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Abstract

We develop statistical strategies to explore how time-varying exposures to heavy

metal mixtures affects cognition and cognitive trajectories in children. In chapter 1, we

develop a Bayesian model, called Lagged Kernel Machine Regression (LKMR), to identify

time windows of susceptibility to exposures of metal mixtures. In chapter 2, we develop

a Mean Field Variational Bayesian (MFVB) inference procedure for LKMR. We demon-

strate large computational gains under MFVB as opposed to Markov chain Monte Carlo

(MCMC) inference for LKMR, which allows for the analysis of large datasets while main-

taining accuracy. In chapter 3, we present a Bayesian hierarchical model, called Bayesian

Varying Coefficient Kernel Machine Regression, to investigate the impact of exposure to

heavy metal mixtures on cognitive growth trajectories in children. Simulation studies

demonstrate the effectiveness of these methods, and the methods are used to analyze

data from two prospective birth cohort studies in Mexico City.
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1.1 Introduction

Neurodevelopment and cognitive function are important outcomes in public health.

A critical public health concern is the impact of neurotoxic chemicals on children’s

health. There is a large body of literature on the impact of exposure to individual

chemicals, such as lead, on neurodevelopment (Bellinger, 2008; Tellez-Rojo et al., 2006).

However, exposure to chemical mixtures, rather than to individual chemicals, are more

reflective of real-world scenarios. Accordingly, the National Institute of Environmental

Health Sciences (NIEHS) has placed a priority on quantification of the health impacts of

exposure to environmental mixtures (Carlin et al., 2013).

For the estimation of the health effect of metal mixtures on neurodevelopment, the

exposure-response relationship can be complex, exhibiting both nonlinearity and non-

additivity. The effect of some metals, such as trace elements like manganese, can be

nonlinear as they are essential nutrients at low doses but neurotoxic at high exposure

levels. These dual roles can result in an inverted-u relationship with neurodevelopment

(Claus Henn et al., 2010). Moreover, existing work on metal mixtures provides evidence

of interactions between individual metals. For instance, Claus Henn et al. (2014) found in-

creased lead toxicity in the presence of higher levels of manganese, arsenic, and cadmium.

Another layer of complexity in the identification of environmental effects on chil-

dren’s health is that health effects can be highly-dependent on exposure timing. There

exist many sequential developmental processes in early life, as development is unidirec-

tional and well-timed (Stiles and Jernigan, 2010; Tau and Peterson, 2010). For instance,

pregnancy is a state of sequential physiologic changes, such that an infant may be

particularly susceptible to exposure during a certain developmental stage, which we call

a critical exposure window. Metal mixture exposures may be especially harmful during

prenatal and early life periods. Several metals cross the placental barrier, potentially

causing injury to the fetal brain. A previous study reported that the interaction of lead

and cadmium may depend on the stage of pregnancy (Kim et al., 2013). In such cases,
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measuring exposure either in the wrong critical window or averaging exposure over the

entire pregnancy when only a specific window is most relevant is a form of exposure

misclassification.

There is a lack of statistical methods to simultaneously accommodate the complex

exposure-response relationship between metal mixtures and neurodevelopment while

analyzing data on critical exposure windows of these exposures. Traditionally, these two

research questions - (1) assessing health effects of complex mixtures and (2) identifying

time windows of susceptibility - have been studied separately. Methods to address

the complex exposure-response relationship include classification and regression trees,

random forest, cluster analysis, nonparametric Bayesian shrinkage, Bayesian mixture

modeling and weighted quantile sum regression (Billionnet et al., 2012; Herring, 2010;

de Vocht et al., 2012; Diez et al., 2012; Roberts and Martin, 2006; Gennings et al., 2013).

Bobb et al. (2015) developed Bayesian kernel machine regression (BKMR) for estimating

health effects of complex mixtures and conducting variable selection for exposures at a

single time point. Meanwhile, methods for identifying time windows of susceptibility

are focused on using single pollutant distributed lag models to study the effect of a

single toxicant assuming no interaction between time windows (Hsu et al., 2015; Warren

et al., 2012, 2013; Darrow et al., 2011). One exception is the work of Heaton and Peng

(2013), who developed a higher degree distributed lag model to account for cross-time

interaction. However, this model still only related to exposure of a single pollutant. To

our knowledge, there are no existing methods to identify critical exposure windows of

multi-pollutant mixtures.

To address this gap in the statistical literature, we develop methodology to investi-

gate how exposures to heavy metal mixtures during early childhood affect long-term

cognitive function, and identify specific critical windows of exposure. We introduce a

new method, Lagged Kernel Machine Regression (LKMR), to estimate the health effects

of time-varying exposures to environmental mixtures, and identify critical exposure

windows of a mixture. We adopt a Bayesian paradigm for inference of LKMR. We use the
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kernel machine regression (KMR) framework, which is popular in the statistical genetics

literature where it is used primarily to test the significance of gene sets and predict

risk for health outcomes (Cai et al., 2011; Maity and Lin, 2011), Bayesian KMR has also

been shown to effectively estimate complex exposure-response functions associated with

metal mixtures (Bobb et al., 2015).

We develop LKMR to handle time-varying mixture exposures. By incorporating

methods from the single time point BKMR and the single exposure distributed lag

model, LKMR estimates nonlinear and non-additive effects of mixtures of exposures

while assuming these effects vary smoothly over time. To accomplish these goals, we

develop a novel Bayesian penalization scheme that combines the group and fused lasso.

The group lasso regularizes the exposure-response function at each time point, whereas

the fused lasso shrinks the exposure-response functions from timepoints close in time

towards one another. Notably, we show this can be achieved by seamlessly using the

kernel matrix relying on a given similarity matrix into the penalty term for the grouped

lasso component. We implement the method using Bayesian lasso methods (Yuan and

Lin, 2006; Huang et al., 2012; Kyung et al., 2010). Although Bayesian grouped lasso and

Bayesian fused lasso have been used individually, our new proposal combines these

penalization schemes together with kernel machine methods, resting in a novel model

formulation.

We apply this model to data from the ongoing Early Life Exposures in Mexico and

Neurotoxicology (ELEMENT) study. In ELEMENT, a prospective birth cohort study,

teeth dentine captures exposure to barium (Ba), chromium (Cr), lithium (Li), manganese

(Mn), and zinc (Zn) over time. Through imaging of teeth, fine temporal resolution of

metal exposure from the second trimester of pregnancy to early childhood is obtained.

In our data application, we were interested in Mn-Zn interactions at three exposure

windows of early development (second and third trimesters of pregnancy and mos. 0-3

after birth), and their associations with neurodevelopment.
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The paper is organized as follows: Section 1.2 provides a review of KMR; Section

1.3 introduces the statistical model LKMR; Section 1.4 describes the simulation studies

for evaluating performance of LKMR; Section 1.5 addresses an application of the method

to the ELEMENT dataset; and Section 1.6 provides discussion and concluding remarks.

1.2 Review of kernel machine regression

To set notation we first review kernel machine regression as a framework for estimating

the effect of a complex mixture when exposure is measured only at a single time point.

Suppose we observe data from n subjects. We describe the model for a continuous, nor-

mally distributed outcome. For each subject i = 1, . . . , n, KMR relates the health outcome

(y
i

) to M components of the exposure mixture z
i

= (z1i, ..., zMi

) through a nonparametric

function, h(·), while controlling for C relevant confounders x
i

= (x1i, ..., xCi

). The model

is

y
i

= h(z1i, ..., zMi

) + xTi � + ✏i, (1.1)

where � represents the effects of the potential confounders, and ✏
i

iid⇠ N (0, �2). h (·) can

be estimated parametrically or non-parametrically. We employ a kernel representation

for h (·) in order to accommodate the possibly complex exposure-response relationship.

The unknown function h (·) can be specified through basis functions or through a

positive definite kernel function K (·, ·). Under regularity conditions, Mercer’s theorem

(Cristianini and Shawe-Taylor, 2000) showed that the kernel function K (·, ·) implicitly

specifies a unique function space, H
k

, that is spanned by a set of orthogonal basis

functions. Thus, any function h (·) 2 H
k

can be represented through either a set of

basis functions under the primal representation, or through a kernel function under the

dual representation. The kernel function uses a similarity metric K(·, ·) to quantify the

distance between the exposure profiles z

i

between any two subjects in the study. For

example, the Gaussian kernel quantifies similarity through the Euclidean distance; the

polynomial kernel, through the inner product. Through specifying different kernels, one

is able to control the complexity of the exposure-response function.
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Liu et al. (2007) developed least-squares kernel machine semi-parametric regression

for studying genetic pathway effects. They make the connection between kernel machine

methods and linear mixed models, demonstrating that (1) can be expressed as the mixed

model

y
i

⇠ N(h
i

+ xTi �, �
2) (1.2)

h = (h1, ..., hn

)T ⇠ N [0, ⌧K(·, ·)] , (1.3)

where K is a kernel matrix with i,j element K(z
i

, z
j

).

1.3 Lagged kernel machine regression

1.3.1 Model formulation

Now assume exposures to a complex mixture are measured at multiple timepoints with

the goal of identifying critical windows of exposure, such that we have data on the multi

pollutant exposures z
it

= (z1i,t, ..., zMi,t

). We define the lagged kernel machine regression

(LKMR) as

y
i

= �0 +
X

t

h
t

(z1i,t, ..., zMi,t

) + xTi � + ✏i, (1.4)

where h
t

(·) = (h1,t, ..., hn,t

)T represents the (potentially complex) exposure-response func-

tion for the exposures z1,t, ..., zn,t measured at time t, controlling for exposures at all other

timepoints. We use the mixed model representation proposed by Liu et al. (2007) for each

h
t

, t = 1, . . . , T , yielding

y
i

= �0 +
X

t

h
i,t

+ xTi � + ✏i. (1.5)

Model (1.4) represents a multiple kernel learning model. However, straightforward

model fitting h
t

(·) for all t = 1, . . . , T , will yield unstable estimates of each time-specific

exposure-response function because of the unavoidable correlation among the time-

varying measures of each exposure. We therefore employ a strategy that regularizes

the individual exposure-response estimates by shrinking the time-specific h
t

(·) that are

adjacent in time towards one another. Accordingly, in LKMR, we impose penalization

through a novel Bayesian, grouped, fused lasso. The group lasso component regularizes
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each h
t

individually by penalizing the kernel surface, as exposures at individual time

windows can share similarities, and also provides a framework for incorporating kernel

machine regression. Meanwhile, the fused lasso component pools shrinks differences

in h
t

across neighboring time windows, and smoothes adjacent kernel surfaces. To

incorporate the possibility of complex exposure-response functions at each time t, we

incorporate kernel distance functions within the group lasso implementation.

Let h = (h1, . . . ,hT

)T . The conditional prior of h|�2 is

⇡(h|�2,�1,�2) / exp

"

��1

�2

T

X

t=1

kh
t

kGt �
�2

�2

T�1
X

t=1

|h
t+1 � h

t

|1

#

, (1.6)

where kh
t

kGt = (hT

t Gtht)1/2. We defineG
t

=K�1
t

, whereK
t

denotes the kernel matrix for

time t with i,j element K
t

(z
i

, z
j

). Depending on a particular application, one can choose

any of many different kernel functions. Previous literature has shown an inverted-u

relationship between metals and neurodevelopment (Claus Henn et al., 2010); thus, we

choose K
t

to be a quadratic kernel, such thatK(z, z’) = (zz’+ 1)2.

An advantage of the model is that we can formally specify it in a hierarchical fash-

ion, which allows for a Gibbs sampler implementation. We introduce latent parameters

⌧ = (⌧ 21 , ..., ⌧
2
T

) and ! = (!2
1, ...,!

2
T�1), as we prefer this conditional prior for implementa-

tion using a Gibbs sampler: h|⌧ ,!, �2 ⇠ N
P

(0, �2⌃
h

), where P = n ⇤ T .

The hierarchical model is represented as:

y|h,X,�, �2 ⇠ N
n

(X� +
X

t

h
t

, �2I
n

) (1.7)

h|⌧ 21 , ..., ⌧ 2T ,!2
1, ...,!

2
T�1, �

2 ⇠ N
P

(0, �2⌃
h

) (1.8)

⌧ 21 , ..., ⌧
2
T

iid⇠ gamma(
n+ 1

2
,
�1

2

2
) (1.9)

!2
1, ...,!

2
T�1

iid⇠ �2
2

2
e

��2
2!2

t
2 , (1.10)
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where ⌧ 21 , ..., ⌧
2
T

,!2
1, ...,!

2
T�1, �

2 are mutually independent. The form of ⌃�1
h

follows from

representing the Laplace (double exponential) conditional prior of h|�2 as a scale mix-

ture of a normal distribution with an exponential mixing density (Andrews andMallows,

1974). Figure 1.1 presents the full form of the variance covariance matrix ⌃�1
h

. The diago-

nal blocks of size n x n arise due to the kernel structure placed on each h
t

(·), whereas the

off-diagonals involving the !2
t

parameters serve to shrink random effects adjacent in time

towards one another.

1.3.2 Prior specification

To complete the model specification, we define prior distributions for the regression pa-

rameters � and �2. We take the prior for �2 to gamma, and � to have an independent

flat prior, ⇡(�) / 1. In this article, we use a gamma prior for tuning parameters �1 and

�2, as suggested by Park and Casella (2008). The gamma priors are placed on �2
1 and �2

2

for convenience based on their appearance in the posterior distribution. Priors are of the

form:

⇡(�2) =
�r

�(r)
(�2)r�1e���

2
,�2 > 0, r > 0, � > 0 (1.11)

As motivated by simulation studies described in Section 4, we evaluated a grid of r and �

values to identify hyperparameters which optimize estimation of the exposure-response

surface. Our simulation studies identified hyperparameter values for �2
1, r = 150 and � =

10, and hyper parameters for �2
2, r = 60 and � = 10, as values that performed well under

a range of simulation scenarios and maximize the posterior inference of the exposure-

response surface.

1.3.3 MCMC sampler

In this section, we describe the Gibbs sampler implementation for the hierarchy of (7) -

(10). For convenience, we denote
P

t

h
t

asWh. The joint density is:

f(y|�,h, �2, ⌧ ,!) / 1

(2⇡�2)n/2
exp



�1

2�2
(y�Wh�X�)T (y�Wh�X�)

�

⇥
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For brevity, we detail the full conditional distributions of a few key parameters:

The full conditional distribution of h is:

h|�2, ⌧ ,!, X,�, y ⇠ N
P

((W TW + ⌃�1
h

)�1W T (y� X�), �2(W TW + ⌃�1
h

)�1)

The full conditional of �2 is:

�2|h, ⌧ ,!,X,�, y ⇠ (1.13)

IG(n/2 + T/2 + (T � 1)/2 + 1,
(y�Wh� X�)T (y�Wh� X�)

2
+

hT⌃�1
h

h

2
)

Also, the full conditional of � is:

�|rest ⇠ N((XTX)�1XT (y�Wh), �2(XTX)�1) (1.14)

The Gibbs sampler is implemented to cyclically sample from the distributions of h,�, �2,

⌧ 2, !2, �2
1, and �2

2 conditional on the current values of the other parameters. We note that

for several parameters, such as h, �, ⌧ 2, and !2, the Gibbs sampler is a block update.

1.3.4 Predicting health effects at new time-varying exposure profiles

It is often important to estimate and visualize the exposure-response surface, in order to

ascertain health effects of time-varying toxicant mixtures. Suppose we are interested in

predicting the exposure-response profile for a new profile of metal mixture exposures at

time t. There are currently n subjects in our study for t = 1, ..., T time points, and we

are interested in predicting the response for the n
new

subjects. Thus, we are interested in

estimating h
n+1,t, ..., hn+nnew,t

.

In order to reduce computation time, we approximate the posterior mean and vari-

ance of h
new,t

= (h
n+1,t, ..., hn+nnew,t

), by using the estimated posterior mean of the other

parameters in the formulas below. First, we define h̃, which the reordered h vector,
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such that the new time point of interest, t, is at the end of the vector. This step aids in

estimating the h
new

. Thus,

h̃ = (h1,1, ..., hn,t�1, h1,t+1, ..., hn,t+1, ..., h1,T , ..., hn,T

, h1,t, ..., hn,t

, h
n+1,t, ..., hn+nnew,t

)T

Because we have reordered the h̃ vector, we need to similarly reorder the correspond-

ing covariance matrix, and denote the reordered matrix as ⌃̃�1
h

. The joint distribution of

observed and new exposure profiles is:

✓

h
h

new

◆

⇠ N

(

0, ⌃̃
h

=

✓

⌃̃11 ⌃̃12

⌃̃T

12 ⌃̃22

◆

)

(1.15)

where ⌃̃11 denotes the 2n x 2n matrix with (i, j)th element K(z
i

, z
j

), ⌃̃12 denotes the n x

n
new

matrix with (i, j
new

)th element K(z
i

, z
jnew), and ⌃̃22 denotes the n

new

x n
new

matrix

with (i
new

, j
new

)th element K(z
inew , zjnew). It follows that the conditional posterior distri-

bution of h
new

is:

hnew|�, b, ⌧ 2, �2 ⇠ N
nnew

(

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1 1

�2
WT (Y� X� �Ub), (1.16)

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1

⌃̃�1
11 ⌃̃12 + ⌃̃22 � ⌃̃T

12⌃̃
�1
11 ⌃̃12

)

In order to reduce computation time, we approximate the posterior mean and variance of

h
new

based on the estimated posterior mean of the other parameters.

1.4 Simulation studies

We conducted simulation studies to evaluate the performance of the proposed LKMR

model for estimating critical exposure windows of environmental mixtures. Our sim-

ulation study considered a three-toxicant scenario: two toxicants (out of three) exert a

gradual non-additive, non-linear effect over four time windows that are representative

of early life. We used the following model: y
i

= xT
i

�+
P

t

h
t

(z
it

) + e
i

, where e
i

⇠ N(0, 1),

x
i

= (x1i, x2i) and x1i ⇠ N (10, 1) and x2i ⇠ Bernoulli(0.5). We simulated auto-correlation

within toxicant exposures z
m

across time, and correlation between toxicants, using the
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Kronecker product for the exposure correlation matrix. Three choices for auto-correlation

within toxicants were considered: high (0.8), medium (0.5) and low (0.2). The exposure-

response function h(z
i

) was simulated as quadratic with two-way interactions. We

assumed there is no effect of exposure to the environmental mixture at Time 1, and a

gradual increasing effect was simulated from Time 2 to 4. We assume h
t

(z) = ↵
t

h(z),

where ↵ = (↵1,↵2,↵3,↵4) = (0, 0.5, 0.8, 1.0) and h(z) = z21 � z22 + 0.5z1z2 + z1 + z2. In con-

ducting the analysis, exposure covariates are logged, centered and scaled. Confounder

variables are also centered and scaled.

Table 1.1 presents the results of this simulation. We compared the performance of

LKMR to that of Bayesian kernel machine regression (BKMR) applied using exposures

from each time window separately. For each simulated data set, to assess the perfor-

mance of the model for the purposes of estimating the time-specific exposure-response

function, we regressed the predicted bh on h for each time point. We present the intercept,

slope and R2 of the regressions over 100 simulations. Good estimation performance

occurs when the intercept is close to zero, and the slope and R2 are both close to one. We

also present the root mean squared error (RMSE) and the coverage (the proportion of

times the true h
i,t

is contained in the posterior credible interval).
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Table 1.1 Simulation results, regression of bh on h
h function Time window Intercept Slope R2 RMSE Coverage

1 -0.02 N/A N/A 0.45 1.00LKMR
2 -0.04 0.97 0.86 0.50 1.00

AR-1 = 0.8 3 -0.08 0.96 0.94 0.54 0.99
4 -0.09 0.99 0.97 0.51 1.00

1 0.25 N/A N/A 2.49 0.65BKMR
2 0.15 2.87 0.90 2.60 0.60

AR-1 = 0.8 3 0.03 2.22 0.97 2.57 0.50
4 0.03 1.73 0.96 2.05 0.59

1 -0.02 N/A N/A 0.39 1.00LKMR
2 -0.06 0.96 0.91 0.42 1.00

AR-1 = 0.5 3 -0.07 0.97 0.96 0.45 1.00
4 -0.09 0.98 0.98 0.43 1.00

1 0.20 N/A N/A 0.99 0.92BKMR
2 0.11 1.46 0.75 1.29 0.87

AR-1 = 0.5 3 0.10 1.55 0.90 1.53 0.73
4 0.10 1.27 0.93 1.18 0.83

1 -0.02 N/A N/A 0.38 1.00LKMR
2 -0.05 0.97 0.93 0.38 1.00

AR-1 = 0.2 3 -0.05 0.98 0.97 0.41 1.00
4 -0.07 0.97 0.98 0.41 1.00

1 0.14 N/A N/A 0.59 0.98BKMR
2 0.12 0.80 0.63 0.91 0.94

AR-1 = 0.2 3 0.10 1.04 0.85 0.96 0.92
4 0.06 0.99 0.91 0.84 0.94

Performance of estimated h
t

(z
i

) across 100 simulated datasets. RMSE denotes the root
mean squared error of the ĥ as compared to h. Coverage denotes the proportion of times
that the true h falls within in the posterior credible interval of each time point. At time
window 1, there is no effect; thus, slope and R2 are not applicable to the regression of bh
on h.

The results in Table 1.1 suggest that the LKMR significantly outperforms BKMR applied

using a single exposure time point when there is high autocorrelation for individual mix-

ture components across time. Specifically, as compared to BKMR, LKMR provides reduc-
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tions in RMSE on the order of 75-82% when the autocorrelation in a given exposure is 0.8,

and by 36 - 51% when the autocorrelation is 0.2. Credible interval coverage for LKMR is

consistently around 100%, as compared to 50-65% for high exposure autocorrelation and

92-98% for low correlation. Furthermore, as demonstrated by a slope of bh on h greater

than one, BKMR estimates of bh at a given time point tends to be biased when the expo-

sure autocorrelation is high, whereas estimates from the LKMRmodel are approximately

unbiased under all autocorrelation scenarios. Collectively, these results demonstrate that

naive application of BKMR in this setting suffers from the fact that it estimates the as-

sociation between exposure at a given time but does not control for exposure at other

time points. When autocorrelation in exposure among multiple exposure times is high,

this lack of adjustment leads to biased estimates of an exposure effect at the time of in-

terest, whereas when the exposures are roughly uncorrelated, there is less potential for

confounding by exposure at different times. In contrast, because LKMR uses penaliza-

tion to borrow information from neighboring time windows, it performs well under both

high and lowAR-1 scenarios, and is capable of handling time-varying mixture exposures.

These simulations demonstrate that LKMR is less biased than BKMR at estimating the

exposure-response function across multiple time points.

1.5 Application

We applied the proposed LKMR model to analyze the association between neurode-

velopment and metal mixture exposures in the ELEMENT study conducted in Mexico

City. In a pilot study nested within this larger cohort study (n=81), we estimated as

the primary outcome the visual spatial subtest score measured at eight years of age.

Exposures to metals Ba, Cd, Li, Mn, Zn were measured in teeth dentine, which provides

time-specific measures of exposure over both the pre- and post-natal period for each

child. These time-varying exposures were averaged to reflect three biologically relevant

time windows: second and third trimesters of pregnancy, and 0-3 months after birth).

We controlled for child gender, gestational age of infant at birth, maternal IQ, and child

hemoglobin at year two.
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As a preliminary analysis, we first fit a linear regression model using metal mix-

ture exposures from all three time windows to identify exposures and time point(s)

of significance. Zn had a positive association with neurodevelopment at the second

trimester (p=0.003), and a negative one at the 3rd trimester (p = 0.0009). Mn was

positively associated with neurodevelopment at the third trimester (p = 0.013), and

negatively associated during months 0-3 (p = 0.003). Cr had a positive association

at the second trimester (p=0.017), and a negative one at the 3rd trimester (p = 0.039)

and months 0-3 of early life (p=0.017). Lastly, there was suggestion of an interaction

between Zn and Mn at the second trimester (p = 0.051). These results suggest that under

assumptions of linearity and additivity, there is some evidence of an exposure-response

relationship across multiple timepoints, which warrants further exploration using LKMR.

We then applied LKMR to study time-varying metal mixture exposure effects dur-

ing early life on visual spatial ability. We first estimated the relative importance of each

metal, as shown in Figure 1.2. Relative importance is quantified by the difference in

the estimated main effect of a single metal at high exposure (75th percentile) and low

exposure (25th percentile), holding all other metals constant at median exposures. The

results are similar to that of the simple linear regression. We detect a negative association

of Zn with neurodevelopment in the 3rd trimester. The results also suggest evidence of

a positive association of Mn with neurodevelopment at the 3rd trimester, which shifts

to a negative association after birth. This qualitatively different (positive and negative)

association between Mn and the outcome for Mn exposure pre- and post-natally is

particularly intriguing, as Mn is both an essential nutrient and a toxicant. It could be

that the developing fetus needs Mn prenatally and receives it via the mother, whereas

post-natal exposure reflects environmental exposures that are more harmful.
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Figure 1.2: LKMR estimated main effect of each metal at three critical windows for ELE-
MENT data. Plot of the estimated relative importance of each metal, as quantified by the
difference in the estimated effect of a single metal at high exposure (75th percentile) and
low exposure (25th percentile), holding all other metals constant at median exposures.

As both the LKMR estimated relative importance and the linear model indicate effects of

Mn and Zn, we focus on those two metals when exploring the exposure-response rela-

tionship. Because the exposure response surface is five-dimensional, we use heat maps

and cross-sectional plots to reduce dimensionality and graphically depict the exposure-

response relationship. Figure 1.3 presents the plot of the posterior mean of the exposure-

response surface of Mn and Zn at the median of Ba, Cd, Li estimated using LKMR. The
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shape of the surface at the second trimester suggests an interaction between Mn and Zn,

which will be further explored below. Also, the results suggest that the direction of the

association changes at birth. At the third trimester, high Mn and moderate Zn exposures

are associated with higher scores, while after birth, low Mn and a range of Zn exposures

are associated with higher scores.
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Figure 1.3: LKMR estimated time-specific exposure response functions applied to ELE-
MENT data. Plot of the estimated posterior mean of the exposure-response surface for
Mn and Zn, at the median of Ba, Cd, Li.

To further reduce dimensionality, Figure 1.4 depicts the plot of the predicted cross-section

of the exposure-response surface for Mn, at low and high Zn and median Ba, Cr, Li expo-

sures. These results suggest that the association between Mn exposure and visual spatial

score depends on exposure timing. Comparing the top panel (low Zn) to the bottom panel

(high Zn), we detect a possible suggestion of a Mn-Zn interaction, specifically effect mod-

ification in the presence of higher Zn levels at the second trimester of pregnancy. At the

second trimester, there is a positive association between Mn exposure and visual spatial

score in the presence of low Zn levels. However, the association becomes negative in the

presence of high Zn levels. Notably, this interaction is not suggested in the plot of the

relative importance, where Mn and Zn are both non-significant at the 2nd trimester. In

the cross-sectional plot, we also note evidence of a positive association between Mn and

Zn before birth, and a negative one after birth. Lastly, the cross-sectional graphs suggest

the effects are mainly linear, indicating that a quadratic kernel is sufficient to capture the
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exposure-response relationship.
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Figure 1.4: LKMR estimated time-specific exposure-response functions for Mn at low
and high Zn levels applied to ELEMENT data. Plot of the cross-section of the estimated
exposure-response surface for Mn, at low Zn exposure of 25th percentile (top panel) and
high Zn exposure of 75th percentile (bottom panel), holding Ba, Cr, and Li constant at
median exposures.

In Figure 1.5, we focus on the estimated interaction effect betweenMn and Zn at the three

critical time windows. This was quantified by estimating difference in effects for high

(75th percentile) and low (25th percentile) Mn-Zn exposures. The results indicate that

there is a significantMn-Zn interaction for the second trimester, whichwas also evidenced

by the linear model.
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Figure 1.5: LKMR estimated Mn-Zn interaction at three critical windows for ELEMENT
data. Plot of the estimated interaction effect between Mn and Zn, holding Ba, Cr, and Li
constant at median exposures. This was quantified by estimating effects for high (75th
percentile) and low (25th percentile) Mn-Zn exposures.

To complete our case study, we compare the results under LKMR to those obtained by

BKMR applied using data from each critical window separately. First, in Figure 1.6, we

estimate the relative importance of eachmetal under BKMR, which is analogous to Figure

1.2 under LKMR. The results suggest that when focused onMn and Zn, only Zn exposure

at the third trimester is significantly negatively associated with visual spatial score. This

is markedly different from the results under LKMR and the linear model, which indicate

a positive association of Mn at the third trimester, and negative associations for Mn and
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Zn at Months 0-3. Figure 1.7 depicts the posterior mean of the exposure-response sur-

face of Mn and Zn at the median of Ba, Cd, Li, which is analogous to Figure 1.3 under

LKMR. In Trimester 2, there is little association between Mn and Zn exposure with neu-

rodevelopment. However, under LKMR and the linear model, there was suggestion of

an Mn-Zn interaction. In months 0-3 after birth, however, findings between LKMR and

BKMR generally correspond, with higher scores associated with low Mn exposure across

a range of Zn exposures. Lastly, Figure 1.8 depicts the predicted cross-sectional plot for

BKMR, analogous to Figure 1.4 under LKMR, and suggests that no time windows have

a significant interaction effect. Taken together, these findings further suggest that BKMR

lacks the ability to detect a signal, which may be due to confounding by exposure at the

other time points that the method does not account for.
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Figure 1.6: BKMR estimated main effect of each metal at three critical windows for ELE-
MENT data. Plot of the estimated relative importance of each metal, as quantified by the
difference in the estimated effect of a single metal at high exposure (75th percentile) and
low exposure (25th percentile), holding all other metals constant at median exposures.
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Figure 1.7: BKMR estimated time-specific exposure response functions applied to ELE-
MENT data. Plot of the estimated posterior mean of the exposure-response surface for
Mn and Zn, at the median of Ba, Cr, Li.

24



-1.5 -0.5 0.5 1.5

-2
-1

0
1

2
25% Zn at Trimester 2

Mn

h

-1.0 0.0 0.5 1.0

-2
-1

0
1

2

25% Zn at Trimester 3

Mn
h

-1.0 0.0 1.0 2.0

-2
-1

0
1

2

25% Zn at Months 0-3

Mn

h

-1.5 -0.5 0.5 1.5

-2
-1

0
1

2

75% Zn at Trimester 2

Mn

h

-1.0 0.0 0.5 1.0

-2
-1

0
1

2

75% Zn at Trimester 3

Mn

h

-1.0 0.0 1.0 2.0
-2

-1
0

1
2

75% Zn at Months 0-3

Mn

h

Figure 1.8: BKMR estimated Mn-Zn interaction at three critical windows for ELEMENT
data. Plot of the estimated interaction effect between Mn and Zn, holding Ba, Cr, Li
constant at median exposures. This was quantified by estimating effects for high (75th
percentile) and low (25th percentile) Mn-Zn exposures.

1.6 Discussion and Conclusion

In this article, we have developed a lagged kernel machine regression model that uses

Bayesian regularization to analyze data on time-varying exposures of environmental

mixtures to identify critical windows of exposure in children’s health. The kernel frame-

work allows for a flexible specification of the unknown exposure-response relationship.

We use a Bayesian formulation of the group lasso, which regularizes each kernel surface,

and the fused lasso, which smoothes individual multivariate exposure-response surfaces
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over time. Our method can account for auto-correlation of mixture components over time

while exploring for the possibility of non-linear and non-additive effects of individual

exposures. A key contribution of this article is the incorporation of the kernel machine

framework into distributed lag modeling.

We demonstrated that the LKMR method achieves large gains over approaches

that consider each critical window separately, particularly when serial correlation among

the time-varying exposures is high. We applied LKMR to analyze associations between

neurodevelopment and metal mixtures in the ELEMENT cohort. In the presence of

complex exposure-response relationships that can vary with the timing of exposures,

LKMR is a promising method to quantify health effects and identify time windows of

susceptibility. LKMR, which uses information from neighboring time windows through

penalization, is able to detect effect modification that was missed by BKMR. In the ap-

plication of LKMR to the ELEMENT study, we detect an interesting interaction between

manganese and zinc. At low levels of zinc, manganese exposure at the second trimester

of pregnancy is positively associated with neurodevelopment. However, this positive

association shifts after birth, at which point it is negatively associated with cognition.

This suggests manganese functions as a trace element and an essential nutrient before

birth, and is a toxicant after birth. Furthermore, this effect is not present under high

exposure levels of zinc at the second trimester. The finely detailed interaction effect is

captured by LKMR but not by BKMR, suggesting the potential existence of nuanced

effects among other metals as well, which warrants further investigation.

As LKMR focuses on health outcomes at a single time point, a logical extension of

the model would be to model the longitudinal health impact of exposures to time-

varying metal mixtures. One may also be interested in adding variable selection to the

model to identify the most important subsets of toxicants in their effects on health. With

increasing sample size and complexities of the model, computationally efficient methods

for fitting the model, such as variational Bayes (Ormerod and Wand, 2010), may be

appropriate for improving computational efficiency.
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To our knowledge, this is the first article on statistical methods for identifying crit-

ical exposure windows of multi-pollutant mixtures. The development of statistical

methods that can handle the complexity of multi-pollutant mixtures whose effects

may vary over time contributes to the limited knowledge on health effects of chemical

mixtures, shedding light on interaction, effect modification and toxicity.
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2.1 Introduction

There is growing interest from environmental health institutes and regulatory agencies

to quantify and assess the health impacts of exposure to toxicant mixtures. The National

Institute for Environmental Health Sciences has set the study of environmental mixtures

as a priority area (Carlin et al., 2013; Billionnet et al., 2012). It is hypothesized that

exposure to mixtures of toxicants, such as heavy metals, may play a significant role in

neurodevelopment in early life. There may be certain time windows of susceptibility, also

called critical exposure windows, during which vulnerability to metal mixture exposures

is increased. As there are many sequential developmental processes in fetal life and early

childhood (Stiles and Jernigan, 2010), the health effects of heavy metal mixture exposures

can be highly-dependent on exposure timing.

Liu et al. (2016) proposed Lagged Kernel Machine Regression (LKMR) to estimate

the health effects of time-varying exposures to heavy metal mixtures, and identify

critical exposure windows. Under LKMR, the non-linear and non-additive effects of

time-varying mixture exposures are estimated while allowing for the effects to vary

smoothly over time, similar to a distributed lag model. This was accomplished using a

novel Bayesian penalization scheme that combines the group and fused lasso (Kyung

et al., 2010; Yuan and Lin, 2006; Park and Casella, 2008; Huang et al., 2012) within

a Bayesian kernel machine regression framework (Bobb et al., 2015). The flexible

symmetric kernel within each group term, or time point, allows for the identification

of sensitive time windows. Meanwhile, the penalization across time points for each

subject functions to fuse each individual’s time-varying exposures. The authors describe

a Markov chain Monte Carlo (MCMC) algorithm using Gibbs sampling for LKMR. Due

to the complexity of the LKMR model, computational time for updating parameters in

the MCMC algorithm dramatically increases with the number of subjects or time points

studied. As many iterations in the MCMC algorithm are needed to ensure that the chain

converges to a stable posterior distribution for the parameters of interest, this can be

computationally burdensome.
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To reduce computation time, this article implements an approximation method,

called mean field variational Bayes (MFVB) for LKMR analysis. Variational approxima-

tions are useful when standard sampling-based approaches to posterior approximation

are impractical or infeasible. Variational Bayes, shorthand for variational approximate

Bayesian inference, is a computationally efficient alternative to MCMC (Faes et al., 2011;

Wand, 2014; Pham et al., 2013; Wand et al., 2011; Wand and Ormerod, 2012; Menictas and

Wand, 2013; Goldsmith et al., 2011; Hall et al., 2011). Unlike MCMC, variational Bayes

is a deterministic technique. While MCMC tends to converge slowly, variational Bayes

provides a fast approximation to the true posterior.

The central idea behind variational Bayes is that the posterior densities of interest

are approximated by other densities for which inference is more tractable. Suppose

in a Bayesian model, we observe data y, and are interested in the parameter vector

✓. The density transform variational approach involves approximating the posterior

density p(✓|y) by another density, q(✓), and minimizing the Kullback-Liebler divergence

(Ormerod and Wand, 2010). A common type of restriction for the q density is a non-

parametric mean field approximation, which assumes q(✓) factorizes into
Q

M

i=1 qi(✓i),

for some partition ✓1, ..., ✓M of ✓. Under this restriction, we can derive explicit solutions

for updating each product component, and develop a iterative process for obtaining

simultaneous solutions.

In this paper, we focus on the implementation of mean field variational Bayes in

the LKMR model. The paper is developed as follows: Section 2.2 provides a review

of MFVB and kernel machine regression; Section 2.3 details the LKMR model; Section

2.4 describes the simulation studies; Section 2.5 applies the method to a children’s

environmental health study, and Section 2.6 provides the discussion and conclusion.
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2.2 Review of mean field variational Bayes

Suppose we use a Bayesian paradigm to model the continuous parameter vector ✓ 2

⇥ corresponding to an observed data vector y. The posterior distribution p(✓|y) ⌘

p(y,✓)/p(y) is used for Bayesian inference, where p(y) is known as the marginal likeli-

hood. It can be shown that the logarithm of the marginal likelihood is bound by:

log p(y) =
Z

q(✓)log

⇢

p(y,✓)
q(✓)

�

d✓ +

Z

q(✓)log

⇢

q(✓)

p(✓|y)

�

d✓ �
Z

q(✓)log

⇢

p(y,✓)
q(✓)

�

d✓

(2.1)

The integral,
Z

q(✓)log

⇢

q(✓)

p(✓|y)

�

d✓ � 0 (2.2)

is known as the Kullback-Leibler divergence between density q and p(·|y). This quantity

is greater or equal to zero for all densities q, and equal to zero if and only if q(✓) = p(✓|y)

almost everywhere. Therefore, the q-dependent lower bound on the marginal likelihood

is:

p(y; q) = exp

Z

q(✓)log

⇢

p(y,✓)
q(✓)

�

d✓ (2.3)

In variational approximation, we approximate the posterior density p(✓|y) using a q(✓)

for which p(y; q) is more tractable than p(y). By minimizing the Kullback-Liebler diver-

gence between q and p(·|y), we are maximizing p(y; q). We use approximate Bayesian

inference under product density restrictions, called mean field variational Bayes. Under

this non-parametric restriction, we assume that q(✓) can be factored into
Q

M

i=1 qi(✓i) for

some partition
�

✓1, ..., ✓M
 

of ✓.

By maximizing the log p(y; q) over each of the q1, ...qM , we obtain the optimal densities:

q⇤
i

(✓
i

) / exp[E�✓ilog p(y,✓)], i = 1, ...,M (2.4)

E�✓i indicates expectation with respect to the density
Q

j 6=i

q
j

✓
j

. Using iteration, one can

update each q⇤
i

(·) for i = 1, ...,M .
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2.2.1 Review of kernel machine regression

We first review the kernel machine regression framework for estimating the effect of a

complex environmental mixture at a single exposure time point. Supposewe observe data

from n subjects. For each subject i = 1, . . . , n, kernel machine regression (KMR) relates the

continuous, normally distributed health outcome (Y
i

) to M components of the exposure

mixture z

i

= (z1i, ..., zMi

) through a nonparametric function, h(·), while controlling for p

relevant confounders x
i

= (x1i, ..., xpi

). The model is

Y
i

= h(z1i, ..., zMi

) + xTi � + ✏i, (2.5)

where � represents the effects of the potential confounders, and ✏
i

iid⇠ N (0, �2). h (·) can

be estimated parametrically or non-parametrically. We employ a kernel representation

for h (·) in order to accommodate the possibly complex exposure-response relationship.

The unknown function, h (·), can be specified either through basis functions or

through a positive definite kernel function K (·, ·). Under regularity conditions, Mercer’s

theorem (Cristianini and Shawe-Taylor, 2000) shows that the kernel function, K (·, ·),

implicitly specifies a unique function space, H
k

, that is spanned by a set of orthogonal

basis functions. Thus, any function h (·) 2 H
k

can be represented through either a set

of basis functions under the primal representation, or through a kernel function under

the dual representation. The kernel function uses a similarity metric K(·, ·) to quantify

the distance between the exposure profiles z
i

between any two subjects in the study. For

example, the Gaussian kernel quantifies similarity through the Euclidean distance; the

polynomial kernel, through the inner product. Through specifying different kernels, one

is able to control the complexity of the exposure-response function.

Liu et al. (2007) developed least-squares kernel machine semi-parametric regression

for studying genetic pathway effects. The paper connects kernel machine methods and

linear mixed models, demonstrating that (1) can be expressed as the mixed model

y
i

⇠ N(h
i

+ xTi �, �
2) (2.6)
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h = (h1, ..., hn

)T ⇠ N [0, ⌧K(·, ·)] , (2.7)

where K is a kernel matrix with i,j element K(z
i

, z
j

).

2.3 Lagged Kernel Machine Regression

Now we assume that exposures to a complex mixture are measured at multiple time-

points, with the goal of identifying critical windows of exposure. Suppose we ob-

serve data from n subjects, each with an unique multi-pollutant exposure profile z

it

=

(z1i,t, ..., zMi,t

). For each subject i = 1, . . . , n exposed to multi-pollutant mixtures at time

intervals t = 1, ..., T , we use the following model to relate the health outcome to the clini-

cal covariates and exposure covariates:

Y
i

= �0 +
X

t

h
t

(z1i,t, ..., zMi,t

) + xT
i

� + ✏
i

(2.8)

Y
i

= �0 +
X

t

h
i,t

+ xT
i

� + ✏
i

(2.9)

The unknown function, h (·), represents the relationship between multi-pollutant expo-

sures and the health outcome; each individual has an unique h
it

at each time point.

Liu et al. (2016) details the LKMR model and the estimation of h (·); for brevity, we

present a brief description of the hierarchical model here, with a primary focus on the

MFVB approximation. LKMR uses Bayesian regularization to account for collinearity of

mixture components while exploring for the possibility of non-linear and non-additive

effects of individual exposures. Through a kernel machine framework which is incorpo-

rated into distributed lag modeling, the model allows for a flexible specification of the

unknown exposure-response relationship. LKMR is the solution to this grouped, fused

Lasso optimization:

ĥ
group,fused

= arg min
h

(Y�Wh�X�)0(Y�Wh�X�) + �1

T

X

t=1

kh
t

k
Gt + �2

T�1
X

t=1

|h
t+1 �h

t

|1

where kh
t

kGt = (hT

t Gtht)1/2. We define h
t

= (h
t,1, ..., ht,n

) and G
t

= K�1
t

, where K
t

denotes the kernel matrix for time t with i,j element K
t

(z
i

, z
j

). We choose K
t

to be a
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quadratic kernel, such thatK(z, z’) = (zz’+ 1)2.

The hierarchical model is represented as:

Y|h,X,�, �2 ⇠ N
n

(X� +
X

t

h
t

, �2I
n

) (2.10)

h|⌧ 21 , ..., ⌧ 2T ,!2
1, ...,!

2
T�1 ⇠ N(0,⌃

h

) (2.11)

⌧ 21 , ..., ⌧
2
T

⇠ gamma(
n+ 1

2
,
�1

2

2
) (2.12)

!2
1, ...,!

2
T�1 ⇠

T�1
Y

t=1

�2
2

2
e

��2
2!2

t
2 (2.13)

where ⌧ 21 , ..., ⌧ 2T ,!2
1, ...,!

2
T�1, �

2 are mutually independent.

Figure 2.1 depicts the directed acyclic graph (DAG) of the Bayesian statistical model.
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Figure 2.1: Distributed acyclic graph representation of Bayesian hierarchical model

It can be shown via standard algebraic manipulations that the full conditional distribu-

tions for this model are given by the following, fromwhich Gibbs sampling can be readily

implemented:

h|rest ⇠ N

(

(
1

�2
W TW + ⌃�1

h

)�1 1

�2
W T (Y� X�), (

1

�2
W TW + ⌃�1

h

)�1

)

(2.14)

�2|rest ⇠ Inverse Gamma

(

n+ 1

2
+ T,

(Y�Wh� X�)T (Y�Wh� X�)
2

+
hT⌃�1

h

h

2

)

(2.15)

�|rest ⇠ N

(

(XTX)�1XT (Y�Wh), �2(XTX)�1

)

(2.16)

1

⌧ 2
t

|rest ⇠ Inverse Gaussian

(

s

�2
1�

2

khk2
Gt

,�2
1

)

(2.17)

1

!2
t

|rest ⇠ Inverse Gaussian

(s

�2
2�

2

P

N

n=1(ht+1,n � h
t,n

)2
,�2

)

(2.18)
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�2
1|rest ⇠ Gamma

n

T + r,
T

X

t=1

⌧ 2
t

/2 + �
o

(2.19)

�2
2|rest ⇠ Gamma

n

T � 1 + r,

T�1
X

t=1

!2
t

/2 + �
o

(2.20)

We now consider aMFVB approximation based on the following factorization for approx-

imation of the joint posterior density function:

p(�, �2,h,!2, ⌧ 2,�2
1,�

2
2|Y) ⇡ q(�)q(�2)q(h)q(!2)q(⌧ 2)q(�1)q(�2) (2.21)

This leads to the following forms of the optimal q-densities:

q⇤(�) ⇠ N

(

(XTX)�1XT (Y�Wµ
q(h)), (µ

q(1/�2)XTX)�1

)

(2.22)

q⇤(�2) ⇠ Inverse Gamma

(

n(T + 1)

2
, (2.23)

(Y� Xµ
q(�) �Wµ

q(h))T (Y� Xµ
q(�) �Wµ

q(h)) + µT

q(h)µq(⌃⌧2,!2 )�1µ
q(h)

2

)

q⇤(h) ⇠ N

(

�

µ
q(1/�2)WTW+ µ

q(⌃⌧2,!2 )�1

 �1
µ
q(1/�2)WT (Y� Xµ

q(�)), (2.24)

n

µ
q(1/�2)WTW+ µ

q(⌃⌧2,!2 )�1

 �1

)

q⇤(
1

⌧ 2
t

) ⇠ Inverse Gaussian

(

n µ
q(�2

1)

µ
q(khtk2Gt

)

o1/2

, µ
q(�2

1)

)

(2.25)

q⇤(
1

!2
t

) ⇠ Inverse Gaussian

(

n µ
q(�2

2)

µ
q(
PN

n=1(ht+1,n�ht,n)2)

o1/2

, µ
q(�2

2)

)

(2.26)

q⇤(µ
q(�2

1)
) ⇠ Gamma

(

T (n+ 1)

2
+ r1,

T

X

t=1

µ
q(⌧2t )

2
+ �1

)

(2.27)

q⇤(µ
q(�2

2)
) ⇠ Gamma

(

T � 1 + r2,

T�1
X

t=1

µ
q(!2

t )
+ �2

)

(2.28)

where the parameters are updated according to the algorithm in Figure 2.2.
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Initialize: µ
q(1/�2) > 0, µ

q(�) = 1, µ
q(1/⌧2) = 1, µ

q(1/!2) = 1.

Cycle:

⌃
q(h)  

n

µ
q(1/�2)W

TW + µ
q(⌃⌧2,!2 )�1

o�1

µ
q(h)  µ

q(1/�2)⌃q(h)W
T (Y �Xµ

q(�))

µ
q(�)  (XTX)�1XT (Y �Wµ

q(h))

µ
q(1/�2)  n(T+1)

(Y�Xµq(�)�Wµq(h))T (Y�Xµq(�)�Wµq(h))+µ

T
q(h)µq(⌃

⌧2,!2 )�1µq(h)

µ
q(1/⌧2t )

 
n

µq(�21)

µq(khtk2Gt
)

o1/2

µ
q(1/!2

t )
 

n

µq(�22)

µ

q(
PN

n=1(ht+1,n�ht,n)2)

o1/2

µ
q(�2

1)
 T (N+1)+2r1PT

t=1 µq(⌧2t )+2�1

µ
q(�2

2)
 T�1+r2

1
2

PT�1
t=1 µq(!2

t )
+�2

until the increase is negligible.

Figure 2.2: MFVB algorithm for lagged kernel machine regression
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2.3.1 Prediction at new exposure profiles

An important aim of environmental health studies is the characterization of the exposure-

response surface. It is often of interest to predict health effects at unobserved exposure

profiles. Suppose we are interested in predicting the exposure-response relationship for

new profiles of metal mixture exposures, z
new

= (z
new,1, ..., znew,M

), for n
new

subjects,

where h
new

= (h
t,n+1, ..., ht,n+nnew)

T , t = 1, ..T represent the desired predictions. In or-

der to estimate h
new

, we first re-arrange the h vector so that

h̃ = (h1,1, ..., h1,n, h2,1, ..., h2,n, h2,n+1, ..., h2,n+nnew , h1,n+1, ..., h1,n+nnew)
T . Because we have

reordered the h̃ vector, we need to similarly reorder the covariance matrix to correspond,

and denote the reordered matrix by ⌃̃�1
h

.

The joint distribution of observed and new exposure profiles is:

✓

h
h

new

◆

⇠ N

(

0, ⌃̃
h

=

✓

⌃̃11 ⌃̃12

⌃̃T

12 ⌃̃22

◆

)

(2.29)

where ⌃̃11 denotes the 2n x 2n matrix with (i, j)th element K(z
i

, z
j

), ⌃̃12 denotes the n x

n
new

matrix with (i, j
new

)th element K(z
i

, z
jnew), and ⌃̃22 denotes the n

new

x n
new

matrix

with (i
new

, j
new

)th element K(z
inew , zjnew). It follows that the conditional posterior distri-

bution of h
new

is:

hnew|�, b, ⌧ 2, �2 ⇠ N
nnew

(

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1 1

�2
WT (Y� X�), (2.30)

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1

⌃̃�1
11 ⌃̃12 + ⌃̃22 � ⌃̃T

12⌃̃
�1
11 ⌃̃12

)

In order to reduce computation time, we approximate the posterior mean and variance of

h
new

based on the estimated posterior mean of the other parameters.

2.4 Simulation study

We conducted simulation studies to evaluate the performance of the proposed MFVB

inference procedure for estimating critical exposure windows of environmental mixtures.

Our simulation study considered a three-toxicant scenario, where two toxicants exerted
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a gradual non-additive and non-linear effect over four time windows. We used the

following model: y
i

= xT

i

� +
P

t

h
t

(z
it

) + e
i

, where e
i

⇠ N(0, 1) and x1i ⇠ N (10, 1)

and x2i ⇠ Bernoulli(1, 0.5). We simulated auto-correlation within toxicant exposures

Z
m

across time, and correlation between toxicants, using the Kronecker product for the

exposure correlationmatrix. Three choices for auto-correlation within toxicants were con-

sidered: high (0.8), medium (0.5) and low (0.2). The exposure-response function h(z
i

)was

simulated as quadratic with two-way interactions. We simulated no effect of exposure to

the environmental mixture at Time 1, and a gradual increasing effect was simulated from

Time 2 to 4. We assume h
t

(z) = ↵
t

h(z), where ↵ = (↵1,↵2,↵3,↵4) = (0, 0.5, 0.8, 1.0) and

h(z) = z21 � z22 + 0.5z1z2 + z1 + z2. In conducting the analysis, exposure covariates and

confounder variables were centered and scaled.

Table 2.1 presents the results of this simulation, for sample size of 100. We com-

pared the performance of MFVB approximation to that of Bayesian MCMC. For each

simulated data set, to assess the performance of the model for the purposes of estimating

the time-specific exposure-response function, we regressed the predicted bh on h for

each time point. We present the intercept, slope and R2 of the regressions over 100

simulations. Good estimation performance occurs when the intercept is close to zero,

and the slope and R2 are both close to one. We also present the root mean squared

error (RMSE) and the coverage (the proportion of times the true h
i,t

is contained in the

posterior credible interval). Furthermore, we present the width of the 95% posterior

credible interval. Notably, the RMSE is generally smaller under MFVB as compared

with MCMC. The reduction is most apparent situations of high autocorrelation among

mixture components, where the reduction in RMSE ranges from 9-24%. We also see that

the intercept, slope and R2 tend to be very similar under MFVB and MCMC inference.
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Table 2.1 Simulation results, regression of bh on h for MFVB vs. MCMC
h function Time window Intercept Slope R2 RMSE

1 -0.02 N/A N/A 0.38MFVB
2 -0.01 0.93 0.90 0.41

AR-1 = 0.8 3 0.00 0.99 0.95 0.48
4 0.00 0.98 0.97 0.43

1 0.00 N/A N/A 0.47MCMC
2 0.00 0.98 0.85 0.51

AR-1 = 0.8 3 0.00 1.00 0.93 0.56
4 0.00 1.01 0.99 0.46

1 0.00 N/A N/A 0.32MFVB
2 -0.01 0.93 0.91 0.38

AR-1 = 0.5 3 0.00 0.97 0.96 0.38
4 0.00 0.99 0.98 0.37

1 0.00 N/A N/A 0.37MCMC
2 0.00 0.96 0.90 0.40

AR-1 = 0.5 3 0.00 0.98 0.96 0.39
4 0.00 1.01 0.98 0.38

1 -0.01 N/A N/A 0.32MFVB
2 -0.01 0.93 0.92 0.36

AR-1 = 0.2 3 0.01 0.95 0.96 0.36
4 0.00 0.97 0.98 0.37

1 0.01 N/A N/A 0.35MCMC
2 0.01 0.96 0.92 0.36

AR-1 = 0.2 3 0.01 0.97 0.97 0.35
4 -0.01 0.99 0.98 0.36

Performance of estimated h
t

(z
i

) across 100 simulated datasets. RMSE denotes the root
mean squared error of the ĥ as compared to h. Coverage denotes the proportion of times
that the true h falls within in the 95% posterior credible interval of each time point.

We next conduct a simulation to study the effect of varying sample sizes on estimated

posterior credible interval width and coverage. In Figure 2.3, the same three-toxicant sce-

nario was considered as in Table 2.1, but for sample sizes of N = 100, 200, 300, 500, 800.

Because of the computational infeasibility of applying the MCMC procedure to larger

datasets, it was not used for sample sizes of N = 500 and 800. The h contains the ag-
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gregated information for h1, h2, h3, h4. We note that for h, the estimated 95% posterior

credible interval width is about half as small under MFVB as under MCMC. The interval

width is also shorter for � and �2. As sample sizes increase, the interval widths estimated

under both MFVB and MCMC shrink. Coverage, the proportion of times the true param-

eter falls into the posterior credible interval, is high for h across the range of sample sizes.

It ranges from 98% for N = 100, to 100% for N = 800. We note that the coverage of �2

increases substantially under MFVB for increasing sample sizes, changing from 32% for

N = 100 to 86% for N = 800. Coverage of � increases from 86% for N = 100 to 96% for N =

800.
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Figure 2.3: Coverage and posterior credible interval width of key parameters, using
MFVB and MCMC. Performance of estimated across 100 simulated datasets for key pa-
rameters h,� and �2 across a range of sample sizes (N = 100, 200, 300, 500, 800). Width
denotes the length of the 95% posterior credible interval. Coverage denotes the propor-
tion of times that the true parameter falls within in the 95% posterior credible interval.
The dotted horizontal line marks 95%.

Lastly, Table 2.2 records the average computation time for MFVB and MCMC methods

under the simulations in Table 2. In general, the MFVB procedure is about three hundred

times faster than MCMC estimation. For example, for a sample size of N = 300, only 27

minutes is required under MFVB, whereas 3.5 days is required under MCMC.
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Table 2.2 Average time in minutes for MFVB and MCMC methods applied to simulation
case
Method N = 100 N = 200 N = 300 N = 500 N = 800

MFVB 0.49 4.71 26.6 81.4 365

MCMC 175 1409 4990 N/A N/A

Performance across 100 simulated datasets.

2.5 Application

We applied the MFVB procedure to analyze the association between birthweight and

time-varying metal mixture exposures in the PROGRESS study conducted in Mexico

City. The primary outcome was the Fenton z-scored birthweight in kilograms. Exposures

to 11 metals were measured in the mother’s blood at the second and third trimesters

of pregnancy as well as birth. These metals include arsenic (As), cadium (Cd), cobalt

(Co), chromium (Cr), cesium (Cs), copper (Cu), manganese (Mn), lead (Pb), antimony

(Sb), selenium (Se) and zinc (Zn). Through exploratory analysis, we found high levels of

correlation between Cu-Se, Cu-Zn, Zn-Se at the third trimester, which were 0.83, 0.87 and

0.85, respectively. Furthermore, at the second trimester, Cu-Zn had correlation of 0.91.

This led us to remove Se and Zn from the analysis, leading to a final panel of 9 metals

(As, Cd, Co, Cr, Cs, Cu, Mn, Pb, Sb).

We controlled for socioeconomic status (3 categories: low, middle, high), mother’s

hemoglobin during the second trimester of pregnancy, mother’s educational level (<

high school, high school, > high school), child gender, mother’s WASI IQ, mother’s age

and mother’s pre-pregnancy BMI. In our analysis, metal exposure levels were logged,

then centered and scaled. Confounder variables were also centered and scaled. We

considered all subjects with complete data in confounder variables, metal exposures and

outcome, which resulted in N = 391.
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As a primary analysis, we considered a linear regression model that simultane-

ously regressed birthweight on confounders and metal exposures at all time points.

Several metals were identified as significant at the ↵ = 0.05 level. At the second trimester

of pregnancy, Co was positively associated with birthweight (p = 0.031). At the third

trimester, Mn had a positive association with birthweight (p = 0.018) while Pb and Cs

had a negative ones (p = 0.021 and p = 0.047, respectively). Lastly, at birth, Cd was

negatively associated with birthweight (p = 0.044). Through this linear model, there

was also evidence of several two-way interactions: some examples include a positive

Co-Cs interaction (p = 0.010) and a negative Cu-As interaction (p = 0.034) at the second

trimester. There was also suggestion of a positive Cu-As interaction (p = 0.063) at birth.

Using the MFVB inference procedure, we first estimated the relative importance of

each metal, as shown in Figure 2.4. Relative importance is quantified by the difference

in the estimated main effect of a single metal at high exposure (75th percentile) and low

exposure (25th percentile), holding all other metals constant at median exposures. The

results are similar to that of the simple linear regression, although the effects of several

metals appear to be suggested but non-significant, as the confidence intervals cover

zero. For example, there are suggestions of the positive effect of Co at the 2nd trimester,

positive effect of Mn at the third trimester, negative effect of Pb at the third trimester, as

well as negative effect of Cd at birth.
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Figure 2.4: Estimated time-specific main effects applied to PROGRESS data. Plot of the
relative importance of Co, Cs, As, Cd, Cr, Cu, Mn, Pb, and Sb. Relative importance is
quantified by the difference in the estimatedmain effect of a single metal at high exposure
(75th percentile) and low exposure (25th percentile), holding all other metals constant at
median exposures.

As both the MFVB procedure at the linear model suggested significant effects of Co and

Cs, we next focus on those two metals when exploring the exposure-response relation-

ship. Because the exposure response surface is nine-dimensional, we use heat maps

and cross-sectional plots to reduce dimensionality and graphically depict the exposure-

response relationship. Figure 2.5 presents the plot of the predicted exposure-response

surface for Co and Cs, estimated using MFVB at the median of all other metal exposures.

The shape of the surface at the second and third trimesters suggests an interaction effect.
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Figure 2.5: Estimated time-specific Co-Cs exposure response functions applied to
PROGRESS data. Plot of the estimated posterior mean of the exposure-response surface
for Co and Cs, at the median of As, Cd, Cr, Cu, Mn, Pb, and Sb.

To explore this, in Figure 2.6 we plot the predicted cross-section of the exposure-response

surface for Co, at low and high Cs, holding all other metal exposures at their median.

Comparing the top panel (low Cs) to the bottom panel (high Cs), we detect a possible sug-

gestion of a Co-Cs interaction, specifically effect modification in the presence of higher Cs

levels at the second and third trimesters of pregnancy. In the presence of higher Cs levels,

there appears to be a positive linear relationship between Co exposures and birthweight.
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Figure 2.6: Estimated time-specific exposure-response functions for Co at low and high
Cs levels applied to PROGRESS data. Plot of the cross-section of the estimated exposure-
response surface for Co, at low Cs exposure of 25th percentile (top panel) and high Cs
exposure of 75th percentile (bottom panel), holding As, Cd, Cr, Cu, Mn, Pb, and Sb con-
stant at median exposures.

The significant Co-Cs interaction effect at the second and third trimesters is further ev-

idenced by Figure 2.7, which quantifies this interaction by estimating effects for high

(75th percentile) and low (25th percentile) Co-Cs exposures. Lastly, as the cross-sectional

graphs suggest the effects are mainly linear, a quadratic kernel appears to sufficiently

capture the exposure-response relationship.
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Figure 2.7: Estimated Co-Cs interaction at three critical windows for PROGRESS data.
Plot of the estimated interaction effect between Co and Cs, holding As, Cd, Cr, Cu, Mn,
Pb, and Sb constant at median exposures. This was quantified by estimating effects for
high (75th percentile) and low (25th percentile) Co-Cs exposures.

The analysis also suggested a possible weaker interaction between Cu and As. The es-

timated Cu-As exposure-response surface, at the median of all other metal exposures,

is plotted in Figure 2.8. Figure 2.9 illustrates the cross-sectional plot, while Figure 2.10

plots the estimated interaction effects. Taken together, they hint at an interaction effect
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at the second trimester of pregnancy. Cu exposure in the presence of higher As levels

seems to be negatively associated with birthweight at the second trimester of pregnancy.

This negative interaction effect was found to be significant in the linear model during the

preliminary analysis.
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Figure 2.8: Estimated time-specific Cu-As exposure response functions applied to
PROGRESS data. Plot of the estimated posterior mean of the exposure-response surface
for Cu and As, at the median of Cd, Cr, Co, Cs, Mn, Pb, and Sb.
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Figure 2.9: Estimated time-specific exposure-response functions for Cu at low and high
As levels applied to PROGRESS data. Plot of the cross-section of the estimated exposure-
response surface for Co, at low Cs exposure of 25th percentile (top panel) and high Cs
exposure of 75th percentile (bottom panel), holding Cd, Cr, Co, Cs, Mn, Pb, and Sb con-
stant at median exposures.
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Figure 2.10: Estimated Cu-As interaction at three critical windows for PROGRESS data.
Plot of the estimated interaction effect between Cu and As, holding Cd, Cr, Co, Cs, Mn,
Pb, and Sb constant at median exposures. This was quantified by estimating effects for
high (75th percentile) and low (25th percentile) Cu-As exposures.

2.6 Discussion and Conclusion

In this article, we have developed a MFVB inference procedure for the LKMR model,

which allows for computationally efficient analysis of large environmental health

52



datasets. A key contribution of the article is the dramatic decrease in computational time

required for MFVB as compared with MCMC, while also maintaining high accuracy.

We applied the MFVB algorithm to analyze a prospective cohort study of children’s

environmental health in Mexico City, where we found evidence of interaction and effect

modification between multiple pairs of metal exposures. Specifically, we identified a pos-

sible positive interaction between cobalt and cesium at the second and third trimesters

of pregnancy, as well as a potential positive association between cobalt and birthweight

at the second trimester. As cobalt is part of the vitamin B12 complex, evidence of cobalt

exposure may be suggestive of healthy dietary habits which could lead to a higher

birthweight. We also found a possible hint of Cu-As interaction at the second trimester of

pregnancy, suggesting that Cu exposure in the presence of higher As levels is negatively

associated with birthweight. As the literature on metal mixture exposures is sparse, these

detected potential effects could serve as a starting point for future environmental health

studies.

We note that the computational efficiency of the algorithm allowed us to analyze a

prospective cohort study of moderate size with ease, which in turn provides us power to

investigate a large panel of 9 metal exposures. In a previous study, we were limited by

the computational burden to analyze a study of 81 subjects, which limited us to exploring

only exploring 5 metal exposures due to a lack of power to detect effects of a larger panel

(Liu et al., 2016).

Simulations demonstrated that MFVB is on average over 300 times faster than MCMC.

This translates into dramatic computational gains for large datasets. For example,

for a dataset of N = 800, which is of reasonable size for prospective cohort studies,

inference using MFVB takes 6.1 hours. Estimation using MCMC would take 76 days - an

impossible time hindrance.

Notably, we showed that MFVB inference maintains high accuracy for the key pa-

rameter of interest, h, which quantifies the unknown exposure-response relationship.
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Under varying simulation scenarios, MFVB estimates h well, often with smaller RMSE

than using MCMC estimation. Posterior credible interval coverage is consistently

98-100% for h under MFVB for a range of sample sizes.

We also demonstrated that the coverage of the variance parameter, �2, varies sig-

nificantly across the range of sample sizes. For small datasets, coverage can be poor,

but increases considerably for larger sample sizes, reaching 86% under N = 800. When

sample sizes are small, one could easily use MCMC estimation; thus, the coverage

would not be a concern. However, MFVB inference was specifically created for large

sample sizes, when it would be nearly impossible to conduct analysis under MCMC

without a significant time burden. In the situation of large sample sizes, the coverage

of �2 is much higher, albeit still smaller than than of MCMC. This is a small drawback

to the MFVB inference. However, we believe the minor reduction in coverage of �2 in

MFVB as compared with MCMC approaches is over-ridden by the dramatic increase in

computational efficiency.

We also note that the width of the posterior credible intervals for �, �2,h are smaller

under MFVB inference than under MCMC estimation. For h, the intervals are approxi-

mately half as small. It is known that due to the form of the Kullback-Leibler divergence

used in the variational Bayes framework (Bishop, 2006; Rue et al., 2009; Wang and

Titterington, 2005), the procedure can underestimate the posterior variance. While this

may be a contributing factor to the reduced coverage of the �2 parameter, in which

interval widths may have been too short to properly capture the truth, this factor does

not seem to hinder our analyses as h is estimated well. If one was interested in adjusting

for the sometimes underestimated posterior variance estimates, a grid-based method

proposed by Ormerod (2011) could be used. However, for large p and small n, as is in the

case described in this article, the approach of calculation over the grid values can easily

render the GBVA method computationally infeasible.

A potential extension of this article is to develop variable selection within the MFVB for
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LKMR inference procedure. As the method can efficiently analyze studies with large

sample sizes, there is greater power to investigate a larger panel of toxicants and detect

specific ones that exert an undue effect on health. We suggest the addition of a variable

selection term, denoted by r = (r1, ..., rM)T , which corresponds to M components of

the mixture. This vector could incorporated into the overall kernel matrix K(z, z0; r),

such that at each (i, j)th element we have K(z
i

, z
j

; r) = (1 + (rz
i

)(rz
j

))2. However,

estimation of r is not straightforward. Because r is embedded into the kernel matrix

and the individual r
m

cannot be separated, we are unable to find a closed form density

for q⇤(r) in the MFVB procedure. Therefore, quadrature may be required, which is a

classical numerical technique for evaluation definite integrals that do not have analytical

solutions. Wand et al. (2011) proposed univariate quadrature for evaluating non-analytic

integrals which correspond to non-Gibbsian updates, which could be extended to mul-

tivariate quadrature in this case. Another possibility could be to use adaptive rejection

sampling (ARS). To our knowledge, the only example of ARS in the variational Bayes

framework is mentioned briefly in Winn and Bishop (2005).

In conclusion, we note that the complexity of the LKMR Bayesian model, coupled

with the computational burden of estimation using MCMC, warrants and necessitates

the variational Bayes approach. Furthermore, the high accuracy and similar coverage of

key parameters between MCMC and MFVB illustrates the usefulness of the variational

Bayes approach.
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3.1 Introduction

Child neurodevelopment and cognitive function are critically important to public health.

The National Institute of Environmental Health Sciences (NIEHS) has placed a priority

on the quantification of the health impacts of exposure to environmental mixtures (Carlin

et al., 2013). Numerous articles have reported on the neurodevelopmental effects of

perinatal exposure to toxicants, such as pesticides, heavy metals, insecticides, lead and

methyl mercury (Gonzalez-Alzaga et al., 2015; Kalkbrenner et al., 2014; Rauh et al., 2006;

Canfield et al., 2003; Marques et al., 2014). In this article, we investigate how exposures

to heavy metal mixtures affects cognitive growth trajectories. During fetal life and

early childhood, neurodevelopmental processes are rapid, sequential and well-timed,

such that exposure to toxicant exposures can cause lifelong effects (Stiles and Jernigan,

2010). Many metals cross the placental barrier, potentially causing injury to the fetal

brain. Environmental toxicants may impose signals on the central nervous system’s

development; even weak signals could alter a normal cognitive growth trajectory to a

maladaptive one.

Statistical methods for analyzing the longitudinal health impact of exposure to tox-

icant mixtures must address several key issues. First, it is important to account for

potential interactive and synergistic relationships among mixture components. For

example, there is a possibility for detectable mixture effects on health at low doses

of exposure below individual no observable adverse effect levels (Kortenkamp et al.,

2007). There is also evidence of interactions between individual metals: (Claus Henn

et al., 2014) found increased lead toxicity in the presence of higher levels of manganese,

arsenic, and cadmium. Secondly, the exposure-response relationship between metal

mixture exposures and neurodevelopment may be complex, exhibiting both nonlinearity

and non-additivity, which must be accounted for in the statistical model. For example,

manganese has dual roles: it functions as an essential nutrient at low doses but as a

neurotoxicant at high doses, resulting in an inverted-u relationship with neurodevelop-

ment (Claus Henn et al., 2010). Lastly, the ideal method would flexibly capture complex
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mixture-response relationships while also incorporating prior knowledge from previous

studies or subject matter experts.

We propose a new Bayesian hierarchical model, termed Bayesian Varying Coeffi-

cient Kernel Machine Regression, to estimate cognitive growth trajectories of exposures

to environmental mixtures, while flexibly capturing the exposure-response relationships

of mixtures, incorporating prior knowledge, and accounting for non-linear and non-

additive effects of individual exposures. Kernel machine regression (KMR) has been used

substantially in the statistical genetics literature, where it is used primarily to test the

significance of gene sets and predict risk for health outcomes (Cai et al., 2011; Maity and

Lin, 2011; Liu et al., 2007). In the machine learning literature, KMR is often referred to as

Gaussian Process regression, and is used for prediction and variable selection, through

applications to chemometric calibrations and simulations of physical processes (Chen

and Wang, 2010; Linkletter et al., 2006; Qian et al., 2008; Savitsky et al., 2011). Bobb et al.

(2015) has developed Bayesian kernel machine regression methods for estimating health

effects of complex mixtures and conducting variable selection for cross-sectional inves-

tigations. Liu et al. (2016) developed lagged kernel machine regression for estimating

health effects of time-varying exposures to environmental mixtures. We extend BKMR

methods from Bobb et al. (2015) to longitudinal outcomes case, using the modeling

framework of Liu et al. (2016). Our method provides a novel conceptual framework for

the estimation of cognitive trajectories associated with exposure to metal mixtures.

The paper is organized as follows: Section 3.2 provides a review of KMR; Section

3.3 introduces the statistical model BVCKMR; Section 3.4 describes the simulation stud-

ies for evaluating performance of BVCKMR; Section 3.5 addresses an application of the

method to the PROGRESS dataset; and Section 3.6 provides discussion and concluding

remarks.
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3.2 Review of Bayesian kernel machine regression

We first review kernel machine regression as a framework for estimating the impact of

a complex mixture, when both outcome and exposures are measured only at a single

time point. Suppose we observe data from n subjects. We describe the model for a con-

tinuous, normally distributed outcome. For each subject i = 1, . . . , n, kernel machine

regression (KMR) relates the outcome (Y
i

) to M components of the exposure mixture

z

i

= (z1i, ..., zMi

) through a nonparametric function, h(·), while controlling for p relevant

confounders x
i

= (x1i, ..., xpi

). The model is

Y
i

= h(z1i, ..., zMi

) + xTi � + ✏i, (3.1)

where � represents the effects of the potential confounders, and ✏
i

iid⇠ N (0, �2). h (·) can

be estimated parametrically or non-parametrically. We employ a kernel representation

for h (·) in order to accommodate the possibly complex exposure-response relationship.

The unknown function h (·) can be specified through basis functions or through a

positive definite kernel function K (·, ·). Under regularity conditions, Mercer’s theorem

(Cristianini and Shawe-Taylor, 2000) showed that the kernel function K (·, ·) implicitly

specifies a unique function space, H
k

, that is spanned by a set of orthogonal basis

functions. Thus, any function h (·) 2 H
k

can be represented through either a set of

basis functions under the primal representation, or through a kernel function under the

dual representation. The kernel function uses a similarity metric K(·, ·) to quantify the

distance between the exposure profiles z

i

between any two subjects in the study. For

example, the Gaussian kernel quantifies similarity through the Euclidean distance; the

polynomial kernel, through the inner product. Through specifying different kernels, one

is able to control the complexity of the exposure-response function.

Liu et al. (2007) developed least-squares kernel machine semi-parametric regression

for studying genetic pathway effects. The authors connect kernel machine methods with
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linear mixed models, demonstrating that (1) can be expressed as the mixed model

y
i

⇠ N(h
i

+ xTi �, �
2) (3.2)

h = (h1, ..., hn

)T ⇠ N [0, ⌧K(·, ·)] , (3.3)

where K is a kernel matrix with i,j element K(z
i

, z
j

).

3.3 Bayesian Varying Coefficient Kernel Machine Regres-
sion model formulation

Now suppose that exposures to a complex mixture are measured at a single time point,

but we now have repeated measures on the outcome, with the goal of identifying the

longitudinal health impact of exposure. For each subject i = 1, . . . , n, with outcomes

measured at ages j = 1, . . . , J , we consider a random effects model. We relate the out-

come (Y
ij

) to M components of the exposure mixture z
i

= (z1i, ..., zMi

) through two non-

parametric functions, h1(·) and h2(·). We again control for p relevant confounders x
i

=

(x1i, ..., xpi

). The Bayesian Varying Coefficient Kernel Machine Regression (BVCKMR)

model is defined as:

Y
ij

= h1(z1i, ..., zMi

) + h2(z1i, ..., zMi

) ⇤ age
ij

+ xTi � + uT

ij bi + ✏ij, (3.4)

where h
q

(·), q = 1, 2 can be estimated parametrically or non-parametrically, and

represents the exposure-response functions for the exposures z

i

. For individual i, h1,i

corresponds to the individual-specific baseline outcome level, while h2,i corresponds to

the individual-specific age-related trajectory of the health outcome. We again employ a

kernel representation for h
q

(·) in order to accommodate the possibly complex exposure-

response relationships. Also, b
i

represents the random effects for subject i, where b1,i

corresponds to the intercept and b2,i corresponds to the slope.

For simplicity, we write the random effects model as

Y
i

= X
i

� +W
i

h+U
i

b
i

+ ✏
i

(3.5)
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for i = 1, ..., n and repeated measures j = 1, ..., J , where b
i

⇠ N2(0, �2D) and ✏
i

⇠

N
J

(0, �2I
J

).
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The conditional prior of h|�2
1 is

⇡(h|�2
1) / exp

"

��2
1

2
X

q=1

kh
q

kG

#

, (3.6)

where kh
q

kG = (hT

qGhq)1/2. We define G = K�1, where K denotes the kernel matrix

with i,j element K(z
i

, z
j

). Depending on a particular application, a number of different

kernel functions may be employed. Because previous literature suggests an inverted-u

exposure-response relationship between metal mixture exposures and neurodevelop-

ment, we choose K to be a quadratic kernel, such thatK(z, z’) = (zz’+ 1)2.

The hierarchical model is represented as:

y|h,X,�, �2, b ⇠ N
N

(X� +Wh+Ub, �2
IN) (3.7)
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h|⌧ 21 , ⌧ 22 ⇠ N2n

(

0,⌃
h

=

✓

⌧ 21K 0
0 ⌧ 22K

◆

)

(3.8)

⌧ 21 , ⌧
2
2

iid⇠ gamma(
n+ 1

2
,
�1

2

2
) (3.9)

�2
1 ⇠ gamma(r, �) (3.10)

b|�2, D ⇠ N2n(0, �
2(I

n

⌦D)) (3.11)

D�1 ⇠ Wishart
q

(v0, C0) (3.12)

�2 ⇠ inverse gamma(a, �) (3.13)

� ⇠ 1 (3.14)

The form of ⌃
h

follows from representing the Laplace (double exponential) conditional

prior of h|�2
1 as a scale mixture of a normal distribution with an exponential mixing den-

sity (Andrews and Mallows, 1974). The diagonal blocks of size n x n arise due to the

kernel structure placed on each h
q

(·), q = 1, 2.

The joint density is:

f(�,h, �2, ⌧ 2,�2
1, b,D|y) / 1

(�2)N/2
exp



�1

2�2
(y�Wh� X� �Ub)T(y�Wh� X� �Ub
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2
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◆
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◆
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� exp
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��2
1⌧

2
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�r

�(r)
(�2

1)
r�1exp

�

���2
1

�

⇥ 1

(�2)n
|(I

n

⌦D)|�1/2exp
✓

� 1

2�2
bT (I

n

⌦D�1)b

◆

⇥ (3.15)

(�2)
�a�1exp

⇣

� �

�2

⌘

⇥ |D�1|(v0�3)/2exp
✓

�1

2
tr(C�1

0 D�1)

◆

(3.16)

We detail the full conditional distributions of the parameters:

The full conditional distribution of h is:

h|�2, ⌧ , b,�, y ⇠ (3.17)

N2n

(

(
1

�2
W

T
W +⌃

�1
h )�1 1

�2
W

T (y �X� �Wb), (
1

�2
W

T
W +⌃

�1
h )�1

)
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The full conditional of �2 is:

�2|h, ⌧ ,!,X,�, y ⇠ Inverse Gamma

(

N/2 + n+ a, (3.18)

(y�Wh� X� �Ub)T(y�Wh� X� �Ub) + b

T(In ⌦D)�1
b+ 2�

2

)

The full conditional of � is:

�|y, �2,h, b ⇠ N
p

(

(XTX)�1XT (y�Wh�Ub), �2(XTX)�1

)

(3.19)

The full conditional of b is:

b|y, �2,h,�,D ⇠ N2n

(

b

⇤, �2((In ⌦D)�1 +U

T
U)�1

)

(3.20)

where

b

⇤ = ((In ⌦D)�1 +U

T
U)�1(UT

U)ˆb

and

b̂ = (UT
U)�1

U

T(y�Wh� X�)

The full conditional of ⌧ 2 is:

1

⌧ 2
q

|h,�2
1 ⇠ Inverse Gaussian

(

n �2
1

||h
q

||2
G

o1/2

,�2
1

)

(3.21)

The full conditional of �2
1 is:

�2
1|⌧ 2 ⇠ Gamma

(

n+ 1 + r,

2
X

q=1

⌧ 2
q

2
+ �

)

(3.22)

Lastly, the full conditional ofD�1 is:

D�1|b ⇠ Wishart2

(

n+ v0, (C
�1
0 +

1

�2
BTB)�1

)

(3.23)

where

B = (b1, ...,bn

)

and

BTB =
n

X

i=1

b
i

bT

i

64



3.1 MCMC sampler

To implement the Gibbs sampler, we use the following steps:

(0) Start with initial values (�(0), b(0), ⌧ 2(0),h(0),D�1(0), �2(0),�
2(0)
1 )

(1) Generate ⌧ 2(1) from [⌧ 2|�2(0)
1 ]

(2) Generate h(1) from [h|⌧ 2(1),�
2(0)
1 ]

(3) Generate b(1) from [b|y,h(1), �2(0),�(0),D�1(0)]

(4) Generate �2(1) from [�2|y,h(1), b(1),�(0)]

(5) Generate �(1) from [�|y, �2(1),h(1), b(1)]

(6) Generate �2(1)
1 from [�2

1|⌧ 2(1)]

(7) GenerateD�1(1) from [D�1|b(1), �2(1)]

Repeat steps (1) - (7) until we obtain R samples

(�(r), b(r), ⌧ 2(r),h(r),D�1(r), �2(r),�
2(r)
1 ), r = 1, ..., R. These samples will be samples

from the joint posterior distribution of (�, b, ⌧ 2,h,D�1, �2,�2
1|y).

3.2 Prediction of h1 and h2 at new exposure profiles

An important aim of environmental health studies is the characterization of the exposure-

response surface. It is often of interest to predict health effects unobserved exposure pro-

files. Suppose we are interested in predicting the exposure-response relationship for new

profiles of metal mixture exposures, z
new

= (z
new,1, ..., znew,M

), for n
new

subjects, where

h
new

= (h1,n+1, ..., h1,n+nnew , h2,n+1, ..., h2,n+nnew)
T represents the desired predictions. In or-

der to estimate h
new

, we first re-arrange the h vector so that

h̃ = (h1,1, ..., h1,n, h2,1, ..., h2,n, h2,n+1, ..., h2,n+nnew , h1,n+1, ..., h1,n+nnew)
T . Because we have

reordered the h̃ vector, we need to similarly reorder the covariance matrix to correspond,

and denote the reordered matrix by ⌃̃�1
h

.

The joint distribution of observed and new exposure profiles is:

✓

h
h

new

◆

⇠ N

(

0, ⌃̃
h

=

✓

⌃̃11 ⌃̃12

⌃̃T

12 ⌃̃22

◆

)

(3.24)

where ⌃̃11 denotes the 2n x 2n matrix with (i, j)th element K(z
i

, z
j

), ⌃̃12 denotes the n x

n
new

matrix with (i, j
new

)th element K(z
i

, z
jnew), and ⌃̃22 denotes the n

new

x n
new

matrix
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with (i
new

, j
new

)th element K(z
inew , zjnew). It follows that the conditional posterior distri-

bution of h
new

is:

hnew|�, b, ⌧ 2, �2 ⇠ N
nnew

(

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1 1

�2
WT (Y� X� �Ub), (3.25)

⌃̃T

12⌃̃
�1
11

n 1

�2
WTW+ ⌃̃�1

11

o�1

⌃̃�1
11 ⌃̃12 + ⌃̃22 � ⌃̃T

12⌃̃
�1
11 ⌃̃12

)

Due to the computational expense of a large amount of predictions - since it requires sim-

ulation from a high-dimensional multivariate normal distribution - the posterior mean

and variance of h
new

were found through their conditional posterior evaluated at the

posterior mean of all other parameters.

3.4 Simulation studies

We conducted simulation studies to evaluate the performance of the proposed BVCKMR

model for estimating h
q

, q = 1, 2. Our simulation study considered three scenarios in

which different combinations of five toxicants exert an exposure-response effect. These

scenarios were: (1) Linear, (2) Linear with interaction terms, and (3) Quadratic. We used

the following model: y
i

= xT
i

� +
P

t

h
t

(z
it

) + e
i

, where e
i

⇠ N(0, 1), x
i

= (x1i, x2i) and

x1i ⇠ N (10, 1) and x2i ⇠ Bernoulli(0.5). We simulated correlation between toxicants

based on existing data on metal mixture exposures. The exposure-response functions

hq(zm) were simulated as (1) Linear: h1(z) = 0.5 ⇤ z1 and h2(z) = 0.5 ⇤ z1; (2) Linear with

interaction terms: h1(z) = 0.5⇤ (0.5z1z2+ z1+ z2) and h2(z) = 0.5⇤ (z1� z2); (3) Quadratic:

h1(z) = 0.5 ⇤ (z21 � z22 + 0.5z1z2 + z1 + z2) and h2(z) = 0.5 ⇤ (z21 � z22). In conducting the

analysis, both exposure covariates and confounder variables are centered and scaled.

Table 3.1 presents the results of this simulation. For each simulated data set, to as-

sess the performance of the model for the purposes of estimating the time-specific

exposure-response function, we regressed the predicted bh on h for each time point.

We present the intercept, slope and R2 of the regressions over 100 simulations. Good
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estimation performance occurs when the intercept is close to zero, and the slope and

R2 are both close to one. We also present the root mean squared error (RMSE) and

the coverage (the proportion of times the true h
i,t

is contained in the posterior credible

interval).

Table 3.1 Simulation results, regression of bh on h
Scenario h function Intercept Slope R2 RMSE

1 0.001 1.011 0.740 0.309Linear
2 -0.005 1.017 0.900 0.174

1 0.001 1.006 0.880 0.309Linear, interaction
2 -0.005 1.011 0.935 0.175

1 0.001 1.003 0.946 0.309Quadratic
2 -0.005 0.998 0.969 0.175

Performance of estimated h
q

(z
i

) across 100 simulated datasets. RMSE denotes the root
mean squared error of the ĥ as compared to h. Coverage denotes the proportion of times
that the true h falls within in the posterior credible interval of each time point.

The simulation results are further illustrated in Figure 3.1, in which we plot the posterior

mean of the exposure-response surface for a grid of z1 and z2 values, at fixed values of z3,

z4, z5. For each simulation study, the upper panel contains predicted estimates of h(z1, z2)

using BVCKMR, while the lower panel contains the known true exposure-response rela-

tionship for the grid of points. The predicted exposures response surface was averaged

across 100 datasets.
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Figure 3.1: Comparison of BVCKMR estimated vs. true exposure-response surfaces for
a simulation study. Three simulation scenarios were considered: Linear, quadratic and
quadratic with interaction. Plot of the posterior mean of the exposure-response surface
for a grid of z1 and z2, at fixed values of z3, z4, z5. For each simulation study, the upper
panel contains predicted estimates of h(z1, z2) using BVCKMR, while the lower panel con-
tains the known true exposure-response relationship for the grid of points. The predicted
exposures response surface was averaged across 100 datasets.

3.5 Application

We applied the BVCKMR model to the PROGRESS dataset, in order to investigate early

life cognitive trajectories associated with metal mixture exposures in mother’s blood at

birth. Exposures to a panel of 9 metals were considered (As, Cd, Co, Cr, Cs, Cu, Mn, Pb,

Sb). We controlled for socioeconomic status (3 categories: low, middle, high), mother’s

hemoglobin during the second trimester of pregnancy, mother’s educational level (<

high school, high school, > high school), child gender, mother’s WASI IQ, and Fenton’s

birthweight z-scores. In our analysis, metal exposure levels were logged, then centered

and scaled. Confounder variables were also centered and scaled. The longitudinal

outcome variable was Bayley composite cognition scores at four time points (6, 12, 18

and 24 months of age).

For preliminary analysis and a baseline for comparison to the BVCKMR model, we

considered a linear mixed effects model with random intercept and random slope.

Through this model, while no individual effects of metals were identified as significant,
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we did identity several significant interactions. These included: a positive interaction

between Co-Cd at baseline (p=0.04) and a positive Mn-Co interaction at baseline (p=0.03).

Using the BVCKMR model, we initially estimated the relative importance of each

metal for both the baseline cognitive level and cognitive trajectories, as shown in Figure

3.2. Relative importance is quantified by the difference in the estimated main effect of

a single metal at high exposure (75th percentile) and low exposure (25th percentile),

holding all other metals constant at median exposures. The results suggest of the positive

effect of Co and the negative effects of Pb and Cd at baseline (h1). They further suggest

a positive effect of Co and Cu associated with cognitive trajectories (h2), while Pb is

negative associated with cognitive trajectories.
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Figure 3.2: Estimated baseline and cognitive trajectorymain effects applied to PROGRESS
data. Plot of the relative importance of Co, Cs, As, Cd, Cr, Cu, Mn, Pb, and Sb. Relative
importance is quantified by the difference in the estimated main effect of a single metal
at high exposure (75th percentile) and low exposure (25th percentile), holding all other
metals constant at median exposures.

Next, due to scientific interest regarding Mn-Pb co-exposures,we focus on those two met-

als when exploring the exposure-response relationship. Because the exposure response
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surface is nine-dimensional, we use heat maps and cross-sectional plots to reduce dimen-

sionality and graphically depict the exposure-response relationship. Figure 3.3 presents

the plot of the predicted exposure-response surface for Mn and Pb, estimated using

BVCKMR at the median of all other metal exposures. The shape of the surface for h2,

cognitive trajectory, suggests an interaction effect. To explore this, in Figure 3.4 we plot

the predicted cross-section of the exposure-response surface for Mn, at low and high Pb,

holding all other metal exposures at their median. Comparing the top panel (low Pb) to

the bottom panel (high Pb), we detect a possible suggestion of aMn-Pb interaction, specif-

ically effect modification in the presence of higher Pb levels for the cognitive trajectory.

In the presence of higher Pb levels, there appears to be a stronger negative linear rela-

tionship between Mn exposures and cognitive trajectories. Lastly, as the cross-sectional

graphs suggest the effects are mainly linear, a quadratic kernel appears to sufficiently

capture the exposure-response relationship.
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Figure 3.3: Estimated Mn-Pb exposure response functions for baseline (h1) and cognitive
trajectories (h2) applied to PROGRESS data. Plot of the estimated posterior mean of the
exposure-response surface for Mn and Pb, at the median of As, Cd, Cr, Cu, Co, Cs and Sb.
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Figure 3.4: Estimated baseline (h1) and cognitive trajectory (h2) exposure-response func-
tions for Mn at low and high Pb levels applied to PROGRESS data. Plot of the cross-
section of the estimated exposure-response surface for Mn, at low Pb exposure of 25th
percentile (top panel) and high Pb exposure of 75th percentile (bottom panel), holding
As, Cd, Cr, Cu, Co, Cs and Sb constant at median exposures.
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3.6 Discussion

We have developed a flexible Bayesian hierarchical modeling framework to simulta-

neously analyze data on exposures to environmental mixtures, and study their effects

on baseline cognitive and cognitive trajectories. We applied the BVCKMR inference

procedure to analyze a prospective cohort study of children’s environmental health in

Mexico City, where we found evidence of interaction and effect modification between

Mn-Pb joint exposures. Specifically, we found that the negative association between Mn

exposure and cognitive trajectories was heightened in the presence of high Pb levels. The

negative association between Mn and cognition after birth has been previously reported

(Claus Henn et al., 2010), and as Pb is a neurotoxicant, these results illustrate that Pb

co-exposures can be an effect modifier for Mn exposures in relation to cognition.

A key contribution of this work is developing a Bayesian kernel machine regres-

sion framework that accounts for longitudinal outcomes to determine exposure effects

that contribute to baseline cognition as well as cognitive changes across time. The flexible

Bayesian representation allows for the investigation of complex exposure-response

relationships accounts for correlation of mixture components over time while exploring

for the possibility of non-linear and non-additive effects of individual exposures. By

studying the complex relationship between environmental exposures and cognitive

outcomes, this work allows for more precise identification and estimation environmental

mixture exposures. To our knowledge, this is the first Bayesian supervised learning ap-

proach for investigating the effects of multi-pollutant mixtures on cognitive trajectories.

A potential extension of this work is to develop characterizations of the joint effects of a

higher-dimension of metals. We currently focus on the health effects of two metals due

to the straightforward visualization of this relationship through two-dimensional heat

maps and cross-sectional plots. However, it may be of scientific interest to jointly model

three or more metals together, but this type of analysis is limited by the difficulty of

visualization. One potential approach is to compute a surface of differences between two
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joint interaction models, thus detailing the effects of one metal in connection with the

others. For example, one could first predict the exposure response surface between two

metals, held at the 75th percentile of exposure for the third metal and the median of all

other metals, and then predict another exposure response surface for the two metals of

interest, this time held at the 25th percentile of exposure for the third metal. The surface

of differences would be the difference between these two exposure-response surfaces.

73



References

ANDREWS, D. F. and MALLOWS, C. L. (1974). Scale Mixtures of Normal Distributions.

Journal of the Royal Statistical Society, Series B (Methodological) 36 99–102.

BELLINGER, D. C. (2008). Very low lead exposures and children’s neurodevelopment.

Current Opinion in Pediatrics 20(2) 172–7.

BILLIONNET, C., SHERRILL, D. and ANNESI-MAESANO, I. (2012). Estimating the health

effects of exposure to multi-pollutant mixture. Annals of epidemiology 22 126–41.

BISHOP, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.

BOBB, J. F., VALERI, L., CLAUS HENN, B., CHRISTIANI, D. C., WRIGHT, D. O., MAZUM-

DAR, M., GODLESKI, J. J. and COULL, B. A. (2015). Bayesian kernel machine regression

for estimating the health effects of multi-pollutant mixtures. Biostatistics 16 493–508.

CAI, T., TONINI, G. and LIN, X. (2011). Kernel machine approach to testing the signifi-

cance of multiple genetic markers for risk prediction. Biometrics 67 975–86.

CANFIELD, R. L., HENDERSON, C. R., CORY-SLECHTA, D. A., COX, C., JUSKO, T. A. and

LANPHEAR, B. P. (2003). Intellectual impairment in children with blood lead concen-

trations below 10 µg per deciliter. New England Journal of Medicine 348 1517 – 1526.

CARLIN, D. J., RIDER, C. V., WOYCHICK, R. and BIRNBAUM, L. S. (2013). Unraveling

the Health Effects of Environmental Mixtures: AnNIEHS Priority. Environmental Health

Perspectives 121 A6–A8.

CHEN, T. and WANG, B. (2010). Bayesian variable selection for Gaussian process re-

74



gression: Application to chemometric calibration of spectrometers. Neurocomputing 73

2718–2726.

CLAUS HENN, B., COULL, B. A. and WRIGHT, R. O. (2014). Chemical Mixtures and

Children’s Health. Current Opinion in Pediatrics 26(2) 223–229.

CLAUS HENN, B., ETTINGER, A. S., SCHWARTZ, J., TELLEZ-ROJO, M. M., LAMADRID-

FIGUEROA, H., HERNANDEZ-AVILA, M., SCHNAAS, L., AMARASIRIWARDENA, C.,

BELLINGER, D. C., HU, H. and WRIGHT, R. O. (2010). Early postnatal blood man-

ganese levels and children’s neurodevelopment. Epidemiology 21(4) 433–439.

CRISTIANINI, N. and SHAWE-TAYLOR, J. (2000). An introduction to support vector machines.

Cambridge University Press.

DARROW, L. A., KLEIN, M., STRICKLAND, M. J., MULHOLLAND, J. A. and TOLBERT,

P. E. (2011). Ambient Air Pollution and Birth Weight in Full-Term Infants in Atlanta,

1994-2004. Environmental Health Perspectives 119 731–737.

DE VOCHT, F., CHERRY, N. and WAKEFIELD, J. (2012). A Bayesian mixture modeling ap-

proach for assessing the effects of correlated exposures in case-control studies. Journal

of exposure science & environmental epidemiology 22 352–60.

DIEZ, D. M., DOMINICI, F., ZARUBIAK, D. and LEVY, J. I. (2012). Statistical approaches

for identifying air pollutant mixtures associated with aircraft departures at Los Angeles

International Airport. Environmental science & technology 46 8229–35.

FAES, C., ORMEROD, J. T. and WAND, M. P. (2011). Variational Bayesian Inference for

Parametric and Nonparametric Regression With Missing Data. Journal of the American

Statistical Association 106 959–971.

GENNINGS, C., CARRICO, C., FACTOR-LITVAK, P., KRIGBAUM, N., CIRILLO, P. M. and

COHN, B. A. (2013). A Cohort study evaluation of maternal PCB exposure related to

time to pregnancy in daughters. Environmental Health 12 66.

75



GOLDSMITH, J., WAND, M. P. and CRAINICEANU, C. (2011). Functional regression via

variational Bayes. Electronic Journal of Statistics 5 572–602.

GONZALEZ-ALZAGA, B., HERNANDEZ, A. F., RODRIGUEZ-BARRANCO, M., GOMEZ, I.,

AUILAR-GARDUNO, C., LOPEZ-FLORES, I., PARRON, T. and LACASANA, M. (2015).

Pre- and postnatal exposures to pesticides and neurodevelopment effects in children

living in agricultural communities from south-eastern spain. Environment International

85 229–237.

HALL, P., PHAM, T., WAND, M. P. and WANG, S. S. J. (2011). Asymptotic normality

and valid inference for Gaussian variational approximation. The Annals of Statistics 39

2502–2532.

HEATON, M. J. and PENG, R. D. (2013). Extending distributed lag models to higher

degrees. Biostatistics 15(2) 398–412.

HERRING, A. H. (2010). Nonparametric bayes shrinkage for assessing exposures to mix-

tures subject to limits of detection. Epidemiology 21 S71–6.

HSU, L. H., CHIU, L. H., COULL, B. A., KLOOG, I., SCHWARTZ, J., LEE, A., WRIGHT,

A. and WRIGHT, R. J. (2015). Prenatal Particulate Air Pollution and Asthma Onset in

Urban Children: Identifying Sensitive Windows and Sex Differences. American Journal

of Respiratory and Critical Care MedicineDOI: 10.1164/rccm.201504-0658OC.

HUANG, J., BREHENY, P. and MA, S. (2012). A selective review of group selection in

high-dimensional models. Statistical Science) 27(4) 481–499.

KALKBRENNER, A. E., SCHMIDT, R. J. and PENLESKY, A. C. (2014). Environmental chem-

ical exposures and autism spectrum disorders: A review of the epidemiological evi-

dence. Current Problems in Pediatric and Adolescent Health Care 44 277–318.

KIM, Y., HA, E. H., PARK, H., HA, M., KIM, Y., HONG, Y. C., KIM, E. J. and KIM,

B. N. (2013). Prenatal lead and cadmium co-exposure and infant neurodevelopment at

6 months of age: The Mothers and Children’s Environmental Health (MOCEH) study.

NeuroToxicology 35 15–22.

76



KORTENKAMP, A., FAUST, M., SCHOLZE, M. and BACKHAUS, T. (2007). Low-Level Expo-

sure to Multiple Mixtures: Reason for Human Health Concerns? Environmental Health

Perspectives 115 Suppl 1 106–114.

KYUNG, M., GILL, J., GHOSH, M. and CASELLA, G. (2010). Penalized regression, stan-

dard errors and Bayesian lassos. Bayesian Analysis) 5(2) 369–412.

LINKLETTER, C., BINGHAM, D., HENGARTNER, N., HIGDON, D. and YE, K. Q. (2006).

Variable Selection for Gaussian Process Models in Computer Experiments. Technomet-

rics 48 478–490.

LIU, D., LIN, X. and GHOSH, D. (2007). Semiparametric regression of multidimensional

genetic pathway data: least-squares kernel machines and linear mixed models. Biomet-

rics 63 1079–88.

LIU, S. H., BOBB, J., LEE, K. H., GENNINGS, C., CLAUS HENN, B., WRIGHT, R. O.,

SCHNAAS, L., TELLEZ-ROJO, M., ARORA, M. and COULL, B. A. (2016). Lagged ker-

nel machine regression for identifying time windows of susceptibility to exposures of

complex metal mixtures. In preparation .

MAITY, A. and LIN, X. (2011). Powerful tests for detecting a gene effect in the presence of

possible gene-gene interactions using garrote kernel machines. Biometrics 67 1271–84.

MARQUES, R. C., BERNARDI, J. V., DOREA, J. G., MOREIRA, M. and MALM, O. (2014).

Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury and alu-

minum) substances and neurodevelopment at six and 24 months of age. Environmental

Pollution 187 130–135.

MENICTAS, M. and WAND, M. (2013). Variational inference for marginal longitudinal

semiparametric regression. Stat 2 61–71.

ORMEROD, J. T. (2011). Grid based variational approximations. Computational Statistics

and Data Analysis 55 45–56.

77



ORMEROD, J. T. and WAND, M. P. (2010). Explaining Variational Approximations. The

American Statistician 64 140–153.

PARK, T. and CASELLA, G. (2008). The Bayesian Lasso. Journal of the American Statistical

Association 103(482) 681–86.

PHAM, T. H., ORMEROD, J. T. and WAND, M. (2013). Mean field variational Bayesian in-

ference for nonparametric regression with measurement error. Computational Statistics

& Data Analysis 68 375–387.

QIAN, P., WU, H. and WU, C. (2008). Gaussian Process Models for Computer Experi-

ments With Qualitative and Quantitative Factors. Technometrics 50 383–96.

RAUH, V. A., GARFINKEL, R., PERERA, F. P., ANDREWS, H. F., HOEPNER, L., BARR,

D. B., WHITEHEAD, R., TANG, D. and WHYATT, R. W. (2006). Impact of prenatal

chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city

children. Pediatrics 118 e1845–e1859.

ROBERTS, S. and MARTIN, M. A. (2006). The Use of Supervised Principal Components in

Assessing Multiple Pollutant Effects. Environmental Health Perspectives 114 1877–1882.

RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for

latent Gaussian models by using integrated nested Laplace approximations. Journal of

the Royal Statistical Society, Series B 71, Part 2 319–392.

SAVITSKY, T., VANNUCCI, M. and SHA, N. (2011). Variable Selection for Nonparametric

Gaussian Process Priors: Models and Computational Strategies. Statistical science : a

review journal of the Institute of Mathematical Statistics 26 130–149.

STILES, J. and JERNIGAN, T. (2010). The Basics of Brain Development. Neuropsychology

Review 20(4) 327–348.

TAU, G. Z. and PETERSON, B. S. (2010). Normal development of brain circuits. Neuropsy-

chopharmacology 35(1) 127–168.

78



TELLEZ-ROJO, M. M., BELLINGER, D. C., ARROYO-QUIROZ, C., LAMADRID-FIGUEROA,

H., MERCADO-GARCIA, A., SCHNAAS-ARRIETA, L., WRIGHT, R. O., HERNANDEZ-

AVILA, M. and HU, H. (2006). Longitudinal associations between blood lead concen-

trations lower than 10 microg/dL and neurobehavioral development in environmen-

tally exposed children in Mexico City. Pediatrics 118(2) e323–30.

WAND, M. (2014). Fully simplified multivariate normal updates in non-conjugate varia-

tional message passing. Journal of Machine Learning Research 15 1351–1369.

WAND, M. P. and ORMEROD, J. T. (2012). Continued fraction enhancement of Bayesian

computing. Stat 1 31–41.

WAND, M. P., ORMEROD, J. T., PADOAN, S. A. and FR, R. (2011). Mean Field Variational

Bayes for Elaborate Distributions. Bayesian Analysis 6 847–900.

WANG, B. and TITTERINGTON, D. M. (2005). Inadequacy of interval estimates corre-

sponding to variational Bayesian approximations. Proc. 10th Int. Wrkshp Artificial Intel-

ligence and Statistics 373–380.

WARREN, J., M, F., A, H. and LANGLOIS, P. (2012). Spatial-Temporal Modeling of the

Association between Air Pollution Exposure and Preterm Birth: Identifying Critical

Windows of Exposure. Biometrics 68(4) 1157–1167.

WARREN, J., M, F., A, H. and LANGLOIS, P. (2013). Air Pollution Metric Analysis While

Determining Susceptible Periods of Pregnancy for Low Birth Weight. Obstetrics and

Gynecology 2013 1–9.

WINN, J. and BISHOP, C. M. (2005). Variational message passing. Journal of Machine

Learning Research 6 661–694.

YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped

variables. Journal of the Royal Statistical Society, Series B (Methodological) 68(1) 49–67.

79


