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Abstract 

A Neural Algorithm of Artistic Style introduced an artificial system to create 

artistic images. It does so by generating a set of feature maps from a content image and a 

style image. These feature maps are used to generate a loss, which is applied iteratively to 

a noisy image via gradient descent. This process results in the generated image having 

features which represent that of the target content and the target style images. The goal of 

this project is to explore the original research decisions, and explicitly document the 

tradeoffs being made. 

The original research used the Visual Geometry Group’s 19 weight-layer model. 

Many properties of this method were not fully documented - the optimization method is 

not specified (only broadly referred to as gradient descent), the architecture is altered to 

“improve gradient flow” without documenting how it was improved, no other models are 

evaluated, and many properties of the gradient descent process were not explored. This 

project aims to explore additional models, document various methods of gradient descent, 

explain characteristics of the loss, and propose solutions to improve the gradient flow. 
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Glossary 

BFGS 

Broyden-Fletcher-Goldfarb-Shanno Algorithm 

 

Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1 

With regard to any of the VGG models, Conv _  is denoted such that  represents the 

convolutional block and  represents the specific convolutional layer within a given 

convolutional block . Conv3_1, for example, refers to the first convolutional layer within 

the third convolutional block 

 

L-BFGS 

Limited-Memory Variant of Broyden-Fletcher-Goldfarb-Shanno Algorithm 

 

Style A, Style B, Style C, Style D, Style E 

Refers to the notation used by Gatys et al. (2015) to denote feature map configurations 

when calculating the loss.  

 

SGD 

Stochastic Gradient Descent 



 xiv 

VGG-11 

11 weight-layer variant of the Visual Geometry Group’s convolutional neural networks 

(Simonyan et al., 2014) 

 

VGG-13 

13 weight-layer variant of the Visual Geometry Group’s convolutional neural networks 

(Simonyan et al., 2014) 

 

VGG-16 

16 weight-layer variant of the Visual Geometry Group’s convolutional neural networks 

(Simonyan et al., 2014) 

 

VGG-19 

19 weight-layer variant of the Visual Geometry Group’s convolutional neural networks 

(Simonyan et al., 2014)
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Chapter I. 

Introduction 

A Neural Algorithm of Artistic Style has become increasingly popular in recent 

years. Many websites and applications use its methodology to produce visually appealing 

images. Its implementation has been modified and expanded into many domains ranging 

from game development to artificial makeup removal from images. 

The goal of this project is to explicitly document the convergence behavior of 

style transfer algorithms. The 19 weight-layer variant of the Visual Geometry Group’s 

Large-Scale Image Recognition models was used for the original implementation, 

although there are many similar variants of this model that were also introduced by the 

Visual Geometry Group (Simonyan et al., 2014). Gatys et al. (2015) uses the 19 weight-

layer variant to generate feature maps, which are used to generate two loss functions - 

content and style. The content loss is calculated by merely using the mean squared error, 

whereas the style loss is calculated by taking the Gram matrix of the activations before 

calculating the mean squared error. This loss is applied back to a noisy input image 

iteratively, resulting in a generated image that represents the feature maps of its targets. 

The original implementation optimizes this process, referring vaguely to “gradient 

descent”, but does not define which method of gradient descent was used, which 

hyperparameters were used, or any of the convergence properties associated with the 

process (Gatys et al. 2015). The style loss function applies normalization based on the 

shape of each activation but does not explore additional methods of normalization.  
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This project also aims to document the loss behavior and the characteristics of 

how the loss is generated. The style loss utilizes various hidden-layer activations in order 

to generate Gram matrices. These Gram matrices have interesting characteristics which 

have been found to influence the behavior of the loss.  

1.1 Background 

 Neural Style Transfer is dependent on many areas of research which preceded it. 

This section serves as a brief overview of all the tools and techniques required to 

implement this algorithm. 

1.1.1 ImageNet 

Deng et al. (2009) released ImageNet with the goal of populating the majority of 

existing WordNet synsets. The ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) is an annual competition that allows researchers to compare algorithms’ 

accuracy in object detection and image classification. 

1.1.2 Visual Geometry Group 

The Visual Geometry Group (VGG) is a research group from the University of 

Oxford that has participated in the ILSVRC. Simonyan et al. (2014) published six models 

as part of the Visual Geometry Group’s 2014 ILSVRC submission. At the time of 

publication, the purpose of these image-recognition models was to evaluate convolutional 

neural networks of increasing depth, using an architecture with small convolution filters. 

These models achieved first place for the 2014 localisation track, and second place for 

the classification track of the competition.  
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Each of the six models were trained on the same subset of ImageNet images, and 

follow the same steps of preprocessing. The inputs are a batch of fixed-size 224x224 

images with the pixel order of red-green-blue (RGB images).  

The original implementation changed the pixel order to blue-green-red (BGR 

images) before subtracting the mean pixel value - calculated from the training dataset - 

from each individual image.  

 As illustrated in the table below, each of the model’s variants have a similar 

architecture - with the key difference between variants being the number of convolutional 

layers within each convolutional block. Additionally, the 11 weight-layer model includes 

a variant which adds a Local Response Normalisation (LRN) layer. The 16 weight-layer 

model also includes a variant which replaces some of the 3x4 convolutional filters with a 

1x1 convolutional filter.
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Table 1. ConvNet Configurations

 

Taken from Very Deep Convolutional Networks for Large-Scale Image Recognition 

 Metrics of success for these models are defined as the top-1 and top-5 error. 

Top-1 is a multi-class classification error; it measures the proportion of incorrectly 

classified images. Top-5 represents the proportion of images whose label falls outside of 

the model’s top-5 predicted categories. 
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 When evaluated against the 2014 ILSVRC test dataset, each of the six published 

models had top-1 val errors between 25.5% and 29.7%. Each of the six-published models 

had top-5 val errors between 8.0% and 10.5%. The most accurate of these models, in both 

categories, was the 19 weight-layer model 

Table 2. ConvNet Performance Metrics

 

Taken from Very Deep Convolutional Networks for Large-Scale Image Recognition 

1.1.3 Pooling 

Yamaguchi et al. (1990) published the first implementation of max-pooling, 

which was applied to a time delay neural network (TDNN). Its original application was to 

support a speaker-independent isolated word recognition system. Since its introduction, 

pooling has become a popular method of dimensionality-reduction in convolutional 

neural networks. 

Pooling operations reduce the dimensions of neural networks by combining 

multiple layer outputs in order to generate a single input for the following layer. Max 

pooling operates by taking the maximum value of the cluster of neurons at the prior layer, 

whereas average pooling operates by taking the average value of the cluster. 
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Max pooling and average pooling have key differences - maximum pooling is 

nonlinear, whereas average pooling is linear. For the purposes of implementing Neural 

Style Transfer, this effect may be significant; nonlinearity of the pooling layers may lead 

to a diminished gradient flow. Gatys et al. (2015) replaced the max-pooling layers with 

average-pooling when using the pre-trained 19 weight-layer Visual Geometry Group 

model. 

1.1.4 VGG Implementations 

The Visual Geometry Group published pre-trained models - trained on the 2014 

ILSVRC subset of the ImageNet dataset - for their 16 weight-layer and 19 weight-layer 

models. Pre-trained models are often utilized, as training the models is time-consuming 

(these models in particular took between two and three weeks, according to the Visual 

Geometry Group). 

The learnable weights of the model are saved to a file, and this file is used to 

initialize the weights of the network - instead of beginning with randomly-generated 

weights (which is typically done before training a model). This does not include the 

pooling layers, which do not have learnable weights. 

Pre-trained models are available in many different frameworks, although the 

models vary slightly by implementation. The original models released by the Visual 

Geometry Group are implemented using the Caffe deep learning framework. This 

framework was utilized by the original implementation (Gatys et al., 2015) 

The PyTorch framework includes pretrained models for all of the architectures 

introduced by the Visual Geometry Group, although its implementation varies slightly. 

The Caffe framework model was trained using the 2014 ILSVRC subset of the ImageNet 
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database. PyTorch’s implementation was trained on a different subset of ImageNet data - 

the exact subset of which is currently unknown. At the time of writing, the published 

models were trained on a random subset of the 2012 ImageNet dataset, but the exact 

images (as well as the sample size) were lost. 

1.1.5 A Neural Algorithm of Artistic Style 

The original implementation by Gatys et al. (2015) uses the 19 weight-layer 

variant of the Visual Geometry Group’s model. After the model's weights are loaded, the 

max-pooling layers are replaced with average-pooling in order to improve gradient flow. 

The weights of this model are frozen; the weights are not updated throughout the process. 

The implementation consists of two loss functions - content and style - which are 

evaluated both separately and combined. All of the methods - content, style, and a 

combination of both - begin with a generated image consisting of random noise. The 

pixels of this generated image are updated iteratively in order to minimize the loss 

function.  

All of the loss functions utilize the hidden-layer activations of the Visual 

Geometry Group’s 19 weight-layer variant. Both the noise image and the target image[s] 

are sent through this neural network. Each of the convolutional layers has a 

corresponding rectified linear activation. The activations of the noise image and the target 

image are used to generate the loss, and the pixels of the generated image are updated 

iteratively in order to minimize this loss. 

Gatys et al. (2015) has demonstrated that Content loss is more straight-forward to 

calculate than Style loss and has less variation in its generated image. This research aims 

to explore Style loss specifically; no exploration of Content loss is presented in the 
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findings of this research. However, Content loss is introduced by Gatys et al. (2015), and 

is constructed in a manner that is similar to that of Style loss. For that reason, and for the 

sake of a thorough background on the algorithm, a brief summary of Content loss is 

provided below. 

Content loss is calculated by taking the mean squared error between the target 

activations and the noise activations: 

 

 

 

Where  rand  represent the original image and the image that is generated and  and 

 represent their respective feature representation in layer . The derivative of the loss 

with respect to the activations in layer  equals 

 

 

 

Where  is the activation of the  filter at position  in layer . An interesting 

observation about this derivative is the distinction between activations that are greater 

than 0 vs activations that are less than 0 - rectified linear activations by their very nature 

assert that the activations will never be below 0. A modification to this derivative is 

proposed in section 2.3.2, which modifies the derivative as follows:  
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Style loss also utilizes the target activations and the noise activations but does so 

by generating a Gram matrix of the activations before calculating the mean squared error. 

The contribution of loss from an individual layer  is represented by 

 

 

 

Where  and  represent the height and width of the activations, and  and  

represent the Gram matrices of the activations  at layer . Whereas content loss is 

calculated by the activations of a single layer, style loss combines one or more layers. 

The total style loss is defined as  

 

 

 

Where  are the weighting factors for each layer. Gatys et al. (2015) uses equal 

weightings across all layers of the network when calculating the loss. The derivative is 

calculated as follows: 
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The same modification described above is also proposed in section 2.3.2, which modifies 

the distinction to include values that are less than or equal to 0: 

 

 

 

Gatys et al. (2015) evaluates these losses on their own, and also combines them using  

and  as weighting parameters: 

 

 

 

Content and style loss functions are generated using various activations 

throughout the network. Content uses a single activation for all of its configurations, 

whereas style uses a weighted combination of one or more activations. There are five 

configurations of activations considered, which are labelled as A - E: 
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Figure 1. VGG 19 Convolutional Neural Network. 

The first convolutional layer of each convolutional block (highlighted in the image 

above) are used to calculate each of the 5 loss configurations, which are labelled A-E. 

Content Loss functions use a single convolutional layer, whereas Style Loss functions use 

every layer that precedes it. Style E, for example, is the weighted average of losses for 

conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1. 

Although the original implementation only broadly refers to “gradient descent” 

without suggesting a specific optimization method, the author has suggested online to 

optimize via the quasi-newton method of Broyden-Fletcher-Goldfarb-Shanno algorithm. 

1.1.6 Broyden-Fletcher-Goldfarb-Shanno Algorithm 

Newton’s method is an iterative method for finding the root of a differentiable 

function. It can be applied to the derivative of a twice-differentiable function in order to 
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find the minimum or maximum of the function. It does so by selecting a random starting 

point, and performing the following iteration until the optimal value is reached: 

 

 

 

 When expanded to a higher-dimensional space, Newton’s method can be 

generalized as follows: 

 

 

 

where  represents the inverse of the Hessian matrix, and  represents the 

gradient.  

 Although Newton’s method is effective for finding optima, it can be very 

computationally expensive - calculating the inverse Hessian - which must be done each 

iteration - has a computational complexity of . 

 Quasi-Newton methods reduce the complexity imposed by Newton’s method, as 

they approximate the Hessian instead of calculating it directly. Four authors 

independently published the algorithm now known as Broyden-Fletcher-Goldfarb-

Shanno (Broyden, 1969; Fletcher, 1969; Goldfarb, 1969; Shanno, 1969). This algorithm 

gradually improves the approximation for the Hessian through a generalized secant 

method. These updates do not require matrix inversion, which reduces the computational 

complexity from  to . The iterative method can be summarized as follows: 
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Where  represents the gradient, and  represents the approximation of the Hessian. 

 

 While BFGS reduces the computational complexity, it does not reduce the 

memory required to store the Hessian - which has a memory requirement of   for 

the  matrix. Liu et al. (1989) effectively reduces the memory complexity of this 

algorithm (L-BFGS, for limited-memory BFGS) by approximating the Hessian via the 

history of the gradients. This results in a linear memory requirement, as only one vector 

is required to approximate the Hessian instead of a dense  matrix. 

1.1.7 Strong Wolfe Condition on Curvature 

 The approximation of the Hessian may not represent the true objective function, 

which may lead to strange convergence behavior. If the quadratic approximation is 

shallower or steeper than that of the true function, a step may overshoot or undershoot 

and lead to an iteration that increases the cost.  

Wolfe (1969) introduced a set of conditions that, when enforced, may lead to 

better convergence behavior. These conditions assert that the length of each iteration step 

is proportional to the decrease in the objective function. This also means that any 

individual step cannot increase the cost. 
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1.1.8 Stochastic Gradient Descent 

 Robbins et al. (1951) introduced the Robbins-Monro algorithm, which is an 

iterative method to solve root-finding problems. One such application of this algorithm is 

Stochastic Gradient Descent, which is an iterative method for optimizing differentiable 

functions. It does so by randomly selecting a sample and using that sample to 

approximate the true gradient. This process repeats until the approximate minimum is 

reached. The objective can be summarized as follows: 

 

 

 

Where  minimizes . SGD finds a  that minimizes  by performing the 

following calculation iteratively: 

 

 

 

Where  represents the gradient at    and    represents the step size. SGD does not 

compute the entire gradient. Instead, the gradient is approximated from a random sample 

of rows on each iteration. Choosing an appropriate step size is important - a step size too 

small will take very long to converge, whereas a step size that is too large may overstep 

the true optima.  
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1.1.9 Adaptive Movement Estimation 

 Kingma et al. (2014) proposed a solution to this step-size problem by introducing 

a method which updates the step size dynamically. Each parameter is assigned an 

individual step size, and this step size is updated in each iteration, based on the gradient 

of the previous iteration. 

1.1.10 Condition Numbers 

For any given function, the condition number represents how much the output of 

that function will change for a small change in the input values. A problem with a low 

condition number is defined as being well-conditioned, and a problem with a high 

condition number is defined as being ill-conditioned. The solution to an ill-conditioned 

problem becomes hard to find, especially through gradient descent, as the cost can vary 

drastically even with a very small step size. Additionally, the gradient may only be well-

defined in some directions and under-determined in others. 

A condition number of 100 is often used as a baseline reference. A condition 

number below 100 is said to be well-conditioned and may have easier convergence 

properties. A condition number above 100 is said to be ill-conditioned and makes the 

optimization convergence slow and uncertain.
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Chapter II. 

Methods 

Gatys et al. (2015) is used as a baseline by which all other trials are compared. 

Many trials were evaluated, and the results of trials were used to dictate the path of future 

trials. Once a superior configuration for a method had been established, that configuration 

was used as the baseline during comparisons of new methods.  

2.1 Image Processing 

A few steps are required before the process of gradient descent can begin. Some 

of these steps must be reversed after the optimization has been completed, and some 

additional steps are required after the optimization in order to enable rendering of the 

output image. 

2.1.1 Preprocessing 

 All input images are resized to have a height of 256 pixels. The width of the 

images is resized such that the aspect ratio remains constant. Some trials apply 

normalization to the input images based on the ImageNet subset that PyTorch models 

were trained on. This normalization is applied over the channels of the image (red-green-

blue). 
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Table 3. PyTorch ImageNet Subset Characteristics 

Mean 0.485, 0.456, 0.406 

Standard Deviation 0.229, 0.224, 0.225 

 

Some trials apply histogram equalization to the input images, and some trials do 

not apply any method of normalization or equalization. 

Images typically have pixels that are in the range of [0, 255]. For most of the 

trials, the input images are scaled to fall within the range of [0, 1] - the same range that 

was used while training the PyTorch models.  

Once the target image has been loaded, a noise image of the same range and 

dimensions is generated by randomly selecting pixel values in the range of the target 

image. 

2.1.2 Postprocessing 

 Any trials that utilize image normalization as part of its preprocessing step reverse 

the normalization as part of postprocessing. Since there is no constraint on the noise 

image during gradient descent, it is possible that pixel values will fall outside of the 

renderable range of [0, 1] or [0, 255]. The output image is thus clipped at its respective 

range.  

 Images that generate an output with range [0, 1] are re-scaled after clipping in 

order to have a range of [0, 255]. This has no effect on the visual properties of the output 

image but results in a smaller file as it is less computationally expensive to store integers 

(only possible with range [0, 255]) than it is to store floats (required with range [0, 1]). 
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Table 4. Preprocessing & Postprocessing Methods 

  Method 

  1 2 3 4 

Pre 

Resize Resize image to height of 256 

Range of Input Pixels [0, 1] [0, 1] [0, 1] [0, 255] 

Normalization Method 

PyTorch 

ImageNet 

Histogram 

Equalization None 

PyTorch 

ImageNet 

Post 
Reverse Normalization 

PyTorch 

ImageNet None None 

PyTorch 

ImageNet 

Clip Tensor [0, 1] [0, 1] [0, 1] [0, 255] 

Range of Output Pixels  [0, 255] [0, 255] [0, 255] [0, 255] 

PyTorch ImageNet normalization refers to normalizing the input image in accordance 

with the subset of ImageNet data that was used to train the PyTorch Models. 

2.2 Visual Geometry Group Models 

Every model used for the purpose of this research is loaded using the PyTorch 

framework. After loading the weights, each of the weights are frozen to ensure that the 

weight values do not update during this process. Because each model only has a single 

output representing a classification, a modification is made to capture the activations of 

every convolutional layer. 

2.2.1 VGG-19 

The 19 weight-layer variant of the VGG models is the primary model that is 

considered across all trials. The first convolutional layer from each convolutional block is 

used to generate Styles A through E.  
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2.2.2 VGG-11, VGG-13, and VGG-16 

The 11, 13, and 16 weight-layer variants are evaluated against the 19 weight-layer 

variant. While these models have varying amounts of convolutional layers, they share the 

same overall structure - five blocks of convolutional layers which are separated by a 

pooling layer. As with the 19 weight-layer variant, each of these variants generate its 

corresponding loss by taking the first convolutional layer from each respective 

convolutional block. 

2.2.3 Pooling 

In accordance with the Gatys et al. (2015) implementation, each of the max 

pooling layers are replaced with average pooling layers before gradient descent. 

Additionally, one set of trials serves to explicitly compare the output when using max 

pooling to the output when using average pooling. 

2.3 Loss 

Gatys et al. (2015) demonstrates that Style loss has a much larger variance in 

output when compared to content loss. As such, style loss is the primary method which is 

evaluated for the purpose of this research. The style loss of the original implementation is 

used as the baseline by which all modifications are compared.  

The baseline loss for an individual layer is defined as 
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The baseline loss for all layers is then defined as 

 

 

 

And the baseline derivative from the loss is defined as  

 

 

 

The layers and labelling of each loss configuration mimic that of the original 

implementation: 

Table 5. Style Loss Configurations 

Style Loss ID Convolutional Layers 

A conv1_1 

B conv1_1, conv2_1 

C conv1_1, conv2_1, conv3_1 

D conv1_1, conv2_1, conv3_1, conv4_1 

E conv1_1, conv2_1, conv3_1, conv4_1, conv5_1 

The layers and identifiers mimic that of Gatys et al. (2015). When more than one layer is 

evaluated for the loss, all layers are weighted equally. 



 

21 

2.3.1 Normalization of Feature Maps 

The Gram matrices of the corresponding activations were evaluated and found to 

be ill-conditioned with condition numbers at or near infinity. As a result, various 

normalization methods are considered to evaluate whether outcomes can be improved by 

modifying the activations before generating the Gram matrices. 

Style loss is evaluated by calculating the Gram matrices of the activations - that 

is, the inner product of the activations transposed by itself: For each layer , the Gram 

matrix can be represented as the inner product between the vectorized feature map  and  

 

 

 

This approach often results in Gram matrices that are ill-conditioned with 

condition numbers at or near infinity. As such, multiple normalization methods are 

considered to evaluate whether outcomes can be improved by modifying the activations 

before generating Gram matrices. This modification can be written by 

 

 

 

Where  represents the normalized representation of the activations.  is 

calculated in numerous ways as defined below. 
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Min-Max Normalization 

Min-Max normalization alters the activations such that the minimum is 0 and the 

maximum is 1. During each iteration, the following transformation is applied to the 

activations of both the generated image as well as the target image: 

 

 

Pulling Elements Towards Mean 

Many of the activations were found to have extreme outliers with values greater 

than fifty standard deviations above the mean. One method of normalization aims to 

resolve this by pulling all elements closer to the mean 

 

 

 

Where  is a constant 

Dividing by Standard Deviation 

Another method of accounting for outliers is dividing all elements of the 

activations by the standard deviation. 
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Dividing by Standard Deviation, by Channel 

This method of normalization is also considered with respect to the standard 

deviation of each individual channel of the activations 

 

 

Table 6. Summary of Normalization Methods 

Name Formula 

Min-Max Normalization  

Pulling Elements Towards Mean  

Dividing by Standard Deviation  

Dividing by Standard Deviation by Channel  

 

2.3.2 Feature Masks 

The original implementation makes a distinction for derivatives based on the 

value of the activation being less than 0: 
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Because rectified linear activations are lower-bound at 0, an activation will never 

have a value below 0. For this reason, a modification is considered which applies this 

same distinction at values that are less than or equal to 0: 

 

 

 

The activations are found to have extreme outliers, with many elements having a 

value as much as fifty standard deviations above the mean. As such, an additional feature 

mask is considered, which only applies the derivative for activations that are within three 

standard deviations of the mean: 

 

 

2.3.3 Early Stopping 

Most trials are run with a maximum of five hundred epochs. Many trials reach a 

nonzero convergence limit before reaching five hundred epochs. Early stopping is 

evaluated every fifty epochs, and a trial is stopped if the value of the loss has not changed 

for fifty epochs at the time of evaluation. 
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2.4 Optimization Methods 

Although Gatys et al. (2015) does not mention a specific optimization method, the 

author has recommended the Broyden-Fletcher-Goldfarb-Shanno algorithm online. Other 

optimization methods are also evaluated. 

2.4.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm 

The limited-memory variant of this algorithm is implemented to satisfy the 

hardware constraints and improve processing time. This algorithm is evaluated with and 

without a line search function. The line search function evaluated is the Strong Wolfe 

method. All other hyperparameters are held constant throughout all trials. 

Table 7. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Hyperparameters 

Parameter Values Evaluated 

Learning Rate 1 

Max Iterations Per Optimization Step 20 

Max function Evaluations Per Optimization Step 25 

Termination Tolerance on First Order Optimality  

Termination Tolerance on Function Value  

Update History Size 100 

Line Search Function None, Strong Wolfe 

2.4.2 Stochastic Gradient Descent 

 Stochastic Gradient Descent is evaluated with varying magnitudes of a learning 

rate. All other hyperparameters are held constant throughout all trials.  
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Table 8. Stochastic Gradient Descent Hyperparameters 

Parameter Values Evaluated 

Learning Rate 0.01, 0.1, 1, 10 

Momentum Factor 0 

Weight Decay 0 

Dampening for Momentum 0 

 

2.4.3 Adaptive Moment Estimation 

 Adam Optimization is evaluated with varying magnitudes of a learning rate. All 

other hyperparameters are held constant throughout all trials. 

Table 9. Adaptive Moment Estimation Hyperparameters 

Parameter Values Evaluated 

Learning Rate 0.01, 0,1, 1, 10 

Beta Coefficients (0.9, 0.999) 

Denominator Epsilon  

Weight Decay 0 
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2.5 Metrics 

Gatys et al. (2015) provides output images. While these images are visually 

interesting, it makes comparison difficult as the quality of images is inherently subjective. 

This research aims to add the ability to quantitatively compare each of the methods 

considered. 

2.5.1 Subjective Analysis of Generated Images 

Each trial outputs the final value of the generated image, with its values clipped at 

its respective range in order to enable rendering. While these results are subjective, some 

discussion can be made about the variety of output generated through gradient descent. 

2.5.2 Loss 

The log loss of each activation is recorded for each epoch. Style A only includes 

the log loss for the activations corresponding to conv1_1, whereas Style E includes the 

log loss for the activations corresponding to conv1_1, conv2_1, conv3_1, conv4_1, 

conv5_1.  

If the loss for every convolutional layer remains constant for fifty epochs, it is 

assumed that the nonzero convergence limit has been reached, and the trial is terminated. 

2.5.3 Condition Number of Gram Matrices 

Once a trial is concluded (after reaching 500 epochs or after reaching 50 

consecutive epochs with a constant loss for all layers), the Gram matrices for the final 

output image is recorded, prior to clipping the output image in order for rendering. 
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The sorted eigenvalues of these Gram matrices are plotted alongside their 

corresponding condition numbers. Similar to the loss evaluation, the Gram matrix 

analysis is done with regard to each convolutional layer that comprises the loss.  

In instances where normalization is applied to the Gram matrix, the sorted 

eigenvalues and condition numbers are plotted before the normalization and after the 

normalization, in order to visualize the effect of normalization against the Gram matrices. 
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Chapter III. 

Results 

Recreating the results of the original implementation is unattainable for two 

reasons: 

1. The generated image begins as randomly-generated noise, which results in a 

different output between identical trials 

2. The original implementation uses the Caffe framework of the Visual Geometry 

Group’s model, which was trained on a different subset of ImageNet data than 

that of Pytorch. 

 

 With these two limitations in mind, many of the results have generated images 

that closely resemble that of the original implementation. The optimal configurations are 

summarized in the table below. Additional methods evaluated can be viewed in their 

corresponding sections. 

Table 10. Optimal Configurations by Category 

Category Optimal Configuration 

Normalization Method Divide by Standard Deviation By Channel 

Pooling Method Average 

Optimization Method L-BFGS with Wolfe Constraint 

VGG Variant VGG-13 

Feature Mask None 
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Using these optimal configurations results in the following: 

 

Figure 2. Results of Optimal Configuration 

These trials normalize by dividing by the standard deviation by channel, utilize the VGG-

13 model, replace max pooling layers with average pooling, and optimize via L-BFGS 

with a Wolfe Constraint on Curvature. Letters A-E refer to the Style Configuration as per 

Gatys et al. (2015). Eigen-Pre and Eigen-Post refer to the eigenvalues before and after 

normalization, respectively. C.N. refers to the condition number.  

The log loss of these trials is comparable to many of the other trials - both in the 

amount of decrease, as well as the number of epochs reached before the nonzero 

convergence limit is reached. However, these trials are considered to be optimal for the 

following reasons: 
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1. The images have more “global” Style features as the Style configuration moves 

from A-E. Style A has smaller, local features (consisting primarily of dots). 

Conversely, Style E has larger, global features, including texture and broad brush 

strokes. 

2. Normalization successfully reduces the condition number by orders of magnitude 

for every feature map within every trial 

3. The post-normalized condition numbers are among the smallest achieved, and not 

a single post-normalized condition number is at or near infinity 

4. The VGG-13 is chosen over the VGG-16 model (which achieves similar results 

when keeping all other values constant), because it is less complex - it has fewer 

convolutional layers which results in better computational performance. 

3.1 Methods of Normalization 

All methods of Normalization are evaluated using the Limited-Memory variant of 

the Broyden-Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on 

curvature. The 19 weight-layer variant of the Visual Geometry Group’s model is used for 

all trials. Each trial consists of 500 epochs, unless a nonzero convergence limit is 

reached. 

3.1.1 Generated Images 

When the activations of each convolutional layer are not normalized prior to 

generating Gram matrices, the output images are very different from that of the original 

implementation. Many of the images appear mostly similar, and there is an unusual tint of 

grayish-yellow. The first convolutional layer of the first convolutional block, conv1_1, is 
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not successfully learned - as indicated by the output of Style A representing pure noise. 

Because conv1_1 is used in every style configuration, the lack of successful learning of 

conv1_1 may explain the varying results in Style B - Style E.  

Pulling towards the mean by channel has results that are similar to the results of 

not normalizing at all. Styles B - E have few distinguishing characteristics, and also has 

the grayish-yellow tint throughout the image. Style A also represents pure noise, 

indicating that the style was not successfully learned. 

Min-Max normalization has a detrimental effect for all Style configurations. 

Every Style configuration results in a generated image that represents pure noise. 

Normalizing the activations by the standard deviation, and its variant which 

normalizes over each channel of the activation, have results that most clearly represent 

the results of the original implementation. Style A consists of small, local features - the 

same colors of the input image are represented, but the generated image consists of 

mostly small dots. Each successive Style configuration represents larger, global features - 

the texture of the input image is more clearly represented, and features which mimic 

brush strokes replace the dots found in Style A. 
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Figure 3. Generated Images of Various Normalization Methods 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature 

3.1.2 Loss 

Style A of the trials without any normalization method does appear to learn the 

style through the first 20 epochs - although a nonzero convergence limit is quickly 

reached at around 22 epochs. This results in the noisy image as illustrated above. Each 

successive trial has an increasing amount of epochs before a nonzero convergence limit is 
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reached. This same behavior is seen in the method of normalization which pulls each 

element towards the mean of its respective channel.  

The min-max normalization method results in a mostly flat loss - there is some 

small amount of change that occurs within the first 50 epochs (as demonstrated by the 

total number of epochs reaching 100 before the nonzero convergence check resulted in an 

early stop), but the changes are small enough that the plots appear to be entirely flat. 

Style A and B appear to have a better loss behavior when normalizing by the 

standard deviation when compared to no normalization - the nonzero convergence limit is 

not reached until epoch 200 for both configurations. The loss of Style C, Style D, and 

Style E does not indicate on its own that the style was learned better than the trials that 

did not use normalization - this indicates that loss, on its own, cannot be used to 

determine success of Neural Style Transfer.  

An interesting characteristic of the methods which normalize by standard 

deviation is that conv1_1 is not learned at the same rate as subsequent activations - there 

is a noticeable gap in the loss of conv1_1 when compared to the other loss histories. This 

phenomenon does not occur in the trials which are not normalized.  
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Figure 4. Loss Characteristics of Various Normalization Methods 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. Each x-axis is scaled in accordance 

with the number of epochs that occur before the nonzero convergence limit is reached.  

3.1.3 Condition Numbers & Eigenvalues 

There is a relationship between methods that generate a final image which is 

visually-appealing and methods that effectively reduce the condition number of the Gram 

matrices. 
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The methods of normalization that result in visually unappealing output images - 

No Normalization, Pull Towards Mean By Channel, and Min-Max Normalization - have 

feature maps that support the notion that the target image is not being learned 

successfully. The condition numbers after the normalization are of the same magnitude as 

the condition numbers before the normalization. 

By contrast, the methods of normalization that result in visually appealing output 

images - Normalize By Standard Deviation and Normalize By Standard Deviation By 

Channel - have condition numbers that are many magnitudes smaller after the 

normalization. Normalize By Standard Deviation By Channel results in a Gram matrix 

that has condition numbers less than 1,000 for conv2_1 and conv3_1 for Style B and 

Style C configurations. This is especially noteworthy because all other methods of 

normalization have condition numbers at or near infinity for these same style 

configurations. While all methods include at least one style configuration which contains 

a Gram matrix with an infinite condition number, the methods which produce visually 

appealing images consistently lower (by many degrees of magnitude) condition numbers 

for every feature map. 
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Figure 5. Eigenvalues & Condition Numbers of Various Normalization Methods Before 

Applying Normalization 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number. 
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Figure 6. Eigenvalues & Condition Numbers of Various Normalization Methods After 

Applying Normalization 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number. 

3.1.4 Influence of Future Trials 

 All of the results outlined above suggest that normalizing the feature maps by 

dividing by the standard deviation across the channels results in the best outcomes - the 

generated images are more visually appealing, and the reduction of its feature map’s 
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condition numbers indicate that the normalization is working effectively. This method of 

normalization will be used as the baseline by which all other trials are implemented. 

3.2 Methods of Pooling 

Because max-pooling is non-continuous, it may be more difficult to effectively 

find the gradient. The original implementation of Neural Style Transfer replaces all of the 

max-pooling layers with average-pooling layers for this reason - stating that the gradient 

flow is improved when using average-pooling. 

 This section aims to test this hypothesis explicitly. All trials are evaluated using 

the Limited-Memory variant of the Broyden-Fletcher-Goldfarb-Shanno Algorithm with a 

Strong Wolfe condition on curvature. The 19 weight-layer variant of the Visual 

Geometry Group’s model is used for all trials. The feature maps are normalized by 

dividing by the standard deviation over channels. Each trial consists of 500 epochs, 

unless a nonzero convergence limit is reached.  

3.2.1 Generated Images 

While the generated images are visually similar when using the Style A 

configuration, the images generated diverge between methods of pooling for the style 

configurations deeper in the network. Average-pooling has results with an increasing 

range of learned features, whereas max-pooling generates images with primarily 

localized features. This is most noticeable on Style C - which has larger features and 

textures associated with average-pooling vs max-pooling 
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Figure 7. Generated Images of Average-Pooling & Max-Pooling 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are 

normalized by dividing by the standard deviation over the channels.  

3.2.2 Loss 

Both methods reach a nonzero convergence limit near the same amount of epochs 

and have similar final losses - both in terms of degree of loss, and with regard to the 

relationship between loss and respective convolutional layers. The most notable 

difference between the lost characteristics can be observed for Style C and Style D - both 

of which have a volatile loss associated with conv3_1 for max-pooling. This may support 

the notion that gradient flow is improved when replacing max-pooling layers with 

average-pooling 



 

41 

 

Figure 8. Loss Characteristics of Average-Pooling & Max-Pooling 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are 

normalized by dividing by the standard deviation over the channels. Each x-axis is scaled 

in accordance with the number of epochs that occur before the nonzero convergence limit 

is reached.  

3.2.3 Condition Numbers & Eigenvalues 

After normalizing the feature maps by dividing by the standard deviation over the 

channels, average-pooling has fewer observations with a condition number at infinity. 

Notably, Max-pooling has an infinite condition number for conv2_1 on Style B, as well 

as an infinite condition number for both conv2_1 and conv3_1 on Style C. Average-

pooling, by contrast, has a condition number below 1,000 for every convolutional layer 

for Style B and Style C.  
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Figure 9. Post-Normalized Eigenvalues & Condition Numbers of Average-Pooling & 

Max-Pooling 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number. 

3.3 Methods of Optimization 

 Although Gatys et al. (2015) refers only broadly to “gradient descent”, the author 

has indicated online that the Limited-Memory variant of the Broyden-Fletcher-Goldfarb-

Shanno algorithm achieves quality results. This section compares this method to 

Stochastic Gradient Descent and Adaptive Movement Estimation. 

The 19 weight-layer variant of the Visual Geometry Group’s model is used for all 

trials. The feature maps are normalized by dividing by the standard deviation over 

channels. A learning rate of 1.0 is used for all trials (Note: additional learning rates were 

evaluated for SGD as per Table 7 and Adam as per Table 8 but did not lead to different 

results).  Each trial consists of 500 epochs, unless a nonzero convergence limit is reached. 
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3.3.1 Generated Images 

Adam and L-BFGS have results that are visually similar to one another - both 

optimization methods transition between learning local features (at the earlier layers of 

the network) to global features (at the later layers of the network). Stochastic Gradient 

Descent generates an image that represents pure noise - indicating that very little 

information was learned about the representation of the target image. This phenomenon is 

present throughout all trials; modifying the learning rate does not have an effect on the 

ability to learn the style features. 

 

 

Figure 10. Generated Images of Various Optimization Methods 

All trials generate their feature maps using the VGG-19 model. All trials have feature 

maps that are normalized by dividing by the standard deviation over the channels.  
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3.3.2 Loss 

 Adam optimization never reaches a nonzero convergence limit through the 

duration of all epochs. There is some degree of volatility associated with the loss in the 

later epochs, which can be explained by the dynamic nature of the learning rate.  

 Despite never learning the features, Stochastic Gradient Descent never reaches a 

nonzero convergence limit. Although the loss history appears to be mostly flat, there is 

enough variance between epochs such that an early stop is not triggered.  

 

Figure 11. Loss Characteristics of Various Optimization Methods 

All trials generate their feature maps using the VGG-19 model. All trials have feature 

maps that are normalized by dividing by the standard deviation over the channels. Each 

x-axis is scaled in accordance with the number of epochs that occur before the nonzero 

convergence limit is reached.  
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3.3.3 Condition Numbers & Eigenvalues 

L-BFGS optimization has fewer infinite condition numbers than Adam 

optimization. Excluding infinite values, Adam optimization has lower condition numbers, 

although they are within the same magnitude. Stochastic Gradient Descent has condition 

numbers that are similar to that of Adam optimization, despite having an output image 

consisting primarily of noise. This suggests that feature-map stability on its own is not 

enough for an optimizer to learn the style features. 

 

Figure 12. Post-Normalized Eigenvalues & Condition Numbers of Various Optimization 

Methods 

All trials generate their feature maps using the VGG-19 model. All trials have feature 

maps that are normalized by dividing by the standard deviation over the channels. C.N. 

refers to condition number 
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3.4 Additional Variants of the Visual Geometry Group’s Models 

While there is a relationship between the depth of each network and its 

corresponding top-1 and top-5 score, each of the weight-layer variants of the Visual 

Geometry Group’s models have feature maps that appear similar to one another.  

 Each of the models have a varying amount of convolutional layers, but each 

model follows the same basic structure - five convolutional blocks separated by pooling 

layers, followed by two fully-connected layers. Each of the trials presented generate the 

feature map via the activations of the first convolutional layer of each convolutional 

block. 

 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The 

feature maps are normalized by dividing by the standard deviation over channels. Each 

trial consists of 500 epochs, unless a nonzero convergence limit is reached.  

3.4.1 Generated Images 

The same pattern is observed across all variants of the model, with localized 

features being present in the earlier style configurations, and more global style features 

becoming present as the feature maps go deeper and deeper into the networks. Few 

discernable differences can be spotted across any of the model variants. 
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Figure 13. Generated Images of VGG Variants 

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials 

have feature maps that are normalized by dividing by the standard deviation over the 

channels.  

3.4.2 Loss 

 None of the trials reach 500 epochs; each trial reaches a nonzero convergence 

limit around the 200-epoch mark. The same general loss behavior is observed across all 

variants of the model - nonzero convergence limits are reached around the same point, 

the final loss is similar, and the relationship between convolutional layers is similar 

across all model variants. 
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Figure 14. Loss Characteristics of VGG Variants 

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials 

have feature maps that are normalized by dividing by the standard deviation over the 

channels. Each x-axis is scaled in accordance with the number of epochs that occur 

before the nonzero convergence limit is reached.  

3.4.3 Condition Numbers & Eigenvalues 

The largest difference between trials is observed through the condition numbers 

of each set of feature maps. Most of the trials thus far have feature maps which contain an 

infinite condition number for conv2_1 and conv3_1 for Style D and Style E - even after 

normalization has been applied. VGG 13 and VGG 16, however, have condition numbers 

less than 1,000 for all Style Configurations. This behavior is not consistent, however - 
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VGG 13 and VGG 16 have a conv1_1 condition number that is consistently 2-10 times 

larger than their VGG-11 and VGG-19 equivalents.  

 

Figure 15. Post-Normalized Eigenvalues & Condition Numbers of VGG Variants 

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials 

have feature maps that are normalized by dividing by the standard deviation over the 

channels. C.N. refers to condition number 

3.5 Effect of Wolfe Condition on Curvature 

 One of the most crucial components of convergence appears to be the Wolfe 

condition on curvature. Because of the Hessian approximation associated with the L-

BFGS algorithm, the Wolfe condition proves to be critical in convergence. 
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 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm. The 19 weight-layer variant of the Visual 

Geometry Group’s model is used for all trials. The feature maps are normalized by 

dividing by the standard deviation over channels. Each trial consists of 500 epochs, 

unless a nonzero convergence limit is reached.  

3.5.1 Generated Images 

Although the later style configurations - Style C, Style D, and Style E - have a 

final output image that is visually similar regardless of the Strong Wolfe constraint, 

Styles A and Styles B do not appear to have learned any of the stylistic representations. 

 

Figure 16. Generated Images of Strong Wolfe and No Line Search 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard 

deviation over the channels.  
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3.5.2 Loss 

 Despite some of the final output images being visually similar, the loss takes on 

very different behavior. This is most evident with Style D - when the Strong Wolfe 

constraint is not imposed, nearly 100 epochs pass before the algorithm begins to learn the 

feature space.  

 The loss behaviors for Style A and Style B support the notion that the stylistic 

features are not effectively learned without the Strong Wolfe constraint. However, similar 

to the results of SGD, there is just enough variance between epochs such that the early 

stopping conditions are not met. 

 

Figure 17. Loss Characteristics of Strong Wolfe and No Line Search 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard 

deviation over the channels. Each x-axis is scaled in accordance with the number of 

epochs that occur before the nonzero convergence limit is reached.  
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3.5.3 Condition Numbers & Eigenvalues 

There are few differences in post-normalized condition numbers - the condition 

numbers for conv2_1 and conv3_1 reach infinity at earlier style configurations when the 

Strong Wolfe constraint is not enforced, but the same general pattern can be observed 

across the remainder of the trials. 

 

Figure 18. Post-Normalized Eigenvalues & Condition Numbers of Strong Wolfe and No 

Line Search 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard 

deviation over the channels. C.N. refers to condition number 

3.6 Feature Masks 

 None of the methods of applying a feature mask appear to have any notable effect 

on the output; normalization is much more effective with regard to improving gradient 

flow. All trials are evaluated using the Limited-Memory variant of the Broyden-Fletcher-

Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The 19 weight-
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layer variant of the Visual Geometry Group’s model is used for all trials. The feature 

maps are not normalized. Each trial consists of 500 epochs, unless a nonzero convergence 

limit is reached.  

3.6.1 Generated Images 

There are no notable differences between any of the images when applying 

various feature masks. If normalization is not applied, Style A cannot be effectively 

learned, and results in an output image representing pure noise. Styles B - E have the 

presence of a strange yellow-gray tint, and the output images do not appear to have any 

degree of increasing global features as the Styles increase from Style A through Style E. 

 

 

Figure 19. Generated Images of Various Feature Masks 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. Nonzero refers to only calculating 
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the mean squared error with respect to activations that are greater than zero. “Within 

Std*3” refers to only calculating the mean squared error with respect to activations that 

are within 3 standard deviations of the mean. 

3.7 Range of Input Images 

 An interesting characteristic that may be unique to the PyTorch implementation of 

the Visual Geometry Group’s models is that the range of input images seems to have an 

effect on the convergence properties of the Style Loss functions. 

 The PyTorch implementation is trained on images that are in the range of [0, 1] - 

but seem to also accept images that are in the range of [0, 255]. Images in the range seem 

to converge without any adjustments to normalization.  

 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The 19 

weight-layer variant of the Visual Geometry Group’s model is used for all trials. The 

feature maps are normalized by dividing by the standard deviation over channels. Each 

trial consists of 500 epochs, unless a nonzero convergence limit is reached.  

3.7.1 Generated Images 

Images in the range of [0, 255] have more visually appealing results when 

normalization is not applied. The generated images are similar to that of other trials 

where normalization is applied. Two key differences in these generated images is that 

they are a darker shade of blue, and there are more pure-black features when compared to 

the normalized equivalents in the range of [0, 1]. 
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Figure 20. Generated Images of Various Image Ranges 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are 

normalized by dividing by the standard deviation over the channels.  

3.7.2 Loss 

 A nonzero convergence limit is not reached when images in the range of [0, 255] 

are used, even without using any normalization techniques. The magnitudes of the loss 

are very different - the activations of each layer are observed to be much larger when the 

input images are in the range of [0, 255]. 
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Figure 21. Loss Characteristics of Various Image Ranges 

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are 

normalized by dividing by the standard deviation over the channels.  Each x-axis is 

scaled in accordance with the number of epochs that occur before the nonzero 

convergence limit is reached.  
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Chapter IV. 

Conclusion 

 This thesis evaluated multiple normalization methods, two methods of pooling, 

multiple methods of optimization, multiple variants of the VGG models, and multiple 

feature masks. The following table reflects the optimal configuration as determined by 

the results from all trials evaluated: 

Table 11. Recap of Optimal Configurations by Category 

Category Optimal Configuration 

Normalization Method Divide by Standard Deviation By Channel 

Pooling Method Average 

Optimization Method L-BFGS with Wolfe Constraint 

VGG Variant VGG-13 

Feature Mask None 

 

Using this this optimal configuration results in the following set of images: 

 

Figure 22. Output Images of Optimal Configuration 
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Many interesting characteristics can be observed in the loss behavior of Neural 

Style Transfer. The ill-conditioned nature of the Gram matrices can lead to convergence 

problems. This behavior can be solved by applying normalization before calculating the 

mean squared error - leading to results that are both more visually appealing, as well as 

not reaching a nonzero convergence limit as early. Conversely, applying a feature mask 

before calculating the mean squared error does not appear to have any effect on 

optimization. 

Replacing max-pooling layers with average-pooling layers does seem to improve 

gradient flow. Average-pooling results in images with increasingly global features and 

has a loss function that is less volatile. 

Although a specific optimization method is not mentioned by Gatys et al. (2015), 

it seems to play a large role. Stochastic Gradient Descent is unable to reach convergence 

regardless of its learning rate, whereas Adam optimization and L-BFGS are able to 

achieve much better results. Because of the Hessian approximation of the L-BFGS 

algorithm, a Strong Wolfe condition on curvature leads to better results - and the lack of 

such a condition leads to strange loss behavior. 

The weight-layer variants of the Visual Geometry Group’s models have a large 

degree of variance when measuring their corresponding top-1 and top-5 error rate, but 

their results are very similar when generating feature maps in order to capture the stylistic 

features of a given image. Of the four models evaluated, the 13 weight-layer variant 

seems to have the best results - it has fewer layers than the 16 and 19 variants (reducing 

computational complexity), its generated images capture more global features in Style D 
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and Style E, and its condition numbers do not reach infinity across any of its Style 

configurations. 

Throughout the vast majority of the trials, a nonzero convergence limit is reached 

before reaching 500 epochs. Despite this phenomenon, visually appealing results can be 

generated - suggesting that loss on its own is not a suitable measurement of success of 

learning the style of an image.
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