
Cryptocurrency as a Base for a Decentralized
Application to Improve Security and Cost Reduction
in the Ridesharing Industry

Citation
covarrubias, alejandro. 2021. Cryptocurrency as a Base for a Decentralized Application to
Improve Security and Cost Reduction in the Ridesharing Industry. Master's thesis, Harvard
University Division of Continuing Education.

Permanent link
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367625

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37367625
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Cryptocurrency%20as%20a%20Base%20for%20a%20Decentralized%20Application%20to%20Improve%20Security%20and%20Cost%20Reduction%20in%20the%20Ridesharing%20Industry&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=2151cf801a243d08a51fbef10f247e13&department
https://dash.harvard.edu/pages/accessibility

Cryptocurrency as a Base for a Decentralized Application to Improve Security and Cost

Reduction in the Ridesharing Industry

Alejandro Covarrubias

A Thesis in the Field of Software Engineering

for the Degree of Master of Liberal Arts in Extension Studies

Harvard University

May 2021

Copyright 2021 Alejandro Covarrubias

Abstract

The thesis introduces a ride-sharing application based on blockchain. The

platform is designed to enhance the ride-sharing industry’s security and improve the

driver’s profit, the cost for riders, and payment processing performance in the ride-

sharing industry.

IV

Frontispiece

V

Author’s Biographical Sketch

I was born in 1984 in Hermosillo, Sonora, Mexico, when Apple just launched the

Macintosh. My favorite game was playing with Legos during childhood, as building

ships, cars, and robots kept my imagination busy. I also enjoyed reading books about

science fiction and found a home for my favorite author on the foundation and future

portrayed by Isaac Asimov. While in elementary school, I noticed how most of my

classmates were not fond of mathematics and science. I particularly enjoyed those

subjects because I found them exciting and challenging. As I grew up, my interest in

courses that challenged me, such as science and technology, kept increasing. I was in

high school. The world of technology had massive changes as computers and information

available to everybody through the World Wide Web kept growing as an open-source of

knowledge and social communication. I found it very interesting how technology was

developing in front of my eyes and decided to pursue a technology career. When I was

graduating high school, there were plenty of advances in hardware electronics and

software technology. Hence, I decided to study a major that will allow me to learn both

hardware and software engineering and work and research both fields.

Enter Electrical Engineering. The major offered the ability to learn electronic

circuits. I learned how to build a computer from the barebone motherboard and insight

into how the software works from binary code and how hardware can take software code

and translate it to executable actions. During my college days, I had exposure to courses

that require learning programming basics such as Programming and Problem Solving

VI

based in C, Microprocessor Organization based in C, and Fundamental Computer

Architecture based in Java. By the time I graduated in 2009, the landscape of technology

had changed since the demand for Software Engineering jobs increased on the market

while Electrical Engineering jobs kept decreasing.

After my bachelor's graduation, I strived to improve my software development

skills. I gain experience working as a Software Automation Engineer on Verizon projects,

Software Quality Assurance Engineer on projects for Symantec, and more recently as a

Software Engineer for Sony Interactive Entertainment. At Sony Interactive

Entertainment, I currently develop software for the PlayStation commerce platform,

concentrated on payments and continuous delivery, continuous integration.

With the research performed as a result of the thesis, I aim to provide an

implementation that will serve as a platform to improve efficiency in several areas for the

ride-sharing industry. The project seeks to support ushering in a new era in payments via

an application that can become mainstream in the ride-sharing industry

VII

Acknowledgments

I want to thank Eric Gieseke for agreeing to be my thesis director and for all the ongoing

support and guidance throughout this project. His advice throughout the project was

invaluable.

Thanks to my research advisor Professor Hongming Wang for reviewing my thesis

proposal and thesis and providing invaluable advice.

Thanks to Professor Sylvain Jaume, director and research advisor for his guidance during

my studies.

Thanks to my father for always assuring me that through dedication, I can accomplish

anything I set my mind to.

Finally, I would like to thank my wife for her patience and support as she always stood

beside me through all the coursework and thesis work.

VIII

Table of Contents

Frontispiece IV

Author’s Biographical Sketch V

Acknowledgments VII

List of Tables X

List of Figures XI

Chapter I. Introduction 1

Chapter II. Overview 2

2.1. Historical Overview 2

2.2. Package and Food Delivery 3

2.3. Benefits of Ridesharing 4

2.4. Ridesharing opportunities for improvement 5

Chapter III. Important Technologies 8

3.1. Cryptocurrency 8

3.2. Smart Contract 9

3.3. Internet of Things 10

3.4. Decentralized Management with Blockchain 10

3.5. Service Oriented Architecture 11

3.6. Microservices 12

3.7. Algorand Platform 12

Chapter IV. High-Level Rideshare Requirements 14

4.1. Functional Requirements 14

 IX

4.2. Use Cases 15

4.3. Non-Functional Requirements 18

Chapter V. Architecture 20

5.1. Software Technologies 22

Chapter VI. Rideshare Platform Design 26

6.1. Domain Model 26

6.2. Account Management Service Design 28

6.2.1. Class Diagram 29

6.2.2. Design Details 30

6.2.3. Sequence Diagram 31

6.3. Trip Management Service Design 32

6.3.1. State Machine Diagrams 33

6.3.2. Class Diagram 34

6.3.3. Design Details 36

6.3.4. Sequence Diagram 37

6.4. Wallet Management Service Design 38

6.4.1. Class Diagram 39

6.4.2. Design Details 40

6.4.3. Sequence Diagram 41

6.4.4. Payment Workflow 43

6.5. Android Ride-sharing Application Design 43

6.5.1. Screen Captures 44

Chapter VII. Deployment 56

Chapter VIII. Testing 58

Chapter IX. Future Work 61

 IX

Chapter X. Summary 67

Appendix 1. Glossary 71

References 74

XI

List of Tables

Table 1. Software languages 37

Table 2. Software tools 38

XII

List of Figures

Figure 1. Rider Use Cases 29

Figure 2. Driver Use Cases 30

Figure 3. Dispute Use Cases 31

Figure 4. Component diagram 33

Figure 5. Domain Model 40

Figure 6. Package Model 41

Figure 7. Account Management Microservice Class diagram 42

Figure 8. Create an account sequence diagram 45

Figure 9. Driver State Machine 46

Figure 10. Trip State Machine 47

Figure 11. Trip Management Microservice Class diagram 48

Figure 12. Rider issues a trip request 51

Figure 13. Wallet Management Microservice Class diagram 52

Figure 14. Payment issued to the driver 54

Figure 15. Transaction Gateway sequence diagram 55

Figure 16. Pago payment workflow 56

Figure 17. Launch screen 58

Figure 18. Main screen 59

Figure 19. Rider and driver login screen 60

Figure 20. Create an account 61

XIII

Figure 21. Welcome map 62

Figure 22. Wallet options 63

Figure 23. Rider map options 64

Figure 24. The ride-sharing application finds a driver as a result of the trip request 65

Figure 25. Driver trip options 66

Figure 26. A driver arrives at the pick-up location 67

Figure 27. Trip complete 68

Figure 28. Ridesharing platform infrastructure 70

Figure 29. Rocket ride-share application on google play store 71

Figure 30. Ride-sharing app errors detected 73

Figure 31. Ride-sharing app users registration monitoring 73

Figure 32. Crowdfunding TEAL stateful application components 76

Figure 33. Crowdfunding workflow 77

1

Chapter I.

Introduction

The thesis project proposes a ride-sharing platform based on blockchain to

enhance the ride-sharing industry’s security and payment processing performance on the

ride-sharing industry.

 In current ride-sharing services, the centralization of the authority in the

management of data generated by devices lacks transparency in how a device shares user

data among third-party entities (Ayoade, 2018). The project aims to clarify data

management and enhance the ride-sharing industry’s security by introducing a

decentralized platform.

Companies such as Uber and Lyft act as intermediaries that charge 20 percent

commission for each ride transaction (Hmielewicz, 2018). The proposed ride-sharing

platform provides a financial or economic enhancement over the most popular solutions

by securing a direct payment without intermediaries.

The overview chapter of the research describes the historical overview of the ride-

sharing economy. The overview describes the thesis project’s importance on the ride-

sharing market, the benefits, challenges, and opportunities for improvement on current

popular ride-sharing solutions. The thesis then dives into the details of the technologies

researched and considered proposing an implementation for the project. The high-level

requirements then describe the architecture and design of the ride-sharing platform.

Finally, the thesis covers the ride-sharing platform’s deployment and testing, a summary

of results, and future work for the ride-sharing platform.

2

Chapter II.

Overview

This chapter describes an overview of the research. The first section of the

overview introduces the essential facts regarding the historical overview of the ride-

sharing industry. The following sections will then dive into ride-sharing and describe the

ride-sharing market, the benefits, challenges, and target areas for improvements.

2.1. Historical Overview

Ridesharing services, sometimes referred to as ride-hailing services, by definition

arrange shared rides on short notice. The main difference between ridesharing and a taxi

is that passengers need to specify their pickup location and destination with ride-sharing

before hailing a ride. Selecting pickup location and destination allows ride-sharing

services to provide the passenger with a price estimate for the ride. (Dalul, 2019).

The history of ridesharing in America dates back to World War I. During the

World War I period, the United States of America government required people to utilize

ridesharing to conserve rubber for the war. Later on in the 1970s, the oil crisis and spikes

in gas prices increased ridesharing interest. From then on, ridesharing has existed in

numerous forms, such as carpool, vanpool, or airport shuttle (Hahn, 2017).

In 2009, Uber was founded in San Francisco to challenge what was generally

considered the city’s inefficient and inadequate taxi service. Since then, Uber has rapidly

spread its services worldwide, and by 2017 it operates in more than seventy countries,

with around $16 billion invested in the company since its inception. The ride-hailing

company has achieved extremely rapid global expansion through outmaneuvering

3

governments, regulators, and competitors. Uber based its rise on a deliberate strategy of

acting as a market disruptive innovator through a user-friendly technology and using the

sharing economy (Dudley, 2017).

Companies such as Uber or Lyft provide a ride-sharing application that allows

customers to access rides with the tap of a finger. Uber has diversified its business into

food delivery, bikes, and scooters. Uber's net revenue is 2.95 billion dollars and grows

38 percent over one year (Hmielewicz, 2018). However, widespread, current mainstream

ride-share solutions have security risks for passengers and drivers (Thomson, 2016).

2.2. Package and Food Delivery

The current outbreak of Covid-19 has forced organizations worldwide to shift the

trajectory in which businesses work and redefine office space dynamics. As of date, it is

perhaps the most significant social experiment of the future work in action, with every

organization redefining their work from home and social distancing policies. However,

the impact on employment is far more profound than just changing where people work. It

is also fundamentally altering the work that employees need to perform and accomplish

(Jesuthasan, 2020).

Companies in China started creatively sharing employees and moving them from

low demand businesses like restaurants and moving them to others with a demand like

Hema. Hema is Alibaba's retail grocery chain known for its fast grocery food delivery.

More than 3,000 new employees from more than 40 companies in different sectors joined

Hema’s employee sharing plan (Jesuthasan, 2020).

 Recent research shows that the rise of food delivery has become a significant

trend among customers across all demographics. In 2018, Frost and Sullivan estimated

4

that the food delivery service industry generated 82 billion in gross revenue and predicted

that this number would more than double by 2025 (McCarthy, 2020).

 Enter the need for a platform that can provide the features for delivering packages

such as food or any other goods as a service. The platform proposed as a result of this

research would support the ride-sharing of passengers. Most importantly, the platform

will also support the feature of delivering packages as a service. Markets shifting to use

or accept cryptocurrencies such as Kenya will potentially adopt a ride-sharing platform

that can provide ride and package delivery services via digital payments.

2.3. Benefits of Ridesharing

Ridesharing has eased congestion on the roads by people sharing cars. Before

ridesharing hit the mainstream, governments, and organizations were promoting the

benefits of ridesharing.

Decreasing congestion is one way to contribute to saving the environment. If

everyone could fill a car of four people, this would mean four times fewer greenhouse gas

emissions. Decreasing congestion would significantly change the amount of greenhouse

gas in the atmosphere and slow down the rate of warming (Agrawal, 2016).

The rapid growth of ridesharing services, which has caused the taxi industry’s

contraction and reduced transit’s share of passengers, suggests that utility-maximizing

travelers have improved their welfare by shifting to a new model. A Hutchins Center

research quantified those benefits in San Francisco Bay Area markets, accounting for

travelers’ complete set of transportation options. The Hutchins Center research found that

travelers have gained roughly $1 billion annually from Uber’s service (Hwang, 2020).

5

Hutchin Center research also suggests that after decades of inefficiency and

technological stagnation in urban transportation, ridesharing is a welcome innovation

followed by other transportation innovations. It would be unwise to discourage

entrepreneurs’ innovative efforts by protecting the less efficient modes displaced

(Hwang, 2020).

2.4. Ridesharing opportunities for improvement

A target area to improve on current ride-sharing solutions is that of security risks.

Security risks include passengers facing problems like reckless driving and harassment.

Both drivers and passengers are also concerned about the misuse of their data. Previous

research also shows that the users are putting their trust in these services and occasionally

preferring them over public transportations (Majumder, 2019). A ride-sharing platform

can address these risks by introducing a blockchain-based solution to maintain

decentralized and secure user data of drivers and riders (Ayoade, 2018). The blockchain-

based solution can dramatically improve security by validating users and drivers before

they participate in the system.

Another target area to improve on current ride-sharing solutions is to reduce the

cost for riders and enhance the profit of drivers over existing popular ride-sharing

solutions by using blockchain technology.

Mainstream ride-sharing platforms act as a third party or middle man that keeps

20 percent of the transaction. (Mire, 2018). One of the possible use cases of Blockchain

technology is that of enhancing current ride-sharing solutions. A ride-sharing platform

could eliminate the middleman if a platform as a service is built and provided as an

alternative option based on blockchain technology as its core foundation. Such a platform

6

will provide drivers and riders a service to facilitate direct and secure payment

transactions.

A ride-sharing application based on blockchain technology can improve the driver

experience by providing immediate payment at service completion. A direct payment

contrasts with credit card payments, which can take a day to transfer money from one

party to another (Swan, 2015). It can take days to transfer money when the transaction

sender and receiver have accounts in different countries. The global payments business is

a large, slow, costly, and error-prone industry (Swan, 2015). According to the American

Bankers Association, by the end of 2017, there were 364 million active credit card

accounts. If you’re an owner of one of those credit cards, then you may have had an

erroneous charge on your account that you needed to dispute at some point. When

consumers report charge disputes to their credit card issuer, the process of a chargeback

begins (Schaut, 2020). Chargebacks are generally very bad for merchants as they often

come with fees that range between $20 and $100. If a business has too many chargebacks

as a percentage of its total transactions, the business account is prone to deactivation, or

its per-transaction costs may significantly increase (Yowana, 2020).

The payment of a given transaction can be improved using a blockchain-based

payment processor, which has the potential to add tremendous value in this space by

reducing the multi-day payment cycle down to real-time (Swan, 2015). The ride-share

application based on a blockchain-based payment processor will also remove the average

20 percent commission currently charged on most popular ride-share solutions and

drastically improve drivers’ profit.

7

Another opportunity is providing a decentralized authority in managing how a

device shares data in general (that being, user data, transactions, or smart contracts). A

decentralized authority can address the problem with the lack of transparency in how a

device shares user data among third-party entities in the current popular ride-sharing

solution.

8

Chapter III.

Important Technologies

The chapter dives into the details for each of the crucial technologies considered

to research and implement a solution that will address the critical improvements targeted

over current popular ride-sharing solutions.

3.1. Cryptocurrency

A cryptocurrency is a digital or virtual currency secured by cryptography, making

it nearly impossible to counterfeit. Cryptocurrencies are decentralized networks based on

blockchain technology (Frankenfield, 2020). A cryptocurrency-based platform enables a

secure and direct payment transaction, reducing the cost of transactions by eliminating

intermediaries. It also minimizes the time required to complete a payment transaction by

removing banks or other institutions that might slow down the payment processing

process.

Interest in virtual currencies is rising across the African continent, especially in

Kenya, the so-called African silicon valley. Despite warning from Kenya's central bank

about cryptocurrencies’ volatility, some Nairobi businesses are now accepting Bitcoin

payments. According to the Blockchain Association of Kenya, the total number of

Bitcoin transactions in Kenya is worth over $1.5 million (Russon, 2019).

Stable coins are a popular type of digital currency available on blockchains.

Stable coins tie their value to a fiat currency. For example, the USD Coin (USDC), set

their value in relation to the US dollar since it is the most widely used fiat currency in the

9

traditional international market. Due to their digital nature and transactional simplicity,

these assets have become an attractive alternative to make cross-border transactions and

remittances across North American and European markets. However, their increasing

adoption as a store of value in emerging markets has set a viable alternative for payment

transactions (Serrano, 2020).

The implementation of this project proposes the use of cryptocurrency as the

solution to pay for ridesharing. Digital currencies are a new way to store an easily

transferable value anywhere without involving institutions or involving the traditional

banking solutions while also providing a safeguard against the devaluations previously

mentioned. The current economic scenario opens up the door for digital currencies to

play the role as an alternative to secure financial assets in the given monetary crisis.

3.2. Smart Contract

A smart contract is a critical component of many platforms and applications using

blockchain or distributed ledger technology. “Smart contracts” is a term used to describe

computer code that automatically executes all or parts of an agreement and stored on a

blockchain-based platform (Levi, 2018).

Imagine a legal contract where an application takes specific actions under

conditions. Even after the parties sign such an arrangement, they must rely on the other’s

good faith to carry out their side of the agreement (Bambara, 2018). A given application

can address the good faith risk using a smart contract based on a blockchain (Bambara,

2018). The two parties can collectively write conditions of their agreement in computer

code and initialize a smart contract to secure enough funds for both parties to have no

risks. A smart contract based on blockchain technology cannot be tampered with or

10

modified, and they are automatically executed by computer code, hence, eliminating the

good faith element.

3.3. Internet of Things

The Internet of things is connecting any device with an on and off switch to the

Internet. The devices can range from cell phones, coffee makers, washing machines,

headphones, lamps, and wearable devices. IoT also applies to machines’ components,

such as a jet engine of an airplane or an oil rig drill. The analyst firm Gartner says that by

2020 there will be over 26 billion connected devices. The IoT is a giant network of

connected "things" (which also includes people). The relationship will be between

people-people, people-things, and things-things.

3.4. Decentralized Management with Blockchain

The blockchain verifies each transaction in the public ledger by the consensus of a

majority of the participants in the system. And, once entered, nobody can erase the

information from the blockchain. The blockchain contains a verifiable record of every

single transaction ever made on the blockchain (Memon, 2018).

 Blockchain technology provides decentralized management of assets, such as

decentralized currency management, as seen in Bitcoin. Blockchain’s proponents expect

the blockchain to be virtually immutable without being centralized. In other words, the

blockchain does not require a trusted third party that decides upon the ledger’s content.

Bitcoin, the first blockchain implementation, has succeeded in allowing for digital

payments without having to rely on any trusted third party. Decentralization can bring

cost savings (through disintermediation) and empowerment to participants. The

11

blockchain parties do not need to trust a powerful third party to act in their best interest

(Halaburda, 2019).

 The platform implemented as an application resulting from this research proposes

a decentralized data management system for smartphone devices where the smart

contracts enforce all data access permissions. The platform stores the audit trail of data

access in the blockchain.

3.5. Service Oriented Architecture

A monolith is a single unit that contains many inter-dependencies. Hence, one bug

that might affect a tiny part of a single feature can cause problems in an unrelated area or

even bring an entire application down. Consequently, a possible chain of errors could

occur, and therefore, it becomes difficult to isolate the root cause of any bug that might

emerge. Knowing this, developers must thoroughly test each module, as it may be

impossible to predict the outcome of any change to the monolith codebase (Wittmer,

2020).

Enter Service Oriented Architecture (SOA) is an architecture that allows services

to communicate across different platforms and languages by implementing what is

known as a “loosely coupled” system. While the concept of SOA has been around for

many years, it is only within the past decade that it has risen to the forefront of software-

related technologies.

The term “loose coupling” refers to the client of a service and its ability to remain

independent of the service that it requires. The most important part of this concept is that

the client, which in itself can be, a service, can communicate with the service even if they

12

are not closely related. The service achieves communication by implementing a specified

interface that can perform the necessary actions to transmit data (Watts, 2017).

3.6. Microservices

A microservice architectural style is a refinement of SOA. It is an approach to

developing a single application as a suite of small services, running in its process and

communicating with lightweight mechanisms, often an HTTP resource API. These

services are built around business capabilities and independently deployable by fully

automated deployment machinery. There is a bare minimum of centralized management

of these services, which may be written in different programming languages and use

other data storage technologies (Lewis, 2014).

Microservices do not have the same resilience, fault tolerance, and isolation issues

that plague monolith applications. Microservices are loosely coupled; hence, there is little

chance that a bug found in one microservice module will compromise other services in

the application. That separation between microservices makes it easy to isolate and fix

problems while creating less customer impact (Wittmer, 2020).

3.7. Algorand Platform

Another significance of this research was to provide a viable solution to current

blockchain scalability issues. Bitcoin uses blockchain to be more secure, but so far, the

implementation has encountered scalability issues (Yli-Huumo, 2016). One problem is

that with each transaction, we have a maximum size of 1MB (a Bitcoin block now

supports 32 MB) per block, and there are only so many payments that Bitcoin can process

at once. Currently, at a maximum, Bitcoin can handle about sixty transactions per second

13

(Yli-Huumo, 2016). As a result of this research, the implementation will address the

scalability issue by leveraging the use of the Algorand platform.

Algorand is a blockchain platform that aims to create a borderless economy via its

decentralized public blockchain. The platform's core follows simplicity, instant

transactions, direct usage, adoption, and performance (Walters, 2019).

An essential feature for this project's research and implementation is that the

Algorand protocol core design prioritizes speed. In theory, developers have reached

optimal efficiency by finalizing Blocks in just one round of voting. The process to finish

blocks ensures Algorand protocol completes each block instantly and dramatically

increases the transactions per second handled by the network. The main net has launched

with the capability of handling 1,000 transactions per second with a latency that is fewer

than 5 seconds (Walters, 2019).

The original Bitcoin blockchain can reportedly process around seven TPS, which

prevents the technology from scaling up and ultimately slows down Bitcoin’s opportunity

as a mainstream payment solution. At the end of 2017, Bitcoin users had the option to

pay $28 US dollars in fees, so their transactions would not take days to complete (O'Neal,

2019). The Centre Consortium recently announced that USDC will now use Algorand.

USDC has proliferated, with over 1.8 billion in circulation and customer usage growth

three times in the past six months (Alois, 2020). The use of Algorand will facilitate speed

and scale up the development and performance of payments and financial applications

(Alois, 2020). It has been confirmed in practice that the Algorand platform will add the

support of over 1,000 TPS and transaction fees of 1/20th of a cent to the USDC

ecosystem, a performance that is far better than Bitcoin.

14

Chapter IV.

High-Level Rideshare Requirements

This chapter describes the high-level ride-share requirements for the ride-share

application. The high-level rideshare requirements cover the functional and non-

functional requirements of the application.

The functional requirements will cover the features that allow the ride-sharing

platform to function as intended to cover the application’s basic needs as a system.

The use case section will then cover the general use case scenarios that the

platform must cover to meet the functionalities required to provide a reliable service for

the different actors that the service targets. The basic system requirements must cover the

mobile application use cases presented in section 7.2 of this chapter.

Finally, the chapter’s non-functional requirements section will cover the system

behavior, features, and characteristics that impact the ride-sharing application user

experience.

4.1. Functional Requirements

A ride-sharing android application must service users’ interface to interact with

the ride-sharing platform using android devices. The android application must provide the

interfaces for both the driver and the users seeking a ride or delivery service. The driver's

interface must cover the functionalities to create an account, link a page account, log in to

the service, check or verify the wallet balance, search for riders, verify and perform rider

rating. The rider’s interface must provide the options to create an account, link a Pago

account, verify the wallet balance, search for drivers, select a destination, package

15

delivery, preferred pick-up location, verify driver rating, and rate a driver after trip

completion. The payment issued to the driver must be a live payment that is received and

or signed right after trip completion.

4.2. Use Cases

The use case section covers the high-level functional requirements covered by the

ride-sharing platform to meet the functionalities outlined in the Functional Requirements

section.

The ride-sharing platform must support the use cases outlined in Figure 1 to cover

basic functionalities from a rider’s perspective.

16

Figure 1. Rider Use Cases

A high-level overview of the prominent rider use cases that the ride-sharing platform
must cover.

The ride-sharing platform must support the use cases outlined in Figure 2 below

to cover basic functionalities from a driver’s perspective.

17

Figure 2. Driver Use Cases

A high-level overview of the prominent driver use cases that the ride-sharing platform
must cover.

The ride-sharing platform must support the use cases outlined in Figure 3 below.

The given use cases concentrate on scenarios that could arise due to a dispute initiated by

the driver or rider.

18

Figure 3. Dispute Use Cases

A high-level overview of the prominent dispute use cases that the ride-sharing platform
must cover.

4.3. Non-Functional Requirements

The ride-sharing application must meet the following non-functional

requirements. The android ride-sharing application’s functional requirements must work

regardless of the locale of the driver or rider. In other words, the android ride-sharing

application will meet non-functional requirements if the features work as a worldwide

application. The platform must follow a microservice architecture to address any

scalability and resiliency issues. The microservice architecture infrastructure must

account for scaling up if the number of instances to service the requests is insufficient to

handle riders and drivers’ volume. The ride-sharing application must support finding

19

multiple drivers for the rider to select a driver for a ride request. The number of drivers to

be found upon a ride request must be a configurable setting. The android ride-sharing

application must control all the decision making logic from the ride-sharing platform

without a centralized entity (no groups or organizations will control decision making).

20

Chapter V.

Architecture

This chapter introduces the high-level architecture and the software technologies

required for the architecture of the ride-sharing platform. Figure 4 presents the high-level

component diagram that illustrates the platform's main elements. There are three

microservices, and each of the microservices has a dedicated Cassandra database. The

android ride-sharing application issues API requests to the microservices to meet the

requirements to exercise both the rider and the driver’s use cases. An external Pago

service application is used for the user to create a Pago account and sign transactions.

Figure 4. Component diagram

High-level component diagram.

21

The ride-sharing platform will initiate the account management by requests from

the android ride-sharing application to service account creation requests, link Pago

account, and authentication. The android ride-sharing application creates a REST API

request to the account management microservice that will read and write data on the

account table on Cassandra's ride-sharing database. The microservice writes the account

data to the account table as part of the account creation flow. The microservice reads the

account data from the account table as part of the authentication flow.

The trip management service handles the trip orchestration of the ride-sharing

platform. Initially, the research proposed had a target to use Cadence as the module for

trip orchestration. However, while in the research implementation phase, there were no

considerable benefits from using Cadence instead of implementing an orchestrator that

followed the command pattern. The risks and future works chapter discuss more details

on the advantages and disadvantages of both approaches. The microservice reads and

writes the account and location data to the trip table as part of the trip orchestration flow.

The wallet management microservice handles the payment transaction and wallet

balance events issued by the ride-sharing android application. The wallet management

microservice serves as a gateway to issue calls to Pago's transaction gateway to get the

balance of a given Pago account and complete a payment transaction. The wallet

management microservice sends unsigned transactions to the Transaction Gateway, and

the Transaction Gateway coordinates the interaction between the business application and

the Algorand blockchain. The microservice reads and writes the payment transaction data

to the wallet table.

22

5.1. Software Technologies

The purpose of this section is to outline the selected software technologies used to

meet the design requirements, as stated in the previous section.

The platform's high-level architecture is microservice-based. The ride-sharing

application used the microservice architecture to divide the platform functionalities into

microservices based on the business process. The services are interconnected, becoming a

single application with a complete business process. One of the architecture's advantages

is that a given platform can add more microservices without affecting others

(Suryotrisongko, 2017). The ability to add new microservices will provide functional

extensibility for the ride-sharing platform.

Spring, a leading development framework, provides a comprehensive set of

libraries for microservice architecture. Spring is a standard development framework for

building Java-based applications. Spring’s dependency injection framework supports

managing large java projects by externalizing the relationship between objects through

annotations rather than those objects having hard-coded knowledge about each other

(Carnell, 2017).

Maven provides for the management of libraries and software dependencies.

Maven has a defined lifecycle and standard plugins that know how to build libraries and

web applications. Maven requires minimal effort to compile, manage dependencies, and

run unit tests from the command line (Sonatype, 2008).

Cadence fault-oblivious stateful code platform preserves a complete

multithreaded application state, including thread stacks with local variables across

23

hardware and software failures. It greatly simplifies the coding of complex stateful

distributed applications. Simultaneously, it is scalable and robust enough to power

hundreds of critical use cases at Uber and outside (Ahmad, 2020). Cadence is the

orchestration engine to be used to manage processes for the application trip.

Cassandra database is the technology chosen to be used to manage and store data

for the ride-sharing platform. Cassandra is a very scalable and resilient database that is

easy to master and simple to configure, providing neat solutions for complex problems.

Cassandra’s database includes event logging, metrics collection, and monitoring of the

historical data. These tasks are quite hard to accomplish correctly, given the variety of

operating systems, platforms, browsers, and devices both startup products and enterprise

systems face in their daily operations (Fedak, 2018).

Algorand blockchain is the platform chosen to process digital payments. Algorand

is a high-performance next-generation blockchain whose goal is to create a transparent

system in which everyone can achieve success through decentralized projects and

applications. Algorand stands out from other high-performance blockchains by the

credibility of its founder, MIT professor Silvio Micali. Professor Micali is the recipient of

the prestigious Turing Award for computer science, and many of his inventions have

directly impacted the cryptocurrency scene (Michael, 2020).

Pago transaction gateway provides a solution for digital payments with the

Algorand blockchain. The transaction gateway enables borderless, secure, and fast digital

payments for anyone with a smartphone (Gieseke, 2020).

24

Table 1 and Table 2 detail the software languages, tools, libraries, and versions

used and a description that summarizes the logic behind the choice of the technology

listed.

Table 1. Software languages

Languages Version Description of Choice

Java JDK 12 The platform will use Java version JDK 12 will to implement

microservices. The platform will use JDK 12 version as Spring

cloud libraries are stable and compatible with JDK 12.

Software language choice and a brief description of the option.

Table 2. Software Tools

Tools Version Description of Choice

Spring Boot Spring Boot provides a set of libraries that facilitate and enhance

the features of microservices. Thus, making it the current tool to

go when building microservices.

Spring Cloud Spring Cloud provides a collection of tools that facilitate and

provide solutions to common problems when building distributed

systems.

Maven 3.6 Maven is a project management tool based on the project object

model. It is efficient to build projects, manage dependencies, and

simplifies the build process.

Jmeter 2.0 Apache JMeter provides the capabilities for load testing,

analyzing, and measuring the performance of services.

25

Algorand

Blockchain

2.0 Algorand is a blockchain project whose goal is to create a

transparent system in which everyone can achieve success

through decentralized projects and applications.

Algorand's consensus mechanism promotes the performance,

security, and openness of a decentralized network.

Cassandra 3.11.8 Cassandra database was chosen as the technology to be used to

manage the ride-sharing platform data. Cassandra helps solve

complicated tasks with ease. It provides rapid writing and even

faster reading, extreme resilience, and fault tolerance.

Cadence 0.13.0 Cadence is a distributed, scalable, durable, and highly available

orchestration engine to execute asynchronous long-running

business logic in a scalable and resilient way.

Pago

Transaction

Gateway

0.5.1 Pago transaction gateway enables borderless, secure, and fast

digital payments using the Algorand blockchain.

Software tools requirements and a brief description of choice.

26

Chapter VI.

Rideshare Platform Design

This chapter documents the design for the ride-sharing platform. The design

sections dive into the technical design details to note how the main components will

interact across a proposed microservice-based solution.

The chapter will cover the domain model that classifies the core objects of the

design into microservices.

The chapter then covers the modular design sections for each platform’s

microservices and the modular design section for the android rides-sharing application.

The technical details will cover the classes’ documentation, design patterns, sequence

diagrams, state machine diagrams, and wireframes where applicable for a specific

section.

6.1. Domain Model

 This section covers the domain model for the ride-sharing platform. The domain

model is the base or core of the design to guide the ride-sharing platform’s

implementation. The domain model shown in Figure 5 covers the main objects identified

as a requirement to cover all the use cases and build the ride-sharing platform.

27

Figure 5. Domain Model

The domain model for the ride-sharing platform.

A package class diagram with a package model classifies the domain model

objects into their main categories. Figure 6 presents the object package classification that

served as the base for the microservice architecture. The microservice architecture

includes the account management microservice, trip management microservice, and

wallet management microservice.

28

Figure 6. Package Model

Domain Model package classification.

The final package class diagrams show further details on implementing each of

the packages outlined in Figure 6. As previously mentioned, each of those packages

served as the core of the microservices’ design for the ride-sharing platform.

6.2. Account Management Service Design

This section outlines the modular design for the account management service, a

microservice component of the ride-sharing platform. The account management service is

the microservice that fulfills the functionalities of account creation and account

management. The service implements the APIs to service the account creation and

account management requests of the android application. The account management

29

requests handled from the account management microservice must cover account creation

requirements, account authentication, and link a Pago account for both riders and drivers.

The service must write and read from a database to persist the user’s data to service the

account creation and account authentication requests.

6.2.1. Class Diagram

Figure 7 illustrates the detailed class design to stand up a spring boot microservice

with the Casandra database. The diagram includes the required classes and associations to

meet the requirements to create and manage accounts for the ride-sharing platform.

Figure 7. Account Management Microservice Class diagram

The class diagram illustrates the main classes for the account management microservice.

30

The AccountManagementService class is the main class that the ride-sharing

platform calls upon staring at the account management microservice application. It

contains the SpringBootApplication annotation, which identifies the class as the single

entry point to bootstrap and launches the spring boot application.

The CassandraConfig class extends AbstractCassandraConfiguration and is in

charge of specifying the configuration for the Cassandra database. Cassandra's structure

contains the contact points, Cassandra port, and keyspace name for the account

management service database. The AccountRepository class uses those configurations to

create an account repository model as a table for the Cassandra database.

The EmailConfig class is in charge of the implementation to configure and send

an email to cover the scenario where a user has forgotten the password to access the ride-

sharing platform. The user must reset the password to be able to regain access.

The BaseController class is the class that is in charge of implementing the

methods that provide the REST interfaces that the ride-sharing Android application calls

to execute all the actions required to service the account creation and account

management. The class diagram, as illustrated in Figure 8, shows the methods that

service those requests.

6.2.2. Design Details

The account management microservice follows the MVC design pattern. The

service uses Spring Boot framework, which structures components into three main

buckets to pursue the separation of concerns concept, which is the core principle of the

MVC design pattern. The model is the first bucket, and its purpose is to model the

application objects, store, and manage data. The view bucket covers a graphical user

31

interface representation. The controller bucket, which is the core class of the application,

connects the model and view buckets. The controller class receives input from the view

and uses logic to translate the information into a model demand. The model grabs the

data, and the controller passes the data from the model back to the user's view to see it

displayed (Doherty, 2020).

The account management microservice manages the data required to fulfill the

account creation requests and account management requests. The account management

data required to manage the rider and driver accounts consists of a login name, encrypted

password, and linked Pago account identification. The microservice stores account

management data in its dedicated Cassandra database.

6.2.3. Sequence Diagram

The sequence diagram in Figure 8 illustrates how the request to create an account

is initiated from the ride-sharing android application and processed across the account

management microservice. The account management service then stores the account

information into the rideshare account table on the Cassandra database.

32

Figure 8. Create an account sequence diagram

The create account sequence diagram shows the message that covers the happy path flow
to create a rider account with the platform. Both driver and rider follow the same
sequence diagram. The only difference is the type of account and additional attributes for
the driver that the ride-sharing application is sending, such as license, registration, and
vehicle type.

6.3. Trip Management Service Design

This section describes the design of the trip management service, a microservice

component for the ride-sharing platform. A trip management microservice

implementation is required to manage the trip for both the drivers and the users seeking

the ride or package delivery service. The trip management microservice must implement

the APIs to service the trip’s orchestration due to the Android application’s requests. The

trip management microservice must have the functionality to write and read to a database.

33

A database must implement the tables to manage the data for the trip location and

destination.

6.3.1. State Machine Diagrams

This section introduces the design of the ride-sharing platform state machine

diagrams. The state machine diagrams serve as the primary guide to implement the

orchestration for the trip management service. Figure 9 shows the driver state machine.

Figure 9. Driver State Machine

Driver state machine.

34

The trip state machine covers all the states required to complete a trip execution.

The orchestrator manages the trip execution by executing all the steps on the trip state

machine. Figure 10 presents the states that the orchestrator must evaluate to meet trip

completion requirements.

Figure 10. Trip State Machine

Required states that the orchestrator must evaluate for trip completion.

6.3.2. Class Diagram

The class diagram in Figure 11 illustrates the detailed class design implemented to

stand up a spring boot microservice with the Cassandra database to meet the requirements

to manage the ride-sharing platform's trip. The trip management service is the module in

charge of the orchestration of the ride-sharing platform's trip. The OrchestrationImpl

class handlers the orchestration of the trip is handled by the OrchestrationImpl class,

35

whose purpose is to encapsulate all the data required for performing the actions or

commands needed to complete a given trip.

Figure 11. Trip Management Microservice Class diagram

A class diagram that illustrates the main classes for the trip management microservice.

The CassandraConfig class and TripRepository class follow the same structure as

the account and wallet management microservice. The difference is that the object

modeled by the TripRepository class and Cassandra table is that of a trip object. It is

worth mentioning that the TripRepository stores all the information required to

orchestrate a given trip, such as location and destination.

36

Similar to the implementation of the other two microservices, the BaseController

class is the class that is in charge of implementing the methods that provide the rest

interfaces that the ride-sharing android application calls to service requests. The

BaseController delivers the APIs for a user or rider to get the near drivers, set a driver

location, get a driver location, set a rider location, and get a rider location. The android

ride-sharing application’s request to those APIs will then initiate a given controller API

with the orchestrator to handle all the trip logic.

6.3.3. Design Details

The trip management service is the primary contact for the android ride-sharing

application to service trip orchestration. The trip management microservice is a spring

boot java based application that follows the MVC pattern. An orchestrator module knows

the steps needed to complete a trip and is in charge of handling trip orchestration logic. If

anything fails along with a particular trip execution, the orchestrator is responsible for

coordinating the rollback by sending the commands to undo the previous operation. It

does so by following a command design pattern.

In the command pattern, the application declares an abstract command class as an

interface for executing operations. This command class defines a method for execution,

which the service needs to implement for each concrete command (Caballero, 2019).

The orchestrator module declares the abstract command class as an interface for

executing operations for the current implementation scope. The interface defines an

execute method, and the orchestration implementation, or OrchestrationImpl class,

defines the trip execution commands. The execute method serves as a bridge between a

receiver object and an action. The OrchestrationImpl class ensures that the ride-sharing

37

platform completes the necessary states for a given trip completion by implementing this

approach.

The trip management data required to orchestrate a specific trip consists of

location, destination, and package delivery data. The trip management service stores the

trip management data in the microservice dedicated Cassandra database.

6.3.4. Sequence Diagram

Figure 12 presents the initiation of a given trip from a rider request. A given trip’s

initiation entitles the android ride-sharing application to find the driver as available for

trip requests. A rider has initiated a request for a trip by selecting a destination. The rider

has found the driver. The sequence diagram below shows how the rider starts the trip

request by setting the destination from the rider's android application. The

getDriverDestination method is polling and called upon the driver’s android application

until a driver finds a destination. If the driver finds a destination, the orchestrator can

proceed to initiate the trip.

38

Figure 12. Rider issues a trip request

The rider issues a trip request.

6.4. Wallet Management Service Design

This section outlines the design of the wallet management service, a microservice

component of the ride-sharing platform. The wallet management microservice must

implement the APIs to service the wallet balance and payment transactions via the Pago

transaction gateway. Actions from the android application will initiate the wallet API

requests. The wallet management microservice must write and read to a database. The

database must implement the table to write and read the Pago account identification for

the user. The ride-sharing platform will use the Pago account identification as the single

identification factor to get the wallet balance and issue unsigned payment transactions via

the transaction gateway.

39

6.4.1. Class Diagram

The class diagram in Figure 13 illustrates the detailed class design implemented to

stand up a spring boot microservice with Casandra database to meet the requirements to

manage the ride-sharing platform’s wallet. The wallet is mostly a module that serves as a

pass-through to interact with the transaction gateway to help the ride-sharing platform’s

transaction requests and provide a point of contact with Pago's transaction gateway.

Figure 13. Wallet Management Microservice Class diagram

The class diagram illustrates the main classes for wallet management microservice.

 There are two main functions that the wallet microservice must provide to the

ride-sharing platform: get the wallet balance for an Algorand address via the Pago

identification and sign a transaction via Algorand address via the Pago or payId. The

40

main functions reside on the BaseController class via requests that service the android

ride-sharing application. The BaseController initiates calls to the transaction gateway

APIs defined on the Pago Transaction Gateway API specification (Gieseke, 2020).

The CassandraConfig class and WalletRepository class follow the same structure

as the account management microservice. The difference is that the object modeled by

the WalletRepository class Cassandra table is that of a wallet object.

The wallet management microservice uses a smart contract object to model the

contracts required to process the ride-sharing platform’s transactions. The smart contract

locks a transaction by getting the funds for a particular trip from the user or rider once a

trip pick-up location and destination is selected. The smart contract will then release

those funds to the driver if the driver completes both the pick-up and trip destination

execution. The smart contract instantiates an escrow object to record the events for a

given trip.

6.4.2. Design Details

The wallet management microservice is a microservice component of the

platform. The wallet management microservice is a spring boot java-based application

that follows the MVC pattern. The wallet management microservice is in charge of

interacting with the Pago transaction gateway to service any transaction requests from the

android ride-sharing application. Two main interactions happen as part of servicing a

transaction from clients: getting a client wallet balance and issuing unsigned wallet

transactions. The wallet management data for a given user account consists of the Pago

account identification. The wallet management service stores the Pago account

identification in its dedicated Cassandra database.

41

6.4.3. Sequence Diagram

The sequence diagram in Figure 14 shows the request performed to issue payment

after trip completion. The wallet management service issues payment by sending a

request to Pago's transaction gateway. The smart contract module on the wallet

management application must acknowledge or have flags as true for the driver arriving at

the pick-up location and the driver arriving at the destination to identify the trip as

completed. The implementation details and future work section discuss more information

about the smart contract implementation.

Figure 14. Payment issued to the driver

The ride-sharing platform issues a payment from the rider's Pago identification to the
driver's Pago identification with the amount specified as the charge for trip completion.

The diagram in Figure 15 illustrates the external requests required to complete a

transaction via Pago's transaction gateway due to a payment issued to the driver.

42

Figure 15. Transaction Gateway sequence diagram

Transaction gateway sequence diagram that contains the interaction between the
gateway and blockchain.

For each trip completed, the ride-sharing platform creates a transaction and

submits it to the Transaction Gateway, which manages the signing process and notifies

the point-of-sale application when the blockchain successfully commits the transaction.

The Transaction Gateway coordinates the interaction between the business application

and the Algorand blockchain. The point-of-sale app sends unsigned transactions to the

Transaction Gateway, which then forwards the transactions to the appropriate wallets for

signing. After signing the transaction, the wallet sends the signed transaction back to the

Transaction Gateway, which commits it to the Algorand blockchain. The Transaction

43

Gateway notifies the point-of-sale application when the payment is complete (Gieseke,

2020).

6.4.4. Payment Workflow

Furthermore, Figure 16 illustrates Pago’s payment workflow that takes place to

complete a signed transaction.

Figure 16. Pago payment workflow (Gieseke, 2020)

Pago’s payment workflow

6.5. Android Ride-sharing Application Design

 This section describes the Android ride-sharing application’s design, a java-based

android application for the ride-sharing platform. The ride-sharing application must

44

interact with the platform microservices by making requests via rest API calls to achieve

those functionalities. The ride-sharing application is a java based android application

whose purpose is to serve as the interface for the users to interact with the ride-sharing

platform. The ride-sharing android application makes rest API calls to request actions to

the microservices that make up the platform as a whole.

The ride-sharing platform does not show the view as part of the microservices

codebase or classes. The android ride-sharing android application shows the view as a

function of the ride-sharing android application due to receiving responses from the

microservices.

6.5.1. Screen Captures

The wireframe section illustrates the ride-sharing android application user

interfaces implemented to serve as the point of contact to initiate actions by the users,

riders, or drivers to interact with the ride-sharing platform.

Figure 17 illustrates the android interface that the android ride-sharing application

presents to the user upon launch. The android ride-sharing application shows the option

to ride or drive to the user.

45

Figure 17. Launch screen

Launch screen for the ride-sharing application.

On the left, Figure 18 illustrates the android interface that is shown upon a user

selecting the option to ride. The android ride-sharing application presents the user the

option to create an account or signing into the ride-sharing application. Similarly, on the

right, Figure 19 illustrates the options provided if a user selects to drive.

46

Figure 18. Main screen

The rider or driver has the option to create an account or log in to the ride-sharing
application.

Figure 19 below illustrates the android interface that is shown upon a user

selecting to login to the ride-sharing account. The user is presented with the form to log

in to the platform. If authentication with the platform fails, the android ride-sharing

application will show the user the option to register with the platform.

47

Figure 19. Rider and driver login screen

The rider and driver login interfaces.

Figure 20 illustrates the android interface that is shown upon a user selecting to

create an account. The android ride-sharing application presents the user the option to

link a Pago account by providing the Pago account identification. The application then

requires additional information to create a driver account. The application shows

prospective drivers with a second form requiring a license, registration identification

number, and vehicle type for the driver account creation.

48

Figure 20. Create an account

Option to create an account.

Figure 21 illustrates the android interface shown upon a user is authenticated or

has created an account on the ride-sharing platform. The android ride-sharing application

presents the user with an interface that provides a map. The interactive map shows the

user location, a wallet button, and the user's fragment to select a destination if the user is

a rider. If the user is a driver, the android ride-sharing application presents the user with

the option to search for riders.

49

Figure 21. Welcome map

Rider and driver map after authentication or account creation.

The wallet provides the options to get the Pago account balance and to show the

Pago account identification for the user, as shown in Figure 22. The android ride-sharing

application disables the set destination button by default and will be enabled once the

user selects a destination.

50

Figure 22. Wallet options

The interactive map with the wallet options menu.

The android ride-sharing application will present the rider with the option to

modify the pick-up location. If that option is selected, the android ride-sharing

application will allow the rider to choose package delivery. Once those options are

selected, the rider can choose to start searching for available drivers. Figure 23 presents

the rider map options.

51

Figure 23. Rider map options

Rider map showing pick-up location and package option available for the user.

Suppose the trip management service has found a driver. In that case, the android

ride-sharing application presents an icon showing the driver’s location and specifying the

driver-vehicle type to the rider that made the request. If the driver icon is selected, the

android ride-sharing application presents the driver’s ratings for the user who requested

to proceed with the trip request. If the user chooses not to proceed with the trip request

with the given driver, they can search for drivers again. The android ride-sharing

application can find multiple drivers on the map for a ride’s request. The trip

management service has a configuration to specify the maximum number for drivers to

search for a driver search request. Figure 24 illustrates the details presented to the users.

52

Figure 24. The ride-sharing application finds a driver as a result of the trip request

The ride-sharing application finds a driver upon rider request.

Similarly to the rider's information, the driver is also presented with the rider's

rating and given the option to reject a trip request. If the driver accepts the trip request by

selecting the Book Trip button, the android ride-sharing application presents the driver

with the option to launch directions on google maps.

53

Figure 25. Driver trip options

The android ride-sharing application presents the rider's rating to the driver. Upon
acknowledging the rating, the driver has the option to reject the request. Upon accepting
a trip request, the driver has the option to launch directions on google maps.

Once a driver arrives at the selected pick-up location, both the rider and driver

will receive a notification on their respective phones, as illustrated in Figure 26.

54

Figure 26. A driver arrives at the pick-up location

The ride-sharing application issues a notification to the driver and rider phone upon the
driver's arrival at the pick-up location.

Once a driver arrives at the destination, both the rider and driver get a notification.

Both the rider and driver are also shown the option to rate each other after trip

completion. The payment for the trip is issued right after the trip is completed. The driver

has the opportunity to verify payment completion by selecting to see the wallet balance

right after trip completion.

55

Figure 27. Trip complete

The options to rate rider and driver. The ride-sharing application issues a notification
after trip completion.

56

Chapter VII.

Deployment

With an infrastructure in place, the project then established a deployment process

to publish the ride-sharing platform and make a beta version available for users to test. It

is worth mentioning that the strategy to deploy the ride-sharing platform revolved around

targeting users in Kenya since, on the design and gather requirements phase, the initial

research identified the need and interest of a ride-sharing solution from the Drivers

Consortium. The vast or most users in Kenya use android phones; therefore, the target

was to deploy the ride-sharing platform in Kenya and make it available for android

devices.

The microservice components were deployed to Digital Ocean, an infrastructure

cloud service provider. Digital Ocean is a unique cloud hosting provider that offers cloud

computing services to business entities to scale themselves by deploying Digital Ocean

applications that run parallel across multiple cloud servers without compromising

performance. The droplets that Digital Ocean offers have a lightning-quick boot time that

slates in about 55 seconds. Digital Ocean servers are on powerful Hex Core machines

with dedicated ECC Ram and RAID SSD storage. Furthermore, it offers private

networking among the VMs for running database clusters and distributed systems in a

few selected regions (Saleem, 2019).

57

Figure 28. Ridesharing platform infrastructure

The ride-sharing platform infrastructure encompasses cloud servers running on Digital
Ocean. Each of the servers runs its own Cassandra database on Digital Ocean and the
ride-sharing application available on the google play store.

As previously mentioned, the ride-sharing application was made available to

android phones. The project then achieved deployment by making the application

available via the google play store in Kenya's country. A version was also made available

in the United States for testing and debugging purposes. Figure 28 presents the

infrastructure configured to stand up the ride-sharing platform.

58

Chapter VIII.

Testing

As part of the research for this Thesis, the initial study identified the interest of

deploying a ride-sharing application on emerging markets shifting to accept

cryptocurrencies such as Kenya. In the early phase of design for the thesis project, the

research expanded to conversations with the drivers' consortium in Kenya. The driver's

consortium's initial discussions resulted in the need and interest to get the application

ready for real users to request rides in Kenya. The thesis project's testing phase played an

essential role as a series of meetings were coordinated to get feedback from the driver's

consortium and users in Kenya to get the application ready for real users. Figure 29

presents the application available for users in Kenya from the google play store for

further reference.

Figure 29. Rocket ride-share application on google play store

59

The Rocket ride-share application is available for users in Kenya via the google play
store.

Some of the feedback from the driver’s consortium was to adjust the button size.

Nevertheless, even more importantly, some of the input is geared towards making the

button text and flows as easily understood as possible.

Feedback provided also pointed out the importance of supporting package

delivery as part of the options requested by a rider. The beta version includes the feature

to support package delivery on the ride-sharing application released for testing. The

restaurant market expects the emergence of digital restaurant concepts to continue, as

operators recognize the upside of preparing food for takeout and delivery only. In

addition to saving money on overhead and labor, ghost kitchens empower flexibility and

creativity in menu innovation (Watrous, 2020).

The ride-sharing platform uses the google play console monitoring to track errors

reported while testing the application. There has been only one error or crash detected by

the google play console monitoring, as illustrated in Figure 30.

Figure 30. Ride-sharing app errors detected

60

Errors detected for the Rocket ride-share application up to November 18, 2020.

The google play console monitoring also provided the components to track new

user registration trends. A slight increase in new user registration has been detected

during October, as illustrated in Figure 31.

Figure 31. Ride-sharing app users registration monitoring

The Rocket ride-share user registration graph for October.

61

Chapter IX.

Future Work

As previously stated, the study initially proposed an approach to use Cadence

workflow as the core of the orchestration for the ride-sharing platform as part of the trip

management service. However, as the ride-sharing platform's further implementation

took place, the benefits noted while using Cadence was apparent. However, they were

more beneficial in a scope that required a workflow that involved more microservices in a

given platform.

In Cadence, a workflow has full control over which activities an application

executes and in which order. A workflow must not affect the external world directly, only

through actions. What makes workflow code a workflow is that Cadence preserves its

state. Therefore, any failure of a worker process that hosts the workflow code does not

affect the workflow execution. The workflow continues as if these failures did not happen

(Ahmad, 2020). Resiliency is a powerful and beneficial feature. However, the ride-

sharing platform's current state comprises only three microservices. The orchestrator

module can perfectly orchestrate the trip execution for those three microservices. If the

ride-sharing platform is presented with the requirement to expand the platform to other

regions or countries, this will require scaling up the platform. As a result, the number of

microservices or host instances might increase, in which case, the benefit of using

Cadence will be more significant to manage the workflow efficiently. If there is a

considerable increase in the ride-sharing application users volume, the proper approach to

scale up will be replacing the orchestrator module with Cadence.

62

A target area to improve is that of smart contracts and rewards for the ride-sharing

platform. As mentioned in the design section, the wallet management service models a

reward object to get the logic in place for a retribution model for both riders and drivers

alike to reward using the ride-sharing platform. For the beta version released, the object

right now is only a placeholder, and the rewards object adds no additional logic as part of

the beta released to production.

Enter the Algorand blockchain, which supports defining assets (ASAs),

representing fungible assets, including Algo, USDT, and USDC. Stateful TEAL is a

smart contract language that allows maintaining global and local application state. A

stateful TEAL application manages the state as part of the account information. The

account linked to the application retains the global state in the crowdfunding application,

including the fund configuration (goal, start date, end date, close date, and receiver

account) and the total investment value. The local state associated with each investor's

account tracks their investment (Gieseke, 2020).

63

Figure 32. Crowdfunding TEAL stateful application components

The Crowdfunding TEAL stateful application components.

Figure 32 presents the crowdfunding TEAL stateful application components.

Crowdfunding applications create a fund drive for a specific receiver that tries to reach a

goal before a particular date. Individuals are allowed to donate to the fund up to a specific

date. If the crowdfunding achieves the goal, the receiver can claim the funds. If not, the

original givers can recover the donations (Weathersby, 2020).

The ride-sharing platform could benefit from a crowdfunding model; the future

work identified is to use accreditation tokens to implement a reward system and replace

the current smart contract module with crowdfunding stateful application components for

the ride-sharing app.

64

Figure 33. Crowdfunding workflow (Gieseke, 2020)

The proposed crowdfunding workflow for the ride-sharing application.

Figure 33 presents the proposed crowdfunding workflow to replace the smart contract

module and implement rewards for the ride-sharing application. The enumeration below

describes the workflow steps:

1. A project creator uses the android ride-sharing application to create a new

crowdfunding project.

65

2. The android ride-sharing application calls the wallet management service to create

a new crowdfunding project.

3. The wallet management service creates a new escrow account and associates it

with the stateful TEAL application within the Algorand blockchain.

4. An investor uses the android ride-sharing application to invest in the fund.

5. The web android ride-sharing application calls the wallet management service to

create an investment.

6. The wallet management service creates an investment transaction and sends it to

the Transaction Gateway.

7. The Transaction Gateway notifies the signing wallet associated with the

investment account that there is a transaction waiting to be signed.

8. The investor uses the signing wallet to inspect and then sign the transaction.

9. The signing wallet returns the signed transaction to the Transaction Gateway.

10. The Transaction Gateway submits the transaction to the Algorand blockchain.

11. The Stateful TEAL contract logic transfers the investment amount from the

investor’s account to the escrow account.

12. Finally, the project creator claims the funds accrued in the escrow account at the

successful funding conclusion. The stateful TEAL contract transfers funds from

the escrow account to the project creator’s account.

Yet, one more target area to improve is the login process of the android ride-sharing

application. As it stands on the current beta version deployed to Kenya, the android ride-

sharing application prompts users to provide login credentials each time the application

starts.

66

If it is not a banking application or something similar that stores sensitive user

information, keeping users logged in might be an option. Bearing in mind that mobile

users are usually on the go and with very little time or focus, it is quite helpful for users

not to log out every time they turn off an app. Instead, the feature to keep the user logged

in can be turned on (Levenson, 2020). However, it might be worth adding the features to

offer remote session termination and or suggest a password change after a specific

amount of time.

67

Chapter X.

Summary

One of this thesis's main objectives was to address current popular or mainstream

security risks for both passengers and drivers. The implementation resulting from this

thesis provides a viable alternative to managing those risks by introducing a blockchain-

based solution to maintain records of decentralized and secure user data of both drivers

and riders. The ride-sharing platform solution provides an alternative to address the

security concern by allowing both riders and drivers alike to see other users' current

ratings. Both riders and drivers can decide if they are to proceed with a given trip request

after reviewing the other user’s rating. Furthermore, both the rider and driver can rate

each other after trip completion by validating users before the ride-sharing application

provides the service as an option.

For this thesis’s implementation, the history of ratings is exposed to other users to

provide transparency and security while using the ride-sharing platform. However, the

platform supports providing more data peer to peer as part of the user validation.

Depending on the market, further thesis work can expand the study to discuss if the

android ride-sharing application should make more data visible to users to proceed with a

given trip request.

The solution implemented as a result of the thesis provides an alternative that

improves the user's financial or economic profits over the most popular solutions. As

mentioned during the abstract section, companies such as Uber and Lyft take on average

a 20 percent cut of each ride transaction (Hmielewicz, 2018).

68

With the proposed solution, the benefit or gain from a ride transaction, the ride-

sharing platform dramatically improves driver’s profit by removing the third party or

middle man that currently keeps 20 percent of the transaction. The ride-sharing platform

eliminates the middleman factor by providing a ride-sharing platform based on

blockchain technology as its core foundation. The solution provided enabled the

opportunity to reduce the cost of transactions by eliminating the middleman via the

Algorand blockchain platform to facilitate a direct transaction and secure payment

transactions by interfacing with the Pago's transaction gateway.

Furthermore, the abstract section’s research highlights that it could take a day to

transfer money from one party to another. Specifically, the study’s beginning identified

that it could take days to transfer money for one party with an account in one country to

another country (Swan, 2015).

The Algorand blockchain platform was the solution selected to improve the

payment transaction processing throughput. The study evaluated Algorand’s performance

by standing up to 1,000 EC2 virtual machines and simulating up to 500,000 users to

research scaling Byzantine Agreements for Cryptocurrencies. Experimental results

showed that Algorand confirms transactions in under a minute, achieved 125 times

Bitcoin's throughput, and incurs almost no penalty for scaling to more users (Gilad,

2020).

 The ride-sharing platform dramatically enhances the processing time's

performance for a payment transaction by reducing the time required to complete a

payment transaction by securing a peer to peer transaction with no banks or any other

institutions that might slow down the payment processing process. The payment of a

69

given transaction using Pago's transaction gateway reduced the multi-day payment cycle

down to real-time.

The thesis should highlight the package delivery feature that the ride-sharing

platform implemented due to the study. The ride-sharing platform provides the service

for user transportation and provides the components for delivering packages such as food

or any other needs as a service. The ride-sharing platform provides such services via

digital payments and is currently deployed to Kenya, an emerging market shifting to use

or accept cryptocurrencies.

The thesis aimed to research the latest technologies and propose an

implementation to enhance the ride-sharing industry's security and implement an

application that will enhance ride-sharing costs for riders and profit drivers.

The ride-sharing application implemented as a result of this thesis attempts to

enhance security in the ride-sharing industry. The mechanism used to rate peer to peer

users and make that information available to the platform users is a viable solution to

address security concerns. Nevertheless, the ride-sharing platform can enhance that

mechanism by adding more data to the validation process. The platform can include data

such as driver's license and registration number to the peer-to-peer validation mechanism.

That will further improve the enhancement of security across the ride-sharing platform.

The cost of ride-sharing for riders and profit for drivers was significantly

improved, as previously stated. With the solution provided as a result of this thesis, no

middle-man or entity takes a percentage of the profit for a given payment transaction.

Hence, the android ride-sharing application can provide more profit for drivers and more

accessible fares for riders.

70

The performance for payment processing is a point that the study highlights due

to its implementation. The ridesharing platform eliminates the multi-day payment cycle

to process a given transaction and cuts down the processing time to real-time. The

implementation achieves the performance leap by supporting the adoption of

cryptocurrency in the payment industry. Furthermore, the implementation provides a

reliable, viable solution in the ride-sharing sector that further cements the benefits of

blockchain and cryptocurrency in emerging markets.

71

Appendix 1.

Glossary

API

API is the acronym for Application Programming Interface, the software intermediary

used for applications to talk to each other.

Bitcoin

Bitcoin is a cryptocurrency invented in 2008 by an unknown person or group of people

using the name Satoshi Nakamoto (Yellin, 2018).

Blockchain

A blockchain is essentially a distributed database of records or public ledger of all

transactions or digital events that have been executed and shared among participating

parties (Memon, 2018).

Cadence

Cadence is a workflow orchestrator. It is open-source, developed by Uber, and written in

Go language (Ahmad, 2020).

72

Cassandra

Apache Cassandra is a database that focuses on reliable performance, speed, and

scalability. It quickly stores massive amounts of incoming data and can handle hundreds

of thousands of writes per second (Patel, 2020).

Decentralization

Decentralization is the transfer of responsibility for planning, management, and resource

raising and allocation from the central government to field or subordinate units (Smith,

2001).

HTTP

HTTP stands for Hypertext Transfer Protocol. HTTP is the protocol used to transfer data

over the web.

IoT

IoT or Internet of things is connecting any device with an on and off switch to the

Internet. The devices can range from cell phones, coffee makers, washing machines,

headphones, lamps, and wearable devices.

Maven

Apache Maven is a cornerstone of Java development and the most used build

management tool for Java (Tyson, 2020).

73

MVC

The MVC or model view controller software architectural pattern separates concerns into

three buckets (Doherty, 2020).

REST

REST is the acronym for Representational State Transfer. The architectural style for

providing standards between computer systems on the web.

SOA

SOA or Service Oriented Architecture is a structure that allows services to communicate

with each other across different platforms and languages by implementing what is known

as a “loose coupling” system.

USDC

USD Coin (USDC) is the second-largest stable coin pegged to the US dollar in terms of

market capitalization and usage. USDC launched in September 2018 as a collaborative

effort between Circle and Coinbase. Like Tether (USDT), USDC is a major participant in

the stablecoin market facilitating all sorts of money flow and use-cases.

References

Ahmad, J. (2020). Cadence — The only workflow orchestrator you will ever need, Noteworthy,

Feb 23, 2020.

Agrawal, A. (2016). Five ways ridesharing is making the world a better place, Inc, Mar 06, 2016.

Alois, J. (2020). USDC Now on Algorand Bringing Major Scalability and Performance

Improvements, Crowdfund Insider, Sep 09, 2020.

Ayoade, G., Karande, V., Khan, L., & Hamlen, K. (2018). Decentralized IoT Data Management

Using BlockChain and Trusted Execution Environment.

Bambara, J., & Allen, P. (2018). Blockchain: A practical guide to developing business, law, and

technology solutions. New York: McGraw-Hill Education.

Caballero, C. (2019). The Command Design Pattern. What is it and how can we apply it? Better

Programming, Dec 05, 2019.

Carnell, J. (2017). Spring Microservices in Action (1st ed.). Manning Publications.

Dalul, S. (2019). What exactly is ridesharing and how do you get started as a driver? Android

Authority, June 25, 2019.

Dudley, G., Banister, D., & Schwanen, T. (2017). The rise of Uber and regulating the disruptive

innovator. The political quarterly, 88(3), 492-499.

Doherty, E. (2020). Educative: Interactive Courses for Software Developers. MVC Architecture

in 5 minutes: a tutorial for beginners, Educative, May 10, 2020.

Fedak, V. (2018). Top 5 reasons to use the Apache Cassandra Database, Towards Data Science,

Mar 02, 2018.

75

Gieseke, E. (2020). Creating a Point-of-Sale Application with the Algorand Blockchain,

Algorand, Apr 13, 2020.

Gieseke, E. (2020). Creating a CrowdFunding Application with the Algorand Blockchain,

Algorand, Oct 22, 2020.

Hwang, H. (2020). Measuring the Benefits of Ridesharing Services to Urban Travelers, Hutchins

Center on Fiscal and Monetary policy at brookings, Oct, 2020.

Frankenfield, J. (2019). Cryptocurrency, Investopedia, May 05, 2020

Gilad, Y., Hemo, R., Micali, S., Vlachos, G. and Zeldovich, N. (2017). Algorand: Scaling

Byzantine Agreements for Cryptocurrencies. In Proceedings of the 26th Symposium on

Operating Systems Principles.

Hahn, R. (2017). The Ridesharing Evolution: Economic Survey and Synthesis, Brookings,

January 10, 2017.

Halaburda, H. (2019). Will we realize Blockchain’s promise of decentralization? Harvard

Business Review, Sep 04, 2019.

Hmielewicz, M. (2018). Food for thought Uber changes slow revenue growth. The Financial

Times, p. 11.

Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research on

blockchain technology?—a systematic review. PloS one, 11(10), e0163477.

Jesuthasan, R., Malcolm, T. and Cantrell, S. (2020). How the Coronavirus Crisis Is Redefining

Jobs, Harvard Business Review, Apr 22, 2020.

Levenson, H. (2020). How to Perfect your Mobile App’s Login Screen, Usability Geek, 2020.

Levi, S. (2018). An introduction to smart contracts and their potential and inherent limitations,

Harvard Law School Forum on Corporate Governance, May 26, 2018.

76

Lewis, J. (2014). Microservices, a definition of this new architectural term, Martin Fowler, Mar

25, 2014.

McCarthy, A. (2020). The Rise of Food Delivery Services: Why Today’s Consumers Order In,

Doordash for Merchants, May 22, 2020.

Memon, M., Hussain, S. S., Bajwa, U. A., & Ikhlas, A. (2018, August). Blockchain beyond

bitcoin: Blockchain technology challenges and real-world applications. In 2018

International Conference on Computing, Electronics & Communications Engineering

(iCCECE) (pp. 29-34). IEEE.

Michael. (2020). Algorand (ALGO) Explained, Boxmining, Nov 21, 2020.

Mire, S. (2018). Blockchain in Ridesharing: 5 Possible Use Cases. Disruptor Daily.

Sonatype Company Staff Corporate Author. (2008). Maven: The definitive guide (First ed.).

Sebastopol, California: O'Reilly.

O’Neal. (2019). Cointelegraph. (n.d.). Who Scales It Best? Inside Blockchains’ Ongoing

Transactions-Per-Second Race. Cointelegraph.

Russon, M.A. (2019). Crypto-currencies gaining popularity in Kenya, BBC News, Feb 22, 2019.

Sonatype Company Staff Corporate Author. (2008). Maven: The definitive guide (First ed.).

Sebastopol, California: O'Reilly.

Patel, N. (2020). What is Cassandra and why are big tech companies using it? Canonical, May

05, 2020.

Xu, R., Ramachandran, G. S., Chen, Y., & Krishnamachari, B. (2019, October). Blendsm-ddm:

Blockchain-enabled secure microservices for decentralized data marketplaces. In 2019

IEEE International Smart Cities Conference (ISC2) (pp. 14-17). IEEE.

Schaut, S. (2020). What is a chargeback? Credit karma, December 14, 2020.

77

Saleem, S. (2019). What Is DigitalOcean and Why Should You Select It for Your Web Hosting?

The Official Cloudways Blog, Mar 27, 2019.

Serrano, S. (2020). Saving (in) Latin America: Why stable coins are thriving across emerging

markets, Circle Blog, Oct 14, 2020.

Smith, L. (2001). Reform and Decentralization of Agricultural Services: A Policy Framework, p,

FAO Agricultural Policy and Economic Development Series, 2001.

Cynthia, S. T., Majumder, M., Tabassum, A., Khanom, N. N., Tuhin, R. A., & Das, A. K. (2019,

September). Security Concerns of Ridesharing Services in Bangladesh. In 2019 2nd

International Conference on Applied Information Technology and Innovation

(ICAITI) (pp. 44-50). IEEE.

Suryotrisongko, H., Jayanto, D., & Tjahyanto, A. (2017). Design and Development of Backend

Application for Public Complaint Systems Using Microservice Spring Boot. Procedia

Computer Science, 124, 736-743.

Swan, M. (2015). Blockchain: Blueprint for a new economy (First ed.). Sebastopol, California:

O'ReillyMedia.

Thomson, J. (2016). Uber driver assaulted in Miami: How safe is the system? The Christian

Science Monitor, The Christian Science Monitor, Jan 22, 2016.

Tyson, M. (2020). What is Maven? Build and dependency management for Java, Info World, Jan

30, 2020.

Yellin, T., Aratari, D., Pagliery, G. (2018). What is bitcoin? CNN Money, Aug 08, 2018.

Yowana, W. (2020). Credit card chargebacks explained: A guide for merchants, Valuepenguin,

Aug 17, 2020.

Watts, S. (2017). What is service-oriented Architecture? BMC Software, May 31, 2017.

78

Walters, S. (2019). Algorand Review: ALGO Worth It? Everything You need to Know, Coin

Bureau, Sep 08, 2019.

Watrous, M. (2020). Ten trends emerging in the aftermath of COVID-19, Food Business

Review, Nov 18, 2020.

Weathersby, J. (2020). Example Crowdfunding Stateful Smart Contract Application, Algorand,

Aug 20, 2020.

Wittmer, P. (2020). Monolithic vs Microservices Architecture - Why Microservices Win,

Tiempo Development, Mar 12, 2020.

