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Abstract

Single interrupted time series (ITS) is a quasi-experimental evaluation design used frequently in

the health policy literature. This manuscript investigates the validity of single ITS through two

within-study comparisons (WSCs), comparing the results of a randomized controlled trial (RCT)

with the results that would have been obtained had a single ITS design been employed.

In Part 1, I discuss the theory underlying both within-study comparisons and single ITS. I pro-

pose an assessment framework to determine whether results from a given design should be

deemed “concordant” with an RCT for a given intervention. This framework aims to unify met-

rics for concordance used in the existing literature, and considers both practical and statistical

significance. After summarizing best practices of single ITS analysis, I propose two falsification

tests to determine whether the single ITS design is well suited for the trend stability of a partic-

ular dataset. These tests draws from literature on determining structural breaks in time series

data, as well as work on the optimal binning of data in the regression discontinuity design.

In Part 2, I conduct two within-study comparisons for single ITS. The first study evaluates a

behavior change campaign in Uganda aimed at increasing uptake of rapid diagnostic tests for

malaria. The WSC finds that single ITS estimates are highly concordant with that of the RCT,

producing almost identical results in both point estimate and standard error. This result is robust

to multiple specifications. The second study evaluates the effect of the expansion of Medicaid

on emergency department use in Oregon. In this case, the single ITS estimates are so discordant
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with the RCT as to produce statistically significant results in the wrong direction. This result is

also robust to multiple specification decisions.

In comparing these differing results, I note important differences between the two datasets. The

Uganda data passed the falsification tests for trend stability proposed in Part 1, while the Oregon

data failed. Additionally, the Oregon sample is likely subject to a manifestation of self-selection

known as “Ashenfelter’s dip,” whereas the Uganda sample is not. The implication of this shift

in outcomes just before the intervention’s introduction is especially damaging to single ITS, in

comparison to traditionally “weaker” pre-post designs.

In Part 3, I attempt to generate hypotheses as to when single ITS should and should not be

used. First, samples defined by self-selection are particularly problematic for single ITS analysis.

Second, the advantages of relying on time trends must be weighed against the additional strong

assumptions that the single ITS design carries with it. Third, trend stability in the pre period is

a crucial factor in getting reliable estimates from single ITS. Fourth, the robustness of results in

both WSCs suggests that whether to evaluate a given program with a single ITS design is a more

important decision than how to implement ITS.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I Theory and Motivation 1

1 Introduction 2

2 Within-study comparisons 4

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Within-study comparisons in the social science literature . . . . . . . . . . . . . . . . 6

2.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Interrupted time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Ideal characteristics of a within-study comparison . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Cook’s criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Metric for concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Interrupted Time Series 15

3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Threats to internal validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Concurrent changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Differential pre period changes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



3.2.3 Misspecification of functional form . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Single interrupted time series in practice . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Use of single interrupted time series in health policy literature . . . . . . . . 24

3.3.2 Current best practice in ITS analysis . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Proposed falsification tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Framing this manuscript’s studies . . . . . . . . . . . . . . . . . . . . . . . . . 29

II Empirical Tests of the Interrupted Time Series Design 30

4 Effect of a Behavior Change Campaign on Uptake of Rapid Diagnostic Tests for Malaria:
Uganda 31

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Randomized controlled trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Interrupted time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Effect of Health Insurance on Emergency-Department Use in Oregon 52

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Intervention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Randomized controlled trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



5.3 Interrupted time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

III Conclusion 70

6 Lessons 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Samples defined by self-selection may be problematic for single ITS . . . . . . . . . 71

6.3 A trend is not always superior to a mean . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Trend stability is crucial, especially in the pre period . . . . . . . . . . . . . . . . . . 73

6.5 Whether to implement an ITS design is more important than how to implement it . 74

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

References 77

Appendix A Uganda Secondary Outcomes 85

vii



List of Tables

4.1 Villages in each arm of 2x2 design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Balance table - febrile illness episodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 RCT impact estimates (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 ITS impact estimates (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 ITS vs RCT Estimates (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 RCT impact estimates (Oregon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Notification of insurance provision by date . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 ITS impact estimates (Oregon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 ITS vs RCT estimates (Oregon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 ITS vs Pre-Post estimates (Oregon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Sensitivity of ITS results for ED data in Oregon by timeframe . . . . . . . . . . . . . 69

A.1 RCT impact estimates for BCC intervention for secondary outcomes (Uganda) . . . 86

A.2 Naive ITS impact estimates for secondary outcomes (Uganda) . . . . . . . . . . . . . 87

A.3 Comparison of RCT and naive ITS results for secondary outcomes (Uganda) . . . . 89

A.4 Comparison of RCT and ITS results controlling for rainfall and drug stocks for
secondary outcomes (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.5 ITS impact estimates for secondary outcomes, controlling for rainfall (Uganda) . . . 91

A.6 ITS impact estimates for secondary outcomes, controlling for private and public
ACT stocks (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.7 Fully specified ITS model versus RCT estimates for secondary outcomes (Uganda) . 93

viii



List of Figures

2.1 Structure of a within-study comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Assessing concordance of RCT and quasi-experimental estimates . . . . . . . . . . . 11

3.1 Violation of Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Ashenfelter’s Dip in a single interrupted time series design . . . . . . . . . . . . . . 23

3.3 Best practice of the short, single interrupted time series design . . . . . . . . . . . . 26

4.1 Timeline of studies in Uganda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Weekly febrile illness cases for BCC treatment group over study period . . . . . . . 39

4.3 Average rainfall in Uganda, 1990-2012 (shaded rainy seasons) [97] . . . . . . . . . . 41

4.4 AMFm ACTs arriving in public and private facilities nationally . . . . . . . . . . . . 43

4.5 Visual representation of naive ITS estimates (Uganda) . . . . . . . . . . . . . . . . . 45

4.6 Visual representation of ITS estimates controlling for rainfall (Uganda) . . . . . . . 46

4.7 Visual representation of ITS estimates controlling for national drug stocks (Uganda) 47

4.8 Visual representation of ITS estimates in fully specified model (Uganda) . . . . . . . 48

4.9 Detected structural breaks (Uganda) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 Distribution of WSC results for primary and secondary outcomes . . . . . . . . . . . 51

5.1 Visual representation of naive ITS estimates (Oregon) . . . . . . . . . . . . . . . . . . 61

5.2 ED usage and flu seasons, 2007-09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Visual representation of ITS estimates with “washing out” signup period (Oregon) 63

5.4 Visual representation of ITS estimates with recentered specification (Oregon) . . . . 64

5.5 Detected structural breaks (Oregon) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Emergency department visits in Oregon, California, and Washington, 2001-2013 . . 68

A.1 Visual representation of ITS estimates for secondary outcomes (Uganda) . . . . . . 88

ix



Acknowledgments

First and foremost, I want to thank my dissertation committee for their thoughtfulness, patience,

and encouragement. Jessica: your work on program evaluation is what made me want to come to

Harvard, and I’m grateful to have grown from your mentorship these past five years. Kate: your

ability to get at the heart of complex problems has had an enormous impact on my thinking; I

feel very lucky to have you on my committee. Dan: I hope to one day have a fraction of the

wisdom and energy you bring to both research and teaching. To all three of you: thank you.

I am also grateful to Tom Cook, Atle Fretheim, Steve Soumerai, Matthew Sweeney, and Fang

Zhang for their expertise on interrupted time series and within-study comparisons. Joe New-

house, Kathy Swartz, Alan Zaslavsky, and Debbie Whitney were major sources of support

throughout my PhD, and especially during my dissertation.

I would have been unable to finish this PhD had it not been for the intelligence and friendship of

Hannah Neprash, the constant support of Spencer Robins, and the insights of Ben Lockwood. To

Liana Rosenkrantz Woskie: I have learned so much from you already, and learn more every day.

Finally, thank you to my family: Alex Reynolds, Dean Reynolds, Paris Svoronos, and Soraya

Svoronos. I love you very much, and owe you in more ways than I can count.

x



Part I

Theory and Motivation
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Chapter 1

Introduction

The randomized controlled trial (RCT) is widely regarded as the gold standard for assessing

the efficacy of health interventions. Randomization continues to provide researchers with the

closest approximation to a true counterfactual, and experimental designs have been given an

increasingly public role in discourse on health [28, 29]. Yet randomized designs can be complex,

expensive, unethical, or simply impossible to implement in many contexts [25, 32]. This is

especially true for large-scale social welfare programs, such as those aimed at increasing access

to health services, where opportunities to randomize are few and far between. This presents a

significant challenge to policymakers interested in evidence-based decision making.

Quasi-experimental designs present an alternative [2, 49, 92]. These designs promise flexibility

in the design of evaluations, making them appealing to practitioners. By loosening requirements

on control groups and randomization schemes, these designs allow for evaluations of programs

that would otherwise be infeasible with a strict RCT design. Yet these designs are only as useful

as their ability to produce reliable estimates of program impacts that are free of bias. These

designs rely heavily on untestable assumptions and, as a result, may be especially sensitive to

even minor violations of them [26, 46, 61, 86].

This manuscript tests the validity and robustness of the single interrupted time series (ITS) de-

sign, currently regarded as an especially strong study design [14, 76, 84]. I first outline the

assumptions required for a single ITS design to provide unbiased estimates of program impact.
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Then, in Part II, I subject these assumptions to empirical tests via two within-study comparisons

(WSCs) of large scale randomized trials in the health sector. Finally, in Part III, I extract lessons

from the results of the two WSCs to provide guidance to those considering the use of ITS in their

research.
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Chapter 2

Within-study comparisons

2.1 Background

2.1.1 Rationale

Within-study comparisons (WSCs) emerged out of an explosion of program evaluations funded

by governments and non-profit organizations starting in the 1970s [15]. The vast array of pro-

grams, contexts, and populations involved were often not amenable to randomized designs,

leading to an interest in the internal validity of alternative strategies. Debates over which quasi-

experimental study designs (if any) could reliably produce unbiased estimates of program impact

resulted in a proliferation of studies wherein evaluation designs themselves were the subject of

inquiry.

While statisticians and econometricians have outlined the conditions under which a given design

performs well [84], WSCs aim to empirically test whether or not these requirements hold in

practice. By quantifying the magnitude of bias introduced by a particular threat to internal

validity, WSCs illustrate what would have happened if a program had been evaluated with an

alternative design. This allows researchers to determine whether the degree of bias introduced

would have led to a different conclusion along a policy-relevant margin [44].
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2.1.2 Structure

Figure 2.1 outlines the structure of a typical WSC. In contrast to meta-analyses and “between-

study comparisons” [46], which compare the results of different studies, WSCs consist of con-

ducting two separate analyses of the same data. This has traditionally involved the following

steps (note that these steps are not necessarily performed by the same individual):

1. Conduct a randomized trial;

2. Take only the “Treatment” group of the RCT, leaving the randomized “Control” group

aside;

3. Generate a “Comparison” group using a quasi-experimental technique;

4. Estimate the impact on a given outcome using the RCT data (Treatment versus Control)

and using the quasi-experimental data (Treatment versus Comparison);

5. Compare the impacts using some metric for concordance between designs.

Quasi-Experimental Design

Randomized Trial Within-Study 
Comparison

RCT effect

Quasi-experimental 
effect

? =

–

Treatment Group (RCT) Control Group

–

Comparison GroupTreatment Group (RCT)

Figure 2.1: Structure of a within-study comparison
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While this description captures the essence of WSCs in broad strokes, there is wide variation in

the details of each step in the literature. For example, the nature of the “Comparison” group in

step three depends largely on the quasi-experimental approach being used. Also, each analysis in

step four is ideally conducted by separate groups without knowledge of the other’s results [23],

but this is complicated somewhat by the timing of each analysis and available resources. Some

studies do away with the treatment group altogether, and simply compare the outcomes of a

randomized control group with a quasi-experimentally determined comparison group [15]. The

comparison in step five can also take many forms. Single interrupted time series, for example,

relies on an extrapolation of pre intervention trends to construct a counterfactual rather than

relying on a separate sample for its comparison group. This will be discussed in more detail in

Chapter 3.

2.2 Within-study comparisons in the social science literature

This section summarizes the WSC literature to date. After outlining the evaluation designs that

have been studied and how well they have fared, I extract lessons that will inform the WSCs

conducted in this manuscript.

2.2.1 History

The first, and perhaps most influential, instance of a WSC is LaLonde’s 1986 study of the National

Supported Work Demonstration, an experiment that measured the impact of a randomly allo-

cated training program on earnings [61]. In it, LaLonde took the study’s experimental treatment

group and compared it to two non-experimental control groups drawn from national surveys.

LaLonde controlled for age, education, and race, and found large differences in estimated effects.

These differences were mitigated somewhat by controlling for pre-treatment earnings, by limit-

ing the sample to female participants, and by using two-step Heckman selection models. The

general conclusion of the paper, however, was that econometric methods to control for bias were

insufficient substitutes for RCTs.

LaLonde’s study was not without its critics. Its detractors pointed out that the comparison
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group was drawn from national surveys, not from the same locality of the treatment group

[23]. Subsequent studies reanalyzed LaLonde’s results using updated methodology. Dehejia and

Wahba (1999) used propensity score matching (PSM) to generate a matched comparison group,

which brought results much closer to experimental estimates [26]. However, a later study by

Smith and Todd found that these results were very sensitive to researcher decisions, including the

set of covariates used to generate the propensity score and the sample from which the matched

sample was drawn [86], a finding consistent with a simulation of misspecified propensity score

models [27].

Many WSCs have been conducted since LaLonde’s original study, focusing on various quasi-

experimental techniques. Matching methods, and propensity scores in particular, have been

the focus of a large number of these studies. Some WSCs explicitly compare matched groups

from increasingly dissimilar populations [15], while others focus on the relative effectiveness

of different types of matching methods [17, 37, 38]. Some researchers have gone so far as to

prospectively randomize a sample between experimental and non-experimental studies, in order

to control for other design elements that could confound the comparison of study designs [79,

85]. While these studies came to differing conclusions regarding the utility of these methods

[12, 39, 47, 75], a meta-analysis by Glazerman, Levy, and Myers concluded that several quasi-

experimental methods were unreliable due to unpredictability in both magnitude and direction

of bias.

In contrast to the performance of matching methods, WSCs on the regression discontinuity (RD)

design have found it to be a promising alternative to traditional randomized designs. Cook,

Shadish, and Wang (2008) discuss three WSCs involving RD designs [24]. One, conducted by

Aiken et al. (1998), compared a randomized trial and RD design in the context of a remedial

writing program at a large state university [3]. The authors found that randomized and RD

results were quite close to one another, in terms of both the direction and size of most effects.

However, they point out that the study had several elements that encouraged this correlation.

For example, the writing program was already a requirement for all students who fell below

a certain threshold, thus eliminating a large portion of selection issues. Additionally, the pro-

gram intrinsically collected a large amount of pre-study data, as the university registrar kept

7



the students’ performance and prior coursework. As such, the authors were able to control for

numerous confounding variables from the outset.

A second WSC of the RD design focused on an evaluation of PROGRESA, a conditional cash

transfer program in Mexico that offered incentives to ensure student attendance in school, may

be more instructive [19]. This study had some issues in comparability between designs. For

example, the RD component included data collected at different times from the randomized

component. Though this had the potential to bias its results, the effect sizes measured in both

experimental and RD contexts were quite similar. These findings were robust, as the authors

collected data along multiple strata, phases of program rollout, and outcome variables. With a

few exceptions, Buddelmeyer et al. (2004) were able to reproduce experimental results using an

RD design.

A third study by Black and Galdo (2005) compared experimental and RD outcomes in a job

training program and, similar to the above studies, found that RD results were quite similar to

experimental data [13]. The results are generally favorable to advocates of RD as a worthwhile

alternative to randomized trials, but with one caveat: the results of the RD method contained

large standard errors compared to the randomized method.

2.2.2 Interrupted time series

To date, there has been one published set of WSCs interrogating the interrupted time series

design [40, 41]. Fretheim et al. (2014) reanalyzed cluster randomized control trials of nine

interventions taking place at the health facility level across various health systems. These in-

terventions included a clinical alerting system, computer-based decision support tools, and ed-

ucational/outreach materials for patients and providers. The authors used overlapping 95%

confidence intervals as their metric for whether the designs produced similar results. In all but

one case, Fretheim and colleagues found that single interrupted time series yielded results that

were largely concordant with randomized trial results. In the one discordant case, the addition

of a non-random comparison group brought the results in line with that of the RCT. Otherwise,

the single interrupted time series design was found to be reliable for the selected interventions.
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This initial analysis suggests that the single interrupted time series design has the potential to

replicate the results of an RCT. However, a few issues are worth noting. First, several of the

ITS estimates produced confidence intervals that were much wider than the original RCT, which

made it easier to meet the authors’ metric for concordance. The RCT confidence interval of

one dataset, for example, was (-5.5%, 6.1%), while its ITS confidence interval was (-39%, 28%).

Second, the interventions used in these comparisons were from local-level interventions, which

generally provided flat pre intervention trends and were not subject to the types of concurrent

events discussed in Chapter 3 that have the potential to bias the design’s results. In contrast,

the studies in this manuscript are large-scale interventions affecting populations outside the

confines of health facilities. As a result, they are likely subject to more sources of bias than these

interventions.

2.3 Ideal characteristics of a within-study comparison

2.3.1 Cook’s criteria

Given the variation in methods and rigor across WSCs, Cook, Shadish, andWong (2008) proposed

a set of seven criteria with which the quality of a WSC should be judged [24]:

1. Two or more counterfactual groups. This basic criteria stipulates that a randomized con-

trol group must be compared to some other quasi-experimentally determined comparison

group.

2. Each study estimates the same causal quantity. This requirement speaks to the sub pop-

ulations that various study designs implicitly target. For example, as part of their iden-

tification strategies, many research designs produce estimates that are applicable only to

“compliers,” those who receive the treatment who would not have in the absence of the

intervention. Estimates of the effect of an intervention on compliers is known as the Local

Average Treatment Effect (LATE) [48], and refers only to this subpopulation. If one design

estimates the LATE while another estimates the treatment effect for the entire population,
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a comparison is not valid. When comparing two studies, it is essential that both are esti-

mating the same parameter for comparable populations. In addition, the two studies must

be estimating an effect for the same time period, which is particularly important for the

comparisons in this manuscript.

3. Differences between control and comparison groups unrelated to outcome. In order to

isolate the effect of a different study design unconfounded by extraneous differences, it is

important that the control and comparison data are measured at the same time and in the

same way, and the experiences of control and comparison participants should mirror one

another as closely as possible. For example, any sort of “onboarding” process for partic-

ipants of an RCT has the potential to bias results if the non-experimental group did not

experience a comparable process. Similarly, data collection mechanisms such as repeated

surveys should be the same across the RCT and quasi-experimental design.

4. Blind analyses between studies. Specification decisions by researchers can have a major

impact on the estimated effects of an intervention, as the debate over propensity scores

illustrates. Ensuring that each analysis is conducted blindly prevents the possibility of

analytic decisions being influenced by the desired outcome.

5. Experiment meets technical adequacy criteria. WSCs implicitly assume that the RCT result

represents an unbiased estimate of the true effect of the intervention. As such, the RCT

should meet all the standard requirements of a well-conducted randomized trial.

6. Observational study meets technical adequacy criteria. Similar to criteria 5, the quasi-

experimental study should adhere closely to the “state of the art” for that study design.

7. Comparison of estimates is sufficiently rigorous and relevant. A sufficiently rigorous

WSC uses a set of criteria to determine whether the quasi-experimental estimate is suf-

ficiently different from the experimental one. This can come in many forms, as will be

discussed in the next section.
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2.3.2 Metric for concordance

Conceptual framework

Of all the variation in the literature on within-study comparisons, perhaps the most pronounced

is in the criteria used to compare the designs. Most published WSCs use some kind of qual-

itative determination of whether a quasi-experimental design’s estimates are “close enough”

to experimental ones [3, 15, 17, 26, 47, 79]. Fewer studies measure mean differences in bias

between quasi-experimental and experimental estimates, and compare this to a threshold con-

sidered meaningful by policymakers [27, 44, 96]. Fewer still attempt to measure the statistical

significance of differences in effect sizes between designs [13, 37, 38].

Each of these metrics captures a different dimension of what it means for effect estimates to be

discordant. Are the effect estimates in the same direction and magnitude? If their magnitudes

differ, is the difference in estimates statistically distinguishable from zero (statistical significance)?

Are the two estimates different along a “policy relevant margin” (practical significance)?

Figure 2.2 consolidates these issues into a framework to interpret WSC findings.
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Figure 2.2: Assessing concordance of RCT and quasi-experimental estimates
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At the extremes, interpretation is straightforward. If the difference between the RCT estimate

and the quasi-experimental estimate is neither statistically significant nor practically significant,

the conclusion of the WSC is that the two designs are concordant. That is to say, the quasi-

experimental design was able to replicate the RCT result to the point that it can be considered a

reliable substitute for this particular context. Note that this is not necessarily an endorsement of

the quasi-experimental method more generally, but rather a data point in support of the design

for a given intervention. The result should also be weighed against its sensitivity to various

specifications in order to assess robustness.

Conversely, if the difference in estimates is both statistically and practically significant, the WSC

concludes that the studies are discordant. In addition to a statistically significant difference, in

this scenario the quasi-experimental design would have produced misleading results for the true

impact of the program along a margin that can be considered “policy relevant”. This term is

difficult to determine and necessarily context-specific. In addition to differences across interven-

tions and environments, even different policymakers might disagree over what is policy relevant

for a given context. Attempts have been made to create standards against which WSC results can

be compared, such as using the convention of whether a policymaker would alter support for a

program [44, 96]. This convention is not ideal however, as it places too much importance on the

particular resource constraints of a given policy environment.

As an alternative, I propose using the same metric that is used to weigh the importance of

individual program impacts: if a program produced a change in the outcome that was the size

of the difference between the estimates of the two designs, would the program be considered

a success? If so, the difference between the studies is practically significant. This maps most

closely to the notion of the quasi-experimental design as the “intervention” of interest, and the

difference between the two as the “impact” of the intervention. If using an alternative design

produces a difference that meets this criteria, it should be considered discordant.

In the top-right scenario, where there is a practically significant difference between the two de-

signs but the difference is not statistically significant, the WSC should be considered underpow-

ered. That is to say, the variance in outcomes between the two designs was large enough that

the WSC could not detect the measured impact as significant. Traditionally, underpowered is
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used to describe an instance of Type II error; the design was unable to detect an effect that is

real. Applying this terminology in this way places the concept of practical significance in the

privileged position of determining whether a difference is in fact “real”. Given that WSCs aim to

determine whether a given design would have produced misleading results, this characterization

seems appropriate.

Finally, if the WSC finds a statistically significant difference that is not practically significant, it

does not provide us with much information regarding the quasi-experimental design. On one

hand, the fact that the two designs yielded estimates close enough to result in the same policy

outcome suggests that the quasi-experimental design was successful at approximating the RCT.

On the other hand, the fact that the WSC was able to detect a statistically significant difference

might seem to call the reliability of the quasi-experimental design into question. However, the

statistical significance may also be the result of using a design that produces highly precise esti-

mates, in which case it would be penalized for having a characteristic considered desirable. This

framework uses the term “compatible” to describe a WSC producing a statistically significant

difference that is not practically significant. This result presents evidence, albeit not as conclu-

sive as a fully concordant scenario, that the quasi-experimental design is able to replicate the

results of an RCT to some extent.

Computing standard errors

In order to determine whether differences between two designs are statistically significant, I will

use a bootstrapping method used in some of the more rigorous WSCs to date [13, 37, 38, 86]. The

procedure for generating a standard error estimate for the difference in estimated impacts of a

WSC is as follows:

1. Draw a sample from the RCT dataset (with replacement) of equal size to the original RCT

dataset;

2. Estimate the treatment effect of the bootstrapped RCT dataset;

3. Draw a sample from the quasi-experimental dataset (with replacement) of equal size to the

original quasi-experimental dataset;
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4. Estimate the treatment effect of the bootstrapped quasi-experimental dataset;

5. Take the difference of these two estimates;

6. Repeat steps 1-5 1,000 times;

7. Take the standard deviation of the 1,000 differences, to serve as the standard error of the

difference in estimated effects of the original analyses.

This bootstrapped error is then used to conduct a t-test of the difference in impacts measured by

the two designs.
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Chapter 3

Interrupted Time Series

3.1 Theory

The focus of this manuscript is the interrupted time series (ITS) design. ITS is a widely used

quasi-experimental design that relies on trends before and after the introduction of a discrete

intervention to assess impact [84]. It is one of the few credible evaluation designs that is often

implemented without a comparison group.

This manuscript focuses on short, single interrupted time series. The “short” qualifier means

that my analysis will not rely on autoregressive integrated moving average (ARIMA) techniques

to model time trends [45, 52]. An ITS design requires 100 or more time points to effectively

leverage ARIMA techniques [30], which neither of these datasets have. Instead, I will focus on

ordinary least squares estimation with autocorrelated errors [64], as will be described in Section

3.1.1. The “single” qualifier means that my analyses do not include a non-experimental control

group [84]. Instead, counterfactuals are constructed via a projection of the trend before the

intervention was introduced (“pre period”) into the time period after it was introduced (“post

period”). While this work can be extended to multiple ITS comparisons, the prevalence of single

ITS in the health literature is the primary motivator of this analysis. Note that, for the remainder

of this manuscript, ITS will be used synonymously with single ITS.

As discussed by Bloom (2003), the design is premised on two claims. First, absent some systemic
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change, past experience is the best predictor of future experience. Second, using multiple obser-

vations from the past to establish a trend is a more reliable predictor of the future than a single

observation [14].

3.1.1 Structure

In an ITS analysis, the unit of observation is some equally spaced time unit such as days or

weeks. Data are usually collapsed to the time level, as opposed to a dataset with observations at

the person-time level.1 The standard model for an ITS design is as follows [64, 93]:

Yt = b0 + b1timet + b2postt + b3timepostt + ut (3.1)

ut = rut�k + zt (3.2)

where:

• time is a variable which equals one at the first time point t and is incremented by one for

each subsequent time point;

• post is a dummy variable which equals one at the time immediately following the intro-

duction of the intervention of interest (p) and for every time point thereafter;

• timepost is a variable which equals zero until time p + 1, and is incremented by one for

each subsequent time point;

and, by extension:

• b0 is the starting level of outcome Y;

• b1 is the pre period slope;

1There is some work on constructing ITS estimates at the person-time level using Generalized Estimating Equations.
While this has been described at a theoretical level [99], there have been almost no examples of it used in practice.
This manuscript adheres to the traditional convention of time-level data.
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• b2 is the change in level at time p;

• b3 is the change in slope in the post period.

To account for autocorrelation, the error term in Equation 3.2 is a Newey-West standard error

with lag k [70].

A defining characteristic of an ITS analysis is that there is not a single coefficient that represents

program impact. In Equation 3.1, b2 and b3 represent the immediate and subsequent effects of

the intervention, respectively. This is seen by many as a strength of the design, since it allows

researchers to disaggregate short term effects from longer term effects [76]. For the purpose of a

WSC, however, care must be taken to generate effect estimates that are comparable to the single

impact estimate of a comparison of means in a traditional RCT.

3.1.2 Assumptions

The interrupted time series design’s validity rests on the following assumptions:

• Assumption 1: The expectation of the pre intervention level and trend would be the same

irrespective of whether the sample received the treatment;

• Assumption 2: In the absence of the intervention, the post intervention trendline would

have been equivalent in expectation to an extrapolated pre intervention trend.

• Assumption 3: The time trends in the pre and post periods can be expressed as a linear

combination of parameters.

Let us illustrate this more formally, using the potential outcomes framework [57]. Assume Yt1

denotes the potential outcome for some group at time t if they receive the treatment, while Yt0

denotes the potential outcome for the group at time t if they do not receive the treatment. Then

we can specify the following two equations using an ITS model:
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Yt1 =a0 + a1timet + a2postt + a3timepostt + et (3.3)

Yt0 =g0 + g1timet + g2postt + g3timepostt + nt (3.4)

In a single ITS context, we only have data to estimate Equation 3.3. We are, however, making the

following implicit assumptions regarding Equation 3.4:

• Assumption 1a: a0 = g0

• Assumption 1b: a1 = g1

• Assumption 2a: g2 = 0

• Assumption 2b: g3 = 0

If the components of Assumption 1 are met, then we have an unbiased estimate of the pre period

trendline.

If the components of Assumption 2 are met, then an extrapolation of the pre period trendline

provides an unbiased estimate of post period outcomes in the absence of the intervention.

If Assumption 3 is added, then Assumptions 1 and 2 apply to pre period trends and extrapola-

tions that are linear.

Taken together, Assumptions 1 - 3 imply that a linear extrapolation of the pre period trendline into

the post period provides an unbiased representation of the counterfactual for a treated sample.

3.2 Threats to internal validity

In discussing the threats to the internal validity of the ITS design, Shadish, Cook, and Camp-

bell point to a number of potential threats [84]. These are discussed in the context of changes

taking place at the time of an intervention’s introduction, though pre period events that linked

to the treatment pose a risk as well. In addition, the ITS design is particularly vulnerable to

misspecification issues, known broadly as misspecifications of functional form.
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3.2.1 Concurrent changes

The primary threat to an ITS design is the existence of changes that affect the outcome at the

same time as the intervention’s introduction p [84]. Since a single ITS design lacks a control

group, any shifts in level or trend at the time of the intervention’s introduction is fully attributed

to the intervention itself [81]. Thus, any changes at time p other than the intervention which are

related to the outcome of interest will be incorrectly attributed to the intervention.

In practice, “concurrent changes” can come in a number of forms [84]:

• History threat: Changes external to the sample such as other programs, policies, or economic

changes. For example, the measured effect of a job training program on employment with

single ITS would be biased if the program took place just as an economic recession began.

• Selection threat: Changes in the composition of the sample at the time of the intervention’s

introduction. For example, the introduction of a tax on firms may cause firms to relocate.

• Instrumentation threat: Changes in measurement of the outcome at the time of the inter-

vention’s introduction. The adoption of an electronic medical record system, for example,

may require that health outcomes be recorded electronically rather than on paper. If this

change makes it easier or harder for a physician to note a given condition, the ITS design

may detect an effect at the intervention’s introduction unrelated to the intervention’s actual

efficacy.

While each of these threats comes from a different source, they affect the validity of the design in

the same way: by introducing a change in the data at the time of an intervention’s introduction,

these threats make it difficult to disentangle the true program impact from the impact of these

other events.

Using the framework of Section 3.1.2, the threat of concurrent changes can be seen as a violation

of Assumption 2: a concurrent event at the time of the intervention’s introduction p implies that,

even without the intervention, there would be a shift of the outcome variable in level (g3 6= 0),

slope (g4 6= 0), or both after time p.
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3.2.2 Differential pre period changes

The threat of concurrent changes at the time of an intervention’s introduction is the primary focus

of most ITS analyses. However, an equally important threat lies in the violation of Assumption

1. For example, knowledge that a cigarette tax will soon come into effect may lead to a sharp

increase in cigarette sales leading up to the tax’s introduction. In this scenario, a change related to

the intervention taking place during the pre period leads to a trendline that is a poor approximation

of the outcome variable’s trend in the absence of the intervention.

Consider Figure 3.1. The diamonds in this figure represent data for the sample had it not received

the intervention (Yt0), while the squares represent data for the sample if it had received the

intervention (Yt1). The diamonds within squares represent points that are identical in either

potential outcome.

Figure 3.1: Violation of Assumption 1

Figure 3.1 illustrates that outcomes in the post period remain the same irrespective of whether

the sample received the treatment. Additionally, Assumption 2 holds in that the post period

outcome for the sample had it not received the intervention is identical in level and slope to the
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sample’s pre period (g3 = 0,g4 = 0). However, something about the intervention induced a

change in outcomes during the pre period so that, in this case, the pre period slope of the sample

had it received the intervention in the post period is different from the pre period slope of the

sample had it not.

The implications of this violation are clear: a pre period trend that is differential between the

potential outcomes of units will lead to incorrect estimates of the change in level and slope at

time p. In the case of Figure 3.1, the change in slope and level should both be zero (referring to

Equation 3.3: a2 = 0, a3 = 0). Instead, this analysis would find a decrease in both level and slope.

A frequent cause of this phenomenon is referred to as “anticipation effects,” wherein knowledge

of the impending intervention leads to a change in behavior different from what would otherwise

have occurred [67]. Similar issues can arise through history, selection, and instrumentation. Note

that, for any of these threats to lead to bias in impact estimates, the pre period change must

be somehow tied to the intervention itself. An event that does not affect potential outcomes

differentially would not violate Assumption 1.

Ashenfelter’s dip

One particular violation of Assumption 1, called “Ashenfelter’s dip,” merits further discussion.

Ashenfelter’s dip refers to a scenario wherein individuals self-select into a program on the basis

of the outcome variable that the program aims to address [54]. This phenomenon was originally

documented in the context of job training programs, wherein participant earnings appeared to

decrease in the time leading up to a program’s introduction [8]. This decrease in earnings was

being driven by the fact that those choosing to enroll in the program were recently unemployed.

As a result, those being selected into the sample were individuals who had decreasing earnings.

We can illustrate the bias caused by Ashenfelter’s dip in the absence of a randomized control

group using an exercise adapted from Heckman and Smith (1999) [54]. Let the following repre-

sent the experimental estimate obtaining by taking the difference of a randomized treatment and

control group in the post period:
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E(Y1post|D = 1)� E(Y0post|D = 0) (3.5)

Where D = 1 for individuals in the randomized treatment group, and D = 0 for individuals in

the randomized control group. Under the assumption of random assignment, Equation 3.5 esti-

mates the effect of the treatment on the treated. If instead we use a simple pre-post comparison

E(Y1post|D = 1)� E(Y1pre|D = 1) (3.6)

which, in the presence of randomization, is equivalent to

E(Y1post|D = 1)� E(Y0pre|D = 0) (3.7)

then the bias of the pre-post estimator is the difference between Equations 3.5 and 3.7

E(Y0post|D = 0)� E(Y0pre|D = 0) (3.8)

In words, the bias of the pre-post estimator is the change in earnings of the control group before

and after the intervention. In the event that the pre-treatment dip in earnings was transient,

and strictly the product of self-selection, then this bias term would be positive. Using a simple

pre-post estimator would thus lead to an overstatement of the true effect.

The risk of Ashenfelter’s dip is especially strong in the context of a single interrupted time series

design. Whereas a simple pre-post estimator is biased by artificially low outcomes in the pre

period, a single ITS estimator is biased by an extrapolation of an artificially low trend. If the pre

period values are stable and the pre period trend is zero, this would produce the same bias as

the pre-post estimator. However, if the dip is especially transient, and only occurs in a few time

points leading up to the intervention, the single ITS counterfactual will extrapolate the decreasing

trend, thus exacerbating the bias by a large amount.2

Figure 3.2 illustrates this issue. Assume both scenarios represent a dip in outcomes from the

2A positive trend would also produce bias, but it would consist of an extrapolation that is too high, not too low.
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trend prior to the start of data collection. Scenario A (circles) has a dip that is constant in

the pre period, whereas Scenario B (diamonds) has a decreasing dip. Both scenarios have the

same pre-treatment mean, and thus would produce the same degree of bias in a simple pre-post

comparison. However, in the context of a single ITS design, Scenario B would produce much

greater bias.

Bias A

Bias B

Figure 3.2: Ashenfelter’s Dip in a single interrupted time series design

3.2.3 Misspecification of functional form

The final significant threat to the validity of ITS estimates is related to statistical specification.

Since the “control” group of a simple ITS is represented by the extrapolation of pre period trends,

the design relies more heavily on assumptions related to the timing of the intervention, the

nature of its diffusion, and the presence of autocorrelation in the data [84]. For example, failing

to account for a phased rollout of an intervention may lead to an underestimate of its effect,

since untreated units at time t could be mischaracterized as treated, and vice versa. Similarly, a

mischaracterization of the timing of an intervention’s impact could lead to an overstatement or

understatement of effect. On the other hand, failing to account for autocorrelation in the data
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may lead to artificially low standard errors, increasing the likelihood of Type I error. While these

risks are present in other study designs, the granularity of time in the data make ITS especially

vulnerable.

Note that these issues do not necessarily violateAssumption 3. For example, the true relationship

between the outcome variable and time can contain quadratic or interaction terms and still be

linear in parameters. However, if an ITS model does not account for these realities in the data, it

will lead to biased estimates.

The number and importance of specification decisions in the ITS design provide a great deal of

discretion to the researcher. As such, it is important that any within-study comparison of ITS

scrutinizes these decisions and the extent to which results are sensitive to them. A failure to do

so may overstate its robustness as a quasi-experimental design [26, 86].

3.3 Single interrupted time series in practice

3.3.1 Use of single interrupted time series in health policy literature

The previous sections outlined the general structure, characteristics, and risks of the single ITS

design. This section focuses on its varied use in the health policy literature, both in terms of

intervention types and statistical specifications. I then propose a set of characteristics for ITS that

represents the “best practice” in the literature, which will be the approach used in the subsequent

within-study comparisons.

Broadly, the interventions studied using the ITS design tend to fall into one of two groups.

The first, hereafter referred to as “local-level” interventions, involve introducing a change in the

management of a health facility or group of facilities, often aimed at improving healthcare quality.

Example of facility interventions include interventions to alter prescribing behavior [18, 33, 91],

reduce antimicrobial resistance [7, 31, 66], improve patient adherence to medication [16], reduce

readmissions [62], and improve referral behavior [51].

The second type of intervention, hereafter referred to as “population-level” interventions, aim to

assess the impact of large-scale policy change on a given population. These interventions include
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an effort to reduce perinatal mortality at a state level [43], a national change in pharmaceutical

reimbursement schedules [4, 87], a statewide excise tax imposed on cigarette sales [65], and

a national pay for performance program [83]. Single ITS designs are particularly attractive to

evaluate population-level interventions, since a reasonable control group is often not possible.

However, these interventions may be more problematic for ITS than local-level ones. As noted in

Section 2.2.2, localpolic-level interventions may be less subject to the kind of concurrent events

that the single ITS design is especially vulnerable to. In scenarios where there are additional

events affecting the outcome throughout the study period, it is perhaps easier for a researcher to

identify them and account for them in the analysis. Population-level interventions, on the other

hand, take place in a much less controlled environment, and concurrent influential events may

be more difficult to identify and account for.

In addition to these differences in scope, the health literature utilizing the ITS design lacks a

consensus as to what elements are required for a strong ITS analysis. A systematic review by

Jandoc et al. [59] that focused exclusively on drug utilization research is instructive. The authors

compared 220 drug utilization studies employing ITS against a common rubric of characteris-

tics that define ITS applications. They find commonalities along basic metrics, such as clearly

defining a time point (84.5%) and using graphical figures to display results (83.6%). But these

commonalities cease when going deeper than these superficial characteristics. For example, only

66.4% of studies attempted to account for autocorrelation, a fundamental issue in ITS designs

as described above. There was also wide variation in the use of lag periods (27.7%), seasonality

(30.6%), and sensitivity analyses (20.5%).

3.3.2 Current best practice in ITS analysis

Given the inconsistent way the ITS design is used in practice, it is necessary to define a standard

against which other study designs can be compared. The characteristics presented in Figure

3.3 represent my assessment of best practices of short, single ITS currently found in the health

policy literature. Note that the “short” and “single” descriptors exclude ARIMA modeling and

a comparison group; this standard therefore does not represent the most robust version of ITS

given unlimited data. That said, the vast majority of ITS designs found in the literature are of
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this abbreviated form.

Sections 1-3 of Figure 3.3 present characteristics of many high quality short single ITS studies

currently in the literature [59, 93]. Note that many of these requirements represent one of many

suggested best practices. For example, the only other WSCs on the interrupted time series design

use the requirement of six data points in each period, as opposed to twelve [41]. In these cases, I

list the requirement most frequently referenced in the literature.

Figure 3.3: Best practice of the short, single interrupted time series design

1. Data [6, 93]

• � 12 time points in each period (“pre” and “post”)

• � 100 observations/units per period

• Data collapsed to the time level

2. Statistical Analysis [30, 64, 81]

• Model using segmented regression analysis

• Test for and account for autocorrelation in error term

• Account for seasonality via dummy variables and/or lag in error term

• Control for time-varying covariates that could potentially affect outcome

3. Sensitivity analyses [84, 93]

• Allow for lag/transition period if intervention or context requires it

• Assess sensitivity of results to changes in intervention point, changes in functional

form, and the addition of covariates

• Consider adding nonlinear terms

In addition to these characteristics found in the ITS literature, the next section suggests two

falsification tests not currently employed in ITS analyses. This suggestion draws from broader
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work on time series analysis, as well as a technique from the regression discontinuity design,

which shares many structural similarities to ITS [55, 56].

3.3.3 Proposed falsification tests

The ITS design involves fitting a rigid structure onto time data, wherein the regression is per-

mitted to diverge from a straight line only at a specific point and in a specific way. The risk

of “forcing” the data into this structure is therefore high; it is possible that the researcher will

ignore other potential break points in the data, or impose an artificial break point where there is

none. To address these risks, I propose the following two procedures, drawing from techniques

in both time series analysis and the regression discontinuity literature.

The first falsification test involves conducting a search for “data-driven” structural breaks in the

data using a test for an unknown break point [5]. This involves taking the maximum value of

the test statistic obtained from a series of Wald tests over a range of potential break points in the

data [78]. The test can be represented formally as follows [88]:

supremum ST = sup
b1bb2

ST(b) (3.9)

Where ST(b) is the Wald test statistic testing the hypothesis H0 : d = 0 at potential break point b:

yt = xt + (b  t)xtd + et (3.10)

I conduct this test using the estat sbsingle command in Stata 14 [88]. The purpose of this

test is to determine whether there is a sufficient break in the data to be detected and, if there is,

whether it corresponds to the theorized break point in the ITS design.

The second falsification test attempts to characterize the amount of variability across time points

in the dataset. It is implemented as follows:

1. Generate a set of bins using an optimal bin width algorithm from the regression discon-

tinuity literature [58]. Since these bins are generated to smooth the plot of data against a
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running variable in order to better discern break points, the edges of these bins represent

potential candidates for structural breaks in the data. I determine these bins using the

rdplot command in Stata [20]. The purpose of this step is to create a set of theorized

break points to test in the subsequent step.

2. Test for the presence of a structural break at the meeting point between adjacent bins using

a Chow test, a variant of a Wald test and a technique common in the time series literature

[21]. Briefly, a Chow test tests for a known break point by fitting a regression with a

dummy variable equalling one for every time point after the theorized break. I conduct

this test using the estat sbknown command in Stata 14 [88]. The frequency of statistically

significant p-values across the potential break points provides a picture of the underlying

variability in the data.

While the results of these two procedures are not conclusive, they provide insight into the un-

derlying data, the intervention, and the appropriateness of the single ITS design. If the first test

for a data-driven structural break is unable to identify a break in the data, it suggests that the

intervention of interest did not lead to enough of a break in trend to be detectable by ITS. Thus,

a failure to reject the null of no break point provides evidence that the intervention had no effect.

If instead the first test detects a structural break at a point other than the intervention point, it

suggests that some outcome-influencing event took place during the study period, and that the

impact of this event exceeds that of the intervention of interest. This could mean several things:

perhaps the other event had an especially large effect on the outcome, or perhaps the impact

of the intervention of interest is quite small. Regardless of the cause, there are two potential

implications for detecting a break other than the intervention point. First, it would be prudent

to allow for a second break at this point using multiple segments, in order to account for its

influence. However, this may not be sufficient to account for it, particularly if it violates ITS

Assumption 1. In this case the presence of a major event - more significant than the intervention

itself - suggests that ITS may not be the most appropriate study design for these data.

Concerns about the appropriateness of ITS would be further confirmed by the presence of multi-

ple, statistically significant break points detected in the second falsification test. Detecting multi-
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ple break points suggests that the underlying variation in the data - driven by external events or

simply the result of “noise” - may simply be too great for a single ITS design to perform reliably.

This is especially concerning in the pre period, the trend of which is the sole determinant of the

modeled counterfactual. Since the internal validity of the single ITS design relies so heavily on

the nature of the time trend, instability in the underlying trend calls the projected counterfactual

into question.

3.3.4 Framing this manuscript’s studies

Figure 3.3 is the standard of ITS analysis that will be used in the within-study comparisons

detailed in this manuscript. Adhering to these requirements ensures that the following analyses

represent a “state of the art” version of ITS to be compared against the “gold standard” of RCTs.

Both ITS studies meet the data requirements in section 1, and the analyses I conduct use all the

tools outlined in section 2. Adherence to sections 3 varies somewhat depending on the nature of

each intervention and the characteristics of the data in each study. For example, the intervention

described in Chapter 5 lends itself to testing for a transition period, whereas the intervention in

Chapter 4 does not. That said, I conduct the falsification test proposed in Section 3.3.3 for both

studies.

One shortcoming of the following analyses is that I will not be blind to the RCT results, which

has the potential to influence my specification decisions. Still, I have attempted to conduct a

set of analyses analogous to what a researcher conducting an ITS analysis would reasonably

do. Each WSC in this manuscript has a section justifying the methodological decisions made

in constructing the ITS models. While this is not nearly as reliable as having the researcher be

blind to the original study results, my hope is that making my decisions transparent will help to

address the possibility of researcher bias.
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Part II

Empirical Tests of the Interrupted Time

Series Design
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Chapter 4

Effect of a Behavior Change Campaign

on Uptake of Rapid Diagnostic Tests for

Malaria: Uganda

4.1 Background

The first within-study comparison of the interrupted time series design focuses on a behavior

change campaign (BCC) in Uganda aimed at increasing the use of rapid diagnostic tests (RDTs)

for malaria. RDTs aim to improve management of febrile illnesses in malaria-endemic countries

by allowing individuals with basic training to effectively diagnose malaria cases [22]. RDTs are

a simple and inexpensive alternative to microscopy [95], a technique which requires substan-

tially more equipment and training to administer correctly [50]. Quick and accurate diagnosis

of malaria helps to ensure that cases of febrile illness receive appropriate treatment [77]. A fre-

quent response to febrile illness in malaria-endemic areas is to presume that the cause of fever is

malaria and prescribe antimalarial medication, which is ineffective against other causes of fever.

Reducing the cost of testing is an important step in preventing the presumptive treatment of

malaria-like symptoms with antimalarials, which can lead to worse health outcomes, waste of

scarce resources, and increased risk of parasital resistance to antimalarials [60, 68, 72, 89].
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The RCT in question consists of two independently randomized interventions that were intro-

duced six months apart from one another. The first intervention involved training vendors from

licensed drugs shops to test patients with RDTs. They were also given the option to purchase

RDTs at a subsidized price from wholesale vendors [22]. The aim of this intervention was to

increase the availability of RDTs in the study area, while also ensuring that drug shops were

adequately trained in their use. The second intervention, a behavior change campaign (BCC),

involved community dialog meetings aimed at sensitizing communities to the benefits of RDTs

over presumptive treatment of malaria.
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Figure 4.1: Timeline of studies in Uganda

This within-study comparison focuses on replicating the results of the second randomized trial -

the BCC intervention to promote uptake of RDTs for febrile illness episodes. The existence of the

first RCT, the intervention for which was introduced six months prior to the BCC intervention,

provides sufficient pre period time points to conduct an ITS analysis of the BCC intervention

(Figure 4.1). For the remainder of this chapter, “the study period” refers to the time period that

includes both RCTs, and “the intervention” refers to the randomized trial of the BCC intervention.
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4.1.1 Context

The study took place between March 2011 and April 2012 in the mid-Eastern region of Uganda, a

country where malaria accounts for 30-50% of outpatient visits and 9-14% of inpatient deaths [80].

Presumptive treatment of malaria based on symptoms is common despite Ugandan Ministry of

Health guidelines that emphasize parasitological confirmation of suspected cases [10]. This is

especially true outside of higher level public health facilities, and many Ugandans seek malaria

treatment in private sector drug shops [69, 71, 74].

The study was designed as a cluster-randomized controlled trial involving 92 villages across six

districts: Budaka, Kibuku, Pallisa, Kumi, Ngora, and Bukedea. In June and early July 2011, the

RDT intervention was introduced [22]. At this time, 67 of the 92 villages were randomly selected

into the treatment group. All the drug shops in these villages received training in administer-

ing RDTs and were given access to subsidized rapid diagnostic tests (RDTs) sold through local

wholesale providers. 12 villages were randomized into the RDT control group, while 13 villages

did not have an eligible drug shop. The behavior change campaign (BCC) intervention - the

focus of this within-study comparison - was introduced in early December 2011. The number of

villages in each arm is presented in Table 4.1.

Table 4.1: Villages in each arm of 2x2 design

RDT Intervention (June 2011)
Treatment Control Ineligible Total

BCC Intervention Treatment 34 5 7 46
(December 2011) Control 33 7 6 46

Total 67 12 13 92

Of the twelve villages in the control group of the RDT intervention, five villages were also ran-

domized into the treatment group of the BCC intervention. For these villages, it should be noted

that malaria testing was still available at public facilities and many private providers. While

access was somewhat higher in the RDT intervention group than in the control group, the BCC

intervention still had the potential to affect testing behavior in both the treatment and the control

arms of the RDT trial.
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4.1.2 Intervention

Between December 1 and December 9, 2011, two community dialogue meetings took place in

each treated village, one for men and one for women. The meetings lasted approximately two

hours, and targeted the primary female household member in charge of health care decisions (for

the women’s meeting), and the male household head and local leaders (for the men’s meeting).

Meetings were coordinated and conducted by the Uganda Health Marketing Group (UHMG).

The objectives of the meetings were: a) to sensitize the community members to the benefits of

getting proper testing with RDTs; and b) to encourage community members to seek early malaria

testing before treatment. A total of 16 facilitators were trained to lead meetings by addressing 14

talking points related to these objectives. Meetings began with a discussion of common causes

of illness in the community, with a particular focus on malaria. Other diseases with similar

symptoms to malaria were then discussed, to segue into a discussion on the risks of presumptive

treatment. Facilitators then presented revised guidelines by the Ugandan Ministry of Health and

the World Health Organization. Meeting attendees were then introduced to the concept of RDTs,

their advantages, and the procedure wherein individuals can get tested before treatment. This

was reinforced using visual aids and a live demonstration of RDT testing.

4.2 Randomized controlled trial

4.2.1 Data

For each village in the study, 30 households were randomly selected and monitored through-

out the study period. A baseline survey on demographic information was administered to all

sampled households, followed by monthly follow up visits and an endline survey to those same

households. If the household reported any health problems, a treatment-seeking module col-

lected information on the nature of the health problem, type of health service used to address it,

whether blood-test-based diagnosis was conducted, and what medications were taken.

The sample was limited to cases of febrile illness, in accordance with existing literature on malaria

testing and treatment. The dataset consists of 25,358 cases of febrile illness, encompassing 10,445
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individuals across 2,347 households.

The primary outcome of interest is the likelihood that a given case of febrile illness resulted in a

malaria test. Secondary outcomes include, for a given case of febrile illness, where treatment (if

any) was sought, and what medication (if any) was ultimately taken.1

4.2.2 Methods

I estimate the effect of the BCC campaign using the following linear probability model:

Pr(testedijt = 1) = b0 + b1postit + b2treatment ⇤ postjt + at + gj + eijt (4.1)

where

• testedijt is a dummy variable which equals one if the febrile illness episode i which began

at time t in village j resulted in the individual receiving a malaria test;

• postit is a dummy variable which equals one if the start of febrile illness episode i at time t

is after the introduction of the BCC intervention;

• treatment ⇤ postjt is a dummy variable which equals one if village j has received the BCC

intervention by time t;

• at are fixed effects for ten survey rounds;

• gj are village fixed effects, which subsume a dummy variable for being in the treatment

group (hence its exclusion from the model).

b2 captures the effect of the BCC intervention in the post period. I use a linear probability model

(as opposed to logit or probit models) to simplify interpretation and facilitate comparison to the

ITS design in Section 4.3.

1Results on these outcomes can be found in Appendix A.

35



4.2.3 Results

Balance

Baseline values for demographics and behavior related to treatment seeking, testing behavior,

and medication taking are presented in Table 4.2. The table shows statistically insignificant

baseline differences along all variables between the treatment and control arms of the BCC inter-

vention, which is consistent with a successful randomization process. The only exception to this

baseline equivalence is the percent of cases involving taking an antimalarial wherein the glob-

ally recommended treatment, Artemisinin-based Combination Therapy (ACT), was taken. This

difference, though statistically significant, is not a practically significant margin, and is the only

example of a statistically significant difference in the baseline measures.
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Table 4.2: Balance table - febrile illness episodes

Treatment Control Treatment vs.
Control
(p-value)

Demographics

Under 5 years old 0.339 0.349 0.535
(0.015) (0.011)

Female 0.550 0.557 0.492
(0.011) (0.008)

Treatment seeking

Ever visited public facility (%) 0.270 0.258 0.671
(0.029) (0.020)

Ever visited private facility (%) 0.155 0.177 0.411
(0.026) (0.019)

Ever visited any drugshop or pharmacy (%) 0.440 0.417 0.533
(0.037) (0.028)

Ever visited program drug shop (%) 0.179 0.169 0.777
(0.033) (0.023)

Ever sought any care (%) 0.769 0.743 0.152
(0.018) (0.014)

Malaria test received if visited . . . a

Public facility (%) 0.512 0.560 0.402
(0.057) (0.041)

Private facility (%) 0.342 0.438 0.183
(0.072) (0.055)

Any drugshop or pharmacy (%) 0.096 0.074 0.349
(0.024) (0.016)

Program drugshop (%) 0.127 0.109 0.579
(0.033) (0.023)

Medication taking

Took ACT (%) 0.298 0.319 0.396
(0.024) (0.018)

Took ACT (% Among those taking an antimalarial) 0.538 0.595 0.046**
(0.028) (0.020)

Took any antimalarial (%) 0.554 0.536 0.583
(0.033) (0.024)

Took any antibiotic (%) 0.279 0.258 0.191
(0.016) (0.010)

Number of households 1,172 1,152
Number of observations 10,015 9,460

Standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1

All regressions include village and survey period fixed effects.
a Denominator represents the number of people that visited the facility.
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Impact Estimates

Table 4.3 presents impact estimates for the BCC intervention, expressed as the change in percent-

age points of the probability that a given febrile illness episode resulted in a malaria test.

Table 4.3: RCT impact estimates (Uganda)

(1) (2)
VARIABLES Full Sample Under 5

Post -0.0157 -0.0119
(0.0169) (0.0282)

Treatment x Post 0.0200 0.0197
(0.0147) (0.0216)

Constant 0.257*** 0.322***
(0.0116) (0.0186)

Observations 25,207 8,990
Control Mean 0.230 0.246

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Outcome variable is the likelihood of receiving a malaria test
Regression includes fixed effects for villages and survey rounds

Standard errors are clustered at the village level

The RCT is unable to detect a statistically significant increase in the likelihood of receiving a

malaria test, both for the full sample and for children under five. The absolute change in likeli-

hood of getting tested for the treatment group as compared to the control group is approximately

two percentage points. This is not a practically significant change, particularly when compared

to the control mean of approximately 25 percent.

The following ITS analysis, then, will be compared against a statistically insignificant impact of

two percentage points.
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4.3 Interrupted time series

4.3.1 Data

For the interrupted time series specification, data was collapsed to the week level, in contrast to

the RCT specification which used “pre” and “post” periods and survey round fixed effects.

Figure 4.2 details the number of episodes recorded per week.
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Figure 4.2: Weekly febrile illness cases for BCC treatment group over study period

All outcome measures in this analysis are of conditional probabilities: the probability of x event

occurring given that a febrile illness episode took place. As a result, each measure is standardized

by its shifting denominator.

4.3.2 Methods

Naive specification

The main specification for a single ITS design for outcome yt is as follows:
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yt = f0 + f1timet + f2postt + f3timepostt + kt (4.2)

kt = rkt�k + $t (4.3)

where time denotes the number of weeks since data collection began, post denotes the introduc-

tion of the intervention, and timepost denotes the number of weeks since the introduction of the

intervention. The error term tt in Equation 4.3 is a Newey-West standard error with lag k [70].

The value of k is determined by a Cumby-Huizinga general test for autocorrelation in time series

data [82], implemented using the actest command in Stata [11]. I conduct the test for lags 1 to

10, and use the lag with the smallest p-value as k. If none of the lags are significant at the 5%

level, then no lag is used.

For comparisons with RCT results, I use the midpoint of the post period and compare the value

of the extrapolated pre period trend with the value of the fitted post period trend. I use Stata’s

lincom command to produce estimates for a linear combination of the post coefficient and the

timepost coefficient at the midpoint of the post period.

Concurrent changes

As discussed in Section 3.2.1, any event taking place at the same time as program rollout that

could affect the outcome poses a risk for ITS analyses. In the context of this intervention, any

event that would affect the likelihood of receiving a malaria test would be an issue. Two time-

dependent variables arise as potential confounders: Uganda’s rainy seasons and the influx of

antimalarial drugs into Uganda during this time. Both of these phenomena have the potential

to influence testing behavior. Rainfall increases the overall prevalence of malaria, which could

influence consumer confidence that a given febrile illness is caused by malaria. The increased

availability (and subsequent lower cost) of antimalarial drugs into the health sector could influ-

ence the cost-benefit calculation of using malaria tests, both from the consumer and provider

perspectives.
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Rainfall Given that the spread of malaria is highly correlated with rainfall [73], one may expect

testing behavior to shift with the two rainy seasons that Uganda experiences. The first rainy

season begins in February, peaks in May and ends in June. The second begins in September,

peaks in November, and ends in December [42, 73]. While the rainy season fluctuates throughout

the study period, the main source of bias lies in the decrease in rainfall around December, the

time of the intervention’s introduction. Additionally, it is likely that the rainy season might affect

the timing and immediacy of the effect of the intervention, since use of RDTs might vary with

the perceived likelihood of contracting malaria given the time of year.

However, it is not clear a priori which direction testing behavior would move, and whether the

effect would be gradual or immediate, as a result of the rainy season. More rain implies both

more cases of malaria (increasing testing behavior) and more of a presumption that a given fever

episode is malaria (decreasing testing behavior). Which of these two outweighs the other is not

obvious.

To answer this question, I rerun Equation 4.2 with a control variable for rainfall, a continuous

variable for average rainfall for that month from 1990-2012 [97]. This rainfall data are shown in

Figure 4.3.
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Figure 4.3: Average rainfall in Uganda, 1990-2012 (shaded rainy seasons) [97]
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Drug stocks Throughout the study period, an influx of artemisinin combination therapies

(ACTs) for malaria was taking place in Uganda thanks to the Affordable Medicines Facility -

malaria (AMFm) [34]. Launched in 2009 as a pilot in seven countries including Uganda, the

AMFm is a Global Fund program aiming to increase the availability and affordability of ACTs

[1]. By reducing the cost of ACTs to first-line buyers by approximately 95% [63], the AMFm

increased the market share of ACTs over inferior monotherapies and older antimalarials [34].

Note that this reduction in cost relates to first-line buyers, who did not necessarily transfer these

savings to consumers.

Since ACT stocks were increasing throughout the study period, there are a number of mech-

anisms through which the AMFm could influence testing behavior that would confound the

results of a single ITS. On the consumer side, increased availability of ACTs in local drug shops

and in the private sector could reduce reliance on the public sector, where individuals are more

likely to get a malaria test. Alternatively, a lower price for ACTs might reduce the relative value

of a malaria test, since one of the benefits of testing is preventing spending on unnecessary an-

timalarial drugs. This could therefore reduce the willingness of individuals to pay for a test.

On the provider side, the influx of ACTs might correspond to an increase in training of health

workers with respect to malaria, leading to more appropriate use of malaria tests and treatment.

Alternatively, health workers may perceive malaria tests as a way to ration the use of ACTs when

there is high demand and low supply. The increased availability of ACTs might reduce the per-

ceived need of health workers to ration their use via RDTs, leading to a decrease in RDT use.

Note that, despite the fact that this influx took place throughout the study period, any fluctua-

tions in the rate of drug stock replenishment occurring in the pre period or coinciding with the

BCC intervention’s introduction would constitute a concurrent event and potentially bias results.

To account for this influx of ACTs, I include national ACT stocks of public and private facilities

in my ITS analyses (see Figure 4.4, with vertical line representing intervention introduction).

Controlling for these stocks should isolate the impact of drug stocks on testing behavior over the

course of the study period.

42



0
5

10
15

20
Cu

m
ul

at
ive

 A
M

Fm
 A

CT
s 

(M
illi

on
s)

06
May

20
11

27
May

20
11

17
Ju

n2
011

08
Ju

l20
11

29
Ju

l20
11

19
Aug

20
11

09
Sep

20
11

30
Sep

20
11

21
Oct2

011

11N
ov

20
11

02
Dec

20
11

23
Dec

20
11

13
Ja

n2
01

2

03
Feb

20
12

24
Feb

20
12

16
Mar2

01
2

Week

Private ACT Stocks Public ACT Stocks

Figure 4.4: AMFm ACTs arriving in public and private facilities nationally

4.3.3 Results

Table 4.4 presents the ITS estimates for each specification described above.
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Table 4.4: ITS impact estimates (Uganda)

(1) (2) (3) (4)
VARIABLES Naive Rainfall Drugs Combined

Week -0.00170** -0.00170* -0.00295 -0.00296
(0.000831) (0.000904) (0.00831) (0.00846)

Post 0.0386 0.0388 0.0404 0.0400
(0.0243) (0.0404) (0.0283) (0.0427)

Week*Post -0.00228 -0.00228 -0.00165 -0.00163
(0.00259) (0.00273) (0.00520) (0.00555)

Rainfall (mm) 2.24e-06 -6.31e-06
(0.000364) (0.000415)

Public stocks 0.00515 0.00513
(0.0339) (0.0342)

Private stocks 0.000628 0.000654
(0.00445) (0.00475)

Constant 0.274*** 0.274*** 0.274*** 0.274***
(0.0177) (0.0386) (0.0201) (0.0481)

Observations 47 47 47 47
Lag 0 0 0 0

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Outcome variable is the likelihood of receiving a malaria test
Data collapsed to the week level for 47 weeks

What follows is a discussion of the results for each model.

Naive results

The results of the naive regression are presented in column 1 of Table 4.4. The coefficients suggest

a statistically significant decline in testing over the study period of 0.2 percentage points per

week ("Week"). After the BCC intervention, there is an increase in testing of 3.8 percentage points

("Post"), followed by a steeper decline in testing over time of 0.40 percentage points ("Week ⇤

Post"). However, neither of these shifts is found to be statistically significant.

Figure 4.5 presents these results visually:
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Figure 4.5: Visual representation of naive ITS estimates (Uganda)

The extrapolated counterfactual in Figure 4.5 provides some insight regarding the insignificant

effect of the BCC intervention. If the counterfactual is to be believed, the sample ended up

with almost exactly the same likelihood of receiving a test as it would have had if the BCC

intervention had never been introduced. However, the shape of the impact over time suggests

that there was a short term “bump” that gradually wore off throughout the post period. The

notion that a behavior change intervention would affect behaviors in the very short term but not

after is certainly plausible, and is an insight that a comparison of means would be unable to

illustrate.

Concurrent changes

Columns 2 through 4 of Table 4.4 present the effect on ITS estimates of controlling for rainfall,

national ACT drug stocks, and both, respectively.

Rainfall Column 2 suggests that controlling for monthly rainfall levels has essentially no effect

on ITS estimates. The negligible effect of controlling for rainfall is further illustrated in the almost

identical visuals of Figures 4.5 and 4.6:
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Figure 4.6: Visual representation of ITS estimates controlling for rainfall (Uganda)

These results suggest that the ITS specification is robust to a variable tightly related to seasonality.

Additionally, the Cumby-Huizinga tests in all specifications found no significant evidence for

autocorrelation, further assuaging concerns about time-related factors biasing results.

Drug stocks Column 3 of Table 4.4 shows the effect of controlling for public and private ACT

stocks on the ITS estimates. The primary change between columns 1 and 3 is that the time trend

shifts from being statistically significant to insignificant, despite increasing in magnitude. This is

likely a consequence of the high correlation between public and private drug stocks with time,

as shown in Figure 4.4.

This change, however, is not along a practically significant margin. Figure 4.7 illustrates just how

similar the ITS estimates are as compared to the naive regression illustrated in Figure 4.5:
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Figure 4.7: Visual representation of ITS estimates controlling for national drug stocks (Uganda)

This visual illustrates the slight fluctuations in predicted likelihood of a malaria test attributable

to the presence of drug stocks. It is still possible that the influx of ACTs throughout the entire

study period is causing the secular decrease in RDT use shown in the “week” variable and in all

figures. However, the similarity of results in the naive and drug stock regressions suggests that

any shifts in drug stocks during the study did not lead to a change in testing behavior.

Combined The results of the previous sections suggests that drug stocks and rainfall provide

little benefit in predicting the effect of the BCC intervention on testing behavior. Nonetheless, it

represents a reasonable approximation of what a researcher without access to control group data

would propose. Column 4 of Table 4.4 and Figure 4.8 present the estimates of this fully specified

model.
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Figure 4.8: Visual representation of ITS estimates in fully specified model (Uganda)

The implication of these exercises is that the ITS specification is highly robust to potential con-

founders discussed in Section 4.3. This lends credibility to the notion that the estimates in Table

4.4 represent a best attempt to use the single ITS design to its fullest. The question, then, is how

well this ITS “best guess” fares with respect to the original RCT.

RCT comparison

Table 4.5 compares the ITS estimates at the midpoint of the post period to the RCT estimates from

Section 4.2.3. The last column of the table shows the difference between each ITS estimates with

that of the RCT, including bootstrapped standard errors produced using the method described

in Section 2.3.2.
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Table 4.5: ITS vs RCT Estimates (Uganda)

Impact Estimate Difference
Randomized Controlled Trial 0.020

(0.015)
Naive 0.020 0.000

(0.020) (0.020)
Rainfall 0.021 0.001

(0.033) (0.035)
Drugs 0.027 0.007

(0.053) (0.034)
Full 0.027 0.007

(0.057) (0.036)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Outcome variable is the likelihood of receiving a malaria test
Data collapsed to the week level for 47 weeks

The ITS estimates are remarkably close to that of the RCT. The estimates never differ by more than

0.7 percentage points, and the differences are never statistically significant. An interesting note

is that the model that comes closest to the RCT is the naive specification. This result is identical

and magnitude and almost identical in standard error. While some secondary outcomes do in

fact differ from the RCT results (see Appendix A), the impact of the BCC intervention on the

primary outcome is measured as effectively with a single ITS design, using time trends and no

control group, as it is with a cluster RCT design.

4.4 Discussion

Returning to the framework outlined in Figure 2.2, the differences in results between the ITS

specifications and RCT are neither practically nor statistically significant. In this case, the single

ITS design is concordant with the RCT result.

Understanding why the single ITS performs so well is difficult to determine with only one study’s

results. That said, the result of the falsification test described in Section 3.3.3 is instructive. First,

the data-driven test for a structural break was unable to reject the null hypothesis of no structural
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break in the data. In addition to aligning with the RCT result of no detectable effect of the

intervention, this result also suggests that the outcome of interest was not subject to any large

breaks at other points.

The binning method described in the latter part of the falsification test found only two points of

possible breaks in the post period. Figure 4.9 shows dotted lines corresponding to these potential

breaks, and a solid line at the intervention’s introduction (which was not found to be statistically

significant). Thus the underlying data - particularly in the pre-period and at the intervention’s

introduction - can be thought of as relatively stable.
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Figure 4.9: Detected structural breaks (Uganda)

In addition to having a stable trend, it is worth noting that the spread of the data appears to

adhere to the linearity implied by Assumption 2. This is especially important during the pre

period, since it ensures that the projected counterfactual provides a stable baseline against which

the post period data can be compared. Moreover, the shape of the data looks plausible; the trend

looks relatively stable other than seasonal fluctuations, and the influx of antimalarial drugs into

the country throughout the study period helps explain the slightly negative trend.

The robustness of the results to specifications that include potential confounders lends some

credibility to the main specification. This is further exemplified by Figure 4.10, which illustrates
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the spread of difference between the single ITS and RCT designs for the primary outcome of

being tested in addition to the secondary outcomes listed in Appendix A.
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Figure 4.10: Distribution of WSC results for primary and secondary outcomes

The primary outcome of receiving a malaria test fairs best, while secondary outcomes are more

likely to produce discordant estimates (though not by much). This is especially true of outcomes

related to treatment seeking behavior, arguably the set of variables least directly tied to the BCC

intervention. These outcomes are more discordant with the RCT result, and are more likely to

have a significant difference with the RCT result. One could argue that the dynamics underlying

an individual’s treatment seeking behavior are subject to a more complex set of covariates than

the determinants of whether an individual receives a malaria test for a given episode, such as

changes in the distribution of public and private facilities, as well as an individual’s trust in

public and private providers. While further research is required to test this theory, the results are

compatible with the argument that an outcome influenced by fewer external variables is more

likely to provide a reliable ITS estimate.
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Chapter 5

Effect of Health Insurance on

Emergency-Department Use in Oregon

5.1 Background

5.1.1 Intervention

The second WSC in this manuscript tests the single interrupted time series design in the context

of an expansion of health insurance in the United States. In 2008, the state of Oregon expanded

its Medicaid program to a group of previously uninsured adults via a lottery [35]. 30,000 names

were drawn from a waiting list of 90,000 people. These individuals were given the opportunity

to apply for Medicaid and, if they met requirements for eligibility, enroll [9]. The random-

ized nature of the expansion allowed for a large-scale randomized trial to study the effects of

health insurance provision on self-reported general health [35], measured physical health [9],

and emergency-department usage [90]. This analysis will focus only on the study assessing the

impact of insurance provision on usage of emergency departments [90], since it relied primarily

on administrative data for which multiple pre period time points were available.
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5.2 Randomized controlled trial

5.2.1 Data

Data consists of all emergency-department visits to 12 Portland area hospitals from 2007 to 2009.

Though these data are not comprehensive of all ED visits in Oregon, it comprises almost all

visits in Portland and about half of all hospital admissions in Oregon [90]. The dataset includes

emergency-department records and, for those that were admitted to the same hospital, inpatient

records.

Of the 90,000 names in the lottery, approximately 75,000 remained in the Oregon Health Insur-

ance Experiment after excluding ineligible entries. Of these individuals, 24,646 lived in a zip

code at the time of the lottery where residents used one of the twelve study hospitals almost

exclusively (� 98% of admissions). Within this sample, 9,626 were assigned to the treatment

while 15,020 were controls [90]. Emergency-department data were probabilistically matched to

the individuals in the experiment on the basis of name, date of birth, and gender [9, 35, 90].

Since randomization was at an individual level, larger households were more likely to receive

the treatment than smaller ones. To account for this, the RCT specification below controls for

household size.

5.2.2 Methods

The RCT results are estimated using both intent to treat (effect of lottery selection) and local

average treatment effect (effect of Medicaid coverage) specifications. The intent to treat (ITT)

effect was estimated using the following equation:

yih = b0 + b1LOTTERYh + b2hhsizeh + b3preoutcomei + b4preoutcome_missingi + eih (5.1)

where

• yih is the total number of ED visits for person i in household h between March 9, 2008 and
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September 30, 2009;

• LOTTERY is a dummy variable for the selection of household h into treatment;

• hhsize is the number of individuals in household h, a variable which was correlated with

treatment selection;

• preoutcome is the pre-randomization value of person i for the outcome (before March 9,

2008);

• preoutcome_missing is an indicator for an observation lacking a pre-randomization value

for outcome y (the preoutcome value for these observations is the mean for non-missing

observations). Of the 24,646 individuals in the dataset, 12 were missing pre-randomization

values.

The effect of Medicaid coverage is estimated using an instrumental variable (IV) approach,

wherein the variable LOTTERY is used as an instrument for Medicaid coverage. A two-stage

least squares (2SLS) regression is modeled using the following equation:

yih = p0 + p1MEDICAIDih + p2hhsizeh + p3preoutcomei + p4preoutcome_missingi + nih (5.2)

where p1 is estimated using the first stage equation:

MEDICAIDih = d0 + d1LOTTERYih + d2hhsizeh + d3preoutcomei + d4 + preoutcome_missingi + µih

(5.3)

Using the IV approach, p1 represents the impact of receiving Medicaid on the compliers, i.e.,

those who received Medicaid via the lottery who would not have done so have without it.
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5.2.3 Results

Results of the ITT and IV estimates for the outcome variable “total number of ED visits in the post

period” are presented in Table 5.1.1 Column (1) displays ITT results (Equation 5.1). The effect

of selection in the lottery is an increase in ED visits of .101 (p < 0.01), indicating a 10% increase

in the number of ED visits for the treatment group as compared to the control group mean of

1.022. Column (2) displays IV results (Equation 5.2). The effect of enrollment in Medicaid for

compliers is an increase of .408 visits (p < 0.01), a 40% increase as compared to the control group.

While these two estimates differ in terms of magnitude (by construction), they are consistent in

positing a positive effect of insurance allocation on ED use that is both practically and statistically

significant.

Table 5.1: RCT impact estimates (Oregon)

(1) (2)
VARIABLES ITT IV

Selected in the lottery 0.101***
(0.0287)

Enrolled in Medicaid 0.408***
(0.116)

No. of ED visits by 3/9/08 0.762*** 0.755***
(0.0252) (0.0253)

Missing no. of ED visits by 3/9/08 19.50*** 19.42***
(4.654) (4.645)

Constant 0.438*** 0.381***
(0.0200) (0.0305)

Observations 24,622 24,622
Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
Outcome variable is the number of ED visits per person

Dummy variables for number of individuals in household not shown
Control group mean is 1.022

For the purposes of comparison, all subsequent analyses will use the ITT estimates as the RCT

1These results are from a reanalysis of the original Oregon data, which reproduce the published results in Taubman
et al. [90].
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results, in adherence to WSC criteria two discussed in Section 2.3.1. In order to ensure that the

population of the subsequent ITS analysis is equivalent to that of the RCT, it is important to

include all individuals allocated to treatment rather than just the compliers.

5.3 Interrupted time series

5.3.1 Data

I include only the 9,612 individuals from the treatment group in the ITS analysis. Data are

collapsed to the biweekly level instead of “pre” and “post” periods. I use biweeks as the unit of

time to allow for time trends while avoiding the noise introduced by a more granular measure 2

Data are available from January 1, 2007 to September 30, 2009. At the biweek level, this produces

72 time points, 31 of which were pre-intervention.

Notification of acceptance into Medicaid began on March 3, 2008, and continued until September

11, 2008. A new round of notifications took place every two to three weeks, with approximately

1,000 new individuals notified during each round (see Table 5.2).

Table 5.2: Notification of insurance provision by date

Notification Date N
3/10/2008 1,010
4/7/2008 1,004

4/16/2008 1,014
5/9/2008 1,004

6/11/2008 932
7/14/2008 1,849
8/12/2008 1,885
9/11/2008 914

Total 9,612

The outcome variable of interest for the RCT was total number of ED visits per person in the post

period. The analogous measure for ITS was total number of ED visits in the sample per person,

2The RCT regressions in the previous section were run with data collapsed to this level. The results were robust to
either specification.
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per biweek.

5.3.2 Methods

Naive specification

Using the specification for a single ITS design, I estimate the following OLS regression:

yt = z0 + z1biweekt + z2postt + z3biweekpostt + tt (5.4)

tt = rtt�k + yt (5.5)

where tt is a Newey-West standard error with lag k [70]. The value for k is determined using the

Cumby-Huizinga general test for autocorrelation in time series [82], implemented using actest

in Stata [11]. I conduct the test for lags 1 to 10, and use the lag with the smallest p-value as k. If

none of the lags had a p-value less than 0.05, no lag is used.

The variable post equals one for all times after March 3, 2008, the beginning of insurance rollout.

In addition to this standard single ITS specification, I attempt to address each of the potential

threats to validity outlined in Section 3.1.2.

Concurrent changes

Given that the outcome of interest is emergency-department visits and the intervention was

introduced in early March, there is potential for the flu season to generate an increase in ED

usage around the time of program rollout. To address this concern, I gather data on cases of the

flu in Oregon during the 2006-07 season, 2007-08 season, and 2008-09 season, in order to assess

the degree of correlation between ED usage and flu cases, as well as explicitly controlling for it

in the ITS regression [36].
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Differential pre period changes

Events taking place in the pre period that are related to treatment provision can also introduce

bias, as outlined in Section 3.2.2. One such event is the signup period for entry into the lot-

tery, which began at the start of 2008. There are several mechanisms through which this could

plausibly introduce bias.

First is the possibility of differential selection. If we assume that hospitals prefer insured patients

to uninsured ones, they would have an incentive to encourage uninsured ED patients to sign up

for the lottery once it was announced. This would lead to a sample that is defined by patients

with an especially high number of ED visits in the months leading up to insurance provision,

either in the form of higher levels or an increasing slope. This would be a violation of Assump-

tion 1, since the sample receiving the treatment is fundamentally different from the sample that

would have existed without an announced signup period.

A second mechanism is differential history. If the existence of the signup period led to an envi-

ronment for the treatment group that is different from what otherwise would have occurred, this

would cause bias. Though less plausible than the previous example, one might imagine a more

“hostile” admissions environment. Hospitals may have an incentive to delay providing care to

to uninsured patients for routine procedures if there is some chance of them obtaining insurance

in the near future. Doing so would allow hospitals to avoid incurring the risk of non-payment

from uninsured patients, as well as the cost of seeking out individuals with delinquent payments.

Since hospitals were made aware of the upcoming lottery, they may have had artificially low ED

admissions for the months leading up to provision.

To address this, I model the signup period explicitly in a multiple segmented regression:

yt = q0 + q1biweekt + q2signupt + q3biweeksignupt + q4postt + q5biweekpostt + gt (5.6)

Where signup is a dummy variable which equals one at the start of the signup period and after,

and biweeksignup is a variable which is zero until the signup period, and incremented by one for

every subsequent biweek. gt maintains the autocorrelation structure from Equation 5.5.
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Misspecification of functional form

Finally, misspecifying the timing and dynamic of an intervention’s introduction can threaten

the internal validity of an ITS design [84]. In the context of the Oregon Medicaid rollout, the

simplifying assumption that the program began on March 3, 2008 may introduce bias or noise. To

address this, I estimate a respecified ITS model which accounts for the eight different notification

dates occurring between March and September. Specifically, I use the following model:

yt = l0 + l1biweekt + l2posttg + l3biweekposttg + ht (5.7)

Where post is a dummy variable which equals one at the period that group g was notified

of Medicaid enrollment and all subsequent time periods, and biweekpost equals zero until the

the period group g was notified of Medicaid enrollment, and incremented by one for every

subsequent period ht maintains the autocorrelation structure from Equation 5.5.

5.3.3 Results

The results of each specification are presented in Table 5.3.
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Table 5.3: ITS impact estimates (Oregon)

(1) (2) (3) (4)
VARIABLES Naive Flu season Signup period Recentered

Biweek 0.000241*** 0.000249*** 0.000118*** 0.000174***
(5.08e-05) (6.02e-05) (4.10e-05) (3.07e-05)

Post -0.000828 -0.00105 -0.00222*** -0.000203
(0.00132) (0.00163) (0.000649) (0.000983)

Biweek*Post -0.000300*** -0.000302*** 2.48e-05 -0.000255***
(5.75e-05) (6.16e-05) (9.85e-05) (4.38e-05)

Signup 0.00512***
(0.000785)

Biweek*Signup -0.000202*
(0.000103)

Flu rate per 100,000 7.44e-05
(7.68e-05)

Constant 0.0210*** 0.0207*** 0.0222*** 0.0208***
(0.000666) (0.000843) (0.000536) (0.000795)

Observations 72 72 72 85
Lag 1 4 0 0

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Outcome variable is the number of ED visits per person per biweek
Data collapsed to the biweek level for 72 biweeks

Naive results

Column 1 of Table 5.3 presents the results of a naive single ITS analysis. The results show a

positive, statistically significant increase in ED visits per person during the pre period. At the

time of insurance provision, there is a non-significant drop in level, followed by a significant,

sharply negative change in slope. The magnitude of the slope change actually reverses the trend

in ED utilization from a positive trend to a negative trend.

Figure 5.1 shows these results visually:
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Figure 5.1: Visual representation of naive ITS estimates (Oregon)

The naive specification thus implies that provision of Medicaid in Oregon in mid-2008 reversed

an increasing trend of ED use.

The pre period data has two notable characteristics. First is the cluster of ED visits in the five

time points immediately preceding the intervention’s introduction. This period corresponds to

the time after which the lottery was announced, when hospitals were likely encouraging ED

patients to apply and patients themselves were considering their need for insurance. It is thus

plausible that patients who happened to come in during this period were more likely to be

included in the lottery sample.

The second issue is the general positive trend in ED visits throughout the entire period. It is

unclear whether this is a secular trend, the result of seasonal variation, or a manifestation of

Ashenfelter’s dip described in Section 3.2.2.

Each of these potential explanations for the time trend in Figure 5.1 will now be interrogated.

Flu season

Figure 5.2 overlays average number of ED visits with data on flu. While it does look as though the

2007-08 season was especially acute, there is no evidence for a statistically significant difference
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in means across the three season (F2,88 = 0.13, p = 0.874).
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Figure 5.2: ED usage and flu seasons, 2007-09

Additionally, flu rates are not a significant predictor of ED visits, as shown in Column 2 of Table

5.3. Augmenting the naive regression from Equation 5.4 with a continuous variable for weekly flu

rate had essentially no effect on estimates. Taken together, these results suggest that the positive

pre period trend is not driven by seasonality related to the flu.

Signup period

Column 3 of Table 5.3 shows that modeling the signup period using the specification from Equa-

tion 5.6 does change the estimates from the naive specification, though not by much. In addition

to lowering the slope of the pre period, accounting for the signup period made the change in

slope insignificant, while making the drop in level significant. These changes are to be expected,

as they are in contrast to the slope and level of the signup period as opposed to a pre period

which included the signup period. Figure 5.3 illustrate these changes.
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Figure 5.3: Visual representation of ITS estimates with “washing out” signup period (Oregon)

Accounting for the signup period leading to the spike in ED visits in the weeks preceding the

lottery does change the estimated coefficients to a degree. However, these changes are not along a

practically significant margin, and Figure 5.3 shows that the findings remain unchanged in broad

terms. The data are still characterized by a positive pre period slope (albeit a more shallow one)

followed by a negative slope (albeit an insignificant one) in the post period.

Recentered specification

Recentering the specification around notification does not significantly affect ITS estimates, as

shown in Column 4 of Table 5.3. While Figure 5.4 shows a level change of zero in contrast to

Figure 5.1, the naive regression’s level change is not statistically significant either.
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Figure 5.4: Visual representation of ITS estimates with recentered specification (Oregon)

The fact that the recentered specification has a negligible effect on the naive result is telling. By

recentering the data around each group’s notification date, this specification theoretically offsets

biweek-specific drivers of the result. This includes the possibility of particular events taking

place during the study period that would drive this upward trend. It does not, however, rule

out Ashenfelter’s dip. If individuals were self-selecting into the lottery on the basis of increased

ED use in the run up to the intervention, this upward trend would be reflected in the recentered

specification as well.

RCT comparison

For each of the specifications above, estimates were translated into an aggregated measure of the

effect of the program on total number of ED visits, in order to make results comparable to those

of the RCT. Table 5.4 presents these results. 3 Differences between the RCT estimate and each

ITS specification’s estimate are presented as well. Standard errors for differences are obtained

via the bootstrapping method outlined in Section 2.3.2.

3Ien order to ensure that this analysis compared “apples to apples,” the RCT was rerun using week-level data
instead of individual observations. The estimate using these data was extremely close to the original RCT estimate.
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Table 5.4: ITS vs RCT estimates (Oregon)

Impact Estimate Difference
Randomized Controlled Trial (ITT) 0.101***

(0.029)
Naive -0.280*** -0.380***

(0.087) (0.112)
Flu Season -0.291*** -0.392***

(0.104) (0.112)
Signup Period -0.069 -0.169

(0.083) (0.116)
Recentered -0.228*** -0.329***

(0.056) (0.115)
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Control mean is 1.022

All four ITS specifications show a complete failure to replicate the RCT result. Each of them

is in the opposite direction from the RCT finding by a wide margin, which easily falls into the

category of “practically significant”. The model that comes closest to the RCT result is the signup

period (Column 3 of Table 5.3), in that it is statistically indistinguishable from zero. Using the

framework described in Figure 2.2, the single ITS design is clearly discordant with the RCT result.

In order to further explore the possibility of Ashenfelter’s dip driving this discordance, Table 5.5

compares the ITS estimates to the estimates of a simple pre-post comparison.
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Table 5.5: ITS vs Pre-Post estimates (Oregon)

Effect of Medicaid
Randomized Controlled Trial (ITT) .101***

(0.029)
ITS Pre Post

Naive -0.280*** 0.037***
(0.087) (0.012)

Flu Season -0.291*** 0.037***
(0.104) (0.012)

Signup Period -0.069 0.041***
(0.083) (0.009)

Recentered -0.228*** 0.039***
(0.056) (0.012)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

In each specification, a pre-post estimator comes much closer to replicating the RCT result than

the ITS estimator 4. While all pre-post estimates understate the effect by several percentage

points, they are in the correct direction and have similar statistical significance as the RCT impact.

This once again lends credibility to the possibility of Ashenfelter’s dip, which predicts that an

ITS estimator will produce more bias than a simple pre-post comparison (see Section 3.2.2).

5.4 Discussion

The results of this analysis paint a discouraging picture for the single ITS design. Using the

framework described in Section 2.3.2, the presence of statistically and practically significant dif-

ferences between designs suggests that the results of the single ITS design are discordant with

those of the RCT. Put concretely, if the state of Oregon had chosen to analyze the effect of its

Medicaid expansion using ITS, the measured impact would have been statistically significant

and in the wrong direction. To make things worse, this incorrect result is robust to alternative

4For completeness, two additional models were run: one incorporating quadratic time terms, and an individual
level model estimated using Generalized Estimating Equations. The latter had a negligible effect on results, while
the former produced estimates that diverged even further from the RCT due to a positive quadratic term in the pre
period.
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specifications, which would only further mislead policymakers with respect to the validity of

these estimates.

The question of why this analysis was unable to reproduce the RCT result is difficult to answer

definitively. However, some issues are worth pointing out.

The falsification test described in Section 3.3.3 provides some useful insight. The data-driven

test for a structural break detected a highly significant break at December 31, 2007 (p < 0.001),

corresponding to the start of the signup period. This is illustrated by a thick dashed line in Figure

5.5. The fact that this break taking place in the pre period was found to be more significant than

the intervention introduction calls the validity of the counterfactual into question. Additionally,

the binning method and subsequent tests for structural breaks found 11 statistically significant

breaks in the pre period and six in the post period (illustrated with thin dotted lines in Figure

5.5), as well as the intervention point itself.
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Figure 5.5: Detected structural breaks (Oregon)

The sheer number of structural breaks detected in the data implies that this dataset has far too

many fluctuations to provide a credible estimate of the intervention’s effect.

The result from this falsification test on the sample data is further confirmed by emergency-

department data more generally. Figure 5.6 illustrates annual ED visit data for Oregon and two
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neighboring states (California and Washington) since 2001. In this ten year period, there are a

large number of fluctuations in ED admissions for each state. Depending on the intervention

point and state chosen, there are many points where an ITS analysis would detect a significant

effect (e.g., 2007 in California, 2008 in Oregon, or 2009 in Washington).
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Figure 5.6: Emergency department visits in Oregon, California, and Washington, 2001-2013

The most immediate implication for an ITS analysis is that, for these data, any extrapolated linear

trend will be misleading. The discordance of the ITS estimates with the RCT (and even pre-post)

estimates appears largely attributable to this poor counterfactual.

In addition, the results of an ITS analysis for a given state at a given time produces conflicting

results depending on the time horizon used. Table 5.6 presents an example. In this table I run

an ITS specification for Oregon using 2008 as the intervention point (the year the lottery took

place). The only difference between columns 1 and 2 is the inclusion of three more data points in

column 2 (years 2011-2013). Yet the estimated impacts go from highly significant to non-existent,

an intervention that reduces ED use to having no effect at all.
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Table 5.6: Sensitivity of ITS results for ED data in Oregon by timeframe

(1) (2)
VARIABLES 2001-2010 2001-2013

Year 2.589*** 2.589***
(0.675) (0.629)

Post 22.05*** 8.805
(4.637) (9.829)

Year Post -18.26*** 0.718
(2.131) (2.524)

Constant 311.2*** 311.2***
(3.424) (3.188)

Observations 10 13
Lag 1 1

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Outcome variable is number of ED visits per 1,000 population
Data derived from annual state-level reports of ED visits

Finally, the bias potentially introduced by Ashenfelter’s dip appears to manifest itself in this

analysis. The fact that individuals self-selected into the lottery produces a pre period trend that

is a poor counterfactual. Building off the literature on this phenomenon, even a non-experimental

control group would only be able to address this issue if it was characterized by the same dip as

the treated sample [54]

Inherent noisiness, sensitivity to timeframe, and issues of self-selection are properties of the data

itself which drive the discordance of ITS results with RCT estimates. Each of these qualities

implies that the noisiness of ED visit data makes the series itself a poor candidate for an ITS

analysis.

69



Part III

Conclusion
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Chapter 6

Lessons

6.1 Introduction

The following sections represent a set of hypotheses aimed at making generalizable statements

about the interrupted time series design. These lessons should be taken with a grain of salt, as

they are the product of only two analyses, though I make every attempt to link these findings

with existing literature on the topic.

6.2 Samples defined by self-selection may be problematic for single

ITS

The Oregon Health Insurance Experiment is an example of a “randomized encouragement de-

sign.” In this design a population is offered the opportunity to participate in some program, and

the sample is then selected based on who volunteers. The sample is then randomly allocated

between treatment and control arms, the former of which is given the opportunity to take up

treatment [94]. The results are then analyzed using an instrumental variable approach to account

for the probability that someone offered the intervention actually took it up. This is a common

design in the literature on evaluating social programs, as it allows for the “messiness” of the

political and social elements of program recruitment while still preserving the advantages of a
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randomized controlled trial.

Unfortunately, the analyses in this manuscript suggest that this approach - or any in which

a sample self-selects from a population of interest - may be highly damaging to the internal

validity of the single ITS design. The issues underlying Ashenfelter’s dip explained in Section

3.2.2 are readily apparent in the Oregon WSC. By allowing individuals to voluntarily select into

the lottery, the pre period data was defined by an increasing trend, with an especially pronounced

spike immediately leading up to the intervention. This pre period behavior introduced bias into a

simple pre-post comparison, but introduced substantially more bias into a single ITS specification,

as shown in Table 5.5. While this WSC represents a single data point, it adheres closely to the

theory and empirical work done on Ashenfelter’s dip in literature on labor markets [53, 54].

The sample in Uganda, by contrast, was not subject to self-selection. It was comprised of indi-

viduals, living in villages randomly selected to receive the BCC intervention, who experienced a

febrile illness during the study period. Thus the only selection mechanism was whether or not

an individual had an illness episode involving fever, which can be plausibly argued is largely

orthogonal to the conditional probability of receiving a test given a febrile illness episode. One

can imagine a scenario where the Uganda experiment would be subject to issues of self-selection.

For example, if instead individuals experience a febrile illness in the pre period were offered to

participate in a BCC information campaign, the sample would be subject to the same issues of

self-selection as Oregon.

These results suggest that single ITS should be avoided when evaluating any program wherein

participants self-select on the basis of the outcome that the program aims to change. While more

rigorous evaluative methods are able to account for this self-selection in some way, the single ITS

design is not.

6.3 A trend is not always superior to a mean

Short interrupted time series is premised on the notion that a trend of an outcome over time is

preferable to a single point [14]. While it is true that several data points are always preferable to a

single one, relying on a time trend instead of a mean requires the researcher to make parametric
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assumptions related to level and slope that may not hold in practice. In particular, the linear

extrapolation implied by Assumption 2 may be an especially strong assumption that cannot be

easily validated in the absence of a control group. This is most clearly evident in the Oregon

WSC, where a simple pre-post comparison was actually superior to a parametrized single ITS

model.

In many econometric strategies, adding a covariate such as a quadratic term or exogenous control

variable is seen as potentially helpful and rarely harmful; these covariates have little effect if they

do not contribute to model fit. By contrast, single ITS not only allows the level and slope to

vary; it stakes the strength of the counterfactual on these parameters regardless of their level of

significance. In addition, it only allows the level and slope to vary at a single point in time, which

assumes a great deal about the nonexistence of other breaks in the dataset. The first part of the

falsification test proposed in Section 3.3.3 aims to test the strength of this assumption. Specifically,

the test makes no assumption about the location of the biggest break in the data, and makes a

“best guess” at where this break could be. If the test determines that the largest break is not at

the intervention point, and if this break is statistically significant, this assumption may be too

strong for the data. This appeared to be the case in Oregon, where the largest break in the data

occurred when the lottery was announced, not when insurance was introduced. This suggests a

clear violation of the strong assumption of a break point at (and only at) a pre-specified time. In

contrast to Oregon, the data in Uganda did not reveal any statistically significant breaks in the

data, which is concordant with an outcome that was influenced by neither the intervention of

interest nor other external forces.

In summary, the preceding analyses illustrate that the benefits of relying on trends for inference

must be weighed against the strong assumptions that accompany their use.

6.4 Trend stability is crucial, especially in the pre period

Much of the documented guidance regarding the appropriateness of ITS has focused on having

a sufficient number of time points to allow for stable trends and the ability to model seasonality

[52, 93, 98]. Yet this may be only part of the story, particularly when dealing with “short”
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interrupted time series designs that do not have statistical requirements for a minimum number

of data points, since ARIMA modeling is not feasible [14, 64]. In these contexts, some measure

of trend “stability” - particularly in the pre period - would be more appropriate.

The second part of the falsification test proposed in Section 3.3.3 is a useful starting point. In

contrast to the first part, which tests whether the intervention point is the most significant break

point, the second part tests for overall variability between adjacent times at various “bin points”

in the data. If many of these points have statistically significant breaks, the data may not be stable

enough for a single ITS analysis. Again, a contrast between Oregon and Uganda is instructive.

Only two potential break points were detected in Uganda, while 17 were detected in Oregon (see

Figures 4.9 and 5.5). Moreover, the two points in Uganda were both in the post period, while 11

of the 17 points in Oregon were in the pre period. As discussed in Section 3.2.2, the trend in the

pre period is especially important in establishing a credible counterfactual, thus making the poor

performance of the Oregon data even more concerning.

Similarly, the time frame that is deemed appropriate for an ITS analysis should be a function of

the presence of trends and fluctuations in the pre period data. Whenever possible, historical data

for the outcome of interest should be obtained to develop a strong prior for underlying trends in

the data. These data need not be from the actual sample, provided that the population is at least

somewhat comparable to the sampling frame.

6.5 Whether to implement an ITS design is more important than how

to implement it

The two WSCs in this manuscript have clear results in opposite directions using the framework

in Figure 2.2. While the ITS analysis of the BCC intervention in Uganda was entirely concor-

dant with the RCT results, the ITS model of the Oregon Health Insurance Experiment was fully

discordant with the RCT. In both cases, the result of the WSC was robust to every specification

attempted (see Tables 4.5 and 5.4). In both studies, the naive ITS model was as good (or as bad)

as a fully specified one, accounting for various threats to validity outlined in Chapter 3.
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In addition to the robustness of these results, it should be noted that both studies fulfilled the

criteria for a “best practice” ITS design enumerated in Figure 3.3. In addition to meeting the

minimum criteria for number of time points and observations per time point, the ITS models

accounted for autocorrelation and seasonality, controlled for potential confounders, and were

robust to multiple sensitivity analyses.

The fact that results across these two studies were equally robust is troubling. It suggests that the

robustness of an ITS model provides little information about the validity of its results. Granted,

an especially sensitive model may imply that the model is poor. However, the fact that a model

provides consistent results across multiple specifications does not even guarantee that results

will be in the right direction, as the case in Oregon showed.

Thus, the results of the analyses in this manuscript suggest that the underlying properties of the

data have far more impact on the validity of single ITS results than modeling decisions. This

is an interesting contrast to WSCs using other quasi-experimental techniques. For example, the

literature on propensity score matching has found that the validity of inferences based on match-

ing is highly sensitive to analytic discretion [44, 79, 84, 86]. For single ITS, however, emphasis

should be placed on the choice of whether or not to employ a given design, while how to best

implement it should be a secondary concern. To understand if and when single ITS should

be used, further research could employ multiple within-study comparisons of the same study.

For example, a randomized trial with multiple time points could be analyzed via interrupted

time series, a traditional difference-in-differences, and a difference-in-differences using various

matching techniques.

6.6 Conclusion

So when should single ITS be used? In this manuscript I identify a number of characteristics that

should signal to researchers and implementers that they should be particularly wary of using a

single ITS design. 1 Identifying conditions especially conducive to the design is a much more

1A note outside of the scope of this analysis: the presence of a comparable control group in a multiple ITS
design may account for many of the shortcomings in single ITS identified in this manuscript [84]. For example,
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difficult (and data intensive) task than identifying reasons that the design may fail. Still, the fact

that the two WSCs in this manuscript generated such different conclusions for the single ITS

design suggests that the following hypotheses be further tested:

1. The two falsification tests identified in Section 3.3.3 provides a useful metric for determining

the adequacy of single ITS to detect an unbiased effect in a given scenario. If the first test

fails to reject the null hypothesis of an alternate break point, and the second test finds few

potential breaks in the pre period, single ITS may be a viable candidate for a study design.

2. The data should not have any kind of “dip” or “spike” in the outcome for the time points

leading up to an intervention’s introduction. The presence of such a shift may be a red flag

that disqualifies single ITS as a possible design.

3. Samples derived from any sort of self-selection mechanism may be poor candidates for

single ITS. In contrast, interventions that are distributed across a population, where a study

sample can be drawn randomly, may be more desirable.

Again, the above list represents a set of hypotheses to be further explored in research scrutiniz-

ing single ITS. In the meantime, the results of this manuscript suggest that caution should be

exercised before adopting this popular quasi-experimental study design.

a similarly selected control sample with the kind of spike identified in the Oregon study could potentially offset
the bias introduced in the single ITS analysis. However, as noted earlier, the control sample would have to mirror
the sampling of the treatment group quite closely for this to occur. Such a design is also less reliant on projected
counterfactuals, though is subject to the issues outlined in the literature on control groups and matching techniques
[61, 86].
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Appendix A

Uganda Secondary Outcomes
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Table A.1: RCT impact estimates for BCC intervention for secondary outcomes (Uganda)

Impact Control Mean N
Malaria Testing

Received Any Malaria Test 0.020 0.236 25,207
(0.015)

Received Any Malaria Test (Under 5) 0.020 0.257 8,990
(0.022)

Treatment Seeking

Ever Visited Public Hospital or Clinic -0.002 0.240 25,358
(0.019)

Ever Visited Private Hospital or Clinic 0.033** 0.139 25,358
(0.015)

Ever Visited Any Drug Shop or Pharmacy 0.014 0.401 25,358
(0.023)

Ever Visited Trained Drug Shop 0.038** 0.154 25,358
(0.015)

Ever Sought Any Care 0.034* 0.713 25,358
(0.020)

Medication Taking

Took ACT 0.025 0.328 25,358
(0.018)

Took ACT (Under 5) 0.022 0.338 9,037
(0.028)

Took ACT (of those taking Antimalarial) 0.016 0.631 13,681
(0.021)

Took Any Antimalarial 0.027 0.520 25,358
(0.019)

Took Any Antibiotic 0.010 0.251 25,358
(0.017)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

86



Table A.2: Naive ITS impact estimates for secondary outcomes (Uganda)

Time Post Time Post Constant
Malaria Testing

Received Any Malaria Test -0.002** 0.039 -0.002 0.274***
(0.001) (0.024) (0.003) (0.018)

Received Any Malaria Test (Under 5) -0.004*** 0.055 0.001 0.342***
(0.001) (0.039) (0.003) (0.021)

Treatment Seeking

Ever Visited Public Hospital or Clinic -0.003*** 0.010 0.005*** 0.313***
(0.001) (0.018) (0.002) (0.010)

Ever Visited Private Hospital or Clinic -0.003** 0.034* 0.002 0.205***
(0.001) (0.020) (0.003) (0.025)

Ever Visited Any Drug Shop or Pharmacy -0.002** 0.054*** -0.008*** 0.471***
(0.001) (0.015) (0.002) (0.019)

Ever Visited Trained Drug Shop -0.002*** 0.024 0.000 0.204***
(0.001) (0.018) (0.001) (0.009)

Ever Sought Any Care -0.003*** 0.068*** -0.004* 0.819***
(0.001) (0.022) (0.002) (0.007)

Medication Taking

Took ACT 0.002** 0.030** -0.005*** 0.277***
(0.001) (0.012) (0.001) (0.015)

Took ACT (Under 5) 0.001* 0.044** -0.007*** 0.326***
(0.000) (0.019) (0.002) (0.008)

Took ACT (of those taking Antimalarial) 0.005*** -0.027 0.001 0.471***
(0.001) (0.028) (0.003) (0.014)

Took Any Antimalarial -0.002** 0.070*** -0.007** 0.583***
(0.001) (0.023) (0.003) (0.014)

Took Any Antibiotic 0.000 0.009 -0.005** 0.278***
(0.001) (0.018) (0.002) (0.011)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks
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Figure A.1: Visual representation of ITS estimates for secondary outcomes (Uganda)
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Table A.3: Comparison of RCT and naive ITS results for secondary outcomes (Uganda)

ITS Impact RCT Impact Control Mean
Malaria Testing

Received Any Malaria Test 0.020 0.020 0.236
(0.020) (0.015)

Received Any Malaria Test (Under 5) 0.067** 0.020 0.257
(0.031) (0.022)

Treatment Seeking

Ever Visited Public Hospital or Clinic 0.050*** -0.002 0.240
(0.016) (0.019)

Ever Visited Private Hospital or Clinic 0.051** 0.033** 0.139
(0.025) (0.015)

Ever Visited Any Drug Shop or Pharmacy -0.006 0.014 0.401
(0.017) (0.023)

Ever Visited Trained Drug Shop 0.024 0.038** 0.154
(0.015) (0.015)

Ever Sought Any Care 0.037* 0.034* 0.713
(0.019) (0.020)

Medication Taking

Took ACT -0.007 0.025 0.328
(0.015) (0.018)

Took ACT (Under 5) -0.011 0.022 0.338
(0.017) (0.028)

Took ACT (of those taking Antimalarial) -0.021 0.016 0.631
(0.031) (0.021)

Took Any Antimalarial 0.013 0.027 0.520
(0.023) (0.019)

Took Any Antibiotic -0.028 0.010 0.251
(0.019) (0.017)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks
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Table A.4: Comparison of RCT and ITS results controlling for rainfall and drug stocks for secondary outcomes
(Uganda)

ITS RCT
Naive Rainfall Drugs Combined Impact

Malaria Testing

Received Any Malaria Test 0.020 0.021 0.027 0.027 0.020
(0.020) (0.033) (0.053) (0.057) (0.015)

Received Any Malaria Test (Under 5) 0.067** 0.042 0.056 0.055 0.020
(0.031) (0.046) (0.047) (0.054) (0.022)

Treatment Seeking

Ever Visited Public Hospital or Clinic 0.050*** 0.074*** 0.061 0.081** -0.002
(0.016) (0.021) (0.031) (0.038) (0.019)

Ever Visited Private Hospital or Clinic 0.051** 0.100** 0.109 0.141** 0.033**
(0.025) (0.045) (0.060) (0.063) (0.015)

Ever Visited Any Drug Shop or Pharmacy -0.006 -0.061* -0.023 -0.050 0.014
(0.017) (0.032) (0.042) (0.043) (0.023)

Ever Visited Trained Drug Shop 0.024 0.023 0.060 0.064* 0.038**
(0.015) (0.027) (0.035) (0.036) (0.015)

Ever Sought Any Care 0.037* 0.034 0.045 0.056** 0.034*
(0.019) (0.027) (0.025) (0.027) (0.020)

Medication Taking

Took ACT -0.007 0.037** 0.014 0.044** 0.025
(0.015) (0.016) (0.039) (0.021) (0.018)

Took ACT (Under 5) -0.011 0.008 -0.023 -0.004 0.022
(0.017) (0.043) (0.040) (0.040) (0.028)

Took ACT (of those taking Antimalarial) -0.021 0.033 0.007 0.043 0.016
(0.031) (0.038) (0.040) (0.036) (0.021)

Took Any Antimalarial 0.013 0.045* 0.028 0.050* 0.027
(0.023) (0.025) (0.033) (0.029) (0.019)

Took Any Antibiotic -0.028 -0.057*** -0.005 -0.023 0.010
(0.019) (0.020) (0.045) (0.040) (0.017)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks
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Table A.5: ITS impact estimates for secondary outcomes, controlling for rainfall (Uganda)

Rainfall (mm) Time Post Time Post Constant
Malaria Testing

Received Any Malaria Test 0.000 -0.002* 0.039 -0.002 0.274***
(0.000) (0.001) (0.040) (0.003) (0.039)

Received Any Malaria Test (Under 5) -0.000 -0.004*** 0.025 0.002 0.377***
(0.000) (0.001) (0.060) (0.004) (0.051)

Medication Taking

Ever Visited Public Hospital or Clinic 0.000 -0.003*** 0.039 0.004** 0.278***
(0.000) (0.001) (0.028) (0.002) (0.023)

Ever Visited Private Hospital or Clinic 0.001* -0.004*** 0.094** 0.001 0.134***
(0.000) (0.001) (0.043) (0.003) (0.034)

Ever Visited Any Drug Shop or Pharmacy -0.001** -0.001** -0.013 -0.006*** 0.550***
(0.000) (0.001) (0.037) (0.002) (0.038)

Ever Visited Trained Drug Shop -0.000 -0.002*** 0.021 0.000 0.206***
(0.000) (0.001) (0.030) (0.001) (0.025)

Ever Sought Any Care -0.000 -0.003*** 0.065* -0.004* 0.823***
(0.000) (0.001) (0.035) (0.002) (0.029)

Medication Taking

Took ACT 0.001** 0.001** 0.084*** -0.006*** 0.212***
(0.000) (0.001) (0.023) (0.002) (0.034)

Took ACT (Under 5) 0.000 0.001 0.067 -0.007*** 0.298***
(0.001) (0.001) (0.049) (0.002) (0.059)

Took ACT (of those taking Antimalarial) 0.001** 0.004*** 0.039 -0.001 0.392***
(0.000) (0.001) (0.035) (0.003) (0.040)

Took Any Antimalarial 0.000* -0.002*** 0.109*** -0.008*** 0.536***
(0.000) (0.001) (0.034) (0.002) (0.027)

Took Any Antibiotic -0.000** 0.000 -0.026 -0.004*** 0.320***
(0.000) (0.001) (0.024) (0.001) (0.021)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks
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Table A.6: ITS impact estimates for secondary outcomes, controlling for private and public ACT stocks (Uganda)

Private Public Time Post Time Post Constant
Malaria Testing

Received Any Malaria Test 0.001 0.005 -0.003 0.040 -0.002 0.274***
(0.004) (0.034) (0.008) (0.028) (0.005) (0.020)

Received Any Malaria Test (Under 5) -0.003 0.033 -0.007 0.041 0.002 0.317***
(0.004) (0.039) (0.009) (0.025) (0.006) (0.019)

Medication Taking

Ever Visited Public Hospital or Clinic 0.001 0.015 -0.006 0.011 0.006* 0.308***
(0.003) (0.025) (0.006) (0.018) (0.003) (0.014)

Ever Visited Private Hospital or Clinic 0.006 0.039 -0.013 0.051* 0.007 0.204***
(0.004) (0.031) (0.008) (0.027) (0.005) (0.026)

Ever Visited Any Drug Shop or Pharmacy -0.003 0.019 -0.003 0.041 -0.008*** 0.453***
(0.004) (0.024) (0.005) (0.026) (0.003) (0.023)

Ever Visited Trained Drug Shop 0.002 0.045* -0.011* 0.028** 0.004 0.190***
(0.003) (0.025) (0.006) (0.014) (0.003) (0.009)

Ever Sought Any Care -0.001 0.039 -0.009 0.061*** -0.002 0.798***
(0.003) (0.028) (0.006) (0.015) (0.004) (0.010)

Medication Taking

Took ACT 0.002 0.011 -0.002 0.037** -0.003 0.279***
(0.003) (0.025) (0.006) (0.015) (0.004) (0.014)

Took ACT (Under 5) -0.002 0.001 0.002 0.038 -0.008** 0.321***
(0.003) (0.027) (0.006) (0.023) (0.004) (0.011)

Took ACT (of those taking Antimalarial) 0.003 0.013 0.000 -0.018 0.003 0.474***
(0.004) (0.033) (0.008) (0.016) (0.004) (0.012)

Took Any Antimalarial 0.002 0.009 -0.004 0.075*** -0.006* 0.584***
(0.003) (0.025) (0.006) (0.016) (0.003) (0.014)

Took Any Antibiotic 0.002 0.027 -0.005 0.012 -0.002 0.271***
(0.004) (0.030) (0.007) (0.022) (0.004) (0.013)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks

92



Table A.7: Fully specified ITS model versus RCT estimates for secondary outcomes (Uganda)

ITS Impact RCT Impact Difference
Malaria Testing

Received Any Malaria Test 0.027 0.020 0.007
(0.057) (0.015) (0.038)

Received Any Malaria Test (Under 5) 0.055 0.020 0.035
(0.054) (0.022) (0.061)

Treatment Seeking

Ever Visited Public Hospital or Clinic 0.081** -0.002 0.083**
(0.038) (0.019) (0.038)

Ever Visited Private Hospital or Clinic 0.141** 0.033** 0.108***
(0.063) (0.015) (0.031)

Ever Visited Any Drug Shop or Pharmacy -0.050 0.014 -0.063
(0.043) (0.023) (0.041)

Ever Visited Trained Drug Shop 0.064* 0.038** 0.026
(0.036) (0.015) (0.032)

Ever Sought Any Care 0.056** 0.034* 0.022
(0.027) (0.020) (0.035)

Medication Taking

Took ACT 0.044** 0.025 0.019
(0.021) (0.018) (0.038)

Took ACT (Under 5) -0.004 0.022 -0.026
(0.040) (0.028) (0.068)

Took ACT (of those taking Antimalarial) 0.043 0.016 0.027
(0.036) (0.021) (0.055)

Took Any Antimalarial 0.050* 0.027 0.024
(0.029) (0.019) (0.044)

Took Any Antibiotic -0.023 0.010 -0.033
(0.040) (0.017) (0.036)

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Data collapsed to the week level for 47 weeks

93


