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Abstract

The past forty years have seen a rapid rise in top income inequality in the United

States. While there is a large number of existing theories of the Pareto tail of the long-

run income distributions, almost none of these address the fast rise in top inequality

observed in the data. We show that standard theories, which build on a random growth

mechanism, generate transition dynamics that are too slow relative to those observed

in the data. We then suggest two parsimonious deviations from the canonical model

that can explain such changes: “scale dependence” that may arise from changes in skill

prices, and “type dependence,” i.e. the presence of some “high-growth types.” These

deviations are consistent with theories in which the increase in top income inequality

is driven by the rise of “superstar” entrepreneurs or managers.
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1 Introduction

The past forty years have seen a rapid rise in top income inequality in the United States

(Piketty and Saez, 2003; Atkinson, Piketty, and Saez, 2011).1 Since Pareto (1896), it has been

well-known that the upper tail of the income distribution follows a power law, or equivalently,

that top inequality is “fractal”, and the rise in top income inequality has coincided with a

“fattening” of the right tail of the income distribution. That is, the “super rich” have pulled

ahead relative to the rich. This rise in top inequality requires an understanding of the forces

that have led to a fatter Pareto tail. There is also an ongoing debate about the dynamics of

top wealth inequality.2 To the extent that wealth inequality has also increased, we similarly

need to understand the dynamics of its Pareto tail.

What explains the observed rapid rise in top inequality is an open question. While there is

a large number of existing theories of the Pareto tails of the income and wealth distributions

at a point in time, almost none of these address the fast rise in top inequality observed in

the data, or any fast change for that matter.

The main contributions of this paper are: first, to show that the most common framework

(a simple Gibrat’s law for income dynamics) cannot explain rapid changes in tail inequality,

and second, to suggest parsimonious deviations from the basic model that can explain such

changes. Our analytical results bear on a large class of economic theories of top inequality,

so that our results shed light on the ultimate drivers of the rise in top inequality observed

in the data.

The first result of our paper is negative: standard random growth models, like those

considered in much of the existing literature, feature extremely slow transition dynamics

and cannot explain the rapid changes that arise empirically. To address this issue, we

consider the following thought experiment: initially at time zero, the economy is in a steady

state with a stationary distribution that has a Pareto tail. At time zero, there is a change

in the underlying economic environment that leads to higher top inequality in the long-run.

The question is: what can we say about the speed of this transition? Will this increase

in inequality come about quickly or take a long time? We present two answers to this

question. First, we derive an analytic formula for a measure of the “average” speed of

convergence throughout the distribution. We argue that, when calibrated to be consistent

with microeconomic evidence, the implied half-life is too high to explain the observed rapid

rise in top income inequality. Second, we derive a measure of the speed of convergence for

1There are some uncertainties about the precise quantitative increase in top income inequality which
depends on the precise income measure and data series being used. We discuss these issues in Section 2.

2See e.g. Piketty (2014), Saez and Zucman (2015), Bricker, Henriques, Krimmel, and Sabelhaus (2015)
and Kopczuk (2015).

1



the part of the distribution we are most interested in, namely its upper tail. We argue that,

in standard theories, transitions are even slower in the tail and, additionally, that our low

measure of the average speed of convergence overestimates the speed of convergence in the

upper tail. We also show that allowing for jumps in the income process, while useful for

descriptively matching micro-level data, does not help with generating fast transitions.

Given this negative result, we are confronted with a puzzle: what, then, explains the

observed rise in top income inequality? We develop an “augmented random growth model”

that features two parsimonious departures from the canonical model that do generate fast

transitions. Both departures are deviations from Gibrat’s law, the assumption that the

distribution of income growth rates is independent of the income level. The first departure

is type dependence of the growth rate distribution and, in particular, the presence of some

“high-growth types”.3 For instance, some highly skilled entrepreneurs or managers may

experience much higher average earnings growth rates than other individuals over short to

medium horizons. We argue analytically and quantitatively that this first departure can

explain the observed fast rise in income inequality. The second departure consists of scale

dependence of the growth rate distribution which arises from shocks that disproportionately

affect high incomes, e.g. changing skill prices in assignment models.4 Scale dependence can

generate infinitely fast transitions in inequality.

To obtain our analytic formulas for the speed of convergence, we employ tools from

ergodic theory and the theory of partial differential equations. Our measure of the average

speed of convergence is the first non-trivial eigenvalue or “spectral gap” of the differential

operator governing the stochastic process for income. One of the main contributions of this

paper is to derive an analytic formula for this first non-trivial eigenvalue (i.e. the second

eigenvalue) for a large variety of random growth processes.5 We obtain our measure of the

speed of convergence in the tail of the distribution by making use of the fact that the solution

to the Kolmogorov Forward equation for random growth processes can be characterized

tightly by calculating the Laplace transform of this equation. Our clean results, which a

discrete-time analysis would be unable to deliver, constitute an example of the usefulness of

continuous-time methods in economics.

A large theoretical literature builds on random growth processes to theorize about the

3Guvenen (2007) argues that heterogeneity in mean growth rates is an important feature of the data on
income dynamics. Luttmer (2011) studies a similar framework applied to firm dynamics and argues that
persistent heterogeneity in mean firm growth rates is needed to account for the relatively young age of very
large firms at a given point in time (a statement about the stationary distribution rather than transition
dynamics as in our paper).

4Technically, shocks that generate scale dependence affect log income multiplicatively, rather than addi-
tively, as in the usual random growth model.

5See Hansen and Scheinkman (2009) for a related application of operator methods in economics.
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upper tails of income and wealth distributions. Early theories of the income distribution

include Champernowne (1953) and Simon (1955), with more recent contributions by Nirei

(2009), Toda and Walsh (2015), Kim (2013), Jones and Kim (2014) and Luttmer (2015).

Similarly, random growth theories of the wealth distribution include Wold and Whittle (1957)

and more recently Benhabib, Bisin, and Zhu (2011, 2015a,b), Jones (2015), and Acemoglu

and Robinson (2015). All of these papers focus on the income or wealth distribution at a

given point in time by studying stationary distributions, and none of them analyze transition

dynamics. Aoki and Nirei (2015) are a notable exception, who examine the dynamics of the

income distribution and ask whether tax changes can account for the rise in top income

inequality observed in the United States. Our paper differs from theirs in that we obtain

a number of analytic results providing a tight characterization of transition dynamics in

random growth models whereas their analysis of transition dynamics is purely numerical.

Some of our results on slow convergence are anticipated in Luttmer (2012) who studies an

economy with a power law firm size distribution and establishes the slow speed of convergence

of aggregates like the aggregate capital stock.6 In contrast, our methods allow us to study the

speed of convergence of the entire cross-sectional distribution with quite general stochastic

processes, thereby making them applicable to the study of the dynamics of inequality.

Our finding that type dependence delivers fast dynamics of top inequality is also related

to Guvenen (2007), who has argued that an income process with heterogeneous income

profiles provides a better fit to the micro data than a model in which all individuals face the

same income profile. In our model variant with multiple “growth types,” we also allow for

heterogeneity in the standard deviation of income innovations in different regimes which is

akin to the mixture specification advocated by Guvenen, Karahan, Ozkan, and Song (2015).

One key difference between our model with multiple growth types and the standard random

growth model is that, in the standard model, the key determinant for an individual’s place

in the income distribution is her age. In contrast, in a model with type dependence another

important determinant is the individual’s growth type which may represent her occupation

or her talent as an entrepreneur. This is consistent with salient patterns of the tail of the

income distribution in the United States (Guvenen, Kaplan, and Song, 2014).7

One of the most ubiquitous regularities in economics and finance is that the empirical

distribution of many variables is well approximated by a power law. For this reason, theories

of random growth are an integral part of many different strands of the literature beside those

studying the distributions of income and wealth.8 For example, they have been used to study

6See also footnote 36 regarding Proposition 3.
7Luttmer (2011) makes a similar observation about the relationship between a firm’s age and its place in

the firm size distribution. As Luttmer puts it succinctly: “Gibrat implies 750-year-old firms.”
8Our focus is on the dynamics of income inequality. However, our criticism and suggested fixes apply
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the distribution of city sizes (Gabaix, 1999) and firm sizes (Luttmer, 2007), the shape of the

production function (Jones, 2005), and in many other contexts (see the review by Gabaix,

2009). The tools and results presented in this paper should therefore also prove useful in

other applications.9

The paper is organized as follows. Section 2 states the main motivating facts for our

analysis, and Section 3 reviews random growth theories of the income distribution at a point

in time. In Section 4, we present our main negative results on the slow transitions generated

by such models and we explore their empirical implications for the dynamics of income

inequality. Section 5 presents two theoretical mechanisms for generating fast transitions,

and shows that these have the potential to account for the fast transitions observed in the

data. Section 6 concludes.

2 Motivating Facts

In this section, we briefly review some facts regarding the evolution of top income inequality

in the United States. We return to these in Sections 4 and 5 when comparing various random

growth models and their ability to generate the trends observed in the data.

Panel (a) of Figure 1 displays the evolution of a measure of the top 1% income share.

It shows the large and rapid increase in the top 1% income share that has been extensively

documented by Piketty and Saez (2003), Atkinson, Piketty, and Saez (2011) and others.

The precise amount by which the top 1% income share has increased depends on the precise

income measure and data series being used, with alternative measures showing a more modest

increase, a point we explore in Appendix B.10 However, all commonly used data series do

show a substantive increase in the top 1% income share of at least five percentage points

without change to random growth models of the wealth distribution. In Online Appendix E we work out in
detail the implications of our theoretical results for the dynamics of wealth inequality.

9Other useful tools are in the following works. Bouchaud and Mézard (2000) calculate the decay rate of
the autocorrelation of an individual’s wealth, and find that it depends on the tail exponent (when this tail
exponent is smaller than two so that the variance ceases to exist, the expression for this decay rate coincides
with the speed of convergence in a special case of our model). Saichev, Malevergne, and Sornette (2009)
and Malevergne, Saichev, and Sornette (2013) calculate a number of probability densities and hazard rates
at finite times. Those works study the dynamics of individuals in an economy already at the steady state –
while we study the entire economy off its steady state, but transitioning towards it.

10The series used in Figure 1 is from the “World Top Incomes Database.” Here, we plot total income
(salaries plus business income plus capital income) excluding capital gains. The series display a similar trend
when we include capital gains or focus on salaries only (though the levels are different). Note also that a
significant part of the increase in top inequality is concentrated in 1987 and 1988 just after the Tax Reform
Act of 1986 which sharply reduced top marginal income tax rates. Part of this increase may therefore be
due to changes in tax reporting and realizations rather than actual changes in inequality. See Appendix B
for a more detailed discussion of these points.
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Figure 1: Evolution of Top 1% Income Share and “Fractal Inequality” in U.S.

between the 1970s and today.

As already noted, the upper tail of the income distribution follows a power law, or

equivalently top inequality is fractal in nature. For an exact power law, the top 0.1% are

X times richer on average than the top 1% who are, in turn, X times richer than the top

10%, where X is a fixed number. Equivalently, the top 0.1% income share is a fraction Y

of the top 1% income share, which, in turn, is a fraction Y of the top 10% income share,

and so on. We now explore this fractal pattern in the data using a strategy borrowed from

Jones and Kim (2014). Panel (b) of Figure 1 plots the income share of the top 0.1% relative

to that of the top 1% and the income share of the top 1% relative to that of the top 10%.

As expected, the two lines track each other relatively closely. More importantly, there is an

upward trend in both lines. That is, there has been a relative increase in top income shares.

As we explain in more detail below, this increase in “fractal inequality” implies equivalently

a “fattening” of the Pareto tail of the income distribution.11

There are two main takeaways from this section. First, top income shares have increased

substantially since the late 1970s. Second, the Pareto tail of the income distribution has

become fatter over time.

11As for the levels of the shares, it should be noted that there is again some uncertainty regarding the
precise quantitative amount by which these relative shares have increased. See again Appendix B.
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3 Random Growth Theories of Income Inequality

Our starting point is the existing theories that can explain top income inequality at a point

in time, meaning that they can generate stationary income distributions that have Pareto

tails. Many of these share the same basic mechanism for generating power laws, namely

proportional random growth. In this section, we present a relatively general random growth

model of income dynamics and characterize its stationary distribution. This framework will

also be the focus of our analysis of transition dynamics in the next section.

3.1 Income Dynamics

Time is continuous, and there is a continuum of workers indexed by i. Workers are hetero-

geneous in their income or wage wit. For brevity, we here only spell out the reduced-form

dynamics of income. We discuss possible microfoundations below and provide one example

in Appendix C. We will later find it useful to conduct much of the analysis in terms of the

logarithm of income, xit = logwit, whose dynamics are:

dxit = µdt+ σdZit + gitdNit, (1)

where Zit is a standard Brownian motion and where Nit is a jump process with intensity

φ.12 The innovations git are drawn from an exogenous distribution f . The distribution f

can have arbitrary support and it may be either thin-tailed (e.g. a normal distribution) or

fat-tailed.

All theories of top inequality add some “stabilizing force” to the pure random growth

process (1) to ensure the existence of a stationary distribution (Gabaix, 2009). In the

absence of such a stabilizing force, the cross-sectional variance of xit grows without bound.

We consider two possibilities. First, workers may die (retire) at rate δ, in which case they are

replaced by a young worker with wage xit drawn from a distribution ψ(x). Second, there may

be a lower bound x on income. The simplest possibility is that this lower bound takes the

form of a reflecting barrier. More generally, we consider exit at x with entry (i.e. reinjection)

at a point x > x drawn from a distribution ρ(x). For instance, Luttmer (2007) analyzes the

case of a “return process” where the reinjection occurs at a point x∗, which is the special

case in which ρ is a Dirac distribution at x∗, ρ (x) = δx∗ (x).13 A natural interpretation

12That is, the innovations dZit are normally distributed: approximately, dZit ' εit
√
dt, εit ∼ N (0, 1), for

a small dt. Similarly, there is a jump in (t − dt, t] (i.e., dNit = 1) with probability φdt and no jump (i.e.,
dNit = 0) with probability 1− φdt; if there is a jump, it is a random g̃.

13Luttmer (2007) shows that the stationary distribution of the process with exit and entry converges to
one associated with a reflecting barrier at x as x∗ ↓ x.
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for a lower bound on income is that workers exit the labor force if their income falls below

some threshold. For simplicity, we normalize x = 0 throughout the remainder of the paper,

i.e. the corresponding threshold for income is w = 1. When the process (1) features jumps

φ 6= 0, we only consider death as a stabilizing force.14

The income dynamics (1) can be microfounded in a variety of ways. Appendix C provides

one such microfoundation: workers optimally invest to accumulate human capital, a process

that also involves some luck. But other microfoundations are possible as well and a large

number of theories of the upper tail of the income distribution ends up with a similar reduced

form.15

Because the process (1) allows for jumps, it is considerably more general than the more

commonly used specification in which income innovations are log-normally distributed (a

geometric Brownian motion for income). Recent research suggests that the standard specifi-

cation is a quite imperfect description of the data. For instance, Guvenen, Karahan, Ozkan,

and Song (2015) document, using administrative data, that earnings innovations are very

fat-tailed and much more so than a normally distributed random variable. In our continuous

time setup, the most natural way of generating such kurtosis is to allow for jumps.16 At

the same time, the process (1) makes the strong assumption that the parameters µ and σ

as well as the distribution f do not depend on the level of income, a strict form of Gibrat’s

law. Furthermore, the coefficients are assumed to be constant over time. We show below

that these assumptions can be relaxed considerably to the case when the drift and diffusion

are arbitrary functions µ(x, t) and σ(x, t) of the income level that converge to constants for

large x. This situation will arise in many applications where the drift and diffusion are the

outcomes of individual optimization problems that do not permit a closed-form solution (i.e.

that are more general than the simple optimization problem in Appendix C) and when these

optimizing individuals face time-varying prices during transition dynamics.

A large literature estimates reduced-form labor income processes similar to (1) using

panel data.17 In particular, (1) is the special case of the widespread “permanent-transitory

model” of income dynamics, but with only a permanent component. As a result, good

estimates are available for its parameter values. The process could easily be extended to

14For instance, it is messy to define a reflecting barrier in the presence of jumps.
15See e.g. Champernowne (1953), Simon (1955), Nirei (2009), Toda and Walsh (2015), Aoki and Nirei

(2015), Kim (2013), Jones and Kim (2014) and Luttmer (2015) for models with similar reduced forms. Some
of these are derived from individual optimization, but others are not.

16It is not surprising that income innovations will be leptokurtic if the distribution from which jumps are
drawn features kurtosis itself. Interestingly, this is not necessary for income innovations to be leptokurtic:
even normally distributed jumps that arrive with a Poisson arrival rate can generate kurtosis in data observed
at discrete time intervals. The same logic is used in the theory of “subordinated stochastic processes.”

17See e.g. MaCurdy (1982), Heathcote, Perri, and Violante (2010) and Meghir and Pistaferri (2011).
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feature a transitory component, e.g. by introducing jumps that are distributed i.i.d. over

time and across individuals.

3.2 Stationary Income Distribution

The properties of the stationary distribution of the process (1) for the logarithm of income

xit = logwit are well understood. In particular, under certain parameter restrictions, this

stationary distribution has a Pareto tail18

P(wit > w) ∼ Cw−ζ

where C is a constant and ζ > 0 is a simple function of the parameters µ, σ and the

distribution of jumps f (see e.g. Gabaix (2009)). Equivalently, the distribution of log

income has an exponential tail, P(xit > x) ∼ Ce−ζx. Without jumps φ = 0, ζ is the positive

root of19

0 =
σ2

2
ζ2 + ζµ− δ, (2)

which equals

ζ =
−µ+

√
µ2 + 2σ2δ

σ2
. (3)

The constant ζ is called the “power law exponent,”with a smaller ζ corresponding to a

fatter tail. We find it useful to refer to the inverse of the power law exponent η = 1/ζ

as “top inequality”. Intuitively, tail inequality is increasing in µ and σ and decreasing in

the death rate δ. In Appendix D, we provide a complete characterization of the stationary

distributions for different “stabilizing forces.” In particular, we spell out the assumptions

under which there exists a unique stationary distribution. For the remainder of the paper

we assume that these assumptions are satisfied.20

To make the connection to the empirical evidence in the introduction, note that if the

distribution of w has a Pareto tail above the pth percentile, then the share of the top p/10th

percentile relative to that of the pth percentile is given by S(p/10)
S(p)

= 10η−1. There is, therefore,

a one-to-one mapping between the relative income shares in panel (b) of Figure 1 and the

18Here and elsewhere “f(x) ∼ g(x)” for two functions f and g means limx→∞ f(x)/g(x) = 1.
19The proof is standard: we plug p (x) = Ce−ζx into (5), which leads to (2).
20Note that these assumptions may not be satisfied in some economic applications of interest. In particular

the presence of prices and other endogenous equilibrium objects implies that it is theoretically possible for
there to exist multiple stationary distribution. For instance, in Luttmer (2007) the critical points for exit and
reinjection x and x∗ are themselves functions of the distribution rather than exogenously given parameters.
There may therefore be multiple stationary distributions (though, as Luttmer shows for his setup, compactly
supported initial distributions converge to one particular, unique stationary distribution).
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top inequality parameter η = 1/ζ.21 Most existing contributions focus on the stationary

distribution of the process (1) and completely ignore the corresponding transition dynamics.

It is unclear whether these theories can explain the observed dynamics of the tail parameter

η. This is what we turn to next.

4 The Baseline Random Growth Model Generates Slow

Transitions

Changes in the parameters of the income process (1) lead to changes in the fatness of the

right tail of its stationary distribution. For example, an increase in the innovation variance

σ2 leads to an increase in stationary tail inequality η in (3). But this leaves unanswered the

question whether this increase in inequality will come about quickly or will take a long time

to manifest itself. The main message of this section is that the standard random growth

model (1) gives rise to very slow transition dynamics.

Throughout this section, we conduct the following thought experiment. Initially at time

t = 0, the economy is in a Pareto steady state corresponding to some initial parameters

µ0, σ
2
0 and so on. At time t = 0, a parameter changes; for example, the innovation variance

σ2 may increase. Asymptotically as t→∞, the distribution converges to its new stationary

distribution. The question is: what can we say about the speed of this transition? We present

two sets of results corresponding to different notions of the speed of convergence. The first

notion measures an “average” speed of convergence throughout the distribution. The second

notion captures differential speeds of convergence across the distribution, allowing us in

particular to put the spotlight on its upper tail.

Throughout the remainder of the paper, we denote the cross-sectional distribution of the

logarithm of income x at time t by p(x, t), the initial distribution by p0(x) and the stationary

distribution by p∞(x). In order to talk about convergence, we also need a measure of distance

between the distribution at time t and the stationary distribution. Throughout the paper

we use the L1-norm or total variation norm || · || defined as

||p(x, t)− p∞(x)|| :=
∫ ∞
−∞
|p(x, t)− p∞(x)|dx. (4)

The cross-sectional distribution p(x, t) satisfies a Kolmogorov Forward equation. Without

21In particular η = 1 + log10
S(p/10)
S(p) . See Jones and Kim (2014) and Jones (2015) for two papers that use

this fact extensively.
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jumps (φ = 0) this equation is:

pt = −µpx +
σ2

2
pxx − δp+ δψ (5)

with initial condition p(x, 0) = p0(x), where we use the compact notation pt := ∂p(x,t)
∂t

,

px := ∂p(x,t)
∂x

, pxx := ∂2p(x,t)
∂x2 . The first two terms on the right hand side capture the evolution

of x due to diffusion with drift µ and variance σ2. The third term captures death and, hence,

an outflow of individuals at rate δ, and the fourth term captures birth, namely that every

“dying” individual is replaced with a newborn drawn from the distribution ψ(x).

When there is a reflecting barrier, p must additionally satisfy the boundary condition:22

0 = −µp+
σ2

2
px, at x = 0, for all t. (6)

When there is exit at x = 0 with reinjection at points strictly above x = 0, i.e. ρ(0) = 0,

the boundary condition is

p(0, t) = 0 for all t. (7)

and an additional term γ(t)ρ(x) is added to the right-hand side of (5), with γ(t) = σ2

2
px (0, t):

pt = −µpx + σ2

2
pxx − δp + δψ + γρ. This term captures reinjection after exit: a density

γ(t) = σ2

2
px (0, t) of agents touch the barrier at time t−, and they are reinjected at the

random location drawn from the distribution ρ (x).23

When there are jumps, the Kolmogorov Forward equation (5) becomes

pt = −µpx +
σ2

2
pxx − δp+ δψ + φE [p (x− g)− p (x)] . (8)

Relative to (5), the new term is the expectation E [p (x− g)− p (x)], which is taken over the

random jump g and is multiplied by φ, the arrival rate of jumps.24

It is often convenient to write these partial differential equations in terms of a differential

22This boundary condition comes from integrating (5) from x = 0 to ∞.
23To see why the rate at which people exit is given by γ(t) = σ2

2 px (0, t), integrate the Kolmogorov equation

(5) from x = 0 to ∞, which gives 0 = µp (0, t) − σ2

2 px (0, t) + γ (using
∫∞
0
ρ (x) dx = 1). Given p (0, t) = 0,

we obtain γ(t) = σ2

2 px (0, t).
24A jump of g at x − g will transport p (x− g) individuals to location x, hence the term φE [p (x− g)].

Jumps at x make φp (x) people leave location x, hence the term −φp (x). The net effect is
φE [p (x− g)− p (x)].
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operator. For instance (5) is

pt = A∗p+ δψ, A∗p := −µpx +
σ2

2
pxx − δp. (9)

This formulation is quite flexible and can be extended in a number of ways, in particular

to the case with jumps or with exit and reinjection. What is critical for all our results is

that the differential operator A∗ in the Kolmogorov Forward equation (9) is linear. Note

that “linearity” here refers to the operator and not the coefficients, and in particular the

operator will still be linear in the case with income- and time-dependent coefficients µ(x, t)

and σ(x, t) that we consider below.25 Our apparatus can therefore potentially be applied to

more general setups where these coefficients are the outcome of an individual optimization

problem without an analytic solution.26

4.1 Average Speed of Convergence

We now state Proposition 1, one of the two main theoretical results of our paper. For now,

we assume that the process (1) does not feature jumps (φ = 0) and do not allow for exit and

reinjection. We extend the results to the case with exit and reinjection in Proposition 2 and

to jumps in Proposition 3. As mentioned above, we assume that the process (1) satisfies the

assumptions in Appendix D that guarantee the existence of a unique stationary distribution

p∞(x). We additionally make the following assumption.

Assumption 1 The initial distribution p0(x) satisfies
∫∞
−∞

(p0(x))2

e−ζ̄x
dx <∞ where ζ̄ := −2µ

σ2 ≤
ζ, and µ, σ are the parameters of the new steady state process.

Note that Assumption 1 is a relatively weak restriction. For instance, assume that p0 has

a Pareto tail p0(x) ∼ c0e
−ζ0x for large x. Then Assumption 1 is equivalent to ζ0 > ζ̄/2, and

a sufficient condition is ζ0 > ζ/2,27 or in terms of top inequality η = 1/ζ: η0 < 2η. That is,

Assumption 1 rules out cases in which top inequality in the initial steady state is more than

twice as large as that in the new steady state. In particular, it is satisfied in all cases where

25An operator A∗ is said to be “linear” if for any two functions p and q in its domain A∗(p+q) = A∗p+A∗q.
In the case with income and time-dependent coefficients, the operator in the Kolmogorov Forward equation

(9) generalizes to A∗(t)p := −(µ(x, t)p)x + (σ
2(x,t)
2 p)xx − δp. It easy to see that this operator still satisfies

the condition defining linearity.
26Most models of distributional dynamics give rise to a linear operator. However, non-linear differential

operators can arise in models of knowledge diffusion (e.g. Perla and Tonetti, 2014; Lucas and Moll, 2014;
Benhabib, Perla, and Tonetti, 2016).

27Indeed, if δ = 0, ζ = ζ̄. If δ > 0, call P (r) = −δ + µr+ σ2

2 r
2, so that P (ζ) = 0. Given P

(
ζ̄
)

= −δ < 0,
we have ζ̄ < ζ.
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top inequality in the new steady state is larger than that in the initial steady state, η0 < η,

the case we are interested in.28

Proposition 1 (Average speed of convergence) Consider the income process (1) with death

and/or a reflecting barrier as a stabilizing force but without jumps (φ = 0). The cross-

sectional distribution p(x, t) converges to its stationary distribution p∞(x) in the total vari-

ation norm for any initial distribution p0(x). The rate of convergence

λ := − lim
t→∞

1

t
log ||p(x, t)− p∞(x)|| (10)

depends on whether there is a reflecting barrier at x = 0. Without a reflecting barrier

λ = δ. (11)

With a reflecting barrier, under Assumption 1 and for generic initial conditions,

λ =
µ2

2σ2
1{µ<0} + δ (12)

where 1{·} is the indicator function.

The interpretation of the rate of convergence (10) is that, asymptotically as t→∞, the

distribution converges exponentially at rate λ: ||p(x, t)− p∞(x)|| ∼ ke−λt. We shall see that

Proposition 1 implies that the traditional canonical model delivers convergence that is far

too slow: λ is too low compared to empirical estimates.

The intuition for formulas (11) and (12) is as follows. Without a reflecting barrier, the

speed is simply given by the death intensity δ. This is intuitive: the higher δ is, the more

churning there is in the cross-sectional distribution and the faster the distribution settles

down to its invariant distribution. In the extreme case where δ →∞, the distribution jumps

to its steady state immediately. Next, consider the case with a reflecting barrier, µ < 0, and

no death, δ = 0. From (3), stationary tail inequality for this case is η = 1/ζ = −σ2

2µ
and

therefore the speed of convergence can also be written as

λ =
σ2

8η2
. (13)

This expression has intuitive comparative statics. It states that the transition is faster the

higher is the standard deviation of growth rates σ and the lower is tail inequality η; that is,

28Proposition 1 can also be extended to the case where p0 does not decay fast enough, i.e. if η0 > 2η. In
particular, one can bound the speed of convergence, which becomes lower.
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high inequality goes hand in hand with slow transitions.29 The interpretation of the formula

with a reflecting barrier and δ > 0 is similar.

In section 4.3 we show that when the parameters µ, σ and δ are calibrated to be consistent

with the micro data and the observed inequality at a point in time, the implied speed of

convergence is an order of magnitude too low to explain the observed increase in inequality

in the data.

As mentioned above, the process (1) is a bit restrictive because it assumes that Gibrat’s

law holds everywhere in the state space. In fact, it is possible to relax this assumption and

still obtain an upper bound on the speed of convergence. To this end, consider the more

general process:

dxit = µ(xit, t)dt+ σ(xit, t)dZit, (14)

where the growth and standard deviation of income depend on both the income state itself

and time. As already mentioned, state dependence often arises in applications where the

drift and diffusion are the outcomes of individual optimization problems that do not permit

a closed-form solution. Similarly, time dependence is natural when these individuals face

time-varying prices during transitions to a stationary equilibrium. Here µ(x, t) and σ(x, t)

are quite arbitrary functions that satisfy one condition: the process converges to a strict

random growth process as income x becomes arbitrarily large. More precisely, we make the

following assumptions on µ(x, t) and σ(x, t).30

Assumption 2 The coefficients of the process (14) satisfy µ(x, t) → µ̃(x) and σ(x, t) →
σ̃(x) uniformly in x, as t→∞, for some time-independent coefficients µ̃(x) and σ̃(x), which

in turn satisfy µ̃(x)→ µ̄ and σ̃(x)→ σ̄ as x→∞. Moreover, σ2(x, t) ≥ γσ̄2 for all x, t and

some γ > 0, and σx(0, t)→ σ̃′(0) as t→∞.

Under these assumptions we obtain the following extension of Proposition 1 to the income-

and time-dependent process (14). Furthermore, we now allow for exit with reinjection in

addition to a reflecting barrier.

Proposition 2 (Upper bound on average speed of convergence with general process (14))

Consider the income process (14) satisfying Assumption 2 and with a stabilizing force. The

cross-sectional distribution p(x, t) converges to its stationary distribution p∞(x) in the total

29Equation (13) shows that high inequality goes hand in hand with slow transitions for the case of an
exact Pareto income distribution. This comparative static need not hold in the case of income- and time-
dependent coefficients in which the distribution only has an asymptotic Pareto tail. However, Proposition 2
still establishes an upper bound for the speed of convergence in this case.

30In addition, we assume that the functions µ and σ satisfy simple sufficient conditions ensuring the
existence and uniqueness of a steady state. See Appendix G.1.
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variation norm. The rate of convergence λ := − limt→∞
1
t

log ||p(x, t)−p∞(x)|| is at most as

large as that with a strict random growth process (1) from Proposition 1. Without a lower

bound on income, λ ≤ δ. With a lower bound on income (either a reflecting barrier or exit

with reinjection), λ ≤ 1
2
µ̄2

σ̄2 1{µ̄<0} + δ.

As most readers will be more interested in the message of Propositions 1 and 2 than their

proofs, we only sketch here the intuition for the proofs. The proof of Proposition 1 without

a reflecting barrier analyzes directly the L1-norm (4) by means of a differential equation

for |p(x, t) − p∞(x)|. The rough idea of the proof of Proposition 1 with a lower bound is

as follows. The entire dynamics of the process for xit are summarized by the operator A∗

defined in (9). This operator is the appropriate generalization of a transition matrix for a

finite-state process to processes with a continuum of states such as (1), and it can be analyzed

in an exactly analogous way. In particular, the critical property of A∗ governing the speed of

convergence of p is its largest non-trivial eigenvalue, i.e. the second eigenvalue. The intuition

why it is the second eigenvalue that matters for the speed of convergence is exactly the same

as for a finite-state process: the first (principal) eigenvalue of the transition matrix is zero

and corresponds to the stationary distribution p∞; instead it is the second eigenvalue that

governs the speed of convergence to this stationary distribution because the loadings of the

initial distribution on all other eigenvectors decay more quickly. See Appendix F.1 for a

detailed explanation.31 The key contribution of Proposition 1 and the main step of the proof

is then to obtain an explicit formula for the second eigenvalue of A∗ in the form of (12).32

The proof of Proposition 2 is more involved and uses “energy methods”, i.e. techniques

involving the L2-norms of various expressions (Evans, 1998).

4.2 Speed of Convergence in the Tail

In the preceding section we characterized a measure of the average speed of convergence

across the entire distribution. The purpose of this section is to examine the possibility that

different parts of the distribution may converge at different speeds. In particular, we show

31Note that the largest non-trivial eigenvalue λ is the relevant speed of convergence for generic initial
conditions p0. As we explain in more detail in Appendix F.2.1, “generic” here means that, for any given
p0, we can find an arbitrarily close p̃0 that converges at the rate λ. The logic is exactly the same as in
the finite-dimensional case analyzed in Appendix F.1: there could in principle be initial conditions that are
exactly orthogonal to the eigenvector corresponding to the largest non-trivial eigenvalue. But such initial
conditions are knife-edge and the second eigenvalue governs the speed of convergence for any perturbations
of such initial conditions.

32Linetsky (2005) derives a related result for the special case with a reflecting barrier, µ < 0 and δ = 0.
For the same case one can also derive the formula for the speed of convergence by “brute force” from the
standard formulas for reflected Brownian motion (see e.g. Harrison, 1985). Our results are considerably more
general.
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that convergence is particularly slow in the upper tail of the distribution. That is, the

formula in Proposition 1 overestimates the speed of convergence of parts of the distribution.

We also ask whether departing from the standard log-normal framework by introducing

jumps can help resolve the puzzle raised in the preceding section that random growth pro-

cesses cannot explain the fast rise of income inequality observed in the data. We find that

they cannot: while jumps are useful descriptively for capturing certain features of the data,

they do not increase the speed of convergence of the cross-sectional income distribution.

Because we use somewhat different arguments depending on whether there is a lower

bound on income or not, we present the results for the two cases separately.

4.2.1 Speed of Convergence in the Tail Without a Lower Bound on Income

Without a lower bound on income, the distribution p(x, t) satisfies the Kolmogorov Forward

equation (8), which potentially allows for jumps. One can show (see e.g. Gabaix, 2009, and

Appendix D) that in this case the stationary distribution has Pareto tails both as x → ∞
and as x→ −∞:

p∞(x) ∼

e−ζ+x, x→∞,
e−ζ−x, x→ −∞,

(15)

with ζ− < 0 < ζ+.33 Apart from the stationary distribution, the solution to the Kolmogorov

Forward equation is cumbersome.

Without a lower bound on income, the entire time path of the solution to the Kolmogorov

Forward equation can be characterized conveniently in terms of the “Laplace transform” of

p

p̂ (ξ, t) :=

∫ ∞
−∞

e−ξxp (x, t) dx = E
[
e−ξxit

]
, (16)

where ξ is a real number and xit represents the random variable (log income) with distribution

p (x, t).34 For ξ ≤ 0, the Laplace transform has the natural interpretation of the −ξth
moment of the distribution of income, that is p̂ (ξ, t) = E[w−ξit ], where wit = exit is income.

Similarly note that, up to a minus, the Laplace transform is the moment generating function

corresponding to the distribution p(x, t), and one can therefore also calculate all moments

of log income.35 We show momentarily that we can obtain a clean analytic formula for the

33For instance, without jumps and with rebirth at x = 0, the stationary distribution is a double Pareto
distribution p∞(x) = cmin{e−ζ−x, e−ζ+x} where c = −ζ−ζ+/(ζ+ − ζ−) and where ζ− < 0 < ζ+ are the two
roots of (2).

34Note that we here work with the “bilateral” or “two-sided” Laplace transform which integrates over the
entire real line. This is in contrast to the one-sided Laplace transform defined as

∫∞
0
e−ξxp (x, t) dx.

35The first moment of log income can be calculated from the first derivative as − ∂
∂ξ p̂(0, t) =
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entire time path of this object for all t. This is useful because a complete characterization of

a function’s Laplace transform is equivalent to a complete characterization of the function

itself. This is because by varying the variable ξ, we can trace out the behavior of different

parts of the distribution. In particular, the more negative ξ is, the more we know about

the distribution’s tail behavior. In a similar vein, our analysis using Laplace transforms will

allow us to characterize tightly the behavior of a weighted version of the L1-norm in (4):

||p(x, t)− p∞(x)||ξ :=

∫ ∞
−∞
|p(x, t)− p∞(x)|e−ξxdx. (17)

In the special case ξ = 0, this distance measure coincides with the L1-norm defined in (4).

But by taking ξ < 0, (17) puts more weight on the behavior of the distribution’s tail, the

main focus of the current section. Note that the Laplace transform (16) ceases to exist if

ξ is too negative or too positive. To ensure that the Laplace transform exists we impose

max{ζ0,−, ζ−} < −ξ < min{ζ0,+, ζ+} where ζ− < 0 < ζ+ are the tail parameters of the

stationary distribution (15) and ζ0,− < 0 < ζ0,+ those of the initial distribution.

We apply the Laplace transform to the Kolmogorov Forward equation (8). For the first

two terms we use the rules p̂x = ξp̂ and p̂xx = ξ2p̂. Next consider the term capturing jumps,

which can be written as

E [p (x− g)− p (x)] =

∫ ∞
−∞

[p(x− g)− p(x)]f(g)dg = (p ∗ f) (x)− p (x)

where ∗ is the convolution operator. Conveniently, integral transforms like the Laplace trans-

form are the ideal tool for handling convolutions. In particular, the Laplace transform of

a convolution of two functions is the product of the Laplace transforms of the two func-

tions: (̂p ∗ f)(ξ) = p̂(ξ)f̂(ξ). Note that the Laplace transform can handle arbitrary jump

distributions f . Applying these rules to (8), we obtain

p̂t(ξ, t) = −λ(ξ)p̂(ξ, t) + δψ̂(ξ) where λ(ξ) := µξ − σ2

2
ξ2 + δ − φ(f̂(ξ)− 1) (18)

with initial condition p̂(ξ, 0) = p̂0(ξ), the Laplace transform of p0(x) and where ψ̂(ξ) and

f̂(ξ) are the Laplace transforms of ψ(x) and f(x). Importantly, note that for fixed ξ, (18) is

a simple ordinary differential equation for p̂ that can be solved analytically. Note that this

strategy would work even if the coefficients µ, σ, δ and φ were arbitrary functions of time t.

However, it would not work if µ, σ, δ and φ depended on income x.

∫∞
−∞ xp(x, t)dx = E[xit], the second moment from the second derivative, and so on.
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Proposition 3 (Speed of convergence in the tail) Consider the Laplace transform of the

income distribution p̂(ξ, t) defined in (16). Its time path is

p̂(ξ, t) = p̂∞(ξ) + (p̂0(ξ)− p̂∞(ξ)) e−λ(ξ)t, (19)

λ(ξ) := ξµ− ξ2σ
2

2
+ δ − φ(f̂(ξ)− 1), (20)

p̂∞(ξ) :=
δψ̂(ξ)

µξ − σ2

2
ξ2 + δ − φ(f̂(ξ)− 1)

. (21)

The Laplace transform of the distribution of jumps f , f̂(ξ) =
∫∞
−∞ e

−ξgf(g)dg satisfies f̂(0) =

1 and (if E[g] ≥ 0) f̂(ξ) ≥ 1 for all ξ < 0. Furthermore, λ(ξ) is also the rate of convergence

of the weighted L1-norm (17):

− lim
t→∞

1

t
log ||p(x, t)− p∞(x)||ξ = λ(ξ).

Consider first the formula for the speed of convergence of the weighted distance measure

without jumps φ = 0. For the special case ξ = 0, we have λ(ξ) = δ; when the weighted

L1-norm places no additional weight on the behavior of the distribution’s tail, we recover our

original result from Proposition 1, as expected. As we take ξ to be more and more negative,

the weighted norm places more and more weight on the behavior of the distribution’s upper

tail, and the corresponding speed of convergence is given by λ(ξ). Note that for µ > 0, the

speed of convergence λ(ξ) is always lower the lower ξ is, for all ξ ≤ 0. If µ < 0, the same

is true for all ξ less than some critical value. The formula for λ(ξ) therefore indicates that

convergence is slower the more weight we put on observations in the distribution’s tail.

Next, consider the case with jumps φ > 0. First note that the average speed of con-

vergence as measured by the unweighted L1-norm is entirely unaffected by the presence of

jumps: explicitly spelling out the dependence of the speed of convergence λ(ξ;φ) on φ, we

have λ(0;φ) = δ for all φ. With ξ < 0, jumps make the speed of convergence lower than in

the absence of jumps: λ(ξ;φ) ≤ λ(ξ; 0), φ > 0 (since f̂(ξ) ≥ 1 for ξ < 0). Furthermore, for

ξ < 0, λ(ξ;φ) is decreasing in φ, that is the higher is the jump intensity, the lower is the rate

of convergence. Summarizing, if we confine attention to the average speed of convergence

||p(x, t) − p∞(x)|| jumps have no effect whatsoever. If instead we put more weight on ob-

servations in the distribution’s tail, ξ < 0, then the rate of convergence becomes worse, not

better. We conclude that jump processes, though very useful for the purpose of capturing

salient features of the data, are not helpful in terms of providing a theory of fast transitions.

Next consider (19) which provides a closed form solution for the evolution of the Laplace
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transform or equivalently for the evolution of all moments of the cross-sectional income

distribution. These moments converge at the same rate λ(ξ) as the weighted norm in (17).

Hence, the closed form solution for the Laplace transform in (19) shows that high moments

converge more slowly than low moments. We illustrate these results graphically below.

Also note that all moments of the income distribution converge exponentially and hence

monotonically. Our characterization of the dynamics of these moments is anticipated in

Luttmer (2012) which contains results that are equivalent to (19) in the case ξ = −1, i.e.

concerning the first moment.36

Finally, note that one can identify the Pareto tail of the distribution p from knowledge

of its Laplace transform only: the tail parameter is simply the critical value ζ > 0 such that

p̂(ξ) ceases to exist for all ξ ≤ −ζ.37 This strategy is useful because it also works in some

cases in which the tail parameter cannot be computed using standard methods, e.g. with

jumps φ > 0.

4.2.2 Speed of Convergence in the Tail With Reflecting Barrier

Proposition 3 can also be extended to an income process with a reflecting barrier. The

Kolmogorov Forward equation for the distribution can then no longer be solved by means

of the Laplace transform. The proof therefore uses a different strategy, closely related to

that in Proposition 1. While this strategy applies with a reflecting barrier, we can no longer

handle jumps.

Proposition 4 Consider the income process (1) without jumps φ = 0 but with a reflecting

barrier. Under Assumption 1, the rate of convergence λ(ξ) := − limt→∞
1
t

log ||p(x, t) −
p∞(x)||ξ of the weighted L1-norm (17) is

λ(ξ) =

1
2
µ2

σ2 + δ, ξ ≥ µ
σ2

µξ − σ2

2
ξ2 + δ, ξ < µ

σ2

(22)

The speed of transition λ (ξ) weakly decreases as the weight −ξ on the right tail increases.
36Luttmer (2016) has since shown how to extend Luttmer’s (2012) characterization of the case ξ = −1 to

general ξ using Ito’s formula. In contrast to these characterizations of the distribution’s moments, our main
results in Propositions 1 and 2 characterize the distribution’s distance from its stationary distribution in
terms of the L1-norm, and cover more general processes with a lower bound, exit and reinjection as well as
income- and time-dependent coefficients. Similarly, Proposition 3 also characterizes the weighted L1-norm
(17).

37For any distribution p with a Pareto tail, that is p(x) ∼ ce−ζx x→∞ for constants c and ζ, the Laplace
transform (16) satisfies p̂(ξ) ∼ c

ζ+ξ as ξ ↓ −ζ. Therefore ζ = − inf{ξ : p̂(ξ) < ∞}. The converse is also
true and one can conclude whether a distribution has a Pareto tail from a characterization of its Laplace
transform alone, as well as characterize the corresponding tail exponent. See Proposition 7 in Appendix D.2.
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4.2.3 An Instructive Special Case: the Steindl Model

We briefly illustrate the result of Propositions 3 and 4 in an instructive special case originally

due to Steindl (1965) with an analytic solution for the time path of the cross-sectional income

distribution: σ = 0, µ, δ > 0 and ψ is the Dirac delta function at x = 0. In this model, the

logarithm of income xit grows at rate µ and gets reset to xi0 = 0 at rate δ. The Steindl model

has recently also been examined by Jones (2015). The distribution p(x, t) then satisfies the

Kolmogorov Forward equation (5) with σ = 0 for x > 0. The corresponding stationary

distribution is a Pareto distribution p∞(x) = ζe−ζx with ζ = δ
µ
. For concreteness, consider

an economy starting in a steady state with some growth rate µ0 (and death rate δ0). At

t = 0 the growth rate changes permanently to µ > µ0 (and death rate δ). Then, the new

steady state distribution is more fat-tailed, ζ < ζ0. The following Lemma derives the path

(it is valid for any ζ0, not necessarily greater than ζ).38

Lemma 1 (Closed form solution for the transition in the Steindl model) The time path of

p(x, t) is the solution to (5) with σ = 0 and initial condition p0(x) = ζ0e
−ζ0x, ζ0 = δ0/µ0 and

is given by

p(x, t) = ζe−ζx1{x≤µt} + ζ0e
−ζ0x+(ζ0−ζ)µt1{x>µt} (23)

where 1{·} is the indicator function.

The solution is depicted in Figure 2 (a).39 Consider, in particular, the local power

law exponent ζ(x, t) = −∂ log p(x, t)/∂x. Since the figure plots the log density, log p(x, t),

against log income x, this local power law exponent is simply the slope of the line in the

figure. The time path of the distribution features a “traveling discontinuity”. Importantly,

the local power law exponent (the slope of the line) first changes only for low values of x.

In contrast, for high values of x, the distribution shifts out in parallel and the slope of the

line does not move at all. More precisely, for a given point x, the exponent does not move

at all when t < τ(x) = x/µ, then fully jumps to its steady state value at t = τ(x). In

the Steindl model, the convergence of the distribution is slower the further out in the tail

we look. In particular, note from the Figure that the asymptotic (for large x) power law

exponent ζ(t) = − limx→∞ ∂ log p(x, t)/∂x takes an infinite time to converge to its stationary

distribution. In the special case of the Steindl model, this slow convergence in the tail is

particularly stark in that some parts of the distribution do not move at all. Figure 2 (b)

38Section K of the Online Appendix gives more closed forms, e.g. with σ > 0.
39The Steindl model is too stylized for a systematic calibration, an exercise we pursue in Section 4.3. Figure

2 uses comparable parameter values: we set δ = 1/30, ζ0 = 1/0.39, ζ = 1/0.66 and choose µ0 = δ/ζ0 = 0.013
and µ = δ/ζ = 0.022. In panel (b) we set σ = 0.1 and recalibrate µ0 and µ to deliver the same ζ and ζ0.
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(a) Steindl Model, σ = 0
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(b) More General Model, σ > 0

Figure 2: Transition of Cross-Sectional Income Distribution

shows that also in the more general case with σ > 0 the power law exponent ζ (equivalently

top inequality η) does not change at first and the distribution instead shifts out in parallel.40

Consider the behavior of top income shares in response to the permanent increase in µ

considered above. Lemma 1 implies that the relative income of the 0.1% versus 1% income

quantiles is constant for a while; it budges only when the “traveling discontinuity” hits the

top 1% quantile. In contrast, the levels of the top 1% income quantile and the 0.1% income

quantile increase quickly after the shock (to be more precise, after any time t > 0, they have

moved, in parallel). Hence, the ratio of the 0.1% to 1% share moves slowly (indeed, not at

all for a while), though the top 1% share moves fairly fast.

4.3 The Baseline Model Cannot explain the Fast Rise in Income

Inequality

We now revisit Figure 1 from Section 2 and ask: can standard random growth models gener-

ate the observed increase in income inequality? We find that they cannot. In particular, the

transition dynamics generated by the model are too slow relative to the dynamics observed

in the data. This operationalizes, by means of a simple calibration exercise using estimates

from the micro data, the theoretical results in the preceding two sections.

40This is more than a numerical result. Defining the local power law exponent ζ(x, t) := −Px(x, t)/P (x, t)
where P is the CDF corresponding to p, one can show using (5) that this local power law exponent does not
move on impact following a shock, ζt(x, t)|t=0 = 0 for all x > 0.
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More precisely, we ask whether an increase in the variance of the permanent component of

wages σ2 can explain the increase in income inequality observed in the data. That an increase

in the variance of permanent earnings has contributed to the rise of inequality observed in

the data has been argued by Moffitt and Gottschalk (1995), Haider (2001), Kopczuk, Saez,

and Song (2010) and DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) (however,

Guvenen, Ozkan, and Song (2014) examine administrative data and dispute that there has

been such a trend – either way our argument is that an increase in σ cannot explain the rise

in top inequality). The particular experiment we consider below is an increase in the variance

of permanent earnings σ2 from 0.01 in 1973 to 0.025 today. This implies that the standard

deviation σ increases from 0.1 to 0.158, broadly consistent with evidence in Heathcote, Perri,

and Violante (2010).

Before proceeding to the calibration exercise, we first use our theoretical results for some

simple back-of-the-envelope calculations that illustrate our main point that transition dy-

namics of standard random growth models are extremely slow. We here focus on the case

µ ≥ 0, i.e. that individuals’ incomes grow at least as fast on average as the aggregate econ-

omy.41 Proposition 1 then implies that the average speed of convergence is simply λ = δ and

the corresponding half-life is t1/2 = log(2)/δ.42 As shown in Propositions 3 and 4, the speed

of convergence in the tail can be much slower. In particular, consider the formula (20) for

the speed of convergence without jumps φ = 0

λ(ξ) = ξµ− ξ2σ
2

2
+ δ. (24)

Here the reader should recall that by varying ξ, we can trace out the speed of convergence

of all moments of the distribution and λ(ξ) is the speed of convergence of the -ξth moment.

Equivalently, −ξ is the weight on the tail in the weighted L1-norm (17). For our calculations,

it is convenient to express (24) in terms of tail inequality η = 1/ζ which is directly measurable

from cross-sectional data. From (2) we have µ = δη − σ2/(2η) and therefore

λ(ξ) = ξ

(
δη − σ2

2η

)
− ξ2σ

2

2
+ δ =

(
δη − σ2

2
ξ

)(
1

η
+ ξ

)
. (25)

41Our model is stationary whereas the U.S. economy features long-run growth. The parameter µ should
therefore be interpreted as the growth rate of individual incomes over the lifecycle relative to the growth rate
of the aggregate economy (this can also be seen from the fact that in the model the distribution of starting
wages ψ(x) is stationary). Parameterizations with µ < 0 are therefore relatively natural as well. In that
case and with a reflecting barrier, convergence may be marginally faster – see (12).

42Because we are dealing with exponential decay in multiple (in fact, infinite) dimensions, t1/2 only equals
half the time it takes for ||p− p∞|| to converge for the particular initial conditions p0 for which ||p− p∞|| =
||p0− p∞||e−λt (so that ||p0− p∞||e−λt1/2 = 1

2 ||p0− p∞|| implies t1/2 = log 2/λ). For other initial conditions
this equation only holds asymptotically – see (10). It is nevertheless standard to refer to t1/2 as “half-life.”
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In the relevant range −1/η < ξ < 0, the speed of convergence is strictly decreasing in tail

inequality η, i.e. higher inequality goes hand in hand with a slower transition. It is also

strictly increasing in the innovation variance σ2.

Using this formula, we can now examine how the parameters η, δ and σ2 affect the

speed of convergence. To get a “quantitative feel” for (25), consider first the “Steindl” case

σ2 = 0 so that λ(ξ) = δ (1 + ηξ). While unrealistic, this simple case has the advantages

that computations are particularly easy and only require estimates for two parameters, η

and δ (the implied speed also turns out to be similar for the more realistic case where

σ2 > 0). We use δ = 1/30 corresponding to an expected work life of thirty years. A slight

difficulty arises because η in (25) is tail inequality in the new stationary equilibrium. We use

observed tail inequality in 2012 which equals η2012 = 0.66, a conservative estimate because

λ(ξ) is decreasing in η (and η is increasing in the data).43 The resulting half-life of the −ξth
moment is given by t1/2(ξ) = log 2/λ(ξ) = 0.69 × 30 × 1

1+0.66ξ
. For example, the half-life of

convergence of the first moment (ξ = −1) is around 60 years. Note that this calibration is

conservative. In particular, a longer expected work life or higher estimate of tail inequality

would result in even slower transitions.

We use (25) to perform similar calculations for the more general case where σ2 > 0.

Figure 3 plots the corresponding half-life t1/2(ξ) = log(2)/λ(ξ) for the parameter values used

in our experiment as a function of the moment under consideration −ξ. Consider first the
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Figure 3: Theoretical Speed of Convergence of Different Moments of Income Distribution

solid line which plots the half life t1/2(ξ) for σ2 = 0.025, the variance of the permanent

43We compute η from the relative income shares in panel (b) of Figure 1. If the distribution is Pareto,

relative income shares satisfy S(p/10)
S(p) = 10η−1 and we therefore compute η(p) = 1 + log10 S(p/10)/S(p). We

here use η(1) = 1 + log10 S(0.1)/S(1).
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component of wages used in our experiment. There are two main takeaways from the figure.

First, even for relatively low moments the speed of convergence is considerably lower. For

example, the half-life of convergence of the first moment (ξ = −1) is around 40 years, i.e.

twice as much as the average speed of roughly 20 years. Second, the speed of convergence

becomes slower and slower the higher the moment under consideration, with half lives of 100

years close to the highest admissible moment 1/η = 1.52. The figure also shows that the

speed of convergence is not particularly sensitive to the value of the variance σ2.

We next consider the effects of an increase in σ2 from 0.01 in 1973 to 0.025 today in the

baseline random growth model and how they compare to the evolution of inequality in the

data. We set δ = 1/30 as above and set µ to match the observed tail inequality in 1973,

η1973 = 0.39 which yields µ = δη−σ2/(2η) = 0.002, i.e. individual income growth 0.2% above

the economy’s long-run growth rate. Figure 4 plots the time paths for the top 1% income

share (panel (a)) and the empirical power law exponent (panel (b)) following the increase in

σ2 in the baseline random growth model and compares them to the same data series that we

have already plotted in Figure 1.44 Not surprisingly given our analytical results, the model
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Figure 4: Dynamics of Income Inequality in the Baseline Model

fails spectacularly.45 As we have mentioned in Section 2, there is some uncertainty about

the precise quantitative increase in top inequality and in the corresponding empirical power

law exponent. To explore this, in Appendix B, we repeat the experiment in Figure 4 but

using only wage (salary) data rather than total income (excluding capital gains). With the

44We solve the Kolmogorov Forward equation (5) numerically using a finite difference method.
45Note that the power law exponent in panel (b) is completely flat on impact, consistent with Figure 2

and footnote 40.
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alternative data series, the gap between the data and the model is more modest. But it

remains true that the baseline random growth model cannot explain the observed rise in top

inequality.

Summarizing, an increase in the variance in the permanent component of income σ2 in

the standard random growth model is not a promising candidate for explaining the observed

increase in top income inequality. It is also worth emphasizing again that allowing for jumps

(φ > 0) in the income process would only slow down the speed of convergence even more

(Proposition 3).

5 Models that Generate Fast Transitions

Given the negative results of the preceding section, it is natural to ask: what then explains

the observed fast rise in top income inequality? We argue that fast transitions require very

specific departures from the standard random growth model. We extend the model along

two dimensions, both of which constitute deviations from Gibrat’s law. First, we allow for

type dependence in the growth rate distribution. Second, we consider scale dependence. We

discuss the role of these two additions in turn in Sections 5.2 and 5.3. In Section 5.4, we then

revisit the rise in income inequality and argue that our augmented random growth model

can generate transitions that are as fast as those observed in the data.

5.1 The Augmented Random Growth Model

In its most general form, we consider a random growth model with type dependence in the

form of distinct “growth types” indexed by j = 1, ..., J , and scale dependence captured by a

process χt. The dynamics of log income xit of individual i of type j are given by

xit = χ
bj
t yit,

dyit = µjdt+ σjdZit + gjitdNjit + Injection−Death,
(26)

where dNjit is a Poisson process with intensity φj and gjit is a random variable with distri-

bution fj. The latent variable yit can be interpreted as a worker’s skill. As before, workers

retire at rate δ and get replaced by labor entrants with income drawn from a distribution ψ.

A fraction θj of labor force entrants are born as type j and workers switch from being type

j to type k at rate αj,k. Our baseline model is the special case with J = 1 and χt = 1.

The process features type dependence in that µj, σj, φj and fj differ across types. Guve-

nen (2007) has argued that an income process with heterogeneous income profiles provides

a better fit to the micro data than a model in which all individuals face the same income
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profile, and he finds large heterogeneity in the slope of income profiles. The model above

also allows for heterogeneity in the standard deviation of income innovations σj, similar to

the mixture specification advocated by Guvenen, Karahan, Ozkan, and Song (2015). We

also build on Luttmer (2011), who studies a related framework applied to firm dynamics

and argues that persistent heterogeneity in mean firm growth rates is needed to account for

the relatively young age of very large firms at a given point in time (a statement about the

stationary distribution rather than transition dynamics as in our paper). Aoki and Nirei

(2015) present a related and more complex economic model with entrepreneurs and workers

that are subject to different income growth rates, and Jones and Kim (2014) examine a

model with different types of entrepreneurs.

Scale dependence is captured by χt, an arbitrary stochastic process satisfying χt > 0

and limt→∞ E[logχt] < ∞. Basically, with bj > 0, an increase in χt means that the income

growth rate is higher for higher incomes: hence it violates Gibrat’s law. To see this, write

(26) as

dxit = µ̃jtdt+ σ̃jtdZit + bjxitd logχt + gjitdÑjit + Injection−Death (27)

where µ̃jt = µjχ
bj
t , σ̃jt = σjχ

bj
t and dÑjit = dNjitχ

bj
t . If bjd logχt > 0, the growth rate

of income xit is increasing in income, i.e. a deviation from Gibrat’s law.46 Appendix I.1

provides conditions under which the process (26) features a unique stationary distribution

with a Pareto tail, and we assume that these conditions hold throughout this section.47

5.2 The Role of Type Dependence

First, consider the special case of (26) with type dependence but without scale dependence

χt = 1 (or jumps φ = 0). Here we focus on a simple case with two types, a high-growth type

and a low-growth type, but our results can be extended to more types (Appendix I.2).

Denote the density of individuals who are currently in the high and low growth states by

pH(x, t) and pL(x, t) and the cross-sectional wage distribution by p(x, t) = pH(x, t)+pL(x, t).

We assume that a fraction θ of individuals start their career as high-growth types and the

remainder as low-growth types, and that individuals switch from high to low growth with

intensity α. Low growth is an absorbing state that is only left upon retirement. Newborn

46Also note that Zit is an idiosyncratic stochastic process whereas St is an aggregate or common shock
that hits all individuals simultaneously.

47More precisely, we provide conditions under which the process for skill yit has a fat-tailed stationary
distribution. A necessary and sufficient condition for income xit to also have a fat-tailed stationary distri-
bution is that χt is constant. More generally though, we want to allow for time-variation in χt, thereby
capturing secular changes in skill prices or shocks disproportionately affecting high incomes at business-cycle
frequencies.
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individuals start with income x = 0. Then, the densities satisfy the following system of

Kolmogorov Forward equations

pHt = −µHpHx +
σ2
H

2
pHxx − αpH − δpH + βHδ0,

pLt = −µLpLx +
σ2
L

2
pLxx + αpH − δpL + βLδ0,

(28)

with initial conditions pH(x, 0) = pH0 (x), pL(x, 0) = pL0 (x), where δ0 is the Dirac delta function

at x = 0 capturing rebirth, and where βH = θδ and βL = (1− θ)δ are the birth rates of the

two types.

While we are not aware of an analytic solution method for the system of partial differential

equations (28), this system can be conveniently analyzed by means of Laplace transforms as

in Section 4.2. In particular, p̂H(ξ, t) and p̂L(ξ, t) satisfy

p̂Ht (ξ, t) = −λH(ξ)p̂H(ξ, t) + βH , λH(ξ) := ξµH − ξ2σ
2
H

2
+ α + δ, (29)

p̂Lt (ξ, t) = −λL(ξ)p̂L(ξ, t) + αp̂H(ξ, t) + βL, λL(ξ) := ξµL − ξ2σ
2
L

2
+ δ, (30)

with initial conditions p̂H(ξ, 0) = p̂H0 (ξ), p̂L(ξ, 0) = p̂L0 (ξ). Importantly, for fixed ξ, this is

again simply a system of ordinary (rather than partial) differential equations which can be

solved analytically. Note that the system is triangular so that one can first solve the equation

for p̂H(ξ, t) and then the one for p̂L(ξ, t).48

Proposition 5 (Speed of convergence with type dependence) Consider the cross-sectional

distribution p(x, t) := pH(x, t)+pL(x, t). The stationary distribution p∞(x) = pH∞(x)+pL∞(x)

has a Pareto tail with tail exponent ζ = min{ζL, ζH} where ζH is the positive root of 0 =

ζ2 σ
2
H

2
+ ζµH −α− δ and ζL is the positive root of 0 = ζ2 σ

2
L

2
+ ζµL− δ. The time paths of the

Laplace transforms of pH(x, t) and p(x, t) are

p̂H(ξ, t)− p̂H∞(ξ) = e−λH(ξ)t(p̂H0 (ξ)− p̂H∞(ξ)), (31)

p̂(ξ, t)− p̂∞(ξ) = cH(ξ)e−λH(ξ)t + cL(ξ)e−λL(ξ)t, (32)

where λH(ξ) and λL(ξ) are defined in (29) and (30), p̂H∞(ξ) and p̂∞(ξ) are the Laplace

48Proposition 5 can easily be extended to a non-triangular system, i.e. if the low state is not an absorbing
state and low types can switch to being high types. See Appendix I.2. This is achieved by writing the
analogue of (29) and (30) in matrix form. The speed of convergence is then governed by the eigenvalues
of that matrix. In the triangular case, these eigenvalues are simply −λL(ξ) and −λH(ξ). Therefore, while
triangularity yields simple formulae, all results can be extended to the more general case.
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transforms of the stationary distributions and cH(ξ) and cL(ξ) are constants of integra-

tion. Finally, the weighted L1-norm of the distribution of high types converges at rate

− limt→∞
1
t

log ||pH(x, t)− pH∞(x)||ξ = λH(ξ).

The transition dynamics of the income distribution therefore take place on two different

time scales: part of the transition happens at rate λH(ξ) and another part at rate λL(ξ).49

The model then has the theoretical potential to explain fast short-run dynamics and, as we

argue in Section 5.4, the observed rise in income inequality.

5.3 The Role of Scale Dependence

Next consider the special case of (26) with scale dependence d logχt 6= 0 but without type

dependence J = 1 (only one growth type). The logarithm of income then satisfies xit = χtyit

and the level of income is wit = (eyit)χt , with χt disciplining the convexity of income as a

function of skill eyit .

Intuitively, changes in χt may arise from a “convexification” in skill prices, as in models

with “superstar” effects or, more generally, in task-based assignment models.50 To illustrate

this point, Appendix I.3 presents a completely microfounded model (which is a dynamic

extension of the static model of Gabaix and Landier (2008)). There, CEOs of differing

talent are matched with firms of differing size. The variable yit denotes the log quantile of

talent of the CEO (so that highly talented individuals have a high yit; indeed in this model

only a fraction e−yit of individuals are more talented than individual i). The value added

of a CEO with talent yit managing a firm of size Sit is proportional to Sγtit T (yit) where γt

captures the “scope of CEO talent” and T is an increasing function. In equilibrium, more

talented CEOs are matched with larger firms. After some algebra, one can then show that

the log income of a CEO is indeed xit = χtyit where χt := αγt − β and where α and β are

other model parameters.

Hence, when the “scope of CEO talent” γt increases (perhaps because of an increase of the

ability of CEO to manage other people, as in Garicano and Rossi-Hansberg (2006)), the talent

multiplier χt increases. In addition, an individual CEO’s skill varies, which leads to dynamics

49A natural assumption is that the switching rate α is large enough to swamp any differences between the
µ’s and σ’s in the two states and so λH(ξ) > λL(ξ) in (29) and (30). In contrast to the baseline random
growth model of section 4, transition dynamics following a parameter change now take place on two different
time scales: part of the transition happens quickly at rate λH(ξ), but the other part of the transition happens
at a much slower pace λL(ξ). In the short-run, the dynamics governed by λH(ξ) dominate whereas in the
long-run the slower dynamics due to λL(ξ) determine the dynamics of the income distribution.

50For models with superstar effects, see Rosen (1981), Garicano and Rossi-Hansberg (2006), Gabaix and
Landier (2008), Tervio (2008) and Geerolf (2014). For an overview of task-based assignment models see
Acemoglu and Autor (2011, Section 4).
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of yit. This is just an example of a full-fledged microfoundation for scale dependence. We are

hopeful that other models will be developed that generate scale dependence, calibrated on

dynamic micro data. Here we simply illustrated that generating scale dependence is possible

by writing a dynamic version of already existing static models (like Gabaix and Landier

(2008)).

Next, we note that this is a potentially powerful effect, as the next proposition records.

Since income is wit = (eyit)χt , it is easy to see that an increase in χt (which generates scale

dependence) leads to an instantaneous fattening of the tail of the income distribution.

Proposition 6 (Infinitely fast adjustment in models with scale dependence) Consider the

special case of (26) xit = χtyit where the distribution of yit is stationary and where χt is an

aggregate shock. This process has an infinitely fast speed of adjustment: λ = ∞. Denoting

by ζxt and ζy the power law exponents of log income and skill xit and yit, we have ζxt = ζy/χt.

Proof. The mechanism is so basic that the proof is very simple: if P (yit > y) = ce−ζ
yy,

P (xit > x) = P (χtyit > x) = P (yit > x/χt) = ce−ζ
yx/χt ⇒ ζxt = ζy/χt. �

Hence, the process is extremely fast – it features instantaneous transitions in the power law

exponent. Therefore, if χt has a secular trend, the power law exponent inherits this trend.

Fast transitions are therefore consistent with theories in which the increase in top income

inequality is driven by changing skill prices, e.g. due to the rise of “superstars.”

Parker and Vissing-Jorgensen (2010) provide supportive evidence for scale dependence

at high frequencies. They find that in good (respectively bad) times, the incomes of top

earners increase (respectively decrease), in a manner consistent with (27): the sensitivity to

the shock at time t is proportional to xit, as in

dxit = xitdSt + µdt+ σdZit,

with St := d logχt. Note that the shock xitdSt to log income is multiplicative in log income,

as opposed to additive as in the traditional random growth model. This finding is broadly

confirmed by Guvenen (2015, p.40). Finally, Acemoglu and Autor (2011) cite some evidence

for an increasing “convexification” in returns to schooling over time, again broadly consistent

with scale dependence arising due to changing skill prices. We conclude that scale dependence

is an empirically grounded source of fast transitions.
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5.4 Fast Transitions in the Augmented Model

We now use the framework of this section to revisit the rise in income inequality in the

United States. We argue that, in contrast to the spectacular failure of the standard random

growth model, the model with type dependence presented in the preceding sections has the

potential to explain the observed rise in top income inequality.

We conduct an analogous exercise to that in Section 4.3. The shock we consider in

the present exercise is an increase in the mean growth rate of high types µH (while µL is

unchanged). This is motivated in part by casual evidence of very rapid income growth rates

since the 1980s, for instance for Bill Gates, Mark Zuckerberg, hedge fund managers and the

like – their growth is very high for a while, then tails off. This impression is confirmed by

Jones and Kim (2014), who find that there has been a substantial increase in the average

growth rate in the upper tail of the growth rate distribution since the late 1970s.51 We

follow a similar calibration strategy as in Section 4.3. First, note from Proposition 3 that,

if µH is sufficiently bigger than µL, the Pareto tail of the stationary income distribution is

determined only by the dynamics of high-growth types and given by

ζ = min{ζL, ζH} =
−µH +

√
µ2
H + 2σ2

H(δ + α)

σ2
H

, (33)

and the parameters σL and µL do not affect top inequality. As before, we set δ = 1/30

and impose that the economy is initially in a Pareto steady state with η1973 = 0.39. We

set σH = 0.15, which is a conservative estimate.52 We do not have precise estimates for α,

the rate of switching from high to low growth. For our baseline results, we set α = 1/6,

corresponding to an expected duration of being a high-growth type of 6 years, and we report

results under alternative parameter values. Given values for σH , δ and α, we calibrate the

initial µH so that (33) yields η1973 = 0.39. In the initial steady state, the difference in mean

growth rates between high- and low-growth types is µH − µL = 0.05.

Our baseline exercise considers a once-and-for-all increase in µH by 8 percentage points.

51Jones and Kim (2014) proxy µH with the median of the upper decile, i.e. the 95th percentile, of the
distribution of income growth rates. Combining evidence from the IRS public use panel of tax returns and
from Guvenen, Ozkan, and Song (2014), they show that this measure of µH has increased substantially from
1979-81 to 1988-90 to 1995-96. Jones and Kim note that this evidence should be viewed as suggestive due
to limited sample sizes in the IRS data and comparability of the IRS and the Social Security Administration
data used by Guvenen, Ozkan, and Song (2014). Below we discuss ongoing work and directions for future
work that could improve on these estimates. In the meantime, Jones and Kim provide the best available
evidence documenting potential drivers of the increase in top income inequality.

52Larger values of σH lead to even faster transition dynamics. We set σL = 0.1 based on the evidence
discussed in Section 4.3. We view σH = 0.15 as conservative because the growth rates of parts of the
population may be much more volatile (think of startups).
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The resulting gap of µH−µL = 0.13 is broadly consistent with empirical evidence in Guvenen,

Kaplan, and Song (2014).53 Figure 5 plots the corresponding results. The difference to the
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Figure 5: Transition Dynamics in Model with Type Dependence

earlier experiment in Figure 4 is striking. The model with type dependence can replicate

the rapid rise in income inequality observed in the United States.

The key parameters that govern the speed of transition are µH and α, the growth rate of

high types and the probability of leaving it. In the Online Appendix, we report results from

alternative parametrizations and experiments. As expected given our theoretical results,

transitions are fastest when α and µH are high, i.e. when individuals can experience very

short-lived, very high-growth spurts, what one may call “live-fast-die-young dynamics”.54 In

summary, the model with type dependence is capable of generating fast transition dynamics

of top inequality for a number of alternative parametrizations that are broadly consistent

with the micro data. The common feature of these parametrizations is a combination of

relatively high growth rates for part of the population (high enough µH) over relatively

short time horizons (high enough α). The absence of better micro estimates for these critical

parameters and the stylized nature of our model mean that the quantitative explorations in

this section should be viewed as suggestive. Future research should explore these mechanisms

53Guvenen, Kaplan, and Song (2014) document differences in average growth rates of different population
groups as large as 0.23 log points per year. See in particular their Figure 7. Reader may also wonder how
the model with type dependence compares to the baseline model when subjected to the same shock, i.e. an
increase in σH . Appendix I.4 reports results from such an experiment. As expected, transitions are faster.

54In their ongoing work using a very similar model, Jones and Kim (2014) propose such a “live-fast-die-
young” calibration with very high α and µH .
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in richer, more fully-fledged quantitative models. Similarly, better empirical evidence is a

clear priority.

6 Conclusion

This paper makes two contributions. First, it finds that standard random growth models

cannot explain rapid changes in tail inequality, for robust analytical reasons. This required

developing new tools to analyze transition dynamics, as most previous literature could an-

alyze only separate steady states, without being able to assess analytically the speed of

transition between them and without identifying the above-mentioned important defect of

the standard model. Second, it suggests two parsimonious deviations from the basic model

that can explain such fast changes: (i) type dependence and (ii) scale dependence. We view

them as promising, because they have some support in the data (as we argued above, see es-

pecially Parker and Vissing-Jorgensen (2010), Jones and Kim (2014), and Guvenen (2015)).

We hope that future research explores their importance in more detail.

We illustrated our findings in the context of the dynamics of income inequality. However,

our criticism and suggested fixes apply without change to random growth models of the

wealth distribution. In Online Appendix E we work out in detail the implications of our

theoretical results for the dynamics of wealth inequality. As we discuss there, recent empirical

work finds some support for both type- and scale-dependence in wealth dynamics (Bach,

Calvet, and Sodini, 2015; Fagereng, Guiso, Malacrino, and Pistaferri, 2016). A clear priority

for future research is empirical evidence, in combination with quantitative theory, that allows

for an assessment of various concrete economic mechanisms put forth in the public debate (“Is

the rise in top inequality due to: technical change, superstars, rent-seeking, globalization,

and so on?”) The forces we have analyzed in this paper may serve to guide future empirical

and theoretical work on the determinants of fast changes in inequality.

Appendix

A Proof of Proposition 1

Proposition 1 is concerned with two different cases. The first case involves models with

death and rebirth where the dynamics without those terms are not ergodic. The second one

concerns ergodic models (with or without death and rebirth). The strategy of the proof in

both cases is different and we therefore present the two cases separately. In the first case
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(“non-ergodic case”), the rate of convergence is obtained by directly analyzing the dynamics

of the L1 norm (4) of the cross-sectional distribution. In the second case (“ergodic case”),

the convergence is to a real invariant measure and the rate of convergence is obtained by a

spectral analysis (in particular it is given by the “spectral gap”).55

A.1 Proof of Proposition 1: Non-ergodic Case

We here study the non-ergodic case, starting with a generally useful lemma.

Lemma 2 Suppose that a function q (x, t) solves qt = Aq with Aq = a (x, t) q + b(x, t)qx +

c(x, t)qxx with c(x, t) ≥ 0 for all x. Then |q(x, t)| is a “subsolution” of the same equation,

that is

|q|t ≤ A |q| . (34)

Proof of Lemma 2: The key is that |q| is a convex function of q. Assume ϕ is a C2 convex

function and set z = ϕ(q). Then zt = ϕ′(q)qt, zx = ϕ′(q)qx, zxx = ϕ′′(q)q2
x + ϕ′(q)qxx, so:

zt −Az = ϕ′(q) [qt − bqx − cqxx]︸ ︷︷ ︸
=aq

−az − c ϕ′′(q)︸ ︷︷ ︸
≥0

q2
x︸︷︷︸
≥0

≤ a (ϕ′ (q) q − ϕ (q)) .

Take ϕ (q) = ϕ(ε)(q) =
√
ε2 + q2 for some ε > 0 and z(ε) = ϕ(ε)(q). Then ϕ′(q)q − ϕ (q) =

q2√
ε2+q2

−
√
ε2 + q2 = −ε2√

ε2+q2
∈ [−ε, 0], so z

(ε)
t −Az(ε) ≤ |a (x, t)| ε. As ε→ 0, z(ε) → |q|, so

this inequality becomes: |q|t −A |q| ≤ 0. �

We next apply Lemma 2 to q (x, t) := p (x, t) − p∞ (x) to prove a useful inequality. We

note that since pt = A∗p+ δψ and 0 = A∗p∞ + δψ, we have qt = A∗q = −µqx + σ2

2
qxx − δq.

Lemma 3 The decay rate of the L1 norm d (t) := ‖q (·, t)‖ is at least δ: λ ≥ δ.

Proof of Lemma 3: We have d (t) := ‖q (·, t)‖ =
∫
|q (x, t)| dx and hence

d′ (t) =

∫
|q (x, t)|t dx ≤

∫ (
−δ |q| − µ |q|x +

σ2

2
|q|xx

)
dx = −δ

∫
|q| dx,

where the inequality follows from Lemma 2 and the last equality from the boundary condi-

tions corresponding to p. Hence d′ (t) ≤ −δ
∫
|q| dx = −δd (t) and therefore d (t) ≤ e−δtd (0)

by Grönwall’s Lemma. �
55More precisely, in the “ergodic case” there is a reflecting barrier and δ ≥ 0, µ < 0, σ2 > 0. In the “non-

ergodic case,” there is no reflecting barrier and no restriction on µ but δ > 0, σ2 ≥ 0. In the Proposition
we distinguish between the case “with a reflecting barrier” and the one “without a reflecting barrier.” Note
that this distinction is related to but somewhat different from “ergodic” and “non-ergodic.”
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We next prove the opposite inequality (the overly technical proof is in Appendix F.2.2):

Lemma 4 The decay rate of the L1 norm d (t) := ‖q (·, t)‖ is at most δ: λ ≤ δ.

Gathering the arguments and putting together Lemmas 3 and 4, we obtain that λ = δ.

A.2 Proof of Proposition 1: Ergodic Case

We next study the “ergodic case”: there is a reflecting barrier on income and additionally

µ < 0. Then the process (1) is ergodic even with δ = 0. In this case, the cross-sectional

distribution satisfies (9) with boundary condition (6). The key insight is that the speed of

convergence of p is governed by the second eigenvalue of the operator A∗ (A∗p := −µpx +
σ2

2
pxx−δp), and the key step is to obtain an analytic formula for this second eigenvalue given

by |λ2| = 1
2
µ2

σ2 + δ.

A.2.1 Preparation: Boundary Conditions

We first review some mathematical concepts that will be useful.56 First, the inner product of

two continuous functions u and v is 〈u, v〉 =
∫∞
−∞ u(x)v(x)dx. Second, for an operator A, the

(formal) adjoint of A is the operator A∗ satisfying 〈Au, p〉 = 〈u,A∗p〉. Third, an operator

B is self-adjoint if B∗ = B.57 It is well-known that eigenvalues of a self-adjoint operator are

real. Fourth, the infinitesimal generator of a Brownian motion with death at Poisson rate δ

is the operator A defined by

Au = µux +
σ2

2
uxx − δu (35)

Some care is needed with the boundary condition. As we shall see, the boundary condition

is:

ux(0) = 0. (36)

The domain of A here is the set of functions u in L2 (i.e. square-integrable functions) such

that Au is also in L2, i.e. the u’s such that u, ux, uxx are in L2.

We next state a lemma. Its proof is instructive, because it shows where the boundary

condition (36) comes from.

Lemma 5 The Kolmogorov Forward operator A∗ in (9) with boundary condition (6) in the

reflecting case is the adjoint of the infinitesimal generator A in (35) with boundary condition

(36).
56A more systematic treatment can be found in many textbooks on functional analysis or partial differential

equations, particularly applications to physics. See e.g. Weidmann (1980) and the more accessible Hunter
and Nachtergaele (2001) and Stone and Goldbart (2009, Ch.4).

57Note that the adjoint is the infinite-dimensional analogue of a matrix transpose.
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Proof of Lemma 5: The boundary for p (x) is: µp (0) − σ2

2
px(0) = 0 (this comes from

integrating the Forward Kolmogorov equation from x = 0 to ∞). We have

〈u,A∗p〉 =

∫ ∞
0

u

(
−µpx +

σ2

2
pxx − δp

)
dx

=

[
−uµp+

σ2

2
upx

]∞
0

−
∫ ∞

0

(
−µuxp+

σ2

2
uxpx

)
dx−

∫ ∞
0

δupdx

=

[
−uµp+

σ2

2
upx −

σ2

2
uxp

]∞
0

+

∫ ∞
0

(
µuxp+

σ2

2
uxxp− δup

)
dx

= u (0)

(
µp (0)− σ2

2
px(0)

)
+
σ2

2
ux(0)p (0) + 〈Au, p〉

=
σ2

2
ux(0)p (0) + 〈Au, p〉 from (6)

= 〈Au, p〉 .

For the last equality we need σ2

2
ux(0)p (0) = 0, which leads to the boundary condition (36).

A.2.2 Main Proof

With these preliminaries in hand, we proceed with the proof of the proposition.

We first show how the case δ ≥ 0 can be derived from the case δ = 0. Suppose an

initial condition p0 (x). Given that pt = A∗p + δψ (equation (9)), we have 0 = A∗p∞ + δψ,

and by subtraction q̃ := p − p∞ satisfies q̃t = A∗q̃. Next, define q (x, t) := eδtq̃ (x, t) =

eδt (p (x, t)− p∞ (x)). Then, a simple calculation gives: qt = C∗q := −µqx + σ2

2
qxx. Operator

C∗ has no “death”, and has the same boundary condition as B∗. so that the case δ = 0 applies

to q. If we have shown (as we will shortly) that ‖q (x, t)‖ decays in e−λt (more precisely, that

λ = − limt→∞
1
t

log ||q(x, t)||), that will show that ‖p (x, t)− p∞ (x)‖ = e−δt ‖q (x, t)‖ decays

in e−δt−λt (more precisely, that δ + λ = − limt→∞
1
t

log ‖p (x, t)− p∞ (x)‖). Hence, the case

δ > 0 follows easily from the case δ = 0.

We next proceed to the case δ = 0. The goal is to analyze the eigenvalues of the infinites-

imal generator A or equivalently its adjoint A∗. The difficulty is that A is not self-adjoint,

A∗ 6= A, and therefore its eigenvalues could, in principle, be anywhere in the complex plane.

We therefore construct a self-adjoint transformation B of A as follows.

Lemma 6 Consider u satisfying ut = Au with δ = 0 and boundary condition (36) and the

corresponding stationary distribution p̄∞(x) = −2µ
σ2 e

(2µ/σ2)x. Then v := up̄
1/2
∞ =

√
−2µ
σ2ue

(µ/σ2)x

satisfies

vt = Bv :=
σ2

2
vxx −

1

2

µ2

σ2
v (37)
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with boundary condition vx(0) = µ
σ2v(0) and where the domain of B is the set of functions v

in L2 such that Bv is also in L2.58 Furthermore, B is self-adjoint.

Proof: (37) follows from differentiating
√
−2µ
σ2ue

(µ/σ2)x. To see that B is self-adjoint, we

integrate by parts as in Lemma 5 to conclude that for any v, q in the domain of B, 〈Bv, q〉 =

〈v,Bq〉. �

Lemma 7 The spectrum of B consists of an isolated first eigenvalue Λ1 = 0, Λ2 = −1
2
µ2

σ2 ,

and all other points in the spectrum satisfy |Λ| > |Λ2|. Hence the spectral gap of B equals

λ := |Λ2| = 1
2
µ2

σ2 .

Proof of Lemma 7: Since B with boundary condition vx(0) = µ
σ2v(0) is non-positive

definite, any Λ in the spectrum of B must be non-positive. Consider the eigenvalue problem

Bϕ = Λϕ or equivalently
σ2

2
ϕ′′(x)− 1

2

µ2

σ2
ϕ(x) = Λϕ(x), (38)

with boundary condition

ϕ′(0) =
µ

σ2
ϕ(0). (39)

The question is: for what values of Λ ≤ 0 does (38) have a solution ϕ(x) that satisfies the

boundary condition (39) and is either in the domain of B (i.e. v, vx, vxx are in L2) or has

at most polynomial growth. If so, ϕ is an eigenfunction of B and Λ is in the spectrum of B
(essentially meaning that Λ is an eigenvalue of B).59

To answer this question, note that for a given Λ ≤ 0, the general solution to (38) is

ϕ(x) = c1e
ax + c2e

−ax where a satisfies

σ2

2
a2 =

1

2

µ2

σ2
+ Λ. (40)

Consider four different cases:

58Note that B is unbounded. To show f, f ′′ ∈ L2 implies f ′ ∈ L2, apply Gagliardo-Nirenberg embedding.
Then to show f decays at infinity, use Morrey’s inequality to conclude f ∈ C0, 12 , the space of 1

2 -Hölder
continuous functions. Then argue by contradiction to conclude that f decays at infinity. For Gagliardo-
Nirenberg and Morrey’s inequality, see Evans (1998).

59There is a subtle distinction between the eigenvalues of B and the spectrum of B: Λ is only an eigenvalue
if ϕ is in the domain of B. If ϕ is not in the domain of B but has at most polynomial growth, Λ is
not an eigenvalue but still in the spectrum of B. Similarly, in this case ϕ is not an eigenfunction but a
“generalized eigenfunction.” Intuitively, ϕ is “almost in the domain of B.” See Simon (1981) for a proof
that a polynomially bounded solution ϕ implies that Λ is in the spectrum of B.
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1. Λ = 0. In this case the solution to (40) is a = µ
σ2 , i.e. ϕ(x) = e

µ

σ2 x which satisfies (39)

and stays bounded as x→∞ (since µ < 0). Hence Λ = 0 is an eigenvalue of B and is

therefore in the spectrum of B.

2. −1
2
µ2

σ2 < Λ < 0. In this case, a solving (40) is real and positive. We therefore need

c1 = 0 so that ϕ does not explode exponentially as x → ∞. But then the boundary

condition (39) implies −a = µ
σ2 , which is a contradiction. Hence points in

(
−1

2
µ2

σ2 , 0
)

are not in the spectrum of B.

3. Λ = −1
2
µ2

σ2 . In this case, (38) becomes ϕ′′(x) = 0. A solution is ϕ(x) = αx + b where

we can take α > 1 and b is adjusted to satisfy the boundary condition (39). Since ϕ is

polynomially bounded, Λ = −1
2
µ2

σ2 is in the spectrum of B.

4. Λ < −1
2
µ2

σ2 . In this case, a solving (40) is a purely imaginary number. We have

eix = cosx + i sinx, so ϕ(x) = c1e
ax + c2e

−ax oscillates but stays bounded as x→∞.

We can therefore choose c1, c2 6= 0 to satisfy the boundary condition (39). Hence any

Λ < −1
2
µ2

σ2 is also in the spectrum of B.

Summarizing, the spectrum of B consists of an isolated first eigenvalue Λ = 0 and all

Λ ∈
(
−∞,−1

2
µ2

σ2

]
.�

B Robustness Check: Alternative Income Measure

Figures 1 and 4 plotted top income shares for the U.S. where income was defined as total

income (salaries plus business income plus capital income) excluding capital gains from the

“World Top Incomes Database”based on data from the Internal Revenue Service (IRS). A

natural question is how our results change when we consider different measures of top income

inequality. There are three reasons to be skeptical of the data series for top inequality in

Figures 1 and 4. One is the Tax Reform Act of 1986 which sharply cut the top marginal

income tax rates and may have affected tax reporting and realization decisions (Feenberg

and Poterba, 1993; Piketty and Saez, 2003). Consistent with this narrative, a significant

part of the increase in the top one percent income share is concentrated in 1987 and 1988,

right after the implementation of the Tax Reform Act. Second, a large fraction of the rise

in top income shares post 2000 seems to come from capital income (excluding capital gains)

of the top 0.01%; for the remaining 0.99% of the top 1%, the income share may be mostly

flat. This point is made by Guvenen, Kaplan, and Song (2014) using a different data series

from the Social Security Administration (SSA – they argue that the same also applies to the

series of the “World Top Incomes Database”). Third, since the series in Figures 1 and 4 is

36



based on IRS data, the unit of analysis is a “tax unit” as opposed to either individuals (as in

the SSA data) or families (as in household surveys like the SCF), and this distinction may

matter for the magnitude of the rise in top income inequality (Bricker, Henriques, Krimmel,

and Sabelhaus, 2015; Guvenen and Kaplan, 2016).

To examine the robustness of our results to using alternative measures of top inequality,

we repeat our main experiments using only wage (salary) data rather than total income

(excluding capital gains) as in our baseline exercises (the top wage shares are also from the

“World Top Incomes Database”). Wage income is arguably more immune to the first two

concerns listed above. In particular, it is likely less affected by changes in tax reporting

and realization (and indeed the jump in the top 1% wage share in 1987-88 is much less

pronounced than that in the top 1% income share). Similarly, changes in capital income

only will not show up (and indeed the top 1% wage share is relatively flat post 2000). The

main drawback of using wage data only is the presence of business income in the data, in

particular it is conceptually hard to draw the line between wages and capital income.

Figure 6 repeats the exercise from Figure 4 using wage data. For comparison, we super-

impose the results from our previous experiment (the dashed lines). Panel (a) plots the top

1% income share as before. With the alternative data series, it remains true that the baseline

random growth model cannot explain the observed rise in top inequality. However, the gap

between the data and the model is more modest. Panel (b) plots the empirical inverse power
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Figure 6: Robustness check: alternative income measure

law exponent η(1), our preferred measure of top inequality. The use of the alternative data

series affects this measure of top inequality somewhat but less so than the income inequality

measure (in panel (b), solid “wage data” line increases by as much as the solid “income
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data” line). We conclude that our first main result, that the standard random growth model

features transitions that are too slow relative to the increase in top inequality observed in

the data, is robust to measuring income as wage income rather than total income.
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