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Abstract

In the last few decades, data-driven methods have come to dominate

many �elds of scienti�c inquiry. Open data and open-source software have

enabled the rapid implementation of novel methods to manage and an-

alyze the growing �ood of data. However, it has become apparent that

many scienti�c �elds exhibit distressingly low rates of repeatability and

reproducibility. Although there are many dimensions to this issue, we

believe that there is a lack of formalism used when describing end-to-end

published results, from the data source to the analysis to the �nal pub-

lished results. Even when authors do their best to make their research and

data accessible, this lack of formalism reduces the clarity and e�ciency of

reporting, which contributes to issues of reproducibility. Data provenance

aids both repeatability and reproducibility through systematic and for-

mal records of the relationships among data sources, processes, datasets,

publications and researchers.

Reproducibility and Repeatability

The success and power of science depends on the transparency and validation
of its �ndings. However, issues with reproducibility have surfaced across a
broad swath of scienti�c disciplines. Reports of such issues have emanated
from �elds ranging from the social sciences to physics and the life-sciences,
including medicine [1]. Although the lack of reproducibility does not necessarily
imply incorrect results [2], it remains a worrisome issue. This comes at a time
when the rate of scienti�c publication is increasing exponentially [3]. At the
same time, the data and the processes that produce results are becoming more
computationally demanding.



Reproducibility is the cornerstone of science, so it is imperative that we
improve the quality and reliability of publications by going beyond the publica-
tion of results and data to making analytical processes, not only available, but
more importantly, intelligible [4]. Too often, despite the best e�orts of authors,
transparency, adequate for the replication of computational processes, is elusive.
We advocate open-data, open-source and open-process, which we de�ne as the
formal record of the work�ow that produced a result. Changes to the pipeline
that transforms raw data to results can lead to non-trivial di�erences in results,
which are impossible to explain without su�cient reporting. For example, a
re-examination of studies of carbon �ux in forested ecosystems in the Amazon
detected di�erences in estimates up to 140%, which could mean as much as 7
metric tons of carbon per year in an area roughly the size of a football �eld, re-
sulting from small di�erences in analytical pipelines [5]. Also, seemingly simple
details, such as the version of the initial (raw) data or versions of the analyt-
ical software programs, are often di�cult to identify, and their absence makes
replication of analyses impossible, even if the code is available.

Provenance-aware research

We suggest that there is an opportunity for the implementation of formalized
(i.e., following mathematical reasoning) methods for collecting analytical de-
tails. Such methods are essential for transparent scienti�c research as promoted
by the data policies of many funding agencies, including the UK Engineering
and Physical Sciences Research Council and the US National Science Founda-
tion. Implementation of such methods can be achieved only by systematically
capturing computational processes and presenting this information in a machine-
actionable format. One possible solution is the use of data provenance, which is
a formal representation of computational processes. The sheer quantity of data
produced for analysis necessitates the use of complex computational tools for
data management and analysis. This, in turn, creates a need for more precise
descriptions of the origin of data, the transformations that have been applied
to those data, and the implications of the results. Data provenance contains
the information necessary to document these processes. However, it should be
collected automatically in a manner amenable to automated reasoning, so that
data origin, data processing, and results presentation are communicated to a
user in an intelligible manner.

Provenance data is most frequently represented as a directed, acyclic graph.
Interactions are recorded as a set of edges that relate data-items, transforma-
tions (i.e., computations), and persons or organizations associated with the data,
all represented as vertices (see Figure 1). This model has been standardized for
interoperability by the World Wide Web Consortium (W3C) as the PROV data
model (https://www.w3.org/TR/prov-dm/). While metadata standards with
a related purpose have emerged in various �elds (e.g., ISATab in the biomedical
space), the emergence of a common standard is important to avoid duplication
of e�ort and to encourage interdisciplinary collaboration. This vision seems to
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be shared by part of the community as, for example, tools are being developed
to convert between the previously mentioned ISA standard and the W3C PROV
standard model (see http://isa-tools.github.io/linkedISA/). Also, work
is in progress on the Dataverse open-source repository platform to support the
upload of PROV-formatted provenance data. While no standard is perfect, we
see the adoption of a common standard as a necessary step.

Exploiting data provenance is a multi-stage process. First, it involves the
capture of data provenance during code execution. Next, the provenance must
be stored in an e�cient manner. Last, the provenance is queried and analysed an
either by machines (i.e., algorithmically) or by humans, most frequently through
visualization.

Provenance capture can be divided into two broad categories: observed and
disclosed [6]. Disclosed provenance consists of modifying an existing application
so that it publishes the provenance resulting from its execution. One example of
disclosed provenance is the Earth System Science Workbench [7], used to pro-
cess satellite imagery. Observed provenance consists of modifying the system
on top of which the computation runs, so that it systematically and automati-
cally records how data are generated. PASS [8], which captures provenance in
the operating system, is an observed provenance system. It produces a record
of the execution of unmodi�ed programs that run on top of it. The tension
between these two approaches lies between in-depth domain speci�c knowledge
for disclosed provenance and systematic, ubiquitous capture for observed prove-
nance. PASS v2 [9] was the �rst system to allow both approaches to be used
simultaneously. PASS pre-dates the W3C PROV standard by a few years; how-
ever, recent e�orts for a modernised implementation of a similar concept, which
adopts current best practices, is available online under an open-source licence
(see http://camflow.org/).

A second aspect of provenance management is its storage. Numerous sys-
tems have been developed over the years to accomplish this. Some are domain-
speci�c, whereas others have been intended for more general application. For
example, the Core Provenance Library [10] provides an interface between prove-
nance generating applications and various database back-ends (a W3C PROV
conforming open-source implementation is available at https://github.com/
jacksonokuhn/prov-cpl). It enables the integration of provenance informa-
tion from diverse sources into a coherent whole. Other issues, such as the scale
of provenance generated by large scale systems, are being addressed using Big
Data storage [11].

The last aspect concerns the analysis, query and use of the provenance data.
For example, visualization tools that present provenance data in an intelligible
manner have been created by projects, such as Orbiter [12] or VisTrails [13].
Another use of provenance is to render the analytical process transparent. By
examining provenance records, one can learn how a team went from the raw
collected data to the published results. Provenance can be seen in this con-
text as a way to share this knowledge. Tools such as ReproZip [14] have
been built to automatically reproduce computational environments. Others
have envisioned using these data to produce executable papers [15] to allow
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readers and reviewers to repeat a computational experiment or conduct re-
lated experiments. Additionally, they can be used to verify a claim or test
new hypotheses with less engineering e�ort. Examples of executable papers
from the Association for Computing Machinery (a leading Computer Science
publisher) Special Interest Group on Management of Data 2008 to 2011 confer-
ences are available online http://event.cwi.nl/SIGMOD-RWE/. A maintained
and updated list of existing provenance tools is available on our website at
https://projects.iq.harvard.edu/provenance-at-harvard.

Data pipelines from particles to ecosystems

As computer scientists have been developing tools to collect provenance, many
�elds are dealing with an explosion of data and software and the ensuing impacts
on transparency and reproducibility [1]. Although there are �eld-speci�c issues
that cannot be addressed by any single set of recommendations for transparency,
the common issue is the need for a sharable record of computation. As we
suggest above, a signi�cant part of this challenge can be addressed across all
�elds via automated capture of formalized data provenance. To illustrate this,
we have selected two case studies, from our own research experiences, of research
being conducted at vastly di�erent scales of inquiry: particle physics and ecology
(see Figure 2).

The European Organization for Nuclear Research (CERN) operates one of
the world's largest and most complex scienti�c instruments: the Large Hadron
Collider (LHC). The LHC accelerates and collides protons and heavy ions to
measure properties of elementary particles. By recreating the conditions that
existed moments after the Big Bang inside the LHC, the physicists hope to
discover how the early Universe evolved. At the other end of the spectrum of
physical organization is Harvard Forest (HF), an ecological research site com-
prised of over 1600 hectares of forest and facilities for ecological education and
research. Founded in 1907, researchers have been actively collecting data at HF
for over a hundred years. Data collected by researchers have historically focused
on the abundance and distribution of species (e.g., trees and understory plants).

Both CERN and HF are experiencing rapid increases in computational de-
mands. The lifetime of a CERN experiment is several decades, including active
runs, periods of maintenance and system upgrades. The experimental compo-
nents (particle detectors) are improved yearly, with the major advancements
taking place every several years. Those changes modify both hardware and
software resulting in changes in the data, which need to be documented [16].
The amount of data produced (up to 40 TB/s) at an LHC experiment is impos-
sible to store due to technological limitations. Data streams are �ltered through
a constantly improving selection system to extract information of scienti�cally
signi�cant particle decays [17]. The context of the measurements provided by
the data provenance is crucial to the successful interpretation and analysis of
the data themselves. For example, small changes in the experimental settings
can bias the data, which can skew measurements. Furthermore, the energy at
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which the protons collide has been increasing over time, and has resulted in
incompatibilities between data collected at di�erent points in time [16]. Thus,
details, such as what selection was being performed on the collision data and
the detector conditions, directly impact what was being recorded during a LHC
run.

At HF the volume of data and computational sophistication of studies have
increased dramatically in recent years. Several study areas are contributing to
this. Landscape-scale studies [18], ecological genomics [19], ecological simula-
tions [20], and sensor networks [21] all produce large amounts of data that can
be orders of magnitude greater in size than what was historically collected by
ecologists. In addition to data volume, the di�use nature of data collection,
via �eld-based instruments (e.g., stream�ow sensors [22] and phenology cam-
eras [23]), has lead to the removal of direct human observation from the data
stream. Lastly, in addition to data driven issues, both for the purpose of data
analysis and simply handling large quantities of data, ecologists have begun to
produce a large amount of software with a proper version control system not
always in place.

Currently, both CERN and HF are actively working to integrate capture and
utilization of data provenance at di�erent levels of completeness and formaliza-
tion. At CERN, due to the extraordinary volume, the data are optimized and
transformed to include particle identi�cation and particle track reconstruction
before they become available to physicists. The experiments at CERN capture
data provenance that includes detector and beam conditions, selection system
settings, and software used in data transformation and optimization [17]. All
data from research activities at HF are curated in the Harvard Forest Data
Archive, which has operated for nearly 30 years, guided by the site's partic-
ipation in two long-term U.S. National Science Foundation (NSF) programs:
the Long Term Ecological Research (LTER) network and the National Earth
Observatory Network (NEON). Although all projects submitted to the reposi-
tory must adhere to the archive's guidelines (largely determined by the LTER
and NEON requirements), the submission format of the archive is �exible, and
researchers are able to submit formalized provenance �les as a part of their
projects. However, this is currently not required nor is it generally done by
researchers [22].

These two examples, CERN and HF, provide a window into the utility of
data provenance from tracking sub-atomic particles to recording the dynamics
of whole ecosystems of interacting organisms. We �nd, regardless of the appar-
ent di�erences between particle physics and ecology, that there is a common
thread that spans these distinctions: the imperative to generate research that is
intelligible to other investigators and to those that conducted it in the �rst place
[24, 25]. Ecology and physics, as well as all other scienti�c disciplines, have had
methods for communicating �ndings and determining the veracity of data, such
as notebooks, peer-review, metadata and culture (e.g., researcher, laboratory
or institutional esteem); however, the current computationally-driven nature of
these �elds both necessitates and enables new ways to provide useful information
in this regard.



Conclusion & Discussion

Research repeatability and reproducibility are issues that a�ect many �elds.
We suggest that providing access to data and source code are only the �rst two
of many steps. Data-provenance formalizes and contextualizes the relationships
among publications, data and software artifacts. Furthermore, publishing prove-
nance increases the quality of a publication by providing the complete context
of data collection and transformation. For example, as provenance promotes
comparison across publications, it aids in comprehension between interesting
new results and errors in analyses. Tools are being actively developed to help
scientists capture those data in an unobtrusive manner with little disruption to
their work�ows.

The scienti�c community has an important, active part to play in how
these tools are developed and deployed. As exempli�ed by CERN and Har-
vard Forest, scientists in a broad array of scienti�c discpilines are recognizing
the need and utility of provenance capture tools. However, integrating the
necessary technology requires broad cultural shifts that extend beyond disci-
plinary boundaries. Scientists, publishers, and educators must push for further
transparency and formalism when describing computational analysis. Many ex-
isting open-data repositories host references to scripts � not to mention the
open-source community with its own venues � while some, including Dataverse
(http://dataverse.org/) and DataOne (http://dataone.org/), have been
working on deploying solutions to support the contribution of data provenance
alongside datasets and analytical scripts.

If data provenance becomes a well-established convention, eventually the
provenance metadata associated with each dataset will provide the complete

data record. Such a record enables data users to give credit to both the authors
of a referenced dataset as well as all the contributors of datasets and software
from which the data were derived. As a result, this provides incentives for
researchers to share resources (data, code, and process) as it will increase the
visibility and recognition of their work.
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Figure 1: A simple W3C PROV-DM compliant provenance graph. In this example two
processes (Process 1 and Process 2) use the data from the inputs (File 1 and File 2).
The processes are associated with the users (Alice and Bob). Process 1 informed Process

2, which generated the output (File 3).



Figure 2: Research teams across the sciences are integrating data provenance methods into
their research practices in response to increases in computational demands. On the left:
(Photo Credit: A. Trisovic) The Compact Muon Solenoid (CMS) experiment at CERN during
the technical stop in February 2017. On the right: (Photo Credit: M.K. Lau) One of several
research towers used for ecological data collection at Harvard Forest. In addition to providing
infrastructure for researchers to view the forest at multiple levels in the forest canopy, many
instruments for automated observations, such as wind speed, CO2 �ux, and leaf phenology,
are placed on these towers. Data are relayed to a controlling computer via a wireless network.


