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A missing factor of i was found in the computation of the mixed kernel F q,Bj (ω). This

results in minor changes in our formulas, but a major change in our conclusions. First, we

correct the formulas, then we present the corrected conclusions.

Corrected formulas. The correct expression replacing (4.47) in the original article is

F q,Bj (ω) =
16qπ2i

(2j + 1)
√
j(j + 1)

∞∑
j′,j′′=q

[
Eqj′ + Eqj′′

2Eqj′Eqj′′(ω2 + (Eqj′ + Eqj′′)2)

]
IH(j, j′, j′′) . (1)

Because F q,Bj (ω) is pure imaginary the matrix of coefficients Mq
j(ω) is not Hermitian, and

(4.12) is modified to

Mq
j(ω) =


Dq
j (ω) F q,Bj (ω) F q,τj (ω) F q,Ej (ω)

− F q,B∗j (ω) Kq,BB
j (ω) Kq,τB

j (ω) Kq,EB
j (ω)

−F q,τ∗j (ω) Kq,τB∗
j (ω) Kq,ττ

j (ω) Kq,τE
j (ω)

−F q,E∗j (ω) Kq,EB∗
j (ω) Kq,τE∗

j (ω) Kq,EE
j (ω)

 . (2)
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Consequently, the eigenvalues of the matrix are changed, (4.16) and (4.19) are changed to

This matrix has eigenvalues:

λq± =
(Dq

j (ω) +Kq,BB
j (ω))±

√
(Dq

j (ω)−Kq,BB
j (ω))2 − 4|F q,Bj (ω)|2

2
,

λqE =
j(j + 1) + ω2

j(j + 1)
Kq,ττ
j ,

(3)

and

δFq=
1

2

∫
dω

2π

log
Dq

0(ω)

D0
0(ω)

+

∞∑
j=1

(2j+1) log

Kq,ττ
j (ω)

[
Dq
j (ω)Kq,BB

j (ω)+
∣∣∣F q,Bj (ω)

∣∣∣2]
D0
j (ω)K0,ττ

j (ω)K0,BB
j (ω)

 (4)

respectively.

All formulas in the appendices are fixed by inserting an i in the appropriate places.

The only nontrivial replacement is in (C.49), which correctly reads

Lqj(ω) =
8µ2q

(j + 1
2)2 + ω2

+
12F∞q
π

(j + 1
2)2 − ω2[

(j + 1
2)2 + ω2

]5/2
−

(q2 + 4µ2q(8µ
2
q − 1))(j + 1

2)2 + 4(−q2 + µ2q(8µ
2
q − 5))ω2

2
[
(j + 1

2)2 + ω2
]3

+ 144Bq
3(j + 1

2)4 − 24(j + 1
2)2ω2 + 8ω4[

(j + 1
2)2 + ω2

]9/2
+

3F∞q
2π

(25− 48µ2q)(j + 1
2)4 + 3(64µ2q − 55)(j + 1

2)2ω2 + 20ω4[
(j + 1

2)2 + ω2
]9/2

+O

(
1[

(j + 1
2)2 + ω2

]3
)
.

(5)

This change has important consequences on our final results. All monopoles are stable,

invalidating section 5.1. The large q analysis supports the stability of monopoles; (5.9),

(5.10) and figure 4 are replaced by

Mq
j(0) =

ζ
(
3
2 ,

1
2 + χ0

)
8π
√

2q


1
2 i

√
j(j + 1)χ0 0 0

i
√
j(j + 1)χ0 2 j(j + 1)χ1 0 0

0 0 4 j(j + 1) (χ2
0 + χ1) 0

0 0 0 0

 , (6)

λq± ≈ −
0.055251± 0.023717i√

q
, λqE ≈

0.063044√
q

. (7)

and figure 1.
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Figure 1. The numerical results for the three eigenvalues, λqE , λq+, and λq− are plotted against the

analytic large q value in black.

q ∆q Nb for which ∆q < 3

0 0 <∞
1/2 0.1245922Nb + 0.3815 +O(N−1b ) ≤ 21

1 0.3110952Nb + 0.8745 +O(N−1b ) ≤ 6

3/2 0.5440693Nb + 1.4646 +O(N−1b ) ≤ 2

2 0.8157878Nb + 2.1388 +O(N−1b ) none

5/2 1.1214167Nb + 2.8879 +O(N−1b ) none

Table 1. Results of the large Nb expansion of the monopole operator dimensions ∆q obtained

through calculating the ground state energy in the presence of 2q units of magnetic flux through

S2. In the last column of the table we listed our estimates for when the monopole operators

are relevant.

Results and conclusions. Because these corrections make all saddle points stable, we

are able to compute the dimensions of monopole for many values of q. The results are

listed in table 1. In particular our result for ∆1/2 is different, and compares favorably with

the numbers obtained by quantum Monte Carlo simulations of refs. [1–3] even for small Nb,

as shown in the replacement of figure 1 of the original article in figure 2. From comparing

the scaling dimensions collected in table 1 to 3, we can also estimate the upper bound

on Nb below which the monopole operators are expected to be relevant; these bounds are

also presented in table 1. There is inherently some uncertainty in these estimates, as they

come from extrapolating the large Nb expansion to small values of Nb. Nevertheless, our

relevance bounds come close to what ref. [3] found from numerics, as can be seen from

table I in [3].
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Figure 2. The scaling dimension of the q = 1/2 monopole operator, F1/2. The full line is the

Nb =∞ result (ref. [4]), and the dashed line is the leading 1/Nb correction computed in the present

paper (see table 1). The quantum Monte Carlo results are for lattice antiferromagnets with global

SU(Nb) symmetry on the square (refs. [1, 2]), honeycomb (ref. [3]), and rectangular (ref. [3]) lattices.
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