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Abstract9

Network ecology provides a systems basis for approaching ecological ques-10

tions, such as factors that influence biological diversity, the role of particular11

species or particular traits in structuring ecosystems, and long-term ecolog-12

ical dynamics (e.g. stability). Whereas the introduction of network theory13

has enabled ecologists to quantify not only the degree, but also the architec-14

ture of ecological complexity, these advances have come at the cost of intro-15

ducing new challenges, including new theoretical concepts and metrics, and16

increased data complexity and computational intensity. Synthesizing recent17

developments in the network ecology literature, we point to several potential18

solutions to these issues: integrating network metrics and their terminology19

across sub-disciplines; benchmarking new network algorithms and models to20

increase mechanistic understanding; and improving tools for sharing ecological21

network research, in particular “model” data provenance, to increase the re-22

producibility of network models and analyses. We propose that applying these23

solutions will aid in synthesizing ecological subdisciplines and allied fields by24

improving the accessibility of network methods and models.25

Keywords : Network ecology, systems analysis, computational methods, metrics,26

benchmarking, data provenance27
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1 Introduction28

Interactions are at the heart of ecology and drive many of its key questions. What are29

the roles of species interactions in ecological systems? When and why is biological30

diversity important? What factors influence the long-term dynamics of ecosystems?31

These are all questions with a long history in ecology (Cherrett, 1989; Council, 2003;32

Lubchenco et al., 1991; Sutherland et al., 2013) that are not addressed in isolation.33

Points of intersection include the relationship between diversity and stability (May,34

2001, 2006); the identity and role of species that are the main drivers of community35

structure (Paine, 1966, e.g. keystone species), ecosystem engineers (Jones et al.,36

1994), or foundation species (Dayton, 1972; Ellison et al., 2005); and the causes and37

consequences of introducing new species into existing assemblages (Baiser et al., 2008;38

Simberloff and Holle, 1999). Furthermore, “systems thinking” has been a persistent39

thread throughout the history of ecology (Margalef, 1963; Odum and Pinkerton,40

1955; Patten, 1978; Patten and Auble, 1981; Ulanowicz, 1986), dating back at least to41

Darwin’s Origin of Species in his famous pondering of an entangled bank (Bascompte42

and Jordano, 2014; Golley, 1993). The application of network theory has provided43

a formal, mathematical framework to approach systems (Bascompte and Jordano,44

2014; Proulx et al., 2005) and led to the development of network ecology (Borrett45

et al., 2014; Patten and Witkamp, 1967; Poisot et al., 2016b).46

Network ecology can be defined as the use of network models and analyses to47

investigate the structure, function, and evolution of ecological systems at many scales48

and levels of organization (Borrett et al., 2012; Eklöf et al., 2012). The influx of49

network thinking throughout ecology, and ecology’s contribution to the development50

of network science highlights the assertion that “networks are everywhere” (Lima,51

2011). And, as one would expect, the field has grown rapidly, from 1% of the primary52

ecological literature in 1991 to over 6% in 2017 (Fig. 1A). Some examples include:53

applying network theory to population dynamics and spread of infectious diseases54

(May, 2006); description and analysis of networks of proteins in adult organisms55

(Stumpf et al., 2007) or during development (Hollenberg, 2007); expanding classical56

food webs to include parasites and non-trophic interactions (Ings et al., 2009; Kéfi57

et al., 2012); investigating animal movement patterns (Lédée et al., 2016) and the58

spatial structure of metapopulations (Dubois et al., 2016; Holstein et al., 2014);59

connecting biodiversity to ecosystem functioning (Creamer et al., 2016); identifying60

keystone species (Borrett, 2013; Zhao et al., 2016); and using social network theory61

in studies of animal behavior (Croft et al., 2004; Fletcher et al., 2013; Krause et al.,62

2003; Sih et al., 2009). Further, ideas and concepts from network ecology are being63

applied to investigate the sustainability of urban and industrial systems (Fang et al.,64
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2014; Layton et al., 2016; Xia et al., 2016) and elements of the food-energy-water65

nexus (Wang and Chen, 2016; Yang and Chen, 2016).66

Over the past 15 years, re-occurring themes for moving network ecology for-67

ward have emerged from reviews, perspectives, and syntheses (e.g. Bascompte, 2010;68

Borrett et al., 2014; Poisot et al., 2015; Proulx et al., 2005). In this paper, we69

examine areas where the network approach is being applied to address important70

ecological questions and identify both challenges and opportunities for advancing71

the field. Among these are the need for shifting the focus toward mechanisms rather72

than observations, and increasing the resolution (e.g. individuals or traits as nodes73

and weighted edges of different interaction types) and replication of network models74

across different ecosystems and time (Ings et al., 2009; Poisot et al., 2016b; Wood-75

ward et al., 2010). After a brief primer of key concepts from network ecology, we76

discuss the following topics as they relate to these issues: the proliferation of ter-77

minology for ecological metrics with the increasing application of network methods;78

fully exploring the underlying assumptions of models of mechanistic processes for79

generating network structure; and the need for improved sharing and reproducibility80

of ecological network research and models. Although these topics are not new, the81

combination of the influx of metrics and theory and rapid increases in the computa-82

tional intensity of ecology are creating novel challenges. With respect to these issues,83

we discuss recent advances that should be explored as tools to aid in a more effective84

integration of network methods for synthesis across ecological (sub)disciplines.85

2 A primer of ecological networks: models and86

metrics87

Prior to the introduction of network methods in ecology, the primary way of study-88

ing interactions was limited to detailed studies of behaviors and traits of individual89

species important to interactions, or of relationships between tightly interacting pairs90

of species (Carmel et al., 2013). Some ecologists were advancing whole-system meth-91

ods (Lindeman, 1942; Odum, 1957); however, quantifying interactions is costly, as92

compared to surveys of species abundances. This has created a significant barrier to93

studying interactions at the scale of entire communities, either at the scale of indi-94

viduals or species pairs, because the number of interactions becomes intractable. For95

instance, even if one assumes that only pairwise interactions occur among S species,96

the number of possible pairs is S(S−1)/2. Local assemblages of macrobes often have97

101 − 102 species, and microbial diversity can easily exceed 103 OTUs (Operational98

Taxonomic Units).99
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This complexity of ecological systems is one reason there is a long tradition in100

community ecology of studying interactions within small subsets of closely-related101

species (e.g. trophic guilds) and using dimensionality reducing methods based on102

multivariate, correlative approaches (Legendre et al., 2012). While some approaches103

to studying subsets of species incorporate the underlying pattern of direct and in-104

direct links (e. g., modules, (sensu Holt, 1997; Holt and Hoopes, 2005), the ma-105

jority do not. Such limitations repeatedly have led to calls for the application of106

“network thinking” to ecological questions (e.g. Golubski et al., 2016; Ings et al.,107

2009; Jacoby and Freeman, 2016; Patten and Witkamp, 1967; Proulx et al., 2005;108

QUINTESSENCE Consortium et al., 2016; Urban and Keitt, 2001). There are now109

many resources for learning about network ecology and network theory in general,110

and we point the reader in the direction of excellent reviews in this area (Bascompte111

and Jordano, 2007; Borrett et al., 2012; Brandes et al., 2013; Ings et al., 2009; Proulx112

et al., 2005) and more comprehensive introductions (Brandes et al., 2005; Estrada,113

2015; Newman, 2010).114

Network ecology employs network theory to quantify the structure of ecological115

interactions. All networks consist of sets of interacting nodes (e.g. species, non-116

living nutrient pools, habitat patches) whose relationships are represented by edges117

(e.g. nutrient or energy transfers, pollination, movement of individuals). Conceptu-118

ally, a network is a set of things or objects with connections among them. Stated119

mathematically, a network is a generic relational-model comprised of a set of objects120

represented by nodes or vertices (N) and a set of edges (E) that map one or more121

relationships among the nodes, G = (N,E). A canonical ecological example of a net-122

work is a food-web diagram, in which the nodes represent species, groups of species,123

or non-living resources, and the edges map the relationship who-eats-whom.124

The analysis of networks is inherently hierarchical, ranging from the entire net-125

work down to individual nodes and edges. Depending on the characteristics and level126

of detail of the information provided for a given model, there is a large number of127

network analyses and metrics that can be used to characterize the system at multiple128

levels (similar to Hines and Borrett, 2014; Wasserman and Faust, 1994), including:129

(1) the whole network level (i.e., the entire network), (2) the sub-network level (i.e.,130

groups of two or more nodes and their edges), and (3) the individual node or edge131

level (Fig. 2).132

Network-level metrics integrate information over the entire set of nodes and edges.133

For example, the number of nodes (e.g., the species richness of a food web) and134

the density of connections or connectance are both network-level statistics used to135

describes the overall complexity of a network and have been investigated by ecologists136

for over 40 years (Allesina and Tang, 2012; May, 1972).137

4



Sub-network level analyses focus on identifying specific subsets of nodes and138

edges. There are a variety of groups that have different names (e.g., module, motif,139

cluster, clique, environ) and different methods for measurement. Sub-networks often140

represent more tractable and meaningful units of study than individual nodes and141

edges on the one hand or entire networks on the other. For example, in landscape142

and population ecology, the preferential movement of individuals and genes (edges)143

between habitat patches (nodes) has implications for conservation of populations and144

the design of preserves (Calabrese and Fagan, 2004; Fletcher et al., 2013; Holt and145

Hoopes, 2005). Also, both nodes and edges can be divided into classes. An example146

of this is the bipartite graph, in which interactions occur primarily between, rather147

than within, each class or “part” of the community. A bipartite network has only148

two classes of nodes, such as in a pollination network in which the community is149

divided into plants being pollinated and insects that do the pollination (Petanidou150

et al., 2008). In this network, edges representing pollination visits can only map151

between two nodes in the different classes.152

Metrics at the individual node or edge level quantify differences in relative impor-153

tance. Whether we are interested in an individual or species that transmits disease,154

species whose removal will result in secondary extinctions, or key habitat patches155

that connect fragmented landscapes, identifying important nodes is a critical com-156

ponent of network analysis. Another type of node or edge-level metric classifies157

nodes or edges according to their roles within a network. This classification can use158

information from differing levels. Additionally, nodes and edges can have variable159

characteristics. Edges can be weighted and they can map a directed relationship160

(as opposed to a symmetric or undirected relationship). For example, in ecosystem161

networks, the edges show the directed movement of energy or nutrients from one162

node to another by some process like feeding, and the edge weight can indicate the163

amount of energy or mass in the transaction (Baird and Ulanowicz, 1989; Dame and164

Patten, 1981). Nodes also can be weighted (e.g. size of individual, population size,165

biomass of a given species). Lastly, network models are flexible enough to accommo-166

date variation in edge types and relationships among edges (e.g. hypergraphs), but167

analysis of these more complicated models is challenging and has only begun to be168

applied in ecology (e.g. Golubski et al., 2016).169

3 Resolving network metrics170

The application of network theory defines an explicit mathematical formalism that171

provides a potentially unifying set of terms for ecology and its inter-disciplinary172

applications (QUINTESSENCE Consortium et al., 2016). Ironically, the develop-173
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ment of ecological network metrics has had an opposing affect. One reason for this174

is that introductions have occurred in multiple sub-disciplinary branches (Fig. 1B)175

(Blüthgen, 2010; Borrett et al., 2014; Carmel et al., 2013). Having separate research176

trajectories can facilitate rapid development of ideas and the process of integration177

can lead to novel insights (Hodges, 2008). At the same time, these innovations in178

network ecology have come at the cost of the “rediscovery” of the same network met-179

rics and subsequent description of them with new terms. This has led to different180

metrics with similar purposes existing in separate areas of ecology (Table 1).181

Ecological studies using network approaches draw from a deep well of general net-182

work theory (Newman, 2003, 2006; Strogatz, 2001). Ecologists broadly use network183

concepts, techniques, and tools to: (1) characterize the system organization (Borrett,184

2013; Croft et al., 2004; Ulanowicz, 1986); (2) investigate the consequences of the185

network organization (Borrett et al., 2006; Dunne et al., 2002; Grilli et al., 2016); and186

(3) identify the processes or mechanisms that might generate the observed patterns187

(Allesina and Pascual, 2008; Fath et al., 2007; Guimarães et al., 2007; Poisot et al.,188

2016b; Ulanowicz et al., 2014; Williams and Martinez, 2000). The unnecessary pro-189

liferation of network metrics is exemplified by “connectance” (C), which is used by190

food-web ecologists to mean the ratio of the number of edges in the network divided191

by the total number of possible edges. Elsewhere in the network science literature,192

this measurement is referred to as network density (Newman et al., 2001). As an-193

other example, what ecosystem ecologists have described as “average path length”194

(total system through-flow divided by the total system input) (Finn, 1976) also has195

been called network aggradation (Jørgensen et al., 2000). In economics, average path196

length is known as the multiplier effect (Samuelson, 1948).197

Another kind of redundancy is the creation and use of multiple statistics that198

measure the same or very similar network aspects. A clear example of this is inher-199

ent in the proliferation of centrality measures to indicate node or edge importance.200

Network scientists have shown that many centrality metrics are correlated (Jordán201

et al., 2007; Newman, 2006; Valente et al., 2008). Likewise, Borrett and Osidele202

(2007) found that nine commonly reported ecosystem network analysis metrics co-203

varied in 90 plausible parameterizations of a model of phosphorus biogeochemical204

cycling for Lake Lanier, GA, but that all these metrics were associated strongly with205

only two underlying factors. However, even a perfect correlation does not mean206

that two metrics have identical properties, and they still may diverge in different207

models. Therefore, it is important to have mathematically based comparisons of208

metrics (Borgatti and Everett, 2006; Borrett, 2013; Kazanci and Ma, 2015; Ludovisi209

and Scharler, 2017). It is incumbent on network ecologists to establish clearly the210

independence and uniqueness of the descriptive metrics used.211
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From the perspective of the broader field of ecology, the proliferation of con-212

cepts, terms, and metrics is not a new issue (e.g. Ellison et al., 2005; Tansley, 1935).213

Ecologists have a long history of using network concepts and related models in mul-214

tiple subdomains (e.g, metapopulations, matrix population models, community co-215

occurrence models, ecosystems) without fully recognizing or capitalizing on the sim-216

ilarities of the underlying models. Each subdomain has constructed its own concepts217

and methods (occasionally borrowing from other areas), and established its own jar-218

gon that impedes scientific development. Previous suggestions for solving this issue219

have focused on maintaining an historical perspective of ecology (Graham and Day-220

ton, 2002); Blüthgen et al. (2008) is an excellent example of how this can be done221

through peer-reviewed literature.222

One possible approach that would go beyond such a diffuse, literature-centered223

approach would be to develop a formal ontology of concepts and metrics. An on-224

tology is a a set of related terms that are formally defined and supported by as-225

sertions (Bard and Rhee, 2004). An ontology therefore provides a framework for226

developing concepts within a discipline and presents the opportunity for more ef-227

ficient synthesis across disciplinary boundaries. The concept of an ontology is not228

new, but more rapid sharing of ontologies and their collaborative development have229

been enabled by the Internet. For example, the Open Biological Ontologies (OBO,230

http://www.obofoundry.org) supports the creation and sharing of ontologies over231

the web. Currently, there is no OBO for a “network ecology metric” ontology, and232

as far as we are aware, ontologies have yet to be explored or developed for network233

metrics.234

The OBO could provide a platform for harmonizing ecological network metrics,235

terms, and concepts. Key obstacles to such harmonization include a requirement that236

network ecologists work within a common framework, and the need for an individual237

or leadership team to periodically curate the ontology based on new developments in238

the field. In determining the best course of action, network ecologists could follow the239

example of how similar OBO projects have been managed in the past. The FOODON240

food role ontology project (http://www.obofoundry.org/ontology/foodon.html)241

contains information about “materials in natural ecosystems and food webs as well242

as human-centric categorization and handling of food.” It could serve as an example243

or even the basis of a ecological network metric ontology.244
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4 Benchmarking: Trusting our models of mecha-245

nisms246

Inferences about processes in ecological systems have relied in part on the application247

of simulation models that generate matrices with predictable properties. As discussed248

in the previous section, the proliferation of network metrics points to the need for249

the investigation and comparison of how these metrics will behave in the context250

of different modeling algorithms. Once a metric or algorithm has been chosen, it251

is tempting apply them widely to empirical systems to detect patterns, but before252

research proceeds, a process of “benchmarking” with artificial matrices that have253

predefined amounts of structure and randomness should be used to examine the254

behavior of the algorithms and the metrics that are applied to them.255

Benchmarking of ecological models developed from null model analysis in com-256

munity ecology (Atmar and Patterson, 1993; Connor and Simberloff, 1979; Gotelli257

and Ulrich, 2012). Null models are specific examples of randomization or Monte258

Carlo tests (Manly, 2007) that estimate a frequentist P value, the tail probability259

of obtaining the value of some metric if the null hypothesis were true (Gotelli and260

Graves, 1996). The aim of a null model is to determine if the structure of an observed261

ecological pattern in space or time is incongruous with what would be expected given262

the absence of a causal mechanism. A metric of structure calculated for a single em-263

pirical data set is compared to the distribution of the same metric calculated for a264

collection of a large number of randomizations of the empirical data set. The data265

are typically randomized by reshuffling some elements while holding other elements266

constant to incorporate realistic constraints. Comparison with a suite of null models267

in which different constraints are systematically imposed or relaxed may provide a268

better understanding of the factors that contribute most to patterns in the network269

(see Box 1). However, the devil remains in the details and there are also a variety270

of ways to randomize data and impose constraints to construct a useful null model.271

If the null model is too simplistic, such as a model in which edges and nodes are272

sampled with uniform probability, it will always be rejected and provide little insight273

into important ecological patterns, regardless of what metric is used. At the other274

extreme, if the null model incorporates too many constraints from the data, it will275

be difficult or impossible to reject the null hypothesis, even though the network may276

contain interesting structure.277

In network theory, the Erdos-Renyi (ER, (Erdös and Rényi, 1959)) model is a278

now-classic example of a model used to generate networks via a random process279

for creating matrix structure. The ER model is a random graph that starts with an280

N×N adjacency matrix of nodes and assigns to it K edges between randomly chosen281

8



pairs of nodes. The ER model has been applied in ecology to address questions about282

the relationship between stability and complexity (May, 1972) and the structure of283

genetic networks (Kauffman et al., 2003). For example, randomized networks have284

been used to link motifs (Milo et al., 2002) to network assembly (Baiser et al., 2016),285

stability (Allesina and Pascual, 2008; Borrelli et al., 2015), and persistence in food286

webs (Stouffer and Bascompte, 2010).287

In addition to the random matrix approaches of null and ER models, there are288

other, more complex algorithms that are used to generate structured matrices. Per-289

haps one of the best known in network theory is the Barabasi-Albert (BA, Barabási290

and Albert 1999) model, which adds nodes and edges to a growing network with291

a greater probability of adding edges to nodes with a higher degree. The BA algo-292

rithm is similar to ecological network algorithms that generate non-random structure,293

because of either direct influence or similar processes operating in systems of inter-294

est. Some of these models include processes of “preferential attachment” in which295

organisms tend to interact with the same, common species. Food-web modeling al-296

gorithms also have been developed that use a trait-based approach (e.g. Allesina and297

Pascual, 2009), consumer-resource models (Yodzis and Innes, 1992), niches (Williams298

and Martinez, 2000), cyber-ecosystem algorithms (Fath, 2004), and cascade models299

(Allesina and Pascual, 2009; Allesina and Tang, 2012; Cohen and  Luczak, 1992).300

The statistical behavior of some models and metrics can be understood ana-301

lytically. For example, the networks generated by the BA algorithm display degree302

distributions that approximate a power-law distribution, like many real-world “scale-303

free” networks (Albert et al., 2002). If the network is sparse (i.e. (K � N2)), the304

degree distribution of the network should follow a Poisson distribution. However, as305

new models and metrics are introduced, new benchmarking should be done and com-306

pared to previous results. Newman et al. (2016) is one example of how benchmarking307

can be used for investigating processes operating on ecological networks. Ludovisi308

and Scharler (2017) advocate the same approach for the analysis of network models309

in general. The benchmark (Eugster and Leisch, 2008) package in R (R Core Team,310

2017) is a general algorithm-testing software package that provides a useful starting311

point.312

5 Reproducibility: Open-data, Open-source and313

Provenance314

As analyses of network models increase in computational intensity, there is a concomi-315

tant increase in the need for new tools to track and share key computational details.316
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This need is compounded when models incorporate data from multiple sources or317

analyses involve random processes. The combination of the volume of data and com-318

putational intensity of studies of ecological networks further increases the burden on319

ecologists to provide information needed to adequately reproduce datasets, analyses,320

and results. As the sharing and reproducibility of scientific studies are both essential321

for advances to have lasting impact, finding easier, faster, and generally more conve-322

nient ways to record and report relevant information for ecological network studies323

is imperative for advancing the field.324

Sharing data and open-source code have become established in ecology, and net-325

work ecologists are now producing more network models and data (e.g. Fig. 1A).326

These include not only ecological interaction networks, but also an influx of other rele-327

vant networks, including ecological genomic networks generated by next-generation,328

high-throughput sequencing technologies (Langfelder and Horvath, 2008; Zinkgraf329

et al., 2017). There are now multiple web-accessible scientific databases (e.g. NCBI,330

Data Dryad, Dataverse) and at least four databases have been constructed specifically331

to curate ecological network data: including “Kelpforest” (Beas-Luna et al., 2014),332

“The Web of Life” (Fortuna et al., 2014), “Mangal” ecological network database333

(Poisot et al., 2015) and the “Interaction Web Database” (https://www.nceas.334

ucsb.edu/interactionweb/resources.html).335

The increase in ecological network data is linked to an increasing rate of shared336

analytical code and other open-source software. It is now commonplace for ecologists337

to have a working knowledge of one or more programming languages, such as R,338

Python, SAS, MatLab, Mathematica, or SPSS. Multiple software packages exist for339

doing ecological analyses, including ecological network analyses. In addition to the340

general network analysis packages available in R, there are at least two packages341

aimed specifically at ecological network analysis: bipartite and enaR. The former342

provides functions drawn largely from community ecology (Dormann et al., 2009),343

whereas the latter provides a suite of algorithms developed in the ecosystem network344

analysis literature (Borrett and Lau, 2014; Lau et al., 2015).345

Although, ecology has long had a culture of keeping records of important re-346

search details, such as field and lab notebooks, these practices put all of the burden347

of recording “metadata” on the researcher. Manual record-keeping methods, even348

when conforming to metadata standards (Boose et al., 2007, e.g. EML, see), do not349

take advantage of the power of the computational environment. Data-provenance350

methods aim to provide a means to collect formalized information about computa-351

tional processes, ideally in a way that aids the reproducibility of studies with minimal352

impact on the day-to-day activities of researchers (Boose et al., 2007). These tech-353

niques have been applied in other areas of research and could provide an effective354
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means for documenting the source and processing of data from the raw state into a355

model (Boose and Lerner, 2017).356

The reproducibility of scientific studies is imperative for advances to have last-357

ing impact through the independent verification of results. Although this has been358

an ongoing topic of discussion in ecology (Ellison, 2010; Parker et al., 2016), the359

need was highlighted by a recent survey finding issues with reproduction of stud-360

ies across many scientific disciplines (Baker, 2016). There is significant motivation361

from within the ecological community to move toward providing detailed informa-362

tion about computational workflows for both repeatability and reproducibility, which363

includes repetition by the original investigator (Lowndes et al., 2017). It is also im-364

portant in network ecology for data sources and methods for model construction365

be standardized and transparent, and that models be curated and shared (McNutt366

et al., 2016).367

Collecting details, such as those enabled by data-provenance capture software, is368

one innovative way forward. These tools have been developing in the computer-369

science domain for decades; however, only recently have they gained a foothold370

in ecology (Boose et al., 2007; Ellison, 2010) or the broader scientific community.371

Although there are many challenges in the development and application of data-372

provenance principles, multiple software packages do exist for collecting data prove-373

nance in the context of scientific investigations. Two provenance capture packages374

exist in R, the recordr package associated with the DataOne repository (Cao et al.,375

2016) and RDataTracker (Lerner and Boose, 2014). In addition, although they do376

not collect formal data provenance, there are methods developed for “literate com-377

puting” that help to collect code along with details about the code and the intention378

of the analyses (e.g., the Jupyter notebook project: (Shen and Barabasi, 2014)).379

For ecological networks, there is software that captures the “data pedigree” of380

food-web models, but it does not capture data provenance. Data pedigree was ini-381

tially implemented in the EcoPath food-web modeling package (Guesnet et al., 2015;382

Heymans et al., 2016) to define confidence intervals and precision estimates for net-383

work edges. It has been developed further to allow for the use of informative priors384

in Bayesian modeling of ecological networks. This is done by linking models to the385

literature sources from which estimates were derived, an approach that is similar386

to incorporating metadata information within databases of ecological networks. Al-387

though this approach focuses only on a subcomponent of provenance, this still is a388

promising way to address the issue that networks, network metrics, and simulation389

models used to analyze them commonly assume a lack of uncertainty (cf. Borrett390

and Osidele, 2007; Kauffman et al., 2003; Kones et al., 2009), and typically ignore391

inaccuracy in the empirical data (Ascough et al., 2008; Gregr and Chan, 2014).392
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6 Moving Forward393

Development and application of new technologies (e.g. sequencing methods and com-394

putational, data-driven approaches) have the potential to increase both the abun-395

dance and quality of ecological networks. For the future development of network396

ecology, there is a pressing need not only to share data and code, but also to integrate397

and use the large amounts of information enabled by technological advances. For ex-398

ample, synthetic networks (i.e. networks merging models from different studies, and399

sensu Poisot et al., 2016a) are a promising new direction; however, the structural400

properties of synthetic networks and the behavior of network metrics applied to them401

will require careful investigation, including the application of systematic benchmark-402

ing. Multi-trophic networks provide a precedence for these studies to move forward,403

but synthesizing models from across many different sources produces new challenges404

for developing and benchmarking metrics, as well as an opportunity for new tech-405

nologies, like data provenance, to help establish better connections among studies406

and researchers.407

The burgeoning of “open” culture in the sciences (Hampton et al., 2014) also has408

the potential to serve as a resource for models and a clearinghouse for resolving the409

validity of metrics, models, and algorithms. First, because code is openly shared,410

functions used to calculate metrics are open for inspection and, if coded and docu-411

mented clearly using software “best-practices” (e.g. Noble, 2009; Visser et al., 2015),412

the code provides a transparent documentation of how a metric is implemented and413

its computational similarity to other metrics. Second, enabled by the ability to write414

their own functions and code, researchers can do numerical investigations of the sim-415

ilarities among metrics. Through comparison of metrics calculated on the same or416

similar network models, a researcher could at least argue, for a given set of models,417

that two or more metrics produce similar results. Third, data provenance provides a418

useful tool to aide in the dissemination and synthesis of network models and increases419

the reproducibility of ecological network studies, including those documenting new420

metrics and benchmarking those metrics and associated algorithms for generating or421

analyzing empirical models. Last, as with data provenance, formalizing ecological422

network metrics and concepts requires a mathematically rigorous foundation that is423

developed by the community of researchers working along parallel lines of inquiry.424

Whether this is done through an ontological approach or some other formalized425

“clearing-house,” an open process of exchange that integrates multiple perspectives426

is essential to prevent the rapid dilution of concepts in ecological network research427

as these concepts continue to proliferate, develop and evolve.428

Over half a century ago, Robert MacArthur published his first paper on the rela-429
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tionship between diversity and stability, initiating multiple research trajectories that430

have now become the mainstay of many ecological research programs (MacArthur,431

1955). The theory that MacArthur applied was based on flows of energy through432

networks of interacting species. Thus, network theory is at the roots of one of the433

most widely studied topics in ecology and is now a part of the broader context of434

integration across many scientific disciplines that is aimed at consilience of theory435

(Wilson, 1999). The synthesis of ecological concepts through the mathematically436

rigorous “lingua franca” of network terminology has the potential to unify theories437

across disciplines. As with previous concepts (e.g. keystone species, foundation438

species, ecosystem engineer), greater clarity and less redundancy will come about439

as network methods are used more commonly and researchers compare the mathe-440

matical and computational underpinnings of the metrics that they are using. With441

the increased use of these approaches, the network concept has and will continue to442

serve as a common model that transcends disciplines and has the potential to serve443

as an inroad for new approaches. With thoughtful dialogue across sub-disciplines444

and among research groups, further infusion of network theory and methods will445

continue to advance ecology.446
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Growth. Ecological Modelling 126:249–284.713

21



Kauffman, S., C. Peterson, B. R. Samuelsson, C. Troein, and P. W. Ander-714

son. 2003. Random Boolean network models and the yeast transcriptional net-715

work. Proceedings of the National Academy of Sciences 100:14796–14799. URL716

http://www.pnas.org/cgi/doi/10.1073/pnas.2036429100.717

Kazanci, C., and Q. Ma, 2015. Chapter 3 System-wide measures in ecological net-718

work analysis. Pages 45–68 in Y.-S. Park, S. Lek, C. Baehr, and S. E. Jorgensen,719

editors. Advanced Modelling Techniques Studying Global Changes in Environmen-720

tal Sciences, volume 27. Elsever.721

Kéfi, S., E. L. Berlow, E. A. Wieters, S. A. Navarrete, O. L. Petchey, S. A. Wood,722

A. Boit, L. N. Joppa, K. D. Lafferty, R. J. Williams, N. D. Martinez, B. A.723

Menge, C. A. Blanchette, A. C. Iles, and U. Brose. 2012. More than a meal{. . . }724

integrating non-feeding interactions into food webs. Ecology Letters 15:291–300.725

URL http://doi.wiley.com/10.1111/j.1461-0248.2011.01732.x.726

Kones, J. K., K. Soetaert, D. van Oevelen, and J. O. Owino. 2009. Are network727

indices robust indicators of food web functioning? A Monte Carlo approach. Eco-728

logical Modelling 220:370–382. URL http://www.sciencedirect.com/science/729

article/pii/S0304380008005024.730

Krause, A. E., K. A. Frank, D. M. Mason, R. E. Ulanowicz, and W. W. Taylor.731

2003. Compartments revealed in food-web structure. Nature 426:282–5. URL732

http://dx.doi.org/10.1038/nature02115.733

Langfelder, P., and S. Horvath. 2008. WGCNA: an R package for weighted correlation734

network analysis. BMC bioinformatics 9:559.735

Lau, M. K., S. R. Borrett, D. E. Hines, and P. Singh, 2015. enaR: Tools for Ecological736

Network Analysis. URL https://cran.r-project.org/web/packages/enaR/.737

Layton, A., B. Bras, and M. Weissburg. 2016. Ecological Principles and Metrics738

for Improving Material Cycling Structures in Manufacturing Networks. Journal of739

Manufacturing Science and Engineering 138:101002.740

Lédée, E. J. I., M. R. Heupel, A. J. Tobin, A. Mapleston, and C. A. Simpfendorfer.741

2016. Movement patterns of two carangid species in inshore habitats characterised742

using network analysis. Marine Ecology Progress Series 553:219–232.743

Legendre, P., L. Legendre, L. Legendre, and P. Legendre. 2012. Numerical ecology.744

Elsevier.745

22



Lerner, B., and E. Boose, 2014. RDataTracker: Collecting Provenance in an In-746

teractive Scripting Environment. Pages 1–4 in 6th USENIX Workshop on the747

Theory and Practice of Provenance (TaPP 2014). USENIX Association, Cologne.748

URL https://www.usenix.org/conference/tapp2014/agenda/presentation/749

lerner.750

Lima, M. 2011. Visual Complexity: Mapping Patterns of Information. Princeton751

Architectural Press.752

Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399–418.753

Lowndes, J. S. S., B. D. Best, C. Scarborough, J. C. Afflerbach, M. R. Frazier, C. C.754

O’Hara, N. Jiang, and B. S. Halpern. 2017. Our path to better science in less755

time using open data science tools. Nature Ecology & Evolution 1:0160. URL756

http://www.nature.com/articles/s41559-017-0160.757

Lubchenco, J., A. M. Olson, L. B. Brubaker, S. R. Carpenter, M. M. Hol-758

land, S. P. Hubbell, S. A. Levin, J. A. MacMahon, P. A. Matson, J. M.759

Melillo, H. A. Mooney, C. H. Peterson, and H. Ronald Pulliam. 1991. The760

Sustainable Biosphere Initiative: An Ecological Research Agenda: A Report761

from the Ecological Society of America. Risser Source: Ecology 72:371–412.762

URL http://www.jstor.org/stable/2937183http://www.jstor.org/http://763

www.jstor.org/action/showPublisher?publisherCode=esa.764

Ludovisi, A., and U. M. Scharler. 2017. Towards a sounder interpretation of entropy-765

based indicators in ecological network analysis. Ecological Indicators 72:726–737.766

MacArthur, R. 1955. Fluctuations of Animal Populations and a Measure of Com-767

munity Stability. Ecology 36:533. URL http://www.readcube.com/articles/768

10.2307/1929601.769

Manly, B. F. J. 2007. Randomization, bootstrap and Monte Carlo methods in770

biology. Chapman and Hall. URL http://www.loc.gov/catdir/toc/fy0702/771

2006047407.html.772

Margalef, R. 1963. Certain unifying principles in ecology. The American Naturalist773

97:357–374.774

Martinez, N. D., 1992. Constant Connectance in Community Food Webs.775

23



Maslov, S., and K. Sneppen. 2002. Specificity and stability in topology of protein776

networks. Science (New York, N.Y.) 296:910–3. URL http://www.ncbi.nlm.777

nih.gov/pubmed/11988575.778

May, R. M. 1972. Will a Large Complex System be Stable? Nature 238:413–414.779

URL http://dx.doi.org/10.1038/238413a0.780

May, R. M. 2001. Stability and Complexity in Model Ecosystems. Princeton Uni-781

versity Press. URL http://books.google.com/books?hl=en{\&}lr={\&}id=782

BDA5-ipCLt4C{\&}pgis=1.783

May, R. M. 2006. Network structure and the biology of populations. Trends in ecol-784

ogy {&} evolution 21:394–399. URL http://www.ncbi.nlm.nih.gov/pubmed/785

16815438.786

McNutt, M., K. Lehnert, B. Hanson, B. A. Nosek, A. M. Ellison, and J. L. King.787

2016. Liberating field science samples and data. Science 351:1024–1026. URL788

http://science.sciencemag.org/content/351/6277/1024.abstract.789

Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, S. H. Stro-790

gatz, D. Watts, S. H. Strogatz, A.-L. Barabási, R. Albert, M. Newman, H. Jeong,791

B. Tombor, R. Albert, Z. N. Oltvai, A. L. Barabasi, R. F. Cancho, C. Janssen,792

R. V. Sole, R. F. Cancho, R. V. Sole, L. Amaral, A. Scala, M. Barthelemy,793

H. Stanley, B. Huberman, L. Adamic, S. Shen-Orr, R. Milo, S. Mangan, U. Alon,794

N. Guelzim, S. Bottani, P. Bourgine, F. Kepes, M. Newman, S. H. Strogatz,795

D. Watts, S. Maslov, K. Sneppen, D. Thieffry, A. M. Huerta, E. Perez-Rueda,796

J. Collado-Vides, M. C. Costanzo, R. Williams, N. Martinez, S. Pimm, J. Law-797

ton, J. Cohen, J. White, E. Southgate, J. Thomson, S. Brenner, D. Callaway,798

J. Hopcroft, J. Kleinberg, M. Newman, and S. H. Strogatz. 2002. Network motifs:799

simple building blocks of complex networks. Science (New York, N.Y.) 298:824–7.800

URL http://www.ncbi.nlm.nih.gov/pubmed/12399590.801

Newman, M. 2010. Networks an Introduction. Oxford University802

Press. URL http://www.oxfordscholarship.com/view/10.1093/acprof:oso/803

9780199206650.001.0001/acprof-9780199206650.804

Newman, M. E. J., 2003. The Structure and Function of Complex Networks.805

Newman, M. E. J. 2006. Modularity and community structure in networks. Pro-806

ceedings of the National Academy of Sciences of the United States of America807

103:8577–82. URL http://www.pnas.org/content/103/23/8577.short.808

24



Newman, M. E. J., A. Clauset, C. Aicher, A. Z. Jacobs, A. Clauset, S. Fortu-809

nato, P. Holme, M. Huss, H. Jeong, R. Guimerà, L. A. N. Amaral, D. Hric,810
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M. Schröter, e. al., S. Naeem, e. al., N. Biggs, e. al., A. Mashaghi, e. al.,872

26



T. Ideker, R. Sharan, J. Gardy, e. al., T. Valente, D. Acemoglu, e. al., M. Jack-873

son, M. Janssen, e. al., G. Woodward, e. al., C. Mulder, J. Elser, R. Thomp-874

son, e. al., J. Montoya, e. al., O. Petchey, e. al., J. Reiss, e. al., A. Barabasi,875

R. Albert, F. Harary, R. Haines-Young, S. Macfadyen, e. al., K. Rathwell,876

G. Peterson, R. Costanza, I. Kubiszewski, C. Mulder, e. al., H. Tallis, e. al.,877

A. Tavoni, S. Levin, A. Ma, R. Mondragón, M. Pascual, J. Dunne, F. Jordán,878

e. al., H. Ernstson, e. al., U. Narloch, e. al., M. Hagen, e. al., R. Stewart,879

e. al., A. Shmida, M. Wilson, M. Palmer, e. al., G. Mace, e. al., R. d. Groot,880

e. al., H. Zimmermann, R. Albert, e. al., M. Pocock, e. al., K. Chan, e. al.,881

L. Dicks, e. al., G. McInerny, e. al., M. Pocock, e. al., A. Vespignani, D. Bo-882

han, e. al., P. Anderson, J. Cohen, e. al., J. Montoya, e. al., S. Pimm, C. Holling,883

A. Trichard, e. al., D. Bohan, and e. al. 2016. Networking Our Way to Better884

Ecosystem Service Provision. Trends in ecology & evolution 31:105–15. URL885

http://www.ncbi.nlm.nih.gov/pubmed/26777789.886

R Core Team, 2017. R: A Language and Environment for Statistical Computing.887

R Foundation for Statistical Computing, Vienna, Austria. URL https://www.888

R-project.org/.889

Samuelson, P. A. 1948. Economics: An Introductory Analysis. McGraw–Hill Book890

Co., New York,.891

Shen, H.-W., and A.-L. Barabasi. 2014. Collective credit allocation in science.892

Proceedings of the National Academy of Sciences 111:12325–12330. URL http:893

//www.pnas.org/content/111/34/12325.abstract.894

Sih, A., S. F. Hanser, and K. a. McHugh. 2009. Social network theory: New insights895

and issues for behavioral ecologists. Behavioral Ecology and Sociobiology 63:975–896

988.897

Simberloff, D., and B. V. Holle. 1999. Positive interactions of nonindigenous species:898

invasional meltdown? Biological Invasions pages 21–32.899
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Boxes1003

Box 1. Benchmarking Ecological Models The most basic test is to feed the algorithm1004

a set of ”random” matrices to make sure that the frequency of statistically significant1005

results is no greater than 5%. Otherwise, the algorithm is vulnerable to a Type I1006

statistical error (incorrectly rejecting a true null hypothesis). However, specifying a1007

matrix produced by random sampling errors is not so easy. By definition, if a null1008

model algorithm is used to generate the random matrices, then no more than 5%1009

of them should be statistically significant (unless there were programming errors).1010

For binary matrices, two log-normal distributions can be used to generate realistic1011

heterogeneity in row and column totals, while still maintaining additive effects for cell1012

occurrence probabilities (Ulrich and Gotelli, 2010). “Structured” matrices are needed1013

to test for Type II errors (incorrectly accepting a false null hypothesis), and these1014

require a careful consideration of exactly what sort of pattern or mechanism the test1015

is designed to reveal. One approach is to begin with a perfectly structured matrix,1016

such as one derived from a mechanistic model for generating network structure,1017

contaminate it with increasing amounts of stochastic noise, and test for the statistical1018

pattern at each step (Gotelli, 2000). A plot of the P value versus the added noise1019

should reveal an increasing curve, and will indicate the signal-to-noise ratio below1020

which the test cannot distinguish the pattern from randomness. Alternatively, one1021

can begin with a purely random matrix but embed in it a non-random substructure,1022

such as a matrix clique or a node with extreme centrality. The size, density, and1023

other attributes of this matrix can be manipulated to see whether the test can still1024

detect the presence of the embedded structure (Gotelli et al., 2010). Because all1025

null model tests (and all frequentist statistics) are affected by sample size and data1026

structure, these benchmark tests can be tailored to the attributes of the empirical1027

data structures for better focus and improved inference.1028

Even simple randomization algorithms may require further filters to ensure that1029

random matrices retain a number of desirable network properties. For example,1030

Dunne et al. (2002) created random food-web matrices with constant species rich-1031

ness and connectance, but they discarded webs with unconnected nodes and subwebs1032

because these topologies were not observed in the empirical webs. A “stub recon-1033

struction” algorithm builds a topology that is constrained to the observed number1034

of edges per node (Newman et al., 2001). Each node is assigned the correct number1035

of edges, and then nodes are successively and randomly paired to create a growing1036

network. However, this algorithm also generates multiple edges between the same1037

two nodes, which must be discarded or otherwise accounted for. Maslov and Sneppen1038

(2002) use a ”local re-wiring algorithm” that preserves the number of connections1039
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for every node by swapping edges randomly between different pairs of nodes. This1040

algorithm is closely analogous to the swap algorithm used in species co-occurrence1041

analyses that preserves the row and column totals of the original matrix (Connor1042

and Simberloff, 1979). The more constraints that are added to the algorithm, the1043

less likely it is that simple sampling processes can account for patterns in the data.1044

However, some constraints, such as connectivity or matrix density, may inadvertently1045

“smuggle in” the very processes they are designed to detect. This can lead to the1046

so-called “Narcissus” effect (Colwell and Winkler, 1984). Finding the correct balance1047

between realistic constraints and statistical power is not easy (Gotelli et al., 2012),1048

and there are many potential algorithms that reasonably could be used, even for1049

simple binary matrices (Gotelli, 2000).1050
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Tables1051

Sub.discipline Level Metric Concept Reference
General W Density The proportion of possible edges that are actually associated with nodes; called Connectance in Food

Web ecology.
General N Centrality Multiple ways to characterize the relative importance of nodes. Wasserman and Faust (1994)
General N Degree Number of edges connected to a given node, which is a type of local centrality.
General N Eigenvector Centrality Global centrality metric based on number of walks that travel through a node Bonacich (1987)
General W Centrality Distribution Shape of the frequency distribution of edges among nodes. Barabási and Albert (1999); Dunne et al. (2002)
General W Centralization The concentration (versus evenness) of centrality among the nodes. Freeman (1979)
General W Graph diameter The longest path between any two nodes in a graph. Barabási et al. (2000); Urban and Keitt (2001)
General W Modularity Degree to which edges are distributed within rather than between distinct sets of nodes. Newman (2010)
General G Motifs Small sets of nudes with similar distributions of edges. Milo et al. (2002)
General W Link density Average number of edges per node. Martinez (1992)

Community N Temperature Measures the nestedness of a bipartite network. Ulrich and Gotelli (2007)
Community W Co-occurrence Degree of overlapping spatial or temporal distributions of species relative to a null model. Gotelli (2000)
Community N Indicator Species The degree to which the abundance of a taxonomic group responds to an environmental gradient.
Community W Nestedness The degree to which interactions can be arranged into subsets of the larger community
Community W Evenness Deviation of the distribution of observed abundances relative to an even distribution among taxo-

nomic groups in a community
Community W Diversity Distribution of abundances among taxonomic groups in an observed community
Community W Richness The number of taxonomic groups in a community
Community W Stability The change in the abundances of taxonomic groups across a set of observations

Food-Web N Removal Importance The degree to which removal of a compartment or species produces subsequent removals in the
ecosystem.

Borrvall et al. (2000); Dunne et al. (2002); Eklöf and Ebenman (2006); Solé and Montoya (2001)

General N Connectance Proportion of realized out of possible edges Pimm (1982); Vermaat et al. (2009)
Food-Web G Food-chain length The number of feeding relationships among a set of compartments in a food-web. Post et al. (2000); Ulanowicz et al. (2014)
Ecosystem W Finn cycling index Degree to which matter or energy passes through the same set of compartments. Finn (1980)
Ecosystem G Environ The sub-network of the probability of movement of energy or matter among compartments generated

by a single unit of input (output) into a selected node.
Patten (1978); Patten and Auble (1981)

Ecosystem N Throughflow Amount of energy or matter passing into or out of a node Finn (1976)
Ecosystem N Throughflow Centrality The proportion of energy or matter that passes through a given compartment in an ecosystem. Borrett (2013)

General G Chain Length Number of edges between two nodes in a group
Food-Web G Average Path Length The average number of times a unit of matter or energy travels from one compartment to another

before exiting the ecosystem
Finn (1976)

Ecosystem W Pathway Proliferation Rate of increase in the number of edges between nodes with increasing path length Borrett et al. (2007)
Ecosystem W Ascendency Measures the average similarity in matter or energy flows among compartments in an ecosystem. Ulanowicz (1986)
Food-Web N Trophic Level Ordinal classification of a compartment or taxonomic group based on the relative position in the

ecosystem.
Allesina and Pascual (2009); Fath (2004); Williams et al. (2002)

Table 1: Ecological network metric summary and classification. Level indicates the
hierarchy of the metric (W = Whole network, G = Group or sub-network, N =
Node. The Sub-disciplines include ’General’ network theory, ’Community’ ecology,
’Food-web’ and ’Ecosystem’ ecology. Also available at https://figshare.com/s/

1bf1a7e0a6ee3ac97a4b
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Figures1052

Figure 1: Although systems thinking has been a part of ecology since at least the work
of Darwin, network ecology has grown rapidly since the turn of the last century but
has been developing in isolated sub-fields. (A) Plot showing the increase in “network
ecology” keywords in the literature from 1991 to current (updated search based on
Borrett et al., 2014). (B) Contour plot of common topics in network ecology with
peaks indicating clusters of related topics. The regions are labeled with the most
common terms found in the clusters. From Borrett et al. (2014), reproduced with
permission.
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Figure 2: Hypothetical unweighted, directed network showing examples of the four
classes of network metrics. Node Level: the purple node exhibits low centrality
while the orange node exhibits high centrality. Group or Sub-Network Level: the
blue nodes connected with dashed edges shows a module. Global or Whole Network
Level: using the edges of all nodes we can measure the connectance of the entire
network (c = edges/nodes2 = 0.12).
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