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Abstract 

Urban heat is a public health risk and is increasing due to climate change, with 

heat waves more intense and longer-lasting than before. Meanwhile, many cities are 

designing for walkability, encouraging people to drive less and walk more. The 

convergence of these trends leaves people vulnerable when temperatures are dangerously 

high and there’s no escape from direct sun. Pedestrian access to shade offers relief from 

the heat. Quantifying shade can help citizens assess walkability and enable city planners 

to design shade-rich environments. My primary hypothesis was that shade can be 

accurately modeled and quantified using a Geographic Information System (GIS). My 

secondary hypotheses were that areas of higher heat-related risk will have less shade than 

areas of lower risk, and income will be the variable most closely associated with shade.  

I used GIS, building footprints, LiDAR-derived elevation and height data, and 

tree mapping to map, measure and analyze shade on 16 sample walking routes of 540 

meters each in the increasingly hot City of Pasadena, CA. I created 3D models of walking 

routes with Esri’s ArcGIS Pro (v. 2.3.0), using LiDAR data to extract 3D trees and add 

height to building footprints. I manually moved, sized and shaped each building and tree, 

using Google Street View (GSV) as a source of information, and ground-truthed each 

model by comparing shade maps to field measurements. Modeled shade maps matched 

field tests with a mean match rate of 91.6% for total meters shaded and 70.4% for 

distribution of shade. I conclude that it is possible to quantify sidewalk shade using 3D 

modeling in ArcGIS Pro and GSV as a source of information, with some limitations.  



 iv 

To see if access to shade is correlated with risk factors related to income, age, or 

access to a car, I mapped shade for two different times of day and calculated minutes 

walking unshaded and gaps in shade for each route. Employing statistical analysis using 

linear mixed effects models (LMM), and additional analysis and data visualization in 

Excel, I found that neither of my secondary hypotheses was supported by the data.  

Assessing access to shade is complex and site-specific. Having a method for 

quantifying shade can help policy-makers identify where people spend a dangerous 

amount of time in direct sun, and then use that insight to help people remain safe during 

heat waves, to consider shade when designing for walkability, and to plan for more 

equitable access to shade across a city.   
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Dedication 

To my fellow urban wanderers, who roam the sidewalks to get somewhere or 

nowhere in particular. Those of us who have become expert shade-stalkers—chasing 

patches of sidewalk closest to buildings, favoring streets with thicker canopies, plotting 

meandering paths following the shadows of any possible obstruction to the punishing 

rays. We who wait for the walk sign by folding ourselves into the lone narrow band of 

shade from the light pole. Especially for those who don’t have a choice—who stand with 

arms full of groceries, waiting for the bus in the scorching sun, on day three of a heat 

wave. May we all find the sweet relief of shade.  
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Definition of Terms 

ArcGIS Geographic Information Systems software from Esri 

GIS Geographic Information System: computer software that allows the user to 

create maps and analyze data according to geography or other spatial 

elements.  

GSV Google Street View 

Multipatch A GIS data type that lets the featured tree or building not just look 3D but 

also act 3D, so the software sees it as an obstruction for the sun’s rays.  
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Chapter I 

Introduction 

Urban heat is a public health risk and is increasing due to climate change, with 

heat waves more intense and longer-lasting than before (U.S. EPA, 2014a). Cities 

experience the urban heat island effect—exacerbated heat due a city’s built environment 

absorbing solar energy that is released as heat (especially impervious surfaces) (CalEPA, 

n.d.). Meanwhile, walkability has become a desirable feature of city living. Cities are 

cultivating walkable, transit-friendly neighborhoods as a way to reduce dependence on 

single-vehicle transportation and to promote public health (Florida, 2014; Brown, 

Carlson, Kumar, & Fulton, 2018). But access to shade is not considered in walkability 

scores (Walk Score, n.d.). The convergence of these two trends leaves people vulnerable 

on days when temperatures are dangerously high and there’s no escape from direct sun. 

Seniors who live alone (and therefore have less access to help getting around or running 

errands) and people with low income may not have alternatives to walking in the heat.  

Cities are employing strategies to ease temperatures, like cool roofs, cool 

pavements, and more green space (Mohegh et al., 2017; Bowler, Buyung-Ali, Knight, & 

Pullin, 2010). But for pedestrians walking the sidewalks, air temperature is just one factor 

affecting their thermal comfort—the other is shade. While air temperature is easy to 

measure, sidewalk-level pedestrian shade is harder to map with accuracy in a way that is 

useful for understanding the role of shade as a variable separate from air temperature, and 

for analyzing and comparing access to shade on sidewalks throughout a city. It’s more 

common to assess or count the objects that create shade—total canopy, number of trees, 



 

 2 

and placement of buildings—without quantifying the shade itself. But we can’t know the 

role lack of shade plays in pedestrian safety on hot days or during heat waves without a 

method for quantifying sidewalk shade.  

Shadow analysis tools and 3D modeling offer the ability to map shade once 

buildings and trees have been added to a model. But while building footprints and heights 

are relatively easy to obtain, detailed tree inventories that include up-to-date tree height 

and crown width are not as accessible for cities without the resources to take manual 

inventory in the field. Also, to understand shade’s role in pedestrian safety and its 

distribution across a city, a map is not enough: the shade needs to be quantified.  

Research Significance and Objectives 

To fill these research gaps, I created and tested a new model for quantifying 

sidewalk shade. It involved mapping, measuring and analyzing shade below the canopy at 

the sidewalk level. This research can help cities identify neighborhoods where people 

who are at high risk in heat waves have to spend a dangerous amount of time in direct 

sun. With this insight, a city could plan heat wave strategies, like temporarily boosting 

bus service along certain routes or providing temporary shade to protect those at risk. 

This model also might be useful as policy makers plan long-term mitigation strategies 

like increasing shade where it’s needed most. The model also could enable pedestrian 

shade to be included as a consideration in neighborhood walkability scores.  

My objectives were: 

• To help cities safely plan for a future of more heat and more people walking 

in that heat, by introducing a way to map, measure and analyze sidewalk 

shade.  
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• To present a method for mapping sidewalk shade using GIS-enabled 3D 

modeling of the buildings and trees along designated walking routes, using 

height and elevation data from LiDAR and using Google Street View as a 

source for information about how to place, size and shape buildings and trees.  

• To propose a way to measure shade by turning shade maps into quantifiable 

units of total shade and distribution of shade—to make it easier for policy 

makers or researchers to consider shade as a variable when assessing risk and 

when planning for walkability or heat-related health impacts. 

• To analyze and compare the presence of sidewalk shade in census tracts of 

varying levels of risk, to give cities a way to assess and plan for the equitable 

distribution of sidewalk shade.  

Background 

Urban heat is a public health risk and is increasing due to climate change, and 

heat waves are more intense and longer-lasting than before (U.S. EPA, 2014a). There is 

no universally accepted definition of a heat wave, but it generally involves temperatures 

at the high end of regional norms for at least two days; temperature indicators can include 

maximum temperature, mean temperature, apparent temperatures or heat index (Xu, 

FitzGerald, Guo, Jalaludin, & Tong, 2016). Extended heat events are particularly 

dangerous: on the first day, average mortality increases 4.1% over the typical daily 

average; by day five the mortality rate can be 11.9% higher than average (Kalkstein, 

2018). In the United States, more people die in heat waves than in all other extreme 

weather events combined (Klinenberg, 2015).  
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Many populations are considered at risk during heat waves: infants and children 

up to four years of age, people age 65 and older, and people with conditions such as heart 

disease, obesity, and more (CDC, 2017b). But people outside those populations are also 

at risk if they continue with outdoor activity in a heat wave. Comparing deaths during a 

2006 large-scale heat wave in California with deaths on reference days, researchers found 

that total mortality risk was higher for those between ages 35 to 64 than for children and 

for adults 65 and older (Joe, et al., 2016). The authors suggest this pattern “may be due, 

in part, to these persons being unaware of the increased risk, thus continuing with normal 

activity patterns and not taking protective action” (p. 9).  

People of any age whose lives depend on walking may not have a choice to curtail 

that particular outdoor activity on a hot day. If they continue to walk to the bus to get to 

work, or walk to run errands, they might not realize that those relatively short bursts of 

activity put them at risk during a heat wave. Heat stroke is a life threatening condition 

that occurs when the body becomes unable to regulate its own temperature—in those 

cases, someone’s body temperature can rise to 106°F or higher within 10-15 minutes 

(CDC, 2017b).   

 

Walkability Increasing in Cities 

Walkability is measured by factors that include the accessibility on foot of 

amenities such as transit, grocery stores, parks, restaurants, and cultural and recreational 

destinations (Duncan, Aldstadt, Whalen, & Melly, 2013). Access to shade is not a 

consideration in a neighborhood’s walkability score (Walk Score, n.d.).  
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In particular, walkability and transit use are often closely linked (Syrkett, 2016). 

Most transit trips involve getting to work (49%) or to the store (21%), and more riders 

use transit five days a week (50%) than any other usage pattern (Clark, 2017). These 

trends indicate the kind of habitual and essential travel activity that is not likely to be 

abandoned even in the case of extreme heat. A heat event can cause interruptions to 

public transport network services, leaving commuters waiting in extreme heat for 

transport services (Norton et al., 2015). Sixty-nine percent of transit users walk to the bus 

stop (Clark, 2017), increasing their exposure to the heat and sun even more. 

Seniors want to be able to walk, use transit and enjoy public space (Grabar, 2014). 

The AARP advocates for safe senior walkability, lobbying cities to design streets for 

pedestrians (not just cars), to make it safer to be an older pedestrian who walks slower 

and might have vision or hearing impairments (AARP, n.d.).  

People with age- and health-related risk factors walk slower than those who are 

younger and healthier. Typical walking speeds for healthy adults range from 0.90 to 1.30 

meters per second (m/s), while people in poor health have speeds closer to 0.60 to 0.70 

m/s (Graham, Fisher, Bergés, Kuo, & Ostir, 2010). There is also a relationship between 

walking speed and the trajectory of both age and wealth: researchers found that someone 

age 71 in the poorest wealth quintile had a mean walking speed of 0.75 m/s, while 

someone the same age in the richest wealth quintile had a mean walking speed of 0.91 

m/s—and speeds for both declined as they aged (Zaninotto, Sacker, & Head, 2013).  

Cooling Strategies: Effects of Shade 

Cities are seeking ways to mitigate the impacts of extreme heat. Strategies that 

make the pavement solar-reflective (called “cool pavement” strategies) have been shown 
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to increase albedo and reduce surface air temperatures (Mohegh et al., 2017). Greening 

strategies such as tree planting, the creation of parks and green roofs have also been 

shown to create sites that are cooler than non-green sites (Bowler, Buyung-Ali, Knight, & 

Pullin, 2010). Street trees and vegetated ground were shown to help reduce air 

temperatures on sidewalks at the pedestrian level (temperatures measured at the average 

heights of adults and children) in College Station, Texas (Kim, Lee, & Kim, 2018). 

However, vegetated ground (irrigated grass) had almost no impact on reducing the 

surface temperature in a study in Los Angeles—tree shade, by comparison, was found to 

be a significant source of cooling (Saatchi, n.d.). 

Field surveys on Arizona State University’s Tempe campus found that in hot, dry 

climates shade from a tree or photovoltaic solar canopy increased thermal comfort by 

approximately 1 point on a 9-point scale (Middel, Selover, Hagen, & Chhetri, 2016). 

Kántor, Chen, & Gál (2018) compared the cooling effects of shade provided by trees with 

shade from sun sails and found that at pedestrian level, even small shading with low-

hanging sun sails or a single tree with sparse canopy reduced heat stress levels by at least 

one category on a sunny summer day. But they also noted that trees were more effective 

overall at pedestrian level—“even a tree with sparse canopy has more layers [than the 

artificial sun sail], which are able to reduce incoming short-wave radiation more 

effectively” (p. 252). The researchers also noted the importance of detailed small-scale 

field measurements for understanding effective shade strategies. 

 Tree shade has been found to have significant cooling impact in studies 

considering another hot, dry climate: Los Angeles County in Southern California. City 

blocks with more than 30 percent tree cover can be up to 5 degrees cooler than those with 
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less than 1% tree cover (Saatchi, n.d.). “Percentage of shaded tree cover in city blocks 

explains more than 60 percent of land surface temperature (LST) variations. Other factors 

such as distance to the coast and topography explains the rest of variations … The ratio of 

impervious surfaces to trees was the main determinant of heat distribution over the city 

regardless of vicinity to the coast or across elevation” (Saatchi, n.d.). 

Fan et al. (2017) researched the differences in temperature and humidity of 

various land cover classes in three Los Angeles County neighborhoods. They compared 

temperature and physical attributes of several points along three half-mile walking routes, 

during heat events and non-heat events for comparison. One of their findings: “The 

largest consecutive difference in temperature occurred between two land cover classes 

that were only 20 feet apart: from a residential home with tree shade to a bus stop without 

shade, there was a temperature increase of 10°F” (p. 12). The team also collected data to 

compare within shade and outside shade at the same bus stop, and found that on average 

it was 5.4°F cooler under the shade for the same stop. In one example, the temperature on 

an unshaded sidewalk was 102°F while the temperature under the shade was 95°F.    

 

Heat Intensifying in Pasadena 

The city of Pasadena is in Los Angeles County, located roughly 10 miles 

northeast of downtown Los Angeles (Figure 1). Pasadena has a population of 141,371 

as of as of July 1, 2018 (U.S. Census Bureau, 2018a). The region experiences an 

increasing number of days with oppressive air masses in the fall—8% of days now, up 

from 6% in the 1940s and 1950s (Vanos, Kalkstein, Sailor, Shickman, & Sheridan, n.d.). 

The number of annual days hotter than 95°F in Pasadena is expected to more than double  
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Figure 1.  Reference map of Pasadena within Los Angeles County.  

Map created by author. County boundary data: California Open Data Portal (2019). City 
boundary data: City of Pasadena Open Data Site (2018). 
 
 
 
(from 24 to 59) by 2060 and to quadruple (from 24 to 100) by 2100 (Hall, 2013). 

Pasadena experiences temperatures that are 7°F to 12°F higher than rural comparisons 

due to its urban heat island, calculated as a positive temperature differential over time 

between an urban census tract and nearby upwind rural reference points (CalEPA, 

2015).  
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The city of Pasadena has assembled a Climate Action Plan and identified as one 

of the city’s four potential climate-related impacts: “more extreme heat days and longer 

heat waves” (City of Pasadena, 2018, p. 98). Pasadena’s climate plan includes two 

general actions related to reducing the urban heat island effect: studying the feasibility of 

implementing cool pavement strategies; and continuing to increase tree planting and 

urban green space “with emphasis on shading home, critical infrastructure, and bicycle 

and pedestrian routes” (p. 100). The city’s goal is to plant 500 new trees by 2020.  

Also a priority in Pasadena’s climate plan is shifting travel from personal 

automobile to walking, biking, and public transit and supporting pedestrian and transit-

oriented development (City of Pasadena, 2018). But many of Pasadena’s transit lines 

have 20- to 30-minute wait times between scheduled stops (City of Pasadena, n.d.), 

meaning lots of time in the heat and sun for those riders.  

Methods for Measuring Shade 

It’s easier to count trees than measure shade, which is probably why it is hard to 

find a method for accounting for sidewalk shade below the canopy at the pedestrian level. 

At minimum, an accurate measure of sidewalk shade should account for shade provided 

by both buildings and trees. Many studies focus on one or the other, and often studies of 

tree canopy use remote sensing to take a top-down view to assess total canopy cover, 

which inevitably obscures nuance at sidewalk level. Chen (2012) measured tree canopy 

for a study on walkability using the USGS National Land Cover Dataset Tree Canopy 

Layer, but she acknowledged that it didn’t provide the best representation and resulted in 

inaccurate tree canopy score results. LiDAR remote sensing data is often used to map tree 

canopy, but has its own limitations around getting accurate data for tree height or 
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distinguishing individual tree crowns (Crowley, 2011). Maco & McPherson (2002) 

addressed street trees in particular, testing a method for quantifying a city’s total canopy 

cover over public pavement and sidewalks—but they were focused on zone totals rather 

than pedestrian-scaled measurements.  

 Researchers have tested the veracity of using Google Street View (GSV) to assess 

aspects of the built and natural environments. Richards & Edwards (2017) analyzed 

hemispherical photographs extracted from Google Street View (images of canopy from 

the ground looking up) to map street tree ecosystem services across a whole city. They 

were able to quantify the proportion of green canopy coverage at 50m intervals, and then 

estimate the proportion of annual radiation that would be blocked by that canopy. But 

their priority was not to collect ground-truth data with which to compare GSV photos to 

field measurements; instead, the accuracy they assessed was the comparison of a photo-

analysis process done by machine compared with one done by human hand (all using the 

GSV photos).   

Kelly, Wilson, Baker, Miller and Shootman (2013) found that using GSV imagery 

was a reliable way to audit the built environment when compared with observational field 

audits in both urban and suburban neighborhoods. To get a more nuanced sidewalk-level 

view of pedestrian-level safety infrastructure (not including shade), Nesoff et al. (2018) 

compared in-person observation with observations made of the same blocks using GSV. 

They found that the majority of items had good or excellent levels of reliability between 

the observational styles. Li, Ratti, & Seiferling (2018) presented a method for quantifying 

shade provision from street trees with a combination of GIS tools like the sky view factor 

(how much sky is obstructed) and GSV panoramas for capturing the images needed for 
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analysis. However, the researchers acknowledge that the method, which uses panoramas 

taken from traffic lanes, doesn’t necessarily offer a way to accurately capture shade 

accessible to pedestrians on the sidewalks.  

Research Questions, Hypotheses and Specific Aims 

The central research questions I addressed were: Can sidewalk shade be 

quantified to help assess pedestrian access to shade across a city, and to determine where 

vulnerable people spend a dangerous amount of time in direct sun? Is access to shade 

correlated with risk factors related to income, age, or access to a car?  

Hypothesis 1: It is possible to accurately map sidewalk shade using GIS by 

combining building footprints and height with estimated tree height and crown width 

assessed from Google Street View (GSV) photos. I predicted the resulting shade maps to 

be at least 75% accurate, determined by ground-truthing the models by comparing them 

to actual measurements from the field.   

Hypothesis 2: Mapped routes in areas of higher heat-related risk will have less 

total shade than in areas of lower risk, high-risk areas will have longer gaps in shade, and 

people in high-risk areas will have to spend at least 10 minutes without shade walking to 

the nearest bus stop.   

Hypothesis 3: Statistical analysis of the data gathered from the quantified shade 

maps will reveal that income is the variable most closely correlated with total shade, 

distribution of shade, and time spent without shade. In other words, lower income will 

correlate positively with lower access to shade.  
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Specific Aims 

To investigate these hypotheses, I (a) segmented the city into neighborhoods 

defined by census tracts, (b) defined risk and identified census tracts/study areas of 

varying risk, (c) chose sample walking routes within those study areas, (d) created shade 

maps for the sample routes, (e) measured and segmented the shade maps into quantifiable 

units, and (f) compared those units across areas of varying levels of risk.  

To accomplish this, I pursued these specific aims:  

1. Identified census tracts of varying risk using Pasadena, California as a case study. 

I mapped and ranked census tracts according to prevalence of indicators tied to 

heat-related risk. I chose census tracts to be my study areas based on those results, 

and identified two walking routes within each study area: one north/south (NS), 

one east/west (EW).  

2. Gathered building and tree data and used ArcGIS Pro to create 3D models of the 

walking routes, manually placing and sizing buildings and trees along the walking 

routes using Google Street View as a guide.  

3. Ground-truthed the 3D models by measuring and mapping the sidewalk shade on 

all walking routes in their entirety, in the field and also within the 3D models at 

the same day and time as the corresponding field tests.  

4. Verified the accuracy of the 3D models by comparing the field measurements to 

the modeled shade and calculating match rates between the two.  

5. Corrected all modeled walking routes to match their corresponding field tests. 

6. Modeled the shade and created maps of the shade for each of the 16 walking 

routes at two times of day: August 31, 2018, at 12 p.m. and 2:30 p.m. PDT.   
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7. Calculated total shade for each route, time people spend without shade while 

walking each route, the longest gap for each route, and the number of gaps ≥21 

meters—for both times of day—giving me 32 observations for each measurement.  

8. Compared those results between the areas of varying levels of risk.  
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Chapter II 

Methods 

I used Esri ArcGIS Pro version 2.3.0 software (Esri, 2018a) to organize and 

analyze geographic data, to create the 3D models of the walking routes, and to model the 

shade used in my analysis. Statistical analysis was conducted using R version 3.6.0 (R 

Core Team, 2019) and RStudio version 1.2.1335 (RStudio Team, 2018). Additional 

analysis was conducted using Microsoft Excel version 16.26. 

Identify Study Areas of Varying Degrees of Risk 

To rank census tracts by risk, I chose variables that reflect a known risk—

advanced age—plus variables that indicate pedestrian activity levels that are likely to 

continue regardless of heat: households with no access to a vehicle; per-capita income 

levels, with low income representing higher risk, since they would have less access to 

alternative transportation like ride-sharing; and people age 65+ living alone, and therefore 

less access to help getting around or help running errands. There were eight different 

combinations of variables that I needed to represent (Table 1).   

I used Social Explorer (n.d.) to investigate the variables at the census tract level, 

using the Census Bureau dataset American Community Survey 2016 5-Year Estimates 

(U.S. Census Bureau, 2016). I chose census tracts rather than block groups because block 

groups were too small to give me two walking routes of at least 540 meters. I chose the 5-

Year Estimates because they use the largest sample size and are the most reliable when 

examining at the tract or block level (U.S. Census Bureau, 2018b). I used these variables 



 

 15 

Table 1. Combinations of variables needed to rank census tracts.  
Study 
Area 

Combination of 
Variables 

Census Tract  Study 
Area 

Combination of 
Variables 

Census Tract 

1 
High Income  

3601 
 

5 
Low Income  

2201 
 

High 65+ Living Alone High 65+ Living Alone 
High No Car High No Car 

2 
High Income  

1902 6 
Low Income  

1901 
 

Low 65+ Living Alone Low 65+ Living Alone 
High No Car High No Car 

3 
High Income  

3800 
 

7 
Low Income  

3200 High 65+ Living Alone High 65+ Living Alone 
Low No Car Low No Car 

4 
High Income  

2600 
 

8 
Low Income  

0900 
 

Low 65+ Living Alone Low 65+ Living Alone 
Low No Car Low No Car 

 
 

from the dataset: 

• “Per Capita Income in the Past 12 Months (in 2016 inflation-adjusted dollars.)” I 

chose per-capita income as a way to compare income levels across census tracts 

without regard to the number of people living in a household, since I am 

analyzing households of various sizes (including one-person households). 

• “Occupied Housing Units: No Vehicle Available.”  

• “Households with One or More People 65 Years and Over: 1-Person Household.”  

To identify which census tracts best matched each combination of variables, I 

classified the data using quantiles and ran “Select by Attributes” queries. I started with 

two quantiles, low and high (Table 2), to see if there were census tracts that would 

represent each of these eight combinations of variables. Each combination resulted in at 

least one match. In fact, all but one study area had multiple matches (Table 3), since the 

categories were the broadest possible categories at this point—upper half and lower half 

of the distributions. Next I narrowed the options by working my way through three 

quantiles and four quantiles, until I was left with one option for each combination.  
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Table 2. Query parameters for two quantiles. 

Per-Capita Income Top Quantile:  
Per-Capita Income Bottom Quantile:   

≥ $44,815 
≤ $44,814 

Age 65+ Living Alone Top Quantile:  
Age 65+ Living Alone Bottom Quantile:  

≥ 156 
≤ 155 

No Access to Vehicle Top Quantile:   
No Access to Vehicle Bottom Quantile:  

≥ 148 
≤ 147 

 

Table 3. Query results for two quantiles. 
Area Combinations Census Tracts  Area Combinations Census Tracts 

1 
High Income 2500, 3400 

3500, 3601 
3602, 3900 

 
5 

Low Income 1400, 1502 
2201 
2301 

High 65+ Living Alone High 65+ Living Alone 
High No Car High No Car 

2 
High Income 1902 

6 
Low Income 1600, 1901 

2001, 2002 
2302, 2800 

Low 65+ Living Alone Low 65+ Living Alone 
High No Car High No Car 

3 
High Income 0000, 0100 

3800 
4000 

7 
Low Income 2400       

2700 
3200 

High 65+ Living Alone High 65+ Living Alone 
Low No Car Low No Car 

4 
High Income 0800, 1700 

2600, 2900 
3000, 3700 

8 
Low Income 0401, 0900 

1501, 2100 
2202 

Low 65+ Living Alone Low 65+ Living Alone 
Low No Car Low No Car 

   
 

For the Area 7 combination there were three possible census tracts identified in 

the two-quantile query, and no options given for three- and four-quantile queries. I 

examined the individual variables for the three options and there was no obvious stand-

out, so I selected the area that was located in the south-eastern part of the city—an area 

not yet represented in the study. The full process gave me eight study areas throughout 

the city (Figure 2), one representing each combination of variables. 
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Figure 2. Study areas.  
 
Census tract boundaries from Centers for Disease Control (CDC, 2017a).  
 

Within each study area I identified two 540-meter walking routes (one running 

east-west and one running north-south) based on visual analysis of the ground conditions, 

trying to closely simulate a typical walk to or from a bus stop (Figure 3). In order to keep 

the routes realistically connected to bus stops, the NS route in Area 5 needed to take a 

turn, so 135 meters of that route actually run EW.   
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Figure 3. Walking routes within each study area.  

Pasadena Transit data: City of Pasadena Open Data Site (n.d.).  
 

Create 3D Models of Walking Routes 

To map the shade along the designated walking routes, I created 3D models of 

each route that included multipatch features of all trees and buildings. Multipatch is a 

GIS data type that lets the featured tree or building not just look 3D but also act 3D, so 

the software sees it as an obstruction for the sun’s rays. To act 3D, I had to add elevation 

and height data to a 2D layer of building footprints, and extract vegetation from the 

elevation and height data to generate a layer of trees. Two critical pieces were needed for 

these steps: the layer of building footprints and elevation and height data obtained 

through LiDAR.  
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Creating Multipatch Layers of Trees and Buildings  

I obtained a GIS layer of building footprints for Los Angeles County (Los 

Angeles County GIS Data Portal, 2008), and clipped it to include only the buildings 

within the city of Pasadena. I obtained LiDAR data from the NOAA Office for Coastal 

Management (NOAA, 2015-2016) (Table 4).  

Table 4. LiDAR spatial reference parameters. 

  
2015-2016 LARIAC LiDAR: Los Angeles Region, CA-1 
Projection: State Plane 1983 Zone 0405 California 5 
Horizontal datum: NAD83; horizontal units: US Feet 
Vertical datum: NAVD88; vertical units: Feet 
Output product: Point  
Output format: Points LAS 
Data classes: All 
  

 

I deployed the “ArcGIS Solutions for Local Government: Local Government 3D 

Basemaps” (Esri, 2019a) to create multipatch feature layers of trees and buildings. The 

solution packages the tasks and tools necessary to create these 3D layers within an 

ArcGIS Pro scene. In ArcGIS, “maps” are mostly two-dimensional (2D) with some 

ability to visualize contours and other 3D elements. To achieve true 3D involving the 

vertical axis, ArcGIS Pro uses “scenes”—a Global Scene when the curvature of the Earth 

is important, and a Local Scene when it’s not (Esri, n.d.).   

The first step was to use the LiDAR data (LAS point data) to create the elevation 

layers that would add that third dimension to the scene. I followed the tasks to use the 

“Create LAS Dataset” data management tool to add my LAS point data to the scene and 

then use that point data to create a LAS dataset. Then I used the “Extract Elevation from 
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LAS Dataset” task to extract three different elevation layers: Digital Terrain Model 

(DTM), which provides elevation of the ground; Digital Surface Model (DSM), which 

provides elevation of trees and buildings on top of the ground; and normalized Digital 

Surface Model (nDSM), which provides the height of features sitting above the ground 

(Esri, 2018b). For the parameters, I kept all of the defaults. Cell size: 1.58. Classify noise: 

true. Minimum height: -5 feet. Maximum height: 3000 feet. Processing extent: default. 

First time las: false.   

 

Creating 3D trees. After extracting the elevation layers, I created the multipatch layer of 

trees by following the Local Government 3D Basemap tasks for “Publishing Schematic 

Local Government Scene,” which walked me through the steps to use the “Vegetation 

Extraction” tool to create a layer of multipatch 3D schematic trees using the LAS dataset 

and building footprint layer. For the parameters, I kept all of the defaults. Point spacing: 

2. Vegetation class codes: 1. Buffer distance: 3. Minimum canopy height: 12. Maximum 

canopy height: 90.    

This process created a layer of multipatch trees throughout the city. The location, 

size and shape of the individual trees were not very accurate when compared to Google 

Street View photos of the area (Figure 4), but this layer of 3D trees suited my purposes—

giving me an inventory of trees that I could then move and size as needed as I manually 

built the models for my 3D walking routes. To make this data-heavy layer easier to work 

with, for each walking route I selected all trees within a few blocks and created individual 

layer packages from those selections.  
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Figure 4. Sample GSV photo of route 1NS.  

Source: Google Maps GSV. 
 

Creating 3D buildings. The process for creating a layer of multipatch buildings city-wide 

was more involved. I followed the Local Government 3D Basemap solution “Publish 

Schematic Buildings” tasks, designed to create buildings with a Level of Detail 2 (LOD2) 

by adding elevation and height data to the building footprints. (The solution classifies 

LOD1 as basic shapes; LOD2 as schematic with more nuance; LOD3 as realistic). I used 

the “Segment Roof Parts” task to create LOD2 buildings. For the parameters, I kept all 

defaults. Spectral detail: 12. Spatial detail: 12. Minimum segment size (in pixels): 214. 

Regularization tolerance: 3 meters. Segment flat roofs only: false.  

I then used the “Extract Roof Form” task to segment the building footprints into 

more detailed roof forms, to add nuance to the building shapes. For the parameters, I kept 

all defaults. Minimum flat roof area: 250. Minimum slope roof area: 75. Minimum roof 

height 8. Simplify buildings: true. Simplify tolerance: 0.1. First time: false.  



 

 22 

Those tasks gave me a city-wide layer of buildings with more refined roof forms, 

but the buildings were still 2D polygon features. To turn them into 3D multipatch 

features, I selected only the buildings within a few blocks of each walking route to be 

modeled, created a layer from each selection, then ran the “Layer 3D to Feature Class” 

tool to convert the polygons into multipatch features that could be used in the Shadow 

Impact Analysis solution.  

I ended up with two multipatch layers for each walking route: a layer of trees and 

a layer of buildings. I used Save as Layer Package to export the layers, along with all 

data, for each route.   

Editing the 3D Models of Walking Routes 

I deployed the “ArcGIS Pro Shadow Impact Analysis” solution (Esri, 2019b), 

which includes a Check Shadows tool within a global scene and an Evaluate Shadows 

tool within a local scene. I chose to use the Check Shadows tool because it most closely 

suited my needs for simply displaying the shadows at a particular day and time. I added 

the tree and building layer packages to the global Check Shadows scene within the 

solution, creating separate ArcGIS Pro project files for each study area (Figure 5). Since 

the Check Shadows tool uses a global scene, the layers were projected on the fly to the 

WGS 1984 coordinate system. (Figures of all study areas and walking routes are included 

in Appendix 1 and 2.) 
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Figure 5. Area 1 with both walking routes. 

In this view, four GIS layers are activated: the separate building and tree layers for 
routes 1EW and 1NS.  

 

This became my editing environment. Rather than rely on the accuracy of the tree 

and building placement and size from LiDAR, I considered those layers to be an 

inventory of multipatch features that I could manually move, size and shape as needed—

following photos from Google Street View as a reference—to create 3D versions of the 

walking routes to be studied.   

To start editing a walking route, I activated the building and tree layers for that 

route only, and used the OpenStreetMap basemap as an on-screen guide, moving the 

buildings and trees to align with the basemap’s street line to serve as the curb—to give 

myself a straight line to follow. I manually edited every individual building and tree 

feature along the entirety of each walking route using the Move, Scale and Rotate editing 

tools within ArcGIS Pro. I only edited the buildings and trees on the sidewalks and 
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properties along the south sides of the EW routes and the west sides of the NS routes 

(Figure 6). As a source for information about where to place and how to size the features, 

I used Google Street View photos of the walking routes.   

 
Figure 6. Walking route 1 EW.  

Blue indicates the area within which I edited the buildings and trees.  

Verifying the Modeled Walking Routes 

To ground-truth the models, I went to each route in the field and measured and 

mapped shade in 3-meter segments, with the help of research assistants using a measuring 

wheel, for the entire length of all 16 routes. I also took photos at points along each route, 

to use as a source to help me investigate discrepancies when comparing the field tests to 

the models. I designated each 3-meter segment as either Shade or No Shade (Figure 7). If 

a segment was at least half shaded I counted it as Shade. For every route I calculated total 

meters shaded and not shaded, length of the longest gap in shade, and number of gaps 21 

meters or more. I repeated the shade-mapping and calculation process for each route 



 

 25 

within the 3D models (Figure 8), modeling shade at the same day and time as each 

corresponding field test.  

 
Figure 7. Shade map from field test for Area 1 routes.  

 
Figure 8. Shade map from model for Area 1. 
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To model shade in the Shadow Impact Analysis Solution, I used the Check 

Shadows tasks for creating a layer of sun positions for each day on which I conducted 

field tests. The parameters included selecting one of the building or tree layers as the 

input observer and setting the elevation, time zone, date and time. The tool automatically 

filled in parameters for the observer horizon distance, atmospheric pressure and 

temperature. I used the same process to create sun layers for each day I conducted field 

tests, on these dates in 2019: April 25, May 3, May 4, May 5, and May 14.     

After creating the sun layer, the tasks walked me through setting the scene 

illumination by turning on Display Shadows in 3D, setting Light Contribution to 50, and 

setting the map to Map Time. Then I enabled time on the sun layer by setting Layer Time 

at “Each feature as a single time field,” setting Time Field to Local Time; and setting the 

time zone at Pacific time with Daylight Saving Time enabled.  

To measure and map the shade within the models, I activated the appropriate sun 

layer and set the time to match the time of the field test. This resulted in shadows cast in 

the model based on the sun position of that day and time. I used the ArcGIS Pro 

measuring tool, set to meters, and measured each stretch of sun and shade along each 

route. Again I created maps in 3-meter segments, and designated each segment as either 

Shade or No Shade. If a segment was at least half shaded I counted it as Shade.  

I did the same calculations as the field tests—total meters shaded and not shaded, 

length of the longest gap in shade, and number of gaps 21 meters or more. I compared the 

field tests with the modeled routes to determine the accuracy of the models. 
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Comparison Process to Address Hypothesis 1 

With calculations for both the field tests and the modeled shade in hand, I first 

compared the overall shade/no shade designations to determine how many meters 

differed between the field and the model. For example, route 1NS shown above (Figures 

7 and 8): the field test showed 306 meters shaded, while the model showed 231 meters 

shaded—which means 75 meters differed out of 540 meters total, for an accuracy level 

(match rate) of 86%. For all routes, match rates for total shade ranged from a low of 85% 

(route 4NS) to a high of 100% (route 3NS), with a mean match rate of 91.6%. Results for 

all routes are included in the Appendix 4.  

These results exceed Hypothesis 1 where I predicted at least 75% accuracy. 

However, upon further analysis, total percent accuracy is not all that revealing as a 

comparison tool. To use route 1NS as an example: it was 86% accurate for total shade, 

but the length of the longest gap measured in the model was double the length of the 

longest gap measured in the field (54 meters and 27 meters respectively). Likewise, the 

number of gaps ≥ 21 meters was double in the model when compared with the field test 

(the model had six gaps of ≥ 21 meters, while the field test had three). Many of the routes 

had similar results (even the route with a 100% match rate for total shade).  

So I calculated an accuracy level/match rate for each measure of the distribution 

of shade— longest gap and number of gaps ≥21 meters—and combined all of those to 

determine a mean match rate for distribution as a whole. Unlike with total shade, these 

distribution measurements don’t combine to add up to a standard total. So I used the 

highest measurement of each as a proxy for the total, and then did the same calculation to 

determine a percent accuracy level (e.g., if the field test showed a longest gap of 30 
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meters but the model showed a gap of 60 meters, the match rate would be 50%). Match 

rates for the measurements of the gaps ranged from 0 to 100%, with a mean of 70.4%.  

The lower levels of accuracy for the distribution measurements led me to 

conclude that the models would be most useful if I took the time to correct them to match 

their corresponding field tests. I investigated all discrepancies to determine whether the 

errors in the models were the result of old or bad GSV data or the result of imperfect 

modeling on my part. For example, for route 5EW, the field test showed shade where the 

model showed none (Figure 9). After investigating, I saw that the modeled trees on the 

inside of the sidewalk were either too far or too small. I went back to GSV to determine 

the best way to correct it. That 5EW photo also revealed another challenge when trying to 

model the real world: the curb tree in the background of the left photo (Figure 9 left side) 

is broader than the one in the model, and is leaning over the sidewalk. I changed the 

modeled tree to be broader, but it’s difficult to capture the effects of a tree that leans. In 

those cases I moved the tree inside a bit, to bring more of its shadow to the inside.  

 
Figure 9. Example of verification process in action, using Route 5EW.  

On left, a photo from the field test. On right, the same area as originally modeled.  
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Overall, there were only two instances of a GSV photo not matching reality—

trees had been cut down since the GSV photos were taken (two photos involving three 

trees). All other discrepancies were the result of the difficulty in mirroring reality within 

a 3D model. I discuss the modeling challenges and the causes of the errors in more detail 

in the Discussion section.  

I then re-modeled every walking route to make all routes match their field tests as 

much as possible, and created new shade maps for the revised models. While they do 

now match on paper, it’s important to note that there are still many qualitative factors at 

play: I often had to make judgment calls regarding where shade was coming from; 

accuracy might vary depending on the time of day and year as the sun moves across the 

sky; and even my own measuring process in the field and in the model is subject to 

human error and variability.   

Mapping and Measuring the Routes for Analysis 

Once the models were as accurate as possible, I modeled, mapped and calculated 

shade for each route for two different times of day: August 31, 2018 at 12 p.m. and 2:30 

p.m. PDT. I chose August 31 because, based on historical daily normal temperatures, it is 

the ninth and last day of the stretch of hottest days of the year for Pasadena (U.S. Climate 

Data, 2019). I chose 12 p.m. because it’s the middle of the day and the sun is high, and 

2:30 p.m. because the sun is still high but has moved across the sky—and it’s still a time 

of day that seniors might be out and about. It’s also a time of day where the objects 

casting shadows on the routes are within the perimeter of the areas modeled. To model 

times of day and times of year when the shadows are long, the perimeter of the total area 

modeled would have to be wider to capture all obstructions.  
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For each route and for both times of day, I calculated number of meters shaded 

and not shaded, total percent shaded and not shaded, length of the longest gap in shade, 

and the number of gaps ≥ 21 meters. To calculate minutes walking with no shade, I used 

a walking speed of 0.75 meters per second (45 meters/minute) and divided total meters 

without shade by 45 to get minutes of no shade. The speed of 0.75 meters per second 

(m/s) is the pace for someone elderly and low-income (Zaninotto, Sacker, & Head, 2013).  
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Chapter III 

Results 

I introduced the results for Hypothesis 1 in the previous section, in my summary 

of the accuracy of the models when compared to the field tests. I hypothesized that 

modeled maps would be at least 75% accurate when compared to measurements from the 

field. Accuracy levels for total shade ranged from 85% to 100%, with a mean of 91.6%. 

Accuracy levels for distribution of shade (longest gap and number of gaps ≥21 meters) 

ranged from 0 to 100% with a mean match rate of 70.4% (only one measurement scored 

0% and just three total scored below 50%). The average of both means is 81%, leading 

me to conclude that Hypothesis 1 is supported, with the observation that total shade 

matched more closely than distribution of shade.  

In this section I focus on Hypotheses 2 and 3, both of which are related to 

possible associations among the variables of risk and access to shade. I started with a 

general analysis using Excel to address Hypothesis 2, and then conducted statistical 

analysis using linear mixed effects models (LMM) to test Hypothesis 3.   

General Analysis to Address Hypothesis 2 

I hypothesized that routes in areas of higher heat-related risk would have less total 

shade than in areas of lower risk, high-risk areas would have longer gaps in shade, and 

people in high-risk areas would have to spend at least 10 minutes without shade walking 

to the nearest bus stop. Since total shade is used to calculate the time walking without 
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shade (total meters with no shade divided by the walking speed mentioned earlier), 

“Minutes With No Shade” serves as a stand-in for both of those measures.  

Right off the bat I can reject my hypothesis of spending at least 10 minutes 

without shade, as the highest number of minutes measured was 8.87 for 7NS. Total 

minutes in shade is partly dependent upon the total length of a walk—the routes studied 

were limited to 540 meters, which is a 12-minute walk based on the walking speed used 

here. That route distance was determined by the size of the smallest census tract in order 

to keep the walking routes fully contained within a tract. Still, within a walk that lasts 12 

minutes, pedestrians along mid-income route 7NS spend nearly three-fourths (74%) of 

their time unshaded at noon on one of the hottest days of the year. Pedestrians on lower-

income route 8EW spend almost the same time (8.6 and 8.7 minutes, nearly three-

fourths) in direct sun at both times of day.   

To examine the rest of the hypothesis, I defined high risk as study areas with 

lower per-capita income, a higher number of households with someone age 65 or over 

living alone, and a higher number of households with no access to a vehicle. I did a visual 

examination of the data using Excel, to see how lower-risk areas compared to higher-risk 

areas for each of the measurements, and to see if there were any obvious trends in how 

the three predictor variables relate to the various measurements of access to shade. 

No clear trends emerge among the predictor variables. The highest number of 

minutes of no shade occur in study areas of both higher income and lower income (Figure 

10); and in areas of both higher and lower numbers of households with no access to a 

vehicle (Figure 11).  
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Figure 10.  Minutes of no shade, per-capita income.  

Shade data by author. Income data: U.S. Census Bureau ACS 2016 5-Year Estimates. 
 

 
Figure 11.  Minutes of no shade, households with no car.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
 

The same is true for areas of both lower and higher numbers of households with 

someone age 65 living alone. Although, in that case, the lower risk areas (with fewer 
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older people living alone) don’t have any scores toward the lowest end of the scale of 

minutes without shade (Figure 12). 

 
Figure 12.  Minutes of no shade, households with 65+ living alone.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates.  
 

For the longest gap in shade and the number of gaps, there are no strong trends 

but there are a few notable differences. The three lowest income levels have shorter 

longest gaps than those in the higher income areas, though they still have gaps that 

exceed 60 meters (Figure 13 and Appendix 5). The two routes with the lowest numbers of 

gaps ≥21 meters occur in the areas with lower incomes (Figure 14 and Appendix 5).  
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Figure 13.  Longest gap in shade, per-capita income.  

Shade data by author. Income data: U. S. Census Bureau ACS 2016 5-Year Estimates. 

 
Figure 14.  Number of gaps ≥ 21 meters, per-capita income.  

Shade data by author. Income data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
 

Under the conditions of risk described earlier, study area 5 is the area of highest 

total risk when considering all three predictor variables combined, while study area 4 is 

the area of lowest total risk (Figure 15). I charted and examined those two areas against 
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minutes with no shade and longest gap in shade. Again I failed to demonstrate my 

predicted association between the risk factors and access to shade. In fact, the area of 

highest risk had less time without shade and shorter gaps in shade than the area of lowest 

risk. This was true at both times of day and in both directions (Figures 16 and 17).    

 

   

Figure 15.  Variables that determined areas of lowest and highest risk.  

Data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
 

 

 

 

 
 

Figure 16.  Minutes of no shade in areas of lowest and highest risk.  

Shade data by author. Green represents lowest risk, orange is highest risk. 
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Figure 17.  Longest gap in areas of lowest and highest risk.  

Shade data by author. Green represents lowest risk, orange is highest risk. 

Statistical Analysis to Address Hypothesis 3 

I conducted statistical analysis to address Hypothesis 3, which states that the 

quantified shade maps will reveal that income is the variable most closely associated with 

total shade, distribution of shade, and time spent without shade. In other words, lower 

income will correlate positively with lower access to shade.  

I have 16 total walking routes, each observed:  

• at two different times of day (12 p.m. and 2:30 p.m.),  

• with three time-variant outcomes as response variables (minutes of no 

shade, longest gap in shade, and number of gaps ≥21 meters), and  

• three time-invariant predictors (per-capita income, households with 

someone ≥65 living alone, and households with no access to a vehicle).   

The data are non-independent in a few ways: outcomes at the two time points are 

clustered within each route, and the response variables are correlated (e.g., a route with 

less overall shade might be more likely to have a longer gap or more gaps overall).  
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To control for the nesting by route, and for the direction of the route and time of 

the shade, I used linear mixed effects models (LMM). I used R version 3.6.0 (R Core 

Team, 2019) and RStudio version 1.2.1335 (RStudio Team, 2018). To estimate LMMs I 

used the R Package “lme4,” version 1.1-21 (Bates, Maechler, Bolker, & Walker, 2015). 

To visualize quantities of interest from the LMMs I used the R Package “effects,” version 

4.1-1 (Fox & Weisberg, 2019). I received considerable help and guidance for this 

analysis from senior data scientist Steven Worthington, Ph.D., manager of data science 

services for the Institute for Quantitative Social Science at Harvard University.  

The specification of the first LMM included Income (natural log), Age65Alone, 

NoCar, Time (noon and mid, for 12 p.m. and 2:30 p.m., respectively), and Direction (EW 

and NS) as fixed effects. Random effects included random intercepts grouped by route. I 

used that model for Minutes of No Shade (Figures 18 and 19).  

 

MinutesLog = lmer(MinutesNoShade ~ log_Income + Age65Alone + NoCar + 

Time + Direction + (1|Route), data = shade) 
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Figure 18.  Summary of LMM model for minutes no shade.  

Screen shot from R version 3.6.0.  
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Figure 19.  Plots of LMM for minutes of no shade. 

Plots provided by R Package “effects” version 4.1-1. 
 

I used the same LMM model to model Longest Gap and Number of Gaps ≥21m 

(summaries and plots are included in Appendix 6): 

LongGap2 = lmer(LongestGap ~ log_Income + Age65Alone + NoCar + Time + 

Direction + (1|Route), data = shade) 

Gap21 = lmer(GapCount21 ~ log_Income + Age65Alone + NoCar + Time + 

Direction + (1|Route), data = shade) 

Among income, age and car, there were no statistically significant results for any 

of the three initial models. Next, I modeled 3-way interactions for MinutesNoShade, 

interacting Income with Time and Direction: 
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MinutesInteract = lmer(MinutesNoShade ~ log_Income * Time * Direction + 

Age65Alone + NoCar + (1|Route), data = shade) 

The 3-way interaction was not statistically significant (Figures 20 and 21).  

 
Figure 20.  3-way interaction: minutes with income, time, direction.  

Screen shot from R version 3.6.0. 
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Figure 21.  3-way interaction: minutes with income, time, direction.   

Plots provided by R Package “effects” version 4.1-1. 
 

I tried a simplified model with a 2-way interaction for MinutesNoShade, 

interacting Income with Time (summary and plots are included in Appendix 6):  

 

Minutes2way = lmer(MinutesNoShade ~ log_Income * Time + Direction + 

Age65Alone + NoCar + (1|Route), data = shade) 

 

   The 2-way interaction was not statistically significant. Based on this analysis, 

there does not appear to be an association between income and access to shade. 
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Exploring Minutes Without Shade 

 All routes experienced minutes of no shade ranging from a low of 3.33 minutes 

for mid-income route 2NS at 2:30 p.m., to a high of 8.87 minutes for mid-income route 

7NS at 12 p.m. (Figure 22). Five routes experienced eight minutes or more without 

shade: highest-income 3NS at 12 p.m., lower-income 8EW at 2:30 p.m., mid-income 2NS 

at 12 p.m., lower-income 8EW at 12 p.m., and mid-income 7NS at 12 p.m. That group 

includes both directions and both times of day, though only one instance at 2:30 p.m.  

 
Figure 22.  Histogram for minutes with no shade.  

Screen shot from R version 3.6.0. 
 

Both NS and EW routes are represented at both ends of the chart: lowest minutes 

and highest minutes. Two different NS routes (2NS and 3NS) have big differences in 

minutes from 12 p.m. to 2:30 p.m. For 2NS, minutes of no shade is 8.6 at noon (third 

highest overall) and then drops to 3.33 mid-afternoon (lowest overall). Route 3NS makes 

a similar drop though not as wide, going from 8.33 to 4.46 minutes from noon to mid-

afternoon. The same is true for both routes for longest gap: both have the longest gap 
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overall at 105 meters at noon, but gaps of just 30 meters and 42 meters (for 2NS and 

3NS, respectively) when measured at mid-afternoon. Based on field observations, both of 

those routes have taller obstructions on the west side of their streets: 2NS has buildings in 

a dense part of downtown, while route 3NS has taller trees in a hilly part of town. 

Exploring Gaps in Shade 

The distribution of the longest gap measurements ranged from 21 meters to 105 

meters. There were four routes with longest gaps of 105 meters (all in areas of mid- to 

highest levels of income): routes 1NS, 2NS, 3NS and 2EW, all at 12 p.m. The 

distribution of number of gaps ≥21m ranged from 1 to 7. There were six routes with the 

highest number of gaps, three at 12 p.m. and three at 2:30 p.m.: 1NS at 12 p.m., 3NS at 

12 p.m., 7NS at 12 p.m., 6NS at 2:30 p.m., 7EW at 2:30 p.m., and 4NS at 2:30 p.m. (half 

of those are in areas of higher income and half are in areas of lower income).    

A route that is 50% unshaded will be experienced differently if the sun is felt in 

one long gap or if it is distributed in smaller gaps throughout the entire route. I plotted 

minutes against longest gap and number of gaps (Figures 23 and 24). Obvious trends 

emerged for the routes with highest unshaded minutes: as the length of gap lowers toward 

that end of the chart, the number of gaps rises.  

One trend looks surprising at first glance: 1NS at 12 p.m. and 3NS at 12 p.m. both 

have highest length of gap (105 meters) and highest number of gaps (7), yet don’t have 

the highest number of minutes without shade. So I pulled out the shade maps to see why. 

On the route with the most minutes unshaded (7NS at 12 p.m.), the patches of shade 

breaking up the sun are much smaller: its longest patch of shade is only 18 meters, and 

there are only two that are that length. In comparison, the other two routes have patches 
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of shade that are 24 meters, 30 meters, 36 meters and 45 meters—providing more relief 

between those long stretches of sun.   

 
Figure 23.  Minutes of no shade, longest gap in shade.  

Shade data by author. 

 
Figure 24.  Minutes of no shade, number of gaps ≥21m or more.  

Shade data by author. 
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Chapter IV 

Discussion 

I will begin this section with a discussion of the analysis and results, and of the 

selection of response variables used in the study. Then, since a main goal of this research 

was to propose a new method for quantifying shade, I will also discuss some of the 

challenges of the techniques I have presented to help others who are interested in 

quantifying sidewalk shade.  

Identifying Risk and Dangerous Time in Sun  

Both Hypothesis 2 and Hypothesis 3 attempted to predict which areas of the city 

would have the least access to shade—asserting that areas of higher heat-related risk 

would have less shade than areas of lower risk, and that income would be most closely 

associated with access to shade. Neither was supported by the research.  

The comparison of the study areas of highest risk (area 5) and lowest risk (area 4) 

offers some clues as to why those predictions didn’t play out across the city. 

Observations from the field revealed that low-risk study area 4 is in a residential 

neighborhood with wide streets and houses set far back from the sidewalk, meaning the 

only possible sources of sidewalk shade are the trees along the sidewalk. High-risk study 

area 5 is likewise mostly residential but also has some two-story commercial buildings 

and is generally more dense with all houses and buildings closer to the sidewalk and 

closer to each other. In fact, population density in area 5 is more than three times higher 
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than it is in area 4 (U.S. Census Bureau, 2016). Area 5 routes benefited from the access to 

occasional building shade and from the density of trees closer together.  

I chose variables that would help me assess time without shade and distribution of 

shade along walking routes, as both contribute to a pedestrian’s thermal discomfort. After 

studying the results, I can see that time without shade would be difficult to interpret on its 

own—without the accompanying measures of distribution. A total of eight minutes 

without shade would be felt much differently all at once versus 30 seconds at a time. In 

fact, of the variables studied, longest gap seems to be the one most directly and reliably 

associated with potential pedestrian discomfort.  

With that in mind, I examined the data to see which routes had more long gaps. 

Route 8EW had three gaps of 60 meters or more at noon and two gaps of 60 meters or 

more at 2:30 p.m. As the only route with multiple ≥60m gaps at both times of day, 8EW 

might arguably be considered the least-comfortable route studied. But here’s why that 

designation is interesting and why the assessment of access to shade must be approached 

with careful thought: 8EW does not subject pedestrians to the single longest gap (8EW 

longest gaps are 81 meters at noon and 75 meters at 2:30 p.m., while other routes 

recorded a gap of 105 meters). All of the longest gaps (105 meters) occurred in the areas 

with higher incomes, while the EW route in Area 5— the area of highest combined risk 

and second-lowest income level—registered longest gaps of just 21 meters at both noon 

and mid-afternoon. That’s likely why the routes in area 5 also register three of the five 

lowest number of minutes without shade, ranging from 4 minutes to 4.9 minutes.  

So, one of the challenges of quantifying shade will be in the identification of 

variables to be studied. For any future studies, that will likely depend on the purpose of 
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the study and the design of the research. For example, for walking routes, long gaps in 

shade are significant; for someone studying access to shade at bus stops or other locations 

where people stand in one place, minutes of no shade would be more meaningful.  

 The Challenges of Quantifying Shade 

The comparison and correction process gave me insights that might be helpful for 

others who want to use GIS and/or GSV to help model and map sidewalk shade.  

The process of creating the 3D models of the walking routes was labor-intensive 

and time consuming. With 16 routes of 540 meters each, I manually placed, sized and 

shaped trees and buildings along a total of 8.64 kilometers (5.4 miles) of sidewalk and the 

areas surrounding the properties along the sidewalks. Once I discovered that the 

distribution of shade would only be a useful comparison if I fixed all the routes to match 

the field tests, that meant that I then had to go back and revise every model accordingly. I 

did not begin this project with any experience in 3D modeling, so it’s possible that those 

with more experience would have an easier time working with the 3D data and creating 

the models.  

One of the factors making the modeling process challenging was the need to 

estimate tree height and crown width. That process could be made easier if cities included 

those measurements in their tree inventories, for those that are able to maintain such 

inventories. The city of Pasadena maintains a GIS dataset, but the only size-related 

variable it includes is trunk diameter (City of Pasadena, 2019).  
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The Reliability of GSV as a Source of Data 

There were only two instances when a GSV photo showed incorrect information: 

a tree that appeared in the GSV photo did not appear in the field, presumably because it 

had been cut down. The majority of the corrections I had to make involved inaccurate 

modeling on my part: incorrect placement, sizing or shaping of the trees; or trees from the 

background that I had missed the first time around. That said, there were a handful of 

challenges in working with GSV, related to the perspective of the GSV camera and from 

my decision to use the basemap line as a guide for the curb. I will give an overview of the 

challenges faced and lessons learned.   

 

Building placement. Route 1NS introduced me to the challenge inherent in my decision to 

use the basemap line as stand-in for the curb. The basemaps are not necessarily accurate 

in terms of street width and curb placement. As I edited Route 1NS I saw that I had 

modeled the buildings too far from the curb (Figure 25). I corrected this for every route, 

moving buildings closer to the curb and placing them according to GSV.  

 
Figure 25.  Example of building placement discrepancy.  
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The only discrepancy I couldn’t correct. For Route 2NS, the model showed an extra three 

meters of building shade from the church on the southwest corner of Holly and Marengo 

(Figure 26). There was no way to correct it without changing the building shape. So I left 

a 3-meter discrepancy in this modeled route, which affected the longest gap at the day 

and time of the field test but is not a factor on the day and times mapped for analysis—

since the disputed segment falls within a stretch of sun on August 31 at 12 p.m. and 

within a stretch of shade at 2:30 p.m. (rather than defining the edge of either stretch). 

 
Figure 26.  The only discrepancy I couldn’t correct.  

These boxes represent meters 136-196 of route 2NS (all rows represent the same stretch 
of sidewalk). Shade data by author.  
 

Scale and perspective. Route 4NS illustrates the challenge of perspective when using 

GSV as a visual source. From the GSV photo it appeared that a few small trees sat back 

away from the sidewalk (Figure 27), so that is how I modeled them (Figure 28). As I 

corrected all routes, I noticed several instances of similar modeling mistakes due to the 

challenge of relying on GSV photos that have fixed angles and distances out of the user’s 

control.   
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Figure 27.  GSV of 4NS, to demonstrate perspective.  

Source: Google Maps GSV.  
 

 
Figure 28.  Model of 4NS, to demonstrate perspective.  

 

Once I compared the 4NS field test to the model, I could see that the field test 

showed shadows where the model had none. Upon investigation of the photos I took in 

the field (Figure 29) and another examination of the GSV photos, I could see that my 

interpretation of the GSV photo was wrong. I corrected the model accordingly. 
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Figure 29.  Field photo of 4NS, to demonstrate perspective.  

 

Schematic shapes of trees. Pasadena has many tall palm trees that were difficult to model 

correctly because the schematic tree shapes don’t allow it (Figure 30). The ArcGIS Pro 

scaling abilities did not allow me to stretch the height of the tree without also stretching 

the width of the crown. So it was hard to model those tall palms accurately. 

 
Figure 30.  Route 7NS example of palm trees.  

Source of photo on the left: Google Maps GSV. 
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The geometric shapes of the trees also made it impossible to capture dappled 

shade in the model—it was either solid shade or no shade. In the field tests, I usually 

counted dappled shade as solid shade, though in one instance on Route 6EW the shade 

was so dappled (Figure 31) I didn’t count it, and it showed up as a discrepancy when 

comparing the field test to the modeled shade. I went back and created a gap of shade in 

the model, since GSV shows a gap in the otherwise relatively connected canopy. 

 
Figure 31.  Route 6EW field test and model, dappled shade discrepancy.  

 

Shade from beyond the perimeter. On Route 6NS, the field test revealed shade in the 

intersection of Esther and Raymond that didn’t show up in my original map of the 

modeled shade. Field photos confirmed that the intersection is shaded from something 

coming from beyond the property on the northwest corner (Figure 32). Another look at 

the GSV photos confirmed that there is a big tree on Esther just west of the intersection 

that is large enough to cast shadow across the intersection (Figure 33). I hadn’t paid 

attention to that tree in my first pass at creating the model. I added the tree to account for 

the shade in my corrected model.  
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Figure 32.  Field photo of 6NS, beyond the perimeter.  

 

 
Figure 33.  GSV photo of 6NS, beyond the perimeter.  

Source of photo: Google Maps GSV.   
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The advantage of field photos. Having photos from the field tests helped when trying to 

determine where shade is coming from when it shows up in the field test but not in the 

model. On route 7EW the field test showed patches of small shade (Figure 34). GSV 

showed an oddly shaped tree, next to the curb, which I thought provided the shade 

(Figure 35). But after consulting the field test photo, I could see that the tree in fact was 

not giving shade to the sidewalk, but the small patches of shade were coming from 

bushes on the inside of the sidewalk. I corrected the model accordingly (Figure 36). 

 
Figure 34.  Field photo 7EW, advantage of field photos.  

 
Figure 35.  GSV photo 7EW, advantage of field photos.  

Blue arrow points to oddly shaped tree. Orange arrow points to actual source of shade: 
small trees on the inside of the sidewalk. Source of photo: Google Maps GSV.  
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Figure 36.  Model screen shot 7EW, advantage of field photos.  

 
Trees removed. GSV keeps historical photos, and sometimes changes the photo the user 

sees, even along the same stretch of road. That’s how I noticed that I built the model for 

this patch of route 8EW using a January 2018 photo, then as I was correcting the model 

the photo switched to an April 2019 photo from further back (Figure 37). Two trees had 

been taken down between the time of the two photos. I removed the trees based on the 

field test and the more recent GSV photo.  

 
Figure 37.  Route 8EW, example of trees removed.  

Source of both photos: Google Maps GSV.  
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Conclusions 

It is possible to quantify sidewalk shade using GIS as a tool for 3D modeling and 

using Google Street View (GSV) as a source of information about the environment. That 

said, I would be skeptical of any 3D models that weren’t ground-truthed in some way, 

since the process of placing, sizing and shaping the individual trees is qualitative and 

dependent upon the perspective of the person doing the modeling. In determining 

pedestrian access to shade on walking routes across a city, the analysis should include 

measurements that capture both total shade and distribution of shade—as neither fully 

captures the pedestrian experience alone.   

The question of determining where vulnerable people spend a dangerous amount 

of time in direct sun will depend on how vulnerability is defined. In this study, the area of 

highest risk had more access to shade than the area of lowest risk, and there did not 

appear to be an association between income and access to shade.   

Research Limitations 

 The results presented in this study are subject to several limitations.  

The accuracy of the 3D models cannot be guaranteed 100% and will vary for 

others depending on the area studied and the skills of the individual creating the models. 

As discussed earlier, the 3D modeling process depended on a number of qualitative 

factors and decisions made about the placement, size and shape of the trees in the models. 

While I took the time to make all 16 models match their field tests, that doesn’t 

necessarily mean they are 100% accurate. First, in making the modeled shade maps 

match the field shade maps, I had to make decisions along the way to determine what was 

casting shadows in the field. I may or may not have always been right. Second, since 
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shade changes based on date and time, it’s possible there were elements beyond the 

perimeter of where I modeled that didn’t affect shade during the time of the field test 

(which is what I used to ground-truth the model) but would in fact cast a shadow at a 

different time of day or time of year. This limitation could be addressed by conducting 

multiple field tests for each route, at various times of day and times of year—to provide 

more data for ground-truthing by increasing the likelihood of capturing field 

measurements for all angles of shade at various sun positions.  

GSV turned out to be a mostly accurate source of information about buildings and 

trees (with only two instances of the photos not matching reality). But this finding is 

specific to Pasadena, CA, and doesn’t necessarily reflect the accuracy of GSV as a source 

for other cities. Accuracy depends on how recent the photos are, and how often the area 

changes. The accuracy related to tree crown width might also depend on the time of year 

when the GSV photos are taken, if deciduous trees are common in the area.   

The study only covered 16 walking routes in one U.S. city. The method of 

quantifying shade can be applied elsewhere, with the caveats mentioned above. But 

because shade and urban design are site-specific, the comparisons of the areas of higher 

risk and lower risk, along with the analysis of whether or not income is associated with 

access to shade, are specific to the areas studied. Finally, the small sample size limited 

the statistical power in the analysis.  

Questions for Further Research 

With a method for mapping, measuring and analyzing shade in hand, a logical 

next step would be to see if absence of shade is associated with pedestrian safety and/or 

pedestrian activity. It would be interesting to quantify shade to use it in studies of public 
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health—for example, using data about the time and location of emergency response calls 

during heat waves to see if there are correlations with absence of sidewalk shade. For 

cities trying to persuade residents to use transit, it would be useful to study whether or not 

absence of shade at bus stops is correlated with ridership. Shade could be factored into 

walkability scores using measurements of minutes without shade and longest gap in 

shade, for neighborhoods in hot climates—comparing walking routes of standardized 

lengths across neighborhoods.  

In order to keep the scope of the study realistic, I limited my study of access to 

shade to three predictor variables related to income, age and access to a car. Future 

studies could benefit from including some of the known health risks in heat waves, like 

heart disease and obesity.    
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Appendix 1 

Study Areas 

Following are the areas modeled and studied. Each study contains two walking 

routes: east/west and north/south. All figures by author. 

 
Figure 38.  Study area 1. 

 



 

 61 

 

Figure 39.  Study area 2. 

 

 

Figure 40.  Study area 3. 
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Figure 41.  Study area 4. 

 

 

Figure 42.  Study area 5. 
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Figure 43.  Study area 6. 

 

 

Figure 44.  Study area 7. 
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Figure 45.  Study area 8. 
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Appendix 2 

Walking Routes 

Following are the individual walking routes modeled and studied. The blue 

indicates the perimeter within which I edited buildings and trees. All figures by author.  

 

 

Figure 46.  Route 1 EW. 
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Figure 47.  Route 1 NS. 

 

 

Figure 48.  Route 2 EW. 
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Figure 49.  Route 2 NS. 

 

 

Figure 50.  Route 3 EW.  
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Figure 51.  Route 3 NS.  

 

 

 

Figure 52.  Route 4 EW.  
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Figure 53.  Route 4 NS.  

 

 

 

 

Figure 54.  Route 5 EW.  
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Figure 55.  Route 5 NS.  

 

 

Figure 56.  Route 6 EW.  
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Figure 57.  Route 6 NS.  

 

 

 

Figure 58.  Route 7 EW.  
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Figure 59.  Route 7 NS.  

 

 

 

Figure 60.  Route 8 EW.  
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Figure 61.  Route 8 NS.  
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Appendix 3 

ArcGIS Command Screenshots 

 
Figure 62.  Parameters used to create a LAS Dataset.  

Screenshot from ArcGIS Pro. 

 
Figure 63.  Parameters used to extract elevation from LAS Dataset.  

Screenshot from ArcGIS Pro. 
 



 

 75 

 
Figure 64.  Parameters used to create layer of multipatch trees.  

Screenshot from ArcGIS Pro. 
 

 
Figure 65.  Parameters used to create buildings, segment roof parts.  

Screenshot from ArcGIS Pro. 
 

 
Figure 66.  Parameters used to create more detailed roof forms.  

Screenshot from ArcGIS Pro. 
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This screenshot for creating sun positions is just to serve as an example. These are 

the parameters used to create the sun layer for final analysis using August 31, 2018. I also 

created sun layers for all days on which I conducted field tests. 

 
Figure 67.  Parameters used to create sun positions for August 31, 2018.  

Screenshot from ArcGIS Pro.  
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Appendix 4 

Comparisons of Field Tests to Modeled Shade 

Each route was modeled on the day and time of its corresponding field test, then 

maps of field shade and modeled shade were compared to determine how accurately the 

models matched total shade, longest gap, and number of gaps ≥21 meters (Table 5).  

Accuracy of meters shaded was calculated by taking the total meters of each route 

(540 meters) and subtracting the number of meters that differed (shown as Difference in 

the table), then dividing by the total meters to get percent accurate. For longest gap and # 

of gaps, accuracy was determined by using the same calculation, but since the Field and 

Model measurements don’t combine to add up to a standard total, I used the largest 

measurement of each as a proxy for the total. 

Table 5. Accuracy levels comparing field to models. 

 
Route 
 

 
Field  

 
Model 

 
Difference 

 
Accuracy 

 
1 EW 

    

  Meters shaded 321m 243m 78m (out of 540) 86% 
  Longest gap in shade 45m 45m 0m 100% 
  # of gaps ≥ 21m 4 5 1 gap 80% 
     
1 NS     
  Meters shaded 306m 231m 75m 86% 
  Longest gap in shade 27m 54m 27m 50% 
  # of gaps ≥ 21m 3 6 3 gaps 50% 
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Route 
 

 
Field  

 
Model 

 
Difference 

 
Accuracy 

 
2 EW     
  Meters shaded 261m 306m 45m 92% 
  Longest gap in shade 114m 96m 18m 84% 
  # of gaps ≥ 21m 5 3 2 gaps 60% 
     
2 NS     
  Meters shaded 417m 438m 21m 96% 
  Longest gap in shade 36m 30m 6m 83% 
  # of gaps ≥ 21m 3 1 2 gaps 33% 
     
3 EW     
  Meters shaded 276m 258m 18m 97% 
  Longest gap in shade 42m 72m 30m 58% 
  # of gaps ≥ 21m 4 3 1 gap 75% 
 
3 NS 

    

  Meters shaded 321m 321m 0m 100% 
  Longest gap in shade 39m 51m 12m 76% 
  # of gaps ≥ 21m 5 3 2 gaps 60% 
     
4 EW     
  Meters shaded 255m 237m 18m 97% 
  Longest gap in shade 27m 18m 9m 67% 
  # of gaps ≥ 21m 5 0 5 gaps 0% 
     
4 NS     
  Meters shaded 231m 150m 81m 85% 
  Longest gap in shade 69m 81m 12m 85% 
  # of gaps ≥ 21m 5 4 1 gap 80% 
     
5 EW     
  Meters shaded 330m 264m 66m 88% 
  Longest gap in shade 24m 33m 9m 73% 
  # of gaps ≥ 21m 3 2 1 gap 67% 
     
5 NS     
  Meters shaded 339m 270m 69m 87% 
  Longest gap in shade 27m 21m 6m 78% 
  # of gaps ≥ 21m 2 2 0 gaps 100% 
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Route 
 

 
Field  

 
Model 

 
Difference 

 
Accuracy 

 
6 EW 
  Meters shaded 237m 270m 33m 94% 
  Longest gap in shade 111m 81m 30m 73% 
  # of gaps ≥ 21m 3 4 1 gap 75% 
     
6 NS     
  Meters shaded 234m 183m 51m 91% 
  Longest gap in shade 84m 60m 24m 71% 
  # of gaps ≥ 21m 6 6 0 gaps 100% 
     
7 EW     
  Meters shaded 243m 180m 63m 88% 
  Longest gap in shade 39m 63m 24m 62% 
  # of gaps ≥ 21m 7 7 0 gaps 100% 
     
7 NS     
  Meters shaded 267m 210m 57m 89% 
  Longest gap in shade 54m 60m 6m 90% 
  # of gaps ≥ 21m 5 7 2 gaps 71% 
     
8 EW     
  Meters shaded 135m 141m 6m 99% 
  Longest gap in shade 114m 54m 60m 47% 
  # of gaps ≥ 21m 5 8 3 gaps 63% 
     
8 NS     
  Meters shaded 240m 192m 48m 91% 
  Longest gap in shade 60m 51m 9m 85% 
  # of gaps ≥ 21m 4 7 3 gaps 57% 
     

Data by author. 
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Appendix 5 

Additional Data Charts 

 
Figure 68.  Longest gap, age 65+ living alone.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
 

 
Figure 69.  Longest gap, households with no car.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
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Figure 70.  Number of gaps ≥21m, age 65+ living alone.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
 

 
Figure 71.  Number of gaps ≥21m, households with no car.  

Shade data by author. Household data: U. S. Census Bureau ACS 2016 5-Year Estimates. 
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Appendix 6 

Additional Statistical Analysis Summaries and Plots 

For linear mixed effects models using R version 3.6.0 (R Core Team, 2019), 

RStudio version 1.2.1335 (RStudio Team, 2018), R Package “lme4,” version 1.1-21 

(Bates, Maechler, Bolker, & Walker, 2015), and R Package “effects,” version 4.1-1 (Fox 

& Weisberg, 2019). 

 
Figure 72.  Summary of LMM for longest gap.  

Screen shot from R version 3.6.0. 
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Figure 73.  Plots of LMM for longest gap. 

Plots provided by R Package “effects” version 4.1-1. 
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Figure 74.  Summary of LMM for gaps ≥21 meters.  

Screen shot from R version 3.6.0. 

 



 

 85 

 
 

Figure 75.  Plots of LMM for gaps ≥21 meters.  

Plots provided by R Package “effects” version 4.1-1. 
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Figure 76.  2-way interaction of minutes with log of income and time.  

Screen shot from R version 3.6.0. 
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Figure 77.  2-way interaction of minutes with log of income and time. 

Plots provided by R Package “effects” version 4.1-1. 
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