
Understanding Decisions and Tradeoffs of Neural
Style Transfer

Citation
Morgan, Nick. 2021. Understanding Decisions and Tradeoffs of Neural Style Transfer. Master's
thesis, Harvard University Division of Continuing Education.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367685

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367685
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Understanding%20Decisions%20and%20Tradeoffs%20of%20Neural%20Style%20Transfer&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=970f4f14acd3dd1906bb6bf611880b47&department
https://dash.harvard.edu/pages/accessibility

Nick Morgan

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2021

Understanding Decisions and Tradeoffs of Neural Style Transfer

Copyright 2021 Nick Morgan

 iii

Abstract

A Neural Algorithm of Artistic Style introduced an artificial system to create

artistic images. It does so by generating a set of feature maps from a content image and a

style image. These feature maps are used to generate a loss, which is applied iteratively to

a noisy image via gradient descent. This process results in the generated image having

features which represent that of the target content and the target style images. The goal of

this project is to explore the original research decisions, and explicitly document the

tradeoffs being made.

The original research used the Visual Geometry Group’s 19 weight-layer model.

Many properties of this method were not fully documented - the optimization method is

not specified (only broadly referred to as gradient descent), the architecture is altered to

“improve gradient flow” without documenting how it was improved, no other models are

evaluated, and many properties of the gradient descent process were not explored. This

project aims to explore additional models, document various methods of gradient descent,

explain characteristics of the loss, and propose solutions to improve the gradient flow.

 iv

Frontispiece

 v

Acknowledgments

I want to thank my thesis advisor, Dr. Stephen F. Elston. His guidance throughout

this research has been invaluable.

I would also like to thank my research advisor, Dr. Hongming Wang, for helping

me draft my thesis proposal and for valuable advice throughout the process.

Finally, I would like to thank my 10th-grade math teacher, Mr. Way. He was the

first teacher to get me excited about math. Without his influence, I don’t believe I would

have pursued this degree.

 vi

Table of Contents

Frontispiece .. iv

Acknowledgments..v

List of Tables ...x

List of Figures .. xi

Glossary ... xiii

Chapter I. Introduction ...1

1.1 Background ..2

1.1.1 ImageNet ...2

1.1.2 Visual Geometry Group ..2

1.1.3 Pooling ..5

1.1.4 VGG Implementations ..6

1.1.5 A Neural Algorithm of Artistic Style..7

1.1.6 Broyden-Fletcher-Goldfarb-Shanno Algorithm................................11

1.1.7 Strong Wolfe Condition on Curvature ..13

1.1.8 Stochastic Gradient Descent ...14

1.1.9 Adaptive Movement Estimation ...15

1.1.10 Condition Numbers ...15

Chapter II. Methods ...16

2.1 Image Processing ...16

2.1.1 Preprocessing ..16

 vii

2.1.2 Postprocessing...17

2.2 Visual Geometry Group Models ..18

2.2.1 VGG-19...18

2.2.2 VGG-11, VGG-13, and VGG-16 ..19

2.2.3 Pooling ..19

2.3 Loss ..19

2.3.1 Normalization of Feature Maps ..21

Min-Max Normalization ..22

Pulling Elements Towards Mean ...22

Dividing by Standard Deviation ..22

Dividing by Standard Deviation, by Channel ..23

2.3.2 Feature Masks ...23

2.3.3 Early Stopping ..24

2.4 Optimization Methods ...25

2.4.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm................................25

2.4.2 Stochastic Gradient Descent ...25

2.4.3 Adaptive Moment Estimation ...26

2.5 Metrics ...27

2.5.1 Subjective Analysis of Generated Images ..27

2.5.2 Loss ...27

2.5.3 Condition Number of Gram Matrices ...27

Chapter III. Results ..29

3.1 Methods of Normalization ...31

 viii

3.1.1 Generated Images..31

3.1.2 Loss ...33

3.1.3 Condition Numbers & Eigenvalues ..35

3.1.4 Influence of Future Trials ...38

3.2 Methods of Pooling ..39

3.2.1 Generated Images..39

3.2.2 Loss ...40

3.2.3 Condition Numbers & Eigenvalues ..41

3.3 Methods of Optimization ...42

3.3.1 Generated Images..43

3.3.2 Loss ...44

3.3.3 Condition Numbers & Eigenvalues ..45

3.4 Additional Variants of the Visual Geometry Group’s Models46

3.4.1 Generated Images..46

3.4.2 Loss ...47

3.4.3 Condition Numbers & Eigenvalues ..48

3.5 Effect of Wolfe Condition on Curvature ...49

3.5.1 Generated Images..50

3.5.2 Loss ...51

3.5.3 Condition Numbers & Eigenvalues ..52

3.6 Feature Masks ..52

3.6.1 Generated Images..53

3.7 Range of Input Images ...54

 ix

3.7.1 Generated Images..54

3.7.2 Loss ...55

Chapter IV. Conclusion ...57

References ..60

 x

List of Tables

Table 1. ConvNet Configurations ..4

Table 2. ConvNet Performance Metrics ..5

Table 3. PyTorch ImageNet Subset Characteristics ..17

Table 4. Preprocessing & Postprocessing Methods ...18

Table 5. Style Loss Configurations ..20

Table 6. Summary of Normalization Methods ..23

Table 7. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Hyperparameters25

Table 8. Stochastic Gradient Descent Hyperparameters..26

Table 9. Adaptive Moment Estimation Hyperparameters ...26

Table 10. Optimal Configurations by Category ...29

Table 11. Recap of Optimal Configurations by Category ...57

 xi

List of Figures

Figure 1. VGG 19 Convolutional Neural Network. ...11

Figure 2. Results of Optimal Configuration ..30

Figure 3. Generated Images of Various Normalization Methods33

Figure 4. Loss Characteristics of Various Normalization Methods35

Figure 5. Eigenvalues & Condition Numbers of Various Normalization Methods Before

Applying Normalization ..37

Figure 6. Eigenvalues & Condition Numbers of Various Normalization Methods After

Applying Normalization ..38

Figure 7. Generated Images of Average-Pooling & Max-Pooling40

Figure 8. Loss Characteristics of Average-Pooling & Max-Pooling41

Figure 9. Post-Normalized Eigenvalues & Condition Numbers of Average-Pooling &

Max-Pooling ..42

Figure 10. Generated Images of Various Optimization Methods43

Figure 11. Loss Characteristics of Various Optimization Methods44

Figure 12. Post-Normalized Eigenvalues & Condition Numbers of Various Optimization

Methods..45

Figure 13. Generated Images of VGG Variants...47

Figure 14. Loss Characteristics of VGG Variants ...48

Figure 15. Post-Normalized Eigenvalues & Condition Numbers of VGG Variants49

Figure 16. Generated Images of Strong Wolfe and No Line Search50

 xii

Figure 17. Loss Characteristics of Strong Wolfe and No Line Search51

Figure 18. Post-Normalized Eigenvalues & Condition Numbers of Strong Wolfe and No

Line Search ..52

Figure 19. Generated Images of Various Feature Masks ...53

Figure 20. Generated Images of Various Image Ranges ...55

Figure 21. Loss Characteristics of Various Image Ranges ..56

Figure 22. Output Images of Optimal Configuration...57

 xiii

Glossary

BFGS

Broyden-Fletcher-Goldfarb-Shanno Algorithm

Conv1_1, Conv2_1, Conv3_1, Conv4_1, Conv5_1

With regard to any of the VGG models, Conv _ is denoted such that represents the

convolutional block and represents the specific convolutional layer within a given

convolutional block . Conv3_1, for example, refers to the first convolutional layer within

the third convolutional block

L-BFGS

Limited-Memory Variant of Broyden-Fletcher-Goldfarb-Shanno Algorithm

Style A, Style B, Style C, Style D, Style E

Refers to the notation used by Gatys et al. (2015) to denote feature map configurations

when calculating the loss.

SGD

Stochastic Gradient Descent

 xiv

VGG-11

11 weight-layer variant of the Visual Geometry Group’s convolutional neural networks

(Simonyan et al., 2014)

VGG-13

13 weight-layer variant of the Visual Geometry Group’s convolutional neural networks

(Simonyan et al., 2014)

VGG-16

16 weight-layer variant of the Visual Geometry Group’s convolutional neural networks

(Simonyan et al., 2014)

VGG-19

19 weight-layer variant of the Visual Geometry Group’s convolutional neural networks

(Simonyan et al., 2014)

1

Chapter I.

Introduction

A Neural Algorithm of Artistic Style has become increasingly popular in recent

years. Many websites and applications use its methodology to produce visually appealing

images. Its implementation has been modified and expanded into many domains ranging

from game development to artificial makeup removal from images.

The goal of this project is to explicitly document the convergence behavior of

style transfer algorithms. The 19 weight-layer variant of the Visual Geometry Group’s

Large-Scale Image Recognition models was used for the original implementation,

although there are many similar variants of this model that were also introduced by the

Visual Geometry Group (Simonyan et al., 2014). Gatys et al. (2015) uses the 19 weight-

layer variant to generate feature maps, which are used to generate two loss functions -

content and style. The content loss is calculated by merely using the mean squared error,

whereas the style loss is calculated by taking the Gram matrix of the activations before

calculating the mean squared error. This loss is applied back to a noisy input image

iteratively, resulting in a generated image that represents the feature maps of its targets.

The original implementation optimizes this process, referring vaguely to “gradient

descent”, but does not define which method of gradient descent was used, which

hyperparameters were used, or any of the convergence properties associated with the

process (Gatys et al. 2015). The style loss function applies normalization based on the

shape of each activation but does not explore additional methods of normalization.

2

This project also aims to document the loss behavior and the characteristics of

how the loss is generated. The style loss utilizes various hidden-layer activations in order

to generate Gram matrices. These Gram matrices have interesting characteristics which

have been found to influence the behavior of the loss.

1.1 Background

 Neural Style Transfer is dependent on many areas of research which preceded it.

This section serves as a brief overview of all the tools and techniques required to

implement this algorithm.

1.1.1 ImageNet

Deng et al. (2009) released ImageNet with the goal of populating the majority of

existing WordNet synsets. The ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) is an annual competition that allows researchers to compare algorithms’

accuracy in object detection and image classification.

1.1.2 Visual Geometry Group

The Visual Geometry Group (VGG) is a research group from the University of

Oxford that has participated in the ILSVRC. Simonyan et al. (2014) published six models

as part of the Visual Geometry Group’s 2014 ILSVRC submission. At the time of

publication, the purpose of these image-recognition models was to evaluate convolutional

neural networks of increasing depth, using an architecture with small convolution filters.

These models achieved first place for the 2014 localisation track, and second place for

the classification track of the competition.

3

Each of the six models were trained on the same subset of ImageNet images, and

follow the same steps of preprocessing. The inputs are a batch of fixed-size 224x224

images with the pixel order of red-green-blue (RGB images).

The original implementation changed the pixel order to blue-green-red (BGR

images) before subtracting the mean pixel value - calculated from the training dataset -

from each individual image.

 As illustrated in the table below, each of the model’s variants have a similar

architecture - with the key difference between variants being the number of convolutional

layers within each convolutional block. Additionally, the 11 weight-layer model includes

a variant which adds a Local Response Normalisation (LRN) layer. The 16 weight-layer

model also includes a variant which replaces some of the 3x4 convolutional filters with a

1x1 convolutional filter.

 4

Table 1. ConvNet Configurations

Taken from Very Deep Convolutional Networks for Large-Scale Image Recognition

 Metrics of success for these models are defined as the top-1 and top-5 error.

Top-1 is a multi-class classification error; it measures the proportion of incorrectly

classified images. Top-5 represents the proportion of images whose label falls outside of

the model’s top-5 predicted categories.

5

 When evaluated against the 2014 ILSVRC test dataset, each of the six published

models had top-1 val errors between 25.5% and 29.7%. Each of the six-published models

had top-5 val errors between 8.0% and 10.5%. The most accurate of these models, in both

categories, was the 19 weight-layer model

Table 2. ConvNet Performance Metrics

Taken from Very Deep Convolutional Networks for Large-Scale Image Recognition

1.1.3 Pooling

Yamaguchi et al. (1990) published the first implementation of max-pooling,

which was applied to a time delay neural network (TDNN). Its original application was to

support a speaker-independent isolated word recognition system. Since its introduction,

pooling has become a popular method of dimensionality-reduction in convolutional

neural networks.

Pooling operations reduce the dimensions of neural networks by combining

multiple layer outputs in order to generate a single input for the following layer. Max

pooling operates by taking the maximum value of the cluster of neurons at the prior layer,

whereas average pooling operates by taking the average value of the cluster.

6

Max pooling and average pooling have key differences - maximum pooling is

nonlinear, whereas average pooling is linear. For the purposes of implementing Neural

Style Transfer, this effect may be significant; nonlinearity of the pooling layers may lead

to a diminished gradient flow. Gatys et al. (2015) replaced the max-pooling layers with

average-pooling when using the pre-trained 19 weight-layer Visual Geometry Group

model.

1.1.4 VGG Implementations

The Visual Geometry Group published pre-trained models - trained on the 2014

ILSVRC subset of the ImageNet dataset - for their 16 weight-layer and 19 weight-layer

models. Pre-trained models are often utilized, as training the models is time-consuming

(these models in particular took between two and three weeks, according to the Visual

Geometry Group).

The learnable weights of the model are saved to a file, and this file is used to

initialize the weights of the network - instead of beginning with randomly-generated

weights (which is typically done before training a model). This does not include the

pooling layers, which do not have learnable weights.

Pre-trained models are available in many different frameworks, although the

models vary slightly by implementation. The original models released by the Visual

Geometry Group are implemented using the Caffe deep learning framework. This

framework was utilized by the original implementation (Gatys et al., 2015)

The PyTorch framework includes pretrained models for all of the architectures

introduced by the Visual Geometry Group, although its implementation varies slightly.

The Caffe framework model was trained using the 2014 ILSVRC subset of the ImageNet

7

database. PyTorch’s implementation was trained on a different subset of ImageNet data -

the exact subset of which is currently unknown. At the time of writing, the published

models were trained on a random subset of the 2012 ImageNet dataset, but the exact

images (as well as the sample size) were lost.

1.1.5 A Neural Algorithm of Artistic Style

The original implementation by Gatys et al. (2015) uses the 19 weight-layer

variant of the Visual Geometry Group’s model. After the model's weights are loaded, the

max-pooling layers are replaced with average-pooling in order to improve gradient flow.

The weights of this model are frozen; the weights are not updated throughout the process.

The implementation consists of two loss functions - content and style - which are

evaluated both separately and combined. All of the methods - content, style, and a

combination of both - begin with a generated image consisting of random noise. The

pixels of this generated image are updated iteratively in order to minimize the loss

function.

All of the loss functions utilize the hidden-layer activations of the Visual

Geometry Group’s 19 weight-layer variant. Both the noise image and the target image[s]

are sent through this neural network. Each of the convolutional layers has a

corresponding rectified linear activation. The activations of the noise image and the target

image are used to generate the loss, and the pixels of the generated image are updated

iteratively in order to minimize this loss.

Gatys et al. (2015) has demonstrated that Content loss is more straight-forward to

calculate than Style loss and has less variation in its generated image. This research aims

to explore Style loss specifically; no exploration of Content loss is presented in the

8

findings of this research. However, Content loss is introduced by Gatys et al. (2015), and

is constructed in a manner that is similar to that of Style loss. For that reason, and for the

sake of a thorough background on the algorithm, a brief summary of Content loss is

provided below.

Content loss is calculated by taking the mean squared error between the target

activations and the noise activations:

Where rand represent the original image and the image that is generated and and

 represent their respective feature representation in layer . The derivative of the loss

with respect to the activations in layer equals

Where is the activation of the filter at position in layer . An interesting

observation about this derivative is the distinction between activations that are greater

than 0 vs activations that are less than 0 - rectified linear activations by their very nature

assert that the activations will never be below 0. A modification to this derivative is

proposed in section 2.3.2, which modifies the derivative as follows:

9

Style loss also utilizes the target activations and the noise activations but does so

by generating a Gram matrix of the activations before calculating the mean squared error.

The contribution of loss from an individual layer is represented by

Where and represent the height and width of the activations, and and

represent the Gram matrices of the activations at layer . Whereas content loss is

calculated by the activations of a single layer, style loss combines one or more layers.

The total style loss is defined as

Where are the weighting factors for each layer. Gatys et al. (2015) uses equal

weightings across all layers of the network when calculating the loss. The derivative is

calculated as follows:

10

The same modification described above is also proposed in section 2.3.2, which modifies

the distinction to include values that are less than or equal to 0:

Gatys et al. (2015) evaluates these losses on their own, and also combines them using

and as weighting parameters:

Content and style loss functions are generated using various activations

throughout the network. Content uses a single activation for all of its configurations,

whereas style uses a weighted combination of one or more activations. There are five

configurations of activations considered, which are labelled as A - E:

11

Figure 1. VGG 19 Convolutional Neural Network.

The first convolutional layer of each convolutional block (highlighted in the image

above) are used to calculate each of the 5 loss configurations, which are labelled A-E.

Content Loss functions use a single convolutional layer, whereas Style Loss functions use

every layer that precedes it. Style E, for example, is the weighted average of losses for

conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1.

Although the original implementation only broadly refers to “gradient descent”

without suggesting a specific optimization method, the author has suggested online to

optimize via the quasi-newton method of Broyden-Fletcher-Goldfarb-Shanno algorithm.

1.1.6 Broyden-Fletcher-Goldfarb-Shanno Algorithm

Newton’s method is an iterative method for finding the root of a differentiable

function. It can be applied to the derivative of a twice-differentiable function in order to

12

find the minimum or maximum of the function. It does so by selecting a random starting

point, and performing the following iteration until the optimal value is reached:

 When expanded to a higher-dimensional space, Newton’s method can be

generalized as follows:

where represents the inverse of the Hessian matrix, and represents the

gradient.

 Although Newton’s method is effective for finding optima, it can be very

computationally expensive - calculating the inverse Hessian - which must be done each

iteration - has a computational complexity of .

 Quasi-Newton methods reduce the complexity imposed by Newton’s method, as

they approximate the Hessian instead of calculating it directly. Four authors

independently published the algorithm now known as Broyden-Fletcher-Goldfarb-

Shanno (Broyden, 1969; Fletcher, 1969; Goldfarb, 1969; Shanno, 1969). This algorithm

gradually improves the approximation for the Hessian through a generalized secant

method. These updates do not require matrix inversion, which reduces the computational

complexity from to . The iterative method can be summarized as follows:

13

Where represents the gradient, and represents the approximation of the Hessian.

 While BFGS reduces the computational complexity, it does not reduce the

memory required to store the Hessian - which has a memory requirement of for

the matrix. Liu et al. (1989) effectively reduces the memory complexity of this

algorithm (L-BFGS, for limited-memory BFGS) by approximating the Hessian via the

history of the gradients. This results in a linear memory requirement, as only one vector

is required to approximate the Hessian instead of a dense matrix.

1.1.7 Strong Wolfe Condition on Curvature

 The approximation of the Hessian may not represent the true objective function,

which may lead to strange convergence behavior. If the quadratic approximation is

shallower or steeper than that of the true function, a step may overshoot or undershoot

and lead to an iteration that increases the cost.

Wolfe (1969) introduced a set of conditions that, when enforced, may lead to

better convergence behavior. These conditions assert that the length of each iteration step

is proportional to the decrease in the objective function. This also means that any

individual step cannot increase the cost.

14

1.1.8 Stochastic Gradient Descent

 Robbins et al. (1951) introduced the Robbins-Monro algorithm, which is an

iterative method to solve root-finding problems. One such application of this algorithm is

Stochastic Gradient Descent, which is an iterative method for optimizing differentiable

functions. It does so by randomly selecting a sample and using that sample to

approximate the true gradient. This process repeats until the approximate minimum is

reached. The objective can be summarized as follows:

Where minimizes . SGD finds a that minimizes by performing the

following calculation iteratively:

Where represents the gradient at and represents the step size. SGD does not

compute the entire gradient. Instead, the gradient is approximated from a random sample

of rows on each iteration. Choosing an appropriate step size is important - a step size too

small will take very long to converge, whereas a step size that is too large may overstep

the true optima.

15

1.1.9 Adaptive Movement Estimation

 Kingma et al. (2014) proposed a solution to this step-size problem by introducing

a method which updates the step size dynamically. Each parameter is assigned an

individual step size, and this step size is updated in each iteration, based on the gradient

of the previous iteration.

1.1.10 Condition Numbers

For any given function, the condition number represents how much the output of

that function will change for a small change in the input values. A problem with a low

condition number is defined as being well-conditioned, and a problem with a high

condition number is defined as being ill-conditioned. The solution to an ill-conditioned

problem becomes hard to find, especially through gradient descent, as the cost can vary

drastically even with a very small step size. Additionally, the gradient may only be well-

defined in some directions and under-determined in others.

A condition number of 100 is often used as a baseline reference. A condition

number below 100 is said to be well-conditioned and may have easier convergence

properties. A condition number above 100 is said to be ill-conditioned and makes the

optimization convergence slow and uncertain.

16

Chapter II.

Methods

Gatys et al. (2015) is used as a baseline by which all other trials are compared.

Many trials were evaluated, and the results of trials were used to dictate the path of future

trials. Once a superior configuration for a method had been established, that configuration

was used as the baseline during comparisons of new methods.

2.1 Image Processing

A few steps are required before the process of gradient descent can begin. Some

of these steps must be reversed after the optimization has been completed, and some

additional steps are required after the optimization in order to enable rendering of the

output image.

2.1.1 Preprocessing

 All input images are resized to have a height of 256 pixels. The width of the

images is resized such that the aspect ratio remains constant. Some trials apply

normalization to the input images based on the ImageNet subset that PyTorch models

were trained on. This normalization is applied over the channels of the image (red-green-

blue).

17

Table 3. PyTorch ImageNet Subset Characteristics

Mean 0.485, 0.456, 0.406

Standard Deviation 0.229, 0.224, 0.225

Some trials apply histogram equalization to the input images, and some trials do

not apply any method of normalization or equalization.

Images typically have pixels that are in the range of [0, 255]. For most of the

trials, the input images are scaled to fall within the range of [0, 1] - the same range that

was used while training the PyTorch models.

Once the target image has been loaded, a noise image of the same range and

dimensions is generated by randomly selecting pixel values in the range of the target

image.

2.1.2 Postprocessing

 Any trials that utilize image normalization as part of its preprocessing step reverse

the normalization as part of postprocessing. Since there is no constraint on the noise

image during gradient descent, it is possible that pixel values will fall outside of the

renderable range of [0, 1] or [0, 255]. The output image is thus clipped at its respective

range.

 Images that generate an output with range [0, 1] are re-scaled after clipping in

order to have a range of [0, 255]. This has no effect on the visual properties of the output

image but results in a smaller file as it is less computationally expensive to store integers

(only possible with range [0, 255]) than it is to store floats (required with range [0, 1]).

18

Table 4. Preprocessing & Postprocessing Methods

 Method

 1 2 3 4

Pre

Resize Resize image to height of 256

Range of Input Pixels [0, 1] [0, 1] [0, 1] [0, 255]

Normalization Method

PyTorch

ImageNet

Histogram

Equalization None

PyTorch

ImageNet

Post
Reverse Normalization

PyTorch

ImageNet None None

PyTorch

ImageNet

Clip Tensor [0, 1] [0, 1] [0, 1] [0, 255]

Range of Output Pixels [0, 255] [0, 255] [0, 255] [0, 255]

PyTorch ImageNet normalization refers to normalizing the input image in accordance

with the subset of ImageNet data that was used to train the PyTorch Models.

2.2 Visual Geometry Group Models

Every model used for the purpose of this research is loaded using the PyTorch

framework. After loading the weights, each of the weights are frozen to ensure that the

weight values do not update during this process. Because each model only has a single

output representing a classification, a modification is made to capture the activations of

every convolutional layer.

2.2.1 VGG-19

The 19 weight-layer variant of the VGG models is the primary model that is

considered across all trials. The first convolutional layer from each convolutional block is

used to generate Styles A through E.

19

2.2.2 VGG-11, VGG-13, and VGG-16

The 11, 13, and 16 weight-layer variants are evaluated against the 19 weight-layer

variant. While these models have varying amounts of convolutional layers, they share the

same overall structure - five blocks of convolutional layers which are separated by a

pooling layer. As with the 19 weight-layer variant, each of these variants generate its

corresponding loss by taking the first convolutional layer from each respective

convolutional block.

2.2.3 Pooling

In accordance with the Gatys et al. (2015) implementation, each of the max

pooling layers are replaced with average pooling layers before gradient descent.

Additionally, one set of trials serves to explicitly compare the output when using max

pooling to the output when using average pooling.

2.3 Loss

Gatys et al. (2015) demonstrates that Style loss has a much larger variance in

output when compared to content loss. As such, style loss is the primary method which is

evaluated for the purpose of this research. The style loss of the original implementation is

used as the baseline by which all modifications are compared.

The baseline loss for an individual layer is defined as

20

The baseline loss for all layers is then defined as

And the baseline derivative from the loss is defined as

The layers and labelling of each loss configuration mimic that of the original

implementation:

Table 5. Style Loss Configurations

Style Loss ID Convolutional Layers

A conv1_1

B conv1_1, conv2_1

C conv1_1, conv2_1, conv3_1

D conv1_1, conv2_1, conv3_1, conv4_1

E conv1_1, conv2_1, conv3_1, conv4_1, conv5_1

The layers and identifiers mimic that of Gatys et al. (2015). When more than one layer is

evaluated for the loss, all layers are weighted equally.

21

2.3.1 Normalization of Feature Maps

The Gram matrices of the corresponding activations were evaluated and found to

be ill-conditioned with condition numbers at or near infinity. As a result, various

normalization methods are considered to evaluate whether outcomes can be improved by

modifying the activations before generating the Gram matrices.

Style loss is evaluated by calculating the Gram matrices of the activations - that

is, the inner product of the activations transposed by itself: For each layer , the Gram

matrix can be represented as the inner product between the vectorized feature map and

This approach often results in Gram matrices that are ill-conditioned with

condition numbers at or near infinity. As such, multiple normalization methods are

considered to evaluate whether outcomes can be improved by modifying the activations

before generating Gram matrices. This modification can be written by

Where represents the normalized representation of the activations. is

calculated in numerous ways as defined below.

22

Min-Max Normalization

Min-Max normalization alters the activations such that the minimum is 0 and the

maximum is 1. During each iteration, the following transformation is applied to the

activations of both the generated image as well as the target image:

Pulling Elements Towards Mean

Many of the activations were found to have extreme outliers with values greater

than fifty standard deviations above the mean. One method of normalization aims to

resolve this by pulling all elements closer to the mean

Where is a constant

Dividing by Standard Deviation

Another method of accounting for outliers is dividing all elements of the

activations by the standard deviation.

23

Dividing by Standard Deviation, by Channel

This method of normalization is also considered with respect to the standard

deviation of each individual channel of the activations

Table 6. Summary of Normalization Methods

Name Formula

Min-Max Normalization

Pulling Elements Towards Mean

Dividing by Standard Deviation

Dividing by Standard Deviation by Channel

2.3.2 Feature Masks

The original implementation makes a distinction for derivatives based on the

value of the activation being less than 0:

24

Because rectified linear activations are lower-bound at 0, an activation will never

have a value below 0. For this reason, a modification is considered which applies this

same distinction at values that are less than or equal to 0:

The activations are found to have extreme outliers, with many elements having a

value as much as fifty standard deviations above the mean. As such, an additional feature

mask is considered, which only applies the derivative for activations that are within three

standard deviations of the mean:

2.3.3 Early Stopping

Most trials are run with a maximum of five hundred epochs. Many trials reach a

nonzero convergence limit before reaching five hundred epochs. Early stopping is

evaluated every fifty epochs, and a trial is stopped if the value of the loss has not changed

for fifty epochs at the time of evaluation.

25

2.4 Optimization Methods

Although Gatys et al. (2015) does not mention a specific optimization method, the

author has recommended the Broyden-Fletcher-Goldfarb-Shanno algorithm online. Other

optimization methods are also evaluated.

2.4.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm

The limited-memory variant of this algorithm is implemented to satisfy the

hardware constraints and improve processing time. This algorithm is evaluated with and

without a line search function. The line search function evaluated is the Strong Wolfe

method. All other hyperparameters are held constant throughout all trials.

Table 7. Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Hyperparameters

Parameter Values Evaluated

Learning Rate 1

Max Iterations Per Optimization Step 20

Max function Evaluations Per Optimization Step 25

Termination Tolerance on First Order Optimality

Termination Tolerance on Function Value

Update History Size 100

Line Search Function None, Strong Wolfe

2.4.2 Stochastic Gradient Descent

 Stochastic Gradient Descent is evaluated with varying magnitudes of a learning

rate. All other hyperparameters are held constant throughout all trials.

26

Table 8. Stochastic Gradient Descent Hyperparameters

Parameter Values Evaluated

Learning Rate 0.01, 0.1, 1, 10

Momentum Factor 0

Weight Decay 0

Dampening for Momentum 0

2.4.3 Adaptive Moment Estimation

 Adam Optimization is evaluated with varying magnitudes of a learning rate. All

other hyperparameters are held constant throughout all trials.

Table 9. Adaptive Moment Estimation Hyperparameters

Parameter Values Evaluated

Learning Rate 0.01, 0,1, 1, 10

Beta Coefficients (0.9, 0.999)

Denominator Epsilon

Weight Decay 0

27

2.5 Metrics

Gatys et al. (2015) provides output images. While these images are visually

interesting, it makes comparison difficult as the quality of images is inherently subjective.

This research aims to add the ability to quantitatively compare each of the methods

considered.

2.5.1 Subjective Analysis of Generated Images

Each trial outputs the final value of the generated image, with its values clipped at

its respective range in order to enable rendering. While these results are subjective, some

discussion can be made about the variety of output generated through gradient descent.

2.5.2 Loss

The log loss of each activation is recorded for each epoch. Style A only includes

the log loss for the activations corresponding to conv1_1, whereas Style E includes the

log loss for the activations corresponding to conv1_1, conv2_1, conv3_1, conv4_1,

conv5_1.

If the loss for every convolutional layer remains constant for fifty epochs, it is

assumed that the nonzero convergence limit has been reached, and the trial is terminated.

2.5.3 Condition Number of Gram Matrices

Once a trial is concluded (after reaching 500 epochs or after reaching 50

consecutive epochs with a constant loss for all layers), the Gram matrices for the final

output image is recorded, prior to clipping the output image in order for rendering.

28

The sorted eigenvalues of these Gram matrices are plotted alongside their

corresponding condition numbers. Similar to the loss evaluation, the Gram matrix

analysis is done with regard to each convolutional layer that comprises the loss.

In instances where normalization is applied to the Gram matrix, the sorted

eigenvalues and condition numbers are plotted before the normalization and after the

normalization, in order to visualize the effect of normalization against the Gram matrices.

29

Chapter III.

Results

Recreating the results of the original implementation is unattainable for two

reasons:

1. The generated image begins as randomly-generated noise, which results in a

different output between identical trials

2. The original implementation uses the Caffe framework of the Visual Geometry

Group’s model, which was trained on a different subset of ImageNet data than

that of Pytorch.

 With these two limitations in mind, many of the results have generated images

that closely resemble that of the original implementation. The optimal configurations are

summarized in the table below. Additional methods evaluated can be viewed in their

corresponding sections.

Table 10. Optimal Configurations by Category

Category Optimal Configuration

Normalization Method Divide by Standard Deviation By Channel

Pooling Method Average

Optimization Method L-BFGS with Wolfe Constraint

VGG Variant VGG-13

Feature Mask None

30

Using these optimal configurations results in the following:

Figure 2. Results of Optimal Configuration

These trials normalize by dividing by the standard deviation by channel, utilize the VGG-

13 model, replace max pooling layers with average pooling, and optimize via L-BFGS

with a Wolfe Constraint on Curvature. Letters A-E refer to the Style Configuration as per

Gatys et al. (2015). Eigen-Pre and Eigen-Post refer to the eigenvalues before and after

normalization, respectively. C.N. refers to the condition number.

The log loss of these trials is comparable to many of the other trials - both in the

amount of decrease, as well as the number of epochs reached before the nonzero

convergence limit is reached. However, these trials are considered to be optimal for the

following reasons:

31

1. The images have more “global” Style features as the Style configuration moves

from A-E. Style A has smaller, local features (consisting primarily of dots).

Conversely, Style E has larger, global features, including texture and broad brush

strokes.

2. Normalization successfully reduces the condition number by orders of magnitude

for every feature map within every trial

3. The post-normalized condition numbers are among the smallest achieved, and not

a single post-normalized condition number is at or near infinity

4. The VGG-13 is chosen over the VGG-16 model (which achieves similar results

when keeping all other values constant), because it is less complex - it has fewer

convolutional layers which results in better computational performance.

3.1 Methods of Normalization

All methods of Normalization are evaluated using the Limited-Memory variant of

the Broyden-Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on

curvature. The 19 weight-layer variant of the Visual Geometry Group’s model is used for

all trials. Each trial consists of 500 epochs, unless a nonzero convergence limit is

reached.

3.1.1 Generated Images

When the activations of each convolutional layer are not normalized prior to

generating Gram matrices, the output images are very different from that of the original

implementation. Many of the images appear mostly similar, and there is an unusual tint of

grayish-yellow. The first convolutional layer of the first convolutional block, conv1_1, is

32

not successfully learned - as indicated by the output of Style A representing pure noise.

Because conv1_1 is used in every style configuration, the lack of successful learning of

conv1_1 may explain the varying results in Style B - Style E.

Pulling towards the mean by channel has results that are similar to the results of

not normalizing at all. Styles B - E have few distinguishing characteristics, and also has

the grayish-yellow tint throughout the image. Style A also represents pure noise,

indicating that the style was not successfully learned.

Min-Max normalization has a detrimental effect for all Style configurations.

Every Style configuration results in a generated image that represents pure noise.

Normalizing the activations by the standard deviation, and its variant which

normalizes over each channel of the activation, have results that most clearly represent

the results of the original implementation. Style A consists of small, local features - the

same colors of the input image are represented, but the generated image consists of

mostly small dots. Each successive Style configuration represents larger, global features -

the texture of the input image is more clearly represented, and features which mimic

brush strokes replace the dots found in Style A.

33

Figure 3. Generated Images of Various Normalization Methods

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature

3.1.2 Loss

Style A of the trials without any normalization method does appear to learn the

style through the first 20 epochs - although a nonzero convergence limit is quickly

reached at around 22 epochs. This results in the noisy image as illustrated above. Each

successive trial has an increasing amount of epochs before a nonzero convergence limit is

34

reached. This same behavior is seen in the method of normalization which pulls each

element towards the mean of its respective channel.

The min-max normalization method results in a mostly flat loss - there is some

small amount of change that occurs within the first 50 epochs (as demonstrated by the

total number of epochs reaching 100 before the nonzero convergence check resulted in an

early stop), but the changes are small enough that the plots appear to be entirely flat.

Style A and B appear to have a better loss behavior when normalizing by the

standard deviation when compared to no normalization - the nonzero convergence limit is

not reached until epoch 200 for both configurations. The loss of Style C, Style D, and

Style E does not indicate on its own that the style was learned better than the trials that

did not use normalization - this indicates that loss, on its own, cannot be used to

determine success of Neural Style Transfer.

An interesting characteristic of the methods which normalize by standard

deviation is that conv1_1 is not learned at the same rate as subsequent activations - there

is a noticeable gap in the loss of conv1_1 when compared to the other loss histories. This

phenomenon does not occur in the trials which are not normalized.

35

Figure 4. Loss Characteristics of Various Normalization Methods

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. Each x-axis is scaled in accordance

with the number of epochs that occur before the nonzero convergence limit is reached.

3.1.3 Condition Numbers & Eigenvalues

There is a relationship between methods that generate a final image which is

visually-appealing and methods that effectively reduce the condition number of the Gram

matrices.

36

The methods of normalization that result in visually unappealing output images -

No Normalization, Pull Towards Mean By Channel, and Min-Max Normalization - have

feature maps that support the notion that the target image is not being learned

successfully. The condition numbers after the normalization are of the same magnitude as

the condition numbers before the normalization.

By contrast, the methods of normalization that result in visually appealing output

images - Normalize By Standard Deviation and Normalize By Standard Deviation By

Channel - have condition numbers that are many magnitudes smaller after the

normalization. Normalize By Standard Deviation By Channel results in a Gram matrix

that has condition numbers less than 1,000 for conv2_1 and conv3_1 for Style B and

Style C configurations. This is especially noteworthy because all other methods of

normalization have condition numbers at or near infinity for these same style

configurations. While all methods include at least one style configuration which contains

a Gram matrix with an infinite condition number, the methods which produce visually

appealing images consistently lower (by many degrees of magnitude) condition numbers

for every feature map.

37

Figure 5. Eigenvalues & Condition Numbers of Various Normalization Methods Before

Applying Normalization

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number.

38

Figure 6. Eigenvalues & Condition Numbers of Various Normalization Methods After

Applying Normalization

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number.

3.1.4 Influence of Future Trials

 All of the results outlined above suggest that normalizing the feature maps by

dividing by the standard deviation across the channels results in the best outcomes - the

generated images are more visually appealing, and the reduction of its feature map’s

39

condition numbers indicate that the normalization is working effectively. This method of

normalization will be used as the baseline by which all other trials are implemented.

3.2 Methods of Pooling

Because max-pooling is non-continuous, it may be more difficult to effectively

find the gradient. The original implementation of Neural Style Transfer replaces all of the

max-pooling layers with average-pooling layers for this reason - stating that the gradient

flow is improved when using average-pooling.

 This section aims to test this hypothesis explicitly. All trials are evaluated using

the Limited-Memory variant of the Broyden-Fletcher-Goldfarb-Shanno Algorithm with a

Strong Wolfe condition on curvature. The 19 weight-layer variant of the Visual

Geometry Group’s model is used for all trials. The feature maps are normalized by

dividing by the standard deviation over channels. Each trial consists of 500 epochs,

unless a nonzero convergence limit is reached.

3.2.1 Generated Images

While the generated images are visually similar when using the Style A

configuration, the images generated diverge between methods of pooling for the style

configurations deeper in the network. Average-pooling has results with an increasing

range of learned features, whereas max-pooling generates images with primarily

localized features. This is most noticeable on Style C - which has larger features and

textures associated with average-pooling vs max-pooling

40

Figure 7. Generated Images of Average-Pooling & Max-Pooling

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are

normalized by dividing by the standard deviation over the channels.

3.2.2 Loss

Both methods reach a nonzero convergence limit near the same amount of epochs

and have similar final losses - both in terms of degree of loss, and with regard to the

relationship between loss and respective convolutional layers. The most notable

difference between the lost characteristics can be observed for Style C and Style D - both

of which have a volatile loss associated with conv3_1 for max-pooling. This may support

the notion that gradient flow is improved when replacing max-pooling layers with

average-pooling

41

Figure 8. Loss Characteristics of Average-Pooling & Max-Pooling

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are

normalized by dividing by the standard deviation over the channels. Each x-axis is scaled

in accordance with the number of epochs that occur before the nonzero convergence limit

is reached.

3.2.3 Condition Numbers & Eigenvalues

After normalizing the feature maps by dividing by the standard deviation over the

channels, average-pooling has fewer observations with a condition number at infinity.

Notably, Max-pooling has an infinite condition number for conv2_1 on Style B, as well

as an infinite condition number for both conv2_1 and conv3_1 on Style C. Average-

pooling, by contrast, has a condition number below 1,000 for every convolutional layer

for Style B and Style C.

42

Figure 9. Post-Normalized Eigenvalues & Condition Numbers of Average-Pooling &

Max-Pooling

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. C.N. refers to condition number.

3.3 Methods of Optimization

 Although Gatys et al. (2015) refers only broadly to “gradient descent”, the author

has indicated online that the Limited-Memory variant of the Broyden-Fletcher-Goldfarb-

Shanno algorithm achieves quality results. This section compares this method to

Stochastic Gradient Descent and Adaptive Movement Estimation.

The 19 weight-layer variant of the Visual Geometry Group’s model is used for all

trials. The feature maps are normalized by dividing by the standard deviation over

channels. A learning rate of 1.0 is used for all trials (Note: additional learning rates were

evaluated for SGD as per Table 7 and Adam as per Table 8 but did not lead to different

results). Each trial consists of 500 epochs, unless a nonzero convergence limit is reached.

43

3.3.1 Generated Images

Adam and L-BFGS have results that are visually similar to one another - both

optimization methods transition between learning local features (at the earlier layers of

the network) to global features (at the later layers of the network). Stochastic Gradient

Descent generates an image that represents pure noise - indicating that very little

information was learned about the representation of the target image. This phenomenon is

present throughout all trials; modifying the learning rate does not have an effect on the

ability to learn the style features.

Figure 10. Generated Images of Various Optimization Methods

All trials generate their feature maps using the VGG-19 model. All trials have feature

maps that are normalized by dividing by the standard deviation over the channels.

44

3.3.2 Loss

 Adam optimization never reaches a nonzero convergence limit through the

duration of all epochs. There is some degree of volatility associated with the loss in the

later epochs, which can be explained by the dynamic nature of the learning rate.

 Despite never learning the features, Stochastic Gradient Descent never reaches a

nonzero convergence limit. Although the loss history appears to be mostly flat, there is

enough variance between epochs such that an early stop is not triggered.

Figure 11. Loss Characteristics of Various Optimization Methods

All trials generate their feature maps using the VGG-19 model. All trials have feature

maps that are normalized by dividing by the standard deviation over the channels. Each

x-axis is scaled in accordance with the number of epochs that occur before the nonzero

convergence limit is reached.

45

3.3.3 Condition Numbers & Eigenvalues

L-BFGS optimization has fewer infinite condition numbers than Adam

optimization. Excluding infinite values, Adam optimization has lower condition numbers,

although they are within the same magnitude. Stochastic Gradient Descent has condition

numbers that are similar to that of Adam optimization, despite having an output image

consisting primarily of noise. This suggests that feature-map stability on its own is not

enough for an optimizer to learn the style features.

Figure 12. Post-Normalized Eigenvalues & Condition Numbers of Various Optimization

Methods

All trials generate their feature maps using the VGG-19 model. All trials have feature

maps that are normalized by dividing by the standard deviation over the channels. C.N.

refers to condition number

46

3.4 Additional Variants of the Visual Geometry Group’s Models

While there is a relationship between the depth of each network and its

corresponding top-1 and top-5 score, each of the weight-layer variants of the Visual

Geometry Group’s models have feature maps that appear similar to one another.

 Each of the models have a varying amount of convolutional layers, but each

model follows the same basic structure - five convolutional blocks separated by pooling

layers, followed by two fully-connected layers. Each of the trials presented generate the

feature map via the activations of the first convolutional layer of each convolutional

block.

 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The

feature maps are normalized by dividing by the standard deviation over channels. Each

trial consists of 500 epochs, unless a nonzero convergence limit is reached.

3.4.1 Generated Images

The same pattern is observed across all variants of the model, with localized

features being present in the earlier style configurations, and more global style features

becoming present as the feature maps go deeper and deeper into the networks. Few

discernable differences can be spotted across any of the model variants.

47

Figure 13. Generated Images of VGG Variants

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials

have feature maps that are normalized by dividing by the standard deviation over the

channels.

3.4.2 Loss

 None of the trials reach 500 epochs; each trial reaches a nonzero convergence

limit around the 200-epoch mark. The same general loss behavior is observed across all

variants of the model - nonzero convergence limits are reached around the same point,

the final loss is similar, and the relationship between convolutional layers is similar

across all model variants.

48

Figure 14. Loss Characteristics of VGG Variants

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials

have feature maps that are normalized by dividing by the standard deviation over the

channels. Each x-axis is scaled in accordance with the number of epochs that occur

before the nonzero convergence limit is reached.

3.4.3 Condition Numbers & Eigenvalues

The largest difference between trials is observed through the condition numbers

of each set of feature maps. Most of the trials thus far have feature maps which contain an

infinite condition number for conv2_1 and conv3_1 for Style D and Style E - even after

normalization has been applied. VGG 13 and VGG 16, however, have condition numbers

less than 1,000 for all Style Configurations. This behavior is not consistent, however -

49

VGG 13 and VGG 16 have a conv1_1 condition number that is consistently 2-10 times

larger than their VGG-11 and VGG-19 equivalents.

Figure 15. Post-Normalized Eigenvalues & Condition Numbers of VGG Variants

 All trials optimize via L-BFGS with a Strong Wolfe Condition on Curvature. All trials

have feature maps that are normalized by dividing by the standard deviation over the

channels. C.N. refers to condition number

3.5 Effect of Wolfe Condition on Curvature

 One of the most crucial components of convergence appears to be the Wolfe

condition on curvature. Because of the Hessian approximation associated with the L-

BFGS algorithm, the Wolfe condition proves to be critical in convergence.

50

 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm. The 19 weight-layer variant of the Visual

Geometry Group’s model is used for all trials. The feature maps are normalized by

dividing by the standard deviation over channels. Each trial consists of 500 epochs,

unless a nonzero convergence limit is reached.

3.5.1 Generated Images

Although the later style configurations - Style C, Style D, and Style E - have a

final output image that is visually similar regardless of the Strong Wolfe constraint,

Styles A and Styles B do not appear to have learned any of the stylistic representations.

Figure 16. Generated Images of Strong Wolfe and No Line Search

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard

deviation over the channels.

51

3.5.2 Loss

 Despite some of the final output images being visually similar, the loss takes on

very different behavior. This is most evident with Style D - when the Strong Wolfe

constraint is not imposed, nearly 100 epochs pass before the algorithm begins to learn the

feature space.

 The loss behaviors for Style A and Style B support the notion that the stylistic

features are not effectively learned without the Strong Wolfe constraint. However, similar

to the results of SGD, there is just enough variance between epochs such that the early

stopping conditions are not met.

Figure 17. Loss Characteristics of Strong Wolfe and No Line Search

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard

deviation over the channels. Each x-axis is scaled in accordance with the number of

epochs that occur before the nonzero convergence limit is reached.

52

3.5.3 Condition Numbers & Eigenvalues

There are few differences in post-normalized condition numbers - the condition

numbers for conv2_1 and conv3_1 reach infinity at earlier style configurations when the

Strong Wolfe constraint is not enforced, but the same general pattern can be observed

across the remainder of the trials.

Figure 18. Post-Normalized Eigenvalues & Condition Numbers of Strong Wolfe and No

Line Search

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS. All trials have feature maps that are normalized by dividing by the standard

deviation over the channels. C.N. refers to condition number

3.6 Feature Masks

 None of the methods of applying a feature mask appear to have any notable effect

on the output; normalization is much more effective with regard to improving gradient

flow. All trials are evaluated using the Limited-Memory variant of the Broyden-Fletcher-

Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The 19 weight-

53

layer variant of the Visual Geometry Group’s model is used for all trials. The feature

maps are not normalized. Each trial consists of 500 epochs, unless a nonzero convergence

limit is reached.

3.6.1 Generated Images

There are no notable differences between any of the images when applying

various feature masks. If normalization is not applied, Style A cannot be effectively

learned, and results in an output image representing pure noise. Styles B - E have the

presence of a strange yellow-gray tint, and the output images do not appear to have any

degree of increasing global features as the Styles increase from Style A through Style E.

Figure 19. Generated Images of Various Feature Masks

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. Nonzero refers to only calculating

54

the mean squared error with respect to activations that are greater than zero. “Within

Std*3” refers to only calculating the mean squared error with respect to activations that

are within 3 standard deviations of the mean.

3.7 Range of Input Images

 An interesting characteristic that may be unique to the PyTorch implementation of

the Visual Geometry Group’s models is that the range of input images seems to have an

effect on the convergence properties of the Style Loss functions.

 The PyTorch implementation is trained on images that are in the range of [0, 1] -

but seem to also accept images that are in the range of [0, 255]. Images in the range seem

to converge without any adjustments to normalization.

 All trials are evaluated using the Limited-Memory variant of the Broyden-

Fletcher-Goldfarb-Shanno Algorithm with a Strong Wolfe condition on curvature. The 19

weight-layer variant of the Visual Geometry Group’s model is used for all trials. The

feature maps are normalized by dividing by the standard deviation over channels. Each

trial consists of 500 epochs, unless a nonzero convergence limit is reached.

3.7.1 Generated Images

Images in the range of [0, 255] have more visually appealing results when

normalization is not applied. The generated images are similar to that of other trials

where normalization is applied. Two key differences in these generated images is that

they are a darker shade of blue, and there are more pure-black features when compared to

the normalized equivalents in the range of [0, 1].

55

Figure 20. Generated Images of Various Image Ranges

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are

normalized by dividing by the standard deviation over the channels.

3.7.2 Loss

 A nonzero convergence limit is not reached when images in the range of [0, 255]

are used, even without using any normalization techniques. The magnitudes of the loss

are very different - the activations of each layer are observed to be much larger when the

input images are in the range of [0, 255].

56

Figure 21. Loss Characteristics of Various Image Ranges

All trials generate their feature maps using the VGG-19 model. All trials optimize via L-

BFGS with a Strong Wolfe Condition on Curvature. All trials have feature maps that are

normalized by dividing by the standard deviation over the channels. Each x-axis is

scaled in accordance with the number of epochs that occur before the nonzero

convergence limit is reached.

57

Chapter IV.

Conclusion

 This thesis evaluated multiple normalization methods, two methods of pooling,

multiple methods of optimization, multiple variants of the VGG models, and multiple

feature masks. The following table reflects the optimal configuration as determined by

the results from all trials evaluated:

Table 11. Recap of Optimal Configurations by Category

Category Optimal Configuration

Normalization Method Divide by Standard Deviation By Channel

Pooling Method Average

Optimization Method L-BFGS with Wolfe Constraint

VGG Variant VGG-13

Feature Mask None

Using this this optimal configuration results in the following set of images:

Figure 22. Output Images of Optimal Configuration

58

Many interesting characteristics can be observed in the loss behavior of Neural

Style Transfer. The ill-conditioned nature of the Gram matrices can lead to convergence

problems. This behavior can be solved by applying normalization before calculating the

mean squared error - leading to results that are both more visually appealing, as well as

not reaching a nonzero convergence limit as early. Conversely, applying a feature mask

before calculating the mean squared error does not appear to have any effect on

optimization.

Replacing max-pooling layers with average-pooling layers does seem to improve

gradient flow. Average-pooling results in images with increasingly global features and

has a loss function that is less volatile.

Although a specific optimization method is not mentioned by Gatys et al. (2015),

it seems to play a large role. Stochastic Gradient Descent is unable to reach convergence

regardless of its learning rate, whereas Adam optimization and L-BFGS are able to

achieve much better results. Because of the Hessian approximation of the L-BFGS

algorithm, a Strong Wolfe condition on curvature leads to better results - and the lack of

such a condition leads to strange loss behavior.

The weight-layer variants of the Visual Geometry Group’s models have a large

degree of variance when measuring their corresponding top-1 and top-5 error rate, but

their results are very similar when generating feature maps in order to capture the stylistic

features of a given image. Of the four models evaluated, the 13 weight-layer variant

seems to have the best results - it has fewer layers than the 16 and 19 variants (reducing

computational complexity), its generated images capture more global features in Style D

59

and Style E, and its condition numbers do not reach infinity across any of its Style

configurations.

Throughout the vast majority of the trials, a nonzero convergence limit is reached

before reaching 500 epochs. Despite this phenomenon, visually appealing results can be

generated - suggesting that loss on its own is not a suitable measurement of success of

learning the style of an image.

60

References

Broyden, C. G. “The Convergence of a Class of Double-Rank Minimization

Algorithms 1. General Considerations.” IMA Journal of Applied Mathematics,

vol. 6, no. 1, Mar. 1970, pp. 76–90. Silverchair, doi:10.1093/imamat/6.1.76.

Deng, J., et al. “ImageNet: A Large-Scale Hierarchical Image Database.” 2009 IEEE

Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–55.

IEEE Xplore, doi:10.1109/CVPR.2009.5206848.

Fletcher, R. “A New Approach to Variable Metric Algorithms.” The Computer

Journal, vol. 13, no. 3, Jan. 1970, pp. 317–22. Silverchair,

doi:10.1093/comjnl/13.3.317.

Gatys, Leon A., et al. “A Neural Algorithm of Artistic Style.” ArXiv:1508.06576

[Cs, q-Bio], Sept. 2015. arXiv.org, http://arxiv.org/abs/1508.06576.

Goldfarb, Donald. “A Family of Variable-Metric Methods Derived by Variational

Means.” Mathematics of Computation, vol. 24, no. 109, Jan. 1970, pp. 23–23.

DOI.org (Crossref), doi:10.1090/S0025-5718-1970-0258249-6.

Kingma, Diederik P., and Jimmy Ba. “Adam: A Method for Stochastic

Optimization.” ArXiv:1412.6980 [Cs], Jan. 2017. arXiv.org,

http://arxiv.org/abs/1412.6980.

61

Liu, Dong C., and Jorge Nocedal. “On the Limited Memory BFGS Method for Large

Scale Optimization.” Mathematical Programming, vol. 45, no. 1–3, Aug. 1989,

pp. 503–28. DOI.org (Crossref), doi:10.1007/BF01589116.

Robbins, Herbert, and Sutton Monro. “A Stochastic Approximation Method.” The

Annals of Mathematical Statistics, vol. 22, no. 3, Sept. 1951, pp. 400–07.

DOI.org (Crossref), doi:10.1214/aoms/1177729586.

Shanno, D. F. “Conditioning of Quasi-Newton Methods for Function Minimization.”

Mathematics of Computation, vol. 24, no. 111, Sept. 1970, pp. 647–647.

DOI.org (Crossref), doi:10.1090/S0025-5718-1970-0274029-X.

Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for

Large-Scale Image Recognition.” ArXiv:1409.1556 [Cs], Apr. 2015. arXiv.org,

http://arxiv.org/abs/1409.1556.

Wolfe, Philip. “Convergence Conditions for Ascent Methods.” SIAM Review, vol.

11, no. 2, Apr. 1969, pp. 226–35. DOI.org (Crossref), doi:10.1137/1011036.

Yamaguchi, Kouichi, et al. A Neural Network for Speaker-Independent Isolated

Word Recognition. 1990, pp. 1077–80.

	Understanding Decisions and Tradeoffs of Neural Style Transfer
	Abstract
	Frontispiece
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Glossary
	Chapter I. Introduction
	1.1 Background
	1.1.1 ImageNet
	1.1.2 Visual Geometry Group
	1.1.3 Pooling
	1.1.4 VGG Implementations
	1.1.5 A Neural Algorithm of Artistic Style
	1.1.6 Broyden-Fletcher-Goldfarb-Shanno Algorithm
	1.1.7 Strong Wolfe Condition on Curvature
	1.1.8 Stochastic Gradient Descent
	1.1.9 Adaptive Movement Estimation
	1.1.10 Condition Numbers

	Chapter II. Methods
	2.1 Image Processing
	2.1.1 Preprocessing
	2.1.2 Postprocessing

	2.2 Visual Geometry Group Models
	2.2.1 VGG-19
	2.2.2 VGG-11, VGG-13, and VGG-16
	2.2.3 Pooling

	2.3 Loss
	2.3.1 Normalization of Feature Maps
	Min-Max Normalization
	Pulling Elements Towards Mean
	Dividing by Standard Deviation
	Dividing by Standard Deviation, by Channel
	2.3.2 Feature Masks
	2.3.3 Early Stopping

	2.4 Optimization Methods
	2.4.1 Broyden-Fletcher-Goldfarb-Shanno Algorithm
	2.4.2 Stochastic Gradient Descent
	2.4.3 Adaptive Moment Estimation

	2.5 Metrics
	2.5.1 Subjective Analysis of Generated Images
	2.5.2 Loss
	2.5.3 Condition Number of Gram Matrices

	Chapter III. Results
	3.1 Methods of Normalization
	3.1.1 Generated Images
	3.1.2 Loss
	3.1.3 Condition Numbers & Eigenvalues
	3.1.4 Influence of Future Trials

	3.2 Methods of Pooling
	3.2.1 Generated Images
	3.2.2 Loss
	3.2.3 Condition Numbers & Eigenvalues

	3.3 Methods of Optimization
	3.3.1 Generated Images
	3.3.2 Loss
	3.3.3 Condition Numbers & Eigenvalues

	3.4 Additional Variants of the Visual Geometry Group’s Models
	3.4.1 Generated Images
	3.4.2 Loss
	3.4.3 Condition Numbers & Eigenvalues

	3.5 Effect of Wolfe Condition on Curvature
	3.5.1 Generated Images
	3.5.2 Loss
	3.5.3 Condition Numbers & Eigenvalues

	3.6 Feature Masks
	3.6.1 Generated Images

	3.7 Range of Input Images
	3.7.1 Generated Images
	3.7.2 Loss

	Chapter IV. Conclusion
	References

