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Abstract. The L2-metric or Fubini-Study metric on the non-linear
Grassmannian of all submanifolds of type M in a Riemannian man-
ifold (N, g) induces geodesic distance 0. We discuss another metric
which involves the mean curvature and shows that its geodesic dis-
tance is a good topological metric. The vanishing phenomenon for
the geodesic distance holds also for all diffeomorphism groups for the
L2-metric.
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1. Introduction

In [10] we studied the L2-Riemannian metric on the space of all immer-
sions S1 → R2. This metric is invariant under the group Diff(S1) and
we found that it induces vanishing geodesic distance on the quotient space
Imm(S1,R2)/Diff(S1). In this paper we extend this result to the general situ-
ation Imm(M,N)/Diff(M) for any compact manifold M and Riemannian man-
ifold (N, g) with dimN > dimM . On the open subset Emb(M,N)/Diff(M),
which may be identified with the space of all submanifolds of diffeomorphism
type M in N (the non-linear Grassmanian or differentiable ‘Chow’ variety)
this says that the infinite dimensional analog of the Fubini Study metric in-
duces vanishing geodesic distance. The picture that emerges for these infinite-
dimensional manifolds is quite interesting: there are simple expressions for the
Christoffel symbols and curvature tensor, the geodesic equations are simple
and of hyperbolic type and, at least in the case of plane curves, the geodesic
spray exists locally. But the curvature is positive and unbounded in some high
frequency directions, so these spaces wrap up on themselves arbitrarily tightly,
allowing the infimum of path lengths between two given points to be zero.
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218 Peter W. Michor, David Mumford

We also carry over to the general case the stronger metric from [10] which
weights the L2 metric using the second fundamental form. It turns out that
we have only to use the mean curvature in order to get positive geodesic dis-
tances, hence a good topological metric on the space Emb(S1,R2)/Diff(S1).
The reason is that the first variation of the volume of a submanifold depends
on the mean curvature and the key step is showing that the square root of the
volume of M is Lipschitz in our stronger metric. The formula for this metric
is:

GAf (h, k) :=

∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f))g(h, k) vol(f∗g)

where Sf is the second fundamental form of the immersion f ; section 3 contains
the relevant estimates. In section 4 we also compute the sectional curvature of
the L2-metric in the hope to relate the vanishing of the geodesic distance to
unbounded positivity of the sectional curvature: by going through ever more
positively curved parts of the space we can find ever shorter curves between
any two submanifolds.

In the final section 5 we show that the vanishing of the geodesic distance also
occurs on the Lie group of all diffeomorphisms on each connected Riemannian
manifold. Short paths between any 2 diffeomorphisms are constructed by using
rapidly moving compression waves in which individual points are trapped for
relatively long times. We compute the sectional curvature also in this case.

2. The manifold of immersions

2.1. Conventions. Let M be a compact smooth connected manifold of di-
mensionm ≥ 1 and let (N, g) be a connected Riemannian manifold of dimension
n > m. We shall use the following spaces and manifolds of smooth mappings.

Diff(M), the regular Lie group ([8], 38.4) of all diffeomorphisms of M .

Diffx0
(M), the subgroup of diffeomorphisms fixing x0 ∈M .

Emb = Emb(M,N), the manifold of all smooth embeddings M → N .

Imm = Imm(M,N), the manifold of all smooth immersions M → N . For
an immersion f the tangent space with foot point f is given by
Tf Imm(M,N) = C∞f (M,TN) = Γ(f∗TN), the space of all vector
fields along f .

Immf = Immf (M,N), the manifold of all smooth free immersions M → N ,
i.e., those with trivial isotropy group for the right action of Diff(M)
on Imm(M,N).

Be = Be(M,N) = Emb(M,N)/Diff(M), the manifold of submanifolds of type
M in N , the base of a smooth principal bundle, see 2.2.
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Bi = Bi(M,N) = Imm(M,N)/Diff(M), an infinite dimensional ‘orbifold’,
whose points are, roughly speaking, smooth immersed submanifolds
of type M in N , see 2.4.

Bi,f = Bi,f (M,N) = Immf (M,R2)/Diff(M), a manifold, the base of a princi-
pal fiber bundle, see 2.3.

For a smooth curve f : R → C∞(M,N) corresponding to a mapping f :
R ×M → N , we shall denote by Tf the curve of tangent mappings, so that
Tf(t)(Xx) = Tx(f(t, )).Xx. The time derivative will be denoted by either
∂tf = ft : R×M → TN .

2.2. The principal bundle of embeddings Emb(M,N). We recall some
basic results whose proof can be found in [8]):

(A) The set Emb(M,N) of all smooth embeddings M → N is an open subset
of the smooth Fréchet manifold C∞(M,N) of all smooth mappings M → N
with the C∞-topology. It is the total space of a smooth principal bundle π :
Emb(M,N)→ Be(M,N) with structure group Diff(M), the smooth regular Lie
group group of all diffeomorphisms of M , whose base Be(M,N) is the smooth
Fréchet manifold of all submanifolds of N of type M , i.e., the smooth manifold
of all simple closed curves in N . ([8], 44.1)

(B) This principal bundle admits a smooth principal connection described by
the horizontal bundle whose fiber Nc over c consists of all vector fields h along
f such that g(h, Tf) = 0. The parallel transport for this connection exists and
is smooth. ([8], 39.1 and 43.1)

2.3. Free immersions. The manifold Imm(M,N) of all immersions M → N
is an open set in the manifold C∞(M,N) and thus itself a smooth manifold. An
immersion f : M → N is called free if Diff(M) acts freely on it, i.e., f ◦ ϕ = c
for ϕ ∈ Diff(M) implies ϕ = Id. We have the following results:

• If ϕ ∈ Diff(M) has a fixed point and if f ◦ ϕ = f for some immersion
f then ϕ = Id. This is ([4], 1.3).

• If for f ∈ Imm(M,N) there is a point x ∈ f(M) with only one preim-
age then f is a free immersion. This is ([4], 1.4). There exist free
immersions without such points.
• The manifold Bi,f (M,N) ([4], 1.5) The set Immf (M,N) of all free

immersions is open in C∞(M,N) and thus a smooth submanifold. The
projection

π : Immf (M,N)→ Immf (M,N)

Diff(M)
=: Bi,f (M,N)

onto a Hausdorff smooth manifold is a smooth principal fibration with
structure group Diff(M). By ([8], 39.1 and 43.1) this fibration admits
a smooth principal connection described by the horizontal bundle with

Documenta Mathematica 10 (2005) 217–245



220 Peter W. Michor, David Mumford

fiber Nc consisting of all vector fields h along f such that g(h, Tf) = 0.
This connection admits a smooth parallel transport over each smooth
curve in the base manifold.

We might view Immf (M,N) as the nonlinear Stiefel manifold of parametrized
submanifolds of type M in N and consequently Bi,f (M,N) as the nonlinear
Grassmannian of unparametrized submanifolds of type M .

2.4. Non free immersions. Any immersion is proper since M is compact
and thus by ([4], 2.1) the orbit space Bi(M,N) = Imm(M,N)/Diff(M) is
Hausdorff. Moreover, by ([4], 3.1 and 3.2) for any immersion f the isotropy
group Diff(M)f is a finite group which acts as group of covering transforma-
tions for a finite covering qc : M → M̄ such that f factors over qc to a free
immersion f̄ : M̄ → N with f̄ ◦ qc = f . Thus the subgroup Diffx0

(M) of all
diffeomorphisms ϕ fixing x0 ∈ M acts freely on Imm(M,N). Moreover, for
each f ∈ Imm the submanifold Q(f) from 4.4, (1) is a slice in a strong sense:

• Q(f) is invariant under the isotropy group Diff(M)f .
• If Q(f)◦ϕ∩Q(f) 6= ∅ for ϕ ∈ Diff(M) then ϕ is already in the isotropy

group ϕ ∈ Diff(M)f .
• Q(f) ◦ Diff(M) is an invariant open neigbourhood of the orbit f ◦

Diff(M) in Imm(M,N) which admits a smooth retraction r onto the
orbit. The fiber r−1(f ◦ ϕ) equals Q(f ◦ ϕ).

Note that also the action

Imm(M,N)×Diff(M)→ Imm(M,N)× Imm(M,N), (f, ϕ) 7→ (f, f ◦ ϕ)

is proper so that all assumptions and conclusions of Palais’ slice theorem [13]
hold. This results show that the orbit space Bi(M,N) has only singularities
of orbifold type times a Fréchet space. We may call the space Bi(M,N) an
infinite dimensional orbifold. The projection π : Imm(M,N) → Bi(M,N) =
Imm(M,N)/Diff(M) is a submersion off the singular points and has only mild
singularities at the singular strata. The normal bundle Nf mentioned in 2.2
is well defined and is a smooth vector subbundle of the tangent bundle. We
do not have a principal bundle and thus no principal connections, but we can
prove the main consequence, the existence of horizontal paths, directly:

2.5. Proposition. For any smooth path f in Imm(M,N) there exists a smooth
path ϕ in Diff(M) with ϕ(t, ) = IdM depending smoothly on f such that the
path h given by h(t, θ) = f(t, ϕ(t, θ)) is horizontal: g(ht, Th) = 0.

Proof. Let us write h = f ◦ ϕ for h(t, x) = f(t, ϕ(t, x)), etc. We look for ϕ
as the integral curve of a time dependent vector field ξ(t, x) on M , given by
∂tϕ = ξ ◦ ϕ. We want the following expression to vanish:

g
(
∂t(f ◦ ϕ), T (f ◦ ϕ)

)
= g
(
(∂tf ◦ ϕ+ (Tf ◦ ϕ).∂tϕ, (Tf ◦ ϕ).Tϕ

)
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=
(
g(∂tf, Tf) ◦ ϕ

)
.Tϕ+ g

(
(Tf ◦ ϕ)(ξ ◦ ϕ), (Tf ◦ ϕ).Tϕ

)

=
((
g(∂tf, Tf) + g(Tf.ξ, Tf)

)
◦ ϕ
)
.Tϕ

Since Tϕ is everywhere invertible we get

0 = g
(
∂t(f ◦ ϕ), T (f ◦ ϕ)

)
⇐⇒ 0 = g(∂tf, Tf) + g(Tf.ξ, Tf)

and the latter equation determines the non-autonomous vector field ξ uniquely.
¤

2.6. Curvatures of an immersion. Consider a fixed immersion f ∈
Imm(M,N). The normal bundle N(f) = Tf⊥ ⊂ f∗TN → M has fibers
N(f)x = {Y ∈ Tf(x)N : g(Y, Txf.X) = 0 for all X ∈ TxM}. Every vector

field h : M → TN along f then splits as h = Tf.h> + h⊥ into its tangential
component h> ∈ X(M) and its normal component h⊥ ∈ Γ(N(f)).

Let ∇g be the Levi-Civita covariant derivative of g on N and let ∇f∗g the
Levi-Civita covariant derivative of the pullback metric f ∗g on M . The shape
operator or second fundamental form Sf ∈ Γ(S2T ∗M⊗N(f)) of f is then given
by

(1) Sf (X,Y ) = ∇gX(Tf.Y )− Tf.∇f
∗g
X Y for X,Y ∈ X(M).

It splits into the following irreducible components under the action of the group

O(TxM) × O(N(f)x): the mean curvature Trf
∗g(Sf ) = Tr((f∗g)−1 ◦ Sf ) ∈

Γ(N(f)) and the trace free shape operator Sf0 = Sf−Trf
∗g(Sf ). ForX ∈ X(M)

and ξ ∈ Γ(N(f)), i.e., a normal vector field along f , we may also split ∇gXξ
into the components which are tangential and normal to Tf.TM ,

(2) ∇gXξ = −Tf.Lfξ (X) +∇N(f)
X ξ

where ∇N(f) is the induced connection in the normal bundle respecting the
metric gN(f) induced by g, and where the Weingarten tensor field Lf ∈
Γ(N(f)∗ ⊗ T ∗M ⊗ TM) corresponds to the shape operator via the formula

(3) (f∗g)(Lfξ (X), Y ) = gN(f)(Sf (X,Y ), ξ).

Let us also split the Riemann curvature Rg into tangential and normal parts:
For Xi ∈ X(M) or TxM we have (theorema egregium):

g(Rg(Tf.X1, T f.X2)(Tf.X3), T f.X4) = (f∗g)(Rf
∗g(X1, X2)X3, X4)+

+ gN(f)(Sf (X1, X3), Sf (X2, X4))− gN(f)(Sf (X2, X3), Sf (X1, X4)).(4)

The normal part of Rg is then given by (Codazzi-Mainardi equation):

(Rg(Tf.X1, T f.X2)(Tf.X3))⊥ =

=
(
∇N(f)⊗T∗M⊗T∗M
X1

Sf
)
(X2, X3)−

(
∇N(f)⊗T∗M⊗T∗M
X2

Sf
)
(X1, X3).(5)
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222 Peter W. Michor, David Mumford

2.7. Volumes of an immersion. For an immersion f ∈ Imm(M,N), we
consider the volume density volg(f) = vol(f∗g) ∈ Vol(M) on M given by

the local formula volg(f)|U =
√

det((f∗g)ij)|du1 ∧ · · · ∧ dum| for any chart
(U, u : U → Rm) of M , and the induced volume function Volg : Imm(M,N)→
R>0 which is given by Volg(f) =

∫
M

vol(f∗g). The tangent mapping of

vol : Γ(S2
>0T

∗M) → Vol(M) is given by d vol(γ)(η) = 1
2 Tr(γ−1.η) vol(γ). We

consider the pullback mapping Pg : f 7→ f∗g, Pg : Imm(M,N)→ Γ(S2
>0T

∗M).
A version of the following lemma is [7], 1.6.

Lemma. The derivative of volg = vol ◦Pg : Imm(M,N)→ Vol(M) is

d volg(h) = d(vol ◦Pg)(h)

= −Trf
∗g(g(Sf , h⊥)) vol(f∗g) + 1

2 Trf
∗g(Lh>(f∗g)) vol(f∗g).

= −(g(Trf
∗g(Sf ), h⊥)) vol(f∗g) + divf

g

(h>) vol(f∗g).

Proof. We consider a curve t 7→ f(t, ) in Imm with ∂t|0f = h. We also use
a chart (U, u : U → Rm) on M . Then we have

f∗g|U =
∑

i,j

(f∗g)ijdu
i ⊗ duj =

∑

i,j

g(Tf.∂ui , T f.∂uj )du
i ⊗ duj

∂t volg(f)|U =
det((f∗g)ij)(f

∗g)kl∂t(f
∗g)lk

2
√

det((f∗g)ij)
|du1 ∧ · · · ∧ dum|

where

∂t(f
∗g)ij = ∂tg(Tf.∂ui , T f.∂uj )

= g(∇g∂t(Tf.∂ui), T f.∂uj ) + g(∂ui ,∇g∂t(Tf.∂uj ))
g(∇g∂tTf.∂ui , T f.∂uj ) = g(∇g∂uiTf.∂t + Tf.Tor +Tf.[∂t, ∂ui ], T f.∂uj )

= g(∇g∂ui (Tf.∂t)
⊥, T f.∂uj ) + g(∇g∂ui (Tf.∂t)

>, T f.∂uj )

g(∇g∂ui (∂tf)⊥, T f.∂uj ) = g(−Tf.L(∂tf)⊥∂ui , T f.∂uj )+g(∇N(f)
∂ui

(∂tf)⊥, T f.∂uj )

= −(f∗g)(L(∂tf)⊥∂ui , ∂uj )

= −g(Sf (∂ui , ∂uj ), (∂tf)⊥)

g(∇g∂ui (∂tf)>, T f.∂uj ) = (f∗g)(∇f
∗g
∂ui

(∂tf)>, ∂uj ) + 0

= (f∗g)(∇f
∗g

(∂tf)>∂ui + Tor−[(∂tf)>, ∂ui ], ∂uj ),

∂t(f
∗g)ij = −2g(Sf (∂ui , ∂uj ), (∂tf)⊥) + (L(∂tf)>(f∗g))(∂ui , ∂uj )

This proves the first formula. For the second one note that

1
2 Tr((f∗g)−1Lh>(f∗g)) vol(f∗g) = Lh>(vol(f∗g)) = divf

∗g(h>) vol(f∗g). ¤
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3. Metrics on spaces of mappings

3.1. The metric GA. Let h, k ∈ C∞f (M,TN) be two tangent vectors with

foot point f ∈ Imm(M,N), i.e., vector fields along f . Let the induced volume
density be vol(f∗g). We consider the following weak Riemannian metric on
Imm(M,N), for a constant A ≥ 0:

GAf (h, k) :=

∫

M

(
1 +A‖Trf

∗g(Sf )‖2gN(f)

)
g(h, k) vol(f∗g)

where Trf
∗g(Sf ) ∈ N(f) is the mean curvature, a section of the normal bundle,

and ‖Trf
∗g(Sf )‖gN(f) is its norm. The metric GA is invariant for the action of

Diff(M). This makes the map π : Imm(M,N)→ Bi(M,N) into a Riemannian
submersion (off the singularities of Bi(M,N)).

Now we can determine the bundle N → Imm(M,N) of tangent vectors which
are normal to the Diff(M)-orbits. The tangent vectors to the orbits are Tf (f ◦
Diff(M)) = {Tf.ξ : ξ ∈ X(M)}. Inserting this for k into the expression of the
metric G we see that

Nf = {h ∈ C∞(M,TN) : g(h, Tf) = 0}
= Γ(N(f)),

the space of sections of the normal bundle. This is independent of A.

A tangent vector h ∈ Tf Imm(M,N) = C∞f (M,TN) = Γ(f∗TN) has an or-
thonormal decomposition

h = h> + h⊥ ∈ Tf (f ◦Diff+(M))⊕Nf
into smooth tangential and normal components.

Since the Riemannian metric GA on Imm(M,N) is invariant under the action
of Diff(M) it induces a metric on the quotient Bi(M,N) as follows. For any
F0, F1 ∈ Bi, consider all liftings f0, f1 ∈ Imm such that π(f0) = F0, π(f1) =
F1 and all smooth curves t 7→ f(t, ) in Imm(M,N) with f(0, ·) = f0 and
f(1, ·) = f1. Since the metric GA is invariant under the action of Diff(M) the
arc-length of the curve t 7→ π(f(t, ·)) in Bi(M,N) is given by

Lhor
GA(f) := LGA(π(f(t, ·))) =

=

∫ 1

0

√
GAπ(f)(Tfπ.ft, Tfπ.ft) dt =

∫ 1

0

√
GAf (f⊥t , f

⊥
t ) dt =

=

∫ 1

0

(∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f))g(f⊥t , f

⊥
t ) vol(f∗g)

) 1
2
dt

In fact the last computation only makes sense on Bi,f (M,N) but we take it
as a motivation. The metric on Bi(M,N) is defined by taking the infimum of
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224 Peter W. Michor, David Mumford

this over all paths f (and all lifts f0, f1):

distBi
GA

(F1, F2) = inf
f
Lhor
GA(f).

3.2. Theorem. Let A = 0. For f0, f1 ∈ Imm(M,N) there exists always a path
t 7→ f(t, ·) in Imm(M,N) with f(0, ·) = f0 and π(f(1, ·)) = π(f1) such that
Lhor
G0 (f) is arbitrarily small.

Proof. Take a path f(t, θ) in Imm(M,N) from f0 to f1 and make it horizontal
using 2.4 so that that g(ft, T f) = 0; this forces a reparametrization on f1.

Let α : M → [0, 1] be a surjective Morse function whose singular values are
all contained in the set { k

2N : 0 ≤ k ≤ 2N} for some integer N . We shall use
integers n below and we shall use only multiples of N .

Then the level sets Mr := {x ∈ M : α(x) = r} are of Lebesque measure 0.
We shall also need the slices Mr1,r2 := {x ∈ M : r1 ≤ α(x) ≤ r2}. Since M
is compact there exists a constant C such that the following estimate holds
uniformly in t:∫

Mr1,r2

vol(f(t, )∗g) ≤ C(r2 − r1)

∫

M

vol(f(t, )∗g)

Let f̃(t, x) = f(ϕ(t, α(x)), x) where ϕ : [0, 1] × [0, 1] → [0, 1] is given as in
[10], 3.10 (which also contains a figure illustrating the construction) by

ϕ(t, α)=





2t(2nα− 2k) for 0 ≤ t ≤ 1/2, 2k
2n ≤ α ≤ 2k+1

2n

2t(2k + 2− 2nα) for 0 ≤ t ≤ 1/2, 2k+1
2n ≤ α ≤ 2k+2

2n

2t− 1 + 2(1− t)(2nα− 2k) for 1/2 ≤ t ≤ 1, 2k
2n ≤ α ≤ 2k+1

2n

2t− 1 + 2(1− t)(2k + 2− 2nα) for 1/2 ≤ t ≤ 1, 2k+1
2n ≤ α ≤ 2k+2

2n .

Then we get T f̃ = ϕα.dα.ft + Tf and f̃t = ϕt.ft where

ϕα =





+4nt

−4nt

+4n(1− t)
−4n(1− t)

, ϕt =





4nα− 4k

4k + 4− 4nα

2− 4nα+ 4k

−(2− 4nα+ 4k)

.

We use horizontality g(ft, T f) = 0 to determine f̃⊥t = f̃t + T f̃(X) where

X ∈ TM satisfies 0 = g(f̃t + T f̃(X), T f̃(ξ)) for all ξ ∈ TM . We also use

dα(ξ) = f∗g(gradf
∗g α, ξ) = g(Tf(gradf

∗g α), T f(ξ))

and get

0 = g(f̃t + T f̃(X), T f̃(ξ))

= g
(
ϕtft + ϕαdα(X)ft + Tf(X), ϕαdα(ξ)ft + Tf(ξ)

)

= ϕt.ϕα.(f
∗g)(gradf

∗g α, ξ)‖ft‖2g+
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+ ϕ2
α.(f

∗g)(gradf
∗g α,X).(f∗g)(gradf

∗g α, ξ)‖ft‖2g + g(Tf(X), T f(ξ))

= (ϕt.ϕα + ϕ2
α.(f

∗g)(gradf
∗g α,X))‖ft‖2g(f∗g)(gradf

∗g α, ξ) + (f∗g)(X, ξ)

This implies that X = λ gradf
∗g α for a function λ and in fact we get

f̃⊥t =
ϕt

1 + ϕ2
α‖dα‖2f∗g‖ft‖2g

ft −
ϕtϕα‖ft‖2g

1 + ϕ2
α‖dα‖2f∗g‖ft‖2g

Tf(gradf
∗g α)

and

‖f̃t‖2g =
ϕ2
t‖ft‖2g

1 + ϕ2
α‖dα‖2f∗g‖ft‖2g

From T f̃ = ϕα.dα.ft + Tf and g(ft, T f) = 0 we get for the volume form

vol(f̃∗g) =
√

1 + ϕ2
α ‖dα‖2f∗g‖ft‖2g vol(f∗g).

For the horizontal length we get

Lhor(f̃) =

∫ 1

0

(∫

M

‖f̃⊥t ‖2g vol(f̃∗g)
) 1

2
dt =

=

∫ 1

0

(∫

M

ϕ2
t‖ft‖2g√

1 + ϕ2
α‖dα‖2f∗g‖ft‖2g

vol(f∗g)
) 1

2
dt =

=

∫ 1
2

0

(
n−1∑

k=0

(∫

M 2k
2n ,

2k+1
2n

(4nα− 4k)2‖ft‖2g√
1 + (4nt)2‖dα‖2f∗g‖ft‖2g

vol(f∗g)+

+

∫

M 2k+1
2n ,

2k+2
2n

(4k + 4− 4nα)2‖ft‖2g√
1 + (4nt)2‖dα‖2f∗g‖ft‖2g

vol(f∗g)
))

1
2

dt+

+

∫ 1

1
2

(
n−1∑

k=0

(∫

M 2k
2n ,

2k+1
2n

(2− 4nα+ 4k)2‖ft‖2g√
1 + (4n(1− t))2‖dα‖2f∗g‖ft‖2g

vol(f∗g)+

+

∫

M 2k+1
2n ,

2k+2
2n

(2− 4nα+ 4k)2‖ft‖2g√
1 + (4n(1− t))2‖dα‖2f∗g‖ft‖2g

vol(f∗g)
))

1
2

dt

Let ε > 0. The function (t, x) 7→ ‖ft(ϕ(t, α(x)), x)‖2g is uniformly bounded. On
M 2k

2n ,
2k+1

2n

the function 4nα− 4k has values in [0, 2]. Choose disjoint geodesic

balls centered at the finitely many singular values of the Morse function α
of total f∗g-volume < ε. Restricted to the union Msing of these balls the
integral above is O(1)ε. So we have to estimate the integrals on the complement

M̃ = M \Msing where the function ‖dα‖f∗g is uniformly bounded from below
by η > 0.
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Let us estimate one of the sums above. We use the fact that the singular points
of the Morse function α lie all on the boundaries of the sets M̃ 2k

2n ,
2k+1

2n

so that

we can transform the integrals as follows:

n−1∑

k=0

∫

M̃ 2k
2n ,

2k+1
2n

(4nα− 4k)2‖ft‖2g√
1 + (4nt)2‖dα‖2f∗g‖ft‖2g

vol(f∗g) =

=

n−1∑

k=0

∫ 2k+1
2n

2k
2n

∫

M̃r

(4nr − 4k)2‖ft‖2g√
1 + (4nt)2‖dα‖2f∗g‖ft‖2g

vol(i∗rf
∗g)

‖dα‖f∗g
dr

We estimate this sum of integrals: Consider first the set of all (t, r, x ∈ Mr)
such that |ft(ϕ(t, r), x)| < ε. There we estimate by

O(1).n.16n2.ε2.(r3/3)|r=1/2n
r=0 = O(ε).

On the complementary set where |ft(ϕ(t, r), x)| ≥ ε we estimate by

O(1).n.16n2.
1

4ntη2ε
(r3/3)|r=1/2n

r=0 = O(
1

ntη2ε
)

which goes to 0 if n is large enough. The other sums of integrals can be
estimated similarly, thus Lhor(f̃) goes to 0 for n → ∞. It is clear that one
can approximate ϕ by a smooth function whithout changing the estimates
essentially. ¤

3.3. A Lipschitz bound for the volume in GA. We apply the Cauchy-
Schwarz inequality to the derivative 2.7 of the volume Volg(f) along a curve
t 7→ f(t, ) ∈ Imm(M,N):

∂t Volg(f) = ∂t

∫

M

volg(f(t, )) =

∫

M

d volg(f)(∂tf)

= −
∫

M

Trf
∗g(g(Sf , f⊥t )) vol(f∗g) ≤

∣∣∣
∫

M

Trf
∗g(g(Sf , f⊥t )) vol(f∗g)

∣∣∣

≤
(∫

M

12 vol(f∗g)
) 1

2
(∫

M

Trf
∗g(g(Sf , f⊥t ))2 vol(f∗g)

) 1
2

≤ Volg(f)
1
2

1√
A

(∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f)) g(f⊥t , f

⊥
t ) vol(f∗g)

) 1
2

Thus

∂t(
√

Volg(f)) =
∂t Volg(f)

2
√

Volg(f)
≤

≤ 1

2
√
A

(∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f)) g(f⊥t , f

⊥
t ) vol(f∗g)

) 1
2
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and by using (3.1) we get

√
Volg(f1)−

√
Volg(f0) =

∫ 1

0

∂t(
√

Volg(f)) dt

≤ 1

2
√
A

∫ 1

0

(∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f)) g(f⊥t , f

⊥
t ) vol(f∗g)

) 1
2

dt

=
1

2
√
A
Lhor
GA(f).

If we take the infimum over all curves connecting f0 with the Diff(M)-orbit
through f1 we get:

Proposition. Lipschitz continuity of
√

Volg : Bi(M,N)→ R≥0. For F0

and F1 in Bi(M,N) = Imm(M,N)/Diff(M) we have for A > 0:
√

Volg(F1)−
√

Volg(F0) ≤ 1

2
√
A

distBi
GA

(F1, F2).

3.4. Bounding the area swept by a path in Bi. We want to bound the
area swept out by a curve starting from F0 to any immersed submanifold F1

nearby in our metric. First we use the Cauchy-Schwarz inequality in the Hilbert
space L2(M, vol(f(t, )∗g)) to get
∫

M

1.‖ft‖g vol(f∗g) = 〈1, ‖ft‖g〉L2 ≤

≤ ‖1‖L2‖ct‖L2 =
(∫

M

vol(f∗g)
) 1

2
(∫

M

|ft| vol(f∗g)
) 1

2
.

Now we assume that the variation f(t, x) is horizontal, so that g(ft, T f) = 0.
Then LGA(f) = Lhor

GA(f). We use this inequality and then the intermediate
value theorem of integral calculus to obtain

Lhor
GA(f) = LGA(f) =

∫ 1

0

√
GAf (ft, ft) dt

=

∫ 1

0

(∫

M

(1 +A‖Trf
∗
(Sf )‖2f∗g)‖ft‖2 vol(f∗g)

) 1
2
dt

≥
∫ 1

0

(∫

M

‖ft‖2 vol(f∗g)
) 1

2
dt

≥
∫ 1

0

(∫

M

vol(f(t, )∗g)
)−1

2
∫

M

‖ft(t, )‖g vol(f(t, )∗g) dt

=
(∫

M

vol(f(t0, )∗g)
)−1

2
∫ 1

0

∫

M

‖ft(t, )‖g vol(f(t, )∗g) dt

for some intermediate value 0 ≤ t0 ≤ 1,

≥ 1√
Volg(f(t0, ))

∫

[0,1]×M
volm+1(f∗g)
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Proposition. Area swept out bound. If f is any path from F0 to F1,
then
(

(m+ 1)− volume of the region swept
out by the variation f

)
≤ max

t

√
Volg(f(t, )) · Lhor

GA(f).

Together with the Lipschitz continuity 3.3 this shows that the geodesic distance
inf LBi

GA
separates points, at least in the base space B(M,N) of embeddings.

3.5. Horizontal energy of a path as anisotropic volume. We consider
a path t 7→ f(t, ) in Imm(M,N). It projects to a path π ◦ f in Bi whose
energy is:

EGA(π ◦ f) = 1
2

∫ b

a

GAπ(f)(Tπ.ft, Tπ.ft) dt = 1
2

∫ b

a

GAf (f⊥t , f
⊥
t ) dt =

= 1
2

∫ b

a

∫

M

(1 +A‖Trf
∗g(Sf )‖2gN(f))g(f⊥t , f

⊥
t ) vol(f∗g) dt.

We now consider the graph γf : [a, b] ×M 3 (t, x) 7→ (t, f(t, x)) ∈ [a, b] × N
of the path f and its image Γf , an immersed submanifold with boundary of
R×N . We want to describe the horizontal energy as a functional on the space
of immersed submanifolds with fixed boundary, remembering the fibration of
pr1 : R×N → R. We get:

EGA(π ◦ f) =

= 1
2

∫

[a,b]×M

(
1 +A‖Trf

∗g(Sf )‖2gN(f)

) ‖f⊥t ‖2√
1 + ‖f⊥t ‖2g

vol(γ∗f (dt2 + g))

Now ‖f⊥t ‖g depends only on the graph Γf and on the fibration over time,
since any reparameterization of Γf which respects the fibration over time is of
the form (t, x) 7→ (t, f(t, ϕ(t, x))) for some path ϕ in Diff(M) starting at the
identity, and (∂t|0f(t, ϕ(t, x)))⊥ = f⊥t . So the above expression is intrinsic for
the graph Γf and the fibration. In order to find a geodesic from the shape
π(f(a, )) to the shape π(f(b, )) one has to find an immersed surface which
is a critical point for the functional EGA above. This is a Plateau-problem with
anisotropic volume.

4. The geodesic equation and the curvature on Bi

4.1. The geodesic equation of G0 in Imm(M,N). The energy of a curve
t 7→ f(t, ) in Imm(M,N) for G0 is

EG0(f) = 1
2

∫ b

a

∫

M

g(ft, ft) vol(f∗g).
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The geodesic equation for G0

(1)
∇g∂tft + divf

∗g(f>t )ft − g(f⊥t ,Trf
∗g(Sf ))ft+

+ 1
2Tf. gradf

∗g(‖ft‖2g) + 1
2‖ft‖2g Trf

∗g(Sf ) = 0

Proof. A different proof is in [7], 2.2. For a function a on M we shall use
∫

M

adivf
∗g(X) vol(f∗g) =

∫

M

aLX(vol(f∗g))

=

∫

M

LX(a vol(f∗g))−
∫

M

LX(a) vol(f∗g)

= −
∫

M

(f∗g)(gradf
∗g(a), X) vol(f∗g)

in calculating the first variation of the energy with fixed ends:

∂sEG0(f) = 1
2

∫ b

a

∫

M

(
∂sg(ft, ft) vol(f∗g) + g(ft, ft) ∂s vol(f∗g)

)
dt

=

∫ b

a

∫

M

(
g(∇g∂sft, ft) vol(f∗g) + 1

2‖ft‖2g divf
∗g(f>s ) vol(f∗g)

− 1
2‖ft‖2gg(f⊥s ,Trf

∗g(Sf )) vol(f∗g)
)
dt

For the first summand we have:
∫ b

a

∫

M

g(∇g∂sft, ft) vol(f∗g) dt =

∫ b

a

∫

M

g(∇g∂tfs, ft) vol(f∗g) dt

=

∫ b

a

∫

M

(∂tg(fs, ft)− g(fs,∇g∂tft)) vol(f∗g) dt

= −
∫ b

a

∫

M

g(fs, ft)∂t vol(f∗g) dt−
∫ b

a

∫

M

g(fs,∇g∂tft) vol(f∗g) dt

=

∫ b

a

∫

M

(
−g(fs, ft) divf

∗g(f>t ) + g(fs, ft)g(f⊥t ,Trf
∗g(Sf ))−

− g(fs,∇g∂tft)
)

vol(f∗g) dt

The second summand yields:

∫ b

a

∫

M

1
2‖ft‖2g divf

∗g(f>s ) vol(f∗g) dt

= −
∫ b

a

∫

M

1
2 (f∗g)(f>s , gradf

∗g(‖ft‖2g)) vol(f∗g) dt

= −
∫ b

a

∫

M

1
2g(fs, T f. gradf

∗g(‖ft‖2g)) vol(f∗g) dt
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Thus the first variation ∂sEG0(f) is:

∫ b

a

∫

M

g
(
fs,−∇g∂tft − divf

∗g(f>t )ft + g(f⊥t ,Trf
∗g(Sf ))ft

− 1
2Tf. gradf

∗g(‖ft‖2g)− 1
2‖ft‖2gg(f⊥s ,Trf

∗g(Sf ))
)

vol(f∗g) dt. ¤

4.2. Geodesics for G0 in Bi(M,N). We restrict to geodesics t 7→ f(t, )
in Imm(M,N) which are horizontal: g(ft, T f) = 0. Then f>t = 0 and ft = f⊥t ,
so equation 4.1.(1) becomes

∇g∂tft − g(ft,Trf
∗g(Sf ))ft + 1

2Tf. gradf
∗g(‖ft‖2g) + 1

2‖ft‖2g Trf
∗g(Sf ) = 0.

It splits into a vertical (tangential) part

−Tf.(∇∂tft)> + 1
2Tf. gradf

∗g(‖ft‖2g) = 0

which vanishes identically since

(f∗g)(gradf
∗g(‖ft‖2g), X) = X(g(ft, ft)) = 2g(∇Xft, ft) = 2g(∇g∂tTf.X, ft)

= 2∂tg(Tf.X, ft)− 2g(Tf.X,∇g∂tft) = −2g(Tf.X,∇g∂tft),

and a horizontal (normal) part which is the geodesic equation in Bi:

(1) ∇N(f)
∂t

ft − g(ft,Trf
∗g(Sf ))ft + 1

2‖ft‖2g Trf
∗g(Sf ) = 0, g(Tf, ft) = 0

4.3. The induced metric of G0 in Bi(M,N) in a chart. Let f0 : M → N
be a fixed immersion which will be the ‘center’ of our chart. Let N(f0) ⊂ f∗0TN
be the normal bundle to f0. Let expg : N(f0)→ N be the exponential map for
the metric g and let V ⊂ N(f0) be a neighborhood of the 0 section on which
the exponential map is an immersion. Consider the mapping

ψ = ψf0
: Γ(V )→ Imm(M,N), , ψ(Γ(V )) =: Q(f0),(1)

ψ(a)(x) = expg(a(x)) = expgf0(x)(a(x)).

The inverse (on its image) of π ◦ ψf : Γ(V ) → Bi(M,N) is a smooth chart on
Bi(M,N). Our goal is to calculate the induced metric on this chart, that is

((π ◦ ψf0
)∗G0

a)(b1, b2)

for any a ∈ Γ(V ), b1, b2 ∈ Γ(N(f0)). This will enable us to calculate the
sectional curvatures of Bi.

We shall fix the section a and work with the ray of points t.a in this chart.
Everything will revolve around the map:

f(t, x) = ψ(t.a)(x) = expg(t.a(x)).
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We shall also use a fixed chart (M ⊃ U
u−→ Rm) on M with ∂i = ∂/∂ui.

Then x 7→ (t 7→ f(t, x)) = expgf0(x)(t.a(x)) is a variation consisting entirely of

geodesics, thus:

t 7→ ∂if(t, x) = Tf.∂i =: Zi(t, x, a) is the Jacobi field along t 7→ f(t, x)with

Zi(0, x, a) = ∂i|x expf0(x)(0) = ∂i|xf0 = Txf0.∂i|x, and(2)

(∇g∂tZi)(0, x) = (∇g∂tTf.∂i)(0, x) = (∇g∂iTf.∂t)(0, x) =

= ∇g∂i(∂t|0 expf0(x)(t.a(x))) = (∇g∂ia)(x).

Then the pullback metric is given by

f∗g = ψ(ta)∗g = g(Tf, Tf) =

=

m∑

i,j=1

g(Tf.∂i, T f, ∂j) du
i ⊗ duj =

m∑

i,j=1

g(Zi, Zj) du
i ⊗ duj .(3)

The induced volume density is:

vol(f∗g) =
√

det(g(Zi, Zj))|du1 ∧ · · · ∧ dum|(4)

Moreover we have for a ∈ Γ(V ) and b ∈ Γ(N(f0))

(Ttaψ.tb)(x) = ∂s|0 expgf0(x)(ta(x) + stb(x)))

= Y (t, x, a, b) for the Jacobi field Y along t 7→ f(t, x) with(5)

Y (0, x, a, b) = 0f0(x),

(∇g∂tY ( , x, a, b))(0) = ∇g∂t∂s expgf0(x)(ta(x) + stb(x))

= ∇g∂s∂t|0 expgf0(x)(ta(x) + stb(x))

= ∇g∂s(a(x) + s.b(x))|s=0 = b(x).

Now we want to split Taψ.b into vertical (tangential) and horizontal parts with
respect to the immersion ψ(ta) = f(t, ). The tangential part has locally the
form

Tf.(Ttaψ.tb)
> =

m∑

i=1

ci Tf.∂i =
m∑

i=1

ci Zi where for all j

g(Y,Zj) = g

(
m∑

i=1

ci Zi, Zj

)
=

m∑

i=1

ci (f∗g)ij ,

ci =

m∑

j=1

(f∗g)ijg(Y,Zj).

Thus the horizontal part is

(Ttaψ.tb)
⊥ = Y ⊥ = Y −

m∑

i=1

ci Zi = Y −
m∑

i,j=1

(f∗g)ij g(Y,Zj) Zi(6)

Documenta Mathematica 10 (2005) 217–245



232 Peter W. Michor, David Mumford

Thus the induced metric on Bi(M,N) has the following expression in the chart
(π ◦ ψf0

)−1, where a ∈ Γ(V ) and b1, b2 ∈ Γ(N(f0)):

((π ◦ ψf0
)∗G0)ta(b1, b2) = G0

π(ψ(ta))(Tta(π ◦ ψ)b1, Tta(π ◦ ψ)b2)

= G0
ψ(ta)((Ttaψ.b1)⊥, (Ttaψ.b2)⊥)

=

∫

M

g((Ttaψ.b1)⊥, (Ttaψ.b2)⊥) vol(f∗g)

=

∫

M

1

t2
g
(
Y (b1)−

∑

i,j

(f∗g)ij g(Y (b1), Zj)Zi , Y (b2)
)

(7)

√
det(g(Zi, Zj))|du1 ∧ · · · ∧ dum|

4.4. Expansion to order 2 of the induced metric of G0 in Bi(M,N)
in a chart. We use the setting of 4.3, the Einstein summation convention,
and the abbreviations fi := ∂if0 = ∂uif0 and ∇gi := ∇g∂i = ∇g∂ui . We compute

the expansion in t up to order 2 of the metric 4.3.(7). Our method is to use
the Jacobi equation

∇g∂t∇
g
∂t
Y = Rg(ċ, Y )ċ

which holds for any Jacobi field Y along a geodesic c. By 2.6.(2) we have:

(1) g(∇gi a, fj) = −(f∗0 g)(Lf0
a (∂i), ∂j) = −g(a, Sf0(fi, fj)) = g(a, Sf0

ij )

We start by expanding the pullback metric 4.3.(3) and its inverse:

∂t(f
∗g)ij = ∂tg(Zi, Zj) = g(∇g∂tZi, Zj) + g(Zi,∇g∂tZj)

∂2
t g(Zi, Zj) = g(∇g∂t∇

g
∂t
Zi, Zj) + 2g(∇g∂tZi,∇

g
∂t
Zj) + g(Zi,∇g∂t∇

g
∂t
Zj)

(f∗g)ij = (f∗0 g)ij + t
(
g(∇gi a, fj) + g(fi,∇gja)

)
+

+ 1
2 t

2
(
g(Rg(a, fi)a, fj) + 2g(∇gi a,∇gja) + g(fi, R

g(a, fj)a)
)

+O(t3)

= (f∗0 g)ij − 2t(f∗0 g)(Lf0
a (∂i), ∂j)

+ t2
(
g(Rg(a, fi)a, fj) + g(∇gi a,∇gja)

)
+O(t3)(2)

We expand now the volume form vol(f∗g) =
√

det(g(Zi, Zj))|du1 ∧ · · · ∧ dum|.
The time derivative at 0 of the inverse of the pullback metric is:

∂t(f
∗g)ij |0 = −(f∗0 g)ik(∂t|0(f∗g)kl)(f

∗
0 g)lj = −(f∗0 g)ik(f∗0 g)(a, Sf0

kl )(f
∗
0 g)lj

Therefore,

∂t

√
det(g(Zi, Zj)) = 1

2 (f∗g)ij∂t(g(Zi, Zj))
√

det(g(Zi, Zj))

∂2
t

√
det(g(Zi, Zj)) = 1

2∂t(f
∗g)ij∂t(g(Zi, Zj))

√
det(g(Zi, Zj))

+ 1
2 (f∗g)ij∂2

t (g(Zi, Zj))
√

det(g(Zi, Zj))
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+ 1
2 (f∗g)ij∂t(g(Zi, Zj))∂t

√
det(g(Zi, Zj))

and so

vol(f∗g) =
√

det(g(Zi, Zj))|du1 ∧ · · · ∧ dum|

=
(

1− tTr(Lf0
a ) + t2

(
−Tr(Lf0

a ◦ Lf0
a ) + 1

2 (Tr(Lf0
a ))2

+ 1
2 (f∗g)ij

(
g(Rg(a, fi)a, fj) + g(∇gi a,∇gja)

))
+O(t3)

)
vol(f∗0 g).(3)

Moreover, by 2.6.(2) we may split ∇gi a = −Tf0.L
f0
a (∂i)+∇N(f0)

i a and we write

∇⊥i a for ∇N(f0)
i a shortly. Thus:

(f∗0 g)ijg(∇gi a,∇gja) = (f∗0 g)ij
(
g(Tf0.L

f0
a (∂i), T f0.L

f0
a (∂j)) + g(∇⊥i a,∇⊥j a)

)

= Tr(Lf0
a ◦ Lf0

a ) + (f∗0 g)ijg(∇⊥i a,∇⊥j a)

and so that the tangential term above combines with the first t2 term in the
expansion of the volume, changing its coefficient from −1 to − 1

2 .

Let us now expand

g((Ttaψ.tb1)⊥,(Ttaψ.tb2)⊥)

= g
(
Y (b1)− (f∗g)ijg(Y (b1), Zj)Zi , Y (b2)

)

= g(Y (b1), Y (b2))− (f∗g)ijg(Y (b1), Zj)g(Zi, Y (b2)).

We have:

∂tg(Y (b1), Y (b2)) = g(∇g∂tY (b1), Y (b2)) + g(Y (b1),∇g∂tY (b2))

∂2
t g(Y (b1), Y (b2)) = g(∇g∂t∇

g
∂t
Y (b1), Y (b2)) + 2g(∇g∂tY (b1),∇g∂tY (b2))

+ g(Y (b1),∇g∂t∇
g
∂t
Y (b2))

= 2g(Rg(a, Y (b1))a, Y (b2)) + 2g(∇g∂tY (b1),∇g∂tY (b2))

∂tg(Y (b1), Zj) = g(∇g∂tY (b1), Zj) + g(Y (b1),∇g∂tZj)
∂2
t g(Y (b1), Zj) = 2g(Rg(a, Y (b1))a, Zj) + 2g(∇g∂tY (b1),∇g∂tZj)

Note that:

Y (0, h) = 0, (∇g∂tY (h))(0) = h, (∇g∂t∇
g
∂t
Y (h))(0) = Rg(a, Y (0, h))a = 0,

(∇g∂t∇
g
∂t
∇g∂tY (h))(0) = Rg(a,∇g∂tY (h)(0))a = Rg(a, h)a.

Thus:

g(Y (b1), Y (b2))− (f∗g)ijg(Y (b1), Zj)g(Zi, Y (b2))

= t2g(b1, b2) + t4
(

1
3g(Rg(a, b1)a, b2)− (f∗0 g)ijg(b1,∇⊥j a)g(∇⊥i a, b2)

)
+O(t5).

The expansion of G0 up to order 2 is thus:

((π ◦ ψf0
)∗G0)ta(b1, b2) =

=

∫

M

1

t2
g
(
Y (b1)−

∑

i,j

(f∗g)ij g(Y (b1), Zj)Zi , Y (b2)
)

vol(f∗g)
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=

∫

M

(
g(b1, b2) vol(f∗0 g)− t

∫

M

g(b1, b2) Tr(Lf0
a ) vol(f∗0 g)

+ t2
∫

M

(
g(b1, b2)

(
− 1

2 Tr(Lf0
a ◦ Lf0

a ) + 1
2 Tr(Lf0

a )2

+ 1
2 (f∗g)ijg(Rg(a, fi)a, fj) + 1

2 (f∗g)ijg(∇⊥i a,∇⊥j a)
)

+ 1
3g(Rg(a, b1)a, b2)− (f∗0 g)ijg(b1,∇⊥j a)g(∇⊥i a, b2)

)
vol(f∗0 g)

+O(t3)(4)

4.5. Computation of the sectional curvature in Bi(M,N) at f0. We
use the following formula which is valid in a chart:

2Ra(m,h,m, h) = 2G0
a(Ra(m,h)m,h) =

= −2d2G0(a)(m,h)(h,m) + d2G0(a)(m,m)(h, h) + d2G0(a)(h, h)(m,m)

− 2G0(Γ(h,m),Γ(m,h)) + 2G0(Γ(m,m),Γ(h, h))

The sectional curvature at the two-dimensional subspace Pa(m,h) of the tan-
gent space which is spanned by m and h is then given by:

ka(P (m,h)) = − G0
a(R(m,h)m,h)

‖m‖2‖h‖2 −G0
a(m,h)2

.

We compute this directly for a = 0. From the expansion up to order 2 of
G0
ta(b1, b2) in 4.4.(4) we get

dG0(0)(a)(b1, b2) = −
∫

M

g(b1, b2)g(a,Trf
∗
0 g Sf0) vol(f∗0 g)

and we compute the Christoffel symbol:

−2G0
0(Γ0(a, b), c) = −dG0(0)(c)(a, b) + dG0(0)(a)(b, c) + dG0(0)(b)(c, a)

=

∫

M

(
g(a, b)g(c,Trf

∗
0 g(Sf0))− g(b, c)g(a,Trf

∗
0 g(Sf0))

− g(c, a)g(b,Trf
∗
0 g(Sf0))

)
vol(f∗0 g)

=

∫

M

g
(
c, g(a, b) Trf

∗
0 g(Sf0)− Tr(Lf0

a )b− Tr(Lf0

b )a
)

vol(f∗0 g)

Γ0(a, b) = − 1
2g(a, b) Trf

∗
0 g(Sf0) + 1

2 Tr(Lf0
a )b+ 1

2 Tr(Lf0

b )a

The expansion 4.4.(4) also gives:

1
2!d

2G0
0(a1, a2)(b1, b2) =

=

∫

M

(
g(b1, b2)

(
− 1

2 Tr(Lf0
a1
◦ Lf0

a2
) + 1

2 Tr(Lf0
a1

) Tr(Lf0
a2

)

+ 1
2 (f∗g)ijg(Rg(a1, fi)a2, fj) + 1

2 (f∗g)ijg(∇⊥i a1,∇⊥j a2)
)

+ 1
6g(Rg(a1, b1)a2, b2) + 1

6g(Rg(a2, b1)a1, b2)
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− 1
2 (f∗0 g)ijg(b1,∇⊥j a1)g(∇⊥i a2, b2)

− 1
2 (f∗0 g)ijg(b1,∇⊥j a2)g(∇⊥i a1, b2)

)
vol(f∗0 g) +O(t3)

Thus we have:

− d2G0(0)(x, y)(y, x) + 1
2d

2G0(0)(x, x)(y, y) + 1
2d

2G0(0)(y, y)(x, x) =

=

∫

M

(
−2g(y, x)

(
− 1

2 Tr(Lf0
x ◦ Lf0

y ) + 1
2 Tr(Lf0

x ) Tr(Lf0
y )

+ 1
2 (f∗0 g)ijg(Rg(x, fi)y, fj) + 1

2 (f∗0 g)ijg(∇⊥i x,∇⊥j y)
)

+ g(y, y)
(
− 1

2 Tr(Lf0
x ◦ Lf0

x ) + 1
2 Tr(Lf0

x ) Tr(Lf0
x )

+ 1
2 (f∗0 g)ijg(Rg(x, fi)x, fj) + 1

2 (f∗0 g)ijg(∇⊥i x,∇⊥j x)
)

+ g(x, x)
(
− 1

2 Tr(Lf0
y ◦ Lf0

y ) + 1
2 Tr(Lf0

y ) Tr(Lf0
y )

+ 1
2 (f∗0 g)ijg(Rg(y, fi)y, fj) + 1

2 (f∗0 g)ijg(∇⊥i y,∇⊥j y)
)

+ g(Rg(y, x)y, x)

+ (f∗0 g)ij
(
g(y,∇⊥j y)g(∇⊥i x, x) + g(y,∇⊥j x)g(∇⊥i y, x)

)

− (f∗0 g)ij
(
g(x,∇⊥j y)g(∇⊥i y, x) + g(y,∇⊥j x)g(∇⊥i x, y)

))
vol(f∗0 g)

For the second part of the curvature we have

−G0(Γ0(x, y),Γ0(y, x)) +G0(Γ0(y, y),Γ0(x, x)) =

= 1
4

∫

M

(
(‖x‖2g‖y‖2g − g(x, y)2)‖Trf

∗
0 g(Sf )‖2g

− 3‖Tr(Lf0
x )y − Tr(Lf0

y )x‖2g
)

vol(f∗0 g)

To organize all these terms in the curvature tensor, note that they belong
to three types: terms which involve the second fundamental form Lf0 , terms
which involve the curvature tensor Rg of N and terms which involve the normal
component of the covariant derivative ∇⊥a. There are 3 of the first type, two
of the second and the ones of the third can be organized neatly into two also.
The final curvature tensor is the integral over M of their sum. Here are the
terms in detail:

(1) Terms involving the trace of products of L’s. These are:

− 1
2

(
g(y, y) Tr(Lf0

x ◦ Lf0
x )− 2g(x, y) Tr(Lf0

x ◦ Lf0
y ) + g(x, x) Tr(Lf0

y ◦ Lf0
y )
)
.

Note that x and y are sections of the normal bundle N(f0), so we may define

x ∧ y to be the induced section of
∧2

N(f0). Then the expression inside the
parentheses is a positive semi-definite quadratic function of x ∧ y. To see this,
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note a simple linear algebra fact – that if Q(a, b) is any positive semi-definite
inner product on Rn, then

Q̃(a ∧ b, c ∧ d) =

< a, c >Q(b, d)− < a, d > Q(b, c)+ < b, d > Q(a, c)− < b, c > Q(a, d)

Q̃(a ∧ b, a ∧ b) = ‖a‖2Q(b, b)− 2 < a, b > Q(a, b) + ‖b‖2Q(a, a)

is a positive semi-definite inner product on
∧2

V . In particular, Tr(Lf0
x ◦ Lf0

y )
is a positive semi-definite inner product on the normal bundle, hence it defines

a positive semi-definite inner product T̃r(Lf0 ◦ Lf0) on
∧2

N(f0). Thus:

term(1) = − 1
2 T̃r(Lf0 ◦ Lf0)(x ∧ y) ≤ 0.

(2) Terms involving trace of one L. We have terms both from the second and
first derivatives of G, namely

1
2

(
g(y, y) Tr(Lf0

x )2 − 2g(x, y) Tr(Lf0
x ) Tr(Lf0

y ) + g(x, x) Tr(Lf0
y )2

)

and
− 3

4‖Tr(Lf0
x )y − Tr(Lf0

y )x‖2g
which are the same up to their coefficients. Their sum is

term(2) = − 1
4‖Tr(Lf0

x )y − Tr(Lf0
y )x‖2g ≤ 0.

Note that this is a function of x ∧ y also.

(3) The term involving the norm of the second fundamental form. Since
‖x‖2g‖y‖2g − g(x, y)2 = ‖x ∧ y‖2g, this term is just:

term(3) = + 1
4‖x ∧ y‖2g‖Trg(Sf0)‖2g ≥ 0.

(4) The curvature of N term. This is

term(4) = g(Rg(x, y)x, y).

Note that because of the skew-symmetry of the Riemann tensor, this is a func-
tion of x ∧ y also.

(5) The Ricci-curvature-like term. The other curvature terms are

1
2 (f∗0 g)ij

(
g(x, x)g(Rg(y, fi)y, fj)

− 2g(x, y)g(Rg(x, fi)y, fj) + g(y, y)g(Rg(x, fi)x, fj)
)
.

If V and W are two perpendicular subspaces of the tangent space TNp at a
point p, then we can define a ‘cross Ricci curvature’ Ric(V,W ) in terms of bases
{vi}, {wj} of V and W by

Ric(V,W ) = gijgklg(Rg(vi, wk)vj , wl).

Then this term factors as

term(5) = ‖x ∧ y‖2g Ric(TM, span(x, y)).
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(6 -7) Terms involving the covariant derivative of a. It is remarkable that, so
far, every term in the curvature tensor of Bi vanishes if x ∧ y ≡ 0, e.g., if the
codimension of N in M is one! Now we have the terms

(f∗0 g)ij
(
g(x, y)g(∇⊥i x,∇⊥j y)− 1

2g(x, x)g(∇⊥i y,∇⊥j y)− 1
2g(y, y)g(∇⊥i x,∇⊥j x)

− g(x,∇⊥i x)g(y,∇⊥j y)− g(x,∇⊥i y)g(y,∇⊥j x)

+ g(x,∇⊥i y)g(x,∇⊥j y) + g(y,∇⊥i x)g(y,∇⊥j x)
)
.

To understand this expression, we need a linear algebra computation, namely
that if a, b, a′, b′ ∈ Rn, then:

< a, b >< a′, b′ > − < a, a′ >< b, b′ > − < a, b′ >< b, a′ > −
− 1

2 < a, a >< b′, b′ > − 1
2 < b, b >< a′, a′ > + < a, b′ >2 + < b, a′ >2=

= 1
2 (< a, b′ > − < b, a′ >)2 − 1

2‖a ∧ b′ − b ∧ a′‖2

Note that the term g(x,∇⊥y) (without an i) is a section of Ω1
M and the sum

over i and j is just the norm in Ω1
M , so the above computation applies and the

expression splits into 2 terms:

term(6) = − 1
2‖(g(x,∇⊥y)− g(y,∇⊥x)‖2Ω1

M
≤ 0

term(7) = 1
2‖x ∧∇⊥y − y ∧∇⊥x‖2Ω1

M⊗∧2N(f) ≥ 0

Altogether, we get that the Riemann curvature of Bi is the integral over M of
the sum of the above 7 terms. We have the Corollary:

Corollary. If the codimension of M in N is one, then all sectional curvatures
of Bi are non-negative. For any codimension, sectional curvature in the plane
spanned by x and y is non-negative if x and y are parallel, i.e., x ∧ y = 0 in∧2

T ∗N .

In general, the negative terms in the curvature tensor (giving positive sectional
curvature) are clearly connected with the vanishing of geodesic distance: in
some directions the space wraps up on itself in tighter and tighter ways. How-
ever, in codimension two or more with a flat ambient space N (so terms (4)
and (5) vanish), there seem to exist conflicting tendencies making Bi close up
or open up: terms (1), (2) and (6) give positive curvature, while terms (3) and
(7) give negative curvature. It would be interesting to explore the geometrical
meaning of these, e.g., for manifolds of space curves.

5. Vanishing geodesic distance on groups of diffeomorphisms

5.1. The H0-metric on groups of diffeomorphisms. Let (N, g) be a
smooth connected Riemannian manifold, and let Diffc(N) be the group of all
diffeomorphisms with compact support on N , and let Diff0(N) be the subgroup
of those which are diffeotopic in Diffc(N) to the identity; this is the connected

Documenta Mathematica 10 (2005) 217–245



238 Peter W. Michor, David Mumford

component of the identity in Diffc(N), which is a regular Lie group in the sense
of [8], section 38, see [8], section 42. The Lie algebra is Xc(N), the space of all
smooth vector fields with compact support on N , with the negative of the usual
bracket of vector fields as Lie bracket. Moreover, Diff0(N) is a simple group
(has no nontrivial normal subgroups), see [5], [14], [9]. The right invariant H0-
metric on Diff0(N) is then given as follows, where h, k : N → TN are vector
fields with compact support along ϕ and where X = h ◦ ϕ−1, Y = k ◦ ϕ−1 ∈
Xc(N):

G0
ϕ(h, k) =

∫

N

g(h, k) vol(ϕ∗g) =

∫

N

g(X ◦ ϕ, Y ◦ ϕ)ϕ∗ vol(g)

=

∫

N

g(X,Y ) vol(g)(1)

5.2. Theorem. Geodesic distance on Diff0(N) with respect to the H0-metric
vanishes.

Proof. Let [0, 1] 3 t 7→ ϕ(t, ) be a smooth curve in Diff0(N) between ϕ0

and ϕ1. Consider the curve u = ϕt ◦ ϕ−1 in Xc(N), the right logarithmic
derivative. Then for the length and the energy we have:

LG0(ϕ) =

∫ 1

0

√∫

N

‖u‖2g vol(g) dt(1)

EG0(ϕ) =

∫ 1

0

∫

N

‖u‖2g vol(g) dt(2)

LG0(ϕ)2 ≤ EG0(ϕ)(3)

(4) Let us denote by Diff0(N)E=0 the set of all diffeomorphisms ϕ ∈ Diff0(N)
with the following property: For each ε > 0 there exists a smooth curve from
the identity to ϕ in Diff0(N) with energy ≤ ε.
(5) We claim that Diff0(N)E=0 coincides with the set of all diffeomorphisms
which can by reached from the identity by a smooth curve of arbitraily short
G0-length. This follows by (3).

(6) We claim that Diff0(N)E=0 is a normal subgroup of Diff0(N). Let ϕ1 ∈
Diff0(N)E=0 and ψ ∈ Diff0(N). For any smooth curve t 7→ ϕ(t, ) from the
identity to ϕ1 with energy EG0(ϕ) < ε we have

EG0(ψ−1 ◦ ϕ ◦ ψ) =

∫ 1

0

∫

N

‖Tψ−1 ◦ ϕt ◦ ψ‖2g vol((ψ−1 ◦ ϕ ◦ ψ)∗g)

≤ sup
x∈N
‖Txψ−1‖2 ·

∫ 1

0

∫

N

‖ϕt ◦ ψ‖2g(ϕ ◦ ψ)∗ vol((ψ−1)∗g)

≤ sup
x∈N
‖Txψ−1‖2 · sup

x∈N

vol((ψ−1)∗g)

vol(g)
·
∫ 1

0

∫

N

‖ϕt ◦ ψ‖2g (ϕ ◦ ψ)∗ vol(g)
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≤ sup
x∈N
‖Txψ−1‖2 · sup

x∈N

vol((ψ−1)∗g)

vol(g)
· EG0(ϕ).

Since ψ is a diffeomorphism with compact support, the two suprema are
bounded. Thus ψ−1 ◦ ϕ1 ◦ ψ ∈ Diff0(N)E=0.

(7) We claim that Diff0(N)E=0 is a non-trivial subgroup. In view of the sim-
plicity of Diff0(N) mentioned in 5.1 this concludes the proof.

It remains to find a non-trivial diffeomorphism in Diff0(N)E=0. The idea is to
use compression waves. The basic case is this: take any non-decreasing smooth
function f : R→ R such that f(x) ≡ 0 if x¿ 0 and f(x) ≡ 1 if xÀ 0. Define

ϕ(t, x) = x+ f(t− λx)

where λ < 1/max(f ′). Note that

ϕx(t, x) = 1− λf ′(t− λx) > 0,

hence each map ϕ(t, ) is a diffeomorphism of R and we have a path in the
group of diffeomorphisms of R. These maps are not the identity outside a
compact set however. In fact, ϕ(x) = x+ 1 if x¿ 0 and ϕ(x) = x if xÀ 0. As
t→ −∞, the map ϕ(t, ) approaches the identity, while as t→ +∞, the map
approaches translation by 1. This path is a moving compression wave which
pushes all points forward by a distance 1 as it passes. We calculate its energy
between two times t0 and t1:

Et1t0 (ϕ) =

∫ t1

t0

∫

R
ϕt(t, ϕ(t, )−1(x))2dx dt =

∫ t1

t0

∫

R
ϕt(t, y)2ϕy(t, y)dy dt

=

∫ t1

t0

∫

R
f ′(z)2 · (1− λf ′(z))dz/λ dt

≤ max f ′2

λ
· (t1 − t0) ·

∫

supp(f ′)
(1− λf ′(z))dz

If we let λ = 1− ε and consider the specific f given by the convolution

f(z) = max(0,min(1, z)) ? Gε(z),

where Gε is a smoothing kernel supported on [−ε,+ε], then the integral is
bounded by 3ε, hence

Et1t0 (ϕ) ≤ (t1 − t0) 3ε
1−ε .

We next need to adapt this path so that it has compact support. To do this we
have to start and stop the compression wave, which we do by giving it variable
length. Let:

fε(z, a) = max(0,min(a, z)) ? (Gε(z)Gε(a)).

The starting wave can be defined by:

ϕε(t, x) = x+ fε(t− λx, g(x)), λ < 1, g increasing.
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Note that the path of an individual particle x hits the wave at t = λx− ε and
leaves it at t = λx+ g(x) + ε, having moved forward to x+ g(x). Calculate the
derivatives:

(fε)z = I0≤z≤a ? (Gε(z)Gε(a)) ∈ [0, 1]

(fε)a = I0≤a≤z ? (Gε(z)Gε(a)) ∈ [0, 1]

(ϕε)t = (fε)z(t− λx, g(x))

(ϕε)x = 1− λ(fε)z(t− λx, g(x)) + (fε)a(t− λx, g(x)) · g′(x) > 0.

This gives us:

Et1t0 (ϕ) =

∫ t1

t0

∫

R
(ϕε)

2
t (ϕε)xdx dt

≤
∫ t1

t0

∫

R
(fε)

2
z(t− λx, g(x)) · (1− λ(fε)z(t− λx, g(x)))dx dt

+

∫ t1

t0

∫

R
(fε)

2
z(t− λx, g(x)) · (fε)a(t− λx, g(x))g′(x)dx dt

The first integral can be bounded as in the original discussion. The second
integral is also small because the support of the z-derivative is −ε ≤ t− λx ≤
g(x) + ε, while the support of the a-derivative is −ε ≤ g(x) ≤ t − λx + ε, so
together |g(x) − (t − λx)| ≤ ε. Now define x1 and x2 by g(x1) + λx1 = t + ε
and g(x0) + λx0 = t− ε. Then the inner integral is bounded by

∫

|g(x)+λx−t|≤ε
g′(x)dx = g(x1)− g(x0) ≤ 2ε,

and the whole second term is bounded by 2ε(t1− t0). Thus the length is O(ε).

The end of the wave can be handled by playing the beginning backwards. If
the distance that a point x moves when the wave passes it is to be g(x), so
that the final diffeomorphism is x 7→ x+ g(x) then let b = max(g) and use the
above definition of ϕ while g′ > 0. The modification when g′ < 0 (but g′ > −1
in order for x 7→ x+ g(x) to have positive derivative) is given by:

ϕε(t, x) = x+ fε(t− λx− (1− λ)(b− g(x)), g(x)).

A figure showing the trajectories ϕε(t, x) for sample values of x is shown in the
figure above.

It remains to show that Diff0(N)E=0 is a nontrivial subgroup for an arbitrary
Riemannian manifold. We choose a piece of a unit speed geodesic containing
no conjugate points in N and Fermi coordinates along this geodesic; so we can
assume that we are in an open set in Rm which is a tube around a piece of the
u1-axis. Now we use a small bump function in the the slice orthogonal to the
u1-axis and multiply it with the construction from above for the coordinate
u1. Then it follows that we get a nontrivial diffeomorphism in Diff0(N)E=0

again. ¤
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Remark. Theorem 5.2 can possibly be proved directly without the help of the
simplicity of Diff0(N). For N = R one can use the method of 5.2, (7) in the
parameter space of a curve, and for general N one can use a Morse function on
N to produce a special coordinate for applying the same method, as we did in
the proof of theorem 3.2.

5.3. Geodesics and sectional curvature for G0 on Diff(N). According
to Arnold [1], see [11], 3.3, for a right invariant weak Riemannian metric G
on an (possibly infinite dimensional) Lie group the geodesic equation and the
curvature are given in terms of the adjoint operator (with respect to G, if it
exists) of the Lie bracket by the following formulas:

ut = − ad(u)∗u, u = ϕt ◦ ϕ−1

G(ad(X)∗Y,Z) := G(Y, ad(X)Z)

4G(R(X,Y )X,Y ) = 3G(ad(X)Y, ad(X)Y )− 2G(ad(Y )∗X, ad(X)Y )

− 2G(ad(X)∗Y, ad(Y )X) + 4G(ad(X)∗X, ad(Y )∗Y )

−G(ad(X)∗Y + ad(Y )∗X, ad(X)∗Y + ad(Y )∗X)

In our case, for Diff0(N), we have ad(X)Y = −[X,Y ] (the bracket on the Lie
algebra Xc(N) of vector fields with compact support is the negative of the usual
one), and:

G0(X,Y ) =

∫

N

g(X,Y ) vol(g)

G0(ad(Y )∗X,Z) = G0(X,−[Y,Z]) =

∫

N

g(X,−LY Z) vol(g)
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=

∫

N

g
(
LYX + (g−1LY g)X + divg(Y )X,Z

)
vol(g)

ad(Y )∗ = LY + g−1LY (g) + divg(Y ) IdT N = LY + β(Y ),

where the tensor field β(Y ) = g−1LY (g)+divg(Y ) Id : TN → TN is self adjoint
with respect to g. Thus the geodesic equation is

ut = −(g−1Lu(g))(u)− divg(u)u = −β(u)u, u = ϕt ◦ ϕ−1.

The main part of the sectional curvature is given by:

4G(R(X,Y )X,Y ) =

=

∫

N

(
3‖[X,Y ]‖2g + 2g((LY + β(Y ))X, [X,Y ]) + 2g((LX + β(X))Y, [Y,X])

+ 4g(β(X)X,β(Y )Y )− ‖β(X)Y + β(Y )X‖2g
)

vol(g)

=

∫

N

(
−‖β(X)Y − β(Y )X + [X,Y ]‖2g − 4g([β(X), β(Y )]X,Y )

)
vol(g)

So sectional curvature consists of a part which is visibly non-negative, and
another part which is difficult to decompose further.

5.4. Example: Burgers’ equation. For (N, g) = (R, can) or (S1, can) the
geodesic equation is Burgers’ equation [2], a completely integrable infinite di-
mensional system,

ut = −3ux u, u = ϕt ◦ ϕ−1

and we get G0(R(X,Y )X,Y ) = −
∫

[X,Y ]2 dx so that all sectional curvatures
are non-negative.

5.5. Example: n-dimensional analog of Burgers’ equation. For
(N, g) = (Rn, can) or ((S1)n, can) we have:

(ad(X)Y )k =
∑

i

((∂iX
k)Y i −Xi(∂iY

k))

(ad(X)∗Z)k =
∑

i

(
(∂kX

i)Zi + (∂iX
i)Zk +Xi(∂iZ

k)
)
,

so that the geodesic equation is given by

∂tu
k = −(ad(u)>u)k = −

∑

i

(
(∂ku

i)ui + (∂iu
i)uk + ui(∂iu

k)
)
,

called the basic Euler-Poincaré equation (EPDiff) in [6], the n-dimensional
analog of Burgers’ equation.
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5.6. Stronger metrics on Diff0(N). A very small strengthening of the weak
Riemannian H0-metric on Diff0(N) makes it into a true metric. We define the
stronger right invariant semi-Riemannian metric by the formula:

GAϕ (h, k) =

∫

N

(g(X,Y ) +Adivg(X).divg(Y )) vol(g).

Then the following holds:

5.7. Theorem. For any distinct diffeomorphisms ϕ0, ϕ1, the infimum of the
lengths of all paths from ϕ0 to ϕ1 with respect to GA is positive.

This implies that the metric G0 induces positive geodesic distance on the sub-
group of volume preserving diffeomorphism since it coincides there with the
metric GA.

Proof. Let ψ1 = ϕ0 ◦ ϕ−1
1 . If ϕ0 6= ϕ1, there are two functions ρ and f on N

with compact support such that:
∫

N

ρ(y)f(ψ1(y)) vol(g)(y) 6=
∫

N

ρ(y)f(y) vol(g)(y).

Now consider any path ϕ(t, y) between the two maps with derivative u =
ϕt ◦ϕ−1. Inverting the diffeomorphisms (or switching from a Lagrangian to an
Eulerian point of view), let ψ(t, ) = ϕ(0, )◦ϕ(t, )−1. Then ψt = −Tψ(u)
and we have:∫

N

ρ(y)f(ψ1(y)) vol(g)(y)−
∫

N

ρ(y)f(y) vol(g)(y) =

=

∫ 1

0

∫

N

ρ(y)∂tf(ψ(t, y) vol(g)(y)dt

=

∫ 1

0

∫

N

ρ(y)(df ◦ ψ)(ψt(t, y)) vol(g)(y) dt

=

∫ 1

0

∫

N

ρ(y)(Tf ◦ ψ)(−Tψ(u(t, y))) vol(g)(y)dt

But div((f ◦ ψ) · ρu) = (f ◦ ψ) · div(ρu) + (Tf ◦ ψ)(Tψ(ρu)). The integral of
the left hand side is 0, hence:
∣∣∣
∫

N

ρ(y)f(ψ1(y)) vol(g)(y)−
∫

N

ρ(y)f(y) vol(g)(y)
∣∣∣

=
∣∣∣
∫ 1

0

∫

N

(f ◦ ψ) div(ρu) vol(g)dt
∣∣∣

≤ sup(|f |)
∫ 1

0

√∫

N

Cρ‖u‖2 + C ′ρ|div(u)|2 vol(g)dt

for constants Cρ, C
′
ρ depending only on ρ. Clearly the right hand side is a lower

bound for the length of any path from ϕ0 to ϕ1. ¤
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5.8. Geodesics for GA on Diff(R). See [3] and [12]. We consider the
groups Diffc(R) or Diff(S1) with Lie algebras Xc(R) or X(S1) with Lie bracket
ad(X)Y = −[X,Y ] = X ′Y − XY ′. The GA-metric equals the H1-metric on
Xc(R), and we have:

GA(X,Y ) =

∫

R
(XY +AX ′Y ′)dx =

∫

R
X(1−A∂2

x)Y dx,

GA(ad(X)∗Y,Z) =

∫

R
(Y X ′Z − Y XZ ′ +AY ′(X ′Z −XZ ′)′)dx

=

∫

R
Z(1− ∂2

x)(1− ∂2
x)−1(2Y X ′ + Y ′X − 2AY ′′X ′ −AY ′′′X)dx,

ad(X)∗Y = (1− ∂2
x)−1(2Y X ′ + Y ′X − 2AY ′′X ′ −AY ′′′X)

ad(X)∗ = (1− ∂2
x)−1(2X ′ +X∂x)(1−A∂2

x)

so that the geodesic equation in Eulerian representation u = (∂tf)◦f−1 ∈ Xc(R)
or X(S1) is

∂tu = − ad(u)∗u = −(1− ∂2
x)−1(3uu′ − 2Au′′u′ −Au′′′u), or

ut − utxx = Auxxx.u+ 2Auxx.ux − 3ux.u,

which for A = 1 is the Camassa-Holm equation [3], another completely in-
tegrable infinite dimensional Hamiltonian system. Note that here geodesic
distance is a well defined metric describing the topology.
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