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ABSTRACT

How do animals use their sensory neurons to perceive their chemical environment? How does
sensory information get transformed by downstream circuits? And ultimately, how do animals gen-
erate behavior in response to chemical cues? We set out to understand how the entire C. elegans
brain processes chemosensory information. To enable these studies, we developed genetic, experi-
mental, and computational tools which allow for high-throughput acquisition of stimulus-evoked
activity in populations of neurons. Observing the dynamics of the chemosensory neurons in re-
sponse to a broad odor panel, we uncovered numerous previously unreported sensory responses
and built a comprehensive picture of the way the chemosensory system in C. elegans encodes odor
information. To understand whole-brain responses to chemosensory stimuli, we developed a sys-
tem which labels every neuron in C. elegans with a multicolor landmark, allowing us to conduct
pan-neuronal imaging with comprehensive neuronal identification. We found widespread stimulus-
evoked activity across sensory neurons, interneurons, and motor neurons. We examined the rela-
tionship between functional activity and the C. elegans connectome, and built connectome-inspired
artificial neural network models with pan-neuronal data. The methods we have developed enable

new, whole-brain approaches to understanding sensorimotor transformations in C. elegans.
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Introduction

THE BRAIN EVOLVED to integrate information and produce behaviors that help an animal inhabit
the natural world. When faced with complex environments, the whole brain is engaged in many lev-
els of activity, encompassing detection and interpretation of sensory inputs, decision-making, and
motor planning and execution. To date, most experiments in neuroscience have focused on record-
ing from single neurons, studying different neurons in different individuals and using these data to
piece together the workings of specific circuits. This approach allows for the analysis of individual
computations or stereotyped steps of neural processing, and has proven successful in mapping the
circuits responsible for reflex behaviors in many animals. However, the more complex tasks that the
brain does—identification, decision-making, learning, memory, and motor control—are not reflexes.
In these cases, it is reasonable to expect that neurons from multiple circuits will be engaged, and

that the activity of a given neuron will depend not just on the environment, but also on both the



animal’s behavioral state and internal brain state. Single-neuron experiments cannot simultaneously
monitor the state of the rest of the animal’s brain, making it difficult to place the activity of a single
neuron into the context of the whole brain.

In this dissertation, we sought to understand how the compact brain of the nematode C. elegans
encodes olfactory information. We chose to study olfaction because it is a sensory modality which is
inherently collective in its nature: animals employ a large number of sensory neurons to detect and
identify chemical compounds. This makes olfactory coding a problem for which multi-neuronal
imaging methods are ideally suited.

Recent technological advances are now allowing whole circuits, and even whole brains, to be
recorded simultaneously in single individuals. Across model organisms, we now know that even sim-
ple stimuli engage large fractions of the nervous system, not just a small set of neurons. The ability
to reliably capture ensemble-level neural activity with single-cell resolution has the potential to rev-
olutionize our approach to understanding our neural computation. Extracting biological meaning
from such high-dimensional data, however, has demanded novel experimental, computational, and
theoretical approaches. In this introductory chapter, we will highlight the need for labeled multi-
neuronal and pan-neuronal imaging approaches in neuroscience and describe the advantages of
C. elegans as a model system for such work. To provide context for the work described in the chap-
ters that follow, we will also give a brief overview of our current understanding of olfactory coding
across model organisms, multi-neuronal imaging techniques, and whole-brain experiments that have

been carried out in the worm.



1.1 THE NEED FOR FUNCTIONAL IMAGING OF NEURONAL ENSEMBLES

Multi-neuronal and pan-neuronal imaging methods allow us to capture the activity of large por-
tions of the brain simultaneously in the same individual. The simultaneous imaging of neuronal
ensembles allows circuits to be experimentally interrogated at much higher throughput. Instead of
carrying out experiments one neuron at a time in response to a controlled stimulus, for instance, one
could collect a complete dataset containing all relevant neurons, dramatically increasing the rate at
which single-neuron properties may be elucidated.

The advantages of multi-neuronal imaging extend beyond more efficient data acquisition. Cir-
cuits at different layers of processing or in different brain regions do not work in isolation. Rather,
their activity is likely contingent on the activity of many other neurons across the brain, communi-
cating across the entire system via synaptic connections or non-synaptic modulation. A complete
understanding of such neural computations cannot be constructed from compartmentalized exper-
iments which record from single neurons in isolation: large numbers of the neurons engaged in the
task of interest must be simultaneously recorded. This is true at all layers of the brain, from sensory
systems to motor circuits. Even relatively stereotyped behaviors, such as sensory responses or reflexes,
are subject to variability across individuals. The biological meaning of a variable neuronal response
cannot be recapitulated in the aggregate without the context provided by the activity patterns of
other neurons. Circuit-level and whole-brain imaging are not just methods of improving the effi-
ciency of experiments; they may be necessary to understand the systems-level computations that

the brain performs. Multi-neuronal approaches do not supersede single-neuron approaches: fine-



grained analyses of individual neurons also provide critical information. The two must be coupled
to build a complete picture of neural computation.

In nearly every multi-neuronal study conducted thus far, across organisms and across many sen-
sory modalities and behavioral paradigms, we see that neural representations are far more widely dis-
tributed across the brain than one would naively expect. Unlike artificial control systems, in which
computation is centralized and a single electronic circuit tends to have a well defined role, brains ap-
pear to compute in a distributed way, with neurons and neural circuits employed flexibly, playing
different roles in different environmental and behavioral contexts.

The capacity to comprehensively record complete circuits from brains of small model organ-
isms such as worms, flies, and fish arose with recent developments in optical imaging. Genetically
encoded fluorescent indicators of neural activity have long been employed to monitor neurons in
model organisms. Fast, high-throughput microscopes are now capable of rapid volumetric imaging,
capturing the time-varying fluorescence of many neurons in the field of view with high spatial and
temporal resolution. Because so many neurons are in the field of view, however, segmenting indi-
vidual neurons and extracting fluorescence signals from them is a difficult image analysis problem.
Additionally, to directly compare multi-neuronal data across individuals, it is necessary to identify
neurons (putting names onto each cell). Labeling neurons with fluorescent markers of multiple
colors can allow neurons of interest to be identified, but building such strains requires extensive
knowledge of gene expression patterns in the organism of interest.

Grappling with these datasets also requires innovation in theory and computation. What causal

meaning can we extract from mapping activity correlations between sensory inputs and the activ-



ity of many neurons? Are there principles of integrated brain function that shape these correlation
maps? What constraints does anatomical wiring impose on brainwide activity patterns, and can
those constraints help us understand brainwide computation? All of these experimental and the-
oretical challenges are difficult to address in large brains. In a small brain with a small number of

neurons, however, we have a chance.

1.2 C. ELEGANS AS A MODEL SYSTEM FOR NEUROSCIENCE

In the 1960s, Sydney Brenner and his group developed the nematode C. elegans as a model system
for developmental biology and neuroscience'. Today, C. elegans is studied in thousands of labora-
tories around the world. There are many advantages of working in C. elegans, including a short life
cycle, optical transparency, and well developed genetic toolkit. Most individuals are self-fertilizing
hermaphrodites, meaning a single individual can give rise to homozygous progeny and making ge-
netic manipulations even more convenient. C. elegans was the first animal to have its entire genome
sequenced *, and decades of genetics work has advanced our understanding of the genetic basis of
development and behavior. Genetics also give experimenters an extensive library of promoters we
can employ to drive expression of transgenes in specific cells of interest.

C. elegans has an invariant number of somatic cells (959 cells in each individual), and exhaustive
work has uncovered the developmental lineage of every one of these cells, from fertilization to adult-
hood**5. As a corollary, every cell in the animal, including every neuron, has a name and can be

identified, allowing for direct comparisons across individuals. The ability to identify neurons and



compare activity across individuals has been vital in C. elegans neuroscience.

THE NEUROBIOLOGY OF THE WORM

The compact nervous system of the nematode C. elegans makes it an ideal platform for systems neu-
roscience. The hermaphrodite C. elegans nervous system consists of 302 neurons, divided into 118
distinct classes (often bilaterally symmetric pairs). The majority of these neurons, about 200, are
concentrated in the head of the animal, forming the brain of the worm (Figure 1.1). The remain-
ing neurons form a ventral nerve cord, a structure akin to the spinal cord of a vertebrate, and a small
cluster of neurons can be found in the tail of the animal. Male C. elegans have about 100 additional
neurons in the tail, forming a second brain which controls the animal during matinge.

Neurons in C. elegans are relatively unbranched when compared to the elaborate arbors of neu-
rons in larger animals. Most neurons have only one or two neurites (also called “processes”) pro-
jecting from the cell body. In many systems, neurites of neurons are either axons or dendrites, de-
pending on whether they send or receive signals, respectively. In C. elegans, however, most neurites
both send and receive signals. In the brain of the animal, neurites from many of the neurons come
together to form an annular bundle called the nerve ring.

The synaptic connectivity of C. elegans has been completely mapped, providing researchers with
a wiring diagram, or connectome®?. Neurons in C. elegans can form both chemical synapses, where
neurotransmitters are exchanged, and gap junctions, where electrical signals can be exchanged. From
the connectome, we observe that the neurons in C. elegans are loosely organized into three layers:

sensory neurons, interneurons, and motor neurons. This makes the nervous system of C. elegans
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Figure 1.1: C. elegans and its nervous system. An adult hermaphrodite C. elegans is less than 1 mm in length, and con-
tains 302 neurons (nuclei in black). The head ganglia contain about 200 neurons, which form the brain of the animal.
The remaining neurons are distributed along the ventral nerve cord and in the tail. Figure from Hobson et al., 2017”.

relatively shallow when compared to larger organisms. The connectome is a critical resource for
C. elegans neuroscience, and will be discussed in greater depth in the next section. In addition to
synaptic connections, neuronal activity C. elegans can be modulated by neuroendocrine signals """,

The expression maps of the neurotransmitters acetylcholine, GABA, and glutamate have been

determined in C. elegans'>'">'>'%'5 Postsynaptic neurons receive neurotransmitter signals by ei-

ther ionotropic or metabotropic receptors, but the map of neurotransmitter receptor expression is
largely unknown, leaving our understanding of neurotransmitter communication networks incom-
plete.

When it comes to capturing neural dynamics, electrophysiological recordings are the most sen-
sitive and have the highest temporal resolution. Such experiments in C. elegans have revealed the
intrinsic electrical properties of its neurons. C. elegans expresses no voltage-gated sodium channels,

and its neurons lack the sodium-triggered action potentials found in most insect and vertebrate



systems '©. The first patch clamp recordings of C. elegans neurons found excitatory postsynaptic po-
tentials (EPSPs) '7*® and graded potentials *°, suggesting that the majority of electrical signals in the
C. elegans nervous system were conducted passively. The lack of action potentials may be partially
explained by the small size and high membrane resistance of C. elegans: many neurons experience a

voltage change nearly simultaneously across the entire cell '**°

. Neurons in do C. elegans express a
large number of ion channel types, including voltage-gated potassium and calcium channels**. C.
elegans muscle cells were discovered to use these channels to fire action potentials during muscle
contraction**. Recent work has also found select neurons which fire action potentials mediated by
these voltage-gated channels***#. The extent of action potential signalling, and the role of action
potentials in encoding information, are areas of active research.

However, it is impractical to record simultaneously from large numbers of neurons by patch
clamping. The most common method of non-invasively extracting functional activity from indi-
vidual neurons in C. elegans is to express genetically encoded calcium indicators such as GCaMP in
neurons of interest. The time-varying fluorescence signal is a readout of the calcium dynamics of the
labeled neuron. GCaMP recordings lack the temporal resolution and high sensitivity of electrophys-
iological recordings, but are much more flexible. Animals labeled with GCaMP can be imaged more
easily while being presented with stimuli or while carrying out behaviors.

In C. elegans, some neurons have been shown to have different activity patterns in different parts
of the same cell. Computationally relevant calcium dynamics may occur only in the nerve fibers

and processes of many neurons>>*>*7_ In an animal that encodes the full range of its complex be-

haviors in only hundreds of neurons, the computational capacity of individual cells should not be



underestimated. The remarkable sophistication of individual cells in C. elegans is clearly demon-
strated in its motor circuit. In larger animals, networks of spinal cord neurons give rise to rhythmic

and organized movements>%*:3%3

. In C. elegans, single motor neuron types encode the properties
of networks of cells found in larger animals>*3%3#35, The multi-purpose functionality of many of

the neurons in C. elegans is likely a result of evolutionary pressure, trying to maximize the computa-

tional ability of a such a small nervous system.

THE C. ELEGANS CONNECTOME

C. elegans was the first animal for which a connectome was generated, offering a near complete
synapse-level map of its entire nervous system. Serial electron microscopy was employed to generate
a high-resolution volumetric image of a complete animal, stitched together from multiple individ-
uals (Figure 1.2A). The neurons were then manually traced through the volume and chemical and
electrical connections were identified—a heroic feat with the methodology available in the 1980s®.
An early achievement in worm systems neuroscience, an analysis of a complete circuit for a behav-
ior, directly emerged from the connectome. Through systematic laser ablation and behavioral anal-
ysis, Chalfie et al. mapped the circuit for harsh touch sensitivity — a feedforward reflex that allows
the worm to avoid anterior or posterior touches by rapid backward or forward movement — from
sensory neurons to interneurons to motor neurons>*. Since this early achievement, the connectome

8:36:37 With recent increases

has provided an invaluable resource for mapping behavior to circuits
in the throughput of serial-section electron microscopy and the development of semi-automated

or fully automated reconstruction algorithms, the connectomes of larger animals are now being re-
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Figure 1.2: Mapping the connectome of C. elegans. (A) An EM image of a transverse section of the lateral ganglion in

the head of the animal from the original John White dataset®. Several neural cell bodies are visible near the top of the
image, with the neurites of dozens of neurons below them. (B) Neurons are reconstructed by tracing them through
volumetric EM data. Here we see all of the neurons in the region near the nerve ring, in the brain of the animal®. (C) The
topology of the C. elegans connectome, with sensory neurons labeled in red, interneurons labeled in blue, and motor
neurons labeled in green, illustrating the shallow nature of the C. elegans nervous system. (D) The acquisition of multiple
connectomes from different developmental time points have enabled comparative connectomics in C. elegansg. A small
fraction of the connections are developmentally dynamic, reshaped as the animal grows. Other connections are stable—
these exist across stages and across individuals. Up to 50% of the connections are variable across individuals. Panels
adapted from White et al., 1986, Varshney et al., 2011, and Witvliet et al., 2020.
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constructed including larval and adult Drosophila®3° and the larval zebrafish *°. New technologies
have enabled higher-throughput connectomics in C. elegans®.

The first C. elegans connectome was reconstructed from partially overlapping segments from 4 in-
dividuals, which means that most synapses were reported with a sample size of N = 2%, Despite the
stereotypy of C. elegans development, however, the connectome is not identical across individuals.
Recent work in which connectomes for 8 additional C. elegans were reconstructed has demonstrated
significant variability in the adult connectome of C. elegans, with 43% of connections not conserved
across adult individuals® (Figure 1.2D). Despite this variability, however, the strongly conserved
connections do form a stable network across individuals.

The connectome is not sufficient to understand brain-wide dynamics. As studies of brain-wide
activity repeatedly show, the same connectome can support functional correlations between neu-
rons and across brain regions that change dramatically with environmental context and behavioral
state. However, the connectome is a necessary framework for building mechanistic models of the
brain.

The compact nature of the worm has made it the ideal subject for systems-level approaches in
genetics and connectomics. More recently, C. elegans has also become a platform for systems neuro-
science: the dissection of the motor circuit of C. elegans through multi-neuron and muscle activity
recordings is a key example of the value of systems-level approaches**#*434435 In this work, we
sought to extend these systems neuroscience approaches to study chemosensory systems, employ-
ing ensemble and pan-neuronal imaging to understand how the whole C. elegans brain processes

olfactory information.
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1.3 OLFACTORY CODING IN INSECTS AND VERTEBRATES

Most organisms rely on the chemosensory modalities of sensation (smell and taste) to navigate the
world, find food, and avoid dangerous environments. When compared to C. elegans, larger organ-
isms such as insects and vertebrates employ a far larger number of neurons to detect olfactory stim-
uli.

The architecture of the olfactory system is broadly similar across insects and mammals #5447
The first, environment-facing layer consists of olfactory receptor neurons (ORNs), each of which
nearly always expresses only one unique receptor type. This likely makes the strategies employed
to encode odorant identity qualitatively distinct from those likely employed in C. elegans. These
ORNS do not form synapse onto each other, though they can inhibit each other through ephap-
tic coupling* 8. ORNs converge on a number of glomeruli which can amplify, suppress, or modu-
late the tuning of ORN signals*»5*5". These glomeruli form brain regions dedicated to processing
chemosensory information, the antennal lobe in insects and the olfactory bulb in vertebrates. From
here, neurons project to higher brain regions responsible for learning and decision-making.

Both insect and mammalian olfactory systems employ olfactory receptors which are activated by
multiple odorants, with each odorant binding to multiple receptors *53. Each odorant can there-
fore activate a distinct subset of ORNSs, allowing different odorants to be discriminated. This com-
binatorial receptor coding strategy, which allows a finite number of receptors to encode a very large
number of odorants, has been characterized in larval Drosophila +55, adult Drosophila 5657 and

»58

mouse °>5°. In each case, it was found that some ORNs were more broadly tuned (responding to a
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large number of stimuli), and some ORNs were more narrowly tuned (responding to a small num-
ber of stimuli). This may partly be due to evolutionary priorities—there is no « priori reason an
animal’s olfactory system must sample the entire chemical odorant space with equal precision. It
is likely that there are certain compounds which are very important for an animal to identify, and
other compounds in the environment whose detection is less critical to an animal’s survival. A good
example of this is a single ORN in Drosophila larva (one of only 21 in the entire animal) which is
dedicated to detecting a pheromone released by a parasitoid wasp>”.

In addition to odor identity, an olfactory system must also be capable of identifying the con-
centration of an odorant. Typically, odorants at higher concentrations will activate ORNs more

strongly, and activate a larger number of ORNs 60,6155

. Odor intensity must then be decorrelated
from odor identity in higher brain regions, though this process is still poorly understood.

Olfactory coding has been extensively studied in mouse 5258 a5 well as both the larval and adult
forms of the fruit fly Drosophila melanogasters+555%57. Insects and mammals have olfactory systems
which are broadly similar in structure #5447 The first, environment-facing layer consists of olfac-
tory receptor neurons, each of which nearly always expresses only one unique receptor type. These
receptors are activated by multiple odorants, and each odorant binds to multiple receptors’*53.
Each odorant can therefore activate a distinct subset of sensory neurons, allowing different odor-
ants to be discriminated. Odorants at higher concentrations will also activate a larger number of

sensory neurons %55

. In insects and mammals, the olfactory receptor neurons converge onto a
number of glomeruli, which synthesize the information from multiple sensory neurons before pass-

ing it on to higher processing regions*5>5". There is spatial separation between the higher brain
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regions responsible for innate behaviors (lateral horn in insects, amygdala in vertebrates) and learned

behaviors (mushroom body in insects, piriform cortex in vertebrates) 562030465,

1.4 CHEMOSENSATION IN C. ELEGANS

C. elegans uses chemosensation primarily to find food and to avoid dangers, and is sensitive to both
water-soluble and volatile chemical cues®®. Behavioral experiments have identified sets of odorants
which are behaviorally attractive or behaviorally repulsive to the animal 7, including compounds ex-
creted by bacteria living in the environment C. elegans inhabits ®®. The majority of the work done to
understand chemosensation in C. elegans has focused on single sensory neurons 7717273747576
C. elegans is too small to establish a spatial gradient by differentially sensing odor concentration
simultaneously in two places, as is common in larger animals. Instead, when navigating a chemosen-
sory gradient, C. elegans employs a navigational strategy called the pirouette model”", akin to the
biased random walk in bacteria””. The animal crawls in a given direction for a certain period of time,
then randomly changes its direction. The rate at which the animal changes direction is dependent
on the concentration: if it is climbing up the gradient of an attractant on its forward bout (concen-
tration experienced is increasing), it will be less likely to pirouette, and if it is going down the gradi-
ent (concentration experienced is decreasing), it is more likely to pirouette. This strategy requires
C. elegans to be able to compare the current concentration of an odorant with recently experienced
concentrations.

The primary chemosensory neurons project to the nose of the animal, where they are exposed to
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Figure 1.3: Anatomy of the chemosensory neurons in C. elegans. (A) The majority of the sensory neurons (amphids) are
located in the head of the animal, and are exposed to the environment at the tip of the nose. Two pairs of phasmid
sensory neurons are in the tail of the animal. (B) Structure of the nerve endings at the amphid pore in the nose. These
include the 11 chemosensory neurons, and the thermosensory neuron AFD. (C) Detailed structure of the cilia of each of
the amphid neurons. Adapted from Perkins et al., 1986, Bargmann et al., 20067877,
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the environment via two bilaterally symmetric amphid pores (Figure 1.3). Each of the neuron pairs
forms a class which can be distinguished by morphology®. These 11 neuron classes are: AWA, AWB,
AWC, ADF, ADL, ASH, ASE, ASG, ASI, AS], and ASK7%7°. The nuclei of these chemosensory
neurons are located in the lateral ganglia behind the nerve ring.

In large organisms such as insects and mammals, each olfactory receptor neuron expresses only
one receptor type, with integration and further processing occurring in downstream levels of the
network #-4%47  With fewer neurons, however, the C. elegans olfactory circuit must still solve similar
computational problems. In C. elegans, every sensory neuron in expresses multiple receptor types—
in total, about 1300 different receptors are thought to be expressed across the 11 chemosensory neu-
rons”**°. Many of these neurons are also polymodal—in addition to olfactory stimuli, some detect
gustatory stimuli such as pheromones, salts and amino acids, gases such as oxygen and CO2, or tem-
perature’®*’. Additionally, we know from the connectome that many of these sensory neurons are
wired to each other or receive feedback from motor neurons. This again contrasts with the olfactory
systems of higher organisms, in which the first layer of olfactory neurons is largely feed-forward. Be-
cause of these characteristics, the C. e/egans chemosensory system fits between the more distributed
architecture we see in insect and vertebrate olfaction and the intracellular computations performed
within a single chemotaxing bacteria.

Only one G-protein coupled receptor (GPCR) has been fully characterized in the context of C. ¢/-
egans olfaction: ODR-10, which is expressed only in AWA and is known to respond to diacety169’7o.
Recent work has mapped the expression of a subset of the putative chemosensory GPCRs across the

entire nervous system 80 While this dataset is not exhaustive, we can use this information as an indi-
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cation of the relative number of receptors expressed in each chemosensory neuron, and the degree of
overlap in receptor expression between neurons.

ASH has been well characterized as a polymodal nociceptor, being activated by a wide range of
repellent stimuli. It has been shown to be required for C. elegans to avoid high osmolarity, heavy
metals, acidic environments, and aversive odorants, and is also necessary for touch avoidance at the
nose of the animal7>7374+757¢,

The neurons AWA, AWB, and AWC are thought to be the primary neurons responsible for the
detection of volatile compounds. Behavioral experiments have shown that ablation of either AWA or
AWC destroys the ability of the animal to perform chemotaxis 67, Experiments in which the receptor
ODR-10 was expressed in AWB instead of AWA found that a previously attractive diacetyl stimulus
became repulsive, suggesting that AWB activity may be linked to aversive stimuli”®. AWB and AWC
are also necessary for aversive olfactory learning **.

ASE responds to salts and other water soluble compounds”"', and may also play a secondary role
in chemotaxis to volatile odorants”*. The ablation of the neurons ADF, ASG, ASI, AS]J, and ASK
all degrade chemotaxis to a lesser extent, suggesting that the role they play in chemosensation is
more minor’*. That multiple neurons have to be ablated to completely abolish chemotaxis in re-
sponse to certain stimuli also suggests the use of a distributed olfactory code in C. elegans. The neu-
rons ASI, ASJ, ASK, and ADL are also known to detect ascaroside pheromones 83 However, the
specific role played by these neurons in olfaction remains largely unknown.

The chemosensory neurons in C. elegans synapse directly onto interneurons where behavioral

decisions are being made. These downstream interneurons can be classified into two groups. The
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first interneuron group consists of AVA, AVB, and AVD, command interneurons which control
forward and backward locomotion®°. This group receives the majority of its chemosensory inputs
from ASH, and are responsible for reflexive avoidance behaviors in response to aversive stimuli. The
AVA-AVB-AVD circuit can thus be thought of as analogous to brain regions such as the lateral horn
and amygdala in higher organisms. The second interneuron group consists of AIA, AIB, AIY, AIZ,
neurons have been shown to play roles in controlling goal-directed locomotion and learning be-

haviors 3+85:86

82 This circuit receives inputs from all 11 chemosensory neuron classes, and can
be considered as analogous to the brain regions in higher organisms which influence learning and
decision-making, such as the mushroom body and piriform cortex.

Several studies have recorded the calcium activity of single chemosensory neurons in response
to odorants, including AWB, AWC, and ASH responses to isoamyl alcohol 87, AWA responses to a
panel of odorants 88 AWC responses to diacetylgg, AWA, AWB, AWC, and ASE responses to ben-
zaldehyde ™. The latter results suggested that in response to benzaldehyde, some neurons (AWA and
AWC) acted primary odorant-sensing neurons, recruiting the neurons AWB and ASE with classical
neurotransmitter and neuropeptide signalling, respectively. A library of 15 single-neuron labeled
lines was used to assess responses to isoamyl alcohol, diacetyl, and NaCl°°. It has also been demon-
strated that neuron AWA fires action potentials, and that these potentials may encode stimulus-
specific features**.

The neurons ASE and AWC are known to respond asymmetrically to certain chemosensory stim-

uli. The two ASE neurons are structurally symmetric but are functionally distinct, with ASEL and

ASER expressing different sets of receptors”'. ASER detects chloride and potassium ions, while
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ASEL detects sodium ions”". The calcium activity of ASEL and ASER has been shown to be asym-
metric in response to NaCl presentation *>23. AWC is stochastically asymmetric: in each worm, one
neuron (either AWCL or AWCR) will adopt the identity AWCON, while its lateral pair will adopt
the identity AWCO 94, The odorants 2-butanone and 2,3-pentanedione have been shown to elicit
asymmetric responses in AWC, while other odorants such as isoamyl alcohol elicit symmetric re-
sponses.

Sensory adaptation has been observed in the neurons AWC, ASH, and ASE. When presented
with a prolonged chemical stimulus on a timescale of minutes or hours, the neuron’s activity will
gradually be reduced 259%97:98:88 T the neuron AWC, it has been shown that adaptation to one
odorant, benzaldehyde, reduces the sensitivity of AWC to isoamyl alcohol, but does not reduce

AWC’s sensitivity to 4 other odorants: butanone, diacetyl, pyrazine, and 2,4,5-trimethylthiazole”s.

1.5 THEORETICAL MODELS OF OLFACTORY CODING

How does an ensemble of sensory neurons encode chemosensory information? An effective neural
code must be reliable: a given odorant should elicit a similar sensory response every time it is en-
countered. The code must also be effectively decoded by downstream neurons. Evolution has tuned
chemosensory systems to be maximally advantageous to the animal, which is generally interpreted
to mean that chemosensory systems are robust, rapid, and efficient. The efficient coding hypothesis
proposes that the goal of any sensory system is to encode the maximum amount of information in as

few signals as possible”.
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Olfaction is fundamentally an object identification problem. Most of the environments organ-
isms exist in contain thousands of different chemicals'°°. The animal must be able to detect the
chemicals relevant to its life—chemicals that may indicate the presence of food, or a mate, or of a
danger. To respond with the appropriate behavior, the animal must be able to distinguish one chem-
ical from another.

In cases where detection of a specific molecule is critical to the animal, a single, narrowly tuned
receptor could be dedicated to detecting that specific molecule. The sensory neuron(s) express-
ing this receptor then project directly to higher brain regions. This strategy is known as a labeled
line'°"'*'%3 In many cases, however, the animal must be capable of discriminating tens of thou-
sands of chemicals relevant to its life—a set of chemicals called an odor space. This odor space can be
different for different organisms, since an animal may only detect the odorants relevant to its ecolog-
ical niche. For example, a pollinating insect would have an evolutionary advantage from being able
to detect and discriminate the smells of many flowers, but a predator will not. An effective olfactory
coding strategy is required to distinguish large numbers of odorants with a set of receptors at least
an order of magnitude smaller in number.

One sensory encoding strategy is sparse coding, in which a small number of unique neurons is
activated in response to a particular stimulus '°*. Experimental evidence for sparse coding has been

found in insect and mammalian visual and auditory systems 105,106

. The advantages of a sparse code
lie primarily in the simplicity of decoding the signal. However, requiring specific neurons narrowly

tuned to specific stimuli limits the number of stimuli the sensory system can encode for.

In olfaction, most animals studied thus far employ a combinatorial coding strategy 5+55:5%57:558,
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The advantage of a combinatorial code can be seen numerically. Given N sensory channels, and
making the simplifying assumption that each of these channels is binary in its activity, the number

of possible combinations is:

C:ZZ”, (r.1)

a number which scales rapidly with /N. Thus, combinatorial coding allows a finite number of re-
ceptors to encode a very large number of stimuli. In the context of olfaction, a combinatorial code
requires several conditions. First, a single neuron (or single receptor) recognizes multiple odorants.
Second, a single odorant is generally recognized by multiple neurons. Third, the set of neurons
activated by a given odorant is unique '7. A combination of these conditions results in a stimulus-
specific, spatially distributed activity pattern, or spatial map, either directly at the sensory neuron
level, or, as is more common in larger organisms, at the level of ganglia.

In addition to spatial coding, temporal signals may also play an important role in encoding olfac-

tory information '°*

108,199 This is particularly true in cases where the animal must actively probe
the chemical environment in a discrete manner (for example, a snift), where the temporal order in
which sensory neurons are activated can encode identity information, a strategy known as primacy
Codingl IO, 111 .

Even within the same animal, different coding strategies may be used for different odorants. In

many insect systems, it has been observed that while a combinatorial coding strategy encodes many

odorants, particular stimuli are detected via labeled lines'®*. Generally these labeled lines detect

21



stimuli critical to the animal’s ethology.

To efficiently encode olfactory stimuli, the number and tuning of receptors must also be opti-
mized by evolution. The optimal number of receptors is expected to grow with the population size
of olfactory sensory neurons, with the optimal distribution of receptors dependent on the environ-
ment''*.

How should the ensemble of chemosensory receptors be tuned? Experimental evidence thus
far suggests a wide range of tuning properties within a given animal, with some broadly tuned neu-
rons and some narrowly tuned neurons. However, it is difficult to rigorously define tuning without
an exhaustive catalog of the animal’s ethologically relevant odorants. Compressing such a high-
dimensional odor space into a limited number of receptors is a key challenge. Using an information
theoretic model, it has been shown that maximum theoretical coding efficiency (the most odors
distinguishable with the fewest receptors) is reached when each receptor is broadly tuned, each re-
sponding to approximately 50% of the odor space''*. However, this only holds if the responses of
different receptors are uncorrelated with each other. It has been proposed that a receptor ensemble
can achieve this by having disordered molecular affinities ' *+.

Theoretical work which models each sensory neuron in the ensemble as a nonlinear detector con-
strained by a limited response range has suggested that there may be an optimal sensitivity matrix,
dependent both on the number of neurons and on the statistics of the odor environment'*>. In

certain environmental limits, this will result in sparse tuning, while in other limits, it will result in

broad tuning.
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1.6 EXPERIMENTAL METHODS FOR MULTI-NEURONAL IMAGING

Measuring activity at the whole-brain level requires microscopic probes that can globally detect
changes in electric fields, intracellular ion concentration, or neurotransmitter release. One of the
most successful approaches has been to use proteins with activity-dependent fluorescence that are
produced by the neurons being measured in transgenic animals. Genetically-encoded protein indi-
cators have been developed for many aspects of neuronal activity, but nearly all whole-brain activity
recordings to date have used GFP-based sensors of calcium dynamics. The quality and ease-of-use of
genetically encoded calcium indicators (GECIs) such as GCaMP allow for stable, long-term imaging
of large populations of cells throughout the brains of genetically accessible animals. One advan-
tage of using an intracellular probe of neuronal activity like a calcium indicator — as opposed to a
membrane-bound sensor of electrical activity, for example — is that it is easier to optically discrim-
inate activity among large numbers of neighboring cells with touching membranes. To record the
activity of multiple neurons using fluorescence measurements, we need microscopes that are capa-
ble of resolving cells throughout the brain volume while comprehensively sampling at the timescale
of interesting behavioral and neuronal activity (~ 10 ms to ~ 10 s). The most common approach
to resolving large numbers of cells throughout a brain volume using fluorescence is to confine the
excitation light to a subset of the imaging volume, and selectively capture in-focus light from that
subset.

Conventional two-photon and confocal approaches rely on point scanning to image a brain

volume. While point scanning affords advantages in optical resolution, it is necessarily slower and
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precludes imaging many cells throughout large brain volumes on subsecond timescales. Confo-

cal microscopy can be accelerated by simultaneously scanning many points at once in a focal plane
using a 2D array of pinholes (a spinning disk confocal microscope). For example, spinning disk con-
focal microscopy has been used to record whole-brain activity from behaving worms at up to 10
volumes/second "**17.

As our ability to perform whole-brain imaging increases, so does the problem of dealing with the
enormous amount of data that it rapidly generates. Microscopes measuring whole-brain neuronal
activity easily generate vast amounts of raw image data (up to 1 GB/s or more). These data must be
reduced into compact time traces corresponding to the activity of discrete neurons or brain regions.
Segregating the activity of individual neurons is particularly challenging when neurons and nerve
fibers are densely packed in a brain volume or when neurons move relative to one another because of
the animal’s own movements. Continuously tracking neurons within the rapidly deforming brain
of a moving C. elegans or Drosophila larva is as significant a challenge as acquiring the volumetric
images in the first place. To complement the optical hardware that performs whole-brain imaging,
image-processing algorithms that are both fast and accurate are being developed to meet the chal-

lenge of comprehensive neuronal segmentation ''®"*%119,

1.7 WHOLE-BRAIN IMAGING STUDIES

Large-scale recording of large portions of the brain with neuron-level resolution has now become

possible in several small model organisms: the nematode Caenorbabditis elegans, the larval zebrafish
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120,121,122

Danio rerio , and the fruit fly Drosophila melanogaster, in both larval '*>'*# and adult

forms 125,126,127,

28 Other small animals like the hydra are being developed as models for whole-
brain or whole-circuit approaches to behavior '*. There has also been much recent work in ro-
dent systems (mouse and rat) where large numbers of neurons are recorded in rich behavioral con-

texts 13131

. These systems offer circuit-level dissections of behavior, but they do not yet allow com-
prehensive whole-brain recording.

The compact nervous system of C. elegans is ideal for whole-brain experiments. Small size allows
nearly the entire worm brain to be rapidly imaged with single cell resolution using light microscopy

— either the anterior brain or the posterior male “brain” '3

. Even with no external stimulus, a large
proportion of brain neurons engage in coordinated activity in immobilized worms. When this
whole-brain activity is projected onto a low-dimensional representation, brain dynamics resemble
alimit cycle '3?. Portions of the limit cycle correspond to the activity of pre-motor interneurons
known to be associated with locomotion direction, allowing epochs of fictive forward and backward
movement to be inferred in stationary animals. The stereotyped brainwide activity patterns for for-
ward/backward behavioral states have been interpreted to represent global commands that account
for the majority of the variance in neural dynamics.

Forward and backward locomotion are slowly changing behavioral states, but muscle activity
within each state occurs on faster time scales to drive rapid exploratory head bending and rhythmic
body undulation *>. Although the neurons that drive these movements operate at much faster time

scales, they are directly modulated by other neurons with slowly changing activity that are correlated

with forward/backward behavioral state changes. The activity and cross-modulation of neurons
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across a hierarchy of time scales occurs in both moving and immobilized worms. Nested activity
dynamics across time scales appears to be an organizing principle of the brain circuit, both in unre-
strained and fictive behavior 34,

Capturing whole-brain dynamics in immobilized animals is sufficient for dissecting sensory in-
puts, but to understand how brains respond to motor feedback and produce complex behaviors, it is
ideal to study brain and behavioral dynamics at the same time in the same animal.

Improvements in fast volumetric imaging and single neuron tracking now enable whole-brain
recording in freely moving worms* 16117 - Consistent with recordings in immobilized worms, large
numbers of neurons in the brain are correlated with forward and backward movement. But in freely
moving worms, these correlations also exhibit substantial diversity with respect to additional quan-
tifiable parameters of worm movement including velocity and curvature. Reliable decoding of all
parameters of worm behavior from brain-wide activity requires large numbers of neurons, hinting
at a more subtle and distributed neural code for the full dynamics of worm behavior '*5. Moreover,
the correlation structure between certain pairs of neurons changed dramatically when freely-moving
worms were immobilized. Thus, the neural dynamics of fictive behaviors in immobilized worms is
measurably different from the corresponding neural dynamics in unrestrained worms, an impor-
tant caveat when trying to understand a natural behavior by studying immobilized animals. Studies
of the male tail during mating have uncovered many neurons which contribute to multiple sub-
behaviors in different ways, leading to different correlation patterns throughout the circuit in dif-
ferent contexts. Functional correlations between neurons are not fixed, but explicitly depend on

context and behavioral state 13°.
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Multi-neuronal and pan-neuronal imaging methods have become important tools in the arsenal
of systems neuroscience. Common themes are emerging in studies of different animals across differ-
ent behaviors, pointing to shared principles in brain-wide representations of sensory information
and behavior 37 and reinforcing the need for large-scale recordings to fully understand the workings

of the brain.

1.8 DISSERTATION OVERVIEW

All animal brains use their sensory neurons to perceive the world around them. Sensory inputs are
processed by the interneurons of the brain, ultimately generating behavioral decisions. In this disser-
tation, we set out to understand how the entire C. elegans brain represents, integrates, and processes
olfactory information. Along the way, we developed genetic, experimental, and computational tools
which enable high-throughput acquisition of stimulus-evoked activity in labeled neurons.

In Chapter 2, we developed an experimental setup which used custom hardware to present ol-
factory stimuli and record neural activity in C. elegans. We employed high-resolution fluorescence
microscopy to image the brains of individual worms and a microfluidics system capable of precisely
controlling the chemical environment experienced by these animals. In Chapter 3, we constructed
a data analysis pipeline to extract calcium activity from this imaging data. We developed software
capable of reliably and efficiently tracking multiple, densely-packed neurons in semi-immobilized
animals. These methods have allowed us to robustly probe the C. elegans olfactory system in a high-

throughput manner.
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In Chapter 4, we employ these tools to understand how the chemosensory neuron ensemble in
C. elegans represents odor information. We developed a transgenic line in which all chemosensory
neurons in the worm can be simultaneously interrogated, and presented these animals with a broad
panel of olfactory stimuli. We found that collectively, the sensory neurons act as a spatial map to en-
code odor identity, with each odorant activating a unique combination of sensory neurons. These
neural representations of olfactory stimulus are robust: the neural responses to a single odor presen-
tation are sufficient to identify the odorant. Ablation and mutant experiments indicate that these
neural representations are not dependent on synaptic connections. We were also able to describe the
roles of individual sensory neurons in olfactory coding, finding diverse dose response and tuning
properties across neuron classes. Taken together, these results form a comprehensive picture of how
C. elegans uses a small number of sensory neurons to encode both odorant identity and intensity.

Next, we wanted to uncover how odor information is transformed and represented among the
downstream interneurons. To do this, we first needed a method of labeling every neuron in the
C. elegans brain. In Chapter 5, we developed a transgenic worm in which all neurons in the ani-
mal can be identified with a deterministic multicolor barcode. We conducted labeled whole-brain
imaging with these animals. We found that in the absence of stimulus, global brain activity was high-
dimensional and varied across individuals. Stimulus presentation would push the brain into a spe-
cific state. Each chemosensory stimulus elicited a unique average brainwide activity pattern, span-
ning sensory neurons, interneurons, and motor neurons. These results demonstrate that stimulus-
evoked activity is more widespread than previously thought, and suggest that odor identity informa-

tion is encoded in different patterns of activity in the interneuron ensemble.
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Pan-neuronal labeling has also allowed us to make direct comparisons between functional activ-
ity correlations and the anatomical wiring diagram of the worm. We found that functional activity
did not significantly correlate with synapse counts, but we wanted to explore whether the brain-
wide activity we observed reflected the structure of the connectome in other ways. In Chapter 6, we
used our labeled whole-brain data to train a neural network model of the C. elegans nervous system
constrained to connectome topology. We found that the anatomically-derived network was able
to predict neural activity more accurately than naive networks of a similar size. This result demon-
strates that on a basic level, the connectome puts measurable constraints on the brainwide activity
patterns we observe in the animal.

Finally, we conclude with a discussion of all of these results, their implications, and promising di-
rections for ongoing and future work. Looking forward, labeled pan-neuronal imaging will allow for
careful examination of the correlations between interneuron and motor neuron activity, furthering
our understanding of information flow from sensory input to motor output. The methods we have
developed will enable new, whole-brain approaches to understanding sensorimotor transformations

in C. elegans. ®
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Methods for imaging and stimulus
presentation

Vivek Venkatachalam, Guangwei Si, and Jessleen Kanwal contributed to the work described in this
chapter.

To RECORD FROM THE BRAINS of intact animals while presenting them with chemical stimuli, we
employed high-resolution fluorescence microscopy of individual animals placed in a microfluidics
device capable of precisely controlling the chemosensory environment. In this chapter, we will dis-
cuss the development and operation of the experimental setup used to precisely and robustly probe

chemosensory responses in C. elegans.

2.1 INTRODUCTION

The experimental C. elegans strains we used were genetically engineered so that the fluorescent cal-

cium indicator GCaMP6s was expressed in either some or all of the neurons. GCaMP fluorescence
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changes as a function of Ca®" concentration, and is thus a useful readout of neuron activity. The
experiments discussed in this thesis were conducted on animals in which a nuclear localization signal
(NLS) was employed to restrict GCaMP to the nucleus of each labeled neuron. This was done to
improve the separability of signals from nearby neurons. The animals discussed here also expressed
activity-independent fluorescent markers, such as BFP, cyOFP, RFP, mNeptune, and mCherry.
These markers can play two important roles. First, by labeling a subset of neurons in a specific color,
we can identify the neurons more easily. Second, an activity-independent marker expressed in a neu-
ron which also is expressing GCaMP can help to assess and correct motion artifacts or crosstalk be-
tween channels. To extract useful information from these animals, we used a spinning-disk confocal
microscope to record from their brains with sufficient temporal and spatial resolution to distinguish
individual neurons and quantify their activity.

In various studies, C. elegans have been imaged while freely crawling on agar plates, or while
semi-immobilized in a variety of microfluidics devices 3%*33'7:11¢_ Between these options, semi-
immobilization in a microfluidics channel is less naturalistic. Indeed, it has been shown that locomo-
tory circuit activity and feedback difter between immobilized and freely-moving animals .

Despite this, the microfluidics approach offers us several advantages when it comes to under-
standing chemosensory responses—responses which are unlikely to be dramatically changed by
motor feedback. First, immobilizing the animal allows us to precisely control both the presenta-
tion and removal of chemosensory solutions, and to switch stimuli on the timescale of seconds. In
contrast, in a freely moving experimental setup, chemosensory stimuli cannot be quickly removed

from the animal’s environment. Second, the higher spatial resolution we can obtain when imag-
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ing an immobilized animal makes it easier to separate the signals of neighbors—a critical advantage
when imaging a large number of neurons in a small region. Third, in an immobilized animal, we
can acquire higher-resolution reference (landmark) volume separate from a lower-resolution activ-
ity movie. This high-resolution image can include more color channels, and be used to identify the
neurons more accurately. Here, we will discuss in detail the experimental methods we developed to

present C. elegans with chemosensory stimuli and record their neuronal responses.

2.2 CONFOCAL MICROSCOPY

We employed a single-photon, spinning-disk confocal microscope to capture fluorescent images
from intact C. elegans. The microscope was inverted to allow for easy access to the microfluidics
device mounted on the stage. We employed a 488 nm laser to excite GCaMP i vivo, and used addi-
tional lasers to excite fluorescent proteins used as landmarks. To minimize crosstalk between chan-
nels, lasers were fired sequentially during multicolor recordings. We captured images with a 6ox
water-immersion objective with an NA of 1.2. Volumes were acquired using unidirectional scans
of a piezo objective scanner. All fluorescence microscopy is a trade-off between spatial resolution,
temporal resolution, laser power, and signal strength. We optimized two sets of imaging conditions,
one set for activity imaging and another set for landmark imaging. Both sets of imaging conditions
capture the region containing the majority of the neurons in the head of C. elegans, a volume of 112
wm by 56 um by 30 um.

In any given experiment, acquisition of a landmark volume precedes acquisition of an activity
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movie. This volume, which contains sufficient color channels to capture all of the landmarking
fluorophores, allows us to identify neurons of interest. The spatial resolution of these volumes is o.5
wmx 0.5 um x 1.5 wm/voxel, with the z-resolution of 1.5 um set by the point spread function. This
landmark can take up to 1 minute to acquire if the animal of interest contains multicolor labeling,
thus requiring the animal to be immobilized (see Section 2.4.1 for details).

The activity movies were acquired at a high speed, with lower spatial resolution (1 um x 1 um x
1.5 wm/voxel). At this resolution, we could acquire volumes at a rate of 2.5 Hz in standard acquisi-
tion mode, or up to 4 Hz when the piezo was driven at higher speed using custom control software.

Refer to Appendix A.1 for a listing of parts and filters used in this imaging setup.

2.3 MICROFLUIDICS DESIGN

To present animals with chemosensory stimuli in a controlled manner, we turned to microfluidics.
We employed a modified version of a microfluidic system developed in our group which was capable
of delivering multiple odors to Drosophila larvae 5°. The microfluidics chip is designed with an arbor
containing delivery points for multiple stimuli, together with a bufter delivery point and two control
switches, one for buffer and one for odor (Figure 2.1A).
Atany given time, three flows are active: one of the control switches, the buffer blank, and one

odor stimulus. The chip is designed to maintain laminar flow of each fluid, and the flow is split be-
tween a waste channel and an odor channel which flows past the animal’s nose. The chip described

here is designed to switch rapidly from one stimulus to the bufter. While the buffer is presented to
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the animal, we can switch from one stimulus to another—a slower process due to the size of the ar-
bor. Because the stimulus switch occurs away from the animal’s nose, the animal experiences rapid
switching from stimulus to buffer and then back to stimulus. Other chip designs employ a second
arbor in place of the buffer, allowing for rapid switching between stimuli. After the flows pass the
animal, they exit the chip via a waste port at atmospheric pressure. Waste is then removed with a
vacuum.

We grafted the odorant delivery arbor to a C. elegans loading chamber similar to those designed
by Chronis, et al. 138 We designed a loading chamber suitable for adult C. elegans, a narrow channel
62 um wide and 30 um high, with a gently tapered end (Figure 2.1B). The tapered end serves as
a guide to help hold the animal’s nose in place without distorting the animal. However, since the
body of a C. elegans worm is easily deformable, the tapering itself is insufficient to immobilize the
animal. For standard experiments, we instead rely on a combination of gentle squeezing from the
restricted height of the microfluidics channel and manual adjustment of hydraulic pressure to keep
the worm in one place. We will discuss loading and immobilization in more detail in Section 2.4.1.
In addition to the standard loading channel design, we designed a number of variants capable of
recording juvenile, adult, and male C. elegans. Refer to Appendix A.3 for the dimensions of all of
variants.

To increase experimental throughput and minimize the introduction of air bubbles, we designed
extra height into the waste channel downstream of the animal. The larger cross-sectional area allows
the animal to be flushed directly to the waste port at the end of an experiment, leaving the chip im-

mediately ready for loading the next animal. If the need arises, however, it is possible to recover the
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Figure 2.1: Microfluidics design for odor delivery. (A) A schematic of stimulus switching in the microfluidics chip. In

the leftmost panel, Stimulus 1 is being presented to the animal. In the middle panel, the animal is experiencing a buffer
blank. The buffer control switch has been opened and the odor control switch has been closed, pushing the odor stream
away from the animal. By closing the Stimulus 1 switch and opening the Stimulus 5 switch, we allow the odor stream to
change. In the rightmost panel, we switch back to odor delivery. The animal is now being presented with Stimulus 5. (B)
The design of microfluidics chip used for adult C. elegans. The odor control switch port (purple) and the buffer control
switch (blue) control the delivery of the stimuli (yellow) and buffer (light blue), respectively. The animal is loaded through
the worm loading port (green), and fluids leave the chip via the waste port (red). The channels flowing to the waste port
are double the height of the rest of the pattern.
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Figure 2.2: Odor manifold and confocal microscopy setup. (A) A schematic of the experimental setup. The odorant solu-
tions are contained on the odor manifold in glass syringes under air pressure, and flow from these syringes is controlled
by pinch valves. Tubing from the syringes leads to the ports on the microfluidics chip (image inset). The experimental
sample is imaged by an inverted spinning-disk confocal microscope. A timing loop connects the microscope camera with
the odor manifold controller. (B) An image of the experimental setup, with the odor manifold to the left and the confocal
microscope to the right. Note the tubing from the syringes on the manifold to the microfluidics chip on the microscope
stage.

experiment animal by sucking it back up the syringe and depositing it on an agar plate.

The microfluidics chips were manufactured in a cleanroom using standard soft lithography tech-
niques. Refer to Appendix A.2 for microfluidics chip fabrication details.

To deliver stimulus and buffer solutions to the chips, we used an odor manifold consisting of
a pinch-valve perfusion system which controlled the delivery of solutions held in glass syringes
(Figure 2.2). Each syringe was connected to flexible silicone tubing fed through a pinch valve, al-
lowing the valve to control flow from the syringe. The silicone tubing was then connected to more
durable plastic tubing, which ran from the manifold to the ports on the microfluidics chip. To pre-

vent air from getting into the chip, each syringe and tube were bled before being connected to the
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chip. The syringes were pressurized to 4 psi, giving us a total flow rate through the chip of approxi-
mately 0.2 mL/min. The switch from odorant presentation to buffer presentation occurred within
20 ms. A microcontroller and custom MATLAB scripts were used to control the pinch valves and
execute odorant patterns synchronously with the onset of camera recording*s.

Refer to Appendix A.4 for an odor manifold parts list.

2.4 EXPERIMENTAL DESIGN

In this section, we will discuss some of the scientific considerations that guided the design of the ex-
periments we carried out for the projects in Chapters 4 and 5. Refer to Appendix A.5 for a detailed

operations manual for our experimental setup.

2.4.1 WorMm SELECTION, LOADING, AND IMMOBILIZATION

We conducted experiments on young adult animals which had not been starved for at least 2 gen-
erations. The animals were picked from their agar plate and washed in Mg bufter. The animal was
loaded into this chamber nose-first by a syringe. As the animal enters the chip, we can manually
adjust its orientation before it is pushed into its final position in the loading channel. The fluid pres-
sure on the nose and tail of the worm is then manually equalized in order to minimize any motion of
the animal driven by pressure gradients.

A combination of this pressure equalization and contact with the walls of the loading channel
hold the worm loosely in place during imaging experiments. However, a worm is capable of wrig-

gling about in this channel. During activity imaging exposure times are short and the tracking al-
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gorithms (Chapter 3) are capable of following neurons through these movements. However, when
long exposures are required, such as for multicolor landmark imaging, the animals must be com-
pletely immobilized. To do this, 2 mM tetramisole hydrochloride was added to the loading buffer to
paralyze the animals.

We also prototyped a method for immobilizing animals using temperature, employing a dual-
layer microfluidics device which circulated cold water above the loading channel. This approach did
immobilize worms in the chip, but was more complex than drug immobilization. Cold temperature

immobilization remains a viable option when paralytics like tetramisole cannot be employed.

2.4.2 STIMULUS DELIVERY PATTERNS AND ADAPTATION

The odor manifold setup is capable of delivering any sequence of stimulus solutions and bufter
blanks. The two key parameters in designing such an odor sequence are the length of the odor pulse
and the length of time between odor pulses.

In C. elegans, it has been shown that the length of an odor delivery will change the calcium re-
sponse of sensory neurons®®. On short timescales (order seconds), the peak fluorescence tends to
increase with odor delivery length. The dynamics of the neurons can also change as a function of
odor delivery length. In the extreme limiting case, where an odor is presented and not removed,
sensory neurons will eventually return to their baseline activity level. For our experiments across a
broad odor panel, we were free to choose any odor delivery length, provided we used a consistent
length of time across all conditions. After several trial experiments, we settled upon an odor delivery

time of 10 seconds, a short odor pulse which avoids the eftects of adaptation. We found that this
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time period was sufficient to separate most ON responses (neuronal responses with the onset of
stimulus delivery) from OFF responses (neuronal responses upon the removal of stimulus delivery).
Note, however, that a 10 s pulse, when coupled with the timescale of GCaMP6s, is insufficient to
distinguish the two bouts of activity of neurons with both an ON and an OFF response to a given
odorant (i.e.: AWC and ASE to certain stimuli, such as 2-butanone).

The length of time between odor pulses would also have to be sufficiently long to avoid one odor
delivery from potentially changing the response to the following odor delivery. We also want this
time to be as short as possible, allowing for more odor presentations while minimizing photobleach-
ing due to long imaging times. We conducted trial experiments with a range of odor pulse spacings,
and found that odor pulses separated by at least 40 seconds of buffer blank would give indepen-
dent sensory responses: the presentation of the first stimulus did not affect the dynamics of the
second. We validated this spacing by comparing average responses to the first odor pulse to the aver-
age responses to sequential pulses, up to 8 odor pulses. We found no average trend in peak responses
across odor pulses when spaced thus.

With these two timescales in hand, we constructed odor sequences as required by different exper-
iments. To avoid confounding odor-evoked responses with blue light responses of some neurons in
C. elegans, we began each experiment with 1 minute in which the animal is imaged but only a buffer
blank is presented. Then, we began the odor delivery sequence, with 10 s odor pulses separated by
40 s buffer blanks. The odor pulses could either be distinct odorants or repeat deliveries of the same
odorant. Under our imaging conditions, we found that an animal in the microfluidics chip could be

imaged for up to 20 minutes before photobleaching is too severe for calcium imaging. However, it is
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often necessary to adjust the position of an animal in the chip before then. We found experimental
recordings of about 4-5 minutes to be ideal, with 3-6 odor deliveries per recording. The same animal

could then be recorded from multiple times if necessary.

2.4.3 ODOR CHOICE AND BUFFER PREPARATION

As our odor perfusion system delivers stimuli in liquid form, all of the odorants employed in chemosen-
sation experiments were water-soluble. The maximum concentrations we used (limited by the con-
tamination concerns discussed below) were 10 ~# dilutions for soluble odorants, and 200 mM for
salts. We have also presented animals with pheromones and bacterial supernatant, and observed sen-
sory neuron responses to both. For volatile odorants, any stored dilutions older than 3 weeks were
remixed prior to conducting any experiments.

Initially, we diluted odorants in deionized water, as was done in Drosophila larva experiments 5.
However, to address concerns of osmolarity balance within and without the animal, we switched
to diluting odorants in CTX bufter (s mM KH2PO4/K2HPO4 pH 6, 1 mM CaCl2 and 1 mM
MgSO4), with an osmolarity of 350 mOsm/L across stimulus and non-stimulus presentations. This
osmolarity was maintained by adding an appropriate amount of sorbitol, adjusted as necessary to
account for the osmolarity of any given chemosensory stimulus. We saw little qualitative difference
between sensory neuron responses to odorants dissolved in water and odorants dissolved in CTX
buffer 3.

Mo buffer (22 mM KH2PO4, 42 mM Na2HPO4, 85.5 mM NaCl, 1 mM MgSO4) was also

used for washing and loading animals into the microfluidics chip. An additional 2 mM tetramisole

40



hydrochloride was added to the Mg buffer when preparing animals for immobilized imaging.

2.4.4 AVOIDING ODOR CROSS-CONTAMINATION

In any chemosensation experiment, it is critical to avoid cross-contaminating different odorants,

as animals are capable of detecting very low concentrations of chemicals, and many organic com-
pounds will readily stick to plastic and glass surfaces. We took extensive precautions to ensure that
the animals used in our experiments were only exposed to the intended stimuli. Each stimulus con-
dition (given odor at a given concentration) was stored in its own glass bottle and delivered with its
own glass syringe and tubing. Microfluidics chips were used for only a given set of stimulus condi-
tions, and not reused for different stimuli. Gloves were used whenever the syringes and odors were
being handled.

Special attention should be paid to the elastic tubing and the pinch valves. The elastic silicone
tubing is more porous than harder plastic tubing, and small amounts of chemicals can leach through
the elastic over time and contaminate the pinch valves. To mitigate this, the elastic tubing compo-
nent was replaced more frequently than other parts of the syringe tubing. Additionally, we reserved
the switches on the left side of the odor manifold for low concentration conditions, and used the
switches on the right side of the odor manifold for high concentration conditions.

Additionally, odorants diluted in buffers containing salts have the potential to disable the experi-
mental setup if improperly handled. Any spills or leaks on the odor manifold can damage the pinch
valves. To avoid this, any spill was cleaned immediately, and the entire setup was regularly washed

with deionized water. To prevent salt buildup in the tubing used to deliver odorants and bufter
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blanks, every syringe and tube is washed at the end of an experiment by running pressurized deion-
ized water through the syringe. It is also critical to avoid leaks which drip onto the objective and tur-
ret, as salt buildup within the microscope chassis is very difficult to clean. Additionally, even small
amounts of liquid on the stage can cause the chip to move vertically as the piezo moves, resulting

in z-drift in the recording. Therefore, before any new microfluidics chip is used on the microscope
stage, it is first “proofed” by running pressurized deionized water through it. Likewise, any newly
constructed syringes and tubing had their seals checked with pressurized deionized water prior to be-
ing loaded with odorants. Any chips with leaks due to cracks or poor bonding were discarded. The
liquid expelled from the waste port must also not be allowed to build up to the point where it drips
off of the top of the chip. We used a vacuum line attached to a glass pipette tip, which was secured

to the microscope stage with putty.

2.5 DiscussioNn

The experimental odor delivery setup we developed for C. elegans has allowed us to characterize the
neuronal responses of populations of animals to a broad panel of odorants in a high-throughput
manner. The technology described in this chapter can be readily deployed to answer a number of
other interesting questions in C. elegans, such as characterizing and quantifying the nature of adap-
tation in the chemosensory neurons or understanding changes in representation when two odorants
are presented in rapid succession. Another interesting question we are in a position to pursue is the

neuronal representation of mixtures of odorants. The experimental setup is capable of delivering
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discrete mixtures, but the development of on-chip mixing will allow for much more sophisticated

140

time-varying patterns of odor delivery '4°. Continuous changes in odor concentration as a function

of time are more naturalistic than discrete odor pulses, and a gradual, continuous transition from
100% Odor A, 0% Odor B to 100% Odor B, 0% Odor A could shed light on shifts in neuronal repre-
sentation, particularly if one odorant is attractive and the other is aversive.

The observed differences in neural activity between immobilized and freely crawling C. elegans
suggest that a confined microfluidics channel may not be the best environment in which to study
circuits in which motor feedback plays a critical role '*5. However, the precise control of the chemi-
cal environment experienced by an animal in this sort of chip makes it a valuable asset when pursu-
ing questions of chemosensation. Looking forward to potential future whole-brain studies, it may
make sense to combine immobilized microfluidics experiments like those described here with exper-
iments in which the animal is allowed to navigate somewhat freely through an arena, allowing the

animal freedom of motion at the expense of fine environmental control. e
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Computational methods for analyzing
calcium imaging data

Vivek Venkatachalam, Amin Nejatbakbsh, Erdem Varol, and Liam Paninski contributed to the work
described in this chapter.

RELIABLE EXTRACTION of calcium activity traces from volumetric recordings is a prerequisite for
the study of neuronal ensembles. Recent advances in imaging techniques have enabled the capture
of functional neuronal ensembles 7% vivo within a wide variety of animal models, including larval ze-
brafish, Drosophila, and C. elegans'>>'+">**>'*5 However, in larger organisms, whole-brain activity
is often reported as fluorescence time traces within a given region of interest.

In contrast, the C. elegans brain is sufficiently small that the entire structure can be captured
at single-neuron resolution. Extracting activity from these neurons, however, can be a challenge.
The neurons in the head of the animal near the nerve ring are very densely packed, making it dif-

ficult to separate the calcium signals of neighboring neurons. Additionally, the C. elegans brain is
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easily deformable, making it impossible to rigidly align images onto a brain atlas as is done in adult
Drosophila and larval zebrafish. Instead, the neurons in C. elegans must be tracked in space as their
relative position changes during a recording''7. In this chapter, we will discuss our efforts to im-

prove the accuracy and speed of neuron tracking in semi-immobilized animals.

3.1 NEURON TRACKING AND FLUORESCENCE TRACE EXTRACTION

Even in the confined environment of a microfluidics chip, the worm can wriggle back and forth, dis-
torting the neurons in the head of the animal. As a result, the relative location of neuronal nuclei
can change over the course of an experiment. Confining GCaMP6s expression to nuclei makes each
nucleus easier to identify, but the high density of labeled neurons in the heads of multi-neuronally
and pan-neuronally labeled animals makes it difficult to separate nearby neurons using standard
edge detection methods. Likewise, it is almost impossible to create genetically labeled strains in
which GCaMP expression is uniform enough for baseline fluorescence levels to be equal across all
labeled neurons. This precludes using standard peak detection methods to reliably segment neu-
rons.

To solve this problem, we developed a hybrid method in which neurons were semi-automatically
segmented in a single landmark frame, then tracked through time using a neighborhood correlation

strategy.
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3.1.1 SEMI-AUTOMATIC NEURON SEGMENTATION

As a first pass to identify neuron centers, we use a straightforward combination of Gaussian filtering
and peak detection to return putative neuron centers from each landmark volume. However, this
step relies heavily on manual intervention to remove falsely labeled nuclei and to add nuclei that the
peak detection algorithm missed, such as small or dim nuclei. To simplify this task, we built a GUI
which allows users to navigate each 3D landmark image and click to add or remove neuron centers
(Figure 3.1A). This GUI allows the user to toggle between multiple fluorescent channels and a
maximum projection, allowing the user to take advantage of any fluorescent landmark labels in the
strain. Complete labeling of all neuron centers is only necessary once for a given animal, even if
multiple recordings have been made. The user then labels a small handful of widely spaced neurons
(4-8) in the first frame of the activity recording. This small number of labeled neurons helps the
tracking algorithm to compensate for any global motion or distortion that may have occurred in the
animal between the landmark volume and the activity movie.

In addition to segmentation, the GUI allows neurons to be manually identified. The names
the user applies are then associated with the activity traces of those neurons. For details on semi-

automated cell identification in pan-neuronal multicolor animals, refer to Section 5.2.7.

3.1.2 NEIGHBORHOOD CORRELATION TRACKING OF INDIVIDUAL NEURONS

While the entire brain of the worm can distort significantly across large distances, the neighborhood

immediately surrounding a neuronal nucleus of interest tends to remain consistent, with little local
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deformation. Our image registration algorithm relies on this fact. Instead of attempting to identify
neuron centers in every frame, we try to match the neighborhood surrounding the neuron center in
the first frame to the most similar neighborhood in the following frame. We then return the center
of the new neighborhood as the position of the neuron center in the next frame (Figure 3.1B).

We first employ this algorithm to map the neuron centers identified in the high-resolution land-
mark volume during the segmentation step onto the first frame of the activity movie, which is cap-
tured at a lower resolution. We then proceed to compare each frame of the movie to the next. Un-
like previous tracking methods, which kept track of the relative positions of a neuron interest and
a constellation of nearby neurons''7, the neighborhood correlation comparison is made indepen-
dently for each neuron. While we lose some information about local deformations by not integrat-
ing information about how neighboring neurons are moving, we gain the ability to run the tracking
of each neuron in a dataset as a parallel process, dramatically decreasing runtime. This also prevents
a mistake in tracking one neuron from propagating to other nearby neurons. We run the tracking
on a down-sampled version of the activity movie, also to improve runtime.

For a given neuron center, the tracking algorithm goes through the following steps:

1. Given the position of the given neuron center in the current frame, n, = (x;, y;, 2;), we
identify the neuron’s local 3D neighborhood N; in that frame, the volume with dimensions

2a * 2b * 2¢, in the region spanned by [x; — 4, x; + 4], [y — b, y: + b],and [z, — ¢, 2, + ¢].

2. We identify the naive center in frame ¢ 4- 1, from where we begin our search for the neighbor-
hood most similar to ;. For the first frame of the movie, this point is adjusted by a distance-
weighted average of the manually labeled neurons: 7, = (x, + ASw, Y+ AZwyi, 2z +
AZwz"). For any other frame, we simply take the naive center as the center of the previous

! _ i
frame, Ny =Ny = (xt,yt,%)-
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Figure 3.1: Neuron identification and neighborhood tracking. (A) A GUI for editing neuron centers prior to tracking.
Neuron centers can be edited in three dimensions, and neuron names can be manually assigned. (B) We perform pair-
wise image registration (left) between the large 3D neighborhood /N, surrounding a given neuron center 7, and nearby
neighborhoods in the following frame. The neighborhood M+1 best correlated with the original neighborhood N, is
identified, and the center of this new neighborhood is defined as the new neuron center 7, 1. This is then repeated for
the duration of the activity movie. A subset of the tracked neuron centers in a representative pan-neuronally labeled
animal is shown on the right. This animal was moving forward and backward in the microfluidics chip during imaging,
motion that the algorithm has successfully captured.
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3. Starting from the naive center 7, ;, we perform image registration between the maximum
intensity projections in x, y, and z of putative neighborhood N, , | and the previous neigh-
borhood /N, computing the pairwise correlation of these images. We then repeat this process,

moving the putative center 7, | by 1 pixel per iteration until one of the following occurs:

(a) The algorithm finds a putative neighborhood N, | whose correlation with N, exceeds
the confidence threshold C (usually set at above 90%). This putative neighborhood is
then defined as N;4;.

(b) The algorithm tests all putative neighborhoods within a maximum search radius 7max
of the naive center 7/, 1, but failed to find a putative neighborhood whose correlation
exceeds the confidence threshold C. The algorithm then returns the putative neighbor-

hood with the highest correlation with /N, as N; 4.

(c) If no neighborhood is found with a correlation exceeding a minimum value, the neu-
ron is considered lost in frame ¢ + 1, likely either due to motion taking the neuron
outside the region of interest. No center is reported, and the last reported neighbor-

hood NN, is used as the basis of comparison for following frames (¢ 4 2, # + 3, etc.).

4. The center of neighborhood N, is defined as the neuron center in this frame, 7,.41.

5. Repeat until the end of the activity movie is reached.

The user can optimize the tracking parameters such as neighborhood size (4, , ¢), maximum
search radius 7,5, and confidence threshold C for both accuracy and speed their type of data. The
optimal parameters will be different for different imaging conditions, and are particularly sensitive

to the temporal and spatial resolution of recordings.

3.1.3 EXTRACTING CALCIUM DYNAMICS

To extract calcium signals, we first map the positions of each tracked neuron center back onto the

original-resolution volumetric images. We then extract fluorescence values from these images. We
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Figure 3.2: GUI for manual proofreading of calcium traces. This interface allows us to simultaneously assess the trace of
a given neuron (lower right), traces of nearby neurons (left), and the spatial neuron track (upper right). Manual proofread-
ing allows us to exclude bad tracks, manually adjust baseline fluorescence fy, and correct mis-identified neurons.
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identify a small volume around each neuron center, containing voxels whose fluorescence will be as-
signed to the neuron. This volume is set as 2 um x 2 pm x 3 um for our data, but can be adjusted by
the user for the resolution of their data. We compute the mean of the 10 brightest pixels within this
volume to extract a raw fluorescence trace F;(¢). We then account for photobleaching by exponen-
tial detrending, giving us a clean fluorescence activity trace F(#). We then identify the background

fluorescence Fy for each neuron, and report normalized neuron activity AF/ Fy.

3.1.4 MANUAL PROOFREADING OF TRACES

The manual proofreading step gives us the opportunity to improve the quality of the data by remov-
ing neurons which have been mistracked, adjust the computer-determined baseline fluorescence £,
and to correct or add nuclear IDs. It also enabled us to remove traces which were contaminated by
the signals of neighboring neurons. We built a GUI which presents the user with all relevant infor-
mation about a given neuron to contextualize its trace, including a plot of its 3D spatial track and
the activity its neighbors (Figure 3.2). The software then compiles all of the processed traces for a
given individual into a single data structure.

For an operations manual for the complete code package, including detailed descriptions of the

scripts, refer to Appendix B.1.

3.2 DIscussioN

Neighborhood correlation with manual proofreading has given us high-precision tracks of even

densely packed neurons, and has allowed us to greatly increase the throughput of neuron tracking
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in whole-brain labeled C. elegans. It is now possible to extract clean signals from densely packed
neurons in semi-immobilized animals with minimal human intervention.

However, many potential areas of improvement remain, particularly when attempting to track
neurons in unconstrained animals. Currently, highly reliable tracking of densely-labeled neurons
in freely moving C. elegans can only be accomplished with manual proofreading 136 Furthermore,
there is great interest in extracting signals from cytoplasmic GCaMP, a truer readout of neuron
activity than nuclear-localized GCaMP. Being able to do this in a multi-neuronal context, however,
requires the segregation and tracking of multiple neuron masks, each of which can be distorted in
three dimensions. We are currently working to address these limitations by employing deep learning
image tracking methods, and hope that these new approaches can further improve the throughput

and quality of data processing for multi-neuronal labeled C. elegans lines. ®
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Ensemble representations of olfactory
stimuli in C. elegazm

Vivek Venkatachalam, Greg Cain, Nicolas Tan, Raymond Valenzuela, Shanshan Qin, Cengiz Peble-
van, Wesley Hung, Min Wu, and Mei Zhen contributed to the work described in this chapter.

For MANY ANIMALS, chemosensation is the primary sensory modality through which they perceive
the world. To detect and identify a wide range of chemical compounds, animals employ a large num-
ber of chemosensory neurons, making olfactory responses inherently collective responses. Thus,
multi-neuronal imaging methods are ideal for understanding the neuronal basis of odor coding.
Here, we studied the ensemble-level representation of odor identity in the nematode C. elegans. We
recorded from all chemosensory neurons in the animal simultaneously while presenting a broad
panel of olfactory stimuli in a highly controlled manner using a microfluidics device. Observing the
dynamics of these neurons has allowed us to build a quantitative and comprehensive picture of the

way the olfactory system in C. elegans consolidates and represents high-dimensional sensory infor-
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mation. We found that collectively, the sensory neurons encode odor identity and intensity. We also
described the roles of each of the individual sensory neurons in olfactory coding, finding diverse

dose response and tuning properties across neuron classes.

4.1 INTRODUCTION

Nearly all organisms rely on olfaction to navigate the world, find food, and avoid dangerous environ-
ments. To do so, they rely on olfactory systems which are capable of determining the identity and
concentration of large numbers of chemically diverse odorants. However, how the chemosensory
system in the nematode C. elegans encodes this high-dimensional information is unknown.
Olfactory coding has been extensively studied in mouse 5258 a5 well as both the larval and adult
forms of the fruit fly Drosophila melanogasters+555%57 . Insects and mammals have olfactory systems
which are broadly similar in structure 447, The first, environment-facing layer consists of olfac-
tory receptor neurons, each of which nearly always expresses only one unique receptor type. These
receptors are activated by multiple odorants, and each odorant binds to multiple receptors’*53.
Each odorant can therefore activate a distinct subset of sensory neurons, allowing different odor-
ants to be discriminated. This combinatorial receptor coding strategy allows a finite number of
receptors to encode a very large number of odorants. Odorants at higher concentrations will also

activate a larger number of sensory neurons %!

55, In insects and mammals, the olfactory recep-
tor neurons converge onto a number of glomeruli, which synthesize the information from multi-
g g Y

ple sensory neurons before passing it on to higher processing regions*>»>>5*. There is spatial sep-
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aration between the higher brain regions responsible for innate behaviors (lateral horn in insects,
amygdala in vertebrates) and learned behaviors (mushroom body in insects, piriform cortex in verte-
brates) 51:0203:04:65

When compared to C. elegans, however, these higher organisms employ a far larger number of
neurons to detect and identify olfactory stimuli. The compact nervous system of C. elegans consists
of 302 neurons, and the animal has just 11 pairs of chemosensory neurons”*7°. Despite its small
size, the C. elegans olfactory circuit is is capable of solving the same computational problems faced
by higher organisms—guiding the animal towards food and away from dangers ® InC. elegans, ev-
ery sensory neuron in expresses multiple receptor types”®*°. Only one of these receptors (ODR-10),
however, has been fully characterized in the context of olfaction 69,70, Many of these neurons are
also polymodal—in addition to olfactory stimuli, some detect gustatory stimuli such as pheromones,
salts and amino acids, gases such as oxygen and COz2, or temperature”’gl. We also know from the
anatomical wiring diagram of C. elegans that many of these sensory neurons are wired to each other
or receive feedback from interneurons®° (Figure 4.1C). This again contrasts with the olfactory
systems of higher organisms, in which the first layer of olfactory neurons is largely feed-forward.
Because of these characteristics, the C. elegans chemosensory system can be thought of as fitting
somewhere between the more distributed architecture we see in insect and vertebrate olfaction and
the intracellular computations performed within a single chemotaxing bacteria.

The multi-receptor sensory neurons in C. elegans, which synapse directly to interneurons where
behavioral decisions are being made, may be thought of as analogous to both the olfactory receptor

neurons and the glomeruli of higher organisms, their functions combined into a single cell. The
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interneurons downstream of the chemosensory neurons can be classified into two groups (Figure
4.1C). The first interneuron group consists of AVA, AVB, and AVD, command interneurons which
control forward and backward locomotion®?. This group receives the most inputs from ASH, a no-
ciceptive sensory neuron”>737+7¢_ These three premotor interneurons are responsible for reflexive
avoidance behaviors in response to aversive stimuli, and can thus be thought of as analogous to brain
regions for innate responses such as the lateral horn and amygdala in higher organisms. The second
interneuron group consists of AIA, AIB, AIY, AIZ, neurons have been shown to play roles in con-
trolling goal-directed locomotion and learning behaviors #+85-3¢:82  These neurons may be analogous
to the brain regions in higher organisms which influence learning and decision-making.

Behavioral experiments have identified odorants which are attractive or repulsive to the ani-
mal %%, and previous calcium work has characterized the responses of single chemosensory neu-
rons to a handful of odorants 7888992994139 'However, a complete understanding of olfactory
coding in C. elegans has not yet been achieved. How does C. elegans use its small ensemble of chemosen-
sory neurons to encode information about odorants in the environment? Is the animal only capable
of determining if an odorant is attractive or repulsive, or does it have sufficient information to iden-
tify odorants? And to what extent are the responses in the sensory ensemble shaped by communica-
tion between neurons?

We set out to build a comprehensive picture of the activity of the entire C. elegans chemosen-
sory neuron ensemble in response to olfactory stimuli. We built a transgenic animal in which the 11
chemosensory neuron pairs could be identified and simultaneously recorded from, and employed

microfluidics to deliver a broad panel of olfactory stimuli in a highly controlled manner at multiple
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concentrations. We find that odor-evoked responses are more widespread than previously known,
and that the chemosensory neuron ensemble acts as a spatial map to encode odorant identity: each
odorant activates a unique combination of sensory neurons. These sensory representations of ol-
factory stimuli are sufficiently reliable for odorants to be identified from the neural responses to a
single odor presentation. We find diverse response properties across the 11 chemosensory neuron
classes: some neurons are broadly tuned, responding to a wide range of olfactory stimuli, while oth-
ers are much more narrowly tuned, responding to only a few odorants in the panel. Dose response
curves are also different for different odorants, even within the same neuron. Ablation and mutant
experiments indicate that the sensory representations elicited by odorants are not dependent on
synaptic connections. These results suggest that despite its small size, the C. elegans olfactory system

can use ensemble representations to robustly determine both odor identity and odor intensity.

4.2 RESULTS

4.2.1 LABELING AND RECORDING FROM THE CHEMOSENSORY NEURONS

We developed a new C. elegans imaging line, ZM 10104, which enabled us to simultaneously record
from and identify the 11 pairs of chemosensory neurons contained within the amphid chemosen-
sory organs: AWA, AWB, AWC, ASE, ASG, ASH, ASI, AS], ASK, ADL, and ADF7?. GCaMP6s
expression was driven by the 7f#-z0 promoter, labeling all ciliated sensory neurons in the animal.
GCaMP6s expression was localized to the nuclei of these neurons to allow signals from neighboring

neurons to be better segmented. The relative position of these neurons can vary from individual to
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individual "*°. To allow these neurons to be reliably identified, we used wCherry driven by the gpc-1
as a sparse landmark, labeling the chemosensory neurons AWB, AWC, ASH, ASE, ASI, and AS]
(Figure 4.1B). To minimize the chances of incorrect identification, neuronal IDs for each odorant
condition were reviewed by at least two individuals, and ambiguous neurons were omitted from the
analyzed datasets.

Odor solutions were delivered using a microfluidic device adapted for C. elegans from a design
for Drosophila larva’s>'3°. The tapered end of the channel was positioned to allow odors in the de-
livery channel to flow past the nose of the animal (Figure 4.1A) *%. Individuals were repeatedly
presented with six 10 s odorant pulses separated by 40 s buffer blanks, and neuronal calcium activity
was volumetrically captured at 2.5 Hz with a spinning disk confocal microscope (Figure 4.1D). We
carried out experiments for over 7o conditions (23 odorants, each at multiple concentrations), with

an average of 100 odor presentations across multiple individuals for each condition.

4.2.2 ODOR IDENTITIES ARE ENCODED BY THE SENSORY NEURON ENSEMBLE

We studied a broad panel of 23 odors, selected from a set of 122 odors previously studied in C. el-

egans 67,68

. We constructed an odor space based on the chemical descriptors of each previously
studied odorant, and selected odors from different chemical families which span most of this space
(Figure 4.2A, Figure C.4)'**. We conducted experiments in which we presented each of these

odorants to populations of animals at multiple concentrations, and recorded the responses of the

11 pairs of chemosensory neurons in response to each of these conditions (Figure 4.2B-D, Figure

C.2).
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Figure 4.1: Labeling and recording from the chemosensory neurons. (A) Adult C. elegans were immobilized inside a
microfluidics device and presented with odor solutions in a highly controlled manner. Each animal was volumetrically im-
aged at 2.5 Hz with a spinning disk confocal microscope during odor presentations. (B) The animals expressed nuclear-
localized GCaMPés in all ciliated sensory neurons. A sparsely expressed wCherry landmark allowed us to identify the 11
chemosensory neurons. (C) Reliable downstream partners of the 11 chemosensory neurons identified in the C. elegans
connectome®’. (D) Average neuronal activity traces of the 11 chemosensory neurons in response to a single odorant
condition (1-octanol, 10~ % dilution). The 10 second odorant delivery period is indicated by the colored bar. Significant
responses (g < 0.01) are marked with stars, with “post” indicating a significant response to stimulus removal.)
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Figure 4.2: Ensemble responses to a broad panel of odorants. (A) An odor space constructed from the molecular descrip-
tors of 122 odorants (gray) previously studied in C. elegans. We selected for our experiments a panel of 23 odorants
(red) which span the odor space. Average peak responses of the 11 chemosensory neurons to odorants at (B) high
concentration (1074 dilution), (C) medium concentration (10~ dilution), and (D) low concentration (1076 dilution).
Peaks were computed from a time window from the onset of odor delivery to 10 s after odor removal. Responses are
reported as AF/FO, and significant responses (q < 0.01) are indicated with stars. Most odorants elicit significant
responses from unique combinations of neurons. (E) Compiled responses to three representative odorants at multiple
concentrations (1-pentanol, 1-nonanol, and benzaldehyde) show similar neural responses across concentration. The
magnitude of neuron responses generally increases with increasing concentration, and for some conditions, additional
neurons are recruited at high concentration. (F) Dose responses of AWA, AWB, AWC, and ASH are diverse, with distinct
concentration-dependent curves in response to different odorants. ASH responses segregate by behavioral valence,
with aversive odorants (orange-red) eliciting larger responses than attractive odorants (green-blue).
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We found that a larger number of chemosensory neurons were activated by olfactory stimuli
than previously known. For example, previous calcium imaging work had uncovered responses to
isoamyl alcohol in the neurons AWA, AWB, and AWC, with the nociceptive neuron ASH being ac-
tivated at high concentrations®”. we recapitulated these responses to isoamyl alcohol, and identified
novel reliable responses in neurons ASE and ASG. Across the 23 odorants, we largely recapitulated
previously described responses to tested odorants, such as AWA to diacetyl and AWB, AWC, and
ASE to 2-butanone*®"#3"39, We also uncovered many new significant responses (Figure 4.2B).

In the process of analyzing these data, we also made many neuron-specific observations. For in-
stance, the neuron AWB is often activated upon the removal of an odorant (an OFF response), as
can be seen in its response to 1-octanol (Figure 4.1D). For a small number of odorants, however,
such as diacetyl and high-concentration isoamyl alcohol, we observe AWB being activated by the on-
set of the odor stimulus (an ON response). This is consistent with previous work which has demon-
strated that AWB is capable of both ON and OFF responses in response to different concentrations
of isoamyl alcohol 7 (Figure C.3A). Most of the chemosensory neurons have excitatory responses
to stimulus, but some are inhibited by the onset of odor stimuli. Previous work has shown AWC
to be inhibited by several odorants, including diacetyl, benzaldehyde, and 2-butanone®»%%5%139,
We found that AWC is inhibited by every odorant in our panel (Figure 4.2B). We also observed in-
hibitory responses in ASK to a handful of odorants, such as ethyl butyrate and 2-nonanone (Figure
C.3B), and an inhibitory response in AS] to 2-butanone (Figure C.3C).

The majority of the sensory neuron responses we observed were symmetric—each left/right neu-

ron pair had similar average responses. AWC is known to respond asymmetrically to some stimuli,
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but because our transgenic animal does not express labels for AWCON and AWCOTF, we cannot
distinguish the two AWCs independent of their neural activity. ASE is known to have determinis-
tic L/R asymmetric responses to salts?*?3. We have observed significant asymmetric responses in
ASE in response to a a handful of odorants, including ethyl heptanoate and butyl butyrate (Figure
C.3D).

For most of the analyses presented in this study, we will be considering the peak responses of
each sensory neuron class, averaged across L/R pairs. This is necessarily a coarse-grained view of
chemosensory neuron activity, disregarding differences in dynamics, ON or OFF responses, and
asymmetric responses. Additionally, neither intracellular activity in the neurites 252027 nor any
spiking signals which could encode stimulus information *4, is captured by our nuclear-localized
GCaMP. Each of these details could contribute additional information to the downstream neurons.
Thus, the information captured by the peak responses represents a lower bound on the information
capacity of the chemosensory neuron ensemble.

Looking at the significant average peak responses to high-concentration odorants, we found that
nearly every odorant in our panel reliably activated a unique combination of chemosensory neu-
rons (Figure 4.2B). The chemosensory neuron ensemble is acting as a spatial map which contains
sufficient information to encode odorant identities. Across odorants, there is significant overlap in
significantly responding neurons, with neurons AWA, AWB, and AWC significantly responding to
most of the odor panel. These results suggest that C. elegans may code odorant identities combinato-
rially, as is seen in higher organisms.

Another way of representing the neural activity of the ensemble of chemosensory neurons is
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to compute the pairwise correlations of their average activity traces. These correlation maps are
different for different odorants (Figure C.5 A-B), supporting the conclusion that the ensemble

activity is unique to each odorant.

4.2.3 ADDITIONAL NEURONS ARE RECRUITED WITH INCREASING CONCENTRATION

We presented animals with different concentrations of each odorant, spanning two to three orders
of magnitude. Comparing chemosensory neuron responses for a given odorant across concentra-
tions (Figure 4.2B-D), we see that for most significantly responding neurons, the response magni-
tude (as measured by peak fluorescence) increases as concentration increases. Neurons which are
significant responders at low concentrations almost always remain significant responders at higher
concentrations, indicating that neural representation of a given odorant is similar across concentra-
tions. We see this in the compiled responses to three representative odorants: 1-pentanol, 1-nonanol,
and benzaldehyde (Figure 4.2E). For 1-pentanol, the subset of neurons ASH, ASJ, AWA, and AWC
is activated across all tested concentrations. For 1-nonanol, this subset contains neurons ASE, ASH,
AS], AWA, AWB, and AWC, and for benzaldehyde, the subset consists of neurons ASH, AWA,
AWB, and AWC. Note that for each of these three odorants, the sets of consistent responders are
distinct from each other, suggesting that at low concentrations, odor identity can still be determined
from ensemble responses. By considering the magnitude of the neural responses, it is also possible to
decode the concentration of the odorant.

For many odorants, such as 1-pentanol, 1-octanol, and methyl salicylate, we observe recruitment

of additional chemosensory neurons as concentration increases. In the case of 1-pentanol (Figure

63



4.2E), AWB is not significantly activated until the 10> dilution, and neurons ADF, ADL, and
ASG are not significantly activated until the highest tested concentration, the 10~ * dilution.

Across all odorants, we see that at low concentrations neurons are less active, and at high concen-
trations neurons are more active and more reliably engaged. From these results, we can conclude
that the chemosensory neuron ensemble encodes both odorant identity and odorant intensity. It is
easier to identify an odorant at high concentrations due to the additional neurons engaged.

These conclusions are supported by phase trajectory analysis of the activity traces of the chemosen-
sory neurons (Figure C.5B). Plotting low-dimensional representations of chemosensory ensemble
activity in response to different stimuli in the same PC space, we see that the response trajectories of
different odorants segregate. Response trajectories of different concentrations of the same odorant

are aligned in direction but differ in magnitude.

4.2.4 COMPARING AVERAGE NEURAL REPRESENTATIONS OF ODORANTS

To assess the degree of similarity between odor representations, we clustered the odorants by their
peak average neuronal responses (Figure 4.3A). Comparing these clusters to the chemical class of
each odorant, we found that certain chemical classes, such as alcohols and ketones, have more similar
neural representations within the class. Other chemical classes, such as esters, have more diverse
neural representations.

Constructing a PC space from the standardized peak average neural responses, an alternate rep-
resentation of neural space, we again see that classes such as alcohols and ketones are similar, while

other classes are spread throughout the space (Figure 4.3B). From the loadings of the first three
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Figure 4.3: Odorants have distinct average neural representations. (A) Odorants (high concentration) clustered by their
peak average neuronal responses. (B) A PC space built from standardized peak average neural responses. Chemical class
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alcohols and ketones, have more similar neural representations, while other classes of odorants, such as esters, have
more diverse representations. Refer to Figure C.6 for PC loadings.

principal components, we see that each of the PCs is broadly supported by the 11 chemosensory
neuron classes, indicating that all neurons contribute to the animal’s ability to distinguish odorants

(Figure C.6A).

4.2.5 SINGLE-TRIAL RESPONSES ARE SUFFICIENT FOR ODOR IDENTIFICATION

While many neurons are reliably activated during odor presentation, the magnitude of their peak
responses can vary across trials. Additionally, in response to the same stimulus, some neurons get
weakly activated in some individuals but remain silent in others. Given these sources of variability,
are the neuronal responses to a single trial (one odor pulse) sufficient to decode the identity of the
odorant presented?

We compiled the single-trial peak responses of each odorant, imputing the data of missing neu-

rons (Refer to Appendix C.1.4 and Figure C.7 for a detailed explanation of how missing data

65



A Individual responses to similar odorants in neural response PC space

1 O 1-heptanol-4 O 1-heptanol-4
o O 1-hexanol-4 4 s ::Zf“’m"_:
°\o 05 %@ O 1-nonanol-4 <
N o8, S
o =
- Ofecg 73 BB o 83
Y] g S °Q> o
&) -0.5 0o L2 oggg 3
- ° o
1 o ol g
1 2 3 4 ]
PC1:33.8% PC2:16.7% PC1:33.8%
1-heptanol 1-hexanol 1-nonanol

2 5
[e]
E A
= 0
Trials
B Individual responses to distinct odorants in neural response PC space
0.5 O 2-methylpyrazine-4 o
O diacetyll4 o O Y5 §° & o ° )
o 0 o pentyl etate-4 © o @ 1 g ® O © 2methylpyrazine
'o\ 28 0% % o 0 3 @00 09&9002 diace:ymem .
(D. -0.50 °R 0 o ooo E) ° cg’m%@‘%" oopenty feetete:
— ogg Boo o -0 03
a-1F % g o 3 y
8 : @mo o N b
_ o P -1
1.5 8¢ | s
-2 o
0 1 2 3
PC1:33.8% PC2:16.7% 2 0 pC1:33.8%

diacetyl pentyl acetate

2-meth¥IE¥razine

Trials

Figure 4.4: Representative comparisons of single-trial odorant responses. Representations of single-trial peak neural
responses to sets of (A) three similar and (B) three dissimilar odorants. In each case, the PC space is constructed from
the trial responses to only the three featured odorants. Single trial peak responses to the odorants is shown in the
heatmap below, with data for missing neurons imputed (see Appendix C.1.4 and Figure C.7 for details). (A) We see

that three similar odorants, the straight-chain alcohols 1-hexanol, 1-heptanol, and 1-nonanol, have more similar neural
representations. (B) In contrast, three odorants of three distinct chemical classes, 2-methylpyrazine (a pyrazine), diacetyl
(a ketone), and pentyl acetate (an ester), have more easily separable neural representations.
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Figure 4.5: Odorants are distinguishable based on single-trial neural responses. (A) t-SNE representation of single-
trial neural responses to all 23 odorants (high concentration). Responses to a given odorant generally cluster together.
(B) Linear discriminability analysis of single-trial data. The majority of single trials are correctly classified by odorant
delivered.



was imputed). We found that chemically similar odorants have more similar representations and
are thus are more difficult to distinguish (Figure 4.4A), while chemically dissimilar odorants are
more easily separable (Figure 4.4B). Given that over 40% of the variance is unexplained by the first
three principal components, overlap in PC space does not necessarily mean that the odorants are
indistinguishable. From a t-SNE representation of the single-trial responses to all 23 odorants in a
low-dimensional space, we see that trials of the same odorant tend to group together, even if low-
dimensional representations of different odorants overlap (Figure 4.5A).

To more rigorously test whether single-trial responses contain sufficient information to discrimi-
nate odorants, we first performed binary classification: attempting to separate the pooled single-trial
peak responses of each odorant pair (Figure C.8). Both linear regression (Figure C.8A) and SVM
(Figure C.8B) return low classification errors, demonstrating that the single-trial peak responses of
any two odorants are linearly separable.

Given that all the pooled single-trial neural responses of any pair of odorants were separable, we
then asked how well one could decode odor identity when the single-trial responses to all odorants
were pooled together—a task significantly more challenging than binary classification. We built a
multi-class classifier to perform linear discriminability analysis. The pooled single-trial data was ran-
domly divided into a training set (90%) and validation set (10%).The classifier was trained on these
data, then asked to predict odorant identity for each of the withheld single-trial neural responses in
the validation set (refer to Appendix C.1.s for details). We found that the majority of single-trial
responses were correctly classified (Figure 4.5B). From this, we conclude that the spatial map which

encodes odor identity is robust enough that the responses to just a single odor pulse are sufficient to
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reliably identify the presented odorant.

4.2.6 DIVERSE DOSE RESPONSES ACROSS NEURONS AND ODORANTS

In insect and mammalian systems, olfactory receptor neurons have been shown to have very similar
dose response curves across neurons and across odorants’5 445, "We do not observe the same simi-
larity in dose responses in C. elegans. Combining peak response data at multiple concentrations, we
generated dose response curves for each chemosensory neuron in response to each of the odorants
in the panel (Figure 4.6). We find diverse dose response curves across the chemosensory ensemble:
the same neuron has different response curves to different odorants, and the same odorant elicits
different response curves in different neurons.

Most of the odorants in the panel are attractive at low concentrations, but a handful, including
1-heptanol, 1-octanol, and 1-nonanol, are aversive at all concentrations (Appendix C.1.3)%. At
high concentrations, nearly all odorants are behaviorally aversive. The sensory neuron ASH has
been characterized as a nociceptive neuron, responding to aversive stimuli”>73747¢ Consistent with
this, every odorant in our panel elicits strong ASH responses when presented at high concentration
(Figure 4.2B). The dose response curves of ASH in response to different odorants segregate by be-
havioral valence: aversive odorants such as octanol or nonanol elicit larger responses than the same
concentration of attractive odorants, such as hexanol or isoamyl alcohol. This is particularly evi-
dent at low concentrations. We do not see this segregation between attractive and aversive odorant
responses in the other 10 chemosensory neurons. ASH is unique in its connectivity, making connec-

tions with the command interneurons AVA, AVB, and AVD. We therefore expect that ASH alone
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Figure 4.6: Dose responses of all 11 chemosensory neuron classes to a subset of the odorant panel. The low-
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odorants are green-blue.
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encodes behavioral valence for reflexive behaviors.

For neurons such as AWA and AWB, we find distinct concentration-dependent curves in re-
sponse to different odorants. For some odorants, the neuron’s dynamic range is large across con-
centrations (such as AWA responding to 1-pentanol, or AWB responding to 1-heptanol). For other
odorants, however, the same neuron’s dynamic range across concentrations can be much smaller
(such as AWA responding to isoamyl alcohol, or AWB responding to 1-octanol). Some neurons,
such as AWC, ADF, or ASK, have very steep response functions, appearing to be activated or in-
hibited above a certain concentration and silent below it. Previous work has shown that when the
ODR-10 receptor (natively expressed in AWA and sensitive to diacetyl) is instead expressed in AWB,
a previously attractive concentration of diacetyl becomes repulsive to the animal”®, suggesting that
AWB is activated by aversive stimuli. AWB has also been shown to be necessary for learning aversive
olfactory cues®*. From our dose response curves, we do not see the same segregation between attrac-
tive and aversive odorants in AWB as we do in ASH. This suggests that AWB may be broadly tuned
to olfactory stimuli, rather than being strictly a nociceptive neuron.

The likeliest explanation for the diversity in dose responses lies in the expression of multiple re-
ceptor types in each neuron. A single neuron may use different receptors (or even different combi-
nations of receptors) to sense different odorants, and may also be performing intracellular computa-
tions to synthesize the information from different receptors. Only one receptor has ever been fully
characterized in C. elegans olfaction, ODR-10, which is localized to the neuron AWA and responds
to diacety169’7o. However, we know that AWA responds to many other odorants, and diacetyl acti-

vates other neurons. Until more is known about the sensitivities of individual receptors, it will be
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difficult to extract insights about receptor tuning from the activity of the sensory neurons alone.
The multi-receptor strategy also gives evolution the ability to tune the number and type of odorants
each neuron responds to.

Some caveats about dose responses in C. elegans: we know that in C. elegans, the peak response of
aneuron can change in a nonlinear fashion depending on the length of an odor presentation*®. Ad-
ditionally, because each of these sensory neurons expresses many receptor types, we cannot extract
molecular parameters of a receptor from the dose response curve of a chemosensory neuron, as is
commonly done in model systems in which only one receptor type is expressed, such as in insect or
mammalian olfactory systems. Nor can we assume that the same receptor (or same set of receptors)
is being activated when the neuron is presented with different odorants. Thus, these dose responses
are best interpreted as a relative comparison of a neuron’s responses to different odorants in the

context of this experimental design.

4.2.7 SENSORY NEURONS ARE BROADLY OR NARROWLY TUNED TO OLFACTORY STIMULI

For sensory neurons engaged in olfaction, one can define tuning as the number and types of chemi-
cal compounds a given neuron responds to. In higher organisms, sensory neuron tuning is governed
predominantly by the properties of the chemosensory receptor: the affinity of the receptor defines
the set of chemical compounds the sensory neuron is activated by **. In the multi-receptor sensory
neurons of C. elegans, however, tuning is a property of the cell.

We can visualize the tuning of each chemosensory neuron to olfactory stimuli by plotting the

significant responses (4 < 0.01) of each neuron in the odor space we constructed in Figure 4.1A.

72



Significant response (q < 0.01)

Odor space ASH ASE

ASH significant responses in odor space ASE significant responses in odor space
6
s 6
4 N
= 4
= - g =
= £29 . 2
oo 3 etes S £
. &
o Qo % 3o
2 %
2 2
4L : s . ]
5 — - -5 5 -
0 - - [} A 0 4 = - 4
5 5 S 4 2 g T — s a4 T . g o
0/ o, 6 8 . 2 4 6 }
PC 2 (14.8%) PC 1 (19.6%) e 2 el Pe 1 (100%) i . e
AWA significant responses in odor space AWB significant responses in odor space. AWC significant responses in odor space
6 N 6
.
4 . . . B .
e - oS, - .
. - €2 . £2
®_|° « < . . < °® o0 -
. . . . . 5 p .
‘e ge %o * Qo W
o o )
2 B 2
s &
45 5 3 s
o il - “ ;
s a ! -~ = 0 ————— 0
e e 4 2 o L - B
PC2(14.8%) PC1(19.6%) AL " AL "
B PC 2(14.8%) PC1(19.6%) PC2(14.6%) PC 1(19.6%)
ADF significant responses in odor space ADL significant responses in odor space ASG significant responses in odor space
6 6 6
s 4 . s
. .
«® e . B
g2 .
. . < .
. b & .
. . 9o %
.
2 2 2
s s s
4 - 4 - 4 -
= 0 . 0 — 0
s 4 ——— - s 4 — - s 4 ——— -
200 S e S o Y ereanal 20 s
PC2(14.8%) PC1(196%) PC2(14.6%) PC1(196%) PC2(14.8%) PC1(196%)
AS! significant responses in odor space ASJ significant responses in odor space ASK significant responses in odor space
6 6 6
4 ® I b 4
.
2 . = «* e
g2 . g2 .
e e = o e - = o® e _
- o Qo ., . Qo .o
o
2 2 2
s s . s
o B " - -
— < ~0 — = =0 — °
s 4 - = s 4 s - - 4 4 2 —
2 0 2 4 el 2 o 2 NERrell] 02w e . 5
PC2(148%) PC1(196%) PC2(148%) PC1(19.6%) PC2(14.8%) PC1(196%)

Figure 4.7: Chemosensory neuron tuning. Plotting the significant responses (g < 0.01) of each neuron in odor space
(Figure 4.1A), we see that some neurons are activated by nearly the entire odorant panel (broadly tuned), while other
neurons are activated by only small numbers of odorants (narrowly tuned). ASH, a known polymodal nociceptor, is
broadly tuned. AWA, AWB, AWC, and ASE are also broadly tuned in their responses to odorants. Neurons ADF, ADL,
ASG, ASI, ASJ, and ASK are more narrowly tuned, and are activated by distinct subsets of odorants. Refer to Figure C.9
to visualize peak responses in odor space. Refer to Figure C.4 for the odor space PC loadings.
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We see that some neurons are activated by nearly the entire odorant panel (broadly tuned), while
other neurons are activated by only small numbers of odorants (narrowly tuned) (Figure 4.7). ASH,
a known polymodal nociceptor, is broadly tuned, being activated by all odorants in the panel at high
concentration. This is unsurprising because at sufficiently high concentrations, all odorants should
be behaviorally aversive. Since ASH is part of the reflexive avoidance circuit, we expect that it is not
tuned to a particular part of odor space.

AWA, AWB, AWC, and ASE are also broadly tuned in their responses to odorants, each respond-
ing to nearly the entire odor panel at high concentrations. AWC responses are fairly uniform across
the odorant panel. However, each of the neurons AWA, AWB, and ASE is most strongly activated
by different groups of odorants. We can see this by projecting the average peak responses of each
neuron into odor space (Figure C.9). AWA appears to be activated most strongly by ketones, AWB
is activated more strongly by many esters, and ASE is most strongly activated by alcohols.

Neurons ADF, ADL, ASG, ASI, ASJ, and ASK appear to be more narrowly tuned, activated
by small sets of odorants even at high concentration. These subsets are distinct for each of these
narrowly tuned neurons. For instance, ASI responds significantly to 7 of 23 odorants in our panel,
and ADL responds significantly to just 3 of 23. The sensitivity of each of these narrowly tuned neu-
rons in odor space appears to be contiguous—the set of odorants it responds to contains chemically
similar compounds. This suggests that these chemosensory neurons have been tuned to molecular
properties, rather than specific molecules. Note that many of the neurons being classified here as
narrowly tuned with respect to olfactory stimuli are known to play important roles in other forms of

sensation. For instance, ASI is known to respond to tastants such as lysine and certain salts, ADF is
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involved in oxygen sensing, and ADL is known to sense pheromones”%"".

All sensory neurons synapse onto the interneuron group responsible for learned and goal-directed
behaviors: AIA, AIB, AlY, and AIZ (Figure 4.1C). This includes both broadly tuned sensory neu-
rons (AWA, AWB, AWC, and ASE), and narrowly tuned sensory neurons (ADF, ADL, ASG, ASI,
AS], and ASK). These interneurons also receive an input from ASH onto AIA. The interneurons
AIA, AIB, ALY, and AIZ synthesize the information from these sensory channels and inform be-
havioral decisions. Each set of sensory neurons could provide different information to these in-
terneurons. The ASH signal indicates to the animal whether a stimulus is attractive or aversive.

The broadly tuned sensory neurons could provide coarse-grained information about odor identity,
identifying it perhaps as an alcohol or an ester. The narrowly tuned sensory neurons provide more
detailed odor identity information by responding to small parts of odor space. Collectively, the
broadly and narrowly tuned neurons generate the spatial map that allows odorants to be precisely
and robustly identified.

Across the chemosensory neurons, tuning to olfactory stimuli (defined as the fraction of the
odor panel which elicit significant responses) does not appear to be correlated with the number of
GPCRs expressed *° (Figure C.10). ADL the sensory neuron, which expresses the most chemore-
ceptor GPCRes, is sensitive to just 3 odorants in our panel. ASH expresses a large number of GPCRs
and is also broadly tuned to our odorant panel, but ASK and AS]J, both with large numbers of
GPCR types expressed, are both narrowly tuned. ASE, which appears to be broadly tuned in our
study, expresses the smallest number of GPCRs. We also do not know how many of these GPCRs

are used in olfaction. For instance, ADL is known to sense many pheremones, which may require
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additional receptors. Additionally, tuning is a combination of receptor number and receptor prop-
erties. until we characterize more of these receptors, we cannot draw conclusions about tuning from

the number of GPCRs expressed in each neuron.

4.2.8 SENSORY REPRESENTATIONS ARE NOT DEPENDENT ON SYNAPTIC CONNECTIONS

From the C. elegans connectome, we know that the chemosensory neurons are not just feed-forward.
There exist lateral connections between sensory neurons, such as ASI to AWC and AWB to ADEF?%,
There are also feedback connections from interneurons to some sensory neurons, such as AIA onto
AWC. To assess the extent to which the neural representations of these odorants are shaped by inter-
actions between neurons, we carried out a number of perturbative experiments.

We crossed the sensory neuron labeled line (ZM10104) with an #nc-13(s69) synaptic trans-

mission mutant "4°

, and presented these mutants with some of the odorants from our panel. For
isoamyl alcohol and diacetyl, the same neurons significantly responded (4 < 0.01) in the WT and
mutant animals (Figure 4.8A). This indicates that, at least for these two odorants, synaptic connec-
tions do not shape the spatial map which encodes odorant identity. We do note, however, that the
magnitudes of the average peak responses are generally lower in the mutants.

We also ablated the ASI neuron pair in the ZM 10104 line, and presented the ablated animals
with high-concentration 2-butanone. ASI is connected to AWC in the wiring diagram (Figure
4.1C), and both ASI and AWC are significantly activated by 2-butanone (Figure 4.2B). We found

no difference in the set of significantly activated neurons between un-ablated (wt) and ablated ani-

mals, save the absence of ASI (Figure 4.8A). This indicates that ASI does not modulate the activity

76



Single-neuron virtual knockouts
0.4

unc-13 - . - .

0.3

wetal & s . .

Classification error
o
N

AS| ablation | * .

True Class

&
‘9

nonanone
butanone
2-methylpyrazine
diacetyl
benzaldehyde
isobutylthiazole
dimethylpyrazine
heptanone
geraniol
1-heptanol
pentyl acetate
IAA

ethyl butyrate
butyl butyrate
methyl salicylate
1-octanol
pentanedione
1-pentanol
1-nonanol
trimethylthiazole

1-hexanol

®

“(n|(n|o|a]|=~

[N [ R RS S

w

alalale

P [PV [P

N

[N S Y R PR 'Y

slo|e|e|=

|||

[P RN N

P I [P [ [P P I

E N e N N N ]

alala|lo|a|=|o|e|n

-

©

I ) P

alaln =

~[n[a]w

alm|m|= i o=

ethyl acetate 2 1

ethyl heptanoate 2 1 1 1 2 1 1 3 1 1 1

o e \;\a o 2° WP Q8 40 g @ \@ G
‘”‘ﬁ“ﬁ@& sﬁ;\@“ N ‘*‘lﬂﬁo@‘ ‘:\v Sy @““w °v°°“fo“"“° 4&‘&0 °§‘*“°B
2™ 96) ‘d&'
Predicted Class

Figure 4.8: Impact of perturbations on odor representation. (A) We combined the sensory neuron imaging line
(ZM10104) with an unc-13(s69) synaptic transmission mutant, and recorded neural activity during odor presentation.
We found that for isoamyl alcohol and diacetyl, the same set of neurons were significantly responding (g < 0.01).
This suggests that the ensemble responses are not being shaped primarily by synaptic connections. (B) We virtually re-
moved each neuron from the dataset, and computed the average classification error for each virtual knockout. We find
that classification accuracy remains close to wild type (all 11 neurons), but is degraded more severely by the removal of
narrowly tuned neurons (ASI, ASK, ASJ, ASG) than by the removal of broadly tuned neurons. (C) Linear discriminability
analysis of single-trial data with AWC virtually removed.
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of AWC or any of the other chemosensory neurons during 2-butanone presentation.

Together, the results from ablations and the #z¢-13 mutant suggest that the ensemble responses
are not being shaped primarily by synaptic connections. A previous study suggested that neuropep-
tide signalling recruited the neuron ASE in response to benzaldehyde®®. Our mutant experiments
do not rule out the possibility that other extra-synaptic signals between the sensory neurons may

help to shape the responses of the chemosensory ensemble to specific odorants.

4.2.9 VIRTUAL NEURON KNOCKOUTS DEGRADE CLASSIFICATION ACCURACY

To understand the relative contribution of each chemosensory neuron to odor discriminability
(Section 4.2.5), we performed virtual knockouts—removing each neuron class from the dataset
and retraining the multi-class classifier on the remaining data. In these 7z silico perturbations, we
find a minor decrease in classification accuracy when compared to wild type (Figure 4.8B). We note
that classification accuracy is degraded more severely when narrowly tuned neurons such as ASI,
ASK, ASJ, and ASG were removed from the dataset, than by the removal of broadly tuned neurons
such as AWA, ASH, and AWC. Regardless of the neuron removed, no single-neuron virtual ablation

severely degrades the performance of the multi-class classifier (Figure 4.8C).
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4.3 METHODS

4.3.1 PLASMIDS AND CROSSES

To construct the ZM 10104 imaging strain we created and then crossed two integrated lines, one ex-
pressing GCaMP and one expressing the wCherry landmark. The first of these lines, ADS700, was
made by co-injecting /in-15(n765) animals with pJH4039 (if-20 GCaMP6s::3xNLS) and a lin-1§
rescuing plasmid. A stable transgenic line (hpEx3942) with consistent GCaMP expression in the
chemosensory neurons was selected for integration, and transgenic animals were irradiated with
UV light to integrate the transgenes into the genome. The resulting integrated line (acalsoo8) was
then backcrossed four times against N2 wild type. The second line, ADS701, was similarly made
by co-injecting /in-15(n765) animals with pJH4040 (gpc-1 wCherry) and a /in-1 5 rescuing plasmid.
A stable transgenic line with good wCherry expression was selected for integration, and transgenic
animals were irradiated with UV light to integrate the transgenes into the genome. The resulting
integrated line (hpls728) was then backcrossed four times against N2 wild type. To make ZM1o104,
ADS700 hermaphrodites were crossed with N2 males. Heterozygous aealsoo8/+ male progeny were
then crossed with ADS701 hermaphrodites. F1 progeny were picked for wCherry expression, and
F2 progeny were picked for both GCaMPé6s and wCherry expression. The line was then homozy-
gosed in the F3 generation.

The ADS707 mutant imaging line was created by crossing the ZM1o104 line with EG9631,

146

an unc-13(s69) mutant obtained from the CGC '#°. EG963 1 hermaphrodites were crossed with
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ZM1o104 males. Heterozygous (aealsoo8/+; hpls728/+; +/unc-13) F1 hermaphrodite progeny
were selected by GCaMP6s and wCherry expression and wild type locomotion (#7¢-13 is recessive).
F2 progeny were picked for fluorescence and the #n¢-13 uncoordinated phenotype. The line was

then homozygosed for fluorescence in the F3 generation.

4.3.2 ODOR DELIVERY AND CONFOCAL MICROSCOPY

For these experiments, young adult C. elegans were loaded into microfluidics devices (Chapter 2). A
single landmark image was captured in two channels (GCaMP6s, wCherry) for each animal. Then,
for each odor condition (a given chemical at a given concentration), the animal was presented with
six, 10 s pulses of odorant solution, separated with 40 s CTX buffer blanks. During odor presenta-

tion, the GCaMP6s channel was recorded at 2.5 Hz.

4.3.3 ANALYZING MULTI-NEURONAL RECORDINGS

The neurons in each activity recording were identified and then tracked through time using the
neighborhood correlation method described in Chapter 3. The criteria for identifying each neuron
class are described in Appendix C.1.2. Neurons which could not be unambiguiously identified were
excluded from the dataset. All neuron tracks were then manually proofread to exclude mis-tracked
neurons (Section 3.1.4). Activity traces were bleach corrected and reported in:

AF  F1)—F
F,  F
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Normalization by baseline fluorescence F{ allowed for direct comparisons within a given neuron
class across L/R and across individuals. The baseline ) value was determined individually for every
recorded neuron, set at the sth percentile of the distribution of bleach-corrected fluorescence values,
with the opportunity for manual correction.

We employed 2-tailed, paired t-tests to compare the mean signal during stimulus presentation
with an unstimulated period of identical length within the same neuron. Neurons were tested for
both ON and OFF responses. The p-values were corrected for multiple testing using FDR 7. To

test for asymmetric neuron responses, we used 2-tailed, two-sample t-tests (unpaired).

4.4 DiscussioN

C. elegans uses a compact olfactory system consisting of just 11 pairs of chemosensory neurons to
navigate its environment, find food, and avoid dangers. By recording from all of these neurons si-
multaneously while presenting animals with a broad panel of 23 odorants, we have been able to
build a more complete picture of the activity of the chemosensory neuron ensemble in odor space.
We found that a sizeable fraction of the 11 chemosensory neurons responded to each olfactory
stimulus, and that nearly every odorant in our panel reliably activated a unique combination of
chemosensory neurons. This suggests that C. elegans may use the chemosensory neuron ensemble as
a spatial map combinatorially code for both odorant identity and intensity. Our single-trial discrim-
inability results show that despite the observed level of variability in neuron responses, sufficient

information is encoded in this spatial map to correctly classify any odorant in our panel with over
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80% accuracy from the responses of just a single odor pulse. Our mutant and ablation experiments
suggest that synaptic communication and feedback do not play major roles in shaping the spatial
map.

How do each of the 11 chemosensory neuron classes contribute to this spatial map? From the
principal component analysis of average odorant responses, and from the 7% sz/zco knockouts, we
see that all chemosensory neurons contribute to odorant classification. However, some neurons
are more important than others for this task. ASH detects aversive stimuli, but its activity does not
seem to contribute much to odor identification. The neurons AWA, AWB, AWC, and ASE are ac-
tive across most of our odorant panel, and their activity can provide very coarse odor identification.
Their broad tuning suggests that their activity may be sufficient to drive chemotaxis behavior to-
wards attractive stimuli or away from aversive stimuli. However, they do not contain enough infor-
mation to robustly identify an odorant’s identity. Narrowly tuned neurons such as ASK, AS], and
ASG are each activated for only a small number of stimuli. From the perspective of odor identifi-
cation, however, this is an advantage: if ASK is active, one could immediately narrow the number
of possible odorants to a small fraction of the odor space. This is reflected in the virtual knockouts,
where removing narrowly tuned neurons has a greater impact on classification accuracy than remov-
ing broadly tuned neurons.

An animal with only broadly tuned neurons intact would likely still be able to perform chemo-
taxis, but it may not be able to correctly classify odorants. An animal with only narrowly tuned
neurons intact, however, would likely be unable to perform chemotaxis at all. This model is consis-

tent with behavioral ablation experiments, which have shown that ablation of neurons such as ASK
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result in minor degradation of chemotaxis ability, but ablation of neurons AWA and AWC destroy
chemotaxis ability entirely”>.

The tuning properties of each of these chemosensory neurons in C. elegans is a property of the
cell, not of a single receptor as it is in higher organisms. Evolution can tweak the number and types
of receptors expressed in any given neuron, in addition to shaping the properties of each of the re-
ceptors themselves. Since the chemosensory neurons in C. elegans are thus theoretically more flex-
ible, the diversity of dose responses we see is not unexpected. Despite this flexibility, we see in our
data that many of the sensory neurons, including both broadly and narrowly tuned ones, seem to be
sensitive to molecular properties (i.e.: particular chemical class(es)), rather than to a disparate set of
molecules. As a field, we don’t yet know enough about the chemosensory receptors in C. elegans to
understand how multiple receptors combine to generate the tuning properties of the chemosensory
neurons.

As mentioned previously, most of the analyses presented in this study were conducted with
peak responses, a coarse-grained view of neural activity which leaves out many potentially impor-
tant details, such as information encoded in dynamics, spikes, or asymmetries. The conclusions
made in this study are thus based on a conservative lower bound on the information capacity of the
chemosensory neuron ensemble. This study focused on pure odorants under conditions designed to
avoid adaptation, but in its environment, most olfactory stimuli an adult C. elegans will experience
likely come in the form of odor mixtures. How the animal represents the sensory input of naturalis-
tic odor mixtures is an exciting question left for future work.

How does the information contained in these sensory representations get transformed into be-
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havior? We have discussed how the downstream interneurons segregate into two clusters: a reflexive
avoidance circuit consisting of the command interneurons AVA, AVB, and AVD which receives
inputs predominantly from ASH; and a circuit for learned and goal-directed behaviors consisting
of the interneurons AIA, AIB, AIY, and AIZ, which receives inputs from all of the chemosensory
neurons. The former circuit is responsible for immediate action to avoid dangerous environments.
As a nociceptor, makes sense for ASH to have a “direct line” to motor control, allowing the ani-

mal to initiate evasive action in response to a noxious stimulus. It is likely in the latter circuit that
odorant identity and intensity are decoded by the animal. Previous studies have shown that these in-
terneurons play a role in olfaction-driven behaviors, and may integrate information from the sensory
neurons across multiple modalities %#5-*%2 Tt is in these interneurons that we may find processed
odorant representations.

This study has uncovered reliable responses of the chemosensory neuron ensemble to a broad
panel of olfactory stimuli, and has shown that these responses form a spatial map which contains
sufficient information to robustly identify odorants. Whether, and how, the animal actually em-
ploys this information remains unknown. We hope future work can determine whether the down-
stream interneurons preserve odorant identity information, and how they transform these sensory

representations to generate behavioral output in response to olfactory stimuli. e
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Whole-brain functional imaging with
deterministic landmarking

Eviatar Yemini, Amin Nejatbakbsh, Erdem Varol, Ruoxi Sun, Gonzalo Mena, Liam Paninski, Vivek
Venkatachalam, and Oliver Hobert contributed to the work described in this chapter.

DOWNSTREAM OF THE CHEMOSENSORY neuron ensemble, we find the interneurons. The C. el-
egans nervous system is topologically shallow, with only 1 or 2 interneuron layers separating most
sensory neurons from motor neurons. The population of interneurons integrates chemosensory
information with other inputs and generates behavioral decisions. We wanted to uncover how infor-
mation encoded by the chemosensory neurons is transformed and represented in the downstream
interneurons.

Only a small handful of single interneurons in C. elegans have been studied in the context of
olfaction *+#5-852 To build an understanding of odor representation among the interneuron popu-

lation, we would like to be able to interrogate the entire population of interneurons simultaneously.
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A pan-neuronal approach, in which all neurons in the animal are labeled with a calcium indicator
such as GCaMP, would be ideal for such a study. A whole-brain labeled line would also give us ac-
cess to the sensory and motor neuron activity. Previous pan-neuronal work in C. elegans has focused
on whole-brain representations '>?, but assigning cellular identities to neurons in whole-brain fluo-
rescent images has proven to be a major challenge.

We aimed to span these two scales of inquiry—identifying reliable whole-brain responses to stim-
ulus with single-neuron resolution. To do this, we had to develop a method of comprehensively
identifying all of the neurons in the C. e/egans brain. We achieved this by engineering a multicolor
transgene called NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks). NeuroPAL worms
share a stereotypical multicolor fluorescence map of the hermaphrodite nervous system that allows
comprehensive determination of neuronal identities. Neurons labeled with NeuroPAL do not ex-
hibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used
with numerous reporters of gene expression or neuronal dynamics.

We employed NeuroPAL to capture brainwide activity in response to attractive and repulsive
chemosensory cues, characterizing multimodal coding and novel neural asymmetries for stimuli.
Comprehensive multicolor labels enabled us to average data across individuals, separating reliable
stimulus-evoked responses from stimulus-independent activity. We found that chemosensory stim-
uli elicit widespread brainwide activity patterns, spanning sensory neurons, interneurons, and
motor neurons. These patterns were unique to each stimulus, suggesting that odor identity infor-
mation is preserved at the interneuron level. We also developed software which enables partially-

automated determination of all neuronal identities based on color and positional information, and a
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demixing method to separate signals from neighboring neurons.

5.1 INTRODUCTION

Whole-brain imaging and molecular profiling are widely used to study brain function, nervous-
system development, and their molecular mechanisms "4%*4*5%5* One limitation in understand-
ing whole-brain images is the difficulty of assigning unique identities to every neuron in a volume
of densely packed and similarly labeled cells. Identifying neurons is a challenge even in small ner-
vous systems like that of the nematode C. elegans. It is now possible in the worm to perform multi-
neuronal functional imaging with single-cell resolution '?**5>'7153 Multineuronal fluorescent
reporters are also widely used to profile gene-expression patterns 5455 5¢. However, identifying
neurons in either of these contexts is laborious and uncertain, requiring substantial expertise. The
standard approach to identifying neurons is to cross-validate each expression pattern with a separate
and sparsely-labeled landmark strain. Even so, many neurons lack well-established reporters, and it is
not always possible to cross-validate every neuron of interest in a densely labeled volume even with a
suitable landmark strain.

While the C. elegans nervous system is widely regarded as stereotyped, this stereotypy does not
extend to the relative positions of cell bodies. An invariant color map of all neurons is thus needed
to achieve comprehensive cell identification. Here, we leveraged the small size of the worm nervous
system and its powerful genetics to develop a new method to identify all neurons in a whole-brain

image with a single reagent. We describe the development of a transgene that we call NeuroPAL
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(Neuronal Polychromatic Atlas of Landmarks).

NeuroPAL is a combination of 41 selectively overlapping neuron-specific reporters, each of
which expresses a subset of four distinctly-colored fluorophores. The NeuroPAL combination
of reporters and colors provides a comprehensive color-coded atlas for the hermaphrodite ner-
vous system. Our approach is fundamentally different from previously described “Brainbow” ap-
proaches 57! 58159 In “Brainbow”, multicolor labeling of the nervous system occurs when each
neuron randomly expresses a subset of fluorophores. In NeuroPAL, each neuron expresses a stereo-
typed combination of fluorophores. NeuroPAL yields an invariant color map across individuals,
where every neuron is uniquely identified by its color and position. We engineered NeuroPAL to
be compatible with widely-used reporters for gene expression and neuronal activity. None of the
NeuroPAL fluorophores emit in the spectral bands of green, cyan, or yellow fluorescent proteins.
Thus, NeuroPAL can be co-expressed with numerous markers — GFP, CEP, YFP, mNeonGreen, or
reporters of neuronal dynamics like GCaMP — without affecting its color map.

We measured the complete circuit-level response to a gustatory repellent (high concentration
NaCl) and two olfactory attractants (2-butanone and 2,3-pentanedione). We observe stimulus-
specific brainwide responses, and uncover novel asymmetric responses in sensory and interneu-
rons. To facilitate the use of NeuroPAL, we provide an open-source software package that enables
partially-automated identification of all neurons from whole-brain imaging data.

One of the major obstacles to adopting whole-brain imaging methods has been the difficulty of
distinguishing neuronal identities. As demonstrated here, NeuroPAL now allows the C. elegans

neuroscience community to annotate all neurons in whole-brain imaging datasets.
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5.2 RESULTS

5.2.1 CONSTRUCTING THE COLOR PALETTE FOR COMPREHENSIVE LANDMARKS

The C. elegans nervous system contains 302 neurons (organized into 118 different classes) dis-
tributed among 11 ganglia throughout the body *. The set of neurons in each ganglion are the
same from animal to animal, but the relative location of cell bodies within each ganglion are variable.
The largest ganglia contain around 30 neurons. We reasoned that roughly 30 unique colors would
be needed to reliably identify all neurons in each ganglion, and thus all neurons in the nervous sys-
tem. Three spectrally distinct fluorophores, distinguishable at four or more different levels (high,
medium, low, and undetectable), yield at least 64 different colors. Thus, three carefully-chosen fluo-
rophores should be enough to landmark the C. elegans nervous system (Figure s.1).

We wanted our landmark reagent to be usable in animals that co-express transgenic reporters
for gene expression or neuronal dynamics. The most popular fluorescent reporters include CFP,
GFP/GCaMP, and YFP. We did not want the landmark fluorophores to contaminate emission sig-
nals from any of these reporters or vice-versa. Therefore, we sought fluorophores with unique exci-
tation/emission profiles that also left free the cyan, green, and yellow emission bands. We tested a
wide variety of fluorophores and found mTagBFP2, CyOFP1, mNeptunez.s, and TagRFP-T to be
the best available candidates (Figure 5.1A; Figure D.1) 01612163 By pseudo-coloring these flu-

orophores blue, green, red, and white respectively, their combinations generate RGB pseudo-colors

(Figure 5.1B-C).
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Figure 5.1: NeuroPAL methodology and images. (A) The emission for five distinguishable fluorophores. (B) Fluorophores
are converted into pseudo colors to construct a primary color palette. Three fluorophores are designated as landmarks
and pseudo colored to construct an RGB color palette: mNeptune2.5 is pseudo-colored red, CyOFP1 is pseudo-colored
green, and mTagBFP2 is pseudo-colored blue. The fluorophore TagRFP-T is used as a panneuronal marker. The flu-
orophores GFP/CFP/YFP/GCaMPés are reserved for reporters of gene expression or neural activity. TagRFP-T and
GFP/CFP/YFP/GCaMPés are visualized separately from the RGB landmarks to avoid confusion. (C) An example of how
to stably pseudo color neurons. A set of reporters (rows), with stable neuronal expression (columns), are used to drive
the fluorophores (table elements). NeuroPAL colors (last row) result from the combined patterns of reporter-fluorophore
expression. (D) NeuroPAL scales this concept to 41 reporters that, in combination, disambiguate every neuron in C. ele-
gans and, thus, generate, a single stereotyped color map across all animals). Seven of the NeuroPAL reporters use a self-
cleaving peptide sequence (T2A) to simultaneously drive expression of two different colors. (E) Young adult NeuroPAL
worms (otls669) have a deterministic color map that remains identical across all animals. Each neuron is distinguishable
from its neighbors via color.
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Given the resolution limitations of light microscopy, we did not want fluorescence signals from
neighboring cells to contaminate one another. To minimize spatial overlap in fluorescence emis-
sion, we localized fluorophore expression to cell nuclei via nuclear localization sequences (NLS) or
histone H2B-tagging. We assigned one fluorophore, TagRFP-T, to act as a panneuronal label. To
minimize variability in TagRFP-T expression, we constructed a synthetic ultra-panneuronal driver
(UPN) by fusing the czs-regulatory elements of four different panneuronally expressed genes (Table
D.3.1)"%*. The UPN delivered expression of TagRFP-T in 300 neurons of the nervous system but

not the CAN cells.

5.2.2 EMPIRICAL ASSEMBLY OF THE NEUROPAL TRANSGENE

Next, we sought to differentially express the remaining three fluorophores - mTagBFP2, CyOFP1,
and mNeptunez.5 — to enable unique cellular identification (Figure 5.1C-D). We wanted each neu-
ron to express a stable amount of each fluorophore, across animals. Furthermore, we wanted nearby
cells in each ganglion to express visually distinguishable amounts of the fluorophores. These are the
criteria for building a stereotyped cellular color map that permits unambiguous and comprehensive
assignment of identity.

We began with a candidate list of 133 published neuronal reporters known to have differential
gene expression patterns "% (Table D.3.1). This candidate list was chosen to include both broad
and narrowly expressed reporters. We partly verified reporter expression of candidates against a
neural “checkerboard” expression pattern. This checkerboard pattern was constructed from four

high-fidelity reporters with broad but heterogeneous expression driving green fluorescence (acr-z::1-
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Sapphire; glr-4:T-Sapphire;lad-z2:T-Sapphire;ocr-2:T-Sapphire; UPN:: GEP. We evaluated the list of
candidate reporters in groups of three by assigning each to a different landmark fluorophore and co-
expressing them in the presence of the checkerboard pattern. The heterogeneous green fluorescence
of the checkerboard helped verify the predicted expression of each candidate reporter. If a candidate
reporter drove variable or weak expression, it was dropped from consideration. Thus we were left
with a verified list of o1 neuronal reporters.

From our verified list of neuronal reporters (Table D.3.1), we proceeded empirically and itera-
tively to build a transgene for comprehensive neuronal identification. We started with a small set
of broadly expressed reporters that spanned most of the nervous system. We gradually co-expressed
larger sets of reporters driving landmark fluorophores. In each iteration, we assessed which neurons
could and could not be identified based on color and position, evaluating all transgenic siblings. To
remove ambiguities, we expressed additional reporter-fluorophore constructs and re-assessed the
results. We repeated these steps by trial and error until we found a suitable transgene that contained
41 different reporter-fluorophore fusions (Table D.3.1). The final transgene allowed us to disam-
biguate every neuron in C. elegans based on its stereotyped color map (Figure 5.1E; NeuroPAL

Manuals: https://www.hobertlab.org/neuropal/). We called this transgene NeuroPAL.

5.2.3 NEURONAL COLOR VERIFICATION AND PHENOTYPIC ASSESSMENT OF NEUROPAL
STRAINS

We integrated the extrachromosomal NeuroPAL transgene into the genome of C. elegans using

16

standard methods'®®. The brightest integrants (05669, otls670, and otls696) were outcrossed 8x

92


https://www.hobertlab.org/neuropal/

and exhibited stable expression for more than 100 generations. The color scheme of the NeuroPAL
strains matched our expectations based on the combination of reporter-fluorophore fusions used in
their construction. We verified the identity of each neuron by crossing the NeuroPAL integrants to
25 different GFP reporter lines with well-defined expression patterns (Table D.3.1). The position,
color, and identity of all neurons were verified using predominantly two or more GFP reporter lines
and multiple NeuroPAL integrants. We found that the NeuroPAL expression pattern was stable,
robust, and stereotyped throughout the nervous system over hundreds of scored animals. A minor
exception were four neuron classes that exhibited variable brightness (AVL, RIM, RIS, and PVW).
This minor variability did not affect our ability to comprehensively identify all neurons. The stereo-
typed NeuroPAL color map permitted us to comprehensively identify all neurons at the Lz larval
stage (Figure D.2) and developmental stages thereafter.

We assessed the general health of our NeuroPAL integrants (Figure D.3). All NeuroPAL in-
tegrants were able to generate progeny from either hermaphrodite or male parents. Thus, every
integrant can be combined with other transgenic reporter lines using genetic crosses. We tested all
NeuroPAL integrants with standard assays including brood size, growth, morphology, locomotion,
and chemotaxis. The brightest integrant was 0/s669. The integrant with locomotion and chemo-
tactic behavior closest to wild-type, 0#/s6770, is less bright but perhaps more suitable for behavioral
analysis and calcium imaging. All NeuroPAL integrants are available at the Caenorbabditis Genetics

Center (CGQC).
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5.2.4 VARIABILITY IN NEURONAL CELL BODY POSITIONS

The hermaphrodite nervous system is widely regarded as stereotyped. However, variability in the
position of individual cell bodies makes it impossible to assign cell identities based on relative po-
sition alone (Figure 2B), underscoring the need for a reagent like NeuroPAL that disambiguates
these identities based on genetic expression factors. Nevertheless, a probabilistic map of neuronal
positions would be useful in many studies. To construct this probabilistic map, we globally aligned
neurons in the head and tail of 10 young-adult NeuroPAL hermaphrodites (0#/s669) of identical
age, and measured the spatial coordinates of every neuron. This map revealed different amounts of

variability in the positions of cell bodies across neuron types (Figure 5.2C-D).

5.2.5 WHOLE-BRAIN ACTIVITY IMAGING OF GUSTATORY AND OLFACTORY RESPONSES

A major challenge in analyzing pan-neuronal calcium imaging data in C. elegans has been deter-
mining neuronal identities using only their activity and positions *3*'*7*53, To solve this problem,
we combined NeuroPAL with the panneuronally-expressed calcium reporter GCaMPés (strain
OH16230). We then used multicolor imaging to comprehensively identify all neurons while record-
ing their activity. We studied brainwide responses, in young-adult hermaphrodites, to a repulsive
taste (160 mM NaCl) and two attractive odors (10 2-butanone and 10# 2,3-pentanedione). These
stimuli were delivered in chemotaxis buffer to the nose of the animal using a multichannel mi-
crofluidic device (Figure 5.3A-B)>°. NaCl is primarily sensed by the left and right ASE neurons

(ASEL and ASER), but with a stereotyped left/right asymmetry across animals??. ASEL and ASER
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Canonical Position (Head Left Side)

Figure 5.2: Neuron locations and their positional variability. (A) Neuron locations and variability, in the retrovesicular
ganglion, taken from electron micrographs of three adult hermaphrodites N2S, N2T, and N2U2®. (B) An example of sub-
stantial positional variability. The OLL left (OLLL) and right (OLLR) neurons, within a single animal, should share equiv-
alent positions. Instead they show substantial anterior-posterior displacement relative to each other. The transgenic
reporters and their pseudo colors are noted on the figure. (C,D) Canonical neuron locations (filled circles displaying the
NeuroPAL colors) and their positional variability (encircling ellipses with matching colors) for all ganglia, as determined
by NeuroPAL (otls669). Positional variability is shown as the 50% contour for neuronal location (measured as a Gaussian
density distribution), sliced within a 2D plane (Text S1). We show both the left-right and dorsal-ventral planes to provide
a 3D estimation of positional variability. (C) Left, right, and ventral views of the head neuron positions. (D) Left, right,
and ventral views of the tail neuron positions.
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respond difterently to upsteps and downsteps in salt concentration depending on step size . 2-
butanone and 2,3-pentanedione are sensed by the left and right AWC neurons (AWCL and AWCR),
but with a stochastic asymmetry. In each worm, one neuron (either AWCL or AWCR) will adopt
the identity AWCON and become more sensitive to 2-butanone while its lateral pair will adopt the
identity AWCC™F and become more sensitive to 2,3-pentanedione . NeuroPAL differentially col-
ors AWCON and AWCO',

We subjected each animal (N=21) to the three chemical stimuli delivered in a randomized order
(10s pulses spaced by sos intervals). Using activity traces from all identified neurons, we assembled
the mean brainwide response to each stimulus. Brainwide imaging revealed both known and novel
neuronal responses to each stimulus (Figure 5.3C). As expected, upsteps in NaCl evoked stereo-
typed and distinct responses in the two ASE neurons. A few other sensory neurons have been impli-
cated in detecting changes in NaCl concentration including ADF, ASG, ASH, ASI, AS] 167,92,168
We verified these stimulus-evoked responses (Figure 5.3D).

We uncovered novel responses in a surprisingly large number of sensory neurons and interneu-
rons with strong correlations to the NaCl stimulus pulse (Figure 5.3C-F). Several neurons, such as
ASH, were most strongly activated upon NaCl removal. Strikingly, we observed novel asymmetries
in several other neuron responses to NaCl. AWA exhibited stereotyped L/R activity: the AWAL re-
sponse was significantly larger than AWAR. AIY exhibited a stochastic correlation with the AWC
ON/OFF identities: the ATY neuron on the same side as AWC®'F showed a significantly larger
response than its corresponding pair on the same side as AWCON.

Odors also evoked responses in a surprisingly large set of neurons throughout the brain (Figure
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Figure 5.3: Whole-brain neuronal activity imaging of taste and odor responses. (A) C. elegans were subjected to three
chemosensory stimuli: a repulsive taste (160 mM NaCl) and two attractive odors (10~* 2-butanone and 10~ % 2,3-
pentanedione). (B) Animals were immobilized inside a microfluidic chip. Stimuli were delivered in buffer. Each animal
was imaged using a spinning disk confocal microscope with four excitation lasers. The NeuroPAL color map was imaged
to identify all neurons. Thereafter, brainwide activity was recorded via the panneuronal calcium sensor GCaMPés. (C)
Peak neuronal activity, before and during stimulus presentation, for 109 head neuron classes. (D-F) Neuronal activity
traces for selected (D) sensory neurons, (E) interneurons, and (F) pharyngeal neurons that responded to stimuli. The 10-
second stimulus delivery period is indicated by the colored bar. Significant responses (p or g < 0.05) are highlighted in
bold boxes. Asymmetric left/right and AWCONOFF_sided responses are indicated by colored boxes. "Post” = significant
post-stimulus response. "ns” = no significant response. (F-1) Average pairwise correlations between 189 neurons for

the 30 seconds following onset of (G) NaCl, (H) 2-butanone, and () 2,3-pentanedione. All three correlation maps are
presented on the same axes, determined by clustering the full-time-course correlations. The sets of correlated and anti-
correlated neurons differs for each stimulus presentation. (J-K) Comparison of functional activity to the connectome, we
observe minimal correlation between synapse count and functional correlation between neuron pairs in the (J) head and
(K) tail.
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5.3C). Average chemosensory neuron responses to 2-butanone and 2,3-pentanedione were con-
sistent with those observed in Chapter 2. As expected, 2-butanone and 2,3-pentanedione evoked
stochastically asymmetric responses in AWC (Figure 5.3D). With 2,3-pentanedione, we also ob-
served stereotyped L/R asymmetries in the ASG and ASI sensory neurons. The ASGL response was
significantly smaller than ASGR. Upon stimulus removal, the ASIL response was significantly larger
than ASIR. The set of neurons activated by all three stimuli was partly overlapping but distinct for
each stimulus (Figure 5.3C-F). For example, AS] was excited by NaCl but inhibited by both odors,
whereas RIC was excited solely by 2,3-pentanedione.

Both salt and odors elicited responses across the synaptically-isolated pharyngeal nervous sys-
tem, evoking significant activity in its sensory neurons, interneurons, and motor neurons (Figure
5.3F). The C. elegans pharynx employs a small and shallow network of only 20 neurons that is al-
most entirely separate from the remaining main nervous system. This small pharyngeal network
synaptically-connects solely through its It interneurons and M1 motor neurons which commu-
nicate with the RIP interneurons of the main nervous system. Our results suggest that, despite
its small size, the worm’s pharyngeal network may encode its own representation of behavioral re-

sponses to chemosensory cues.

5.2.6 WHOLE-BRAIN NEURONAL DYNAMICS AND CONNECTIVITY

Exploring network-level dynamics, we computed pairwise correlations between the activity of all
identified neurons from our whole-brain activity recordings. We found similar stimulus-specific

neuronal correlations across individuals, but each stimulus generated its own correlation pattern
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(Figure 5.3G-I). Even the two attractive odors produced distinct sets of neuronal correlations
among and between sensory and interneurons. These results can be seen in brainwide neuronal
trajectories through low-dimensional PCA-space (Figure D.sC-E). For instance, the AWB sensory
neuron and its synaptically-connected interneuron partners AUA and AVH *37 exhibit distinct pair-
wise correlations depending on the stimulus (Figure 5.3D-E). Thus we find that brain dynamics are
stimulus-specific.

While stimulus-evoked brainwide activity was similar across animals and across trials, stimulus-
independent activity was highly variable across animals (Figure D.5A). In the absence of stimulus,
the animal can be in any one of a large number of global brain states. Presentation of a chemosen-
sory stimulus pushes the animal into a specific, stimulus-evoked brain state.

We asked whether a simple relationship exists between these functional correlations and the
synaptic counts previously measured from the anatomical connectome®3”. To do so, we compared
our correlation matrices of pairwise functional activity to the connectome matrix of pairwise synap-
tic connectivity. These matrices represent functional and structural measures of neuronal commu-
nication, respectively. We found low Pearson correlation between these functional and structural
matrices. For electrical connectivity, R* =2.8% in the head and R* =1.7% in the tail, and for chemi-
cal connectivity, R? =0.5% in the head and R? =1.5% in the tail (Figure s5.3J-K). We tried multiple
variations in our calculations (e.g., using ranked correlation metrics, log-scaling synaptic counts, and
limiting functional activity to only stimulus or non-stimulus delivery periods) but these did not

noticeably improve correlation between functional activity and the structural connectome.
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5.2.7 SEMI-AUTOMATED NEURAL IDENTIFICATION

We developed an instruction guide to help researchers use NeuroPAL (NeuroPAL Manuals: https:
/ /www . hobertlab.org/neuropal/). This guide covers a variety of NeuroPAL-compatible micro-
scope configurations and provides instructions on how to identify all neurons using the NeuroPAL
color map. However, the manual annotation of neurons is laborious and time-consuming. To speed
annotation, we developed a software pipeline that partially automates this task.

Our software pipeline uses three unsupervised algorithmic steps to semi-automatically annotate
neuronal identities in NeuroPAL images (Figure 5.4A). First, we filter out non-neuronal fluores-
cence. Second, we detect the color and position of each neuron. Third, we compute a probabilistic
estimate of each neuron’s identity using a statistical atlas of NeuroPAL colors and positions (see
Variability in neuronal cell body positions). Lastly, a graphical user interface (GUI) permits man-
ual review and error correction of all steps in our unsupervised pipeline.

We evaluated the unsupervised neuronal identification performance of our pipeline. To do so,
we cross validated its performance on previously annotated images and found our accuracy varied
across ganglia (Figure 5.4B-C). Automated accuracy was 86% for the head and 94% for the tail.
Accuracy largely depended on cell density; for example, our pipeline achieved high accuracy for
all tail ganglia but lower accuracy for the much denser ventral ganglion in the head. Our software
incorporates manual annotation of low-probability neuronal identities (computed in the identify
step) to improve the estimated identities of the remaining unlabeled neurons. Adding eight manual

annotations, on average, brings the head accuracy above 90% (Figure 5.4B).
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Figure 5.4: An algorithm for semi-automated neuronal identification and an algorithm to generate optimal-coloring solu-
tions for cell identification (A-C) The algorithm used for automated neural identification. (A) Raw images are filtered to
remove non-neuronal fluorescence and neurons are detected in the filtered image. Detected neurons are identified by
matching them to a statistical atlas of neuronal colors and positions. (B,C) Automated neuronal identification accuracy
begins at 86% for the head and 94% for the tail. Manually identifying eight neurons raises the head accuracy above
90%. Overall accuracy is displayed as a black line. Accuracy for each ganglion is displayed as a dotted, colored line (see
legend). Many of the neurons and ganglia have high identification accuracy and confidence. The ventral ganglion is a
problematic area, likely due to the high positional variance therein.

Our algorithm also provided a means of assessing the importance of color information in assign-
ing cell identities. When we restricted the model to assign identities only on the basis of location,
automated accuracy dropped to s0% for the head and 68% for the tail (Text S1). These results con-

firm a substantial improvement in accuracy with the color information provided by NeuroPAL.

5.3 METHODS

5.3.1 PLASMIDS AND INJECTIONS

Fluorophores were ordered from IDT and/or cloned via standard techniques (Gibson, restriction-
free, T4 ligase, or QuikChangeTM mutagenesis) into the pPD9s.62 Fire vector (a gift from An-
drew Fire) '°>'7°. The 1.4kb synthetic ultrapanneuronal driver (UPN) was generated by fusing

cis-regulatory elements from four different panneuronally expressed genes: unc-1 12775, rgef-177"2,
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ehs-12"""7 | ric-1 g™ 14 Fusion was done in a single quadruple PCR promoter fusion'7". All
cloned NeuroPAL reporters were made via PCR, gel purified, then inserted using standard tech-
niques into the fluorophore vectors. To accommodate the large number of reporters and conserve
space in extrachromosomal arrays, in place of plasmid backbones we used linear DNA amplified
via PCR. Linear DNA has also been shown to improve expression levels *7*. Therefore, all injected
NeuroPAL reporters were PCR amplified and gel purified to remove their vector backbone. Injec-
tion mixes consisted of complex arrays, with sheared bacterial DNA serving as spacers, to minimize
potential crosstalk amongst reporters. Preliminary NeuroPAL strains were injected as complex ar-
rays into pha-1(ez123) with pBX/[pha-1(+)] to rescue at the selection temperature 25C'73. Final
NeuroPAL strains were injected into N2 without pha-1(+). We used the 72b-3 reporter to drive
panneuronal GCaMP6s expression. We noted that sensory neurons exhibited weaker GCaMP6s
expression and thus supplemented the 725-3 reporter with the a7rd-4 pansensory reporter. The pan-
neuronal GCaMP reporters were injected as complex arrays into N2. Integrations were performed

using gamma irradiation. All integrant worms were outcrossed 8x.

5.3.2 FLUOROPHORE CHOICE

The emission spectrum for published fluorophores can roughly be divided as blue, cyan, green, yel-
low, orange, red, and far red. GFP has a long emission tail; therefore, to avoid confusing its signal
with NeuroPAL landmarks, we excluded cyan, green, yellow, and orange emitting proteins from our
landmark choices. This left us with only three landmark emission channels: blue, red, and far red.

The blue fluorophore EBFP2 is a GFP derivative and would preclude the ability to boost reporter
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signal via cognate GFP staining'7+. mTagBFP2 is brighter alternative derived from TagRFP-T "¢
and, for this reason, we chose it as our first NeuroPAL landmark. As a caveat, all red and far-red flu-
orescent proteins produce conformations with GFP-like excitation and emission and their mature
fluorophores exhibit an equilibrium between this green and the preferred red emission states '®3. For
this reason, we looked for bright red and far-red fluorophores with a high red-to-green emission ratio
and considerable photostability. This yielded our next two landmark fluorophores: TagRFP-T and
mNeptunez.s 163,162

To expand the pool of candidates further we looked towards the large-stokes shift (LSS) flu-
orophores. LSS fluorescent proteins have a long gap between their excitation wavelengths and
emission bands; for example, GFP is excited by 488nm and emits green while its LSS-derivative T-
Sapphire is excited by 405nm and shares a nearly identical green-emission band as GFP'75. In fact,
wild-type (WT) GFP is a mixture of isoforms excited either by 405nm or 488nm. WT GFP was mu-
tated to stabilize both isoforms independently, thus yielding T-Sapphire and enhanced GFP (EGFP
— often abbreviated as simply GFP)'7°. Unfortunately, despite this mutagenesis, the commonly
used variant of GFP retains considerable excitation at 405nm, ruling out both T-Sapphire and the
yellow-emitting mAmetrine for use as landmarks '77. This left only red and far-red LSS fluorophore
candidates. Initially we tested mBeRFP 178 but found it was excited by a broad range of wavelengths,
including those exciting TagRFP-T and mNeptunez2.s. Furthermore, mTagBFP2 and GFP excita-
tion wavelengths caused mBeRFP to produce a bright green emission, thus confounding our GFP

signal channel. Consequently, we arrived at the newly-published CyOFP1 as one of our last avail-

able choices '°'. CyOFP1 has nearly identical emission to TagRFP-T but, its excitation wavelength
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(488nm), fails to excite TagRFP-T; therefore, one can excite and visualize CyOFP1 independently
of TagRFP-T, simply by using 488nm excitation. As a result of this brightness and photostability,
we chose CyOFP1 as our fourth and final NeuroPAL landmark. Fortunately, mNeptune2.s’s pre-
ferred excitation, s99nm, fails to excite either CyOFP1 or TagRFP-T. Unfortunately, TagRFP-T’s
preferred excitation wavelength, excites both CyOFP1 and mNeptune2.s. Thus three of our land-
mark fluorophores can be easily distinguished from each other and GFP but, the remaining one,
TagRFP-T, suffers mild bleed through from both the CyOFP1 and mNeptunez2.s landmarks. For
this reason we chose mTagBFP2, CyOFP1, and mNeptune2.s to represent our primary color palette
(Figure D.x). TagRFP-T was instead assigned to drive the panneuronal reporter. As a result, bleed
through from the other two neural landmarks do not interfere with TagRFP-T’s role in highlighting
which cells are neurons. When testing our NeuroPAL landmarks we found that, despite claims of
monomericity, mTagBFP2 and CyOFP1 showed aggregation when expressed at high concentration;

therefore, we tamed their oligomerization by tethering them to the histone H2B.

5.3.3 DEMIXING MULTI-NEURONAL RECORDINGS OF C. ELEGANS

Even with nuclear localization, the neurons in the brain of the worm are very densely packed. Neigh-
boring neurons are difficult to segment spatially, and the time-varying fluorescence of one neuron
can bleed into the signal extracted from its neighbor.

To demix the signals of neighboring neurons, we developed a deformable non-negative matrix
factorization (ANMF) method. We will be briefly summarizing the results of this work here, and

in Appendix D.2. For a complete discussion of the INMF method, refer to Nejatbakhsh et al.,

104



2020 "7,

We tested the INMF method on recordings of the tail of hermaphrodite C. elegans which ex-
pressed pan-neuronal nuclear-localized GCaMP. The worm’s tail contains several ganglia, with
densely-packed neurons, whose spatial footprints often overlap due to insufficient spatial resolution.
Additionally, even neurons in separate ganglia can end up in sufficient proximity, due to microflu-
idic confinement or other imaging-setup induced deformations, such that their spatial footprints
overlap. The spatial overlap represents a significant challenge, both for tracking individual neurons
and demixing their signal. Figure D.6 shows an example of the difficulty present when tracking
and demixing neural activity signals from animals with spatially overlapping neural footprints in
their recorded images. In this example, ROI tracking loses most of the signal from the LUAR and
PLNR neurons and further mixes signals between the DA8/VD13, DVA/DVB, PHCR/PVWL,
and PYNL/PVNR neurons. Normcorre+NMF performs better but loses nearly all signals from
PLNR while also still mixing signals between the DVA/DVB, PHCR/PVWL, and PVNL/PVNR
neurons. In comparison, dINMF recovers strong, independent signals from all ten neurons.

Open source code implementing this pipeline is available at https: //github.com/amin-nejat/dNMF.

5.3.4 ANALYSIS OF WHOLE-BRAIN IMAGING DATA

To analyze the whole-brain imaging stimulus responses, we reviewed ASE responses to salt and
AWC responses to the odors — the primary sensory neurons for these stimuli. Worms were marked
as stimulus responsive if either their left or right neuron showed the published response to their

corresponding stimuli (ASE excitation for NaCl and AWC inhibition for odors) "**%3. 21 heads
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responded to all three stimuli, providing strong internal controls to compare their circuit activity
across all stimuli. Additionally, 21 tails were included, without response verification as the heads

of these animals were not simultaneously imaged. Premotor interneurons (AVA, AVB, AVD, AVE,
PVC) and motor neurons (AS, DA, DB, DD, VA, VB, VC, VD) show spontaneous cyclical activ-
ity and thus were excluded from significance testing. We used t-tests (2-tailed, paired) to compare
the mean signal during stimulus presentation with an identical period immediately prior, within
the very same neuron (a strong internal control). p-values were corrected for multiple testing using
FDR '#7. Since GCaMP6s requires 488 nm excitation, we were unable to record a pre-stimulus pe-
riod for blue-light responses. We reasoned that since worms habituate to light (as evidenced by our
traces and previous reports '7?), the blue-light response could instead be tested in reverse by compar-
ing the ros immediately after lights on, to the 10s period thereafter. Our protocol of two minutes
in the dark, just after the identification volume, ensures that the 488 nm GCaMP6s excitation laser
is a sudden, strong stimulus, evoking an immediate aversive response. Light comparisons similarly
employed a 2-tailed, paired t-test. To test asymmetric neuron responses we used 2-tailed, two-sample

(unpaired) t-tests.

5.4 DISCUSSION

Understanding the nervous system requires an integrated view of its underlying molecular, signal-
ing, and functional networks. A primary bottleneck to mapping these networks across an entire

brain has been the difficulty of reliably identifying neuronal types. Neuroscientists have long made
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progress by focusing their attention on selected neurons in any given study. However, a means of
comprehensive neural identification, coupled with existing brainwide imaging strategies, would
permit unbiased and fully integrative approaches to entire brain networks.

We introduced NeuroPAL, a tool that allows researchers to use a single multicolor landmark
strain to determine all neuron identities in the C. elegans nervous system. The fluorophores used to
build NeuroPAL were chosen to have negligible emission overlap with CFP, YFP, and GFP/GCaMP,
while maintaining compatibility with common illumination sources and filter sets. This allows Neu-
roPAL to be used in conjunction with many different types of fluorescent reporters for diverse stud-
ies of gene expression, nervous-system development, and brain activity.

To date, functional networks have been investigated by recording the activity of small subsets
of labeled neurons. More recent work has allowed whole-brain activity imaging with cellular res-

olution 12132:133,125

. However, the inability to reliably identify all neurons within whole-brain
recordings has precluded a full picture with circuit-level details. Thus, principal component analysis
(PCA) has been commonly employed to construct low-dimensional representations of brain dynam-
ics in individual animals, but the lack of a common basis precluded animal-to-animal comparisons.
Coupling NeuroPAL with whole-brain activity imaging methods, one can provide a unified view of
network dynamics across animals without sacrificing circuit-level details.

Here, we used NeuroPAL for whole-brain imaging of panneuronal calcium dynamics in response
to chemical stimuli. The three well-studied chemical stimuli that we used have been known to evoke

activity in a small number of sensory neurons and interneurons. Our results show that the set of

stimulus-evoked responses engage the nervous system far more broadly than previously realized,
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extending across many sensory neurons and interneurons, even those in the synaptically-isolated
pharyngeal nervous system. Surprisingly, we find that many neurons respond with distinct dynam-
ics to the two olfactory attractants that we used (2-butanone and 2,3-pentanedione) and the one
gustatory repellent (a high concentration of NaCl). Our data reveals new neural asymmetries in the
nervous system, both deterministic left/right asymmetries and stochastic ON/OFF asymmetries,
that also escaped previous analyses. Thus asymmetric activity in the worm nervous system is more
widespread than in the selected and well-studied examples of the stereotyped ASEL/ASER pair and
the stochastic AWCON/AWCOFF pair.

Previous pan-neuronal imaging experiments in C. elegans concluded that in the absence of exter-
nal stimulus, whole-brain activity could be represented as a low-dimensional limit cycle '**. With
no method of comprehensively identifying the neurons, however, it was not possible to compare ac-
tivity across animals. Thus, representations of global brain activity were constructed from the data
of one individual at a time, with qualitative similarities in representation observed across individu-
als. With comprehensive labeling of neurons, we were able to directly compare whole-brain activity
across animals with single-neuron resolution. Global brain activity appears to be more complex
than previously thought, and is highly variable across animals in the absence of stimulus. When the
animal is exposed to stimulus, whole-brain activity is pushed towards a unique, stimulus-specific
activity pattern.

Comprehensive neuronal identification has also enabled us to examine the relationship between
whole-brain activity and the connectome. We compared the functional activity correlations in our

data to the anatomical measures of synaptic weight, but found no strong correlations between them.
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Unifying anatomical and functional views of the nervous system will require deeper understand-
ing of the biological properties of synaptic communication and neuromodulation, as well as more
sophisticated theoretical modeling approaches.

Ongoing work is extending the NeuroPAL colormap to other life stages of developing nematodes,
the alternate dauer stage, and the male nervous system. NeuroPAL will accelerate ongoing work in
understanding the development, molecular signaling, and brain-wide activity of the nematode ner-
vous system. The rich set of network responses we uncovered has broad relevance in understanding
sensorimotor processing. Even simple stimuli engage large portions of the worm nervous system,
with different brain-wide neuronal correlations across different conditions. Generally, determin-
istic multicolor labeling strategies for cell-type identification in model organisms will enable new

approaches in systems neuroscience. ®
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Connectome-constrained modeling of
whole-brain activity

Lu M, Richard Xu, Sridbama Prakbya, Helena Casademunt, and Srinivas Turaga contributed to
the work described in this chapter.

IN OUR PAN-NEURONAL EXPERIMENTS, we observed reliable stimulus-evoked brainwide activity
patterns. Many of these activated neurons were strongly correlated with each other. A common
logical leap made by neuroscientists when circuit-cracking is as follows: two neurons with highly
correlated activity are likely to be wired to each other. With comprehensively labeled whole-brain
recordings, we could directly compare functional activity to the anotomical wiring diagram of C.
elegans. The anatomical wiring diagram of C. elegans was first reconstructed via serial electron mi-
croscopy by John White and colleagues in 1986°. There are two types of anatomical connections
between neurons: chemical synapses, where neurotransmitters may be exchanged, and gap junc-

tions, which are direct electrical connections. Both types of connections were reported with some
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measure of structural weight, a best guess as to the degree of contact between two neurons based on
synapse number for chemical connections and contact patch area for electrical connections.

As described in the previous chapter, by plotting functional correlations against synapse count
for all recorded neuron pairs, we can assess the extent to which the anatomical connectome explains
the functional activity patterns we see. When we do these comparisons, we find that the r squared
when comparing functional correlations to the structural weight of chemical connections is 0.00s,
and the r squared when repeating this comparison with electrical connections is 0.028 (Fig. 5.3],K).
In other words, neither the chemical connections nor the electrical connections in the connectome
significantly explain any of the functional correlations we see in our data. Similarly low correlations
have been observed in the tail of male C. elegans recorded during mating 136,

So, when it comes to functional correlations of neural activity, the connectome doesn’t tell the
whole story. Unifying these two views of the nervous system—anatomical and functional—is go-
ing to take more than a simple linear regression accounting for only first degree connections. There
are many pertinent details which are left out in such a high-level comparison of function and struc-
ture. For instance, the properties of synaptic communication and neuromodulation in C. elegans are
poorly understood. We don’t know whether given chemical synapses are excitatory or inhibitory, or
indeed whether the sign is context-dependent. Nor is either measure of structural weight (synapse
count or contact patch area) likely a good proxy for synapse strength. There is also substantial evi-
dence for extrasynaptic communication between neurons in C. elegans'". Finally, despite the stereo-
typy of C. elegans development, the connectome is not identical across individuals. The original

connectome reconstructed by John White and colleagues was reconstructed from partially overlap-
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ping segments from 4 individuals, which means that most synapses were reported with a sample size
of N = 2%, Recent work in which connectomes for 8 additional C. eegans were reconstructed has
demonstrated significant variability in the adult connectome of C. elegans, with 43% of connections
not conserved across individuals®. Even for strong, conserved connections, the number of synapses
can vary. Since the available anatomical data comes from different individuals than those used for
functional imaging, the synapse counts and connections in the available connectomes will only
coarsely reflect the connectome of the individual being recorded.

With these caveats in mind, we can ask whether the functional activity we see in our pan-neuronal
datasets reflect the known connectivity of the worm’s nervous system. By employing the topology
of the C. elegans wiring diagram and allowing the connection weights to be trained based on labeled
functional activity data, we were able to build an anatomically-inspired neural network model capa-

ble of making reasonable predictions of neuron activity during chemosensation.

6.1 INTRODUCTION

Pan-neuronal functional activity measurements made at single-neuron resolution, when mapped
onto the anatomical connectome, can guide the development of detailed computational models.
However, from a network modeling perspective, these data are incomplete in several critical ways.
Nuclear labels are incapable of reliably capturing the activity of some neurons, as nuclear localized
GCaMP has slower dynamics and is less sensitive than cytoplasmically expressed GCaMP. Further-

more, neurons like RIA have been shown to have distinct calcium dynamics in different parts of the
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Figure 6.1: Anatomical and functional whole-brain data available in C. elegans. In the nematode C. elegans we have ac-

cess to both anatomical (left) and functional (right) data for the entire brain at single-neuron resolution. The anatomical

connectivity of C. elegans has been mapped, including both chemical and electrical connections between enruons ¢,

The EM dataset from John White et al., 1986 was used in this work. Left panel adapted from Cook et al., 2019. Using
the NeuroPAL animal (Chapter 5), we have functional activity data from the neurons in the head of the animal. Multi-
color identification enables us to map functional activity onto the topology provided by the connectome **°.

cell, suggesting complex intracellular computations?5>**7. Despite the availability of maps of neu-

21311 the signs of synapses

rotransmmitter expression and neurotransmitter receptors in C. elegans
are unknown. Further, the neural activity in many neurons is dominated by stimulus independent
on-going background activity, which makes it challenging to fit deterministic nonlinear dynamical
network models directly to calcium imaging data.

The anatomical considerations discussed previously suggest that while the existence of an edge
in the connectome may be relied upon across individuals, the number of synapses is highly variable.
This makes it difficult to predict neural function from structure because of the wide space of solu-

tions that must be explored during optimization. Models that optimize functional performance are

not necessarily unique.
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To address these challenges, we built a connectome-constrained latent variable model (CC-LVM)
of the neural activity dynamics. We use stochastic threshold linear dynamics to model the C. elegans
nervous system, treating these dynamics as soft constraints on the neural activity. We model the
underlying activity of each neuron as a latent variable, inspired by equations that model neuronal
activity as voltage dynamics. We define the prior distributions for these latent variables by the cal-
cium dynamics observed in the data. The chemical and electrical synaptic strengths in the model are
learned, but the sparsity matrix is constrained by the connectivity given by the anatomical connec-
tome: two nodes in the neural network can only interact directly if their corresponding neurons are
connected in the C. elegans wiring diagram. The framework of variational auto-encoders (VAE) is
used to train the model and infer underlying neuronal activity.

We applied the CC-LVM to our whole-brain calcium imaging data, which captured 170 of the
300 neurons in C. elegans as it responds to chemosensory stimuli. In principle, an accurate model
of the nervous system constrained by incomplete activity measurements but complete connectiv-
ity measurements can enable accurate predictions of neural activity in neurons which were not
recorded. We tested this hypothesis by using the CC-LVM to predict activities of neurons which
were experimentally measured, but whose activity was withheld during model training.

We found that the CC-LVM predicted the activity of withheld neurons with greater accuracy
than unconstrained neural networks of a similar size. This result demonstrates that, even without
detailed biological information about the signs and strengths of individual connections, the topol-
ogy of the connectome places measurable constraints on the brainwide activity patterns we experi-

mentally observe.
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6.2 REsuULTS

6.2.1 A CONNECTOME-CONSTRAINED LATENT VARIABLE MODEL

We built an artificial neural network which takes sensory information as input and generates pre-
dicted underlying activity and fluorescence traces for every neuron in the C. elegans. Each node
corresponded to one of the neurons in C. elegans. To generate the inputs to this network, we first
built a sensory encoder which generates a representation of the chemosensory stimuli experienced
by the sensory neurons. The encoder is a deterministic, dense-layer network which takes as input the
stimulus delivery sequence for the three compounds, Obuanone (£)s Opentanedione (£)s Onaci(2), and the
fluorescence traces of the sensory neurons. This multilayer perceptron generates a representation

of the chemosensory input S;(¢) for all sensory neurons. Non-sensory neurons in the model do not
receive this input (S,(z) = 0).

To construct the underlying activity dynamics, we borrow from the electrophysiological equa-
tions which model neuron voltages. For each node in the neural network, the underlying activity
was modeled as a stochastic non-spiking threshold linear leaky integrator with learned neuronal time
constants and thresholds "*°. Each node of the network was coupled to other nodes by chemical
synapses with learned signs and strength and electrical synapses with learned strengths. The exis-
tence of edges in the network were constrained by the C. elegans connectome annotated by John
White and colleagues®*¢: we allowed the trained weights VV}z{b"m and VV}-zd“ to be non-zero only

where the connectome indicates the existence of an edge. Note that we only constrain the existence
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of the edge by existence in the anatomical wiring diagram; we do not constrain the weights to be
structural measures of weight, such as synapse count or contact patch area. The model first gener-

ates predicted underlying activity V() for each neuron:

WS Vi) = Y (W ) + W (V) = Vi) + b+ 5i(6) + aviens o),

where S(¢) is the input, 7, W}-z{bm, W}zd“, b;, and oy, are trained parameters, and ¥(¢) is the out-
put. The underlying activity is then converted into a fluorescence trace which can be directly com-
pared to ground truth. Again, we employ an analogy to the mathematical relationship between

voltage and calcium fluorescence:

dF(r)

T/dr

- Fe) = s sofiplusl Vi(e)) + B, + oren (),

subject to PLF(0), F(1), ..., (T)|F(1), ... (T)] = PIEO)] T[] PIER)IP(0), P(1), .., V(2)],
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Figure 6.2: Schematic of the connectome-constrained model and variational auto-encoder. The connectome-
constrained network (CC-LVM) consists of stochastic threshold linear integration of underlying activity dynamics. It
takes as input the output of a deterministic sensory encoder which represents the chemosensory stimulus presented

to the animals. The weights are constrained to be non-zero only for pairs of neurons where the connectome indicates
the existence of synapses, and the electrical and chemical synapses, neuronal time-constants, and underlying activity-
to-fluorescence parameters are optimized to fit the calcium imaging data. A variational auto-encoder (VAE) is used to fit
the CC-LVM and to infer the posterior distribution over underlying neuron activity. The VAE is optimized with the ELBO
loss through stochastic backpropagation.

where 7, «;, 8., and g, are trained, and F{(z) is the output. Together, the neural dynamics define a
prior distribution over likely underlying activity trajectories which are consistent with a given set of
weights, time constants, and thresholds (Equations 6.2 & 6.4). Importantly, the stochastic nature of
the dynamics, in the form of the neural activity noise terms ¢y, (#) and the imaging noise terms ¢, (z),
allows for deviations from perfectly deterministic dynamics, allowing some leeway in our model
for variability in a single given neuron’s activity and incomplete knowledge of the sensory inputs
driving the nervous system.

A latent variable model of this scale with a nonlinear generative model defined by the stochastic
dynamics is challenging to fit. To fit the model to the data, we first used the probabilistic inference

framework of a variational auto-encoder (VAE) '’ to train a black-box voltage inference network
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(Qp) which generates a posterior distribution from the experimentally recorded calcium fluores-
cence traces. This convolutional inference network predicts a factorized Gaussian distribution over
the underlying activity of all the neurons in the network, given sensory stimulus time courses, and
calcium imaging measurements for a fraction of the neurons. The underlying activity posterior is
then compared to the underlying activity prior generated by the connectome-constrained network,
in order to train the parameters of the CC-LVM.

The entire VAE model was optimized with the ELBO (evidence lower bound) objective function
L through stochastic backpropagation. The objective function includes both a reconstruction loss
(first term) to maximize the data likelihood and a Kullback-Leibler (KL) divergence (second term) to

minimize the distance between the prior and posterior distributions:

L = —Eyp.g,(nFs) log Po(FV,S) + KL(Qg(VIF, S)||Ps(F]V,.S)). (6.5)

The resulting VAE thus has a biologically and biophysically plausible generative model of the

neural dynamics of the C. elegans nervous system.

6.2.2 ACTIVITY PREDICTIONS ARE IMPROVED UNDER CONNECTOME CONSTRAINT

We applied the connectome-constrained latent variable model to the calcium imaging dataset col-
lected for the NeuroPAL project *3°. This data captured the activity of a total of 170 neurons across
21 individuals in response to a panel of three chemosensory stimuli: NaCl, 2-butanone, and 2,3-

pentanedione.
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Figure 6.3: Predicted activity of held out neurons. (A) Representative comparisons of ground truth data (green), pre-
dicted activity from the connectome-constrained model (blue), and predicted activity from an unconstrained model
(yellow) for neurons AVDL, AWBL, and RMDVL. (B) Correlations between the CC-LVM prediction and ground truth for
all recorded neurons. Over 80% of the neuron activity predictions are positively correlated to ground truth. (C) His-
tograms comparing the correlations to ground truth for the connectome-constrained and unconstrained models for the
different types of neuron: sensory, inter, motor, and pharyngeal. The CC-LVM makes predictions closer to ground truth
across all neuron types.
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We hypothesized that the CC-LVM, which incorporates the complete connectome but is trained
on the activity of only a subset of the neurons, might nevertheless predict the activity of unmea-
sured neurons. To test this hypothesis, we conducted a hold-out evaluation, withholding a single
neuron class (e.g.: AWAL and AWAR) from the model’s training dataset and then evaluating the
model’s predictions. We compared the model’s prediction neural activity both to the ground truth
data and to a prediction made from an unconstrained latent variable model (Figure 6.3A). We re-
peated this process for all measured neuron classes (~ 100) and quantified the correlation coefficient
between the predicted and measured neural activity. We found that our CC-LVM produced signif-
icantly better predictions than an unconstrained LVM with either a fully connected or randomly
connected network topology.

The average correlation to ground truth in the connectome-constrained model is 0.479, superior
to either randomly connected or fully connected models with the same number of nodes trained
on the same data, which have average correlations of .05 or less (Table 6.1). Additionally, in the
connectome-constrained model, the predicted activity of over 80% of the neurons are positively cor-
related to ground truth (Figure 6.3B). In contrast, randomly connected models are less consistent,
often producing strongly anti-correlated predictions.

Dividing the neurons by type, into sensory, inter, and motor neurons and computing the average
absolute correlations for each (Table 6.1), we see that the connectome-constrained model performs
well on sensory neurons, though the null models tend to do decently here as well. One might ex-
pect the interneurons to be well predicted, since in the connectome they have on average the most

connections. However, the interneuron class is predicted worst of the three classes, speaking to the
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Model All neurons | Sensory neurons | Interneurons | Motor neurons
Connectome- 0.479 0.432 0.173 0.631
constrained LVM

Randomly con- 0.043 0.131 0.002 0.081
nected LVM

Table 6.1: Average absolute correlations with ground truth for the connectome-constrained model compared to correla-
tions from a representative randomly connected model, averaged across all neurons, sensory neurons, interneurons, and
motor neurons.

degree of variability across individuals. The most astonishing gap in predictive performance is in the
motor neurons, which are predicted well by a connectome-constrained model which was given only

sensory information as input.

6.2.3 PERFORMANCE IS INDEPENDENT OF THE FRACTION OF RECORDED NEIGHBORS

We can identify the upstream and downstream partners of any given neuron in C. elegans from the
wiring diagram. However, not all of these partners were recorded in the imaging dataset, such as
those in the body and tail of the worm. Naively, we might expect that the connectome constrained
model performs better when the majority of the held out neuron’s topological neighbors are part of
the training dataset.

However, when we compare the holdout prediction performance with the fraction of neurons
connected to the held out neuron which are experimentally captured, we find little correlation be-
tween prediction performance and either the fraction of input neurons recorded or the fraction of
output neurons recorded (Figure 6.4). The neurons with a small fraction of their synaptic partners

captured are just as likely to be well predicted as neurons with the majority of their synaptic partners
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Figure 6.4: Correlation of predicted activity to ground truth for all neurons. (A) Performance is independent of the frac-
tion of neighboring neurons recorded. Comparing the holdout prediction performance to the fraction of input neurons
(upstream synaptic partners of the held out neuron) and fraction of output neurons (downstream synaptic partners

of the held out neuron) recorded, we find no relationship (left). The unconstrained model (right), as expected given its
random connectivity, also shows little correlation to the fraction of true neighbors recorded.

captured.

This result suggests that there is sufficient information stored in the network (either upstream or
downstream or both) to reconstruct the activity of a neuron even if information from first-degree
neighbors is missing. It may also be the case that for neurons whose activity is strongly correlated
with chemosensory stimulus, of which we know from Chapter 4 that there are many, the number of

recorded partners may be less relevant to predictive performance.

6.3 DiscussioN

Our results demonstrate that the knowledge of the connectome can aid 7z silico predictions of in-
dividual neurons whose activity were not measured, and suggests that information in the C. ¢le-
gans brain is stored in a widely distributed manner. We can interpret the higher accuracy of the

connectome-constrained model as confirmation that the global brain dynamics we observed in
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Chapter 5 can be generated by a network of neurons wired together in the same topology as the
connectome. The anatomical wiring diagram puts measurable constraints on the brainwide activity
we observe in the experimental data.

It is not surprising that the network, fed inputs from a sensory encoder, recapitulates sensory
neuron activity well. While the CC-LVM predicts interneurons better than a comparable uncon-
strained model, overall accuracy is still poor here. Interneuron responses were the most variable
of those captured in the pan-neuronal data. While some interneurons clearly showed stimulus
evoked responses, the activity of many interneurons were independent of the stimuli being pre-
sented (Section 5.2.7). These responses are likely from neurons not directly engaged in the task
of chemosensation, and may reflect other variables, such as the animal’s internal state. The strong
performance of the CC-LVM when predicting motor neuron activity suggests that the network is
capable of picking out the interneuron signals most relevant to motor output.

It is interesting to note that the trained weights in the model ( Vlﬁzd”m and Vl@-zd“) are correlated
(~ 0.3) with the anatomical weights derived from the wiring diagram (synapse count for chemical
connections, and contact patch area for electrical connections). This is distinct from the question
we asked in Section 5.2.6, when we compared the pairwise functional activity correlations directly to
the anatomical weights. In the first comparison, we implicitly assumed that the activity correlations
result from direct synaptic communication between the relevant neuron pairs. We have no way
of distinguishing functionally relevant neuron pairs (neurons are directly communicating) from
neuron pairs which happen to be correlated in activity but are not directly communicating. In the

case of the CC-LVM, when training the model on the neural activity data, we are essentially asking
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the model to return the most functionally relevant neuron pairs, and this information is encoded in
the trained weights. These functionally relevant activity correlations are positively correlated with
the anatomical weights in the connectome.

The accuracy of the connectome-constrained modeling approach is fundamentally limited by the
fact that the reconstructed wiring diagram is not identical to the wiring diagram of the animal from
which functional data was recorded. While many connections are robust across individuals, the
existence of weak edges is often highly variable®. This means that the network topology used to con-
struct models like this one might not be completely accurate. As the throughput of connectomics
imaging continues to increase and automated neuron tracing methods become more accurate, one
could imagine, in the near future, conducting functional imaging and then extracting the wiring
diagram of the same individual. Such experiments would allow us to directly examine the relation-
ship between anatomical variability and functional variability, and also more carefully dissect the
relationship between functional correlations and anatomical weights.

Currently, we are still far away from making biologically testable predictions using this model.
The work described in this chapter is ongoing, and we are expanding the training dataset by con-
ducting pan-neuronal imaging experiments with some of the other odorants employed in Chapter
4. A more diverse set of odorants will broaden the input space, a more representative sample of the
animal’s natural chemosensory task than just three stimuli. Adding select command interneurons or
motor neurons to the input space as a measure of the animal’s behavioral state may also improve the
predictive accuracy of the model.

Deriving causal understanding from high-dimensional whole-brain imaging data is a difficult
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problem, one which has not yet been solved. The traditional circuit-cracking approach can be sum-
marized as: (1) Identify activity correlations between neurons. (2) Systematically remove each rele-
vant neuron or neuronal connection via perturbation (usually a mutant or ablation). (3) Observe
changes in activity in the remaining neurons. (4) Derive causal relationships between neurons from
these activity changes. This approach has proven remarkably successtul for understanding small
circuits, but it does not scale well to pan-neuronal experiments. It is simply not feasible to exper-
imentally perturb every neuron which reliably responds to chemosensory stimuli. Nor is it likely
that the removal of just one neuron would significantly impact the widespread brainwide activity
patterns we’ve observed.

While it’s unlikely that we will ever be able to build a fully realistic simulation of the entire C. ¢/-
egans brain, we do hope that biologically-inspired models of neuronal networks like this one can be
used to make “lower bound predictions.” It is far easier to perform perturbative experiments 7z silico
than 7z vivo, and these simulations could help us screen for neurons with particular functions. For
instance, let us say that a population of 1o interneurons is reliably responding to a given chemosen-
sory stimulus. From the wiring diagram, we know that each of these interneurons has large numbers
of upstream and downstream synaptic partners. Feeding this data into a connectome-constrained
model, we find that knocking out 3 of these neurons has a disproportionately large impact on pre-
dictive accuracy across the network. We could then focus our experimental efforts on perturbing
those 3 interneurons. A tool which could help us identify key neurons in pan-neuronal data would

help us move from correlation mapping and towards a causal understanding of information flow. e
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Conclusion

IN THIS DISSERTATION, we have detailed our efforts to understand how chemosensory informa-
tion is encoded in the C. elegans brain, and how that information is processed by downstream cir-
cuits. We have developed experimental and computational methods which enable us to extract ac-
tivity from large numbers of neurons 7z vivo, while presenting the animal with highly controlled
chemosensory stimuli. We built transgenic animals in which neurons are landmarked with fluores-
cent labels, allowing us to reliably identify neurons and compare functional data directly with the
anatomical connectome.

By characterizing chemosensory neuron responses to a broad panel of odorants, we built a pic-
ture of how the C. elegans olfactory system represents odor information. Despite its compact size,
the olfactory system is capable of encoding odorant identity and intensity in a robust manner. We

captured the activity of the entire C. elegans brain at single-neuron resolution, and found that large
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fractions of the worm’s brain were engaged in response to stimulus, and that these responses were
stimulus-specific across sensory neurons and interneurons. Coupling this labeled pan-neuronal

data with the topology of the C. elegans wiring diagram, we were able to build constrained neural-
network models of the entire brain 77 silico. The projects described here have laid the groundwork
for ongoing and future studies designed to further elucidate the principles of brainwide computa-

tion.

7.1 REVISING OUR PICTURE OF C. ELEGANS OLFACTION

Previous experimental work on olfaction in C. elegans focused on the roles of single neurons. ASH
was described as a nociceptor, and AWA, AWB, and AWC were characterized as responding to
specific odorants. Many studies have demonstrated complexity in the responses of these single
neurons—complexities which may encode information about the olfactory environment. How-
ever, the advantages of C. elegans as a system (compact nervous system and neuron identification)
have perhaps biased the field towards a view of these single neurons as labeled lines.

our results show that more of the chemosensory neurons reliably respond to volatile odorants
than previously thought. We see that neurons like AWA, AWB, and AWC are broadly tuned, re-
sponding to nearly all of the odorants in our panel. Other chemosensory neurons appear to be nar-
rowly tuned to olfactory stimuli. Together, the broadly and narrowly tuned neurons form a spatial
map which provides sufficient information to discriminate odorants. These results suggest that C. ¢/-
egans olfactory encoding is not limited to labeled lines—the responses of the chemosensory neuron

ensemble can be interpreted as a distributed or combinatorial code of odorant identity.
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We have demonstrated that the activity of the ensemble contains sufficient information to dis-
criminate even chemically similar odorants. Whether the animal is capable of decoding this infor-
mation, however, remains an open question. We hope that whole-brain recordings which capture
interneuron and command neuron activity will help to address this question by elucidating dif-
ferences in downstream neural activity across odor space. To better understand changes in neural
representation, future experiments could employ a time-varying odor mixture stimulus. To corre-
late behavioral decisions to neural activity, one could employ freely-moving whole-brain imaging
techniques to record animals in an arena chip as different odorants are presented.

Our theoretical analyses suggest that the responses of narrowly tuned neurons are critical to odor
discrimination. Most of these narrowly tuned neurons have other primary roles. Of particular note
are the neurons ASI, AS], ASK, and ADL, which are known to detect ascaroside pheromones. More
work remains to be done to determine whether the olfactory responses we observe are a by-product
of the receptors employed to detect ascarosides, or if olfaction engages a distinct subset of receptors

within these neurons.

7.2 LOOKING FORWARD: STUDYING THE INTERNEURONS

Our ability to identify all of the neurons in the animal is enabling scale-spanning approaches to
C. elegans neuroscience: we can capture global brain activity with single-neuron resolution and
directly compare activity across individuals. We now have experimental access to the entire input-

output function of the brain, from sensory representations of stimulus to the motor commands
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that drive behavior. Unpacking the computations that drive behavior, however, will be far from
straightforward.

From our work, we’ve seen that the responses of sensory neurons to stimuli are largely determin-
istic. Activity in the interneurons and motor neurons, however, can be highly variable across trials
and across individuals. Even in interneurons which have reliable stimulus-evoked activity, we find
more variability than in the sensory neurons. This should not come as a surprise. It makes sense
that sensory neurons respond similarly time and again to the same stimulus—their role is to encode
information about the outside world. For interneurons and motor neurons which are engaged in
reflex behaviors, it is also expected that a reflex-triggering stimulus will evoke a consistent response.
But for any behavior more complex than a simple reflex, we cannot expect that the same set of stim-
uli will consistently give rise to the exact same actions, executed in the exact same way. The brain
dynamically integrates sensory information (possibly from multiple modalities) with internal vari-
ables, memory, and motor feedback. These processes engage multiple circuits in the brain, and likely
account for the variable responses we see at the interneuron layer across individuals.

C. elegans remains the ideal platform for understanding these computations, again because of the
small size of its nervous system. Because the wiring diagram of the animal is so shallow, an average
of only 2 to 3 synapses separate sensory neurons from motor neurons. We are currently conducting
a series of new experiments in which pan-neuronally labeled animals are presented with repeated
trials of the same stimulus. By reading out the activity of command and motor neurons, we can
determine the animal’s fictive behavioral response to each trial. Through careful identification of

neuron populations correlated to different behavioral outcomes, we hope to gain neuron-resolution
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insight into sensorimotor transformation.

One key limitation of studying interneurons in C. elegans is the observation that many of these
neurons exhibit compartmentalized activity: in some neurons, calcium activity can only be captured
from the neurites, and in others, different parts of the cell will have different dynamics at the same
time. The role these intracellular differences in neurons have in performing computations remains
unknown, but by limiting ourselves to nuclear-localized activity readouts, we may be missing a key
piece of the puzzle. To address this, we are developing lines in which key interneurons are cytoplas-
mically labeled, and combining these labels with existing pan-neuronal lines. Recent work has also
demonstrated the importance of behavioral context and motor feedback to brainwide activity pat-
terns in C. elegans. As we move further away from the sensory layer and into the interneurons, we
must take into account the role behavior can play in shaping the activity we observe by coupling

whole-brain imaging with either fictive or true behavioral readouts.

7.3 INTERPRETING WHOLE-BRAIN ACTIVITY IN THE CONTEXT OF THE CONNECTOME

C. elegans is currently the only animal in which it is possible to make direct comparisons at the
single-neuron level between whole-brain functional activity and anatomical connectivity. Thus far,
comparisons have revealed very low correspondence between functional activity correlations and the
synaptic weights in the connectome. Furthermore, while the connectome is largely fixed in its topol-
ogy (at least on behavioral timescales), we have observed from functional studies that the brain is

capable of engaging the same neurons in very different tasks. While connectomic data is undeniably
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incredibly valuable, the topology of neuronal connections alone is insufficient to explain the activity
of these biological networks. The connectome of an organism is a vital first step to understanding
the anatomical features of a neuronal network, but will have to be coupled with metabotropic and
transcriptomic maps to build a more complete picture of the structural constraints of information
flow.

Determining which of the activity correlations observed in whole-brain data are causal is a key
challenge for future work. The traditional circuit-cracking method of ablating neurons one by one
and observing differences in activity and behavior is simply not practical when brainwide responses
are so far-ranging and variable. Rather, this problem may have to be tackled through a combination
of experiment and theory. It is far easier to perform perturbative experiments 7z sz/ico than in vivo,
and we hope that more sophisticated constrained neural network models will eventually provide
sufficiently accurate predictions of neuron function to help screen for particular roles and to guide

our experimental hand. e
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Supplemental materials for Chapter 2

A.1 MICROSCOPE COMPONENTS AND FILTERS

Part type Manufacturer Identifier
Microscope chassis Nikon Ti-E 2000-U inverted
Spinning disk Yokogawa CSU-X1
EMCCD camera Andor iXon DU-897
EMCCD camera Andor iXon Ultra 897
Objective Nikon CFI Plan Apochromat VC 60XC WI
Laser combiner Andor ALC-500
Laser Andor 405 nm violet
Laser Andor 488 nm blue
Laser Andor 561 nm green
Laser Andor 640 nm red
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Part type | Manufacturer Identifier
Filter Semrock FFor1-445/45-25 blue bandpass
Filter Semrock FFo2-525/40-25 green bandpass
Filter Semrock FFo2-617/73-25 red bandpass
Filter Semrock For-731/137-25 far red bandpass
Filter Semrock red-green dual bandpass

A.2.  MICROFLUIDICS FABRICATION

Microfluidics chip patterns were designed in AutoCAD, and the photolithography masks were
ordered from outputcity.com. Working in a cleanroom, we then transferred the patterns to silicon
wafers via photolithography. Our chip design has two layers, requiring two cycles of photoresist
application, UV exposure, and washing, with an alignment between the cycles.

Then, using standard soft lithography methods, the patterned silicon wafers were used as a stamp
mold to fabricate the microfluidics devices from 10% polydimethylsiloxane (PDMS). Once the
PDMS solidified, it was carefully cut from the silicon wafer (which can be reused), trimmed to size,
and had access ports made with a biopsy punch. The devices were then plasma bonded to #1 thick-

ness glass cover slips and cured at 65° C for at least 2 hours before use.
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LOADING CHANNEL DIMENSIONS OF ALL MICROFLUIDICS CHIP VARIANTS

Experiment animal(s) | Channel width (um) | Channel height (um) Notes
Adule 62 32
Adult (narrow) 62 27 Enforces L/R orientation
Young adult 55 30 Good for small mutants

L4 41 27

Males 34 27 Works for both head and tail
L3 27 20 Difficult to fabricate

A.4 PARTS LIST FOR ODOR MANIFOLD
Part Manufacturer

Perfusion Pressure

Silicone tubing

LabJack UV-L3

30 mL Luer lock glass

ValveLink 8.2 Pinch Valve System

Pinch valve fittings

CBrs terminal board

Kit

syringe

AutoMate Scientific
AutoMate Scientific
AutoMate Scientific
AutoMate Scientific
LabJack
LabJack

VWR
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Part Manufacturer

Tygon FEP-Lined Tubing, Non-DEHP, 1/16”ID X1/8”0OD | Cole-Parmer

Female Luer to 1/16” wide-bore hose barb, polycarbonate Cole-Parmer
Microbore PTFE Tubing, 0.022”ID x 0.042”0OD Cole-Parmer
PTFE Tubing, 1/16”ID x 1/8”0OD Cole-Parmer

A.S OPERATIONS MANUAL FOR IMAGING EXPERIMENTS WITH MICROFLUIDICS

SETUP

Power

1. Turn on the two power strips which power the laser sled, camera, and spinning disk.

2. Turn on the computer.

Odor Manifold Setup

1. With gloves on, place the odor syringes you will be using into the odor manifold. Check that

the switches of the manifold are open (green lights).

2. With a gentle flossing motion, get the flexible tubing of each syringe into the corresponding
valves. When this is done, manually shut the valves using the manifold control box. The
valves should click and the lights should go red. If the valve is stuck closed, set the control
box button to open (the light should go green). Then gently use a razor blade to open the
valve. Then thread the flexible tubing of a syringe into the valve as usual. Try to close and
open the valve. If the valve again refuses to open, rinse the valve with DI water, open it again

with the razor blade and let dry before attempting use.

3. Stick the ends of each odor tube to the putty on the waste beaker. This is to ensure that in
the event of a leak, the solutions drain to a waste container. However, ensure that the tip

of the tube does not touch the bottom of the waste beaker, that the tips are not touching
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each other, and that the tip itself is not in contact with the putty. Any one of these can cause

contamination. If this does happen, cut an inch off the end of the tubing with a razor blade.

4. Pour DI water into the syringes labeled control water (A6) and control odor (A7). You can
pour to about % of the way full for these two syringes, as we use a lot of water in a series of

experiments. Cap each with its corresponding metal stopper.

5. Pour CTX bufter with sorbitol (balanced to 350 mOsm) into the buffer syringe (A8). Fill

about halfway. Be sure that the buffer does not leak, as this can contaminate the setup.

6. Pour the odors into the syringes. Make sure that you load the correct odor to the correct
syringe. You should load approximately s ml of odor in each syringe. Cap each with its corre-
sponding metal stopper. During experiments, do not let the odor level drop below 1 ml. At

less than 1 ml, air pressure can be too variable to produce consistent flow.

7. Fit the retaining plate onto the manifold. The retaining plate can be loosened by loosening
the nuts. After it is placed, tighten the nuts to finger tight. This does not have to be very

tight, just enough to keep the caps in under pressure.

8. Turn the pressure on all used channels by turning the black switches on the top of the mani-

fold from horizontal (closed) to vertical (open).

9. Check on the pressure dial that the system is pressurized (between 3-5 psi).

Microfluidics Setup

1. Choose a microfluidics chip—we will use a new chip every time we use a new stimulus se-

quence.

2. Before beginning to load, it might be a good idea to look at the chip briefly under 4x magnifi-
cation and bright field light for obvious defects. To check for leaks, use a syringe full of water
and gently flood the chip with water.

3. With Scotch tape (with tabs for easy removal), tape the chip down on the side of the stage,

where we can plug in tubes without stressing the glass.

4. For each control tube, open the valve manually and bleed the tube into the waste container,

until there is no more air in the tube and liquid is dripping out. Close the valve.
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5. Plug in the three control tubes (Ctrl Water, Ctrl Odor, and Buffer/Water) into the chip, as
specified by the chip’s design.

6. Bleed the odor tubes in the same way, so there is no remaining fluid. Then plug them into

the chip, in any order.

7. Position the waste tube on the chip above the waste port, not plugged in (which can cause

pressure problems) but placed such that it sucks away waste coming out of the waste port.

MATLAB Configuration

1. Start MATLAB.

2. Define “all valves.” For a single manifold, use the command:
all_valves = {'Al','A2','A3','A4','A5'  'AG','AT','A8"}
3. Launch “OdorGUIL.”

4. Configure the odors and odor delivery program in OdorGUI, either manually, or by loading
a saved preset using “Load Settings.” If you want to save custom settings, use “Save Settings.”
Double check to make sure that the channels on OdorGUI reflect the odors in the manifold,

both in identity and concentration. Give the experiment a name.

s. In Windows Explorer, create a new data folder, and point the OdorGUI program to the data
folder.

6. Use the smset command, smset('all_valves',0), to set computer control of valves to all
closed, then toggle the valves open and closed to confirm that the computer has correct valve

control. This has to be done every time we manually manipulate the valves.

7. When all the tubes are inserted to the chip, run the clean cycle and check that both the chip

and the manifold are leak-free.

8. Ensure that the bars on the bottom match those of the programmed experiment—you can

do this quickly by checking the number and color of the bars.

NIS Elements Configuration for R/G Landmark Stack
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1. Start NIS Elements and configure it for the ID stack.
2. Select the GFP-RFP preset on NIS Elements.
3. Set laser power settings as appropriate for the experiment.

4. Check the following microscope settings: Under DU-897 Settings, No Binning, Readout
Mode EM Gain 1o MHz at 14-bit, EM Gain Multiplier 100, Conversion Gain 1x, Temper-
ature around -70 C. Under Manual Microscope Pad, Nosepiece is set to 6ox. Under Filters
and Shutters, AOTF, MasterALC, and CSU open, Filter set to Red/Green. Under tab Trig-
gered Acquisition, Line 1 is 488 nm, Line 2 is 561 nm, Triggering Enabled. If any windows

have been accidentally closed or missing, look under “View/Acquisition Controls.”
5. Under the ND Acquisition tab, change the path to be the same as the path set for OdorGUI.

6. Under the “Z Series” tab, check that the volume setting is set on the Middle + Range mode.

Step should be 1.5 um, Range 30 um for a total of 21 steps, Z Device should be “Triggered
NIDAQ Piezo Z.”

7. Under the “Time” tab. Ensure that the length of acquisition is consistent with the odor

sequence used.

EXPERIMENT

Loading an Animal

1. With a syringe, pull up about 2 mL of the loading bufter (either M9 bufter or M9 buffer with
2 mM tetramisole). Then attach an elution filter to the syringe and pass the solution through

the filter into a clean petri dish. This will help catch dust and other solids in the solution.
2. Inspect your loading syringe. If the glass tip is dusty, rinse it off with DI water.
3. Fill the loading syringe about halfway with loading buffer.

4. Using the dissection scope, pick a young adult animal off of the plate and place it in the load-
ing buffer. You should be able to see the animal in the buffer by eye.
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Suck the animal up the loading syringe. Do not do this aggressively—try to keep the animal

as close to the tip of the glass as possible. This makes loading easier.

Before introducing the animal to the chip, check the chip again for air bubbles, and run
a clean cycle, keeping the valves open once the cycle is complete. Having liquid flowing
through the chip ensures that any small debris or air introduced during the loading process

will low downstream of the animal.

Plug the loading syringe into the loading port. Do this gently to avoid breaking the glass

cover slip, while bracing the microfluidics chip with two fingers.

While watching the chip through the microscope binoculars under 4x magnification, begin
gently applying pressure to the loading syringe until the animal appears in the loading pool.
Gently apply slight positive and negative pressure until the animal rotates such that its head

points in the direction of the loading channel.

Load the animal head first into the channel, such that the tip of its head protrudes out of
the channel and in the flow. Use slight positive and negative pressure inputs to adjust the

animal’s position, and to keep it from drifting either forward or backward.

Once the animal is loaded, run the clean cycle and/or use partial vacuum pressure to clear the

chip of air bubbles.

Running an Experiment

I.

2.

Center the head of the animal under 4x magnification.

Switch to the 60x objective by manually turning the objective turret. The 6ox is a water im-
mersion objective, so apply two drops of DI water to the objective before swinging it under

the microfluidics chip. Be sure that the correction collar on the objective is set to 17.

. Using binoculars, focus in 6ox and center the animal’s head.

Switch the microscope to confocal configuration by turning the safety interlock on the front
panel from “Bino” to “Confocal.” Turn the light port on the lower right of the microscope
body from 1 to 5. Turn off any room or table lights, but keep the microscope bright field on

to assist you in fine focus.
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I0O.

II.

I2.

13.

14.

IS.

In NIS Elements, hit “Live” (green play button). You should be able to see an outline of the
animal via bright field even if you do not see any fluorescence. Using the fine focus knob,
move up and down in z until you see fluorescence. Once you do, turn oft the microscope

bright field, and center the neurons in the field of view.

In live view, go to the ROI drop-down menu and hit “Define ROIL.” Drag the box lengthwise
to form a §12x256 rectangle parallel to the animal’s head. Do not drag or position the box

with the mouse.

Getting a Landmark Stack (1 time per animal)

Select the GFP-RFP preset tab.

. Under the tab “DU-897 Settings,” confirm that the Format for Live and Format for Capture

are both set at “No Binning,” and that the exposure is “1 frame.”

On the “ND Acquisition” panel, go to the “Z Series” tab. Define a Home position by hitting
the Home button with a red arrow. Then jump to the top and bottom positions in live view
by double-clicking the green numbers on the right side of the box (+15, -15). Check to see

if the animal is centered. If not, return to the home position by double clicking the red box
on the right, and adjust the z-position of the center using fine focus. Redefine the Home
position by clicking the Home button on the left, and check the top and bottom again. We
want to bracket the entire head of the animals in the volume. When you are satisfied with the

animal’s position, return to the Home position by double clicking the red box on the right.
Check that the file path is correct, and name the file “idXYY.”

Go to the “Time” tab in the ND Acquisition panel, and set the experiment time to 1 loop.
Hit the “Stop” button in NIS Elements to stop the live view.

In Elements, hit “Run Now” in the ND Acquisition panel. This will begin the experiment

run and acquire an ID stack with a single time point.

Capturing an Experimental Movie (multiple times per animal)
In Elements, switch the preset to “GFP.”

Under the tab “DU-897 Settings,” confirm that the Format for Live and Format for Capture
are both set at “Binning 2x2,” and that the exposure is “1 frame.” The frame size should now

be 256x128. Set power on the 488 nm.
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16.

17.

18.

19.

20.

21.

22.

23.

On the “ND Acquisition” panel, go to the “Z Series” tab. Define a Home position by hitting
the Home button with a red arrow. Do not move the Z position before defining Home. It

is important that the Home position for the experiment is identical to the Home position in
the ID stack.

Go to the “Time” tab in the ND Acquisition panel, and ensure that the experiment time is

long enough to capture the odor delivery sequence you have programmed (usually 4:30).

In both Elements and OdorGUI, double check that the path and filename are correct. The
nomenclature we use for experiments is runXYY, where X is the animal number and YY is

the two-digit run number. For instance, the first run of animal 2 will be “run2o1.”

Hit the Stop button in Elements to stop the live view. This is important for the trigger signal

to start correctly.

In the OdorGUI, hit “Run Experiment.” The MATLAB program will wait for a signal from

the camera to start concurrently with the acquisition.

In Elements, hit “Run Now” in the ND Acquisition panel. This will begin the experiment
run. If something goes wrong, do not hit Abort. Wait for the experiment to finish and fix it

on the next run.

When an experiment is complete, run a clean cycle. If you want to look at the movie, replay
it and look for motion and activity to make note of. Use the volume button in the Elements

viewer and switch it to Max Projection.

While the clean cycle is running, take the opportunity to make a quick check of the follow-

ing:
(a) Animal position. Is the animal still centered in the field of view? Is it centered in Z? If
not, reposition the animal and/or stage.

(b) Check the odor levels in the odor syringes, ensure that none are empty. If one is get-
ting close to empty, put gloves on, turn oft the pressures, refill it, then recap and turn
the pressures back on. Do not let a syringe run completely dry, then it will require

bleeding again.
(c) Check that the odor tubes are still properly attached to the chip.
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(d) Check that the waste bubble is small and the vacuum is appropriately positioned. If
the waste starts to get in between the tape and the glass of the chip, we will have z-

positioning problems and will have to wait for the setup to dry.

(e) If you saw little activity, switch to binocular mode (“Bino” on the interlock, Light
port to 1) to check if: (i) The animal’s nose is still sticking into the flow. If not, use
the syringe to reposition the animal. (ii) There are any blocking air bubbles. If so, use

clean cycle and/or partial vacuum to flush them.

(f) Make notes of any changes or observations.

24. After the clean cycle is complete, double check that Elements is stopped (not in live mode).

Then repeat from step 18.

Removing an Animal

1. After you complete your experiments, it is time to remove it from the chip. Switch back to

4x magnification, and try the following strategies in order:

(a) Strategy 1: Run a clean cycle, plug the vacuum line fully into the waste port, and flush
the animal to the waste port. Apply positive pressure from the loading syringe if neces-

sary.

(b) Strategy 2: Suck the animal out using the loading syringe. If it comes free, unplug the

syringe and empty it into the waste beaker.

(c) Strategy 3: For large animals. Stick the vacuum line into the loading port, then stick
the loading syringe (with water or buffer) into the waste port. Manually open all water
channels, and apply gentle pressure with the loading syringe. This should force the

animal back up into the vacuum.

(d) Strategy 4: If the animal will only move forwards or is already in the chip, manually
open all water channels, plug the vacuum line fully into the waste port, and push with

the loading syringe until the animal is flushed.

2. Any animal removal may result in some air bubbles being introduced. Once you complete
the extraction, run clean cycle until no more bubbles are present upstream of the loading

chamber.
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TEARDOWN AND CLEANUP

General Shutdown

I0O.

II.

I2.

. Close all valves, and remove the last animal from the chip.

Exit NIS Elements.
Copy the data folder over to an appropriate place on the lab servers.

Put on gloves. Remove the chip from the center of the stage, and tape it back down on the

side of the stage as done when setting it up.

Check that all valves are closed. Then one by one, carefully unplug each tube from the chip
and attach it to the putty on the waste beaker, such that the tips do not touch each other, the

waste liquid, or the putty.
Open all valves and let the excess liquids drain into the waste tube.

If running with CTX bufter, pour 1o mL DI water into any syringe that was loaded with a

buffer solution during the experiment. Let the DI water drain.
With gloves on, gently remove the elastic tubing from each pinch valve.

After the liquids have drained, turn the pressures off and remove the retaining plate. Remove
the caps and let the tubes air dry. Be sure to pull the caps out gently, straight up out of the
glass syringe. Applying force at an angle may result in the glass syringe breaking. Remove

the odor syringes from the manifold and put them in their storage racks (the three control
syringes stay).

Discard the chip in glass disposal, or if you intend on using it again, make a note on the chip

itself of which stimuli were used today.

At least once a week, clean the valves using a squirt bottle of DI water. Give the pinching
area of each valve a long squirt of DI water, and let air dry. Do not spray water around the
odor manifold in a random or uncontrolled manner—there are electronic components that

do not react well to water.

Exit MATLAB, shut down the computer, and shut down both power strips which power

the microscope.
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Supplemental materials for Chapter 3

B.1 OPERATIONS MANUAL FOR SEMI-IMMOBILIZED NEURON TRACKING SOFTWARE

FIRST TIME SETUP

1. Unpack the Analysis Package ZIP file somewhere on the local computer. This file should

contain the following folders:
* matlab_tracking: Contains the programs and dependencies for processing and
tracking the data movies

* matlab_traces: Contains the programs and dependencies for plotting, proofread-

ing, and analyzing the data

* mat_vol_viewer: Contains tools for visualizing any movies in .mat format

2. Add all these folders to your MATLAB path. Adding these folders to the path allows MAT-
LAB to call these scripts from any location. Use a version of MATLAB 2018 or later.

3. Create a folder in which to put your analyzed data. This folder will contain your Data Status

Excel file, and subfolders which will contain your analyzed data.

4. Openup Analysis Package CTX\matlab_tracking\CTX_analyze.min MATLAB.

This is the master analysis script, which calls all of the other programs. Open CTX_load_excel.m
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in the same folder as well. In CTX_load_excel.m, and Step o of CTX_analyze.m, edit
the code which identifies the computer you are using, and points to the appropriate lo-
cation of the Data Status Excel file (file_location) and your version of the annotator
(annotator_root). Optionally, you can set up this part of the code to run seamlessly on

multiple machines.

ASSESSING THE DATA

1. Copy the data to the local computer. Add the movies to the Data Status Excel file, and fill
the following fields:

* Raw Data Root: Location of the raw data on the local computer

* Analyzed Data Root: Location where processed data will be placed

* Animal: Give each animal a unique ID (ex: [Stimulus]_###)

* ID stack: The landmark volume filename (ex: id###)

* Run: The data run filename, (ex: run###)

* Stimulus: Note the stimulus and the concentrations

* Status of Steps: Set all squares to “FALSE”, update them to “TRUE” when complete

The MATLAB code will read metadata from the Excel file, and this metadata will tell the
code where to look for data files and place analyzed files. The “TRUE” and “FALSE” flags

are read as booleans by the code.

2. Using the NIS Elements viewer or your visualizer of choice, watch all the movies of a given
animal. This viewer uses the same basic controls as NIS Elements on the microscope. Use
the “Show Slices View” button to view the movie as three projections in different axes and set
the Mode to Maximum Intensity Projection. To adjust the brightness, go to Window/Show
LUTs Window, and use the lookup tables to adjust the contrast. You can also play around

with the 3D “Volume View.”

3. Watch the movies, taking qualitative notes. Pay close attention to the following:
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* What is the motion of the animal like? If there is continuous motion in X and Y, this
is likely still trackable, but make a note of it on the Data Status spreadsheet. If there is

jerky, sudden motion in X and Y, or any drift in Z, the movie is probably not usable.

* What is the orientation of the animal? Is it a symmetric, lateral view? If so, make a
note as to whether the left or right side of the animal is close to the objective. If the

volume is not symmetric, estimate the angle of rotation and make a note of that.

¢ What is the activity like? If you don’t see any activity, it might suggest something went

wrong with the odor delivery.

PREPROCESSING THE DATA

1. Open CTX_analyze.min MATLAB. At the top of the Step o cell, input the animal ID,
matching the animal ID in the Data Status Excel file. Also, input the strain of the animal
(usually “ZM1o104’). With the cell highlighted, press Ctrl+Enter to run the cell. The MAT-
LAB workspace should be populated with information about the animal, datasets, and the

file and output locations.

2. Through the MATLAB analysis, you can exit the process and quit MATLAB whenever a cell
is complete. The next time you start MATLAB, rerun the Step o cell with the appropriate
animal ID, and then pick up where you left off.

3. InCTX_analyze.m, run the Step 1 cell (click in the cell to highlight it, then press Ctrl+Enter
to run it). The scripts called in this cell convert the ND2 files of the datasets into several for-
mats: raw TTFF files, .mat volumes at two compressions (16 bit and 8 bit), and JPEG images
for the annotator. One of the reasons we do this is that the ND2 data format is proprietary
to Nikon and is difficult to work with. It also extracts time and stimulus information from
the movies and the stimulus text file. The times.json file contains the timestamps for each vol-
ume in the movie. You can view the two .mat volumes using the mat_vol_viewer. When
this cell is done running, flip the “Volumes Made” field on the Excel sheet to “TRUE”.

The scripts in the Step 1 cell are described here. convert_ND2_to_TIF_mat.m generates

TIFF volumes in both red and green channels from the ND2 movie. It also generates two 16
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bit .mat volumes with some Gaussian smoothing (gcamp_vol_16.mat, red_vol_16.mat)

and a times.json file in the run### folder in the local data folder.

The next script, uint8_volume.m, compresses the 16 bit .mat volumes into 8 bit .mat vol-
umes, and saves these to the analysis folder. This compression reduces the online file size, and
more importantly makes the tracking more efficient. The compression is done automatically
with an algorithm which identifies the dynamic range which captures the most variance. By
default this quantile target range is set to 0.9-0.9999, this can be adjusted manually if the 8

bit volumes look overly compressed.

The third script, jpg_generator.m, generates green, red, and maximum intensity projec-
tion JPEGs. These are for use in the annotator. Unlike TIFF files, you can’t adjust the bright-
ness of JPEGs ex post facto. By default, the brightness is set very high, as the annotator is
mostly for identification. If you ever need to adjust this manually, change the denominator
in the process_image function in the jpg_generator script (by default set to 1). The

last script in this cell, times_stimuli.m, extracts stimulus identity and delivery times from
the run###. txt file generated by the OdorGUI. It combines this information with the

times.json file, and generates a run###metadata.mat file in the analysis folder.

ANNOTATING THE NEURONS

1. Add the preprocessed animal to the datasets.json file in the annotator folder. Create a new

entry in the file:

"S @e1": {
"id": "S_0e1",
"shape_x": 256,
"shape_y": 128,
"shape_z": 21,
"shape_c": 2,
"shape_t": 5,
"pixel_size_x": 2,
"pixel_size_y": 2,

"pixel_size_z": 8}
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Fill the initial name and the id field to match the animal ID. Change the shape_t field to

match the number of datasets this animal has, plus one for the landmark.

. Start Web Server for Chrome, click CHOOSE FOLDER, and select your annotator folder.
Then click on the Web Server URL to launch the annotator GUI, written in JavaScript. In
the “Select a dataset” dropdown, select the animal, and the JPEG images should appear. If
no datasets show up in the dropdown, there is probably a mistake in the datasets.json, either

a missing comma or bracket.

. We will now annotate the neurons in the head volume. The annotator has three windows: an
XY projection, XZ projection, and YZ projection. Each window has four options, Selection

(Default), Pan, Zoom In, Zoom Out, and Fit to Viewer. Use these to move about, but stay in
Selection mode when making annotations. The sliders will move through the volume in X, Y,
and Z, with the gray lines indicating the planes of view. The hotkeys for the annotator (active

when the XY projection window is selected) are:

* D: previous recording

* F: next recording

* C:uponeframeinZ

* V:down one frame in Z

* E: previous color channel

¢ R: next color channel

We want to fully annotate the animal’s landmark volume. The computer will then attempt
to carry those annotations over to the other recordings, using a handful of manually labeled
neurons in the remaining recordings. Make sure you start on the landmark volume. To anno-
tate a neuron, move in Z in the green channel until you find a location that you think is close
to the center of the nucleus of the neuron in X, Y, and Z. Double click to create an annota-
tion. This should appear as a red dot. A red dot is an annotated but unidentified neuron. To
label the neuron, click the red dot, and a text box will appear. Write down your best guess for
the name of the neuron (already used labels appear in grey in the dropdown, while unused
neurons appear in white). To delete a bad annotation, hit the trash can button. Annotate all

of the neurons of interest.
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4. When all the neurons are annotated in the landmark volume, decide on a handful of neurons
(3-6) which you can ID with confidence. These neurons will be used by the computer to
try and morph the annotations map from the landmark volume onto the other recordings,
so ideally these neurons are spread widely in X, Y, and Z. Moving through the remaining
recordings, annotate and label these landmark neurons (and only these landmark neurons).
Make sure that for the remaining recordings, the same neurons are labeled. When this is
complete for all remaining recordings for the animal, save the annotations in the annotator
folder, overwriting the old annotations.json file. Flip the “ID-ed” field on all datasets for the
animal on the Excel sheet to “TRUE”.

TRACKING THE NEURONS AND GENERATING TRACES

1. Highlight the Step 3: Track cell and run (click in the cell to highlight it, then press Ctrl+Enter
to run it). This cell will take the position data from the annotator, track all of the neurons
across the datasets, pull out calcium activity traces, and generate rough plots. The tracking
script, CTX_track_neurons .m, will generate plots at the end of each dataset, showing the re-
sults of the tracking. It will also continuously be outputting fit numbers for each frame—the

higher these numbers are, the better the tracking is likely to be.

The tracking code, track_neurons.m, works by taking a large neighborhood around each
nucleus in the green channel, initially centered about the position in the annotator. Then

the algorithm looks for the volume in each frame which best correlates to that initial volumes.
You can adjust the size of the neighborhood and the search parameters in this script. This

script generates a run###_annotations.mat file.

2. Once the tracking is complete for all of the datasets, the calcium activity is extracted from
the movies using generate_traces.m, which sums the intensity over a small area around
the center of the nucleus. The feature size volume and the number of retained pixels can
be adjusted manually in the generate_traces.m script. This script generates two files,

run###annotations_gcamp.mat and run###_traces.mat.

3. plot_traces.mdoes baseline and bleach correction, and then plots normalized traces from
all of the annotated neurons, labeled by their tracked labels. This script generates a .fig of the

raw traces in the dataset folder.
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4. When the entire cell is complete, if there are no issues, flip the Tracked, Traces, and Plots
fields on the Excel sheet to “TRUE”.

PROOFREADING NEURONAL ACTIVITY

1. To proofread the traces, open the dataset_proofreader.mscriptin MATLAB. Set the
dataset run ID and the analyzed root, the location on Dropbox where the processed data
is stored. Then run the first cell, which loads the traces.mat and generates a proofread data

structure (run###_prfrd_data.mat).
2. Run the second cell, which will plot all of the traces, labeled with their tracked IDs.

3. Running the third cell launches the Proofreader GUI The controls for the GUI are as fol-

lows:

e Left Arrow: Previous Neuron
* Right Arrow: Next Neuron

* E: Edit neuron identity (Enter the corrected neuron name in the popup)

B: Adjust the baseline F{ value (The computer has made an automatic best guess at Fo.

to adjust it up or down, input a positive or negative number in the popup)

* G: Flag a trace as problem-free (green)

F: Unflag a trace (yellow)
* D: Flaga trace as unusable (red)
* S: Save

* Esc: Save and exit

4. When proofreading the datasets, we are looking to exclude bad tracks (ex: missing frames,
jumping to an incorrect neuron). We can also manually adjust the baseline Fy. More rarely,
we will also have to correct mis-identified neurons. We will then flag the neurons as problem-

free (green) or unusable (red). A green flag should be given to a neuron for which you have
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high confidence that the identity is correct, the tracking was carried out correctly, and the
baseline was correct. Note that a green flag does not have to do with activity. Neurons with
no activity at all, but you are confident about the identity of, should still receive the green

flag. Neurons you aren’t sure about, or want to return to later, should remain yellow (hotkey

F). Grounds for a red flag (hotkey D) can include:

* Highly unusual traces can indicate poor tracking (such as sudden spikes which do not

look biological)
* Broken traces indicate that the track was lost
* Contaminated signal from a neighboring neuron

¢ Position suggests it might not have been a neuron at all

. When you are done proofreading a set, save it exit the proofreader (Esc). This generates a
prfd_data.mat file for that dataset. Flip the Proofread column on the Data Status spread-
sheet to “TRUE”. Repeat for all datasets for a given animal.

. When you have completed proofreading for all of the datasets for a given animal, open the
avg_traces.mscript. Input the animal ID and line in Step o, then run the Step o cell. Run
the following 3 cells, which loads the proofread data, filters for green flags, and compiles the

data from multiple runs into a single data structure.

. The next cell (optional) allows you to manually inspect neurons by plotting their traces indi-
vidually. Run the final cell to generate average and individual trace plots in the analysis data

folder, and save a large avg_data.mat data structure.
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Supplemental materials for Chapter 4

C.1  SUPPLEMENTAL METHODS

C.1.1  WORM MAINTENANCE

All worms used in this chapter were raised at 20° C on NGM plates, and fed OPso E. coli ***. Ani-

mals used for experiments were picked from plates which not been starved for at least 2 generations.

C.1.2 IDENTIFYING NEURONS IN THE ZM 10104 STRAIN

The ZM10o104 strain used in this experiment expresses two fluorescent proteins: GCaMP6s driven
by the 7ft-z0 promoter, and wCherry driven by gpc-1. GCaMP6s expression was localized to neu-
ronal nuclei to minimize spatial overlap of neighboring neurons, and to make identification of neu-
rons easier. The promoter #f#-20 drives GCaMP expression in all ciliated sensory neurons. Our neu-
rons of interest, the chemosensory neurons, lie in the lateral ganglia, but note that this promoter

drives expression in cells outside of the lateral ganglia. The wCherry landmark is expressed in the
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cytoplasm of AFD, AWB, ASI, ASE, AWC, and AS]J. Note that it also is expressed in RIB, a neuron
which is not labeled with GCaMP.

Relative positions are given in the orientation in Figure C.1, with the nose to the left, the tail to
the right, dorsal top, and ventral bottom. Relative positions should be interpreted as “usually but
not always,” unless otherwise noted. Also note that overly compressing an animal in any direction
will distort the relative positions. Before identifying neurons, it is important to identify the orien-
tation of the animal in the recording by figuring out where the dorsal-ventral (DV) plane lies. This
is most easily done by identifying the plane of bilateral symmetry. Once you have oriented yourself,
you can begin the neuron identification process.

The easiest neurons to immediately identify in this strain are ASH, AS]J, and the anterior “triplet”
of ASK, ADL, ASL. It is often effective to identify these neurons first, then work on the other neu-
rons using the color landmarks and process of elimination. AWC and ASE should usually be in the
neighborhood of ASH, and the four neurons AWA, AWB, ADF, and ASG are between ASH and
the anterior triplet. These four neurons occasionally overlap. To avoid signal mixing, overlapping

neurons were exluded from the dataset. For each odorant condition, neuronal identification was

carried out independently by at least two individuals.
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Figure C.1: Identifying neurons in the ZM10104 strain. The ift-20 promoter drives GCaMP expression in the nulcei of
ciliated sensory neurons. The nuclei of the chemosensory neurons are all posterior to the nerve ring. A red landmark is
provided by cytoplasmic expression of wCherry in the neurons AFD, AWB, ASI, ASE, AWC, and ASJ.

154



CRITERIA FOR IDENTIFYING EACH NEURON CLASS

Neuron Color(s) Relative Position Notes
ASK green leftmost of the anterior triplet large. do not confuse with URX, a
small oblong neuron above ASK
ADL green part of the anterior triplet larger than ASI
ASI green & red part of the anterior triplet use color to distinguish from ADL
ASH green & red left of ASE, below AWA bright, circular
ASE green & red | right of ASH smaller than ASH
AWC green & red variable. below ASH but can be to the often oblong in shape
left, directly below, or to the right
AS]J green & red tail end of the ganglion, bottom left distance from AWC can vary
AWA green variable. usually above ASH smaller than ASH, circular
AWB green & red | variable. usually directly below the small, dim, a bit oblong, use color to
anterior triplet identify
ADF green usually left of AWA, AWB dim
ASG green usually right of AWA, AWB small, circular
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C.1.3 LIST OF ODORANTS

Odorant Chemical class | Behavioral valence (low conc.)
1-pentanol alcohol attractive
1-hexanol alcohol attractive
1-heptanol alcohol repulsive
1-octanol alcohol repulsive
1-nonanol alcohol repulsive
isoamyl alcohol alcohol attractive
geraniol alcohol attractive
benzaldehyde aromatic attractive
methyl salicylate aromatic attractive
ethyl acetate ester attractive
ethyl butyrate ester attractive
ethyl heptanoate ester attractive
pentyl acetate ester attractive
butyl butyrate ester attractive
diacetyl ketone attractive
2-butanone ketone attractive
2-heptanone ketone attractive
2-nonanone ketone repulsive
2,3-pentanedione ketone attractive
2,5-dimethylpyrazine pyrazine attractive
2-methylpyrazine pyrazine attractive
2-isobutylthiazole thiazole attractive
2,4,5-trimethylthiazole thiazole attractive

C.I.4 IMPUTING MISSING SINGLE-TRIAL RESPONSES

Across trials of all neurons and all conditions, about 20% of the neuron responses were either not
captured, or excluded due to tracking mistakes or signal contamination issues. To compare single
trials, we had to fill these missing data points in a reasonable and biologically motivated way.

For a given odorant and A1 trials, the peak responses of the N' = 11 sensory neurons can be



compiled in a matrix R € RN*M, To impute the missing responses, we began by determining
the distribution of peak responses of every neuron to every odorant (Figure C.7A). Due to the
intrinsic correlation between the peak responses of different sensory neurons, the matrix R is low
rank. Sampling from these distributions, we employ a matrix completion algorithm to efficiently
183,184'

impute the missing data points (Figure C.7B)

Figure C.7

C.1 .S COMPUTATIONAL METHODS FOR DISCRIMINABILITY QUANTIFICATION

For binary classification of all odorant pairs, we used linear regression and a simple SVM (linear or
Gaussian kernel). To decode odor identity from the entire single-trial dataset, we built a multi-class
classifier. We concatenate all of the single-trial responses of the 23 odorants at high concentration.
Each trial is an 11-dimensional point, one dimension for every neuron class. Each point has an asso-
ciated label indicating the odorant identity. This data set was randomly divided into 10 parts, 9 of
which are used as a training set (90%) and one which is used as a validation set (10%).

We used the MATLAB function fitcecoc to fit a multi-class model which supports both SVM
and other classifiers. Mechanistically, this method reduces the problem of overall classification into
a sequence of binary classification problems. The performance was quantified by the classification
error, estimated using the crossval function. The confusion matrix was generated using the func-
tions kfoldPredict and confusionchart. The training is repeated 10 times, using each of the 10
parts of the datasets as the validation set, and the results were compiled.

For the 7z silico knockouts, we removed neurons from the training dataset, resulting, for example
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in 1o-dimensional responses when one neuron was removed. We trained the multi-class classifier as

above.

C.1.6 STATISTICS, CODE, AND SOFTWARE

All statistical computations and image analaysis code were written and run in MATLAB using stan-
dard toolboxes, with the exception of the OME Bio-Formats API (used to read Nikon NDx2 file
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formats) *5. The tracking code and software will be made freely available upon publication of the

manuscript.



C.2 SUPPLEMENTAL FIGURES

Sample responses to 1-heptanol
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Figure C.2: Sensory neuron activity traces from representative experiments. Calcium activity traces from the chemosen-
sory neurons captured in three representative experimental recordings in response to three different olfactory stimuli.
This animal was presented with six 10-second pulses of 1-hexanol at 10~ dilution (gray), separated by CTX buffer
blanks. The animal was imaged for 270 seconds at a rate of 2.5 Hz.
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Figure C.3: Single neuron response observations. Average neuron responses, with odor delivery indicated by the
gray/colored bar. (A) AWB is an OFF response for most stimuli, such as 1-hexanol, but is occasionally an ON response,
as is the case for high concentration diacetyl. High concentration isoamyl alcohol elicits an ON response from AWB, but
low concentration isoamyl alcohol elicits an OFF response. This has been previously observed in Yoshida et al., 2012 87,
(B) We observe inhibitory responses to some odorants in ASK. (C) ASJ has an excitatory response to some odorants,
such as 1-nonanol, but has an inhibitory response to 2-butanone. (D) We observe L/R asymmetries in ASE in response
to several odorants, such as ethyl heptanoate and butyl butyrate here.
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| components of the odor space. The molecular descriptor load
ponents of the C. elegans odor space, plotted on the same axes above, and sorted by coefficient below. The leading

Principa

components of PC 1 are measures of aromaticity, and the leading components of PC2 are measures of electronegativity.

Figure C.4
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Figure C.5: Time trace correlations and phase trajectory analyses. (A) Average time trace correlation map of the 11
chemosensory neuron responses across all 23 odorants. (B) Selected average correlation maps of responses to four
specific odorants (1-octanol, heptanone, benzaldehyde, and methyl salicylate), plotted on the same axes, show diverse
response dynamics. (C) Phase trajectory plots of average neural activity for 1-heptanol, 1-hexanol, and 1-nonanol (left)
and 1-octanol, 1-pentanol, and isoamyl alcohol (right). The shade of each color indicates concentration, with low con-
centration indicated by a light shade and high concentration indicated by a dark shade. Different concentrations of the
same odorant tend to generate similar trajectories.
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Figure C.6: Principal components of peak neural response space. (A) The loadings (in 11-dimensional neuron class space)
of the first three principal components of standardized average peak neural response PC space in Figure 4.3B. (B) The
pairwise distances between odorants in this PC space.
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A Cumulative distribution of peak response to different odorants
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Figure C.7: Imputing missing data for single-trial analyses. Across trials of all neurons and all conditions, about 20% of
the neuron responses were either not captured, or excluded for tracking or signal contamination issues. (A) To fill these
missing data points when comparing single trials, we first determined the distribution of peak responses of every neuron
to every odorant. (B) We randomly sampled these distributions to generate missing data points.
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Figure C.8: Pairwise classification error of neural responses to odorants. Binary classification of all odorant pairs by (A)

linear regression and (B) SVM. Both methods return very low classification errors, demonstrating that the single-trial
peak responses of any two odorants are linearly separable.
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neuron classes plotted in odor space (Figure 4.1A).
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Figure C.10: GPCR expression in the chemosensory neurons. (A) Distribution of putative chemoreceptor GPCRs among
the neuron classes (sensory, inter, motor, and pharyngeal neurons). (B) Number of GPCRs expressed in each of the 11

chemosensory neurons (AWC and ASE separated due to their asymmetries). (C) Number of overlapping GPCR types
expressed in the chemosensory neurons. Data from Vidal et al., 2018.%°.
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Supplemental materials for Chapter s

D.1  SUPPLEMENTAL METHODS

D.1.1  WORM MAINTENANCE & PHENOTYPING

All worms were raised at 20° C, on NGM plates, and fed OPso E. coli as previously described 182
unless otherwise noted. Brood-size quantification, high-resolution behavioral phenotyping, dye-
fill with DiO, chemotactic quadrant assays, and drop-test assays were performed using standard

protocols 67,186,187,73,188

D.1.2 FLUOROPHORE, REPORTER, AND MUTANT IMAGING

We imaged strains with a Zeiss LSM 880, equipped with 7 laser lines: 405, 458, 488, 514, 561, 594,
and 633 nm. Our standard configuration employed 405, 488, 561, and 633 nm to excite mTagBFP2,
GFP/GCaMP + CyOFP1, TagRFP-T, and mNeptune2.s, respectively. The 8-color emission spec-

tra was captured using strains that expressed each fluorophore individually. For these, we used the
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LSM880’s “lambda mode”, employing its 32-channel spectral detector to capture color spectra from
391-7277nm, at ~1onm color resolution — several fluorophores were imaged by exciting them with
wavelengths below peak excitation and significantly increasing both the laser power and gain. To
that end, for the 8-color emission spectra, we used: 405nm to excite mTagBFP, CFP, GFP, and Cy-
OFP1; 488nm to excite YFP and mNeonGreen; and, s61nm to excite TagRFP-T and mNeptunea.s.
All NeuroPAL reporter and mutant crosses were imaged with the same scope. When not perform-
ing a DIC overlay, gamma correction of ~o.5 was applied to images so as to improve color visibility.
Occasionally, histograms were adjusted to balance colors for visibility. These image adjustments

are necessary and suggested for NeuroPAL identification in order to deal with a variable range of

GFP/CFP/YFP reporters and color alterations in mutant backgrounds.

D.1.3 STATISTICS, CODE, AND SOFTWARE

All statistics and code were run in MATLAB, using standard toolboxes, with the exception of the
OME Bio-Formats API (used to read in Zeiss CZI and Nikon NDz file formats) '*5, and Math-

Works FileExchange functions: munkres.m, and logsumexp.m. The code and software are freely
available at: https://github.com/amin-nejat/CELL_ID, https://github.com/Eviatar/

Optimal_Coloring, & https://github.com/venkatachalamlab/NeuroPAL-traces/.

D.2 bDNMF SUPPLEMENTAL METHODS

The joint motion correction and signal extraction framework involves several steps. Let Y, € R?

denote the d-pixel vectorized volumetric image at timez = 1,..., 7. We seek to decompose the
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observations, Y;, into a factorization involving a time-varying deformation term, f[gl thatactson a
time-invariant canonical representation of £ object shapes encoded by A. The time-varying spatial

. Axk .1 . . . 2
signatures, f5 (A) € R***, are then multiplied by signal carrying coefficients C, € R*. We also
encourage model parameters to be "well-behaved” using regularization functions, R . The resulting

objective function is:

z +R(A,C,B) (D.1)

S.t.A7 Cl:T > 0.

This formulation differs from standard NMF techniques*® in that the spatial footprint term
consists of a time invariant term, A and a time varying term, f@,’ which is a differentiable transfor-
mation parametrized by (3, that deforms the canonical representation into the #-th time frame. {8,
encapsulates the motion parameters and is usually low dimensional to avoid over-parameterization
and overfitting. The regularization R(-) further constrains the possible choice of spatial footprints,

signal coefficients, and spatial deformations.

D.2.1 SPATIAL COMPONENT PARAMETRIZATION

When we have strong prior information about the component shapes we can incorporate that into
the model using an appropriate parameterization for the spatial footprints. Neural activity is most

commonly imaged using cytosolic or nuclear-localized calcium indicators; nuclear-localized indi-
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cators can be reasonably modelled using ellipsoidally-symmetric shape models. Specifically, we ob-
served that the spatial component of the neurons in the videos analyzed here, of C. elegans imaged
using nuclear-localized calcium indicators, can be well approximated using three-dimensional Gaus-
sian functions. By taking advantage of this observation we can reduce the number of parameters
in A from one parameter per pixel per component, to £ 3D centers (3 parameters per each neuron)
and & covariance matrices (6 parameters per each neuron using the Cholesky parameterization).
Formally, we model the footprint of component £ using a 3-dimensional Gaussian function with
location parameters p, € R3 and shape parameters X, € R3>3,

Under this new spatial model for A = {p, ;. Z1.x}, we modify the fg function to match this

parameterization to have f3 (A) € RA¥k.

fa, (A)[1, ] ~ exp ([p: — B, Y (1)) = ' [ps — B, Y (1)), (D.2)

where p; is the 3D coordinate of the 7-th pixel in the image. (Note that non-negativity of the spatial
components is enforced automatically here.) Due to the differentiability of fg , it is straightforward

to compute gradients with respect to 3, and %.

D.2.2 REGULARIZATION: TEMPORAL CONTINUITY AND PLAUSIBLE DEFORMATIONS

We employ two sets of regularizers to enforce a well-behaved model. To enforce smoothness of the
temporal traces and motion trajectories in time we add a regularizer that penalizes discontinuities in

the neural trajectories and signal coefficients. Specifically, we encourage the neural centers and signal
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coeflicients at neighboring time points to be close. The regularizer for this purpose is:

-1 T—1
R(C,B) =2 > [[#rrx)B,y — Wbl [+ A D IC1 = Co- (D:3)
=0 t=0

In this formulation ¢(p,. ) is the quadratic transformation of the canonical neural centers.
When multiplied by #,_; and 8, the result will be the neural centers at time # — 1and ¢ respectively.
The term fp induces a deformable transformation of the pixel correspondences between time #and
the canonical representation A.

In order to constrain this transformation to yield physically realistic deformations that respect
volumetric changes, we regularize the cost function using the determinant of the Jacobian of the
transformation term to encourage the Jacobian to be close to 1 and prevent the deformation from
contracting or expanding unrealistically. The Jacobian can be represented as: Jg (1, %2, x3), with

o(fp): . . N
Ji = ((97)2) Using the Jacobian, the regularizer is:

roJ

Ray(@) =27 > > (det Tp (.1 2) — 1), (D.4)

=1 =1

where the Jacobian is evaluated on a grid.
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D.2.3 OPTIMIZATION AND INITIALIZATION

All the variations of the INMF cost function are optimized in the following way. To update § and
A we use the autograd tool and PyTorch library to automatically compute gradients of the cost
function and Adam optimizer to back-propagate the gradients. A forward pass of computation is
evaluating the cost function with 8. ,-and A (in the fully parametric case, or (., (in the Gaussian
case) as parameters. Note that for a fixed C, all compartments of the cost function are differentiable
with respect to the parameters.

To update C we use multiplicative updates as described in * 16,

fTYt + )'C(Ct—l + Cz—i—l)

B
f@TZf@[C[ + 21cC,

C,+—C,® (D.s)

The key difference between these multiplicative updates from those found in "*? is that the parts of
the derivatives of the temporal smoothness regularization terms 21¢C; and 2¢(C,—1 + C,1) appear
in the denominator and numerator to promote smoothly varying signal.

One key advantage of the C. elegans datasets considered here is that we can reliably identify the
locations of all cells in the field of view, using methods developed in "3°. Using the location of cells
in the initial frame (for example) can tremendously aid the optimization of the objective D.1 for two
main reasons. First, it serves as a very good initializer for the x, parameters for cell spatial footprints
mentioned in section D.2.1. Second, we know a priori the correct number of cells to be demixed in

the FOV. These two factors enable our framework to operate in a semi-blind manner towards the
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deconvolution of neural signals of C. elegans, unlike fully blind deconvolution techniques such as

e.g. PCA-ICA"° or CNMF "',

D.2.4 EVALUATION METRICS AND COMPARISONS

To evaluate the performance of the proposed method as well as the compared methods, we focus

on several metrics that shed light both on the signal demixing capabilities of the methods as well as
their ability to track objects in time. Namely we focus on two major metrics: trajectory correlation,
which measures the ability of the deformation model to keep track of the observed motion, and
signal correlation, which measures the demixing performance by comparing the correlation of

demixed signal intensities relative to the ground truth. Specifically, these metrics can be expressed as:

Trajectory correlation: Signal correlation:

BB Sl -BEP ) = SulGe=OC=0)
NI ON S SR V(G0 /S (GO

Using these metrics, we evaluate the signal extraction performance of dNMF against two stan-

p(€,C

dard routines in calcium imaging. First, we compare against region of interest (ROI) tracking and
pixel averaging within the ROI"'7. This method tracks the positions of cells across time and extracts
signal by taking the average pixel intensity value in a pre-defined radial region around the tracking
marker. We also compare against the routine of performing motion correction first and then signal
extraction through NMF . To replicate this routine in our experiments, we motion correct using
Normcorre and then use the Gaussian cell shape parametrization version of NMF that is described

in section D.2.1.
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D.3 SUPPLEMENTAL FIGURES

CFP (458nm)

YFP (488nm)
CyOFP1 (488nm)

Fluorescence (arbitrary units)

) )
Emission Wavelength (nm)

Figure D.1: Emission for NeuroPAL fluorophores and compatible signal fluorophores

Early L2 Head (Left)

Early L2 Tail (Right)

Figure D.2: NeuroPAL in the L2 larva. Neural identities for the head (A) and tail (B) of an early-L2, NeuroPAL worm.
PDA, PVN, and RMF are not present since they are postembryonic neurons that differentiate later in development.

175



A Brood Size B Dead Eggs

N-10 Neto o Nto Nt0 N10 N10 N-10 N10
40001 P o w05 P o7 et )
. —
300} @ 60]
5 2
; 250] w 50
b
‘S o
; 200] #® 40
g [}
2 150, 2 30|
@ o
o w
o 100} 5 20
A= ©
o @
- 50 a 10| -
w .
N2 OHT5262 OH15263 OH15495 OH15265 OH15500 OH16230 0 N2 OH15262 OH15263 OH15495 OH15265 OH15500 OH16230
2018 201 2019 2019 2019 2018 2019 2019 2018 201 2019 2019 019 201 019 2019
NeuroPAL GCaMP6s NeuroPAL;GCaMPés NeuroPAL GCaMP6s NeuroPAL;GCaMPés
C Worm Speed
N N N N e N ns N e
05 08 qraoed 00t o ¢on  Gaz qam A
T T T T T T T
[ Forward [ |Backward 3
T ] . o F NaCl Chemotaxis
S N s N N8
g [
8 = . 1
a 7] ‘I os []25mm
) . i
= P ] B 0.8
S : L B
= y L B o

.‘ ,‘ " '.‘ | \‘ ; | "* Zzg E E

|
N2 OH15261 OH15262 OH15263 OH15495 OH15264 OH15265 ON15266 OH15368 OH16230 N2 04
2017 2017 2017 2017 2019 2017 201 2017 2017 2019 2019 E
NeuroPAL GCaMPGs NeuroPAL;GCaMP6s % 03 Attraction
Toz .
£
s : s = No Preference
D 10+ 2-Butanone Chemotaxis E 10+ 2,3-Pentanedione Chemotaxis 3
N-g 5 [ N-g N= Neg Nes
S WY So:f 100 mm
h peol 20 4 oy S )
ogf . 09 s Repulsion
x OO . : 08 04 =
o o
- = £ - T =
£ o4 . £ 0 - =
-0.6|
123 (2]
s 2T = . 4
S04 . £ o4 .
° ° . 08
E 03 E 03 09|
02 02 1
S o e W
01 01 a=1x10¢ 4=0.007 ot
N2’ OH15500 OH16230 N2 N. OHT5500 OHT6230 N: N2 OH15500 OH16230 N:
5/2019 5/2019 10/2019 10/2019 5/2019 5/2019 10/2019 10/2019 5/2019 5/2019 10/2019 10/2019
NeuroPAL;GCaMPés NeuroPAL;GCaMPés NeuroPAL;GCaMP6s

Figure D.3: NeuroPAL phenotype quantification. (A) Brood size. (B) Dead eggs. C Crawling speed. (D-F) Chemotaxis
indices (displacement along gradient divided by distance traveled).
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Figure D.4: Canonical neuron locations and their positional variability. Canonical neuron locations (filled circles with
their NeuroPAL coloring) alongside their positional variability (encircling ellipses with matching color) for all ganglia in
the head (A) and tail (B), as determined by NeuroPAL (otls669), see Supplement Data for exact measurements. Positional
variability is displayed as the 50% contour for neuronal location (measured as a Gaussian density distribution), sliced
within a 2D plane; because we are restricted to a planar view, we show both the left-right and dorsal-ventral planes to
provide a 3D estimation of the true contour bounding positional variability (Supplement Text). Left, right, and ventral

views of neuron position variability is shown.
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Figure D.5: Pre-stimulus calcium activity and phase trajectory analysis. (A) Peak AF/ Fy values for neurons in 21 indi-
viduals in the minute prior to stimulation. White boxes indicate neurons which were not captured in that animal. (B) Ad-
ditional neurons responsive to chemical stimulation. Average phase trajectories of neuronal representation during and
immediately after (C) NaCl, (D) 2-butanone, and (E) 2,3-pentanedione, with selected individual phase trajectories shown
in gray. The PC space is constructed from data from all individuals pooled together, with missing neurons imputed.
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Figure D.6: Demixing neural calcium signals in semi-immobilized animals. (A) A representative z-axis maximum pro-
jected frame from a 4-minute long video of GCaMPés neural activity in the tail of a pan-neuronally labeled animal. We
focus on the signal from five pairs of spatially-neighboring neurons in the tail: DVA/DVB, PVNR/PVNL, PVWL/PHCR,
PLNR/LUAR, and VD13/DA8. (B) Calcium signals extracted by dNMF (left), Normcorre 192 4 NMF (middle), and ROI
tracking and averaging (right). dANMF extracts uncoupled signals that demonstrate independent neural activity. The
selected cells were chosen such that the signal recovered by ROl averaging is inconsistent with dNMF (quantified

by having correlation smaller than 0.4). Normcorre + NMF partially mixes signals between both PHCR/PVWL and
PVNL/PVNR around the 30-second mark and DVB/DVA around the 120-second mark (red arrows), and loses nearly all
signal from PLNR, due to motion exhibited by the semi-immobilized animal. ROI averaging produces completely corre-
lated signal (red arrows) between all of the labeled neurons, and loses most of the signal from LUAR and PLNR, due to
overlap in their spatial footprints.
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D.4.1  NEUROPAL REPORTERS AND NEURON COLORS

The 41 reporters combined to create the NeuroPAL, their neural expression, and the resulting
stereotyped color, per neuron class, ordered from anterior to posterior. NeuroPAL not only labels
all 118 anatomically defined classes of the worm, but also a number of neuronal subclasses. For ex-
ample, the stochastically-asymmetric, bilateral, AWC neuron pair were distinguishably colored by
design. AWC-OFF expresses srsx-3::CyOFPr1, thus giving it a green appearance relative to its ON
equivalent. Similar design choices were made so as distinguish several neural subclasses, such as DA8
versus DAg as well as VB1 versus VB2. Neuronal subtypes with differential coloring are listed sepa-
rately (e.g., RMEL/R vs. RMED/V).

a = the neuron is missing expected coloring from at least one of the NeuroPAL reporters.

b = the neuron displays coloring that is not accounted for by any of the NeuroPAL reporters.

¢ = the neuron may appear either bright or dim in the NeuroPAL.

d = the neuron is solely marked by the panneuronal but may occasionally display dim blue coloring.
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