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Abstract 

This paper introduces a new method for cryptocurrency distribution, Pluvo. 

Unlike traditional cryptocurrency networks, which typically only charge fees to currency 

spenders, Pluvo charges fees to currency holders. The proceeds of the fees are shared 

equally by all unique human members of the network. The result encourages use, 

discourages hoarding, heals ownership imbalances over time, and maximizes ownership 

decentralization. Pluvo serves as a template for all cryptocurrencies in which the health of 

the ecosystem relies on the ability of all members to maintain ownership of the currency 

and in which the utility of the network suffers in the face of extreme ownership 

concentration. It also serves as a model distribution mechanism for monetary authorities 

experimenting with new forms of digital money. 
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Chapter I. 

Introduction 

Satoshi Nakamoto introduced the concept of a cryptocurrency with Bitcoin 

(Nakamoto, 2008). The Bitcoin network lays out a way for users to transfer electronic 

tokens directly between themselves without the help of a central intermediary. The 

intended purpose was for the Bitcoin network to function as a payment network. As 

Nakamoto (2008) puts it in the Bitcoin whitepaper, “A purely peer-to-peer version of 

electronic cash would allow online payments to be sent directly from one party to another 

without going through a financial institution” (p. 1). 

The fundamental innovation behind Bitcoin is that an entire currency system can 

be represented by a list of token transfers1. Rather than having physical units of currency 

mediate face-to-face transfers, Bitcoin allows for transfers to take place at a distance over 

a network by maintaining a list of every transfer enacted on the network. By following 

the path of a token on the list from its genesis through its most recent transfer, anyone can 

see all previous owners of the token, as well as the current owner of the token (the 

recipient of the most recent transfer). Because Bitcoin uses several elements from the 

field of cryptography to create the currency system, it is called a cryptocurrency.2 

                                                
1 This Bitcoin whitepaper (Nakamoto, 2008) uses the term “transaction” to refer to a transfer of bitcoins 
from one party to another. For clarity, this paper uses the term “transfer” to refer to a one-way movement of 
tokens (e.g., from party A to party B), whereas a “transaction” refers to a two-way exchange. 
2 Cryptocurrencies, which are elsewhere called “crypto assets” or simply “crypto,” here refer to any 
network comprising a distributed digital ledger and an accompanying consensus mechanism for updating 
that ledger. For the purposes of this paper, the terms token and coin are used interchangeably to refer to the 
native unit of a cryptocurrency. 
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Decentralization underpins Bitcoin and other cryptocurrencies. In Bitcoin, no 

central party controls the list of token transfers or the list of participants on the network 

(Narayanan, Bonneau, Felten, Miller, & Goldfeder, 2016). In fact, the concept of 

decentralization extends to many facets of the cryptocurrency ecosystem, in addition to 

decentralization of control of the list of transfers. There can be decentralization in the 

software implementations of the network protocols, decentralization in developer 

communities, decentralization of currency exchanges, and decentralization of token 

ownership (Srinivasan, 2017). Because centralization/decentralization is not binary—

rather, it exists as a spectrum (Narayanan, Bonneau, Felten, Miller, & Goldfeder, 2016)—

the cryptocurrency community has worked to increase the degree of decentralization in 

their networks along many of these dimensions. For example, projects such as Hashgraph 

(Baird, 2016), Stellar Consensus Protocol (Mazières, 2015), Algorand (Micali, 2016), and 

Casper (Buterin & Griffith, Casper the Friendly Finality Gadget, 2017) propose new 

consensus mechanisms that decentralize control of the list of transfers. Projects such as 

0x (Warren & Bandeali, 2017) and OmiseGO (Poon, 2017) aim to remove the 

centralization inherent in most currency exchanges.  

Relative to the amount of research done on consensus mechanisms and exchange 

protocols (examples mentioned above), comparatively little work has gone into 

increasing ownership decentralization—that is, eliminating centralized control of 

cryptocurrency tokens. There are a few projects whose creators have attempted to 

broaden distribution of their tokens. Some projects—for example, Stellar (Stellar, 

2018)—performed initial distributions via airdrops, which are distribution mechanisms in 

which tokens are delivered for free to new users (AirdropAlert B.V., 2018). Usually there 
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is an imposed condition for users to receive tokens from the airdrop; for example, users 

may have to post about the token project to social media or sign up for a Telegram 

channel. Other token sales, like Civic’s, attempted to minimize ownership centralization 

by requiring buyer identification (Lingham & Smith, 2017) and then limiting the number 

of tokens any individual buyer could buy. In all cases, these attempts aim to increase the 

decentralization of token ownership.  

Ownership decentralization depends on the distribution of tokens in the network. 

One can distinguish between two types of distribution: 

• Initial distribution refers to the distribution of new tokens on the network. The 

goal of maximizing decentralization of the initial distribution is to get the tokens 

in as many hands as possible.  

• Forward distribution refers to ongoing token ownership over time. Maximizing 

decentralization of the forward distribution means keeping the tokens in as many 

hands as possible. 

How ownership distribution begins and evolves depends on the rules of the 

environment in which the currency operates. Some environments are more conducive to 

maximizing ownership decentralization than others. To explore ownership distribution in 

cryptocurrencies, consider the case of Bitcoin. 

Case Study: Bitcoin Ownership Distribution 

Bitcoin has limited decentralization of both its initial and forward distributions. 

The lack of decentralization of its initial distribution is a direct result of how new 

bitcoins are created. In order to avoid network control by a central entity (e.g., a list-
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keeper who has sole control over all token transfers on the ledger), the Bitcoin protocol 

allows anyone to keep a local copy of the list (Nakamoto, 2008). However, because the 

list of transfers is equivalent to the state of token ownership on the network, it is crucial 

that all local copies remain identical. 

To keep all local lists identical to one another, Nakamoto devised a system of 

distributed consensus so that the ledger of transfers is redundantly stored on servers all 

over the world (Nakamoto, 2008). Each list-keeper—called a “miner” in Bitcoin 

parlance—listens for recent token transfers on the network, validates those transfers, and 

then competes in a race with all other miners for the right to add their list of recently-

validated transfers to the running list of all transfers ever recorded. To incentivize miners 

to maintain the list and validate all transfers, the Bitcoin protocol rewards with brand-new 

bitcoins the miner who wins the race. This race occurs continuously and is won on 

average every 10 minutes, meaning that new transfers are added to the running list every 

10 minutes, and new bitcoins are generated every 10 minutes (Nakamoto, 2008). 

From a currency-distribution perspective, the result of this process is that new 

coins in the Bitcoin network accrue only to the miners who maintain the network. Miners 

represent a small fraction of total users in the Bitcoin network (Yeow, 2018), but they 

represent the recipients of 100% of all new coins. Thus, the initial distribution is quite 

limited. 

(Readers with Bitcoin experience may wonder what the problem is with miners 

receiving 100% of new bitcoins. After all, with Nakamoto’s consensus mechanism, 

miners must be incentivized to run the network and expend the energy required to 

participate in consensus. But the question here is not about network incentives or 
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consensus mechanisms. Rather, the question is about token distribution, ownership 

decentralization, and what they mean for the integrity of a currency system. In a system 

in which only a few participants receive 100% of new supply, the initial distribution will 

be limited.) 

Decentralization of the forward distribution is inhibited by Bitcoin’s low level of 

circulation. Owners tend to hoard, rather than spend, their coins (Baur, Hong, & Lee, 

2016). There are a number of contributing factors here. One is the ethos of HODL. 

(HODL was initially a misspelling of “hold” on a Bitcoin message board, but since then it 

has been given the backronym “hold on for dear life”) (Literally Media Ltd., 2018). 

HODL is a mindset which Bitcoin enthusiasts employ to ride through the wild swings in 

Bitcoin’s price. HODLers are hoarders, though, in the sense that HODLing entails never 

spending or selling bitcoins. Another factor contributing to bitcoin hoarding is the lack of 

required spending, for example, on taxes. When a government requires payment of taxes 

in the currency issued by that government, it guarantees a use value for the currency. 

Bitcoin has no such requirement. 

Regardless of motive, the fact that Bitcoin holders tend not to spend their bitcoins 

can be seen directly on the blockchain. As of September 9, 2018, 47.42% of bitcoins had 

not been spent in over 1 year, representing over $50bn in dormant value (Unchained, 

2018). The centralized initial and forward distributions have resulted in an ownership 

distribution where, as of September 25, 2018, the richest 0.66% of addresses owned 87% 

of coins3 (bitinfocharts.com, 2018). The distribution of bitcoins follows a power law, 

                                                
3 It is not clear how many humans are represented by these 0.66% of addresses. Individuals can control 
multiple addresses, and addresses can be jointly owned by many people. 
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with a handful of holders owning the vast majority of the currency (Kondor, Pósfai, 

Csabai, & Vattay, 2014). 

Although this case study only looks at Bitcoin, many other cryptocurrencies have 

a similarly centralized distribution. For example, as of October 4, 2018, Bitcoin Cash has 

92% of coins held by 0.72% of addresses, Litecoin has 85% of coins held by 1.37% of 

addresses, and Dash has 89% of coins held by 1.12% of addresses (bitinfocharts.com, 

2018). 

A New Distribution Mechanism 

The Pluvo distribution mechanism is constructed as follows: 

1. At the onset of the network, set three system parameters: an initial maximum 

supply, m; an evaporation percent, r; and an evaporation interval period, t. The 

initial maximum supply m is held in an unspendable reserve. 

2. Register unique human participants to the network. Registration and 

unregistration occur continuously. 

3. Periodically (every t), r percent of tokens evaporate from all accounts (including 

from the initial reserve) and are distributed equally to all registered participants. 

The evaporation component mentioned above is equivalent to a demurrage fee, 

which is a fee for a delay, in this case, a delaying in spending the token. Chapter II 

discusses demurrage fees further, providing context on its use in currency systems and 

elsewhere. 

The Pluvo distribution mechanism takes its inspiration from the water cycle, 

which also has components of evaporation and rain (U.S. Geological Survey, 2017). 
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Large bodies of water (e.g., the oceans) see greater quantities of evaporation than of rain. 

Dry land, on the other hand, sees more rain that it sees evaporation. The process of 

evaporation and rain keeps water cycling from the large bodies of water where it collects 

to the dry land where it sustains life. 

Token distribution in Pluvo works similarly. Evaporation occurs proportionally 

from all accounts, meaning that no matter how many tokens an owner has, exactly r 

percent of them will evaporate every t. Rain, however, occurs equally for all registered 

participants. Because evaporation is proportional but rain is equal, users with above-

average balances of tokens will see greater evaporation than rain, just like large bodies of 

water do in the water cycle. On the other hand, users with below-average balances of 

tokens will see greater rain than evaporation, just like dry land does in the water cycle. A 

registered user with an exactly average number of tokens will not be affected by the cycle 

of rain and evaporation, because the quantity of tokens that evaporate will be equal to the 

quantity of tokens collected from rain. 

In Pluvo, the initial distribution is highly decentralized; all registered participants 

are on an equal footing, with no single group receiving more new tokens than any other 

registered participants. (As a reminder, new tokens come from the initial reserve of m 

tokens and are distributed by rain.) The forward distribution tends toward 

decentralization as well, precisely because users with above-average token balances will 

see their balances fall every t, while users with below-average token balances will see 

their balances rise every t (all else equal). 

Outline 
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The rest of the paper proceeds as follows. Chapter II discusses prior work 

regarding currencies and crypto tokens that have built-in circulation or that aim for high 

levels of ownership decentralization. Chapter III describes the Pluvo protocol and the 

requirements for a system implementing the protocol. Chapter IV outlines the tools used 

in implementing the Pluvo protocol. Chapter V details the implementation of the 

protocol. Chapter VI discusses use cases for the Pluvo protocol, and Chapter VII 

concludes. Appendix A walks through the code that implements the protocol, and 

Appendix B walks through how to use the interface. 

.
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Chapter II. 

Prior Work 

This chapter discusses previous attempts to build currencies with the 

characteristics of Pluvo, namely demurrage and universality. 

Demurrage Currencies 

In its dictionary sense, demurrage is “a charge for detaining a ship, freight car, or 

truck” (Merriam-Webster, Inc., 2018). It is related to the word “demur,” and it ultimately 

comes from the Latin root “morari” meaning “to delay.” In the shipping sense, if a 

charterer detains a ship in port for longer than agreed upon with the owner, the charterer 

owes a fee to the owner of the ship. This fee for delay is called “demurrage.” 

Silvio Gesell introduced the idea of demurrage for currencies in his seminal work 

The Natural Economic Order (Gesell, 1916). In it, he describes the concept of “freigeld” 

or “free money4.” His implementation relied on paper money that would lose 1/1000 of 

its value weekly, or around 5% annually. Demurrage in this context still represents a fee 

for delay, but here the delay is in spending the currency. The goal of implementing 

demurrage in a currency was to encourage use of the money. Anyone who delayed in 

spending their money would be charged a small but not insignificant fee. 

In order for currency holders to retain the value of the currency, they had to affix 

stamps, similar to postage stamps, to the bills each week. Each stamp cost 1/1000 of the 

                                                
4 Here, the word “free” refers to the intent to make the currency interest-free. 
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face value of the bill. Those left holding the bill at the end of the week were responsible 

for affixing the stamp if they ever wanted to use the bill again. At the end of each year, 

bills that were filled with stamps could be returned to the currency office and exchanged 

for fresh bills. 

The town of Wörgl, Austria, experimented with the idea in 1932, two years after 

Gesell’s death and in the throes of the Great Depression (Boyle, 2002). The new 

schillings circulated with unprecedented speed and were considered an unqualified 

success. The following excerpt from The Week, appearing May 17, 1933, near the end of 

the roughly one-year Wörgl experiment, explains how the new money worked in the 

impoverished town: 

On the first day when the new notes were used, eighteen hundred schilling 
worth was paid out. The recipients immediately hurried with them to the 
shops, and the shopkeepers and merchants hastened to use them for the 
payment of their tax arrears to the municipality. The municipality 
immediately used them to pay the bills. Within twenty-four hours of being 
issued, the greater part of this money had not only come back to the 
municipality in the form of tax payments, but had already been passed on 
its way again. During the first month, the money had made the complete 
circle no less that twenty times. (Boyle, 2002) 

The experiment was soon copied in America, where economist Irving Fisher 

helped bring it to hundreds of cities and towns in America (Fisher, 1933). Both Austria’s 

and the USA’s experiments met similar fates. In Austria, the Austrian National Bank shut 

down the Wörgl experiment after just over a year (Unterguggenberger, 1934). In the 

USA, the Emergency Banking Act of 1933 put an end to similar experiments (Gatch, 

2008).  

In 2003, Christian Gelleri created a regional currency, Chiemgauer, to implement 

Gesell’s idea of a demurrage currency (Gelleri, 2009). Chiemgauer circulates solely in 

the town of Chiem, Germany, in southeast Bavaria. Although the currency began as a 
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school project, Gelleri continued its administration even after it outgrew the school. The 

students gave Chiemgauer an 8% annual demurrage fee, charged quarterly; that is, a 1 

CH banknote requires a 0.02 CH stamp to be affixed to it every 3 months for it to remain 

valid. Purchases of Chiemgauer are fixed at a rate of 1 EUR per CH, and a fee of 5% is 

charged for converting CH back to EUR. The person who purchased the CH initially can 

designate a local charity to receive 3% of the 5% fee; the issuing institution (of which 

there are 50) keeps the remaining 2% fee. Though Chiemgauer has continued to circulate 

since its introduction, its benefits have been confined to the town of Prien am Chiemsee, 

Germany.  

In 2012, Freicoin attempted to implement demurrage in a cryptocurrency 

(Friedenbach & Timón, 2018). Freicoin is a fork of Bitcoin and shares its basic 

structures. It has a 5% annual demurrage fee that accrues to the miners, rather than to all 

members of the network as it does in Pluvo; this has the benefit of providing miners a 

constant stream of revenue at the expense of system-wide distribution.   

Universal Currencies 

Universal currencies aim to have both a wide initial and a wide forward 

distribution. In The Relative Theory of Money (Laborde, 2017), Stéphane Laborde 

discusses two dimensions upon which ownership should be decentralized:5 

1. Spatial. A currency must not inordinately favor one group over another at any 

point in time. 

                                                
5 Writing in French, Laborde uses the phrases for “spatial symmetry” and “temporal symmetry” to describe 
the spatial and temporal dimensions of decentralization. He also describes universal currencies as “free 
money.” Here, the word “free” does not mean “given without charge,” as in “free pizza.” Rather, it means 
“not subject to control by others,” as in “free press.”. 
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2. Temporal. The distribution of wealth among future generations must not be overly 

determined by the distribution of wealth of their ancestors. 

To understand these dimensions of ownership decentralization in context, 

consider whether or not they are achieved in Bitcoin. In both of these regards, Bitcoin 

fails to serve as a universal currency. With regard to the spatial dimension, Bitcoin 

distributes all new coins to miners alone, rather than equally to all members of the 

network. With regard to the temporal dimension, Bitcoin’s lack of circulation means 

wealth distribution is largely determined by the initial currency holders. Bitcoin 

enthusiasts who bought coins in 2009 or 2010 could buy them for less than $1 per 

bitcoin, and miners received 50 new bitcoins every 10 minutes. By 2013, half of all the 

bitcoins that will ever exist had been already placed into circulation. By 2016, the mining 

reward had fallen to 12.5 new bitcoins every 10 minutes, and by 2017 the price had risen 

to over $10,000 (blockchain.info, 2018). The way in which those bitcoins were 

distributed will have a large effect on the future distribution of bitcoins and the allocation 

of resources in the Bitcoin community. 

Another example of ownership centralization can be seen with the US dollar, 

which has asymmetries similar to those of Bitcoin. When the government chooses to 

inject new money into the economy, it does so by increasing the reserves of commercial 

banks (The Economist, 2015). In theory, the banks would then lend out that money to 

borrowers, who would then spend the money. What this means is that all new money 

directly benefits the banks and borrowers—spatial asymmetry. Furthermore, the 

distribution of US dollars at any point in time strongly influences the future distribution 



13 

 

of dollars. That is, the rich tend to get richer, which can be seen in the change in wealth 

distribution in the USA over time (Stone, Trisi, Sherman, & Horton, 2017). 

To overcome these asymmetries—or at least provide a countervailing force—a 

universal currency must distribute all new coins according to the following principles: 

1. To maintain spatial symmetry, all new coins must be distributed to members of 

the network equally. No single person or group should have an advantage in the 

creation of new money. 

2. To maintain temporal symmetry, individuals’ token balances should tend toward 

the average over time when the coins are not in use. 

Note that these symmetries are not absolutes. A well-functioning economy 

requires a certain amount of temporal asymmetry. For example, if Alice sells Bob a 

baseball for $1 today, then Alice must be able to use that dollar to buy approximately one 

dollar’s worth of goods in the future. If she could not do so, then she would not accept the 

dollar in exchange for the baseball in the first place. Perfect temporal symmetry would 

mean that everyone maintained an equal balance of currency every day; this would 

necessarily preclude or nullify any transfers of currency, and it would thereby render the 

currency useless. 

However, large degrees of temporal asymmetry are likewise untenable. Consider 

a world in which Alice and Bob both work as farmers. One day Alice captures and 

enslaves Bob, and for the next 400 years, all of Alice’s descendants enslave all of Bob’s 

descendants. Alice and her family accumulate immense wealth on the backs of Bob and 

his family. Then one day Alice’s family is forced to relinquish her control over Bob’s 

family. Alice’s family, despite being roughly equal in size to Bob’s family, controls 99% 
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of the currency, and Bob’s family controls only 1%. Without a mechanism for evening 

out the distribution of wealth over time, historical asymmetries will persist. 

Below are several examples of newly formed digital currencies that aim, usually 

explicitly, to be universal currencies. Some, like Duniter (Moreau, 2018), Circles 

(Circles, 2017), and Democracy Earth (Democracy Earth, 2018), hew closely to the 

principles of universal currencies. Other, like Manna (Mannabase, Inc., 2018), 

SwiftDemand (SwiftDemand, 2018), and Raha (Raha, 2018), depart from universality in 

one or more ways.  

Duniter (Moreau, 2018) is a French currency aiming for universal acceptance. It 

implements ideas directly from the Relative Theory of Money (Laborde, 2017); namely, it 

aims for spatial and temporal symmetry. It achieves both via constant money supply 

growth, rather than via demurrage.  

Duniter launched in March 2017 with a currency called Ğ1. To create the initial 

supply of currency, 10 Ğ1 are distributed daily to each member of the currency network. 

The distribution is called a Universal Dividend, and all members receive the same 

distribution. Although at first the 10 Ğ1 dividend represents rapid growth in the money 

supply, Duniter proposes to eventually cap the annual money supply growth rate at 10%.  

In order to ensure that only unique individuals become members of the network, 

Duniter uses a Web of Trust: each new applicant must receive 5 certifications from 

existing members before gaining membership. The Web of Trust concept was first 

introduced by Phil Zimmerman in 1992 for the Pretty Good Privacy (PGP) email 

encryption scheme (Zimmerman, 1994). The scheme allows the network to grow 

gradually with members who recognize and trust each other. However, it does not defend 
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against sybil attacks (that is, fake accounts, also known as “bots” or “clones”) should any 

subset of the members in the network privately collude to create fake accounts.  

Circles (Circles, 2017) takes a different approach. Rather than issuing a single 

fungible currency, Circles allows members who join the network produce their own 

credits according to a predetermined supply schedule. All members get to mint their own 

money to themselves every day at a set rate. Other members get to decide whose credits 

to take and whose to deny—that is, coins minted by distinct users are not automatically 

fungible. To re-gain fungibility, members can join groups and pool their credits into 

group currencies; the credits of all members within a group are fungible. Because credits 

can only be minted according to a fixed schedule, all credits should be fungible (and 

therefore able to join into one fungible group), except in the cases where someone is 

suspected of having multiple accounts. 

Circles explicitly allows the creation of multiple accounts; however, the lack of 

fungibility is what prevents sybil attacks from being meaningful. For example, if Alice 

accuses Bob of having two accounts, she can simply refuse to accept Bob’s credits. 

Additionally, groups can have validators to reduce the chances that their members have 

multiple accounts. Lastly, like Duniter, the money supply grows over time as new coins 

are minted by each user. 

Democracy Earth (Democracy Earth, 2018) has a similar goal of giving an equal 

number of coins to all people on earth. Its mission is different—rather than serve as a 

currency system, Democracy Earth tokens are meant to serve as vote tokens in a global 

democracy. To prevent sybil attacks, Democracy Earth employs a video-based Proof of 

Identity. Users submit a three-minute video of themselves stating their names, reciting 
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biometrics (birthday, height, weight, sex), showing their face, and sharing witnesses’ 

certifications. A hash (cryptographic digest) of the video is stored on the Bitcoin 

blockchain (or, because Democracy Earth is still in its infancy, potentially via a 

Blockstack namespace). To validate the videos, Democracy Earth then uses a process 

called Attention Mining, originally pioneered by Luis von Ahn and others in the 

reCAPTCHA system (von Ahn, Maurer, McMillen, Abraham, & Blum, 2008). It relies 

on this crowd-sourced validation to weed out spoof and duplicate videos.  

Manna (Mannabase, Inc., 2018) is cryptocurrency that aims to be universal 

through weekly distributions to all verified users. The supply of manna grows at a fixed 

rate of 3.5% per year, with all new manna being distributed to verified recipients. The 

initial distribution is not entirely universal—there is a temporary referral bonus program, 

meant to encourage growth of the nascent network, in which users who refer other users 

will receive additional weekly distributions. Additionally, because the Manna network 

operates on its own Bitcoin-like blockchain, it pays a 5 manna/block reward to miners. 

SwiftDemand (SwiftDemand, 2018) is a digital currency that also aims to be 

universal by distributing 100 Swifts per day to each registered participant. It departs from 

universality in several important ways. First, like Manna, it uses a temporary referral 

bonus program, providing referrers with 500 new Swifts for each referral. Second, in 

order to ensure that users are still alive, users must claim their daily distributions. 

However, SwiftDemand only allows 7 days of Swifts to remain unclaimed. This means 

that if users do not claim their daily distributions for over a week, they will lose further 

distributions until they make a claim. Third, part of the income distribution is reserved for 
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Delegated Nodes, which create new blocks, and Identity Providers, which validate users’ 

identities.  

Raha (Raha, 2018) is a digital currency with an equal distribution method. Each 

user mints 10 Raha every week. It is close to universal, but departs from universality in a 

few ways. Like with SwiftDemand, Raha’s users must mint Raha in a timely fashion; 

after 4 weeks, users can no longer accrue unminted Raha. To encourage use, users who 

are inactive for more than a year lose their Raha, with 80% of confiscated Raha 

distributed directly to members and 20% distributed to the Raha Parliament. 

Additionally, a referral bonus of 6 weeks of Raha is paid for each referral, up to 150 

referrals; that is, someone who refers 150 people will have a seventeen-year head start in 

the distribution of Raha compared with people who do not make any referrals. 

Project UBU (Project UBU, 2018) aims to create a universal currency with 

demurrage. All network members, called citizens, are entitled to 100 UBU per day. 

Additionally, there is a 1% daily demurrage fee on all balances. But it departs from 

universality in two important ways. Like Manna, SwiftDemand, and Raha, Project UBU 

implements a referral bonus program (here, 1,000 UBUs for the citizen making the 

referral and 500 UBUs for citizen being referred). Additionally, Project UBU allocates 11 

UBU per citizen per day to the UBU Sphere, which is the organization that develops the 

system. 

Frink (Frink, Inc., 2018), short for Friend Link, claims to have equal initial 

distribution. In practice, the initial distribution is given out in a referral bonus system, 

with only a portion of new members able to achieve the maximum initial distribution of 
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1,000 Frinks. Additionally, Frink Incorporated keeps 20% of all Frinks issued as part of 

its business model. 

The BIG Foundation (BIG Foundation, 2017) claims to have an unconditional 

distribution to network members. Registered members receive 1 token per day. However, 

rather than being entirely distributed to network members equally, tokens are available 

for purchase directly from the BIG Foundation at a price of 0.01 ETH per BIG, with 

bonuses available for large purchases. 

GoodDollar (Assia, 2018) claims to continuously mint coins for registered 

network participants in order to increase the forward distribution of the tokens. Although 

GoodDollar is still in draft phase and subject to change, it has a feature whereby new 

GoodDollars can be purchased in the primary market (i.e., directly from a smart contract) 

for a fixed price. 

Enumivo (Enumivo, 2018) is a fork of the EOS blockchain that issues a weekly 

distribution of tokens. However, the initial distribution does not go equally to all 

members. Rather, some tokens are awarded for a verification mechanism in which 

community members vouch for the uniqueness of other community members. New 

members must receive sponsorship from an existing member and be voted in by the 

community. 

UBIC (UBIC, 2018) is a currency network that aims to reward all members for 

participation in the network with distribution of currency. To become a member of the 

network, registrants must show a valid government-issued passport. Although the stated 

goal is to create a system that does not suffer from “asymmetric value distribution,” the 

system allocates the distribution of currency according to users’ countries of origin. For 
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instance, the total annual currency distribution to members from the USA is 393,096,240 

per year, whereas it is 81,730,800 to members from France.
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Chapter III. 

Requirements 

As described in Chapter I, Pluvo is a cryptocurrency distribution protocol with 

two goals: decentralized initial distribution and decentralized forward distribution. 

The Pluvo protocol describes a currency system with built-in circulation, which is 

a process for maintaining a decentralized initial and forward distribution. Circulation has 

two parts: evaporation and rain. In evaporation, a percentage r of every balance of tokens 

disappears, much like evaporation from a body of water. In rain, the evaporated tokens 

are distributed equally to all registered addresses. Rain is the source of this protocol’s 

name; pluvo is the Esperanto word for rain. 

Initial Maximum Supply 

The initial maximum supply, m, of tokens in the system is established at the 

network’s onset. This value is important only insofar as it creates reasonable whole 

number units for reckoning prices and balances. As long as the divisibility of the token is 

sufficient for it to be spread to a large number of currency holders, any number will do 

initially. As the network evolves, this value can be adjusted to alter the total supply of 

tokens in the system. 

The initial maximum supply is not initially owned by any address. Rather, 

through the process of evaporation and rain, the initial maximum supply is distributed to 
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registered addresses. It can be thought of as a reserve of tokens from which evaporation 

occurs but that does not receive rain. 

Circulation 

Periodically the following two-step process, called circulation, occurs: 

1. Evaporation: All account balances, including the initial reserve, are reduced by 

the evaporation rate, r. For example, if the evaporation rate is 5% per year, then 

the evaporation would be ~0.43% if assessed monthly, or ~0.1% if assessed 

weekly. 

2. Rain: All coins that evaporated in step 1 are distributed equally to all registered 

addresses. 

A few notes about circulation: 

• All addresses experience evaporation proportional to the number of tokens held 

by that address at the time of evaporation. 

• Only registered addresses receive rain. All other addresses, which can be created 

arbitrarily and without registration, do not receive rain. 

• Registration should map one-to-one with human participants in the network. That 

is, registration requires identity verification to ensure uniqueness, and it requires 

periodic reverification to keep registration lists up to date. This paper does not 

discuss the details of registration. 

• For a given evaporation rate and maximum supply, the number of coins collected 

through evaporation and distributed through rain will always be the same from 

one period to the next. This occurs because, regardless of which addresses hold 
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the tokens, all addresses experience evaporation. Thus, the total amount of 

periodic rain is a function of the maximum supply m and the evaporation rate r. In 

particular: Total Periodic Rain = 𝑚	×	𝑟. This makes calculation of rain 

straightforward. If there are n registered participants, then each registered 

participant receives %&
'

 tokens each period. This entails that, for a given maximum 

supply and evaporation rate, the rain per registered address is inversely 

proportional to the number of registered addresses. Note that this does not entail 

that the value of rain per registered address falls when the number of registered 

addresses rises, only that the number of tokens falls. Currency networks benefit 

from network effects (Dowd & Greenaway, 1993), so they become more valuable 

when they have more participants (all else equal). 

• The total supply of currency in use (i.e., held by accounts, rather than in the initial 

reserve) approaches the maximum supply asymptotically over time. At a 5% 

annual evaporation rate, it will take about 10 years for the total supply in use to 

reach 40% of the maximum supply. 

Registered Addresses 

An identification system should have the following characteristics: 

• Universality. Every person should have the ability to register an address for 

storing tokens.  

• Uniqueness. Registered addresses should match one-to-one with real people. That 

is, no one person should be able to control multiple registered addresses, and no 
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single registered address should be controlled by multiple people (unless they 

have previously consented to sharing control of that address). 

• Security. Control of registered addresses should be resistant to theft; that is, an 

identity should not be easily controllable by someone other than its owner. 

• Privacy. The identification system should not impede users’ ability to maintain 

privacy of their balances or transfer histories. 

There are numerous attempts to bring identity to cryptocurrency ecosystems. The 

user “peacekeeper” maintains a comprehensive list of identity projects on GitHub 

(Sabadello, 2018). Identity implementations referenced there include Civic, uPort, 

Blockstack, ShoCard, Authenteq, and brightID. 

The uniqueness and security characteristics mean that the identification systems 

should take care to limit replication attacks and prevent attacks. A replication attack 

occurs when one person can register more than one address. A prevention attack occurs 

when a person is blocked from being able to successfully register an address or access a 

registered address. Identity theft—when an attacker steals another person’s public 

address—is both a replication attack, because the thief can create multiple public 

addresses, and a prevention attack, because the person whose identity was stolen can no 

longer receive rain or spend their tokens. Any identity system compatible with Pluvo 

should prevent both types of attacks. 

An identity system with the above characteristics of universality, uniqueness, 

security, and privacy is ideal for use with the Pluvo protocol. This paper does not specify 

a required implementation for an identity system. 
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Use 

Registered participants interact with the network in two ways: they collect rain 

and make transfers. (Unregistered participants who receive tokens can also make 

transfers, but they cannot collect rain.) To collect rain, registered users initiate a 

collection using their wallet software; if any rainfall events have occurred since the user’s 

last collection, then the user will collect tokens from those rainfalls. To make transfers 

(i.e., send tokens), users enter the transfer information (recipient and amount) into their 

wallet software, which broadcasts it to the network. Note that users do not have to 

perform any action to receive tokens from a transfer; recipients’ balances update 

automatically. 

Parameter Updates 

Pluvo has three hard-coded constants: the maximum supply, m; evaporation rate, 

r; and the evaporation frequency, t. The implementation in Chapter V includes a way to 

manage the selection of system-wide constants.
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Chapter IV. 

Tools 

The Pluvo protocol is implemented here as a distributed application on the 

Ethereum network (Ethereum Foundation, 2018). In particular, it is a smart contract (i.e., 

a program written for the Ethereum execution environment) written in Solidity v0.4.24 

(Ethereum, 2018). It is based on OpenZeppelin standards (Zeppelin, 2018) and uses the 

Truffle framework (Consensys, 2018) for specifying tests and constructing the sample 

user interface. See Chapter V for details on the implementation.
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Chapter V. 

Implementation 

The technical contribution of this thesis is the creation of a cryptocurrency token 

that allows for demurrage and the distribution of demurrage proceeds. It is implemented 

as a smart contract on the Ethereum network (Ethereum Foundation, 2018). Addresses 

are separated into two classes: registered and unregistered. Registered addresses should 

be provably unique, with a one-to-one correspondence between registered addresses and 

people. Users can hold keys for any number of unregistered addresses. All addresses 

participate in periodic demurrage (evaporation), but only the registered addresses receive 

regular distributions of the demurrage fees (rain). 

Rain 

As discussed in Chapter III, the amount of periodic rain per registered address is a 

function of the evaporation rate, maximum supply, and number of registered addresses. 

The straightforward way to distribute rain—loop through all registered addresses each 

period and automatically increase their balances—was avoided for four reasons. First, the 

number of registered addresses could grow so large that looping through them all would 

be too resource intensive. In particular, within the context of Ethereum, 5,000 gas is 

required to update a nonzero 256-bit integer in contract storage (Wood, 2018). (In the 

Ethereum virtual machine, every operation performed during the execution of a program 

costs a predefined amount of gas. This gas is payable in units of ETH, the native token on 
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the Ethereum network (Blockgeeks, 2018).) Given current block size limits of around 

8,000,000 gas (Etherscan, 2018), this would mean that a maximum of only 1,600 

addresses could be updated in a single block (while also hogging the entire block and 

effectively shutting down the Ethereum network for all other use cases). Second, the data 

structure typically used to store address balances on Ethereum is a mapping, which does 

not permit looping (Ethereum, 2018). Third, Ethereum does not have a built-in system for 

automation. Calculating evaporation automatically each period requires a scheduler, but 

Ethereum does not have a native way to schedule events. Fourth, because Ethereum 

requires gas to be paid for every calculation, it is not clear who pays the gas to perform 

the calculations to distribute rain. 

The solution is to use a pull method for rain disbursement. Each period, the 

amount of rain due to each registered address is stored in a list. When a user wants to 

collect tokens, the user calls the collect() function, which loops through the fixed 

rainfall totals for all the previous rainfalls since the user last collected rain, adds them up, 

and transfers the tokens to the user’s registered address. (There is also a 

collectRainfalls(n) function, which only collets rain for n previous rainfalls; this 

function is implemented to allow a user to collect some rain when the total number of 

previous uncollected rainfalls is too large and expensive to be collected all at once.) 

Because Ethereum does not have a native scheduler, the rain() function, which 

stores in the rainfallPayouts list the number of tokens due to each registered address 

in each period, is not run automatically each period. Rather, it is only called when 

collect() or collectRainfalls() are called or when the amount of rain per person 

would change (that is, when the evaporation rate changes, the rainfall period length 
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changes, an address is registered, or an address is unregistered). When rain() is called, it 

appends the rain due to each registered address to the rainfallPayouts list once for 

each rainfall period elapsed since the last time that rain() was called. 

This method—only calling rain() during a collection or when the amount would 

change—works because the rainfallPayouts list only needs to be updated when it is 

queried or when the rainfall per address amount would change. If the system goes into a 

period of dormancy, for instance, in which no addresses are registered or unregistered, 

nor is any rain collected, nor are any of the parameters updated, then there would be no 

need for the rain() function to run. 

Note that there is a potential flaw with the implementation of rain as described in 

the above paragraph. Because the rain() function calculates the number of elapsed 

rainfalls since the last time the rain() function was called, and then it appends to the 

rainfallPayouts list once per elapsed rainfall period, there could be a case in which the 

number of elapsed rainfall periods is so large that the gas required to append to the 

rainfallPayouts list for each elapsed rainfall period would be prohibitively expensive. 

In that case, the system would effectively break, given that rain could never be registered. 

To overcome this, the public function rainOnce() can be called to append only one 

rainfall amount to the rainfallPayouts list. In the event that calling rain() would cost 

more gas than the available block size, for instance, then rainOnce() can be called 

several times (over several blocks) to bring the rainfall payouts up to date. 

Evaporation 
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Each address’s balance is reduced by Evaporation Rate * Address Balance each 

period. The straightforward way to perform evaporation—loop through all addresses each 

period and automatically change their balances to pay the demurrage—was avoided for 

the same reasons that it was avoided to have rain automatically increase the balance of all 

registered addresses. 

The solution: each address’s balance is reduced by the evaporation rate only when 

that address is a sender or recipient of a transfer. That is, if an address is the sender or the 

recipient of a transfer or a transferFrom() function, or is the recipient of a collect() 

or collectRainfalls() function, the evaporate() function is called on that address 

prior to the transfer. Importantly, the evaporate() function reduces the balance of that 

address according to the number of elapsed evaporation periods. For example, if periodic 

evaporation rate is 50% and two evaporation periods have elapsed, then the address’s 

balance is reduced by 75% (which is two reductions of 50%) when that address is 

member to a transfer.  

The evaporate() function uses the calculateEvaporation() function to 

calculate the number of tokens by which the address should be reduced. This presents its 

own difficulties, because Ethereum does not have native support for floating point 

numbers (Ethereum, 2018). For an address with balance b, evaporation rate r, and elapsed 

evaporation periods p, the number of tokens to evaporate is 𝑏 1	– 1	– 	𝑟 + . Because the 

evaporation rate is between 0 and 1 inclusive, this calculation would ordinarily require 

floating point numbers to calculate. 

Given the lack of floating point number support, the evaporation rate is stored as 

two integers, evaporationNumerator and evaporationDenominator, where the 
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denominator must be nonzero and no less than the numerator. Then, to calculate the 

amount of evaporation by which to reduce an address’s balance, the 

calculateEvaporation() function makes a call to the fractionalExponentiation() 

function, which approximates the evaporation amount using only unsigned integers. This 

function uses the binomial expansion of the term 1	– 	𝑟 + to approximate the result. The 

binomial theorem states: 

𝑥 + 𝑎 ' =
𝑛
𝑘 𝑥2𝑎'32

'

245

 

Into the equation above, substitute x as –r and a as 1.  Because all powers of 1 are 

1, the 𝑎'32 terms disappear. Given that r is between 0 and 1, inclusive, the 𝑥2terms 

quickly approach 0 as 𝑘 increases. Thus, only the first few terms of this equation are 

necessary to closely approximate the true answer. The number of terms of the equation to 

calculate is a tradeoff between precision and gas cost. The higher the precision, the more 

expensive it is to calculate the exponentiation. Given that this equation converges 

quickly, especially for low values for r, a value of 8 is sufficiently precise without being 

too computationally expensive. 

Although evaporation is only removed from an address’s balance when that 

address is party to a transfer or rain collection, the value of pending evaporation can be 

calculated at any time. The balanceOf() function makes use of this to accurately display 

the address’s balance, taking into consideration any pending evaporation that will be paid 

at the next transfer. Thus, although the internal representation of an address’s balance 

only updates for evaporation at the time of a transfer or rain collection, balance inquiries 

using the balanceOf() function will always return the number of spendable tokens. 
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It is worth noting that, although transfers and rain collection cause evaporation to 

settle on the blockchain, it is really the passage of time that causes the evaporation to 

occur. An example will make this clear. Say Alice receives a rainfall distribution of 100 

tokens, and the evaporation rate is set to a value of 5% per year. After one year, Alice’s 

number of spendable tokens, as determined by making a balanceOf() inquiry, is 95 

tokens. However, technically, her address still owns 100 tokens. Under the hood, the 

balances mapping, which associates Ethereum addresses with token balances, does not 

change with the passage of time, so Alice’s balance will continue to be 100 until she is 

party to a transfer or rain collection. However, those 100 tokens are not spendable, 

because the moment she initiates a transfer, the pending evaporation of 5 tokens will be 

debited from her balance. Therefore, the evaporate() function really only causes the 

evaporation to reflect appropriately in the balances mapping. If, at this point, Alice makes 

a transfer of 0 tokens to Bob, her balance in the balances mapping will fall from 100 to 

95, but her balance as determined by a balanceOf() inquiry will still be 95. 

In most ERC-20 tokens, the balances mapping is an association between 

addresses and integers, where the integer represents the number of tokens allocated to 

that address. In the Pluvo contract, the balances mapping is an association between 

addresses and Balance structs, where a Balance struct is a pair of two integers. The first 

integer represents the number of tokens allocated to that address, and the second integer 

represents the last time that the address underwent evaporation. By keeping track of the 

last time that an address underwent evaporation, the calculateEvaporation() function 

can determine the accurate number of evaporation periods elapsed since the last time that 

the address had some of its tokens evaporate. 
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Just as evaporation occurs for balances held by addresses, evaporation also occurs 

for unclaimed rain. Apart from the fact that rain must be claimed before it is spent, it 

makes no difference, from an evaporation standpoint, whether rain is claimed or not. As 

an example, say that the current rainfall is 100 tokens per person. A rainfall just occurred, 

and Alice is able to make a claim of 100 tokens, but she chooses not to make the claim 

yet. After another circulation period passes, during which the evaporation rate was 5% 

per period, she then makes her claim. The number of tokens collected by Alice will be 

195, which is composed of the 100 tokens from the most recent rainfall, plus the 95 

tokens from the first rainfall, which evaporated by 5% since it rained.  

Evaporation also occurs for undistributed supply. This is how the money supply is 

initially distributed to network participants. One way to think about the initial maximum 

supply is to pretend that the entire initial supply is held in reserve by an Ethereum address 

from which tokens cannot be spent. Over time, this address experiences evaporation (but 

not rain) so that its tokens are distributed to all registered participants over time.6 

ERC-20 Conformance 

The Pluvo contract conforms to the ERC-20 interface (The Ethereum Wiki, 

2018), meaning that it implements the functions and events required by the interface. By 

                                                
6 Although the Pluvo contract does not implement undistributed supply as described in this paragraph, an 
alpha version of the Pluvo contract did. The initial supply was held in an address called the Ocean. The 
Ocean’s sole purpose was to be the site of the initial supply; its tokens could not be spent, and its address 
could not be registered to receive rain. However, its existence is was superfluous. Given that evaporation 
occurs equally for all tokens everywhere—whether held by user addresses, sitting in unclaimed rain, or 
held by the Ocean—then the total amount of rain is merely a function of the evaporation rate and the max 
supply, where the max supply is the sum of tokens held by user addresses, sitting in unclaimed rain, or held 
by the Ocean. Because the max supply is static (or, more precisely, alterable only by the parameter setter, 
as described in the section below), there was no need to have a separate address represent the Ocean. 
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conforming to the ERC-20 interface, tokens governed by the Pluvo contract will be able 

to interact with tools, wallet software, and exchanges that are built to handle ERC-20 

tokens. 

The six ERC-20 functions implemented are: 

• totalSupply(): returns the total number of tokens that have been collected from 

rain but not yet evaporated. Note that, in general, the value returned by this 

function will be greater than the spendable supply, because it does not take into 

consideration any pending evaporation. For the same reason, this function may in 

fact return a value that is greater than the maximum supply. 

• balanceOf(address): returns the spendable balance of an address. This function 

takes into consideration pending evaporation, so it will decrease over time if there 

are no transfers and no rain collections. 

• allowance(tokenOwner, spender): returns the number of tokens that the 

spender is allowed to spend of from the tokenOwner’s address. This function does 

not make any adjustments for evaporation. 

• transfer(to, amount): transfers a given number of tokens to the specified 

address from the message sender’s account. This function emits the Transfer 

event and returns true/false for successful/unsuccessful transfers. By initiating a 

transfer, the sender also causes evaporation to occur in the sender’s account and 

the recipient’s account. The transfer will fail if the amount specified exceeds the 

sender’s balance after evaporation. 
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• approve(spender, amount): authorizes the spender to spend the given number 

of tokens from the message sender’s account. This value does not change due to 

evaporation. The approve function emits the Approve event. 

• transferFrom(from, to, tokens): transfers a given number of tokens from 

the from address to the to address. The message sender must be authorized (via a 

previous approve(spender, amount) function call) to spend the given number 

of tokens from the from address. Just like the transfer(to, amount) function, 

this function emits the Transfer event, returns true/false for 

successful/unsuccessful transfers, causes evaporation to occur in the from account 

and to account, and will fail if the amount specified exceeds the sender’s balance 

after evaporation. 

Registration 

There are two special addresses that are established at the construction of the 

contract. One of those addresses is the registrar. The registrar is responsible for 

registering and unregistering addresses. The registrar registers an address by calling 

the registerAddress() function and passing in the desired address as a parameter. 

When an address is registered, its value in the rainees mapping is updated to the current 

rainfall index, where the current rainfall index is the number of elapsed rainfall periods 

since the construction of the Pluvo contract. A value in the rainees mapping of greater 

than 0 means that the address is registered and allowed to collect all rainfalls that occur 

after the current rainfall index. The registrar can also remove a registered address by 
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calling the unregisterAddress() function, which sets that address’s value in the 

rainees mapping back to 0.  

Parameter Updates 

The other special address is the parameterSetter. The parameterSetter can 

update the evaporation rate, the rainfall period (which is the number of seconds between 

rainfalls), the maximum supply, and the precision used in the 

fractionalExponentiation() function, as described above. 

Use  

Pluvo can be used like any other ERC-20 token: any ERC-20-compatible 

Ethereum wallet can send Pluvo tokens or check balances. Additionally, users can 

register one address with the registrar. Doing so entitles that address to collect tokens 

from periodic rainfalls. The user can initiate a collection of rain by calling the collect() 

or collectOnce() functions. 
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Chapter VI. 

Discussion 

The protocol introduced here serves as a template distribution mechanism for any 

monetary authority considering introducing a digital currency. It also serves a template 

for cryptocurrency developers who want to ensure their tokens continue to circulate. 

Pluvo as a Template for Central Bank Currency 

A monetary authority that implements a system like Pluvo would have two 

important new tools in its toolkit. One is the evaporation rate, which can be used to 

directly accelerate or decelerate the velocity of money. Another is the ability to directly 

change the money supply by adjusting the maximum supply parameter. Changing the 

maximum supply changes the size of rain payouts without affecting the evaporation rate.  

From a policymaker’s perspective, evaporation and rain create an effective 

interest rate as a function of token balances. The effective interest rate is given by the 

function 𝑓%,',& 𝑏 = 𝑟 %
'8
− 1 , where the function f defines the effective interest rate 

from evaporation and rain for a specific user of the network with token balance b. The 

function is parametrized by the maximum supply, m; the evaporation rate, r; and the 

number of registered users, n, on the network. 
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Figure 1. Effective Interest Rate by User’s Token Balance. 

The effective interest rate for a user is a function of that user’s token balance, 
parametrized by the maximum supply, number of users, and evaporation rate, given by 
the equation 𝑓%,',& 𝑏 = 𝑟 %

'8
− 1 . The effective interest rate is 0% at the average 

balance (here, 25). Parameters: max supply m = 100, number of users n = 4, evaporation 
rate r = 10%. 

For registered users with token balances less than the average balance, f(b) will be 

positive, meaning that proceeds from rain will exceed evaporation. For registered users 

with an average token balance such that nb = m, rain and evaporation are equal, and the 

effective interest rate is 0. Registered users with above-average token balances will see a 

negative effective interest rate. 

The equation f;,<,= b = r ;
<@
− 1  also shows how policy makers can alter 

users’ effective interest rates by controlling the maximum supply m and evaporation rate 

r. An increase in m serves to increase the effective interest rate for all registered users; a 
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larger m entails larger rain payouts without increased evaporation. By increasing the 

maximum supply, policymakers would be able to increase the money supply and have it 

be automatically distributed, via rain, to all participants in the currency network. 

An increase in the evaporation rate, r, increases evaporation and rain, but how it 

changes a user’s effective interest rate depends on the value of ;
<@
− 1 . For users with 

below-average balances (i.e., those for whom ;
<@
− 1  is positive), an increase in r 

results in a higher effective interest rate. For users with above-average balances (i.e., 

those for whom ;
<@
− 1  is negative), an increase in r results in a more-negative 

effective interest rate. Changing r does not change the average balance, thus it does not 

change which users see positive or negative interest rates. An increase in r does, 

however, increase the absolute value of f(b), meaning it increases the rate at which token 

balances approach the average. 

Because users’ rain proceeds do not depend on their token balances, users can 

always increase their effective interest rates by decreasing their token balances; a smaller 

token balance entails less evaporation without a change in the amount of rain receivable. 

Thus, the incentive to spend tokens (i.e., the disincentive to hoard) can be thought of 

either as coming from users’ desire to decrease the cost of evaporation or to increase the 

effective interest rate. 

Pluvo as Money 

This paper implemented the Pluvo protocol as a cryptocurrency. However, the 

Pluvo protocol applies broadly to cases where the token ought to have no value in itself—

that is, where it should only be valuable as a means of access to or control of something 
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else—and where whatever the token accesses should be controlled by a large number of 

people. 

As Gesell (1916) writes in The Natural Economic Order, the economy is exactly 

such a case. Money is the token that provides access to and control of the economy, and 

money is only useful insofar as it serves as a medium of exchange. “Money is an 

instrument of exchange and nothing else,” he writes. “The criterion of good money, of an 

efficient instrument of exchange, is that it shall secure the exchange of goods…, that it 

shall accelerate exchange…[and] that it shall cheapen exchange” (p. 266). Money has 

value because it controls the resources of the economy, and the economy is, by its very 

nature, is accessed by a large number of people. Money is thus a natural use case for the 

Pluvo distribution mechanism. Tokens subject to evaporation are perishable like the 

goods and services they buy. Just as sellers are induced to quickly sell their wares—

which may decay, rot, perish, or require maintenance and storage costs—so too are 

buyers induced to quickly spend their decaying currency (Gesell, 1916). And because of 

the rain mechanism, a large number of people will always have access to some portion of 

the currency, and they will therefore always have access to some portion of the economy. 

No implementation of this protocol will obtain positive value unless it is adopted 

by people for use as a medium of exchange. Once it is thus adopted, its value will depend 

on the goods and services it can buy. For an already-existing currency, the value of a 

currency appreciates when prices denominated in that currency decrease. For a new 

currency, the same logic applies. At first, prices are effectively infinite, given that when 

sellers will not accept a currency, no amount of that currency can buy goods or services. 
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Any finite price, then, represents deflation (from infinity) and a resulting increase in the 

value of the currency. 

Prolonged deflation, though, does not encourage use of a currency. As prices fall, 

users benefit more by holding the currency—waiting for goods and services to get even 

cheaper—than by spending it. (This assumes that purchases can be postponed.) With 

Pluvo, however, there is a countervailing effect: the evaporation rate. If prices 

denominated in Pluvo are indeed falling, then holders of the currency must decide 

whether the predicted deflation rate will exceed the known evaporation rate. If the 

evaporation rate exceeds the predicted deflation rate, then the incentive to spend will 

outweigh the incentive to hoard. As users spend their tokens, the resulting increase in 

demand of goods and services will reduce or eliminate the deflation. 

Pluvo as a Template for Cryptocurrency Distribution 

For cryptocurrency developers who want to avoid speculation, the evaporation 

rate is an important tool. Other cryptocurrencies that lack built-in circulation (or 

demurrage) encourage a “land grab” mentality: early adopters can purchase coins when 

they are cheap and squat on them indefinitely, hoping to sell the coins at a later date when 

the network is more mature. The irony, though, is that by hoarding coins and not using 

them for their intended purpose, these early adopters actually inhibit the utilization of the 

network they hope to see succeed. With Pluvo, the evaporation rate impels users to spend 

their tokens, thus contributing to the utility of the network. But rather than speculators 

profiting from the network growth, all registered users will benefit over time, because all 

registered users share rain equally. 
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Because it has a built-in decay, Pluvo is far from an ideal speculative investment. 

That does not mean that it will be immune to speculation. Speculators can speculate on 

any asset, even perishables like tulip bulbs. If the evaporation rate is too low and the 

potential future value of the currency is high enough, then speculators will inevitably 

arrive. However, a bit of early speculation is not unwelcome. A new currency necessarily 

starts with no value, so there has to be someone willing to be the first person to exchange 

something of value for Pluvo. This person is speculating that Pluvo will have value in the 

future. 

Over time, evaporation renders speculation increasingly less valuable, making 

Pluvo an unwise long-term buy-and-hold investment. At a 5% annual evaporation rate, 

nearly 80% of an unregistered speculator’s holdings will have evaporated in 30 years. 

Higher evaporation rates make speculation even less attractive. 

In addition to reducing speculation, the evaporation rate may also help reduce 

exchange-rate volatility. Many cryptocurrencies, most notably Bitcoin, have seen 

significant volatility in exchange rates against the US Dollar. For example, in 2017, the 

Bitcoin-USD daily exchange-rate volatility was 4.87% (Blockchain Luxembourg S.A., 

2017). By comparison, the Euro-USD daily exchange-rate volatility in 2017 was 0.46% 

(Board of Governors of the Federal Reserve System (US), 2017), less than one-tenth that 

of Bitcoin. 

The volatility in Bitcoin’s exchange rate with the US Dollar—especially in 

2017—stems in large part from Bitcoin’s introduction to new communities. After people 

first hear about Bitcoin, the only way for them to participate in the Bitcoin network is for 

them to buy bitcoins from people who already own them, or to mine them. Mining 
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requires technical expertise and a large up-front capital expense; the far simpler route is 

to purchase bitcoins on an exchange. Large fluctuations in demand, without any changes 

in the supply schedule, lead to highly volatile exchange rates. In contrast, Pluvo allows 

new members to directly own tokens shortly after registering to be recipients of rain. 

Thus, new members need not purchase Pluvo tokens from existing members simply to 

participate.
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Chapter VII. 

Conclusion 

For cryptocurrency developers who want to foster a large community of token 

holders, who want a token that is resistant to hoarding and speculation, and who want a 

token with lower exchange-rate volatility, the Pluvo protocol serves as a template. For 

monetary authorities who want direct control over the money supply and the velocity of 

money, who want the capacity to set negative interest rates, and who want to be able to 

distribute new money quickly and easily, the Pluvo protocol serves as a template. 

Because the Pluvo mechanism distributes all new coins evenly to all registered 

addresses, it represents a fundamentally different distribution mechanism from that of the 

proof-of-work consensus mechanism discussed in the introduction. However, Pluvo is not 

incompatible with mechanisms that distribute new coins as a reward for certain network 

actions. The Pluvo mechanism can be modified to introduce evaporation and rain after 

tokens are initially distributed by some other means. 

Pluvo deserves a robust governance system to ensure that the parameters 

represent the collective interest of its current and future users. Because the evaporation 

rate factors into the calculations for both evaporation and rain, it has two purposes: it 

controls both the disincentive to hoard and the level of decentralization of ownership 

distribution. When the evaporation rate is decreased, current owners benefit at the 

expense of future owners, holders of large token balances benefit at the expense of 

holders of small token balances, the velocity of money slows, and decentralization of 
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ownership distribution decreases. The reverse holds for increases in the evaporation rate. 

Because money is a tool to serve the people in an economy over time, any governance 

system that controls the parameters of Pluvo should ensure that the parameters best meet 

the needs of those people over time.
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Appendix A. 

Code Walkthrough 

Below is a walkthrough of the Solidity file that defines the Pluvo smart contract. The 

code is available at https://github.com/theshepster/pluvo. 

ERC-20 Public Functions 

The signatures for the six ERC-20 public functions are defined in the ERC-20 

standard (The Ethereum Wiki, 2018). 

 

function totalSupply() public view returns (uint256) 

 

Returns the total supply in circulation. That is, totalSupply() will return the 

total number of tokens that have entered circulation via collection of rain, less all tokens 

that have evaporated. It will always be equal to the sum of all tokens held in the balances 

mapping. However, because pending evaporation only evaporates from an account when 

it receives or transfers tokens, totalSupply() will typically return a value that is greater 

than the sum of balanceOf() for each account with Pluvo. See balanceOf() below for 

more details. 

 

function balanceOf(address _owner) public view returns (uint256 
balance) 
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Returns the balance of tokens owned by _owner, less any pending evaporation. 

Evaporation only occurs from an Ethereum account when the account is the sender or 

recipient in a transfer; until then, the evaporation is pending. The balanceOf() function 

accounts for pending evaporation, which is unspendable, when showing the balance of 

the given account. 

 

function transfer(address _to, uint256 _value) public returns (bool 
success) 

 

Transfers _value tokens from the account of the message sender to the _to 

account. This function causes any pending evaporation to evaporate from the sender's and 

recipient's accounts. 

 

function transferFrom(address _from, address _to, uint256 _value) 
public returns (bool success) 

 

Transfers _value tokens from the _from account to the _to account. Checks to 

ensure that the message sender is allowed to send _value tokens from the _from account 

(see approve() and allowance() below). This function causes any pending evaporation 

to evaporate from the _from and _to accounts. 

 

function approve(address _spender, uint256 _value) public returns (bool 
success) 

 

The message sender approves _spender to transfer up to _value tokens from the 

message sender's account. 
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function allowance(address _owner, address _spender) public view 
returns (uint256 remaining) 
 

Returns how many tokens _spender is allowed to spend from _owner's account. 

ERC-20 Public Variables with Getters 

The following two arrays are public and therefore have associated getter 

functions: 

mapping (address => Balance) balances 
mapping (address => mapping (address => uint256)) allowed 
 

For reference, the Balance struct is defined as: 

struct Balance { 
    uint256 amount; 
    uint256 lastEvaporationTime; 
} 

 

The optional ERC-20 functions name(), symbol(), and decimals() are also 

implemented, returning "Pluvo", "PLV", and 18 respectively. 

Pluvo Public Functions 

The following functions are not ERC-20 functions. Rather, they are implemented 

specifically for Pluvo. 

 

function currentRainfallIndex() public view returns (uint256) 

 

Counts one more than the number of past rainfalls. This is because the 

rainfallPayouts array is seeded with a (0, block.timestamp) value in the 

constructor. (The rainfallPayouts array stores the amount that each registered address 

is allowed to collect for each periodic rainfall.) That is, this returns the index of the 
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rainfall that is about to occur next. For example, a return value of 2 indicates that the next 

rainfall will be the second rainfall ever. 

 

function lastRainTime() public view returns (uint256) 

 

Returns the last time when rain happened. That is, it returns the timestamp of the 

last block when a Rain struct was added to the rainfallPayouts array. 

 

function rainPerRainfallPerPerson() public view returns (uint256) 

 

Returns the current amount of rain eligible for each registered address to collect in 

the next rainfall, if the next rainfall were to occur in the current block. Calculated by 

multiplying the maximum supply by the evaporation rate and dividing by the number of 

registered addresses. 

 

function setEvaporationRate(uint256 _evaporationNumerator, uint256 
_evaporationDenominator) public onlyBy(parameterSetter) 

 

Sets the new evaporation rate to be _evaporationNumerator / 

_evaporationDenominator. Solidity does not support floating point math, so the 

numerator and denominator are both integers. Only the address designated as the 

parameterSetter is allowed to invoke this function. 

 

function setRainfallPeriod(uint256 _secondsBetweenRainfalls) public 
onlyBy(parameterSetter) 
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Sets the new number of seconds between rainfalls. Any pending rainfalls occur 

before the new period is established. Only the address designated as the 

parameterSetter is allowed to invoke this function. 

 

function registerAddress(address _rainee) public onlyBy(registrar) 
returns (bool success) 

 

Registers a new address to receive rainfall payouts. Only the address designated 

as the registrar is allowed to invoke this function. The registrar, as designated by the 

registrar address, should implement separate functionality to allow users to request 

registration and to prevent the same person from registering multiple addresses. The 

Pluvo contract does not handle the implementation of the registrar’s registration 

functionality. 

 

function unregisterAddress(address _rainee) public onlyBy(registrar) 
returns (bool success) 

 

Removers a registered address from the list of rainfall payout recipients. Only the 

address designated as the registrar is allowed to invoke this function. The registrar should 

implement functionality to allow the person who registered the address (and only that 

person) to unregister. 

 

function changeParameterSetter(address _parameterSetter) public 
onlyBy(parameterSetter) 

 

The parameterSetter can invoke this function to select a new 

parameterSetter. 
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function changeRegistrar(address _registrar) public onlyBy(registrar) 

 

The registrar can invoke this function to select a new registrar. 

 

function collectRainfalls(uint256 maxCollections) public returns 
(uint256 fundsCollected) 

 

Registered addresses can invoke this function to collect up to maxCollections of 

rain, where maxCollections represents the number of rainfalls, not the amount of rain, 

to collect. Note that, when rainfalls occur, the registered addresses only get the rain when 

they collect it by calling collectRainfalls(maxCollections) or collect(). 

 

function collect() public returns (uint256 fundsCollected) 

 

Registered addresses can invoke this function to collect all available rain. 

 

function rain() public returns (uint256 rainfallsDue) 

 

Causes one or more rainfalls to occur. The rain() function calculates the amount 

of time that has elapsed since the last rainfall, integer-divides that by the number of 

seconds between rainfalls, and pushes that many rainfall payouts (each one equal to the 

rainPerRainfallPerPerson()) to the rainfallPayouts array. 

 

function calculateEvaporation(address _addr) public view returns 
(uint256) 
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Returns the amount of pending evaporation from address _addr. Note that _addr 

does not have to be a registered address, because all addresses experience evaporation. 

Pluvo Public Variables with Getters 

The following variables are public and therefore have getter functions: 

address parameterSetter 
address registrar 
mapping (address => uint256) rainees 
Rain[] rainfallPayouts 
uint256 evaporationRate 
uint256 evaporationDenominator 
uint256 secondsBetweenRainfalls 
uint256 maxSupply 
uint256 numberOfRainees 

 

For reference, the Rain struct is defined as: 

struct Rain { 
    uint256 amount; 
    uint256 rainTime; 
} 

Pluvo Events 

Events are Solidity constructs that allow information about a contract to be 

viewable outside of the blockchain environment, for example, by JavaScript code 

(Ethereum, 2018). In particular, the return value from Solidity functions that modify the 

blockchain cannot be seen from JavaScript, so events are used to pass important 

information outside of the blockchain for use in the application. 

 

event Collection(address indexed recipient, uint256 amount) 

 

Event emitted by the collect() function. Exposes the collector (recipient) and 

amount collected (amount). 
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Gas Usage 

Ethereum requires that all functions that modify the blockchain pay gas 

(Ethereum, 2017). This means that inquiry functions, such as balanceOf() and 

totalSupply() can be called without the user having to pay gas. On the other hand, 

functions that modify storage on the blockchain, such as transfer() and collect(), 

require the user to pay for the computations. Unless Ethereum implements economic 

abstraction (Buterin, On Abstraction, 2015), which would allow gas to be paid in 

something other than Ether, the gas owed for each of these functions is payable only in 

Ether. Thus, should Pluvo launch on the Ethereum mainnet, users will be required to pay 

a small amount of Ether in order to collect rain or transfer tokens.



53 

 

Appendix B. 

User Interface Guides 

The below guide covers the interface available at 

https://github.com/theshepster/pluvo.  

Setting Up a Test Environment 

First, clone the git repository and install the dependencies by executing the 

following code: 

git clone https://github.com/theshepster/pluvo.git 
cd pluvo 
npm install 

 

Additionally, install Truffle and Ganache-CLI globally by executing: 

npm i -g truffle ganache-cli 

 

The truffle command will be what you use for compiling the Solidity smart 

contracts, migrating them to the blockchain, and running the tests. The ganache-cli tool is 

a custom development Ethereum blockchain and will be used as the private test network. 

The last prerequisite is to have MetaMask installed. Get it by either downloading 

the Chrome extension or downloading the Brave browser. 

Once you have finished the above npm commands and installed MetaMask, get 

the development blockchain ready. Open a new terminal window and type: 

ganache-cli -d 
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This command initializes the Ganache Ethereum test blockchain, which runs in 

the background and connects to port 8545. The -d flag ensures that the 12-word recovery 

mnemonic will be the same one each time you run the ganache-cli -d command, so 

that when you reset the network, you will get the same private keys each time. 

Open up MetaMask in your browser. Click in the upper-right corner and set your 

network to Localhost 8545. (If that is not an option, click Custom RPC and use 8545 as 

the port number.) 

To connect MetaMask to your Ganache private keys, from the MetaMask login 

screen click "Import using account seed phrase." Copy the 12-word mnemonic from the 

command line (which appeared immediately after you entered the ganache-cli -d 

command) into the box in MetaMask, and choose a secure password. 

Now that you are logged in, you should see your first account, called Account 1, 

have a balance of 100 Ether. If you do not, click in the upper-right-hand corner of 

MetaMask and double check that your network is pointing to Localhost 8545. Never use 

the Ganache-CLI accounts with any other network in MetaMask. Localhost 8545 

only! 

You are ready to deploy and test Pluvo. In a terminal window within the pluvo/ 

directory, enter the following commands in order: 

truffle compile 
truffle migrate 
npm run start 

 

The first command, truffle compile, compiles the Solidity contracts into JSON 

files that can be deployed to the blockchain. The compiled contracts live in the 
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build/contracts directory. If you make any changes to the Pluvo.sol file, run truffle 

compile to prepare the updated contract for deployment. 

The second command, truffle migrate, deploys the compiled contracts to the 

custom ganache-cli blockchain that is running in the other terminal window. Truffle 

knows to deploy to the ganache-cli blockchain because in the truffle.js file, the 

development network is set to host 127.0.0.1 port 8545, which is where the ganache-cli 

blockchain is connected. 

Before deploying with truffle migrate, feel free to edit the Pluvo parameters 

in migrations/2_deploy_contracts.js. The four parameters to edit are: 

const maxSupply; 
const evaporationNumerator; 
const evaporationDenominator; 
const secondsBetweenRainfalls; 

 

The last command, npm run start, runs the scripts/start.js script. It compiles the 

user interface and serves it up to port 3000. It uses hot-reloading, so any changes you 

make to the user interface will load automatically without requiring recompilation. 

After several seconds, a browser window should open pointing to localhost:3000. 

Understanding Accounts 

The Ganache-CLI blockchain gives you 10 accounts. The first account will be the 

account that deploys the contracts to the blockchain, so you should see that, after 

deployment, the ETH balance of Account 1 is less than 100. This is because some ETH 

was spent to deploy the contracts. Additionally, in Pluvo, the parameterSetter and 

registrar addresses will be set to Account 1. 



56 

 

In order to play around with additional accounts, within MetaMask click on Add 

Accounts. Because the ganache-cli tool uses an HD wallet, the second account that 

MetaMask generates for you will automatically be the second account that ganache-cli 

created for you, meaning it will be pre-funded with 100 ETH. 

Using Pluvo 

Upon loading the application, the initial screen displays a few instructions on how 

to get started. In order for currency to first be distributed by the system, you must register 

an address to be a recipient of rain. Click the “Registration” link in the upper-right corner 

of the page. The number of accounts registered should display as 0, and the registrar’s 

address should be the first address in your Ganache-CLI wallet. Copy the registrar’s 

address (which should be the current address activated in MetaMask), paste it into the 

“Address to Register” field, and click Submit. This activates MetaMask, so you should 

see a pop-up from MetaMask that asks you to review and confirm the action. Although 

MetaMask may display a gas fee in USD, because this is a test environment there is no 

USD cost to gas. Click Confirm to submit the action to your test blockchain. The number 

of accounts registered should update to 1. (If it does not update automatically, it should 

update after refreshing the page.) 

Now that Account 1 is registered to receive rain, click on Pluvo in the upper-left 

corner of the screen to return to the homepage. Then, click the Submit button underneath 

“Collect All Available Rain.” After confirming the MetaMask pop-up and waiting a few 

seconds (and perhaps reloading the page), the value after “My Balance” should be 

positive. 
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To send tokens, fill out the two-field form in the Send Tokens section. To get an 

address to which to send coins, consult your ganache-cli blockchain accounts and choose 

an account from Accounts 2–10. Paste this address in the “To Address” field. Choose an 

amount equal to or less than the number of token you have, then click Submit. If you 

chose an amount greater than the number of tokens available for spending, MetaMask 

will warn you that there is an error, and you will not be able to confirm the transfer. If 

there are no errors, the transfer will go through after you click Confirm in the MetaMask 

pop-up. 

If you would like to change any of the parameters, click on Parameters in the 

upper-right corner. If your active MetaMask account is Account 1 (which was 

automatically established as the parameter setter), you can update any of the available 

parameters by typing the parameter into its respective field and clicking Submit. 

If you would like to change accounts, you may do so within MetaMask. Reload 

the page after switching accounts so that the application recognizes that the new account 

is the active account.    

Troubleshooting 

If you are not logged in to MetaMask when the application loads, you will see a 

screen that says, “We can't find any Ethereum accounts! Please check to make sure 

MetaMask in your browser is pointed at the correct network and your account is 

unlocked.” To fix this, log in to MetaMask and ensure that the network is pointing to the 

same port as the one where your local blockchain is running (port 8545 according to the 

directions above). 
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If the application gets stuck on a screen that says “Loading dapp…”, it means that 

one of the JavaScript files has an error in it. In Chrome, open the Developer Console 

(Alt-Cmd-J on a Mac) and review the console output. If there were no errors, the 

“Loading dapp…” screen would not appear for more than a second or two, and the 

Chrome Developer Console would say “Injected web3 detected.” If there is an error, 

examine the error the Developer Console to see if you can glean any indication as to the 

root of the error. 

Testing 

To run the test suite, run one of the following two commands. If the ganache-cli 

blockchain is already running in the background, then at the terminal, from the pluvo/ 

directory, enter: 

truffle test 

 

This will compile the contracts, deploy them to the running ganache-cli 

blockchain, and then run all the tests in the test/ directory. If you only want to run a single 

test file, for example, TestPluvo.js, then type: 

truffle test ./test/TestPluvo.js 

 

Alternatively, if there is no ganache-cli blockchain already running, enter: 

npm run test 

 

This will launch a ganache-cli instance in the background, run truffle test, and 

then kill the ganache-cli instance. 
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