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Abstract  

Emissions from power plants in China and India contain a myriad of fine particulate matter (PM2.5, 

PM≤2.5 micrometers in diameter) precursors, posing significant health risks among large, densely 

settled populations. Studies isolating the contributions of various source classes and geographic 

regions are limited in China and India, but such information could be helpful for policy makers 

attempting to identify efficient mitigation strategies. We quantified the impact of power generation 

emissions on annual mean PM2.5 concentrations using the state-of-the-art atmospheric chemistry 

model WRF-Chem (Weather Research Forecasting model coupled with Chemistry) in China and 

India. Evaluations using nationwide surface measurements show the model performs reasonably 

well. We calculated province-specific annual changes in mortality and life expectancy due to 

power generation emissions generated PM2.5 using the Integrated Exposure Response (IER) model, 

recently updated IER parameters from Global Burden of Disease (GBD) 2015, population data, 

and the World Health Organization (WHO) life tables for China and India. We estimate that 15 

million (95% Confidence Interval (CI): 10 to 21 million) years of life lost can be avoided in China 

each year and 11 million (95% CI: 7 to 15 million) in India by eliminating power generation 

emissions. Priorities in upgrading existing power generating technologies should be given to 

Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their 

dominant contributions to the current health risks.  

Keywords: Air quality modeling, Power generation, China, India, WRF-Chem 
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1. Introduction 

Exposure to fine particulate matter (PM2.5) has been linked to mortality from a variety of causes 

in both adults (ischemic heart disease, stroke, chronic obstructive pulmonary disease, lung cancer) 

and children (acute lower respiratory infections) (Dockery et al., 1993; Hoek et al., 2013).  In Asia, 

particularly China and India, PM2.5 pollution has been an increasingly important research topic, 

and has attracted worldwide attention. A large fraction of the world’s population lives in these two 

countries where they are exposed to extremely unhealthy air. Lim et al. (2012) estimated that 

ambient PM2.5 pollution is the 4th largest contributor to deaths in China and the 5th in India.  

Anthropogenic activities, including industry, power generation, transportation, and residential 

energy usage (heating and cooking), contribute to the total ambient concentrations of PM2.5 directly 

and indirectly through gas-to-particle conversions. In China and India, secondary inorganic 

aerosols account for a large portion of the ambient PM2.5 mass concentration (Huang et al., 2014, 

Singh et al., 2017), which is mainly formed from sulfur dioxide (SO2) and nitrogen oxides (NOx). 

A significant use of coal in China and India generates large amounts of SO2 and NOx (Lu et al., 

2011). In both China and India, power and industrial sectors are the largest sector consumers of 

coal (Lu et al., 2011). According to statistics in Li et al. (2017), the power generation sector 

contributes 28.5% and 32.5% to SO2 and NOx emissions in China, and 59.1% and 25.0% in India.  

For decades, the influence of power generation emissions on health damages in the United States 

has been of interest (Buonocore et al., 2014; Fann et al., 2013; Levy and Spengler, 2002; Levy et 

al., 2002, 2009).  With growing attention to serious air pollution in China and India, the resulting 

health risks have become the focus of many studies. The 2010 Global Burden of Disease report 

(Lim et al., 2012) analyzed the worldwide impacts of PM2.5 and estimated that 1.2 million lives 

(corresponding to 25 million DALYs (Disability-Adjusted Life Year)) were lost in China and 0.6 

million lives (corresponding to 17.7 million DALYs) in India each year due to ambient PM2.5 

exposure, but results were not disaggregated to identify the impacts of various emission sources. 

Lelieveld et al. (2015) provided a similar assessment of the worldwide mortality impacts of PM2.5; 

they estimated that 1.3 million deaths each year in China and 0.6 million in India were attributable 

to ambient PM2.5 exposure, suggesting additionally that 18% and 14% of deaths attributable to 

PM2.5 exposure, respectively, were linked to power generation. More recently, HEI (2017) 

analyzed the mortality impacts of PM2.5 in China and estimated that 0.9 million lives were lost in 
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2013 due to ambient PM2.5 exposures. HEI (2017) also provided a breakdown of the contributions 

of multiple major source classes to this impact and the geographic distribution of the contributions.  

These studies present quite different pictures of the importance of utility coal combustion. In any 

study of the impacts of PM2.5 on mortality, the analyst faces several important choices: 

• What emissions inventory to use; 

• What approach to employ for atmospheric modeling, at what spatial resolution; 

• Which exposure-response coefficients to use; 

• Whether to focus on marginal or average impacts; and 

• Whether to report results as ‘attributable deaths,’ ‘years of life lost,’ and/or ‘DALYs.’ 

The choices underlying several previous studies are summarized in Table 1. Some of these studies 

relied on relatively simple global chemical transport models, in which important mesoscale 

information (i.e. boundary layer processes, cloud physics, etc.) might be missing and/or 

oversimplified. In addition, some are driven by older emissions inventories, which now have been 

replaced. Finally, many of the studies use older estimates (2010 or 2013) of the IER parameters, 

and fail to show convincing evidence of that their atmospheric fate and transport models agree 

with ground based PM2.5 measurements.   

This study fills these gaps by using a regional scale chemistry-meteorology model WRF-Chem 

(Weather Research Forecasting-Chemistry, Gao et al., 2015, 2016a, 2016b, 2016c, 2017; Marrapu 

et al., 2014); nationwide surface PM2.5 measurements in both China and India; a state-of-the-art 

emission inventory; and the newly updated IER parameters from GBD 2015 (Cohen et al. 2017). 

We present our results in terms of both the number of deaths attributable to PM2.5 exposure and 

the number of years of life lost (YLL) due to PM2.5 exposure.     
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Table 1. Summary of choices of estimation inputs in previous studies 

 

Study 

Emissions 

Inventory 

Atmospheric 

Model & 

Resolution 

Exposure-

Response 

Coefficients 

Marginal or 

Average 

Impacts 

Results 

Reported 

Lim et al., 

2012 1 
n/a n/a 2010 Marginal 

Attributable 

Deaths & 

DALYs 

Lelieveld et 

al. 2015 
EDGAR 

EMAC, 1.1°×1.1°  

degree 
2010 Marginal 

Attributable  

Deaths 

HEI (2017) MIX 
GEOS-Chem, 

0.5×0.667 degree 
 2013 Marginal 

Attributable  

Deaths 

GBD 2015 2 n/a n/a 2015 Marginal 

Attributable 

Deaths & 

DALYs 

 

1 Global estimates of PM2.5 at 0.1°×0.1° scale: combination of TM5 global chemical transport model simulated 

PM2.5 (at 1°×1° resolution), satellite aerosol optical depth (AOD) derived PM2.5 (the relationship between 

AOD and PM2.5 is calculated using GEOS-Chem at 2°×2.5° resolution), and surface PM measurements 

(Brauer et al., 2012) 

2 Global estimates of PM2.5 at 0.1°×0.1° scale: combined estimates from satellite AOD, chemical transport 

models (GEOS-Chem) and ground-level measurements (Cohen et al. 2017; van Donkelaar et al., 2015) 

 

2. Materials and Methods 

2.1 Atmospheric Modeling  

In this study, the WRF-Chem model version 3.6.1 was implemented to cover both China and India. 

WRF-Chem is a fully online coupled regional scale meteorology-chemistry model that enables 

aerosol-radiation-cloud interactions (Grell et al., 2005), and includes multiple options for physical 

and chemical parameterizations. The main chosen options for physical parameterizations of the 

Planetary Boundary Layer (PBL), cloud microphysics, and land surface are listed in Table S1, 

which include the Yonsei University PBL scheme (Hong et al., 2006), the Noah land surface 

scheme, the Goddard shortwave radiation scheme (Chou et al., 1998), the RRTM (Rapid Radiative 
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Transfer Model) long wave radiation scheme (Mlawer et al., 1997), and the Lin cloud 

microphysics scheme (Lin et al., 1983). We use the Carbon Bond Mechanism version Z (CBMZ, 

Zaveri and Peters, 1999) for gas-phase chemistry, and the Model for Simulating Aerosol 

Interactions and Chemistry (MOSAIC, Zaveri et al., 2008), which calculates size resolved sulfate, 

nitrate, ammonium, black carbon, organic carbon, and secondary organic aerosol (SOA). Dust and 

sea-salt are also considered in the model configuration. Simulations are conducted for the entire 

year of 2013, and the model was initialized at the beginning of each month, with the last 5 days of 

the previous month employed as model spin-up. The model is configured with a horizontal 

resolution of 60 km and with 27 vertical levels up to 50 hPa. Meteorological initial and boundary 

conditions are obtained from the National Centers for Environmental Prediction final analysis 

(NCEP FNL) 6-hourly 1° ×1° data, and analyses of wind, temperature and water vapor are nudged 

to correct model meteorology fields using the four-dimensional data assimilation (FDDA) method. 

Chemical initial and boundary conditions are taken from the Model for Ozone and Related 

chemical Tracers, version 4 (MOZART-4) global simulations (Emmons et al., 2010).  

 

2.2 Emissions  

Anthropogenic emissions are adopted from the MIX emission inventory (Li et al., 2017), which 

combines five emission inventories for Asia and is considered as the most advanced inventory for 

Asia to date. Among them, the Multi-resolution Emission Inventory for China (MEIC) developed 

by Tsinghua University is used over China, and the ANL emission inventory developed at the 

Argonne National Laboratory is used over India (ANL-India). Power plant emissions in MEIC are 

taken from the China coal-fired Power Plant Emission Database (CPED), which includes estimates 

of emissions for each generation unit considering fuel consumption rates, fuel quality, combustion 

technology and emission control technology (Li et al., 2017). In ANL-India, power plant emissions 

are calculated also for each generation unit based on the reports of the Central Electricity Authority 

(CEA), which includes detailed information on geographical location, capacity, fuel type, 

electricity generation, time the plant was commissioned/decommissioned, etc. (Li et al., 2017). 

The ANL-India emission inventory covers only some MIX species (SO2, BC, and OC for all 

sectors, and NOx for power plants), and emissions of other species are taken from the REAS2 

(Regional Emission Inventory in Asia version 2, Kurokawa et al., 2013) inventory (Li et al., 2017). 
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The MIX inventory includes 10 species, namely SO2, NOx, CO, non-methane volatile organic 

compounds (NMVOCs), ammonia (NH3), PM2.5, PM10, black carbon (BC), organic carbon (OC), 

and carbon dioxide (CO2). In this study, the MEIC data for 2010 are replaced in MIX with the 

revised results from MEIC 2013, but emissions for India are not changed.  

Biogenic emissions are calculated online using the MEGAN model (Model of Emissions of Gases 

and Aerosols from Nature, Guenther et al., 2012), and the driving variables of this model include 

land cover, weather, and atmospheric chemical composition. GFEDv4 (Global Fire Emissions 

Database, Version 4) emissions are used for open biomass burning, based on satellite information 

on fire activity and vegetation productivity (Randerson et al., 2015). Other emissions including 

online dust emissions and online sea-salt emissions are also considered.  

 

2.3 Study Design  

We explore the impact of each emission sector on annual mean PM2.5 concentrations for the year 

2013 through a series of simulations. Descriptions of these simulations are listed in Table S2. The 

BASE case includes all anthropogenic emission sectors, biogenic emissions, and biomass burning 

emissions. In the noIND case, the anthropogenic emissions from the industrial sector are excluded, 

and all the other settings are the same as in the BASE case. The remaining cases are similar. The 

noPOW case excludes power plant emissions, the noAGR case excludes agriculture emissions, the 

noTRA case excludes transportation emissions, the noRES case excludes residential emissions, 

and the noBB case excludes biomass burning emissions. The differences between BASE and 

noIND, BASE and noPOW, BASE and noAGR, BASE and noTRA, BASE and noRES, and BASE 

and noBB, are considered estimates of the impact of eliminating industrial emissions, power plant 

emissions, transportation emissions, residential emissions, and biomass burning emissions 

respectively. The contributions of source sectors outside the domain are not further separately 

quantified in this study.  

 

2.4 Observational Networks 
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This study benefits from a wealth of nationwide surface PM2.5 measurements in China and India 

which allow us to evaluate the performance of the WRF-Chem simulated PM2.5 concentrations. 

Since January 2013, the China National Environmental Monitoring Center (CNEMC) has released 

monitored PM2.5 concentrations to the public. The CNEMC monitoring sites (shown as red dots in 

Figure S1) are located mostly in east China. Hourly average PM2.5 concentrations for 2013 were 

downloaded from the www.cnemc.cn website. This dataset has been used widely to statistically 

evaluate air quality models across China (Hu et al., 2016, 2017). Modeling of Atmospheric 

Pollution and Networking (MAPAN) was set up by the Indian Institute of Tropical Meteorology 

(IITM) under the project SAFAR (System of Air Quality and weather Forecasting And Research) 

(Beig et al., 2015, WMO report) across all of India to measure various pollutants, including ozone 

(O3), NOx, PM2.5, PM10, CO, hydrocarbon, BC and OC, as well as weather parameters. The 

measured PM2.5 at the MAPAN sites are used in this study to evaluate model performance for India.    

 

2.5 Mortality Analysis 

The lack of cohort mortality evidence in developing countries, such as China and India, hinders 

research on health impacts attributable to PM2.5 exposure. Burnett et al. (2014) developed 

integrated exposure response (IER) functions to include data from western cohort studies of 

exposures to PM2.5 in ambient air and the smoke from active and second-hand tobacco smoking as 

well as from the burning of solid fuels for household cooking and heating. We rely on the 2015 

GBD IER because it is the most widely accepted and employed synthesis of the epidemiological 

evidence on the mortality impacts of PM2.5. In this study, annual mean ambient PM2.5 

concentrations derived from the WRF-Chem model are taken into the IER functions to examine 

mortality attributable to PM2.5 exposure. 

In GBD the mortality burden attributable to PM2.5 is calculated for four diseases among adults, 

namely ischemic heart disease (IHD), stroke (STK, including both ischemic and hemorrhagic 

stroke), lung cancer (LC), and chronic obstructive pulmonary disease (COPD), and for one disease 

among young children, acute lower respiratory infections (LRI). The RR for each disease is 

calculated as,  

http://www.cnemc.cn/
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𝑅𝑅𝑖,𝑗,𝑘(C𝑙) = {
1 + 𝛼𝑖,𝑗,𝑘 (1 − 𝑒−𝛽𝑖,𝑗,𝑘(𝐶𝑙−𝐶0)

𝛾𝑖,𝑗,𝑘
) , 𝐶𝑙 ≥  𝐶0

1, 𝐶𝑙 < 𝐶0

               (1) 

where C𝑙  is the annual PM2.5 concentrations calculated from the WRF-Chem model in the lth 

geographic region, and 𝐶0  is the counterfactual concentration; 𝛼𝑖,𝑗,𝑘 ,  𝛽𝑖,𝑗,𝑘  and 𝛾𝑖,𝑗,𝑘  are the 

parameters used to describe the shape of IER curves in the ith age and jth sex group for the kth 

disease. 

Our calculations rely on the GBD 2015 IER parameter estimates reported by Cohen et al. (2017) 

for 𝛼𝑖,𝑗,𝑘 ,  𝛽𝑖,𝑗,𝑘 , 𝛾𝑖,𝑗,𝑘  and 𝐶0 ,. These new parameters reflect all cohort studies conducted on 

subjects living in the US and Western Europe published as of mid-2016. More detailed 

explanations for the revised methods are documented in the appendix for Cohen et al. (2017).  

The relative risk (RR) factors are used then to calculate population attributable fractions (PAF, 

equation 2), for each disease for each age and sex subgroup.   

𝑃𝐴𝐹𝑖,𝑗,𝑘 =
𝑅𝑅𝑖,𝑗,𝑘(C𝑙) − 1

𝑅𝑅𝑖,𝑗,𝑘(C𝑙)
    (2) 

 

𝛥𝑀𝑖,𝑗,𝑘,𝑙 =  𝑃𝐴𝐹𝑖,𝑗,𝑘,𝑙  ×  𝑦0𝑖,𝑗,𝑘,𝑙  ×  𝑃𝑜𝑝𝑖,𝑗,𝑙      (3) 

Equation (3) is used to calculate mortality, 𝑀, attributable to PM2.5 exposure for each disease. 

𝑦0𝑖,𝑗,𝑘,𝑙  represents the current age-sex-specific mortality rate for the kth disease, and 𝑃𝑜𝑝𝑖,𝑗,𝑙 

reflects the size of the exposed population in that age-sex-specific group in that grid cell.  

The United Nations (UN)-adjusted population distribution for years 2010 and 2015 from the 

Center for International Earth Science Information Network (CIESIN) are used to calculate the 

population exposure. To represent the population in 2013, we average data for years 2010 and 

2015. The estimates for year 2013 are re-gridded to 0.5° × 0.5° horizontal resolution, which 

approximates the WRF-Chem model resolution. National baseline age-sex-disease-specific 

dependent mortality rates for IHD, STK, LC, COPD, and LRI for years 2010 and 2015 are obtained 

from the GHDx (Global Heath Data Exchange) database. We interpolate to year 2013 based on 

the trends observed from 2005 to 2015. For China, provincial level baseline rates are estimated 

using the relationships between provincial and national rates shown in Xie et al. (2016).  
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While it is common to report the number of ‘premature deaths attributable to air pollution’ 

calculated in this manner, it has long been known that estimates of ‘premature deaths’ based on 

the attributable fraction may be biased in either direction and misleading (Robins and Greenland, 

1989; Greenland and Robins, 1991; Hammitt, 2017 (under review)).  Fortunately, estimates of the 

impacts of PM on life expectancy are not affected by these issues and are therefore preferred.  

The impact of PM exposure on the life expectancy of the population is calculated by multiplying 

the number of deaths (𝑁𝑖,𝑗) in each age and sex group by the remaining life expectancy (𝐿𝑖,𝑗) for 

that age and sex group and summing across all age and sex groups: 

𝑌𝐿𝐿 = ∑ 𝑁𝑖,𝑗  ×  𝐿𝑖,𝑗

𝑖,𝑗

        

 

In this study, life tables for China and India for 2013, downloaded from the World Health 

Organization website, are used.  In 2013, the life expectancy at birth for Chinese males and females 

were 74.1 and 77.2 years, respectively, and for Indian males and females 66.2 and 69.1 years, 

respectively (Table S3). 

It is important to note that the approach we use is different from that used in the GBD studies.  The 

GBD uses the life tables from Japan (which has the highest life expectancy in the world – 80.3 

years for men and 86.7 for women) in the calculation of disability adjusted years lost (DALYs) 

rather than using country-specific life tables. They do so in an effort to reflect the potential benefits 

of improvements in air quality in a world where other public health risks had already been 

mitigated.  As a result of this difference in approach, our estimates of life expectancy impacts will 

be lower by 5 to10% than those given by studies which use DALYs and rely on Japanese life tables. 

 

2.6 Source Sector Attribution 

The gridded annual surface PM2.5 concentrations from the BASE case and the noPOW case are 

used to calculate the fraction of PM2.5 health impacts attributable to power generation emissions 

using the following equation: 

𝐹𝑝𝑜𝑤 =
𝑃𝑀𝐵𝐴𝑆𝐸 − 𝑃𝑀𝑛𝑜𝑃𝑂𝑊

𝑃𝑀𝐵𝐴𝑆𝐸
 

where 𝑃𝑀𝐵𝐴𝑆𝐸 and 𝑃𝑀𝑛𝑜𝑃𝑂𝑊 denote annual mean surface PM2.5 concentrations from the WRF-

Chem BASE and noPOW cases, respectively.  
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This approach is similar to that used in the China MAPS (Major Air Pollution Sources project) 

study for apportioning mortality impacts to various source classes.  It differs however from the 

approach used by Lelieveld et al. (2015) – in which the contribution of a source class was computed 

using: 

𝐹𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑙𝑎𝑠𝑠 =
𝑀(𝑃𝑀𝐵𝐴𝑆𝐸)−𝑀(𝑃𝑀𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑐𝑙𝑎𝑠𝑠)

𝑀(𝑃𝑀𝐵𝐴𝑆𝐸)
 , 

where  𝑀 denotes mortality. 

It is important to recognize that the approaches taken by China MAPS and by Lelieveld et al. (2015) 

differ in the question they seek to answer. The approach of Lelieveld et al. (2015) follows the 

tradition of forward-looking ‘consequential’ analysis.  It seeks to determine how large of a 

reduction in mortality would be expected if emissions from a single source class were eliminated.  

In contrast the China MAPS approach is rooted in backward-looking ‘attributional analysis’ and 

seeks to determine what fraction of total PM2.5 related mortality is attributable to (caused by) 

emissions of a single source. 

In cases where the exposure-response function is linear, these two approaches will give the same 

answer. However, given the strong nonlinearities of the IER concentration-response function, they 

will not in the current case. At current levels of PM exposure in China, the consequential approach 

used by Lelieveld et al. (2015) will give estimates of source class impacts that are significantly 

smaller – perhaps by a factor of 2 or 3 – than those from the attributional approach.  

 

 

3. Results  

3.1 Evaluation of surface PM2.5 

In this study, we compare the WRF-Chem outputs from the BASE case against surface PM2.5 

observations in the CNEMC network in China and the MAPAN network in India. Figure 1 shows 

how our model performs in capturing temporal variations of PM2.5 concentrations in China and 

India. In general, the simulated monthly and seasonal trends of PM2.5 surface concentrations in 

China are consistent with surface measurements, with extremely high monthly PM2.5 during winter 

months and relatively low concentrations during summer months (Figure 1(a)). The calculated R2 

value for China is as high as 0.87. In China, PM2.5 concentrations during summer are overestimated 

by our model, which is likely due to errors in model wet deposition. Summer is the season with a 
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large amount of precipitation, but the 60 km horizontal resolution in this study is insufficient to 

capture the variability in summer precipitation. The calculated R2 value for India is 0.54, and the 

simulated magnitudes of surface PM2.5 concentrations are close to the measurements across India. 

Detailed comparisons for each observation site in China and India are presented in Figure S2 and 

S3 in the supporting information.  

For estimates of PM2.5 exposure, spatial features are more important. We also evaluate the spatial 

distribution of simulated yearly mean PM2.5 surface concentrations by comparing the model results 

against observations at 58 cities in China and 9 sites in India. As shown in Figure 2(a), in China, 

high PM2.5 concentrations are located mainly in eastern China and southwestern China (Sichuan 

Basin) due to high local emissions of air pollutants. Relatively high PM2.5 concentrations in 

Xinjiang, in the northwest, result partly from windblown dust. In India, PM2.5 pollution hotspots 

are located mostly in the Indo-Gangetic Plain (IGP), not only because of high emissions of air 

pollutants. Reduced ventilation due to obstruction from the Tibetan Plateau may also play a role. 

The calculated mean bias, index of agreement, and normalized mean bias are -15.7 (-5.7), 0.8 

(0.77), and 21.1% (-12.5%) for China (India), respectively.   

The model generally reproduces well the spatial patterns of observed PM2.5 concentrations in 2013, 

with high magnitudes of PM2.5 over South Hebei, Shandong and Henan provinces in China. 

Relatively low PM2.5 magnitudes in south China are also well reproduced well by the model. For 

India, high measured concentrations of PM2.5 over the IGP is simulated well by the model, and 

relatively low concentrations observed in southern regions are also consistent with the model 

results.  

The above evaluations show that the WRF-Chem model has reasonable success in simulating both 

the temporal and spatial features of PM2.5 concentrations in China and India, and results are 

consequently reliable for use in analysis of health exposures.  
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Figure 1. Simulated and observed monthly mean PM2.5 concentrations averaged across China (a) 

and India (b) 

 

3.2 Impacts of Source Sectors on PM2.5 Concentrations 

PM2.5 in the atmosphere is emitted either directly or formed through gas-to-particle conversions 

from various emission source sectors. Understanding the contributions of source sectors on air 

quality and climate forcing is of great importance for policy makers, charged with design of 

emission control strategies. In this study, we examine the relative importance of individual source 

sectors on PM2.5 concentrations in China and India excluding them one-by-one from model 

emission inputs in simulations (listed in Table S2). Figure 2 (b-g) shows the individual impact of 

industrial, power plant, agriculture, residential, transportation, and biomass burning emissions on 

annual mean PM2.5 concentrations in China and India. In China, the industrial sector is the largest 

contributor, followed by power generation. In India, emissions from power generation 

significantly increase PM2.5 concentrations, and have a larger effect compared with residential and 

other source sectors. Transportation emissions play a minor role in both countries and PM2.5 

increases induced by biomass burning are significant only in Southeast Asian countries. Over Laos 

and northern Thailand, PM2.5 increases resulting from biomass burning can reach as high as 

50μg/m3.  
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In China and India, secondary inorganic aerosols (mostly sulfate and nitrate formed via oxidation 

of SO2 and NOx emissions) account for a large fraction of the PM2.5 mass concentration (Huang et 

al., 2014, Singh et al., 2017). In China, emissions from power generation contribute 28.5% of SO2 

and 32.5% of NOx emissions. In India, the contribution of power generation of SO2 emissions is 

almost 60% (Figure S4). These significant emissions of SO2 and NOx by power generation in 

China and India lead to substantial increments in PM2.5 mass concentrations, as shown in Figure 

2(c) and Figure S5.  

 

 
 

 

Figure 2. Spatial distributions of annual mean surface PM2.5 concentrations (a: observations are 

shown in dots) and sector contributions from industry, power plants, agriculture, residential, 

transportation and biomass burning (b-f) 

 

3.3 Mortality and YLL Attributable to PM2.5 exposure  

Estimates of mortality attributable to PM2.5 exposure due to all emissions and power generation 

emissions in China and India are listed in Table 2. The 95% uncertainty confidence intervals (CIs) 

are calculated based only on the uncertainties of IER curve parameters. Other sources of 

uncertainty, such as the uncertainty in air quality modeling (emissions, model setup, etc.), 
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population datasets and the fundamental uncertainties inherent in applying a concentration-

response function developed largely on the basis of epidemiology conducted in the US and 

Western Europe at much lower concentrations than those now prevalent in China and India to 

populations with a different genetic makeup, access to health care, diet and so forth to predict risks 

in China and India (Dockery and Evans, 2017), are not included. Total ambient PM2.5 

concentrations resulting from all sources would have led to 1331.1 (95% Confidence Interval: 

824.8-1914.6) thousand deaths attributable to PM2.5 exposure in China in 2013. Large fractions of 

the effect come from stoke, IHD and COPD diseases.  

 

Table 2 Estimated mortality attributable to PM2.5 concentrations due to all sources and power 

plant emissions over China in 2013 (95% uncertainty confidential intervals are based on IER 

parameters) (thousand) 

China Stoke IHD COPD LC LRI Total 

All 

sources 

365.7 

(203.7-

542.0) 

388.1 

(227.6-

606.0) 

345.4 

(225.1-

477.1) 

150.3 

(106.0-

190.5) 

81.7 (62.5-

99.0) 

1331.1 

(824.8-

1914.6) 

Power 

Plant 

144.4 (81.0-

213.6) 

152.8 

(90.2-

238.9) 

130.9 

(86.0-

180.5) 

59.8 (42.4-

75.5) 

32.1 (24.6-

38.7) 

520.0 

(324.3-

747.3) 

India Stoke IHD COPD LC LRI Total 

All 

sources 

123.2 (64.4-

185.6) 

191.4 

(106.3-

295.5) 

300.9 

(184.5-

419.3) 

18.0 (12.0-

23.8) 

170.4 

(126.3-

211.0) 

803.8 

(493.3-

1135.2) 

Power 

Plant 

41.0 (21.6-

61.6) 

63.4 (35.4-

98.1) 

100.4 

(62.0-

139.7) 

6.1 (4.0-8.0) 57.0 (42.5-

70.3) 

267.9 

(165.6-

377.6) 
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Power plants are responsible for approximately 39% of ambient PM2.5 across China, and therefore 

are responsible for this share of the mortality attributable to PM2.5 exposure -- some 500 thousand 

annual deaths (CI: 320 to 750 thousand deaths).  However, because of the non-linearity in the IER, 

replacing all traditional coal-fired power generation in China with clean energy sources would be 

expected to reduce the mortality attributable to PM2.5 by a fraction less than this value (Lelieveld 

et al., 2015).  Of course, if such a strategy were coupled with other aggressive air pollution controls, 

the mortality benefits of replacing power plants with clean energy could be significantly larger. 

In India, ambient PM2.5 concentrations resulting from all sources are projected to be responsible 

for 803.8 (493.3-1135.2) thousand premature deaths. Specifically, COPD contributes about 37.4%, 

IHD is responsible for 23.8%, LRI contributes about 21.2%, stroke (both ischemic and 

hemorrhagic) contributes about 15.3%, with a negligible contribution from LC. Emissions from 

power generation account for about 60% of total SO2 emissions in India, but their influence on 

ambient PM2.5 concentrations (accounting for only 32% of PM2.5 mass) is lower than in China 

(where power plant emissions account for 39% of PM2.5 mass).  

Provincial health impacts attributable to PM2.5 exposure depend on both population and ambient 

PM2.5 concentrations. In China, the Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), 

the Pearl River Delta (PRD), and the Sichuan Basin (SCB) are densely populated (Figure S6). In 

India, the IGP and east India are densely populated. As shown in Figure 2(a), the BTH (and 

Shandong, Henan provinces), YRD and the SCB regions in China, and the IGP region in India 

exhibit the highest PM2.5 exposure. Figure 3 (a, d) shows the distributions of mortality attributable 

to PM2.5 exposure by province, in China and India. Shandong, Henan and Sichuan provinces in 

China, and Uttar Pradesh state in India exhibit the largest mortality impacts of PM2.5. When 

attention is focused on the impacts of emissions from power generation, Shandong and Henan 

provinces show the largest impacts in China (Figure 3(b, c)). In India, the largest impacts of power 

plants are evident in the state of Uttar Pradesh (Figure (e, f)). 
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Figure 3. Maps of provincial-level estimates of mortality attributable to PM2.5 exposure due to all 

emissions (a), and power plant emissions (b), and provincial rankings of power plants induced 

mortality (c) in China; (d-f) are for India. 

 

 

Estimates of YLL attributable to PM2.5 exposure due to all emissions and power generation 

emissions in China and India are summarized in Table 3. In China, the estimated YLL attributable 

to PM2.5 concentrations due to all sources are about 38.9 million years. In India, the total YLL 

number attributable to PM2.5 exposure is only slightly lower (32.3 million) than in China, in 

contrast to the large dissimilarity in mortality.   
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Table 3 Estimated YLL attributable to PM2.5 concentrations due to all sources and power plant 

emissions over China in 2013 (95% uncertainty intervals are based on IER parameters) (million) 

China Stoke IHD COPD LC LRI Total 

All sources 5.6 (3.1-

8.1) 

6.0 (3.6-

9.2) 

16.3 (10.6-

22.5) 

7.1 (5.0-

9.0) 

3.9 (3.9-

4.7) 

38.9 (25.2-

53.5) 

POW 2.2 (1.2-

3.2) 

2.4 (1.4-

3.6) 

6.2 (4.1-

8.5) 

2.8 (2.0-

3.6) 

1.5 (1.2-

1.8) 

15.1 (9.9-

20.7) 

India Stoke IHD COPD LC LRI Total 

All sources 1.7 (0.9-

2.5) 

2.8 (1.6-

4.3) 

17.1 (10.5-

23.9) 

1.0 (0.7-

1.4) 

9.7 (7.2-

12.0) 

32.3 (20.9-

44.1) 

POW 0.6 (0.3-

0.8) 

0.9 (0.5-

1.4) 

5.7 (3.5-

7.9) 

0.3 (0.2-

0.5) 

3.2 (2.4-

4.0) 

10.7 (6.9-

14.6) 

 

 

The calculations of YLL involve age specific life expectancy. In this study, we take the average 

based on the distributions of ages in the populations. Since the birth rate in India is higher than in 

China, and its population is younger, the remaining life expectancy (𝐿) value for India for all-age 

disease is higher than for China. This leads to high numbers of YLL attributable to PM2.5 exposure. 

In India, power generation emissions contribute about 33.1% of the YLL attributable to PM2.5 

exposure. Figure 4 shows the spatial distributions of provincial-level estimates of YLL attributable 

to PM2.5 exposure due to all emissions and power generation emissions in China and India. Similar 

to the spatial distributions of mortality attributable to PM2.5 exposure, Shandong, Henan and 

Sichuan provinces in China and Uttar Pradesh state in India exhibit the largest YLL.  
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Figure 4. Maps of provincial-level estimates of YLL attributable to PM2.5 exposure due to all 

emissions (a), and power plant emissions (b), and provincial rankings of power plants induced 

YLL (c) in China; (d-f) are for India. 

 

4. Discussion 

 

4.1 Comparing Health Impacts with Other Studies  

Several previous studies have estimated the mortality attributable to PM2.5 exposure in China and 

India (GBD MAPS Working Group, 2016; Ghude et al., 2016; Lelieveld et al., 2015; Liu et al., 

2016), and our estimates, 1.3 million deaths in China and 0.8 million deaths in India in 2013, are 

consistent with the findings of these previous studies.    

When viewed in the context of the likely uncertainty in any of these estimates, the differences 

among the many estimates are relatively minor – especially considering that the studies used a 

variety of emissions estimates, atmospheric fate and transport models, and (to some extent) 

different syntheses of the epidemiological literature linking PM2.5 exposure to mortality. 

It may be of interest that although the estimates of the total mortality impact of PM2.5 exposure are 

similar across all studies, there are differences in the relative importance of various causes of death. 
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The more recent studies, which rely on the 2015 IER, tend to find greater impacts on COPD disease 

and smaller impacts on stroke.  This is a reflection of differences between the IER 2015 parameter 

estimates from the 2010 and 2013 versions of the IER. It is also worth noting that the role of ambient 

PM2.5 in the development of COPD is generally considered to be uncertain (Schikowski et al., 2013). 

 

Table 4 Summary of Health Impacts from This Study and Other Studies 

Author Year 

Analyzed 

Sources China India 

Deaths 

(million) 

YLL 

(million) 

Deaths 

(million) 

YLL 

(million) 

Lelieveld et al. 

(2015) 

2010 All 1.4  0.6  

Ghude et al. 

(2016) 

2011 All --  0.6  

Liu et al. 

(2016) 

2013 All 0.9  --  

This Study  2013 All 1.3 38.9 0.8 32.3 

HEI China 

MAPS, 2017 

2015 All 1.1    

 

Even using the same GBD framework (GBD 2015), estimates can differ. Cohen et al. (2017) 

estimated 1108.1 thousand deaths attributable to PM2.5 (LRI: 66.3, LC: 146.0, IHD: 291.8, COPD: 

281.7, and Stroke: 322.3) in China and 1090.4 thousand deaths attributable to PM2.5 (LRI: 200.7, 

LC: 22.5,   IHD: 365.6, COPD: 349.0, Stroke: 152.5) in India in 2015. In our study, the fractions 

of each disease in all-cause death are similar to Cohen et al. (2017), but the all-cause deaths are 

higher in China (1331.1 thousand), and lower in India (803.8 thousand). 

The differences of annual mean PM2.5 concentrations in 2015 and 2013 are likely to represent the 

major cause for these disparities. From 2013 to 2015, PM2.5 concentrations in China decreased 

significantly (Clean Air Alliance of China, 2016) because of the strict air pollution control 

measures taken since 2013. The emission inventory used for India is based on the year 2010 in this 

study, so it might have led to underestimations of all-cause deaths, and lower results for India than 

Cohen et al. (2017).   
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Large uncertainties are embodied in the calculations of source sector contributions because of the 

uncertainties in emission inventories, and different responses to emission perturbations in different 

atmospheric chemistry models. Lelieveld et al. (2015) concluded that residential energy was 

dominant in outdoor air pollution in 2010 in both China (32%) and India (50%), while industry 

accounted for only 8% in China and 7% in India. Both the GBD MAPS study and this study found 

that industrial sources are the largest sectoral contributor to air pollution in China. The differences 

result very likely from the dissimilarities in the emission inventories employed, and partially from 

the differences of atmospheric chemistry models. Lelieveld et al. (2015) used the Emission 

Database for Global Atmospheric Research (EDGAR), and this study used a state-of-the-art 

emission inventory for Asia (MIX, Li et al., 2017). Table S4 shows the comparison between these 

two datasets and shows that NOx non-methane volatile organic compounds (NMVOC) and NH3 

emissions differ greatly, which might have led to the dominant role of the agriculture sector in the 

results of Lelieveld et al. (2015). EDGAR ignores primary PM2.5 emissions in the simulation, 

which could show an even larger contribution to PM2.5 than BC and OC, leading to reduced 

contributions from sectors with high primary PM2.5 emissions. Besides, the coarser global model 

resolution (~100km×100km) used in Lelieveld et al. (2015) might have missed mesoscale 

information important for assessments on a regional scale.     

 

4.2 Limitations  

Although a complex regional meteorology-chemistry model, a state-of-the-art emission inventory 

in Asia, and more accurate IER parameters were used in this study compared to previous studies, 

there are still a number of limitations, involving each step in the calculation procedures. We used 

relatively high model resolution to represent regional pollution features (60 km) compared to 

~100km in Lelieveld et al. (2015), but 60km is still not good for precipitation simulations, and 

detailed urban and sub-grid information might have been missed. In this study, we need to run six 

one-year simulations (Table S2), and used 60 km due to computational limitations. Besides, we 

did not include health impacts resulting from ozone exposure, mainly because the mortality due to 

ozone exposure is small compared to that from PM2.5 (Ghude et al., 2016).   

Second, although thorough and detailed energy use information was used in the development of 

the emission inventories, there is still a great deal of uncertainty related to emission estimates from 

power plants and other sectors. The uncertainties for different species differ greatly, and 
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uncertainties for particles are much larger than those for gases. For example, the uncertainties of 

BC and OC emissions in MIX are ±208% and ±258% in China, but uncertainties of SO2 and NOx 

are only ±12% and ±31% (Li et al., 2017). The uncertainties in emissions will be propagated into 

the meteorology-chemistry modeling. In terms of the source attribution to power plants, the 

uncertainties are relatively low because of low uncertainties in gases and the importance of gases 

in power plant emissions. In addition, SO2 and NOx emissions from power plants were constrained 

using satellite retrievals (Streets et al., 2013). Compared to the sector contributions in Lelieveld et 

al. (2015), we found that different inventories can lead to large differences. Thus we used the most 

advanced emission estimates (MIX, Li et al., 2017) in this study. 

Third, uncertainties also arise from chemistry-meteorology modeling, related to chemical reactions, 

atmospheric dispersion, and deposition. Although we use nationwide surface PM2.5 measurements 

to evaluate model performance, comparisons of other air pollutants, including SO2, NOx, VOCs, 

and ozone, were not presented due to inaccessibility of relevant measurements. Yet the WRF-

Chem performance was comprehensively evaluated in China and India in many previous studies 

(Gao et al., 2015, 2016a, 2016b, 2016c, 2017; Marrapu et al., 2014), and the results were 

encouraging, increasing confidence to our findings. Atmospheric chemistry modeling is the only 

approach to examine sector-specific contributions to exposure. Errors can be reduced further with 

advances in modeling approaches.    

Fourth, the GBD 2015 IER parameters used in this study represent only the current best 

understanding, which will be enhanced with regular GBD updates in the future. For example, the 

IERs were developed based on observed cohort studies in the US, Canada, and west Europe (Cohen 

et al., 2017), implying large uncertainties when applied to China and India. In addition, the 

province-specific health benefits do not quantify the effect of inter-province transport due to 

computational complexity, which may be redressed in the future using source apportionment 

techniques embodied in atmospheric chemistry models. 

 

5. Conclusion 

We estimate province-specific mortality and YLL attributable to ambient PM2.5 exposure, and 

examine the changes in ambient PM2.5 and the health benefits expected to flow from eliminating 

power plant emissions, by combining atmospheric modeling and health impact analyses. Several 
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previous studies have evaluated the global mortality attributable to PM2.5 exposure, but few have 

as yet explored the contributions of source classes.  

The mortality burdens attributable to PM2.5 are estimated to be 1.3 million in China and 0.8 million 

in India, which are consistent with previous studies. We further quantified the impact of power 

generation emissions and found that power generation emissions contribute to 0.5 million death in 

China and 0.3 million in India. We estimated also that 15 million (95% Confidence Interval (CI): 

10 to 21 million) years of life lost can be avoided in China each year and 11 million (95% CI: 7 to 

15 million) in India by eliminating power generation emissions. The spatial distribution of these 

results reveals that priorities in upgrading existing power generating technologies should be given 

to Shandong, Henan, and Sichuan provinces in China, and Uttar Pradesh state in India due to their 

dominant contributions to the current health risks.   
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Supporting Information 

Table S1 Model Configuration Options 

Configurations Descriptions 

Horizontal Resolutions 60km 

Vertical layers 27 

Cloud Microphysics Lin scheme 

Longwave Radiation Rapid Radiative Transfer Model (RRTM) 

Shortwave Radiation Goddard shortwave 

Land Surface Model Noah 

Planetary Boundary Layer Yonsei University 

MOSAIC Aerosol Bins 0.039–0.078µm, 0.078-0.156µm, 0.156–0.312µm, 0.312–

0.625µm, 0.625–1.25µm, 1.25–2.5µm, 2.5– 5.0µm, 5.0–

10µm 

 

Table S2 Simulations and descriptions 

Cases Descriptions 

BASE Anthropogenic emissions from all sectors, biogenic 

emissions, biomass burning emissions are all included 

noIND Same as BASE except anthropogenic emissions from 

industry are excluded  

noPOW Same as BASE except anthropogenic emissions from power 

plant are excluded 

noAGR Same as BASE except agriculture emissions are excluded 

noRES Same as BASE except anthropogenic emissions from 

residential sector are excluded 

noTRA Same as BASE except anthropogenic emissions from 

transportation are excluded 

noBB Same as BASE except biomass burning emissions are 

excluded 
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Table S3 Life Expectation at Different Ages in China and India 

China Male Female India Male Female 

<1 year 74.1 77.2 <1 year 66.2 69.1 

1-4 years 74 76.9 1-4 years 68 71.1 

5-9 years 70.1 73.1 5-9 years 64.7 68 

10-14 years 65.2 68.2 10-14 years 60 63.4 

15-19 years 60.3 63.3 15-19 years 55.2 58.6 

20-24 years 55.4 58.4 20-24 years 50.5 54 

25-29 years 50.6 53.5 25-29 years 45.9 49.4 

30-34 years 45.8 48.6 30-34 years 41.4 44.8 

35-39 years 41 43.8 35-39 years 37 40.2 

40-44 years 36.3 39 40-44 years 32.7 35.6 

45-49 years 31.6 34.2 45-49 years 28.5 31.1 

50-54 years 27 29.6 50-54 years 24.4 26.7 

55-59 years 22.5 25 55-59 years 20.6 22.5 

60-64 years 18.3 20.6 60-64 years 17 18.5 

65-69 years 14.6 16.6 65-69 years 13.8 15 

70-74 years 11.3 13 70-74 years 11 11.9 

75-79 years 8.6 9.9 75-79 years 8.7 9.4 

80-84 years 6.6 7.4 80-84 years 6.9 7.3 

85-89 years 4.9 5.5 85-89 years 5.3 5.6 

90-94 years 3.7 4.2 90-94 years 4.1 4.2 

95-99 years 2.9 3.2 95-99 years 3.2 3.2 

100+ years 2.4 2.8 100+ years 2.5 2.5 
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Table S4 Comparison between the EDGAR 2010 inventory and the MIX 2010 inventory for 

China and India 

Species 

(Tg/year) 

EDGAR 

China 

EDGAR 

India 

MIX China MIX India 

SO2 29.19 9.31 28.66 9.26 

BC 1.56 0.71 1.77 1.02 

OC 3.87 2.24 3.39 2.53 

NOx 15.20 5.35 29.07 9.57 

NH3 13.97 6.85 9.80 9.87 

NMVOC 14.49 3.26 23.62 16.89 

CO 160.85 76.04 170.87 67.42 

PM2.5 NA NA 12.20 5.22 

PM10 NA NA 16.62 7.09 
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Figure S1. WRF-Chem modeling domain, terrain height, and locations of CNEMC and MAPAN 

measurement sites 

 

 

 

 



33 
 

 

Figure S2. Simulated and observed monthly PM2.5 concentrations in the individual sites in China 

 

 

Figure S3. Simulated and observed monthly PM2.5 concentrations in the individual sites in India 
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Figure S4. Sector contributions to SO2, NOx and primary PM2.5 emissions in China and India 

 

Figure S5. sectoral contributions to WRF-Chem simulated national mean PM2.5 

concentrations in China (a) and India (b) 
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Figure S6. Spatial distributions of population in China and India 

 


