Intriguingly,   we   found   that   for   three   trait-program   pairs,   our   strategy   detected   a   global  

association   which   is   also   individually   detected   in   two   of   three   cell   types   ( Figure   4-4 ).  

Specifically,   for   platelet   count   and   white   blood   cell   count,   we   observed   an   association   with  

IL2-STAT5   genes,   an   association   that   was   separately   detected   within   Tregs   and   B   cells,   but   not  

monocytes.   This   result   is   not   surprising   given   the   Treg   and   B   cell   specificity   of   other   IL2-STAT5  

associations   observed   in    Figure   4-3A .   We   also   found   that   white   blood   cell   count   scores   were  

associated   with   increased   accessibility   at   interferon   response   genes,   but   this   association   was  

separately   detected   within   B   cells   and   monocytes,   but   not   Tregs.   This   is   an   interesting   result   as  

interferon   response   was   rarely   observed   to   be   associated   in   B   cell-specific   models,   with   the  

exception   of   WBC,   allergy/eczema,   and   weakly   asthma   and   respiratory   ENT.   
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Figure   4-3   legend.   A,B)   One-dimensional   hierarchical   clustering   on   matrix   of   association     (with  β  

linear   model   5%   FDR-adjusted    P    <   0.05   in   anova   between   null   and   test   models).   If    P    >   0.05,    β  

represented   as   0.   Columns   indicate   the   model   regime   in   which   the   association     were  β  

computed,   global   indicates   the   cell-type-nonspecific   model   (all   cells).   A)   Rows   indicate   the   trait  

and   gene   sets   program   pairs.   Legend   colors   indicate   the   program.   B)   Rows   indicate   the   trait  

and   IMPACT   regulatory   annotation   pairs.   Legend   colors   indicate   the   cell   type   of   the   IMPACT  

annotation.  

122  



 

 

Figure   4-4   legend.   Three   instances   of   detectable   global   trait/program   associations   in   which   the  

same   regulatory   association   is   detectable   with   two   of   three   cell-type-specific   models.   The  

IL2-STAT5   program   is   associated   with   platelet   count   in   A)   and   white   blood   cell   count   in   B)   and  

this   effect   is   shared   between   Tregs   and   B   cells,   but   not   monocytes.   In   C)   Interferon   response   is  

associated   with   white   blood   cell   count   and   this   effect   is   shared   between   B   cells   and   monocytes,  

but   not   Tregs.   

 

As   for   IMPACT   cell-type-specific   annotation   associations   ( Figure   4-3B ),   we  

unsurprisingly   observed   cell-type-specific   behavior.   Namely,   we   rarely   observed   global  

associations   that   were   not   specific   to   one   particular   cell   type.   Also,   we   did   not   observe   any  

associations   that   were   shared   across   cell   types.   This   is   expected   as   IMPACT   regulatory  

annotations   implicate   cell-type-specific   biology.   We   found   that   monocyte   and   macrophage  
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IMPACT   annotations   were   strongly   associated   with   blood   traits   and   immune   diseases   alike   in  

monocyte-specific   models.   Similarly,   Treg   annotations   and   B   cell   annotations   were   strongly  

associated   in   Treg-specific   and   B   cell-specific   models,   respectively.   Unexpectedly,   adipocyte  

IMPACT   annotations   tended   to   associate   with   traits   in   Treg-specific   models,   while   liver,   lung,  

prostate   and   stem   cell   annotations   tended   to   associate   with   traits   in   B   cell-specific   models,   and  

myotube   and   colon   annotations   tended   to   associated   with   traits   in   monocyte-specific   models.  

Generally   among   IMPACT   annotations   associated   in   Treg-specific   models,   we   observed   greater  

specificity   for   immune   diseases   than   blood   traits;   this   was   not   the   case   with   gene   set   programs.  

On   the   other   hand,   IMPACT   annotations   associated   in   B   cell-   and   monocyte-specific   contexts  

showed   no   preference   for   immune   diseases   or   blood   traits.  

Although   the   top   associations   reported   in    Table   1    largely   implicated   monocyte  

regulation,   the   heterogeneity   of   single   cell   scores   in    Figure   4-2    seem   to   implicate   other   cell  

types   depending   on   the   phenotype.   For   example,   cells   with   high   “all   autoimmune   disease”  

scores   are   more   likely   to   be   Tregs   and   B   cells   than   monocytes.   Therefore,   rather   than  

identifying   that   the   TNF-alpha   program   in   monocytes   is   associated   with   cells   with   higher   “all  

autoimmune   disease”   scores,   we   would   like   to   identify   the   top   associated   program   in   Tregs   or   B  

cells,   e.g.   the   relevant   cell   types.   Therefore,   we   next   identified   the   top   association   for   the   seven  

traits   in   which   monocytes   do   not   explain   the   majority   of   variance   of   the   cell-specific   trait   scores  

( Table   4-2 ).   These   results   suggest   strong   regulatory   differences   between   these  

immune-mediated   diseases.   For   example,   allergy   and   eczema   scores   are   driven   most   strongly  

by   Tregs   and   are   concordant   with   the   IMPACT   T   cell   (GATA3)   annotation,   as   GATA3   activity   is  

known   to   be   important   for   proper   Treg   function   and   Tregs   have   a   recognized   role   in   allergy   and  

eczema 171 .   On   the   other   hand,   asthma   scores   which   also   implicate   Tregs   are   most   concordant  

with   the   adipocyte   (PPARG)   IMPACT   annotation,   consistent   with   airway   inflammation   of   adipose  
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tissue   contributing   to   asthma   severity 172 .   Lastly,   for   psoriasis   and   respiratory   ENT,   for   both   of  

which   Tregs   play   a   considerable   role,   the   increased   accessibility   at   IL2-STAT5   genes   is   most  

concordant   with   higher   cell-specific   scores.   

 

Trait  Top   regulatory  
program  

beta  SE  FDR-adjusted   
P   <   

All   AID  Tregs:   T   cell  
(GATA3)  
B   cells:   IL2-STAT5  

0.003;   
0.05  

0.0008;  
0.02  

0.002;  
0.04  

Lym   count  Tregs:   T   cell  
(GATA3)  
B   cell:   B   cell  
(PAX5)  

0.003;  
0.004  

0.0007;  
0.0003  

0.003;  
2.2e-22  

Plt   Volume  B   cells:   PAX5  0.005  0.0004  8.9e-29  

Allergy/eczema  Tregs:   T   cell  
(GATA3)  

0.003  0.001  0.03  

Asthma  Tregs:   adipocytes  
(PPARG)  

0.003  0.001  0.008  

Psoriasis  Tregs:   IL2-STAT5  
B   cells:   PAX5  

0.03;  
0.003  

0.01;   
0.0003  

0.04;  
3.3e-16  

Resp   ENT  Tregs:   IL2-STAT5  0.05  0.01  0.004  

 

Table   4-2   legend.   Seven   traits   for   which   trait-high   cells   are   predominantly   represented   by   Tregs  

or   B   cells.   Column   2   reports   the     from   the   top   association   in   either   Tregs   or   B   cells   as  β  

indicated.   Two   sets   of   metrics   reported   for   traits   whose   high   scoring   cells   are   represented   by  

both   cell   types.   
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Discussion  

In   this   study,   we   leveraged   the   power   of   single   cell   chromatin   accessibility   profiles   to   identify  

cellular   heterogeneity   in   the   etiology   of   polygenic   blood   traits   and   immune-mediated   diseases.  

Specifically,   we   identified   and   characterized   regulatory   heterogeneity   in   canonical   cell   types  

(Tregs,   B   cells,   and   monocytes),   revealing   cell-states   in   which   upregulated   gene   regulatory  

programs   are   associated   with   higher   cell-specific   trait   scores.   These   cell-specific   trait   scores  

represent   single   cell-level   chromatin   accessibility   at   fine-mapped   variants   and   we   define   them  

as   averaged   genome-wide   chi-squared   statistics   weighted   by   fragment   counts.   The   cell-states  

we   observed   are   not   strictly   subpopulations   of   Tregs,   B   cells,   and   monocytes;   for   example,   we  

identified   three   instances   of   shared   regulatory   profiles   across   cell   types.   First,   increased   single  

cell   chromatin   accessibility   at   IL2-STAT5   pathway   genes   were   associated   with   increased  

platelet   count   scores   in   both   Tregs   and   B   cells,   revealing   a   cell-state   that   bridges   Tregs   and   B  

cells.   Second   and   similarly,   increased   white   blood   cell   count   scores   were   associated   with  

increased   IL2-STAT5   scores   in   both   Tregs   and   B   cells,   revealing   the   shared   role   of   Tregs   and   B  

cells   alike   in   regulating   platelet   count   and   white   blood   cell   count   via   the   IL2-STAT5   pathway.  

Third,   increased   white   blood   cell   count   scores   were   associated   with   increased   accessibility   at  

genes   related   to   interferon   response,   revealing   a   cell-state   bridging   B   cells   and   monocytes.   

There   are   some   important   limitations   of   this   work   to   consider.   First,   our   analysis   of  

various   cell   types   and   complex   traits   and   diseases   relied   on   the   availability   of   relevant   data.   Due  

to   an   abundance   of   regulatory   annotations   and   relevant   blood   traits   and   immune-mediated  

disease   fine-mapping   data,   we   chose   to   focus   this   study   on   several   immune   cell   types:   Tregs,   B  

cells   and   monocytes.   Moreover,   there   may   be   other   important   blood   or   immune   cell   types   to  

consider   in   terms   of   the   polygenic   traits   and   diseases   considered   in   this   study.   Therefore,   our  

trait-specific   conclusions   may   not   implicate   the   most   relevant   associated   regulatory   program   or  
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cell   type,   only   the   most   relevant   program   among   the   three   cell   types   we   studied.   Second,   our  

study   relies   on   publicly   available   scATACseq   from   a   single   study   and   we   have   not   assessed   if  

our   results   are   robust   to   using   other   datasets   of   the   same   cell   type   and   experimental   protocol.  

Third,   we   elected   to   represent   scATACseq   data   using   genome-wide   adjacent   bins   rather   than  

calling   peaks   and   counting   fragments   in   peaks   for   each   cell.   A   desirable   feature   of   peak   calling  

is   the   establishment   of   a   baseline   signal   level,   and   thus   our   usage   of   all   fragment   counts   likely  

includes   some   degree   of   technical   artifact.   However,   peak   calling   also   has   the   undesirable  

outcome   of   missing   peaks   relevant   to   rare   cell   types   or   cell   states.   However,   the   sizes   of  

subsets   of   trait-high   or   trait-low   cells   dichotomized   in   our   study   (hundreds   of   cells)   might   not   be  

small   enough   to   justify   this   power   concern.   Fourth,   we   downloaded   only   a   small   number   of   gene  

sets   from   MSigDB   and   are   thus   unlikely   to   have   accounted   for   all   relevant   regulatory   programs  

that   may   be   regulating   the   analyzed   complex   traits   and   diseases   in   the   analyzed   cell   types.   This  

calls   for   a   more   comprehensive   analysis   with   a   greater   number   of   considered   gene   sets,  

however   it   is   uncertain   as   to   how   this   would   affect   the   multiple   testing   burden   as   association  

signals   are   modest.  

Altogether,   this   work   provides   a   new   framework   for   integrating   polygenic   fine-mapping,  

single   cell   epigenetic   assays,   and   functional   annotation   data.   This   multi-modal   integration   has  

the   potential   to   identify   novel   important   cell-states   and   regulatory   mechanisms   in   human  

complex   traits   and   diseases.   

 
Web   Resources  

1. ENCODE   blacklist:  
https://personal.broadinstitute.org/anshul/projects/encode/rawdata/blacklists/  

2. MSigDb:    https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp  
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Chapter   5  
 
Discussion  
 
With   this   thesis,   I   hope   to   have   demonstrated   the   versatility   and   broad   genomic   applicability   of  

IMPACT    in   silico    functional   annotations.   Moreover,   I   hope   to   have   convinced   the   reader   of   the  

importance   of   designing   high   quality   functional   annotations,   underscoring   the   importance   of   high  

quality   data   generation.   I’ve   shown   that   predictive   modeling   to   create    in   silico    functional  

annotations   complement   the   analysis   of   many   other   biological   data   types.   First,   improved  

functional   annotation   provides   a   biologically-relevant   and   orthogonal   basis   for   the   analysis   of  

genetic   association   data,   such   that   we   might   overcome   inherent   statistical   confounding,   e.g.  

from   LD   and   other   population-specific   genomic   structure.   Second,    in   silico    functional  

annotations   provide   a   way   to   leverage   thousands   of   generated   experimental   datasets   in   a   way  

that   smooths   out   the   noise   and   variability   of   any   single   dataset   by   identifying   consistent   patterns  

relevant   to   a   biological   process,   e.g.    in   vivo    TF   binding.   Third,   this   type   of   predictive   modeling  

allows   us   to   make   inferences   that   we   could   otherwise   not   make   using   publicly   available  

experimentally-generated   datasets,   e.g.   where   other   cell   type   regulation   or   TF   binding   might   be  

occurring   despite   only   measuring   occupancy   of   one   TF.   Fourth,   cell-type-specific   functional  

annotation   can   help   generate   hypotheses   regarding   regulatory   mechanisms,   assisting  

experimental   design   for   follow-up   analysis.   

My   dissertation   work   does   not   fully   encompass   all   scientific   avenues   of   application   of  

these   annotations.   To   encourage   continued   use   of   these   annotations   beyond   my   thesis   work,   in  

this   chapter,   I   will   briefly   discuss   unexplored   applications   of   IMPACT   functional   annotations.  
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Functional   prioritization   of   variants   to   be   tested   in   genome-editing   experiments   

Recently,   advances   in   genome-editing,   including   CRISPR,   provide   the   opportunity   to   test   the  

effects   of   targeted,   allele-specific   changes   on   gene   expression,   enhancer   activity,   cell   fate,   and  

more.   However,   two   important   experimental   factors   often   limit   the   tractability   of   these   studies.  

First,   often   the   yield   of   cells   with   the   intended   edit   is   exceedingly   low.   Second,   it   is   often   unclear  

which   base-pair   edit   will   result   in   a   measurable   change,   necessitating   investigation   of   a   large  

target   region,   such   as   an   enhancer.   Therefore,   hypothesis-driven   approaches   can   reduce   the  

experimental   burden   of   genome-editing.   For   example,   prioritizing   regions   or   variants   with   high  

IMPACT   regulatory   probability   in   the   relevant   cell   type   may   expedite   the   identification   of  

functional   elements.   

 

Improved   power   to   detect   trans-eQTLs   

Trans-eQTLs   are   variants   that   modulate   gene   expression   from   a   distance.   For   example,   a  

trans-eQTL   might   reside   on   one   chromosome   and   the   regulated   eGene   on   another.   Such  

interactions   are   possible   due   to   several   biological   phenomena.   First,   long-range   chromatin  

architecture   can   place   a   promoter   in   close   3D   proximity   to   a   linearly   distal   enhancer.   Second,  

such   interactions   may   be   indirect:   for   example,   a   variant   might   modulate   the   expression   of   a  

nearby   gene   and   the   protein   product   of   that   gene   might   influence   the   expression   of   a   distal  

gene.   The   identification   of   trans-eQTLs   is   a   statistically   challenging   problem   for   several   reasons.  

First,   trans-eQTLs   often   have   vastly   smaller   effect   sizes   than   cis-eQTLs.   This   limits   the   power  

with   which   we   can   confidently   identify   a   relation   between   a   trans-eQTL   and   its   eGene.   Second,  

trans-eQTLs   tend   to   be   more   cell-type-specific   than   cis-eQTLs;   therefore,   their   discovery   highly  

depends   on   assaying   the   relevant   cell   type.   As   I’ve   shown   in    Chapter   2 :    Improved   enrichment  

of   gene   expression   causal   variation ,   we   found   that   variants   with   higher   IMPACT  
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cell-type-specific   regulatory   element   probabilities   are   enriched   for   cis-eQTL   genetic   variation.  

We   hypothesized   that   in   an   eQTL   discovery   experiment,   using   IMPACT   probabilities   as  

functional   priors   might   increase   power   to   detect   cis-eQTLs,   by   reducing   the   number   of   tested  

SNP-gene   pairs   thereby   reducing   the   multiple   testing   burden.   While   SNP-gene   pairs   within  

some   proximal   gene   window   are   tested   for   cis-eQTLs,   the   multiple   testing   burden   is   largest   for  

detection   of   trans-eQTLs   as   the   remainder   of   the   genome   is   considered.   Therefore,   the   power  

to   detect   trans-eQTLs   specifically   stands   to   benefit   from   cell-type-specific   functional   priors,   such  

as   from   IMPACT   annotations.   

 

Discovery   of   unknown   cell-type-regulating   transcription   factors  

The   epigenetic   signature   that   IMPACT   learns   might   help   to   identify   TFs   that   are   also   important  

regulators   of   the   target   cell   type.   As   stated   in    Chapter   2 :    Discussion ,   TF   ChIP-seq   datasets   are  

limited   to   TFs   that   have   been   known   to   regulate   particular   cell   types   by   prior   functional  

knowledge.   Moreover,   TFs   for   which   specific   antibodies   do   not   exist   cannot   be   assayed.  

Therefore,   in   a   given   cell   type,   there   are   potentially   many   TFs   of   unrecognized   regulatory  

activity.   Using   the   epigenetic   signature   learned   by   IMPACT   to   identify   cell-type-specific  

regulatory   elements,   one   could   then   perform   motif   enrichment   of   known   TFs   to   identify  

important   regulators   or   de   novo   motif   discovery   to   identify   important   regulatory   sequences.   
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   Appendix   A   

Supplementary   Information   for   Chapter   2  
 
Supplementary   Tables  
 

Supplementary   Tables   A-1,   A-2,   A-6   and   A-7   can   be   found   in   the   online   supplement   of   Amariuta   et   al,  

AJHG    2019   and   due   to   their   size   are   not   included   below.  

  

Table   A-3.   DNase-seq   and   or   expression   data   used   for   benchmarking. 
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Table   A-4.   Summary   and   accession   information   for   transcription   factor   ChIP-seq   data. 
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Table   A-5.   Statistics   regarding   IMPACT   annotations   and   their   relationship   to   RA   polygenic   heritability,  

including   annotation   size,   enrichment,   and   per-annotation   standardized   effect   size   ( *).  τ

 

 
Supplementary   Figures   
 
Figure   A-1.   IMPACT   parameter   selection:   lasso   (L1)   and   ridge   (L2)   mix   term   and   feature   distance  

parameter.  
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Figure   A-1   legend.   A)   For   a   range   of   values   of   alpha,   alpha   represents   the   weight   on   the   lasso   penalty  

and   1-alpha   represents   the   weight   on   the   ridge   penalty,   we   computed   AUPRCs   over   50   instances   of  

running   IMPACT   for   four   canonical   CD4+   T   cell   TFs.   No   value   of   alpha   significantly   outperformed   the  

others.   B)   For   a   range   of   parameters   characterizing   how   far   away   from   the   motif   site   we   additionally  

check   for   feature   overlap,   we   computed   AUPRCs   over   50   instances   of   running   IMPACT   for   the   same   four  

CD4+   T   cell   TFs.   No   parameter   value   significantly   outperformed   the   others.  

 

Figure   A-2.   Effect   of   titration   of   TF   motif   detection   threshold   on   training   data   selection   and   genomic  

annotation  

 

Figure   A-2   legend.   (A)   Proportion   of   ChIP-seq   peaks   per   CD4+   T   cell   TF   with   a   detectable   TF-specific  

motif   over   a   range   of   log-odds   detection   thresholds   from   most   lenient   (left)   to   strictest   (right).   We   indicate  

in   red   the   optimized   default   HOMER   log-odds   detection   threshold.   (B)   Genomic   annotation   with   Th1  

(T-BET)   IMPACT   around   the   IFN-G   locus   on   chromosome   12   as   a   function   of   the   motif   detection  

threshold   used   to   select   the   training   data.  
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Figure   A-3.   Comparing   IMPACT   TF   binding   prediction   performance   using   different   feature  

characterization   and   gold   standard   characterization   strategies  

 

Figure   A-3   legend.   (A)   We   computed   distributions   of   AUPRCs   over   50   trials   across   8   TFs   to   test   the  

difference   in   TF   binding   prediction   performance   achieved   by   two   feature   representations.   “Local/Distal”  

indicates   the   binary   feature   characterization,   assessing   feature   overlap   directly   at   the   motif   site   and  

additionally   at   a   more   distal   nucleotide,   both   upstream   and   downstream.   “Absolute   Distance”   indicates   a  

continuous   and   completely   non-sparse   feature   characterization,   in   which   the   distance   between   each   motif  

site   and   each   feature   is   computed.   (B)   We   computed   distributions   of   AUPRCs   over   50   trials   across   8   TFs  

to   test   the   difference   in   TF   binding   prediction   performance   achieved   by   different   gold   standard  

representations.   “Motif”   indicates   that   we   pruned   ChIP-seq   peaks   for   motif   sites   and   use   these   as   gold  

standard   bound   or   unbound   regions.   “No   Motif”   indicates   that   we   used   entire   ChIP-seq   peaks   as   the   gold  

standard   bound   regions   and   permuted   these   regions   genome-wide   to   obtain   unbound   regions.   (C)  

IMPACT   regulatory   element   probabilities   are   significantly   higher   at   regions   containing   both   a   motif   site  

and   a   ChIP-seq   peak   compared   to   ChIP-seq   peak   alone.  

 

Figure   A-4.   IMPACT   cell-state-specific   regulatory   element   probabilities   of   the   TF-bound   motif   sites   and  

TF-unbound   motif   sites.  
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Figure   A-4   legend.   IMPACT   regulatory   predictions   are   significantly   higher   for   actively   bound   motif   sites,  

evidenced   by   ChIP-seq,   than   unbound   motifs   genome-wide.   This   demonstrates   that   IMPACT   clearly  

distinguishes   between   regulatory   and   inactive/non-specific   regulatory   regions   and   assigns   very   low  

probabilities   to   the   latter.   Actively   bound   motif   sites   are   represented   by   the   modeled   cell-state   and   a   “+”,  

whereas   the   unbound   motif   sites   are   represented   by   a   “-”.  
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Figure   A-5.   IMPACT   TF   binding   performance   assessment   across   8   TFs.  

 

 

Figure   A-5   legend.   A)   We   use   two   metrics   to   illustrate   IMPACT’s   TF   binding   predictive   performance:   area  

under   the   precision-recall   curve   (AUPRC)   and   Matthew’s   correlation   coefficient   (MCC);   both   metrics   are  

appropriate   for   unbalanced   class   sets   in   binary   classification   problems.   B)   Here   we   plot   the  

precision-recall   curves   for   each   of   8   TFs   and   note   the   mean   AUPROC   and   standard   deviation   in  

parentheses.  

  

Figure   A-6.   IMPACT   benchmarking   against   TF   binding   prediction   methods   MocapG,   MocapS,   and   Virtual  

ChIP-seq.  
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Figure   A-6   legend:   We   additionally   evaluated   the   TF   binding   predictive   performance   using   Matthew’s  

correlation   coefficient.   (A)   We   compared   TF   binding   prediction   across   8   TFs,   requiring   that   different  

methods   use   consistent   training   and   test   data.   (B)   To   further   benchmark   against   Virtual   ChIP-seq,   we  

compared   cell-type-specific   TF   binding   prediction   of   RNA   Pol   II   across   6   additional   cell   types.  

  

Figure   A-7.   Cell-state-specific   IMPACT   predictions   for   canonical   target   genes   of   the   four   key   CD4+   T   cell  

TFs;   IFNG   (T-BET),   IL4   (GATA3),   SOCS3   (STAT3),   and   CTLA4   (FOXP3).  
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Figure   A-7   Legend.     We   observe   similar   patterns   of   regulatory   element   probabilities   across   several  

cell-states   for   the   same   gene;   this   could   be   due   the   interrelatedness   and   co-regulation   of   CD4+   T   cell  

immune   programs.   While   we   observe   generally   shared   patterns   across   genes,   we   anticipate   finer  

differences   at   the   variant   level,   due   to   the   differences   in   quantitative   epigenomic   profiles.  

  

Figure   A-8.   Representative   elastic   net   logistic   regression   coefficients   ()   for   IMPACT   features   in   four   CD4+  

T   cell-states   with   two   different   gold   standard   characterizations.  
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Figure   A-8   Legend.   Here   we   illustrate     the   most   representative   IMPACT   features   achieving   a     deviating  β  

at   least   1   sd   in   magnitude   from   the   mean   across   515   epigenomic   and   sequence-based   features.  

Significantly   positive     (green)   means   the   feature   is   indicative   of   TF   binding,   whereas   significantly  β  

negative     (red)   means   the   feature   is   not   indicative   of   TF   binding.   (A-D)   IMPACT   models   trained   on   TF  β  

ChIP-seq   from   canonical   CD4+   T   cell-state   TFs.   (Left)   IMPACT   models   trained   on   gold   standard   motif  

sites.   (Right)   IMPACT   models   trained   on   entire   ChIP-seq   peaks   with   no   motif   information.    ***   indicates  

  is   at   least   3   standard   deviations   (sd)   from   the   mean   ,   **   indicates   at   least   2,   and   *   indicates   at   least β|  |  β  

1.   

  

Figure   A-9.   2D   hierarchical   clustering   of   pairwise   Pearson   r   correlation   values   between   CD4+   T   cell-state  

IMPACT   annotations   and   the   45   most   strongly   correlated   features   for   each   cell-state.  

 

Figure   A-9   legend.   IMPACT   annotations   are   highly   correlated   and   particular   cell-states   are   associated  

with   categories   of   features,   such   as   Th17   and   H3K4me3   tracks   and   Th1   and   H3K4me1   tracks.   Each  

feature   annotation   is   represented   by   a   vector   of   length   M,   common   variants   (MAF   0.05),   in   which   a  ≥    

value   of   1   indicates   intersection   with   a   feature   and   a   value   of   0   indicates   no   intersection.   In   the   case   of  

141  



 

IMPACT,   each   cell-state   is   represented   by   a   vector   of   length   M,   where   each   variant   is   assigned   a  

continuous   value   representing   the   cell-state-specific   regulatory   element   probability.  

  

Figure   A-10.   Evaluating   IMPACT   feature   category   importance.  

 

Figure   A-10   legend.   We   evaluated   CD4+   T   cell-state   IMPACT   annotations   while   removing   categories   of  

features   to   assess   the   importance   and   redundancy   of   that   category   amongst   other   features.   From   left   to  

right   we   show   distributions   of   the   AUROC   over   50   trials   for   the   unaltered   IMPACT   features   (“Normal”),  

removal   of   cell-state-specific   features   (“-CTS”),   inclusion   of   any   chromatin   annotation   (“AllChrom”),  

inclusion   of   any   histone   modification   annotation   (“AllHist”),   inclusion   of   only   cell-state-specific   H3K4me1  

(“H3K4me1*”),   and   inclusion   of   only   cell-state-specific   open   chromatin   if   applicable   (“Chrom*”).  

  

Figure   A-11.   eQTL   chi-squared   enrichments   for   Pol   II   IMPACT   in   other   cell   types.  
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Figure   A-11   legend.   We   computed   the   enrichment   of   cis   eQTL   chi-squared   association   values   in   Pol   II  

IMPACT   annotations   and   Pol   II   ChIP-seq   annotations,   created   for   peripheral   blood   (A),   fibroblasts   (B),  

stomach   (C),   liver   (D),   left   ventricle   heart   (E),   sigmoid   colon   (F),   pancreas   (G),   and   CD4+   T   cells   (H).   We  

compared   the   enrichments   of   Pol   II   IMPACT   across   a   range   of   annotation   cutoffs   and   against   Pol   II  

ChIP-seq   used   to   train   the   IMPACT   model,   also   over   a   range   of   peak   significance   cutoffs.   Annotation   size  

is   listed   on   the   x-axis   and   ***   indicates   permutation    P    <   0.001.   Intervals   at   the   top   of   each   bar   represent  

the   95%   confidence   interval   of   the   enrichment   estimate.  

  

Figure   A-12.   S-LDSC   effect   size   analysis   of   IMPACT   annotation   with   respect   to   RA.  
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Figure   A-12   legend.     A)   Per-annotation   standardized   effect   sizes   ( *)   for   CD4+   T   IMPACT   annotations   in  τ  

RA,   while   conditioned   on   each   other   and   the   baseline-LD   annotations   (1   S-LDSC   model   per   population).  

In   the   European   model   (green),   *   of   Th2   IMPACT   is   significantly   positive.   In   the   East   Asian   model   (red),  τ  

*   of   Th1   IMPACT   is   significantly   positive.   We   interpret   this   to   mean   that   Th2   and   Th1   IMPACT  τ  

regulatory   element   probabilities   are   most   correlated   with   per-SNP   RA   h2   and   better   capture   the   bulk   of  

the   RA   polygenic   signal.   B)   2D   hierarchical   clustering   of   pairwise   signed   Pearson   R-squared   correlations  

between   CD4+   IMPACT   annotations   and   34   most   strongly   correlated   baseline-LD   annotations.  
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Figure   A-13.   S-LDSC   RA   heritability   enrichments   of   IMPACT   annotations   and   other   CD4+   T   cell  

annotations   from   experimental   assays.  

 

Figure   A-13   legend.   a)   Enrichment   of   CD4+   IMPACT   annotations   compared   to   other   T   cell   related  

functional   annotations.   b)   *   values   for   pre   and   post   conditioning   of   IMPACT   annotations   (b-d:   Th1,   Th2,  τ  

and   Th17)   on   other   T   cell   related   functional   annotations.   Only   the   Th2   annotation   has   consistently   positive  

*   values   while   conditioned   on   other   annotations,   although   H3K27ac   in   Th2   capture   more   RA   h2.   T-BET  τ  

ChIP-seq   and   H3K27ac   in   Th2   outperforms   the   Th1   annotation   and   several   annotations   outperform   the  

Th17   annotation   in   capturing   RA   h2.   For   panels   a   and   b,   no   asterisk   denotes    P    <   0.05,   1   asterisk    P    <  

0.05,   2   asterisks    P    <   0.01,   3   asterisks    P    <   0.001.  

 

Figure   A-14.   IMPACT   cell-state-specific   regulatory   element   predictions   at   RA-associated   loci   on  

chromosomes   1,   2,   and   3.   
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Figure   A-14   legend.   Intersection   of   nucleotide-resolution   CD4+   T   cell-state   IMPACT   annotations   with  

putatively   causal   variants.   We   note   the   position   of   the   top   10,   if   applicable,   90%   credible   set   SNPs,   their  

rsIDs,   and   the   nearest   genes.   
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Figure   A-15.   IMPACT   cell-state-specific   regulatory   element   predictions   at   RA-associated   loci   on  

chromosomes   4,   5,   6,   7,   and   15. 

 

Figure   A-15   legend.   Intersection   of   nucleotide-resolution   CD4+   T   cell-state   IMPACT   annotations   with  

putatively   causal   variants.   We   note   the   position   of   the   top   10,   if   applicable,   90%   credible   set   SNPs,   their  

rsIDs,   and   the   nearest   genes.   
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Figure   A-16.   IMPACT   cell-state-specific   regulatory   element   predictions   at   RA-associated   loci   on  

chromosomes   17,   18   and   19. 

 

Figure   A-16   legend.   Intersection   of   nucleotide-resolution   CD4+   T   cell-state   IMPACT   annotations   with  

putatively   causal   variants.   We   note   the   position   of   the   top   10,   if   applicable,   90%   credible   set   SNPs,   their  

rsIDs,   and   the   nearest   genes.   

 

Figure   A-17.   Effect   of   annotation   size   on   S-LDSC   heritability   enrichment   estimates   for   the   5   most  

enriched   CD4+   T   cell   specifically   expressed   gene   sets.  
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Figure   A-17   legend.   For   multiple   window   sizes   around   each   gene,   we   computed   the   heritability  

enrichment   estimate   for   RA   for   5   different   CD4+   T   cell   specifically   expressed   gene   sets,   where   each   gene  

set   contains   approximately   1,000   genes.  
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Appendix   B   
 
Supplementary   Information   for   Chapter   3  
 

Significant   IMPACT   annotation-trait   associations  

We   identified   at   least   one   statistically   significant   IMPACT   annotation   association   with   95   of   111  

polygenic   traits.   These   95   account   for   60   of   69   European   phenotypes   and   35   of   42   East   Asian  

phenotypes.   Analogously,   across   707   cell   type   regulatory   annotations,   we   identified   at   least   one  

significant   annotation-trait   association   for   566   annotations   at   5%   FDR.   For   all   trait-annotation  

pairs,   the   computed   *   and   enrichment   estimates,   along   with   their   standard   errors   can   be  τ  

found   in    Tables   B-4-8 .   

  

Annotations   and   traits   with   no   observed   heritability   enrichment  

For   16   polygenic   traits,   we   observed   no   statistically   significant   annotation   association.   Of   these  

16   polygenic   traits,   9   were   from   European   GWAS;   these   are   anorexia,   cataract,   “ever   smoked”,  

three   pigmentation   phenotypes   (skin,   sunburn,   tanning),   and   three   heart   disease   phenotypes  

(CHF,   IS,   AF).   The   remaining   7   traits   with   no   annotation   associations   from   East   Asian   GWAS   were  

cataract,   COPD,   IS,   keloid,   osteoporosis,   pancreatic   cancer,   and   pollinosis.   Likewise,   for   141  

IMPACT   annotations,   we   observed   no   statistically   significant   trait   association.   These   annotations  

included   melanoma   and   heart-labeled   annotations   ( Figure   B-29 ).   Just   over   40%   of   sarcoma  

annotations   were   significantly   associated   with   at   least   one   trait;   for   all   other   tissue   types,   more  

than   60%   of   the   corresponding   annotations   were   significantly   associated   with   at   least   one   trait.  

We   found   that   number   of   training   ChIP-seq   peaks   were   significantly   correlated   with   both   the  

size   of   annotation   and   the   AUPRC   of   the   TF   binding   model   (Pearson    r    =   0.22,    P    <   1.5e-9;   Pearson  

r    =   0.39,    P    <   1.5e-24,   respectively)   ( Figure   B-29 ).   However,   the   AUPRC   and   size   of   annotation   are  

significantly   negatively   correlated   (Pearson    r    =   -0.25,    P    <   4.8e-11).   This   perhaps   indicates   that  

models   with   a   small   number   of   training   peaks   and   above-average   AUPRC   (overfitting)   will   lead  

to   smaller   annotations   which   don’t   adequately   cover   the   polygenic   space,   leading   to   fewer  

significant   heritability   enrichments.   Moreover,   we   found   that   these   unassociated   annotations  

have   generally    significantly   smaller   annotation   sizes   ( P    <   7.0e-10),   significantly   higher   TF  

binding   model   AUPRCs   ( P    <   3.2e-18),   significantly   less   training   data   ( P    <   0.03),   and   are   biased   for  

particular   cell   types   ( Figure   B-29 ).  

 

Deep   learning   comparison   across   69   EUR   traits   

As   we   performed   a   more   thorough   comparison   of   heritability   captured   by   IMPACT   compared   to  

deep   learning   annotations   among   the   five   representative   traits   by   collecting   123   relevant  
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annotations,   such   an   analysis   was   challenging   to   perform   across   all   69   EUR   traits.   As   Basenji   and  

DeepSEA   annotations   from   a   previous   study 109    accounted   for   the   lead   annotation   among   the  

five   representative   traits,   we   applied   these   32   annotations   to   partition   the   heritability   of   the  

remaining   64   EUR   traits.   We   found   that   IMPACT   annotations   captured   more   heritability   (49.5%,  

sem   =   3.3%)   than   both   lead   Basenji   deep   learning   annotations   (31.9%,   sem   =   1.9%,   one-tailed  

paired   wilcoxon    P    <   2.0e-11)   ( Figure   B-8,   Table   B-13 )   and   lead   DeepSEA   deep   learning  

annotations   (27.5%,   sem   =   1.2%,   one-tailed   paired   wilcoxon    P    <   1.4e-10)   ( Figure   B-8,   Table  

B-13 ).   Moreover,   the   *    of   lead   IMPACT   annotations   was   almost   always   greater   than   that  τ  

reported   for   Basenji   annotations   (by   a   factor   of   2.24x,   one-tailed   paired   wilcoxon    P    <   3.4e-11)  

and   for   DeepSEA   annotations   (by   a   factor   of   3.55x,   one-tailed   paired   wilcoxon    P    <   8.8e-12,  

Figure   B-8,   Table   B-13 ).  

 

Regulatory   concordance   of   complex   traits  

Not   only   did   we   observe   shared   regulatory   biology   between   populations,   but   also   among   traits.  

Despite   weak   genetic   correlation   among   different   traits,   we   observed   strong   correlations   of  

IMPACT   annotation   *   among   traits,   revealing   large   regulatory   modules   of   immunity,   white  τ  

blood   cell   regulation,   red   blood   cell   (RBC)   regulation,   and   body   height   ( Figure   B-30 ).   These  

results   suggest   that   while   causal   effects   and   variants   may   differ   among   biologically   related  

traits,   the   regulatory   elements   in   which   these   variants   reside   may   be   shared.   Moreover,   while  

genetic   correlation   approaches   consider   all   genetic   signals   genome-wide   which   comprise   true  

biological   signal   and   artefact,   we   believe   that   IMPACT   is   more   likely   to   identify   true   biological  

effects,   which   are   shared   between   related   traits,   unlike   artifactual   signals.  

 

Conditional   S-LDSC   analysis   to   identify   independent   annotation-trait   associations  

Before   performing   serial   conditional   analyses,   for   9   polygenic   traits,   we   observed   a   single  

associated   cell   type:   EUR   autism   (breast),   EAS   breast   cancer   (breast),   EAS   cervical   cancer   (stem  

cell),   EAS   congestive   heart   failure   (colon),   EAS   diastolic   blood   pressure   (mesendoderm),   EAS  

gastric   cancer   (stomach),   EAS   glaucoma   (adipocytes),   EAS   systolic   blood   pressure  

(mesendoderm),   EAS   uterine   fibroids   (hematopoietic   progenitors).   However,   for   86   traits,   we  

observed   that   regulatory   elements   of   multiple   IMPACT   annotations,   mostly   implicating   diverse  

cell   types,   significantly   capture   heritability   ( Figure   B-9 ).   After   performing   serial   conditional  

analyses   to   resolve   dependent   and   independent   associations,   there   remained   a   total   of   142  

independent   cell   type-trait   associations   ( Figure   B-9 ):   1   trait   with   4   associations,   7   traits   with   3,  

30   traits   with   2,   57   traits   with   1,   and   16   traits   with   none.   Four   annotations   independently  

explained   significant   proportions   of   heritability   in   EUR   prostate   cancer:   prostate   (TFAP4),  

prostate   (RUNX2),   mesendoderm   (PDX1),   and   cervix   (NFYB).   For   seven   European   traits,   three  

IMPACT   annotations   independently   captured   polygenic   heritability:   height   (adipocytes,  

fibroblasts,   lung),   neutrophil   count   (monocytes,   adipocytes,   B   cells),   osteoporosis   (myoblasts,  

mesenchymal   stem   cells,   cervix),   IBD   (T   cells   and   two   B   cell   annotations),   platelet   count   (PBMCs,  
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hematopoietic   progenitors,   muscle),   systolic   blood   pressure   (endothelial,   mesenchymal   stem  

cells,   fibroblasts),   and   white   blood   cell   count   (B   cells,   adipocytes,   hematopoietic   progenitors).  

For   each   of   22   European   traits   and   8   East   Asian   traits,   we   observed   exactly   two   independent  

IMPACT   annotation   associations.   Finally,   for   each   of   30   European   traits   and   27   East   Asian   traits,  

we   observed   exactly   one   independent   IMPACT   association.   For   Crohn’s   (EUR),   Th1s   and   naive  

CD4+   T   cells   independently   captured   heritability,   suggesting   two   different   biological  

mechanisms   one   via   naive   T   cells   and   the   other   via   memory   effector   cells.   Although   previous  

studies   suggested   an   important   role   of   T   cells   in   UC 24 ,   our   study   identified   not   only   T   cells   but  

also   B   cells   as   contributors   to   disease   pathogenesis.   For   UC   (EUR),   T   cells   and   B   cells   contribute  

independently   to   explain   heritability.   In   summary,   we   have   elucidated   the   biology   of   some  

polygenic   traits   through   resolving   not   only   the   most   significantly   associated   cell   type,   but   also  

secondary,   tertiary,   and   quaternary   independent   mechanisms.   These   results   also   shed   light   on  

shared   regulatory   programs   between   cell   types:   in   cases   where   prior   to   conditioning,   we  

observed   many   diverse   cell   type   associations,   yet   upon   conditioning   revealed   a   single  

independent   signal.   For   example,   in   EUR   RA,   B   cells   were   most   strongly   associated,   while   CD4+  

memory   T   cell   annotations   also   captured   significant   proportions   of   heritability.   However,   these  

T   cell   annotations   were   not   associated   independently   of   B   cells,   suggesting   that   RA   heritability  

resides   in   shared   regulatory   elements   between   T   and   B   cells.   In   summary,   we   have   elucidated  

the   biology   of   some   polygenic   traits   through   resolving   not   only   the   most   significantly   associated  

cell   type,   but   also   secondary,   tertiary,   and   quaternary   independent   mechanisms.  

 

To   investigate   the   concordance   of   independent   IMPACT   signals   across   related   traits,   we  

considered   clusters   of   functionally   correlated   traits   from    Figure   B-30 .   Among   the  

autoimmune   disease   and   hematological   trait   cluster,   encompassing   eosinophil   count,  

asthma,   RA,   and   lymphocyte   count,   the   CD4   T   cell:BCL6   and   Th1:TBX21   annotations   were  

each   three   times   listed   as   independent   contributors.   For   the   greater   hematological   trait  

cluster   consisting   of   monocyte,   neutrophil,   white   blood   cell,   basophil,   platelet,  

lymphocyte,   red   blood   cell   counts   as   well   as   MCV,   MCH,   and   MCHC,   the   PBMC:GATA1  

annotation   was   eight   times   listed   as   an   independent   contributor.   Lastly,   for   the   endocrine  

cluster   consisting   of   BMI,   T2D,   SBP,   Hb,   and   Ht,   the   mesendoderm:PDX1   annotation   was  

six   times   listed   as   an   independent   contributor.   These   observations   reveal   that   there   is  

indeed   some   degree   of   persistence   of   independent   genetic   contributors   and   may   add   a  

biological   basis   for   the   observed   genetic   correlations   among   these   traits.   

 

We   note   that   our   cell   type   interpretations   above   rely   on   the   fidelity   of   the   IMPACT   model   to  

accurately   predict   TF   binding   in   the   desired   cell   type;   a   poor   model   may   learn   an   epigenetic  

signature   that   does   not   represent   the   desired   cell   type.   The   mean   TF   binding   model   AUPRC   of  

independently   associated   IMPACT   annotations   was   significantly   less   (mean   AUPRC   =   0.41,   sem   =  

0.04)   than   than   of   all   IMPACT   annotations   (mean   AUPRC   =   0.54,   sem   =   0.01,   difference   of   means  
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P    <   8.1e-4).   This   is   consistent   with   our   observation   that   IMPACT   annotations   with   very   high  

AUPRCs   are   less   likely   to   capture   polygenic   heritability   ( Figure   B-29 ).  

 

Cell   type   composite   annotations   targeting   multiple   independent   mechanisms   of   polygenic   traits  

In   light   of   observing   38   phenotypes   for   which   multiple   cell   type   regulatory   element   annotations  

independently   captured   significant   proportions   of   heritability,   we   created   composite   cell   type  

annotations   in   hopes   of   improving   heritability   enrichments.   For   example,   we   observed   that  

genetic   variation   governing   neutrophil   count   (EUR)   is   independently   accounted   for   by  

monocytes,   adipocytes,   and   B   cell   regulatory   elements.   Then,   we   annotated   SNPs   genome-wide  

using   a   probabilistic   OR   gate   as   follows:   

, 1  (1  IMPACT )scorej  =    ∏
a

i
  i,j  

where    j    is   the   SNP   index,    i    is   the     annotation,    a    is   the   number   of   independently   associated ith  

annotations   for   the   trait   of   interest   and   is   the   IMPACT   score   of   variant    j    in  IMPACT i,j  

annotation    i .   

We   created   38   composite   cell   type   annotations   and   observed   that   these   annotations  

captured   significantly   more   overall   enrichment   (one-tailed   paired   wilcoxon    P    <   4.9e-10),  

significantly   more   per-SNP   heritability   in   terms   of   *   (one-tailed   paired   wilcoxon    P    <   3.2e-8),  τ  

and   significantly   more   heritability   in   the   top   5%   of   SNPs   (one-tailed   paired   wilcoxon    P    <   0.004)  

( Figure   B-31 ).   

 

Trends   of   multi-ethnic   marginal   effect   size   correlation   at   various    P    value   thresholds   

We   observed   that   at   lenient    P    value   thresholds,   the   difference   in   correlation   between   EUR   and  

EAS   effect   sizes   is   more   pronounced   using   IMPACT   annotations,   suggesting   that   they   may   be  

more   effective   for   prioritizing   causal   variation   particularly   when   statistical   evidence   is   weak.   For  

example,   at   the   most   lenient    P    value   thresholds   between    P    <   1   and    P    >   3e-4,   we   observed   more  

dramatic   improvements   in   correlation   using   IMPACT   while   on   the   other   hand,   at   more   stringent  

P    value   thresholds,   IMPACT   annotations   offer   less   of   an   improvement   in   multi-ethnic   effect   size  

correlation   ( Figure   B-32 ).   

 

Robustness   of   PRS   analysis   to   scale   on   which   effect   sizes   are   estimated  

For   case/control   diseases,   we   estimated   marginal   effect   sizes   on   the   logistic   scale.   To   ensure  

that   our   results   were   consistent   if   effect   sizes   were   to   be   estimated   on   the   liability   scale,   for  

each   of   5   case/control   diseases   considered   in   PRS   analyses,   we   converted   effect   sizes   from  

logistic   scale   to   liability   scale   ( Material   and   Methods ).   The   conversion   had   negligible   effects   on  

our   findings:   1)   effect   size   estimates   were   nearly   perfectly   correlated   ( Figure   B-25 ),   2)   PRS  

values   were   also   nearly   perfectly   correlated   ( Figure   B-26 ),   and   3)   the   predictive   power   of   PRS  

models   were   highly   consistent   (for   EUR   PRS   resulting   in   an   average   change   in   magnitude   of  

pseudo-   equivalent   to   1.8e-5   or   a   0.16%   average   increase   in   pseudo-   values   relative   to  R2  R2  
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logistic-based   PRS;   and   for   EAS   PRS   resulting   in   an   average   change   in   magnitude   of   pseudo-  R2  

equivalent   to   1.3e-4   or   a   0.81%   average   increase   in   pseudo-   values   relative   to   logistic-based  R2  

PRS,    Figure   B-26 ).   These   results   demonstrate   that   the   way   in   which   effect   sizes   are   defined   has  

negligible   effects   on   our   findings.  
 
Supplementary   Tables  
 

Supplementary   Tables   can   be   found   in   the   online   supplement   of   Amariuta*   and   Ishigaki*   et   al,    bioRxiv  

2020   and   due   to   their   size   are   not   included   below.  

 

Supplementary   Figures   
 
Figure   B-1.   Comparison   of   IMPACT   implementation   from   AJHG   2019   manuscript   and   current  

study.  

 

Figure   B-1   legend.    Consistency   of   IMPACT   predictions   for   the   same   TF/cell   type   pair  

(GATA2/Th2)   using   different   experiments   and   different   feature   sets:   GSM1859075   used   in  

Amariuta   et   al   AJHG   2019   with   515   epigenetic   features   and   GSM776559   used   in   the   current  

study   with   5,345   total   epigenetic   features.   A)   GATA3   gene   locus   on   chr10.   B)   IL2RA   gene   locus  

on   chr10.  

 

Figure   B-2.   Overview   of   publicly   available   data   used   in   study.   
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Figure   B-2   legend.   A)   TF   ChIP-seq   collection   from   NCBI:   (left)   cell   type   and   TF   diversity   where  

“Cell   Deriv”   indicates   number   of   unique   parental   cell   types,   for   example   GM12878   and  

GM10847   are   both   B   cell   lines,   (right)   diversity   of   tissue   types.   B)   (left)   Epigenomic   and  

sequence   features   to   be   used   in   IMPACT   models,   (right)   diversity   of   histone   modification  

ChIP-seq   in   features.   C)   Diversity   of   European   (EUR)   and   East   Asian   (EAS)   GWAS   summary  

statistics   across   phenotypic   categories.   

 

Figure   B-3.   Summary   of   IMPACT-707   quality   checks.  

155  



 

 

Figure   B-3   legend.   A)   Histogram   of   prediction   performance   of   707   IMPACT   models   (metric   =  

AUPRC).   B)   IMPACT   annotations   of   the   same   cell   type   are   more   similar   to   one   another   than  

annotations   of   different   cell   types.   C)   Pairwise   correlation   of   IMPACT   regulatory   element  

annotations   (lower   triangle   of   matrix)   relative   to   pairwise   correlation   of   corresponding   TF  

ChIP-seq   annotations   (upper   triangle   of   matrix).   Pearson   r   was   calculated   using   probabilities  

assigned   to   779,355   SNPs   on   chr1   from   phase   3   of   1000G   (EUR),   Jaccard   indices   were  

calculated   for   binary   ChIP-seq   tracks   genome-wide,   in   which   the   size   of   the   intersection   of   base  

pairs   between   two   datasets   was   divided   by   the   size   of   the   union   of   base   pairs.   D)   Pairwise  

correlations   between   1000   randomly   selected   datasets   between   TF   ChIP-seq   and   their  

corresponding   IMPACT   annotations;   values   sampled   from   C).   E)   IMPACT   assigns   larger  

cell-type-specific   regulatory   elements   probabilities   at   cell-type-specifically   expressed   genes  

across   nine   cell   types.  
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Figure   B-4.   Multi-ethnic   genetic   correlation   and   concordance   of   707   IMPACT   annotations   with  

the   baseline   LD   annotations.  

 

Figure   B-4   legend.   A)   For   the   29   traits   for   which   we   collected   both   EUR   and   EAS   GWAS  

summary   statistics,   we   computed   the   multi-ethnic   genetic   correlation   with   Popcorn.   According   to  

genetic   effect,   for   13   traits,   the   genetic   correlation   is   significantly   less   than   1,   indicated   by   an  

asterisk   ( P    <   0.05   /   29   traits).   We   plot   both   the   genetic   correlation   computed   separately   using  

genetic   effect   (effect   size   estimates   unnormalized   to   allele   frequency)   and   genetic   impact   (allele  
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variance   normalized   effect   sizes).   B)   IMPACT   annotations   correlate   most   with   TSS,   TFBS,   and  

activation   histone   mark   annotations,   while   no   correlation   is   present   with   European   ancestry  

MAF   bins.   

  

Figure   B-5.   Heritability   captured   by   top   5%   of   SNPs   according   to   lead   IMPACT   annotations   per  

trait.  

 

Figure   B-5   legend.   A)   Common   SNP   heritability   captured   by   the   top   5%   of   SNPs   according   to  

the   lead   cell   type   association   for   each   EUR   GWAS.   Lead   association   determined   by   largest   * τ  

estimate   that   is   significantly   positive.   B)   Similar   for   each   EAS   GWAS.   Gray   bars   indicate   the  

standard   error   of   the   heritability   estimate.   Color   represents   the   category   of   the   complex   trait   or  

disease.  
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Figure   B-6.   Comparison   of   heritability   captured   by   lead   IMPACT   annotation   vs   lead  

cell-type-specific   histone   mark   annotation.   

Figure   B-6   legend.   Comparison   of   two   different   functional   annotations,   IMPACT   and   cell   type  

specific   histone   marks,   to   capture   polygenic   heritability   assessed   by   quantifying   *   per-SNP  

heritability   value.   Circled   are   five   representative   traits   used   throughout   the   study:   asthma,   RA,  

PrCa,   MCV,   and   height.  

 

Figure   B-7.   Heritability   captured   by   deep   learning   annotations.  
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Figure   B-7   legend.   A)   Among   five   representative   traits,   proportion   of   total   SNP   heritability  

captured   by   the   lead   IMPACT   annotation   compared   to   the   lead   deep   learning   annotation,   from   a  

set   of   123   annotations.   B)   Among   five   representative   traits,   *   of    the   lead   IMPACT   annotation τ  

compared   to   the   lead   deep   learning   annotation,   from   a   set   of   123   annotations.   

  

Figure   B-8.   Heritability   captured   by   deep   learning   annotations.  

160  



 

 

Figure   B-8   legend.   Proportion   of   total   SNP   heritability   captured   by   top   5%   of   SNPs  

according   to   lead   IMPACT   annotation   (y   axis)   and   lead   Basenji   annotation   (x   axis)   in  

panel   A   or   lead   DeepSEA   annotation   in   panel   B.   Standardized   annotation   effect   size   * τ  

according   to   lead   IMPACT   annotation   (y   axis)   and   lead   Basenji   annotation   (x   axis)   in  

panel   C   or   lead   DeepSEA   annotation   in   panel   D.  

 

Figure   B-9.   Conditional   analyses   to   identify   independent   IMPACT   associations.  
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Figure   B-9   legend.   A)   Stratification   of   IMPACT   annotation   associations   by   50   cell   types   across  

the   95   polygenic   traits   and   diseases   of   111   with   at   least   one   association.   For   each   cell   type,   the  

strongest   annotation   association   is   represented   (   *    P    value,   FDR   5%   adjusted).   B)  ogl 10 τ  

After   four   rounds   of   conditional   analysis,   non-independent   associations   were   removed.   Shown  

are   the   remaining   independent   annotation   associations   of   the   same   50   cell   types   and   95   traits.  

Color   indicates     *    P    value   adjusted   for   FDR   5%;   if   more   than   one   independent   cell  ogl 10 τ  

type   association,     *   conditional    P    value   adjusted   for   FDR   5%   is   indicated.   C)   Network  ogl 10 τ  

of   remaining   independent   associations,   same   information   as   in   B),   reveals   clusters   of   regulatory  

modules   that   recapitulate   known   biology.  

 

Figure   B-10.   Relation   between   heritability   and   number   of   independent   regulatory   annotations.  
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Figure   B-10   legend.   A)   Number   of   independent   IMPACT   cell   type   associations   is   not  

significantly   correlated   with   the   sample   size   of   the   GWAS   ( P    =   0.19).   B)   Number   of   independent  

associations   is   significantly   positively   correlated   with   the   observed   scale   heritability   z-score   of  

the   trait   ( P    <   5.4e-9).  

 

Figure   B-11.   Multi-ethnic   regulatory   concordance   with   IMPACT   across   traits.  
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Figure   B-11   legend.   Common   per-SNP   heritability   ( *)   estimate   for   sets   of   independent τ  

IMPACT   cell   type   annotations   across   29   traits.   Dotted   line   is   the   identity   line,   y   =   x.   *   values τ  

with   their   standard   errors   are   colored   green   if   significantly   positive   in   EUR   and   not   EAS,   red   if  

significantly   positive   in   EAS   but   not   in   EUR,   green   if   significantly   positive   in   both   EUR   and   EAS,  

and   gray   if   not   significantly   positive   in   either   population.  

 

Figure   B-12.   Multi-ethnic   regulatory   concordance   with   other   functional   annotations.  
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Figure   B-12   legend.   A)   Common   per-SNP   heritability   ( *)   estimate   for   sets   of τ  

independent   cell-type-specific   histone   mark   annotations   from   Finucane   et   al   Nature  

Genetics   2015   (EUR   annotations)   and   Kanai   et   al   Nature   Genetics   2018   (EAS  

annotations)   across   29   traits.   B)   As   in   A)   after   removing   eight   outlier   annotations   from   “Sig  

in   Both”   category   with   noticeably   larger   EUR *   and   small   EAS   *,   revealing   a τ    τ  

cross-ancestry   relationship   that   is   not   dissimilar   from   identity.   Line   of   best   fit   through  

annotations   significant   in   both   populations   (dark   purple   line,   95%   CI   in   light   purple).   C)   As  

in   A)   for   sets   of   independent   cell-type-specifically   expressed   gene   sets   from   Finucane   et  

al   Nature   Genetics   2018   (EUR   annotations)   and   Kanai   et   al   Nature   Genetics   2018   (EAS  

annotations).   For   all   panels,   the   dotted   line   is   the   identity   line,   y   =   x.   *   values   with   their τ  

standard   errors   are   colored   green   if   significantly   positive   in   EUR   and   not   EAS,   red   if  

significantly   positive   in   EAS   but   not   in   EUR,   green   if   significantly   positive   in   both   EUR   and  

EAS,   and   gray   if   not   significantly   positive   in   either   population.   

 

Figure   B-13.    Concordance   of   marginal   effect   sizes   among   selected   SNPs   using   IMPACT   across  

traits. 
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Figure   B-13   legend.   For   21   traits   shared   between   EUR   and   EAS,   effect   size   correlation  

(Pearson   correlation   coefficient)   across   17    P    value   thresholds   for   three   partitions   of   SNPs  

genome-wide:   1)   lead   SNPs   with   no   IMPACT   inference   (red),   2)   top   5%   of   SNPs   according   to  

the   largest   *   effect   size   IMPACT   annotation   (blue),   and   3)   the   bottom   95%   of   SNPs   according τ  

to   the   same   IMPACT   annotation   (yellow).   Vertical   lines   indicate   one   standard   deviation   of   the  

correlation   coefficient   estimate.   

 

Figure   B-14.    Concordance   of   marginal   effect   sizes   among   selected   SNPs   using   other   functional  

annotations.  

 

Figure   B-14   legend.   For   5   traits   representing   different   biological   underpinnings   shared   between  

EUR   and   EAS   (subset   of   21   investigated   in   our   study),   we   report   the   effect   size   correlation  

(Pearson   correlation   coefficient)   across   17    P    value   thresholds   for   three   partitions   of   SNPs  
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genome-wide:   1)   lead   SNPs   with   no   functional   inference   (red),   2)   top   5%   of   SNPs   according   to  

the   largest   *   annotation   effect   size   (blue),   and   3)   the   bottom   95%   of   SNPs   according   to   the τ  

same   functional   annotations   (yellow).   Here,   we   select   the   top   annotation   in   two   categories   of  

previously   published   functional   annotations:   first,   from   LDSC-CTS   annotations   (meta-analysis   in  

A,   individual   traits   in   B)   and   second,   from   LDSC-SEG   annotations   (meta-analysis   in   C,  

individual   traits   in   D).   Vertical   lines   indicate   one   standard   deviation   of   the   correlation   coefficient  

estimate.   

 

Figure   B-15.    Concordance   of   marginal   effect   sizes   among   selected   SNPs   using   other   functional  

annotations.   

 

Figure   B-15   legend.   A)   Comparison   of   top   LDSC-CTS   annotations   in   multi-ethnic   effect   size  

correlation   analysis   with   top   IMPACT   annotations   meta-analyzed   over   5   traits.   B)   Similar   to   A)  

but   for   LDSC-SEG   annotations   C)   *   across   the   5   selected   traits   reveals   that   IMPACT τ  
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annotations   are   more   strongly   enriched   for   trait   heritability   than   LDSC-CTS   annotations  

(indicated   by   asterisk,   difference   of   means    P    <   0.05)   and   consistently   more   than   LDSC-SEG  

annotations.   D)   Distribution   of   annotation   sizes   for   three   different   functional   regimes:   IMPACT  

(red),   LDSC-CTS   (yellow),   LDSC-SEG   (teal).   

 

Figure   B-16.    Measuring   concordance   of   heterozygosity   among   selected   SNPs.  

 

Figure   B-16   legend.   Population   concordance   of   heterozygosity   (2pq)   among   variants   prioritized  

by   IMPACT   compared   to   standard   P+T.   A)   Heterozygosity   of   variants   from   genome-wide   EUR  

and   EAS   PrCa   summary   statistics   in   the   top   5%   of   the   lead   IMPACT   annotation   for   EUR   PrCa.  

B)   Heterozygosity   of   variants   from   genome-wide   EUR   and   EAS   PrCa   summary   statistics   using  

standard   P+T.   C)   Heterozygosity   of   variants   from   genome-wide   EUR   and   EAS   PrCa   summary  

statistics   in   the   bottom   95%   of   the   lead   IMPACT   annotation   for   PrCa;   mutually   exclusive   with  

SNPs   in   A).   D)   Meta-analysis   of   heterozygosity   correlations   between   populations   across   21  
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traits   shared   between   EUR   and   EAS   cohorts   over   17   GWAS    P    value   thresholds   (with   reference  

to   the   EUR   GWAS).  

 

Figure   B-17.   Measuring   concordance   of   heterozygosity   among   selected   SNPs   across   all  

traits.  

 

Figure   B-17   legend.    For   21   traits   shared   between   EUR   and   EAS,   heterozygosity   (2pq)  

correlation   (Pearson   correlation   coefficient)   across   17    P    value   thresholds   for   three  

partitions   of   SNPs   genome-wide:   1)   lead   SNPs   with   no   IMPACT   inference   (red),   2)   top  

5%   of   SNPs   according   to   the   largest   *   effect   size   IMPACT   annotation   (blue),   and   3)   the τ  

bottom   95%   of   SNPs   according   to   the   same   IMPACT   annotation   (yellow).   Vertical   lines  

indicate   one   standard   deviation   of   the   correlation   coefficient   estimate.  

 

Figure   B-18.    Measuring   the   degree   of   population   divergence   among   selected   SNPs.  
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Figure   B-18   legend.   Population   divergence,   measured   by   ,   where   larger   values   indicate   a  F st  

reduction   in   heterozygosity,   among   variants   prioritized   by   IMPACT   compared   to   standard   P+T.  

Meta-analysis   of     between   EUR   and   EAS   populations   across   21   traits   shared   between   EUR  F st  

and   EAS   cohorts   over   17   GWAS    P    value   thresholds   (with   reference   to   the   EUR   GWAS).  

 

Figure   B-19.   Measuring   the   degree   of   population   divergence   among   selected   SNPs   over  

all   traits.  
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Figure   B-19   legend.    For   21   traits   shared   between   EUR   and   EAS,   we   computed   the  

average   ,   where   large   values   indicate   a   reduction   in   heterozygosity,   of   sets   of   variants  F st  

across   17    P    value   thresholds   for   three   partitions   of   SNPs   genome-wide:   1)   lead   SNPs  

with   no   IMPACT   inference   (red),   2)   top   5%   of   SNPs   according   to   the   largest   *   effect τ  

size   IMPACT   annotation   (blue),   and   3)   the   bottom   95%   of   SNPs   according   to   the   same  

IMPACT   annotation   (yellow).   Vertical   lines   indicate   one   standard   deviation   of   the   mean  

  estimate.  F st  

 

Figure   B-20.   PRS-EUR   evaluated   on   all   BBJ   individuals   across   all   traits.  
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Figure   B-20   legend.   EUR   PRS   model   evaluated   on   EAS   individuals   from   BBJ.   For   each   trait,   we  

evaluate   the   predictive   value   of   standard   PRS   models   (top   100%   of   IMPACT   SNPs)   and  

functionally-informed   PRS   models   (using   a   subset   of   SNPs   prioritized   by   IMPACT).   The   top  

100%   of   SNPs   according   to   IMPACT   represents   the   PRS   model   with   no   functional   annotation  

information.   Intervals   represent   the   95%   confidence   interval   around   the     estimate.   For  R2  

quantitative   traits,     represents   the   proportion   of   variance   captured   by   the   linear   PRS   model.  R2  
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For   case   control   traits,     represents   the   liability   scale     from   the   logistic   regression   PRS  R2  R2  

model.   

 

Figure   B-21.   PRS-EUR   evaluated   on   5K   BBJ   individuals   across   all   traits.  

 

Figure   B-21   legend.   EUR   PRS   model   evaluated   on   5,000   randomly   selected   EAS   individuals  

from   BBJ.   For   each   trait,   we   evaluate   the   predictive   value   of   standard   PRS   models   (top   100%   of  
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IMPACT   SNPs)   and   functionally-informed   PRS   models   (using   a   subset   of   SNPs   prioritized   by  

IMPACT).   Intervals   represent   the   95%   confidence   interval   around   the     estimate.   For  R2  

quantitative   traits,     represents   the   proportion   of   variance   captured   by   the   linear   PRS   model.  R2  

For   case   control   traits,     represents   the   liability   scale     from   the   logistic   regression   PRS  R2  R2  

model.   

 

Figure   B-22.   PRS-EAS   evaluated   on   5K   BBJ   individuals   across   all   traits.  
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Figure   B-22   legend.   EAS   PRS   model   evaluated   on   5,000   non-overlapping   EAS   individuals   from  

BBJ;   these   5,000   individuals   are   the   same   as   EAS   test   individuals   in   SF15.   For   each   trait,   we  

evaluate   the   predictive   value   of   standard   PRS   models   (top   100%   of   IMPACT   SNPs)   and  

functionally-informed   PRS   models   (using   a   subset   of   SNPs   prioritized   by   IMPACT).   Intervals  

represent   the   95%   confidence   interval   around   the     estimate.   For   quantitative   traits,    R2  R2  
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represents   the   proportion   of   variance   captured   by   the   linear   PRS   model.   For   case   control   traits,  

  represents   the   liability   scale     from   the   logistic   regression   PRS   model.  R2  R2   

 

Figure   B-23.   PRS   evaluated   in   5K   BBJ   individuals.   

 

Figure   B-23   legend.   A)   Phenotypic   variance   ( )   in   5,000   BBJ   individuals   explained   by  R2  

IMPACT-informed   PRS-EUR   (dark   pink)   and   standard   PRS-EUR   (dark   blue).   B)   Phenotypic  

variance   ( )   in   5,000   BBJ   individuals   explained   by   IMPACT-informed   PRS-EAS   (light   pink)   and  R2  

standard   PRS-EAS   (light   blue).   Error   bars   indicate   95%   CI   calculated   via   1,000   bootstraps.  

 

Figure   B-24.   Block   jackknife   of   PRS   estimates.   
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Figure   B-24   legend.   We   recomputed   confidence   intervals   around   the     estimates  R2  

(panels   A   and   B)   and   around   the   relative   improvements   in     estimates   of   IMPACT   PRS  R2  

over   standard   P+T   PRS   (panels   C   and   D)   via   block   jackknife   across   the   genome,   using  

200   adjacent   equally-sized   bins   and   iteratively   removing   variants   within   each   bin   and  

computing   the   .   A)   Trans-ethnic   analysis   of   EUR   PRS   to   BBJ   individuals.   B)  R2  

Within-population   analysis   of   EAS   PRS   to   BBJ   individuals.   Error   bars   indicate   95%   CI  

around   the     estimates.   C)   Trans-ethnic   analysis   of   EUR   PRS   to   BBJ   individuals,  R2  

relative   improvement   in     estimates   defined   as   (IMPACT     -   standard   P+T     )   /  R2  R2  R2  

standard   P+T   .    D)   Within-population   analysis   of   EAS   PRS   to   BBJ   individuals,   relative  R2  

improvement   in     estimates   defined   as   (IMPACT     -   standard   P+T   )   /   standard  R2  R2   R2  

P+T     .  R2  

 

Figure   B-25.   Liability   versus   logistic   scale   in   PRS.   
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Figure   B-25   legend.   For   each   of   five   case/control   diseases   considered   in   PRS   analyses,  

we   computed   the   correlation   of   effect   size   estimates   on   the   logistic   scale   versus   the  

liability   scale.   The   set   of   variants   selected   for   each   disease   corresponds   to   the  

IMPACT-informed   PRS   model   with   the   highest   .  R2   

 

Figure   B-26.   Liability   versus   logistic   scale   in   PRS.   
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Figure   B-26   legend.   For   each   of   five   case/control   diseases   considered   in   PRS   analyses,  

we   computed   the   correlation   of   PRS   values   based   on   EUR   effect   size   estimates  

calculated   on   the   logistic   scale   versus   the   liability   scale   (panel   A   for   PRS-EUR   and   panel  

C   for   PRS-EAS).   All   sets   of   variants   were   considered   for   this   analysis,   e.g.   9    P    value  

thresholds   x   2   model   types   (IMPACT/standard   PRS)   x   5   case/control   diseases   =   90.   We  

also   compare   logistic   and   liability   scale   PRS     between   IMPACT-informed   and   standard  R2  

P+T   models   (panel   B   for   PRS-EUR   and   panel   D   for   PRS-EAS).   For   this   analysis,   we   only  

considered   the    P    value   threshold   that   achieved   the   highest   for   IMPACT   and   standard  R2  

P+T   models.   

 

Figure   B-27.   IMPACT   stabilization   of   PRS   distributions   using   EUR   GWAS   data.   
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Figure   B-27   legend.   A)   For   each   of   21   traits   considered   in   the   EUR   PRS   analyses,   we  

compare   the   variance   in   the   polygenic   risk   scores   based   on   standard   P+T   and  

IMPACT-informed   P+T   using   the   model   that   achieved   the   highest   .   B)   We   used   anova  R2  

to   compare   the   observed   variance   of   PRS   distributions   across   the   five   different   1000G  

populations,   for   each   trait   between   standard   P+T   PRS   and   IMPACT-informed   PRS,   by  

computing   F-statistics.  

 

Figure   B-28.   IMPACT   stabilization   of   PRS   distributions   using   EAS   GWAS   data.   
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Figure   B-28   legend.   A)   For   each   of   21   traits   considered   in   the   EAS   PRS   analyses,   we  

compare   the   variance   in   the   polygenic   risk   scores   based   on   standard   P+T   and  

IMPACT-informed   P+T   using   the   model   that   achieved   the   highest   .   B)   We   used   anova  R2  

to   compare   the   observed   variance   of   PRS   distributions   across   the   five   different   1000G  

populations,   for   each   trait   between   standard   P+T   PRS   and   IMPACT-informed   PRS,   by  

computing   F-statistics.  

 

Figure   B-29.   Summary   of   707   IMPACT   annotations   across   cell   types.   
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Figure   B-29   legend.   A)   Distribution   of   annotation   size   (average   IMPACT   score   over   annotated  

SNPs)   for   “successful”   and   “unsuccessful”   annotations.   B)   Distribution   of   TF   binding   model  

AUPRC   for   “successful”   and   “unsuccessful”   annotations.   C)   Distribution   of   training   set   size  

(number   of   TF   ChIP-seq   peaks)   for   “successful”   and   “unsuccessful”   annotations.   D)   Correlation  

of   metadata   factors   of   IMPACT   annotations:   number   of   ChIP-seq   peaks   available   to   training  

data,   AUPRC   of   TF   binding   prediction   model,   and   annotation   size.   E)   For   each   tissue   type  

category   of   IMPACT   annotation,   the   proportion   of   annotations   that   were   significantly   associated  

with   at   least   one   polygenic   trait   or   disease   (“successful”)   is   indicated   by   the   height   of   the   pink  

bar.   “Unsuccessful”   annotations   were   not   found   to   be   significantly   associated   with   any  

phenotype   and   are   indicated   by   the   green   bar.   For   example,   heart-labeled   annotations   had   no  

significant   associations.  
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Figure   B-30.   Pairwise   trait   regulatory   and   genetic   correlation.  

 

Figure   B-30   legend.   A)   Pairwise   correlation   of   IMPACT   functional   annotations’   *   significance τ  

across   42   traits,   accounting   for   21   unique   phenotypes   (those   with   at   least   one   significant  

IMPACT   association   in   both   EUR   and   EAS)   and   two   populations.   *   indicates   FDR-adjusted    P    <  

0.05,   **   indicates   FDR-adjusted    P    <   1e-10.   B)   Pairwise   genetic   correlation   across   the   same   42  

traits   as   in   (A).   *   indicates   nominal    P    <   0.05,   **   indicates   nominal    P    <   1e-10.   

 

Figure   B-31.   Cell-type-combined   annotations   improve   heritability   capture.  
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Figure   B-31   legend.   Comparison   of   heritability   metrics   between   the   lead   annotation   and   the  

composite   annotation,   created   from   independently   associated   IMPACT   annotations.   A)  

Statistical   significance   of   the   enrichment   estimate.   B)   Statistical   significance   of   the   *   S-LDSC τ  

regression   coefficient   estimate.   C)   Proportion   of   observed   scaled   heritability   in   the   top   5%   SNPs  

scored   by   IMPACT.   

 

Figure   B-32.   IMPACT   selects   variants   with   more   concordant   effect   size   estimates   especially   at  

lenient    P    values.   

 

Figure   B-32   legend.   Improvement   by   functional   data   (IMPACT   top   5%   SNP   selection)   varies   by  

P    value   threshold.   Improvement   is   greatest   when   p-values   are   lenient   (orange).   Improvement   is  

minimized   when   the   EUR   GWAS    P    value   is   near   or   past   the   genome-wide   significant   threshold  

(purple).  
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Ext.   Data   B-1.   Overview   of   707   by   111   possible   annotation-trait   associations.  

 

Ext.   Data   B-1   legend.   Significant   cell   type-phenotype   associations   across   707   IMPACT  

regulatory   annotations   and   111   complex   traits   and   diseases   at   *   5%   FDR,   color   indicates τ  

-log10   FDR   5%   adjusted    P    value   of   *.   Zooms   shows   particular   cell   type   categories   enriched τ  

for   polygenic   trait   associations.  
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Appendix   C   
 
Supplementary   Information   for   Chapter   4  
 
Supplementary   Figures  
 
Figure   C-1.   

 
Figure   C-1   legend.   scATACseq   fragment   count   data   follows   a   negtaive   binomial   distribution.   
  
Supplementary   Tables  
 

Table   C-1.   37   IMPACT   tracks   use   for   cell-specific   regulatory   inference.  

Cell   type  TF  Cell   type  TF  

Treg  FOXP3  Breast   (ZR-75-1)  HSF1  

T   cell   (CCRF)  GATA3  Breast   (MCF-7)  RXRA  

T   cell   (T-ALL)  GATA3  Prostate   (C4-2)  FOXA1  

Treg  RUNX1  Prostate   (NCI-H660)  ESR1  

B   cell  PAX5  Myoblast  MYOD1  

B   cell   (OCILY10)  STAT3  Myotube  MYOD1  
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B   cell   (OCILY3)  STAT3  Stem   cell   (hESC   H9)  SMAD4  

B   cell   (GM10847)  CTCF  Stem   cell   (hESC   H9)  SMAD3  

Myeloid   (K562)  CUX1  Liver   (HepG2)  MAFK  

PBMC  IRF5  Colon   (HT-29)  HSF1  

Monocyte   CEBPB  Colon   (LoVo)  E2F3  

Macrophage  CEBPB  Colon   (LoVo)  SOX9  

Monocyte   (THP-1)  PPARG  Colon   (LoVo)  BCL6  

Myeloid   (K562)  CEBPA  Colon   (HCT   116)  FOSL1  

Lung   (NCI-H2171)  MYC  Plasma  MAX  

Lung   (NCI-H1703)  HSF1  Mesendoderm  EOMES  

Lung   (HCC95)  SOX2  Ectoderm  PAX6  

Lung   (A549)  SMAD3  Adipocytes   (SGBS)  PPARG  

Breast   (MCF-7)    GATA3    
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