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FROM FIRST-PRINCIPLES COMPUTATIONS 

ABSTRACT 

We use first-principles computations based on Ehrenfest dynamics and density functional 

theory to study water and methanol photo-oxidation on a model photo-catalytic material – the 

(110) surface of rutile titanium dioxide. We simulate photo-excitation in titania and the 

subsequent excited-state reaction trajectories. Analysis of the coupled dynamics of the electronic 

and ionic subsystems allows us to establish a novel reaction mechanism, for which we propose 

the name “photo-induced C-H acidity.” We provide a detailed and intuitive interpretation of the 

mechanism in terms of Lewis structures, identify the driving forces of the process, and propose 

general design principles for efficient photo-catalytic systems. 

Another important factor in the reactivity of semiconductor catalysts is the presence of 

defects in surface and subsurface regions. Knowledge of the formation energies of defects and 

impurities in different charge states is required in order to obtain insight into their concentration 

and stability. We develop an internally consistent method for calculating formation energies of 

charged defects based on density functional theory, which is applicable to both surface regions of 

semiconducting materials and two-dimensional materials. We discuss the implementation and 

usage details of the method and provide an example of its usage for studying sulfur vacancy 

formation in MoS2 monolayer. 
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CHAPTER 1. INTRODUCTION 

The unprecedented increase of available computing power has led to equally rapid 

progress in computational science and has enabled researchers to explore new exciting topics and 

tackle associated scientific problems. In this work, we focus on methods for the computational 

simulation of the properties of semiconductor materials, which have great prospects for various 

practical applications, particularly for photo-catalysis. In order to obtain a fundamental 

understanding of materials performance for this application, microscopic insight into dynamics 

of the electronic and ionic components of the system in question is necessary. Part I of this thesis 

describes the modern computational techniques used for simulating the real-time dynamics of 

chemical systems on a microscopic level. In particular, we discuss the localized basis set 

implementation of Ehrenfest dynamics and density functional theory – TDAP-2.0, developed by 

the Kaxiras research group. 

We then discuss the results of applying that method to the simulation of model systems: 

water and methanol adsorbed on a rutile titania (110) surface. Titania has been extensively 

studied as a model photo-catalytic system and has numerous proposed applications, from solar 

cells to photo-catalysis for solar hydrogen production and environmental pollutant cleanup. For 

water photo-oxidation we establish a dependence of the reaction path on the external conditions, 

like temperature, and the presence of defects in the subsurface layer of the photo-catalyst. This 

partly motivates the need for developing advanced methods for computation of defect formation 

energies, which we discuss in Part II. Another example we have considered is the oxidation of 

methanol to formaldehyde – it is both an important industrial process, and an interesting model 

reaction, which has been a subject of many experimental studies. We simulate both ground- and 

excited-state reaction trajectories for this process and identify the key driving forces and 
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intermediates. Establishing a connection between the results of first-principle simulation based 

on advanced electronic structure theory and traditional chemical notation, Lewis structures and 

electron pushing schemes, allows us to put forward a novel interpretation of the reaction 

mechanism, “photo-induced C−H acidity”. We then generalize the obtained insights into guiding 

principles for the design of efficient photo-catalytic systems. 

In Part II we discuss problems associated with bridging the gap between the theoretical 

models and the properties and performance of real materials, the most important of them being 

the presence of defects and impurities in seminconductors. Impurities can very strongly affect the 

host material – the understanding of this fact also happened to give a giant boost to humanity’s 

technological progress through the invention of transistors. In the case of catalysts, however, the 

results of the presence of impurities can be more mixed. First-principle simulations allow to 

obtain unique insight into the microscopic structure of the defect local environment, as well as 

provide information about defect formation energy. A number of issues, however, exist with 

simulation of charged defects, especially in the surface regions of semiconducting materials, 

which are necessary to obtain the full picture of material behavior. The available methods based 

on the density functional theory with periodic boundary conditions and the supercell approach 

tend to use different names for the same quantities, have variability in signs of the terms 

involved in the expression for defect formation energy, use unnecessary and sometimes even 

unjustified approximations, and tend overemphasize some parts of the problem without paying 

attention to the rest of it. We propose a consistent method for the computation of defect 

formation energies which can be used for any charge states of defects on surfaces of bulk 

semiconductors and in monolayers of two-dimensional materials, such as graphene or 

molybdenum disulfide. We describe a computationally efficient parallel implementation of the 
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method, highlight several non-trivial aspects of its practical usage, and conclude with discussing 

the potential limitations and the scope of applicability of such approach. Then we demonstrate an 

example of application of this technique by studying the behavior of sulfur vacancy in monolayer 

MoS2 – the most abundant intrinsic defect in this material. Our method allows us to address the 

relative stability of different charge states of this defect, for both isolated vacancies and pairs of 

vacancies. We discuss the defect-induced changes in the geometric and electronic structure of the 

material in the context of the formation of recently proposed “ripplocation” structure in 

monolayer MoS2 and associated strain. Finally, we demonstrate another real-world application of 

semiconductor materials by considering the recently developed solar cells based on hybrid 

organic-inorganic absorber with perovskite structure. We propose an integrated model for a solar 

cell and demonstrate how the chemical composition of the material translates into the key 

performance index – power conversion efficiency. Our model allows us to infer the most 

important properties of the absorber and carrier transporting materials from the viewpoint of cell 

efficiency, and to establish guidelines for the experimental research efforts.  
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PART I 

MODELING HETEROGENEOUS PHOTO-CHEMICAL 

PROCESSES: METHODS AND APPLICATIONS 

 

In this part of the thesis we discuss in detail the modern methods for modeling the 

dynamics of coupled electron-ion systems on atomic scale, and their applications to the systems 

of practical relevance. In Chapter 2 we describe the relevant approximations invoked for 

translating the quantum-mechanical equations into readily applicable computational schemes for 

studying both ground-state and excited-state properties of the system of interest. In particular, we 

discuss the Ehrenfest dynamics methodology and the aspects of its efficient numerical 

implementation.  

In Chapter 3 we demonstrate an example application – water photo-oxidation on the 

rutile TiO2 (110) surface, which is important in the context of utilization of solar energy for 

hydrogen production. The results in this chapter demonstrate an intricate interplay of external 

factors like temperature and the properties of material and adsorbate, in particular the presence of 

defects and the electronic structure of the catalyst, in influencing the reaction pathway. In 

Chapter 4 we use the Ehrenfest dynamics technique to simulate the photo-oxidation of methanol 

to formaldehyde on rutile titania, and to establish a novel mechanism of chemical reaction – 

“photo-induced C–H acidity”. We then generalize our results and propose a set of design rules 

for the design of efficient photo-catalytic systems.  
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CHAPTER 2. FIRST-PRINCIPLES METHODS FOR 

MODELING ELECTRONIC STRUCTURE  

AND IONIC DYNAMICS 

While the quantum-mechanical description of many-body systems is non-trivial by itself, 

another layer of complexity is introduced by the computational schemes which translate the 

theoretical equations into computer code. In this chapter we review the most commonly used 

approximations to the simulation of electronic structure and dynamics, and consider methods for 

molecular dynamics. We conclude with reviewing the localized basis set implementation of the 

Ehrenfest dynamics method – code named TDAP-2.0 described in the paper: G. Kolesov, O. 

Granas, R. Hoyt, D. Vinichenko, E. Kaxiras. Real-time TD-DFT with Classical Ion Dynamics: 

Methodology and Applications. Journal of Chemical Theory and Computation, 2016, V. 12, pp. 

466-476. 

2.1. Separation of electronic and nuclear sub-problems 

In the non-relativistic approximation, all properties of a system of 𝑛 electrons and 𝑁 

nuclei can be extracted from the many-body wavefunction Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡), where {𝑟𝑖} are 

electron coordinates, 𝑖 = 1…𝑛, and {�⃗⃗�𝐼} are ion positions, 𝐼 = 1…𝑁. The time evolution of this 

wavefunction is governed by the time-dependent Schrodinger equation (TDSE), which in the 

atomic system of units (ℏ = 1, 𝑒 = 1,𝑚𝑒 = 1, 𝜖0 = 1/4𝜋) can be written as:1-3  

 𝑖
𝜕

𝜕𝑡
Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) = ℋΦ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) (2.1.1) 

where ℋ denotes the system Hamiltonian: 
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ℋ = −∑
1

2𝑀𝐼
∇𝐼
2

𝐼

−∑
1

2
∇𝑖
2

𝑖

+∑
1

|𝑟𝑖 − 𝑟𝑗|𝑖<𝑗

−∑
𝑍𝐼

|𝑟𝑖 − �⃗⃗�𝐼|𝑖,𝐼

+∑
𝑍𝐽𝑍𝐼

|�⃗⃗�𝐽 − �⃗⃗�𝐼|𝐼<𝐽

= −∑
1

2𝑀𝐼
∇𝐼
2

𝐼

−∑
1

2
∇𝑖
2

𝑖

+ 𝑉𝑛−𝑒({𝑟𝑖}, {�⃗⃗�𝐼})

= −∑
1

2𝑀𝐼
∇𝐼
2

𝐼

+ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼}) 

(2.1.2) 

where 𝑀𝐼 is the mass of nucleus 𝐼, 𝑍𝐼 is the corresponding charge, ∇𝐼
2 is the sum of second 

derivatives of the wavefunction wrt nucleus 𝐼 positions, proportional to the operator of kinetic 

energy of nucleus 𝐼, 𝑉𝑛−𝑒({𝑟𝑖}, {�⃗⃗�𝐼}) is the operator of potential energy of electron-electron, 

electron-nuclei, and nuclei-nuclei Coulomb interaction, and ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼}) is the electronic 

Hamiltonian. 

If the Hamiltonian ℋ of the system does not depend on time explicitly, then separation of 

variables can be carried out in the TDSE (2.1.1), and the wavefunction can be expanded into a 

series of the eigenstates of the Hamiltonian Φ̃𝑘: 

 Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) =∑𝑐𝑘(𝑡)Φ̃𝑘({𝑟𝑖}, {�⃗⃗�𝐼})

𝑘

 (2.1.3) 

where �̃�𝑘 and Φ̃𝑘 are eigenvalues and eigenfunctions of ℋ, defined through the time-

independent Schrodinger equation (TISE): 

 ℋΦ̃𝑘({𝑟𝑖}, {�⃗⃗�𝐼}) = �̃�𝑘Φ̃𝑘({𝑟𝑖}, {�⃗⃗�𝐼}) (2.1.4) 

An approximation made to simplify the problem is based on the fact that the mass of the 

electrons is at least 1800 times smaller than the mass of nuclei; therefore, the velocities of the 

nuclei are much smaller than the velocities of electrons, and the electrons are instantaneously 
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adapting to the motion of the nuclei. Mathematically, it can be expressed in the following way: 

first, for a given set of ionic positions {�⃗⃗�𝐼} the eigenstates Ψ𝑘({𝑟𝑖}; {�⃗⃗�𝐼}) of the electronic 

Hamiltonian are found from the electronic Schrodinger equation:  

 ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼})Ψ𝑘({𝑟𝑖}; {�⃗⃗�𝐼}) = 𝐸𝑘({�⃗⃗�𝐼})Ψ𝑘({𝑟𝑖}; {�⃗⃗�𝐼}) (2.1.5) 

It is important to note that these electronic wavefunctions Ψ𝑘({𝑟𝑖}; {�⃗⃗�𝐼}) have only 

parametric dependence on the positions of the nuclei, and they comprise a complete and 

orthonormal set with respect to electronic coordinates. The corresponding eigenvalues 𝐸𝑘({�⃗⃗�𝐼}) 

define the electronic potential energy surfaces (PES), which also are parametrically dependent 

on nuclei positions. 

Then the total wavefunction can be expanded in the basis of electronic eigenstates: 

 Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) = ∑𝜒𝑘({�⃗⃗�𝐼}, 𝑡)Ψ𝑘({𝑟𝑖}; {�⃗⃗�𝐼})

∞

𝑘=1

 (2.1.6) 

where 𝜒𝑘({�⃗⃗�𝐼}, 𝑡) are the nuclear wavefunctions and can be treated as time-dependent 

coefficients. The equations of motion for those coefficients can be derived by inserting this 

ansatz in the Schrodinger equation for the overall system (2.1.1), which results in the equations 

of motion for the nuclear wavefunctions 

 𝑖
𝜕𝜒𝑙
𝜕𝑡

= −∑
1

2𝑀𝐼
∇𝐼
2𝜒𝑙

𝐼

+ 𝐸𝑙( {�⃗⃗�𝐼})𝜒𝑙 +∑𝐶𝑙𝑘𝜒𝑘
𝑘

 (2.1.7) 

where 𝐶𝑙𝑘 are the non-adiabatic coupling coefficients, given by an operator 

 𝐶𝑙𝑘 = −∑
1

2𝑀𝐼
𝐼

∫Ψ𝑘
∗∇𝐼

2Ψ𝑘𝑑𝑟 −
1

𝑀𝐼
∑Ψ𝑘

∗∇IΨl𝑑𝑟

𝐼

∇I (2.1.8) 

In the “adiabatic approximation” to the problem only the diagonal coupling coefficients 

are retained, which leads to an energy correction to the decoupled adiabatic levels. The 
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implication of such approximation is that the motion of the nuclei proceeds along a given 

adiabatic potential energy surface, and the expansion of the wavefunction (2.1.6) can be reduced 

to only one term: 

 Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) = 𝜒𝑙({�⃗⃗�𝐼}, 𝑡)Ψ𝑙({𝑟𝑖}; {�⃗⃗�𝐼}) (2.1.9) 

Even further simplification can be achieved by neglecting diagonal terms, which leads to 

the “Born-Oppenheimer” approximation –the simplest form of the equation of motion for the 

nuclei 

 𝑖
𝜕𝜒𝑙
𝜕𝑡

= (−∑
1

2𝑀𝐼
∇𝐼
2

𝐼

+ 𝐸𝑙( {�⃗⃗�𝐼}))𝜒𝑙 (2.1.10) 

In such manner, the problem can be separated into two components: ionic dynamics and 

electronic structure; in the following discussion, we will consider those parts in turn. 

2.2. Ionic dynamics 

2.2.1. Born-Oppenheimer molecular dynamics 

The most important approximation for ionic dynamics is the model of classical nuclei 

represented by point charges. This limit is equivalent to setting Planck’s constant to 0 in the 

equation 2.1.10. Such transition can be done correctly by representing the nuclear wavefunction 

𝜒𝑙 in terms of an amplitude factor 𝐴𝑙 and phase 𝑆𝑙 (the Planck’s constant is written explicitly): 

 𝜒𝑙( {�⃗⃗�𝐼}; 𝑡) = 𝐴𝑙( {�⃗⃗�𝐼}; 𝑡) exp (
𝑖𝑆𝑙( {�⃗⃗�𝐼}; 𝑡)

 ℏ
) (2.2.1) 

which upon plugging into the Born-Oppenheimer dynamics equation lead to the following 

equations of motion for the amplitude and phase: 
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𝜕𝑆𝑙
𝜕𝑡

+∑
1

2𝑀𝐼

(∇𝐼𝑆𝑙)
2

𝐼

+ 𝐸𝑙 = ℏ2∑
1

2𝑀𝐼
𝐼

∇𝐼
2𝐴𝑙
𝐴𝑙

 (2.2.2) 

 
𝜕𝐴𝑙
𝜕𝑡

+∑
1

𝑀𝐼

(∇𝐼𝐴𝑙)(∇𝐼𝑆𝑙)

𝐼

+∑
1

2𝑀𝐼
𝐴𝑙(∇𝐼

2𝑆𝑙)

𝐼

= 0 (2.2.3) 

In the classical limit, ℏ → 0, the right-hand side of the equation 2.2.2 vanishes and it 

becomes isomorphic to the classical-mechanics Hamilton-Jacobi equations of motion. Therefore, 

defining the connecting transformation �⃗⃗�𝐼 ≡ ∇𝐼𝑆𝑙, the Newtonian equations of motion can be 

inferred: 

 
𝜕�⃗⃗�𝐼
𝜕𝑡

= −∇𝐼𝐸𝑘, or 𝑀𝐼�⃗⃗�𝐼
̈ = −∇𝐼𝑉𝑙

𝐵𝑂({�⃗⃗�𝐼(𝑡)}) (2.2.4) 

Overall, in the classical nuclei approximation, the potential energy surface defining the 

nuclear motion is obtained by solving time-independent electronic Schrodinger equation for 𝑙𝑡ℎ 

state at a given nuclei configuration {�⃗⃗�𝐼(𝑡)}. Then, the forces acting on the atoms are computed 

according to equation 2.2.4, the nuclei are shifted to the new positions, the electronic 

Hamiltonian ℋ𝑒 is rediagonalized, and the forces corresponding to the 𝑙𝑡ℎ electronic eigenstate 

are computed. This mechanism leads to the independence of the electronic structure of the 

system on the previous history; effectively, there is no electronic dynamics in such picture. This 

has two main consequences: first, the time steps in Born-Oppenheimer molecular dynamics can 

be set large enough to resolve atomic motion – that is, on the order of femtoseconds, whereas 

resolving electronic dynamics explicitly would require time steps on the order of tens of 

attoseconds. Second corollary is that the dynamics becomes ill-defined when the qualitative 

character of the 𝑙𝑡ℎ electronic eigenstate changes; this happens in the regions where the potential 

energy surfaces cross. Failure to identify the presence of such regions can make the simulation 

results meaningless – however, such crossings are widespread, especially when considering 
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trajectories corresponding to the chemical reactions. Therefore, explicit coupling of electronic 

and ionic dynamics is required to treat chemical reactions; one of the methods for doing that is 

known as Ehrenfest dynamics, which we will consider in the following section. 

2.2.2. Ehrenfest dynamics 

The derivation of the Ehrenfest dynamics starts by assuming the mean-field 

approximation to the total wavefunction: 

 Φ({𝑟𝑖}, {�⃗⃗�𝐼}, 𝑡) ≈ Ψ({𝑟𝑖};  𝑡)𝜒({�⃗⃗�𝐼};  𝑡) exp (𝑖 ∫ �̃�𝑒(𝑡
′)𝑑𝑡′

𝑡

𝑡0

) (2.2.5) 

with the phase factor �̃�𝑒 involving the electronic Hamiltonian ℋ𝑒: �̃�𝑒 =

∫Ψ∗({𝑟𝑖};  𝑡)𝜒
∗({�⃗⃗�𝐼};  𝑡)𝐻𝑒Ψ({𝑟𝑖};  𝑡)𝜒({�⃗⃗�𝐼};  𝑡)𝑑�⃗⃗�𝑑𝑟, and normalization of both electronic and 

nuclear wavefunctions at all moments of time: ∫Ψ∗({𝑟𝑖};  𝑡)Ψ({𝑟𝑖};  𝑡)𝑑𝑟 =

1, ∫ 𝜒∗({�⃗⃗�𝐼};  𝑡)𝜒({�⃗⃗�𝐼};  𝑡)𝑑�⃗⃗� = 1. It is important to note that “mean-field” here refers to the 

absence of explicit correlation between electron and ion wavefunction, unlike in equation 2.1.6; 

the electronic part of the wavefunction can take electron-electron static and dynamic correlation 

into account explicitly. The resulting equations of motion for electronic Ψ and nuclear 𝜒 parts, 

under the condition of conservation of total energy, are: 

 

𝑖
𝜕Ψ

𝜕𝑡
= −∑

1

2
∇𝑖
2Ψ

𝑖

+ (∫𝜒∗({�⃗⃗�𝐼};  𝑡)𝑉𝑛−𝑒({𝑟𝑖}, {�⃗⃗�𝐼})𝜒({�⃗⃗�𝐼};  𝑡)𝑑�⃗⃗�)Ψ 

(2.2.6) 

 𝑖
𝜕χ

𝜕𝑡
= −∑

ℏ2

2𝑀𝐼
∇𝐼
2χ

𝐼

+ (∫Ψ∗({𝑟𝑖};  𝑡)ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼})Ψ({𝑟𝑖};  𝑡)𝑑𝑟) χ (2.2.7) 

Those equations comprise the time-dependent self-consistent field method4 – in essence, 

the ions and electrons move in the potentials obtained by averaging over the other degrees of 
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freedom. Accordingly, in order to get to the classical limit of point charge nuclei, one can carry 

out the transformation to phase and amplitude for the nuclear wavefunction, and arrive at a 

Jacobi-like equation similar to the above (equation 2.2.2): 

 
𝜕𝑆

𝜕𝑡
+∑

1

2𝑀𝐼

(∇𝐼𝑆)
2

𝐼

+∫Ψ∗ℋ𝑒Ψ𝑑𝑟 = 0 (2.2.8) 

and the corresponding Newton-type equation  

 𝑀𝐼�⃗⃗�𝐼
̈ = −∇𝐼∫Ψ

∗ℋ𝑒Ψ𝑑𝑟 = −∇𝐼𝑉𝑒
𝐸({�⃗⃗�𝐼(𝑡)}) (2.2.9) 

Overall, the ions move in the classical potential induced by the electronic wavefunction 

which now originates from the time-dependent single particle equation. The last substitute to 

make is to replace the nuclear density with delta-functions in the classical limit, and with that the 

equation for the electronic dynamics becomes 

 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= −∑

ℏ2

2𝑚𝑒
∇𝑖
2Ψ

𝑖

+ 𝑉𝑛−𝑒({𝑟𝑖}, {�⃗⃗�𝐼})Ψ

= ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼(𝑡)})Ψ({𝑟𝑖}, {�⃗⃗�𝐼}; 𝑡) 

(2.2.10) 

It is important to note that this approximation can involve multi-determinant electronic 

wavefunction Ψ, which can be, for example, expanded in terms of a complete basis of the 

eigenstates of the electronic Hamiltonian ℋ𝑒: ℋ𝑒({𝑟𝑖}; {�⃗⃗�𝐼})Ψ𝑙({𝑟𝑖}) = 𝐸𝑘({�⃗⃗�𝐼})Ψ𝑙({𝑟𝑖}): 

 Ψ({𝑟𝑖}, {�⃗⃗�𝐼}; 𝑡) =∑𝑐𝑙(𝑡)Ψ𝑙({𝑟𝑖}; {�⃗⃗�𝐼})

∞

𝑙=1

 (2.2.11) 

With such approximation, the time-dependent coefficients will represent the populations 

of the adiabatic Hamiltonian eigenstates. Considering the simplest case of electronic system 

residing in the ground state, one obtains the expression for forces corresponding to the Born-
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Oppenheimer dynamics (equation 2.2.4, 𝑙 = 0). Upon plugging the expansion 2.2.11 in the 

equations for electronic (2.2.10) and ionic (2.2.9) dynamics, one obtains: 

 𝑖ℏ
𝑑𝑐𝑙(𝑡)

𝑑𝑡
= 𝑐𝑙(𝑡)𝐸𝑙 − 𝑖ℏ∑𝑐𝑘(𝑡)𝐷

𝑘𝑙

𝑘

 (2.2.12) 

 

𝑀𝐼�⃗⃗�𝐼
̈ = −∇𝐼∫Ψ

∗ℋ𝑒Ψ𝑑𝑟 = 𝑀𝐼�⃗⃗�𝐼
̈ = −∇𝐼∑|𝑐𝑘(𝑡)|

2𝐸𝑘
𝑘

= −∑|𝑐𝑘(𝑡)|
2

𝑘

∇𝐼𝐸𝑘 +∑𝑐𝑘
∗𝑐𝑙(𝐸𝑘 − 𝐸𝑙)𝑑𝐼

𝑘𝑙

𝑘,𝑙

 

(2.2.13) 

where 𝐷𝑘𝑙 are the non-adiabatic coupling elements given by 

 𝐷𝑘𝑙 = ∫Ψ𝑘
∗
𝜕

𝜕𝑡
Ψ𝑙𝑑𝑟 =∑�⃗⃗�𝐼

̇ ⋅ ∫Ψ𝑘
∗∇𝐼Ψ𝑙𝑑𝑟

𝐼

=∑�⃗⃗�𝐼
̇ ⋅ 𝑑𝐼

𝑘𝑙

𝐼

 (2.2.14) 

after utilizing the chain rule. From the above expressions one can see that the mean-field 

approach to the coupled electron-ion dynamics, along with the classical nuclei approximation, 

allows to capture the transitions between adiabatic ground states. Moreover, the forces acting on 

atoms are averaged over several adiabatic states, with additional terms due to non-adiabaticity of 

the wavefunction. This puts limits on the applicability of the method compared to other 

approaches, for example surface hopping;5-8 we will discuss those limitations in the next chapter. 

Overall, the key difference between the Ehrenfest and Born-Oppenheimer dynamics is 

the explicit presence of both electronic and ionic dynamics in the former. Due to that, the time 

steps in the Ehrenfest dynamics have to be small enough to resolve the electronic dynamics – 

that is, order of attoseconds. On the other hand, the diagonalization of electronic Hamiltonian at 

each time step is avoided – and since it can be computationally demanding step, scaling as 3rd 

power of system size for simpler electronic structure methods to above 5th power for more 

advanced multi-reference approaches, for large systems Ehrenfest dynamics ends up being more 
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computationally efficient. Moreover, due to inclusion of non-adiabatic effects, this method is the 

preferred one for simulation of chemical processes. We will consider the methods for dealing 

with electronic structure in the following discussion. 

2.3. Electronic structure methods 

As discussed above, after decoupling of the time evolution of nuclei and electrons by 

assuming that the electrons react instantaneously to any change in the position of nuclei, the 

electronic part of the problem may be expressed in terms of time-independent Schrodinger 

equation (TISE), 

 ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼})Ψ({𝑟𝑖}) = 𝐸Ψ({𝑟𝑖}), (2.3.1) 

where Ψ({𝑟𝑖}) is the electronic many-body wavefunction, and the many-body Hamiltonian 

ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼}) includes terms corresponding to kinetic energy of electrons, electron-electron 

interaction, electron-nuclei interaction, and the nuclear repulsion: 

 

ℋ𝑒({𝑟𝑖}, {�⃗⃗�𝐼}) = −∑
1

2
∇𝑖
2

𝑖

+∑
1

|𝑟𝑖 − 𝑟𝑗|𝑖<𝑗

−∑
𝑍𝐼

|𝑟𝑖 − �⃗⃗�𝐼|𝑖,𝐼

+∑
𝑍𝐽𝑍𝐼

|�⃗⃗�𝐽 − �⃗⃗�𝐼|𝐼<𝐽

 

(2.3.2) 

The main problem with this expression is that the wavefunction Ψ({𝑟𝑖}) depends on the 

positions of all electrons in the system – for 𝑛 electrons the number of degrees of freedom is 3𝑛, 

and the TISE is an eigenvalue problem for a differential operator in 3𝑛 coordinates. This makes 

analytical solution impossible for more than one electron (even for helium atom the closed-form 

solution is not known), and numerical solution challenging as well for many-body systems due to 

the necessity of dealing with high-dimensional discrete grids. 



 

14 

 

Several approaches exist to tackle this problem. The first group of methods, so-called 

mean-field methods, assumes that the many-body wavefunction can be factorized into one-body 

contributions – orbitals. This implies that the electron-electron two-body interaction term is 

replaced by an effective potential, which describes the electrostatic interaction of electrons in a 

mean-field manner: each electron interacts with the average electrostatic potential created by all 

other electrons. This approximation obviously neglects the instantaneous correlation of electrons 

movement, which is induced by two-body Coulomb term; however, various approaches to 

recovering these so-called dynamic correlations exist. The main drawback of these methods is 

extremely unfavorable scaling with the number of electrons in the system – for those including 

dynamic correlation computational complexity scales as at least 5th power of the number of 

electrons in the system, and in the worst cases the scaling is factorial.9,10 

Another approach is based on the notion that the wavefunction in only necessary for 

computation of observable quantities, and by itself is only an auxiliary tool. Therefore, one can 

attempt to infer the properties of the system in question from an observable quantity – for 

example, density of electrons. This group of methods is known as density functional theory 

(DFT), which will discuss in greater detail below. 

2.3.1. Origins of DFT 

The main idea of DFT is that all the observable quantities can be expressed in terms of 

the electron density of the system; this approach dates back to early work of Thomas and 

Fermi,11,12 however it was not until the work of Hohenberg and Kohn13 that this connection was 

proven formally. More specifically, it was shown that there is unique correspondence between 

the electron density of the system and the external potential (that is, Coulomb potential of the 

nuclei and electric and magnetic fields, if present); moreover, the true ground state electron 
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density minimizes the total energy of the system. However, the exact expression for total energy 

as a function of electron density was not provided.  

Out of the three components of the total energy of electronic system – kinetic energy, 

electron-electron interaction, and electron-ion interaction, the kinetic energy term was especially 

challenging to express in terms of density – that leads to, for example, the failure to predict 

chemical bonding.14 A workaround for this problem was proposed in the work of Kohn and 

Sham15 by introducing a reference system of non-interacting negatively charged fermions. Due 

to absence of direct many-body interactions the behavior of such reference was governed by 

single-particle equations, which made the solutions tractable. The density of particles in such 

system is supposed to reproduce the density of electrons in actual system under consideration 

accurately, so the total energy 𝐸[𝑛(𝑟)] can be calculated directly from the quasi-particle density 

𝑛(𝑟): 

 
𝐸[𝑛(𝑟)] = 𝑇[𝑛(𝑟)] + ∫𝑛(𝑟)𝑣𝑒𝑥𝑡(𝑟)𝑑𝑟 +

1

2
∫∫

𝑛(𝑟)𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟𝑑𝑟′

+ 𝐸𝑋𝐶[𝑛(𝑟)] 

(2.3.3) 

where 𝑇[𝑛(𝑟)] is the kinetic energy of the system of non-interacting fermions, 𝑣𝑒𝑥𝑡(𝑟) is the 

external potential denoting the interaction with nuclei, and 𝐸𝑋𝐶[𝑛(𝑟)] is the exchange-correlation 

energy, meaning of which will be explained below. A substantial simplification is achieved in 

the kinetic energy term due to the fact that for a system of 𝑁 non-interacting particles described 

by the single-body wavefunctions φ𝑖(𝑟) the kinetic energy 𝑇[𝑛(𝑟)] can be expressed as  

 𝑇[𝑛(𝑟)] =
1

2
∑∫φ𝑖(𝑟)∇

2φ𝑖(𝑟)𝑑𝑟

𝑖

=
1

2
∑⟨φ𝑖(𝑟)|∇

2|φ𝑖(𝑟)⟩

𝑖

 (2.3.4) 

The exchange-correlation energy has three components in it. First is the difference 

between the kinetic energies of the reference system of non-interacting fermions, equation 2.3.4, 
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and the actual kinetic energy of electrons. Second is the correction for dynamic correlation of 

motion of electrons and associated lowering of the energy (since electrons tend to avoid each 

other due to Coulomb repulsion). Third term is the so-called “exchange” energy which is 

supposed to mitigate two effects: first, electrons are fermions and due to the associated many-

body wavefunction being antisymmetric the probability of finding two electrons of the same spin 

in a given point in space is exactly zero (this effect is called exchange hole; for the case of 

bosons the probability, on the contrary, is enhanced); second, in the expression for the Coulomb 

interaction of reference fermions the contribution from any given particle is counted twice – that 

is, there is extra so-called “self-interaction” energy.  

Upon variation of the energy functional 𝐸[𝑛(𝑟)] with respect to the density of fermions, 

under the constraint of conservation of the number of particles in the system, the single-particle 

eigenvalue equations for the wavefunctions φ𝑖(𝑟) can be obtained, known as Kohn-Sham 

equations: 

 

ℋ𝐾𝑆φ𝑖(𝑟) = (−
1

2
∇2 + 𝑣𝑒𝑥𝑡(𝑟) + ∫

𝑛(𝑟′)

|𝑟 − 𝑟′|
𝑑𝑟 + 𝑣𝑋𝐶(𝑟))φ𝑖(𝑟)

= 𝜀𝑖φ𝑖(𝑟) 

(2.3.5) 

There are two non-trivial components to this equation: the external potential 𝑣𝑒𝑥𝑡(𝑟) is 

typically expressed in terms of the pseudopotentials; there exist various approximations to the 

exchange-correlation potential 𝑣𝑋𝐶(𝑟). Next, the orbitals φ𝑖(𝑟) are typically not just stored on a 

discretized grid – a more effective approach involving localized orbitals can be used, as well as 

plane-wave expansion, typically invoked when studying materials. We discuss those 

approximations below.  

The Kohn-Sham equations have an important caveat in them: the Kohn-Sham effective 

Hamiltonian depends on the density of fermions in the systems. Therefore, the equations need to 



 

17 

 

be solved iteratively: an initial approximation to the density of electrons in the system is created, 

typically as a superposition of atomic densities, the Hamiltonian is formed, the eigenvalue 

problem is solved for a new set of orbitals φ𝑖, corresponding density is formed according to 

𝑛(𝑟) = ∑ |φ𝑖(𝑟)|
2

𝑖 , and a new Hamiltonian is formed. This process is continued until the density 

which was used to create the Hamiltonian matches the density corresponding to the orbitals 

induced by that Hamiltonian. This condition is called “self-consistency”; often additional 

conditions for convergence of the total energy are imposed. It is important to note that the 

iterations can be more involved; for example, the creation of the new density involves creating a 

linear combination of densities from the previous steps. One of the widely used methods for that 

is the direct inversion of the iterative subspace (DIIS) algorithm.16,17 Another optimization 

technique relies on the fact that the number of occupied orbitals is often much smaller than the 

size of the Kohn-Sham Hamiltonian matrix; therefore, an iterative diagonalization techniques for 

lowest eigenpairs, such as Davidson algorithm18,19 or residual minimization (RMM-DIIS),20 can 

be used. 

2.3.2. DFT functionals 

The main uncertainty in the Kohn-Sham equations is the definition of the exchange-

correlation functional, which is typically specified as a derivative of the exchange-correlation 

energy: 𝑉𝑋𝐶(𝑟) =
𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟)
. Since Hohenberg-Kohn theorems only specify that the functionals exist 

and don’t provide any guidance for obtaining the actual expressions, a number of approximations 

are used these days. Generally, the functional is split into two components, exchange and 

correlation: 𝐸𝑋𝐶[𝑛(𝑟)] = 𝐸𝑋[𝑛(𝑟)] + 𝐸𝐶[𝑛(𝑟)]. The approximations for those components can 

be categorized in three ranks. 



 

18 

 

First is the local density approximation – the underlying assumption is that the electron 

density is a homogeneous electron gas, and so the exchange and correlation energies are 

functions of slowly changing electron density. With those assumptions, the exchange term can be 

written as:4 

 𝐸𝑋[𝑛(𝑟)] = −2
1
3𝐶𝑋𝑛(𝑟)

1
3 ((1 + 𝜉)

4
3 + (1 − 𝜉)

4
3) (2.3.6) 

where 𝜉 =
𝑛𝛼(𝑟)−𝑛𝛽(𝑟)

𝑛𝛼(𝑟)+𝑛𝛽(𝑟)
 is the spin polarization density, and 𝐶𝑋 =

3

4
(
3

𝜋
)

1

3
. The correlation energy is 

obtained by an interpolation formula.21 

The second rank is the general gradient approximation, which includes terms depending 

on density gradient. One of the first functionals of this type is BP86, and the most used version 

currently is PBE functional, which does not contain any empirical parameters.22-24 

The next step are so-called “hybrid” methods, for which the exchange energy is 

computed analogously to Fock exchange term in the Hartree-Fock method.25,26 The premise is 

that the main problem of DFT is the self-interaction of electrons, which is absent in the Hartree-

Fock method; therefore, supposedly the inclusion of the “exact” exchange will correct for the 

double-counting. The functionals are typically parameterized using data from available 

experimental compounds. An additional modification often done is the splitting of exchange 

component into short-and long-range terms,27-29 which allows to recover the correct 
1

𝑟
 

asymptotical behavior of the electron-electron interaction; such modifications are especially 

relevant for computing excited states, since it allows to mitigate the appearance of low-energy 

charge-transfer states. 
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2.3.3. Pseudopotential method 

The pseudopotential method is based on the idea that the electrons in the system under 

consideration can be partitioned into the valence electrons, actively participating in the formation 

of chemical bonds, and core electrons, which undergo only slight rearrangements.29-30 That 

allows to simplify the electronic structure problem by “packaging” the given atomic nucleus and 

its core electrons together, and considering explicitly only the valence electrons moving in the 

field of nuclear potential screened by core electrons. Apart from a reduction of the size of the 

problem in question, the main benefit of this operation is that the resulting wavefunctions for 

valence electrons are much smoother, since the condition of orthogonality to the core orbitals 

does not have to be met anymore. More specifically, if we denote the valence orbitals as |𝜓𝑣⟩, 

and core orbitals as |𝜓𝑐⟩, then the valence orbitals can be expressed as a sum of a smooth 

“pseudo-orbital” |𝜑𝑣⟩ and the term arising from condition of orthogonality to core orbitals: 

 |𝜓𝑣⟩ = |𝜑𝑣⟩ −∑|𝜓𝑐⟩⟨𝜓𝑐|𝜑𝑣⟩

𝑐

 (2.3.7) 

With that, the Schrodinger equation for the smooth |𝜑𝑣⟩ can be written as: 

 ℋ𝐾𝑆|𝜑𝑣⟩ = 𝐸𝑣|𝜑𝑣⟩ +∑(𝐸𝑐 − 𝐸𝑣)⟨𝜓𝑐|𝜑𝑣⟩|𝜓𝑐⟩

𝑐

 (2.3.8) 

from where it follows that the smooth function satisfies Shrodinger equation with energy-

dependent “pseudo-Hamiltonian”31 ℋ𝑃𝐾 = ℋ𝐾𝑆 − ∑ (𝐸𝑐 − 𝐸)|𝜓𝑐⟩⟨𝜓𝑐|𝑐 . Analogously, the 

pseudopotential can be defined as 

 �̂�𝑃𝐾(𝐸) = 𝑣 −∑(𝐸𝑐 − 𝐸)|𝜓𝑐⟩⟨𝜓𝑐|

𝑐

 (2.3.9) 

where 𝑣 is the Coulomb potential of the nucleus. The terms in the projector sum decay at a 

sufficient distance from the nucleus, and there the pseudo-wavefunction |𝜑𝑣⟩ matches the actual 



 

20 

 

valence orbital |𝜓𝑣⟩. The energy of interaction with the nuclei can be expressed with such 

approximations as: 

 ∫
𝑍𝐴
𝑟1𝐴

|𝜓𝑣(𝑟1⃗⃗⃗ ⃗)|
2𝑑𝑟1⃗⃗⃗ ⃗ = ∫𝜑𝑣

∗(𝑟1⃗⃗⃗ ⃗)𝜔(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ )φ𝑣(𝑟2⃗⃗⃗⃗ )𝑑𝑟1⃗⃗⃗ ⃗𝑑𝑟2⃗⃗⃗⃗  (2.3.10) 

where 𝜔(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ ) is the nonlocal pseudopotential, which can be further broken down into a sum of 

components acting on different angular momentum channels: 𝜔(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ ) =

∑ ∑ 𝑌𝑙𝑚
∗ (𝑟1̂)𝜔𝑙(𝑟1, 𝑟2)𝑌𝑙𝑚(𝑟2̂)

𝑙
𝑚=−𝑙𝑙 , where 𝑌𝑙𝑚 are spherical harmonics, and 𝜔𝑙(𝑟1, 𝑟2) the 

pseudopotential component for a given angular momentum channel 𝑙.  

The typical approach to the creation of the pseudopotentials goes as following: First, the 

atomic Schrodinger equation is solved with explicit consideration of all electrons. Then, the 

pseudo-wavefunction is parameterized using one of the available ansatzs32-33 by imposing the 

following conditions: it has to match the full-electron solution outside a sphere of a pre-specified 

radius 𝑟𝑐, and has to preserve the norm of the all-electron solution within that sphere: 

 

{
 

 
𝑅𝑙
𝑃𝑃(𝑟1) = 𝑅𝑛𝑙

𝐴𝐸(𝑟1), for  𝑟1 > 𝑟𝑙

∫ 𝑟2|𝑅𝑙
𝑃𝑃(𝑟1)|

2 𝑑𝑟1

𝑟𝑙

0

= ∫ 𝑟2|𝑅𝑙
𝐴𝐸(𝑟1)|

2
𝑑𝑟1

𝑟𝑙

0

, for 𝑟1 < 𝑟𝑙
 (2.3.11) 

where 𝑅𝑙
𝑃𝑃 is the radial part of the pseudo-wavefunction with angular momentum 𝑙, and 𝑅𝑛𝑙

𝐴𝐸 is 

the all-electron atomic orbital. Finally, the pseudopotential is obtained by inverting the 

Schrodinger equation for a given reference energy. 

The norm-conserving potentials are written in the Kleinman-Bylander34-35 separable form 

for higher computational efficiency. For that, a “local” channel of angular momentum 

𝜔𝑙𝑜𝑐𝑎𝑙(𝑟1) = −𝑍𝑐𝑜𝑟𝑒/𝑟1 is chosen, and for the remaining angular momentum channels the 

difference term is defined: ∆𝜔𝑙(𝑟1) = 𝜔𝑙(𝑟1) − 𝜔𝑙𝑜𝑐𝑎𝑙(𝑟1). With that, the pseudopotential is 

written as  
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𝜔𝑙
𝐾𝐵(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ ) = 𝜔𝑙𝑜𝑐𝑎𝑙(𝑟1) +∑∆𝜔𝑙

𝐾𝐵(𝑟1⃗⃗⃗ ⃗, 𝑟2⃗⃗⃗⃗ )

𝑙

= 𝜔𝑙𝑜𝑐𝑎𝑙(𝑟1)

+∑ ∑
φ𝑙𝑚(𝑟1⃗⃗⃗ ⃗)∆𝜔𝑙(𝑟1)∆𝜔𝑙(𝑟2)φ𝑙𝑚(𝑟2⃗⃗⃗⃗ )

∫ ∆𝜔𝑙(𝑟1)|φ𝑙𝑚(𝑟1⃗⃗⃗ ⃗)|2𝑑𝑟1⃗⃗⃗ ⃗

𝑙

𝑚=−𝑙𝑙

 

(2.3.12) 

However, as was shown by Vanderbilt,36 the norm conservation condition is not 

mandatory, since the “missing” charge can be added back to the valence electron density. The 

resulting “ultra-soft” pseudopotentials produce much smoother pseudo-wavefunctions, reducing 

the computational requirements and improving the transferability of the generated 

pseudopotentials. However, transferable pseudopotentials require several potential components 

for an angular momentum channel which makes the construction and testing of such potentials a 

highly non-trivial process. 

A further development is the widely used projector augmented wave (PAW) method.37-39 

This method preserves the transferability of the ultrasoft pseudopotentials while avoiding the 

complicated step of “pseudization” of the additional charge. This is achieved by connecting the 

pseudo-wavefunctions |𝜑𝑛⟩ directly to the all-electron wavefunctions |𝜓𝑛⟩ through a linear 

transformation: 

 |𝜓𝑛⟩ = |𝜑𝑛⟩ +∑(|𝜙𝑖⟩ − |𝜙�̃�⟩)⟨𝑝�̃�|�̃�𝑛⟩

𝑖

 (2.3.13) 

where |𝜙𝑖⟩ are all-electron partial waves, typically obtained from solving radial Schrodinger 

equation for a given atom, |𝜙�̃�⟩ are the pseudized partial waves, orthogonal to the core states and 

matching the all-electron partial waves outside a sphere of a given core radius 𝑟𝑐
𝑙, and the 

projector functions ⟨𝑝𝑖| are defined through ⟨𝑝𝑖|�̃�𝑗⟩ = 𝛿𝑖𝑗. With that, the all-electron charge 

density can be exressed as a sum of pseudo-orbital density and the atom-centered terms. 
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Analogously, the expression for the total energy of all-electron system can be written down 

explicitly. This possibility of working directly with all-electron energy and forces while 

explicitly treating only pseudized soft wavefunctions, is a substantial advantage of the PAW 

method. It can also be shown that ultrasoft pseudopotential method can be obtained from the 

PAW energy expression by expansion in terms of on-site charge densities to first order.37 

2.3.4. Hubbard correction 

The DFT approach incorrectly describes the electronic structure of the strongly correlated 

transition-metal compounds.40 The reason for that is the incomplete cancellation of electron self-

interaction through correlation and exchange terms; another interpretation is that the total energy 

as a function of the number of electrons in the system is a concave function in the semi-local 

functional approximation.41 One of the potential solutions to this problem is to partition the 

electronic system into the delocalized bands with predominant s- and p-character and localized 

d-orbitals of the transition metal. Then a Hubbard-like model Hamiltonian can be written for the 

localized electrons, which results in an additional energy term or the type: 

 𝐸𝑈 =
𝑈

2
∑𝑛𝑖𝑖𝑛𝑗𝑗
𝑖≠𝑗

 (2.3.14) 

where 𝑛𝑖𝑖 is the population of ith localized level,42-43 that is, the corresponding diagonal element 

of the density matrix. This expression, however, is not rotationally invariant; a version 

accounting for that was shown to look like:44-45 

 𝐸𝑈 =
1

2
∑𝑈𝑖𝑗𝑘𝑙[𝑛𝑖𝑘𝑛𝑗𝑙 − 𝑛𝑖𝑙𝑛𝑗𝑘]

𝑖𝑗𝑘𝑙

 (2.3.15) 

where 𝑛𝑖𝑘 is the density matrix element corresponding to 𝑖𝑡ℎ and 𝑘𝑡ℎ localized levels; 𝑈𝑖𝑗𝑘𝑙 is the 

matrix element of the two-body screened Coulomb operator.  
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Another issue is that a part of the screened Coulomb interaction is already included in the 

DFT exchange-correlation functional; therefore, a double-counting correction needs to be 

introduced.46-47 With an additional approximation of spherically-symmetric Coulomb interaction 

potential, the correction results in additional term to the system Hamiltonian: 

 𝑉𝑖𝑗
𝑠𝑦𝑚

=
𝛿𝐸𝑈

𝛿𝑛𝑖𝑗
= 𝑈𝑒𝑓𝑓 [

𝛿𝑖𝑗

2
− 𝑛𝑖𝑗] (2.3.16) 

where 𝑈𝑒𝑓𝑓 a model parameter typically chosen by the user in a way to reproduce a certain 

property of the system under consideration, typically the bandgap. Alternatively, it can be 

obtained by studying the response of the system to external electric field.41 

2.3.5. Density functional theory for solids – periodic boundary 

conditions 

The periodic boundary conditions is typically invoked when the electronic structure and 

properties of the extended systems need to be studied.48-50 This allows to remove the finite-size 

effects, and at the same time treat the irregularities in the crystal structure through the usage of 

the supercell method. We will consider the implications of imposing periodic boundary 

conditions on a system with Bravais lattice basis vectors {𝑎1⃗⃗⃗⃗⃗, 𝑎2⃗⃗⃗⃗⃗, 𝑎3⃗⃗⃗⃗⃗} and corresponding 

reciprocal lattice vectors {𝑏1⃗⃗ ⃗⃗ , 𝑏2⃗⃗⃗⃗⃗, 𝑏3⃗⃗⃗⃗⃗}. Upon a translation �⃗⃗� = 𝑛1𝑎1⃗⃗⃗⃗⃗ + 𝑛2𝑎2⃗⃗⃗⃗⃗ + 𝑛3𝑎3⃗⃗⃗⃗⃗, where 𝑛𝑖 are 

integers, the potential induced by the crystal lattice is not changed: 𝑣𝑒𝑥𝑡(𝑟 + �⃗⃗�) = 𝑣𝑒𝑥𝑡(𝑟). 

Therefore, the effective Hamiltonian commutes with the translation operator and the eigenstates 

can be classified according to the irreducible representations of translation group. Such 

representations are denoted by a vector �⃗⃗�, which in this case serves as an additional label 

together with the normal ordinal number 𝑛. Moreover, according to Bloch theorem the single-

particle eigenstates can be written in the form  
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 𝜓𝑛�⃗⃗�(𝑟) = exp(𝑖�⃗⃗� ⋅ 𝑟) 𝑢𝑛�⃗⃗�(𝑟) (2.3.17) 

where 𝑢𝑛�⃗⃗�(𝑟 + �⃗⃗�) = 𝑢𝑛�⃗⃗�(𝑟) is a periodic function. In principle, the translation group is infinite, 

and the number of allowed vectors �⃗⃗� is infinite as well; in practice, however, a finite Born-

Karman periodic boundary condition is introduced: 𝜓(𝑟 + 𝑁𝑖𝑎𝑖⃗⃗⃗⃗ ) = 𝜓(𝑟), where 𝑁𝑖 are integers, 

and 𝑁 = 𝑁1𝑁2𝑁3 is the number of cells in the resulting model crystal. It can be shown that the 

allowed label vectors in the first Brillouin zone are �⃗⃗� = ∑
𝑚𝑖

𝑁𝑖
𝑏𝑖⃗⃗⃗ ⃗

3
𝑖=1 , with integers 𝑚𝑖 and 

reciprocal lattice vectors 𝑏𝑖⃗⃗⃗ ⃗. It is important to note that the number of the allowed k-points is 

equal to the number of unit cells in the model crystal on which the periodic boundary conditions 

are imposed. 

Periodic wavefunctions 𝜓𝑛𝑘(𝑟) can be expanded in terms of plane waves with �⃗⃗� vectors 

of the form shown above: 𝜓𝑛�⃗⃗�(𝑟) = ∑ 𝑐�⃗⃗�,𝑛(�⃗�) exp(𝑖�⃗⃗� ⋅ 𝑟)�⃗⃗� . However, upon plugging this ansatz 

in the single-body Schrodinger equation: −
ћ2

2𝑚
∇2𝜓 + 𝑉𝑛−𝑒(𝑟)𝜓 = 𝜀𝜓 it can be shown that for 

periodic potential only the terms �⃗� differing by a reciprocal lattice vector �⃗⃗⃗� = 𝑛1𝑏1⃗⃗ ⃗⃗ + 𝑛2𝑏2⃗⃗⃗⃗⃗ +

𝑛3𝑏3⃗⃗⃗⃗⃗ remain in the expression and it takes the following form: 𝜓𝑛𝑘(𝑟) = exp(𝑖�⃗⃗� ⋅

𝑟)∑ 𝑐�⃗⃗�−�⃗⃗⃗� exp(−𝑖�⃗⃗⃗� ⋅ 𝑟)�⃗⃗⃗� . This is the “plane-wave” expansion oftentimes used in the modern 

software packages.51 The pseudopotential method described above serves to make this task easier 

by considering “smooth” pseudo-wavefunctions with rapidly converging plane-wave expansions. 

The electronic structure problem for the model crystal is then separated in a number of separate 

problems for the allowed vectors �⃗⃗�, called “k-points”: 
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∑(
1

2
|�⃗⃗� + �⃗⃗⃗�|

2
𝛿�⃗⃗⃗�,�⃗⃗⃗�′ + 𝜔(�⃗⃗� + �⃗⃗⃗�, �⃗⃗� + 𝐾

′⃗⃗⃗⃗⃗) + 𝑣𝐻 (�⃗⃗⃗� − 𝐾′⃗⃗⃗⃗⃗)

𝐾′⃗⃗⃗⃗⃗

+ 𝑣𝑋𝐶 (�⃗⃗⃗� − 𝐾′⃗⃗⃗⃗⃗)) 𝑐�⃗⃗�,𝑛(𝐾
′⃗⃗⃗⃗⃗) = 𝜀�⃗⃗�,𝑛 𝑐�⃗⃗�,𝑛(�⃗⃗⃗�) 

(2.3.18) 

Overall system properties, for example, total energy or electronic density, are then 

computed as a weighted sum over the k-points used in the calculation; the schemes for optimal 

sampling of the first Brillouin zone have been developed.52 Overall, the choice of density of k-

point sampling and the cutoffs for the expansion of the wavefunction are the two most important 

parameters determining the accuracy of the calculation in the density functional theory 

computation under periodic boundary conditions. 

2.3.6. Localized basis set 

Oftentimes, however, the plane-wave computations become prohibitive due to the size of 

the system in question – this happens since solution of the Kohn-Sham equations in such codes 

involves diagonalization of a matrix of size 𝑁𝑃𝑊 ×𝑁𝑃𝑊, where 𝑁𝑃𝑊 is the number of plane 

waves used, which in turn scales as a product of system size for a given cutoff. Most modern 

codes use fairly advanced techniques, such as projection on the subspace of the size 𝑁𝑏𝑛𝑑 ×

𝑁𝑏𝑛𝑑, where 𝑁𝑏𝑛𝑑 is the number of bands, occupied and empty, in the system, and an iterative 

diagonalization of the resulting smaller problem; however for the number of atoms exceeding 

several hundreds to a thousand the computational resources required become prohibitive. A 

workaround is to make the involved Hamiltonian matrices sparse, which allows to take 

advantage of more favorably scaling algorithms. This is achieved by introducing the localized 

basis set, as implemented in SIESTA53 software. In the following, we briefly summarize the 

most important aspects of that approach. 
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The sparsity of the system Hamiltonian and overlap matrix is achieved by using localized 

basis functions, which are enforced to being zero beyond a certain cutoff threshold. Such strict 

localization is achieved by splitting the basis orbitals into an angular and radial parts, and 

explicitly storing the numerical radial part (which goes to zero beyond a strict cutoff) on a grid. 

The values in between the radial mesh points are interpolated by cubic splines. The desired 

cutoff radius and the shape of the orbital can be specified by the user. The commonly used in 

quantum chemistry split-valence basis sets are supported, as well as polarization orbitals. 

The pseudopotentials are used in the norm-conserving non-local Kleinman-Bylander34 

form mentioned previously, except for the local part of the pseudopotential being set to a 

specifically optimized function rather than to one of the angular momentum channels. One 

projector per angular momentum channel is used in most cases, pseudized with the energy equal 

to atomic orbital eigenvalue. 

The terms in the Kohn-Sham equation corresponding to the kinetic energy and the local 

part of the pseudopotential are computed in the reciprocal space, and the rest of the terms – on a 

real-space grid, with grid finesse being controlled by one of the parameters in the computation. 

The key difference of this code is the computation of the electronic density from the density 

matrix in the basis of localized atomic orbitals – which is sparse due to their strict localization. 

Analogously, the total energy of the system is also expressed through the sparse density matrix. 

Using such techniques, even a linear scaling of the computational intensity with system size can 

be achieved. 

2.3.7. Wannier functions 

Under periodic boundary conditions, the Kohn-Sham eigenstates have the translational 

symmetry of the system under consideration, in addition to being extended throughout the 



 

27 

 

simulation cell. On the contrary, most of the chemical intuition is generally derived from the 

localized orbital notation (𝜎-, 𝜋-bonds, etc.). One of the possible approaches to bridging this gap 

is the localized Wannier functions representation. This approach is implemented under the name 

of “maximally localized Wannier functions” – MLWF.54-57 In further discussion, we briefly 

review the basics of the method to provide ground for understanding of its applications 

throughout the rest of the work. 

Consider a model crystal with periodic boundary conditions imposed over 𝑁𝑥𝑁𝑦𝑁𝑧 unit 

cells (and with equal number of k-points). For a single band 𝜓𝑛�⃗⃗�(𝑟) = 𝑢𝑛�⃗⃗�(𝑟) exp(𝑖�⃗⃗� ⋅ 𝑟), the 

construction of localized orbital 𝑤�⃗⃗�𝑛(𝑟) centered in one of the model unit cells translated by a 

Bravais lattice vector �⃗⃗� from the origin can be accomplished by an integration over the Brillouin 

zone with appropriate phase factors:  

 𝑤�⃗⃗�𝑛(𝑟) =
𝑉

(2𝜋)3
∫ exp(−𝑖�⃗⃗� ⋅ 𝑟)𝜓𝑛�⃗⃗�(𝑟)𝑑�⃗⃗�
𝐵𝑍

 (2.3.19) 

The resulting set of Wannier functions 𝑤�⃗⃗�𝑛(𝑟) for 𝑁𝑥𝑁𝑦𝑁𝑧 values of �⃗⃗� form an 

equivalent basis for Schrodinger equation, since the total energy of the model system is invariant 

under unitary transformations of the basis. An arising complication, however, is the fact that 

transformation is defined only up to a gauge function exp (𝑖𝜙𝑛(�⃗⃗� )), where 𝜙𝑛 is periodic in 

reciprocal space. From the elementary considerations of Fourier transforms theory, one can infer 

that in order to achieve satisfactory localization in the real space, the Bloch wavefunctions have 

to be as smooth as possible in 𝑘-space; one of the criteria for that can be well-defined gradient in 

the reciprocal space: ∇�⃗⃗�𝜓𝑛�⃗⃗�(𝑟). Unfortunately, the Kohn-Sham eigenstates don’t fulfill this 

requirement at the points of bands crossing. Therefore, the main challenge is to define a unitary 

transformation of Bloch eigenstates 𝜓𝑛�⃗⃗�(𝑟) into a group of functions smooth in 𝑘-space �̃�𝑛�⃗⃗�(𝑟) 
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for using in the definition of Wannier function. For a group of 𝐽 bands this required 

transformation can be written as: 

 �̃�𝑛�⃗⃗�(𝑟) = ∑ 𝑈𝑚𝑛
�⃗⃗� 𝜓𝑚�⃗⃗�(𝑟)

𝐽

𝑚=1

  (2.3.20) 

The procedure of finding the Wannier functions consists of defining the appropriate 

unitary transformation matrix 𝐔�⃗⃗�, and the utilizing the definition of Wannier transformation to 

get the localized orbitals. There are many possible definitions of this transformation; the one 

implemented in Wannier9056 software package is the requirement that the transformation 

minimizes the spread of Wannier functions obtained after applying the definition of Wannier 

transformation to the resulting �̃�𝑛�⃗⃗�(𝑟). The spread is defined as: 

 Ω =∑[⟨𝑤0⃗⃗⃗𝑛|𝑟
2|𝑤0⃗⃗⃗𝑛⟩ − ⟨𝑤0⃗⃗⃗𝑛|𝑟|𝑤0⃗⃗⃗𝑛⟩

2
]

n

 (2.3.21) 

where the terms involved can be expressed through matrix elements of the type ⟨𝜓𝑚�⃗⃗�|∇�⃗⃗�|𝜓𝑛�⃗⃗�⟩, 

which can be in turn expressed using the finite-difference approximation through the overlap 

integrals of the Bloch wavefunctions for neighboring 𝑘-points, ⟨𝜓𝑚�⃗⃗�|𝜓𝑛,�⃗⃗�+�⃗⃗�⟩. The minimum of 

the spread functional with respect to the unitary transformations of Bloch states is found by 

iterative optimization. The resulting Wannier functions have a lot of resemblance to the 

traditional 𝜎, 𝜋 bonds and lone pairs familiar from general chemistry. 

2.3.8. Electronic excitations – the delta-SCF (𝚫-SCF) method 

So far we have discussed the modeling of the electronic ground state of the system of 

interest. Modeling the excited states of chemical systems has been a subject of active research for 

decades, and the available methods for the isolated molecules range from fairly simple 

configuration interaction with single excitations 58 to very sophisticated and unfavorably scaling 
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approaches like multi-configuration self-consistent field.59 However, those methods are 

practically intractable computationally for systems with more than several dozen atoms. For 

simulation of large systems the most widespread method is linear-response time-dependent 

density-functional theory (LR-TDDFT).60-61 In a nutshell, this method amounts to studying the 

response of the electronic system in question to a small external electric field as a function of 

field frequency. The spectrum of the excited states of the system can be obtained in such way; 

the density corresponding to the excited states is constructed of a combination of the occupied 

and unoccupied Kohn-Sham orbitals of the ground state. The widespread problem of such 

method is inability to model correctly the charge-transfer excitations due to the incorrect 

asymptotic behavior of popular exchange-correlation functionals. This shortcoming can be 

addressed by using so-called range-separated functionals,61-62 but only to a limited extent. 

Another approach is the Δ-SCF method,63 which involves enforcing a different 

occupation numbers pattern during the self-consistent calculation. For the ground state of non-

metallic systems, the states are fully occupied from the lowest to the highest (HOMO), and the 

rest left vacant; for metals, Fermi distribution corresponding to the model temperature is 

enforced. In the case of Δ-SCF, the occupations can be changed at user’s discretion; most often, 

the lowest excited state of the system is modeled by setting the HOMO occupancy to zero and 

LUMO to one. For metallic systems, more elaborate constructs can be used. This approach has 

two important advantages: first, the model of the excited state does not depend on the shape of 

the ground state orbitals – the Kohn-Sham wavefunctions are variationally optimized, which 

makes it possible to describe the substantial rearrangements of the electronic system; second, 

with an exact functional this method produces the true densities of the excited states.64-65 Finally, 
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this method can be applied to the systems under periodic boundary conditions and coupled with 

real-time ion and electron dynamics, as we discuss below. 

2.4. Implementation of Ehrenfest dynamics with excitations 

For the simulation of excited states dynamics we use TDAP-2.067 code, which combines 

the capabilities for creating excitations using the Δ-SCF method and simulating electron-ion 

dynamics with the Ehrenfest method described above. This code is based on the SIESTA 

package,54 thus having support for periodic boundary conditions and localized basis sets. In this 

chapter we discuss the methodology and implementation details for the case of a localized basis. 

2.4.1. Electronic dynamics in the density functional theory 

approximation 

The extension of standard density functional theory to time domain (TDDFT) is based on 

the Runge-Gross theorems, which establish one-to-one correspondence between the time-

dependent electronicdensity and the external potential.67-68 In this approach instead of 

minimization of the total energy, the quantum-mechanical action has to be minimized in order to 

obtain time-dependent Schrodinger equation: 

 𝐴[Ψ] = ∫ ⟨Ψ(t)|𝑖ℏ
𝜕
𝜕𝑡
−ℋ𝑒(𝑡)|Ψ(𝑡)⟩

𝑡𝑓

𝑡𝑖

𝑑𝑡 (2.4.1) 

The relevant quantity is the action density functional 𝐴[𝑛], which has a stationary point at 

the correct electronic density. The stationary point condition, with utilization of auxiliary 

reference system of non-interacting particles, leads to the TDDFT equations for the Kohn-Sham 

orbitals: 
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ℋ𝐾𝑆(𝑡)𝜙𝑖(𝑟, 𝑡)

= (−
1

2
∇2 + 𝑉𝑒𝑥𝑡(𝑟, 𝑡) + 𝑉𝐻(𝑟, 𝑡) +

𝛿𝐴𝑥𝑐[𝑛]

𝛿𝑛(𝑟, 𝑡)
)𝜙𝑖(𝑟, 𝑡)

= 𝑖
𝜕

𝜕𝑡
𝜙𝑖(𝑟, 𝑡) 

(2.4.2) 

where the nuclei positions are treated as parameters in the external potential: 

 𝑉𝑒𝑥𝑡(𝑟, 𝑡) = −∑
𝑍𝐼

|�⃗⃗�𝐼(𝑡) − 𝑟|𝐼

+∑
𝑍𝐼𝑍𝐽

|�⃗⃗�𝐼(𝑡) − �⃗⃗�𝐽(𝑡)|𝐼<𝐽

 (2.4.3) 

In principle, the time-dependent exchange-correlation functional has explicit dependence 

on time (that is, history of the system), and is nonlocal in space: 

 
𝛿𝐴𝑥𝑐[𝑛]

𝛿𝑛(𝑟, 𝑡)
= 𝑉𝑥𝑐(𝑟, 𝑡) (2.4.4) 

In practice, the adiabatic local density approximation is made, which allows to write the 

exchange-correlation potential as: 

 𝐴𝑥𝑐
𝐴𝐿𝐷𝐴[𝑛] = ∫ ∫𝑛(𝑟′, 𝑡′)𝜖𝑥𝑐

𝐿𝐷𝐴(𝑛(𝑟′, 𝑡′))𝑑𝑟′𝑑𝑡′
𝑡𝑓

𝑡𝑖

 (2.4.5) 

Similar expressions exist for the extension of gradient-corrected functionals into time domain.  

Once the initial density and the Kohn-Sham states comprising it {𝜙𝑖(𝑡0)} are known, the 

system can be propagated in time using the TDKS equation (2.4.2) and the density reconstructed 

from the Kohn-Sham orbitals:  

 𝜙𝑖(𝑡) = �̂�(𝑡, 𝑡0)𝜙𝑖(𝑡0) (2.4.6) 

 �̂�(𝑡, 𝑡0) = �̂� exp(−𝑖∫ ℋ𝐾𝑆(𝑡
′)𝑑𝑡′

𝑡

𝑡0

) (2.4.7) 

where �̂� is time-ordering operator, and �̂�(𝑡, 𝑡0) is the time evolution operator. We describe the 

peculiarities associated with implementing those expressions in the localized basis set in the 
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following section. The nuclei can be propagated classically according to the forces exerted on 

them by the electronic subsystem.69-70 

2.4.2. Localized basis set implementation 

In the localized basis set dependent on the nuclei positions {𝜒𝑗({�⃗⃗�𝐼(𝑡)})} the Hamiltonian 

matrix 𝐇 elements are given by 𝐻𝑖𝑗 = ⟨𝜒𝑖|�̂�𝐾𝑆|𝜒𝑗⟩; analogously, the Kohn-Sham orbitals {𝜙𝑖} 

can be expanded into the basis as vectors 𝐜𝑖, with |𝜙𝑖⟩ = ∑ 𝑐𝑖
𝑘|𝜒𝑘⟩𝑘 . In such basis, the Kohn-

Sham equations are given by:66, 71 

 𝑖
𝜕𝐜n
𝜕𝑡

= 𝐒−1(𝐇 + 𝐏)𝐜𝑛 (2.4.8) 

where 𝐒 is the overlap matrix for that basis, 𝑆𝑖𝑗 = ⟨𝜒𝑖|𝜒𝑗⟩, and 𝐏 is the matrix term due to the 

motion of the basis functions, 𝑃𝑖𝑗 = −𝑖 ⟨𝜒𝑖|
𝜕𝜒𝑗

𝜕𝑡
⟩. 

In our work we use the discretized form of �̂� given by 

 𝐔(𝑡 + Δ𝑡, 𝑡) = exp(−𝑖Δ𝑡[𝐒1/2
−1 (𝐇1/2 + 𝐏1/2)]) (2.4.9) 

where subscript ½ indicates matrices taken at the half time step 𝑡 + Δ𝑡/2. We use the Lanczos 

iterative procedure in order to obtain the matrix exponential. Each time-propagation step is 

iterated to self-consistency as described elsewhere.72 

In Ehrenfest (mean-field) dynamics the nuclei (indexed by 𝐽) are classical particles 

moving in a potential approximated by the electronic energy expectation value 𝐸𝑒𝑙:  

 𝑀𝐽
𝜕2�⃗⃗�𝐽
𝜕𝑡2

= 𝐹𝐽⃗⃗⃗⃗ = −∇�⃗⃗�𝐽𝐸𝑒𝑙 
(2.4.10) 

where �⃗⃗�𝐽  is the position of of 𝐽th ion. The forces in this expression conserve the total energy of 

the system. Within TDDFT and an arbitrary basis, the final expression for the forces is given by:2 
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𝐹𝐽⃗⃗⃗⃗ = −∇�⃗⃗�𝐽∑
𝑍𝐽𝑍𝐾

|�⃗⃗�𝐽 − �⃗⃗�𝐾|𝐾≠𝐽

−∑𝑓𝑛𝐜𝑛
∗ (∇�⃗⃗�𝐽[𝐇 − 𝐕𝑑𝑐]) 𝐜𝑛

𝑛

+∑𝑓𝑛𝐜𝑛
∗ (𝐇𝐒−1𝐃𝐽 + ℎ. 𝑐. )𝐜𝑛

𝑛

 

(2.4.11) 

where  𝐕𝑑𝑐  is the double-counting correction term, 𝐃𝑖𝑗
𝐽 = ⟨𝜒𝑖|∇�⃗⃗�𝐽𝜒𝑗⟩, and 𝑓𝑛 are occupation 

numbers. In the case of adiabatic dynamics the last term reduces to the ordinary Pulay force. 

Overall, our approach to the simulation of the photo-induced processes consists of 

creating an excitation in the model system using the Δ-SCF approach and propagating electrons 

and ions in time according to the equations above. Such method is expected to work well for 

systems with high densities of states, such as semiconductor materials surface – which we 

successfully demonstrate in the next chapter. 
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CHAPTER 3. WATER PHOTO-OXIDATION ON THE 

RUTILE TITANIA (110) SURFACE 

In this chapter we discuss the simulation of water photo-oxidation; we introduce a 

framework for the study of photo-catalyzed reactions on semiconductor surfaces based on time-

dependent density functional theory that explicitly accounts for the evolution of electronically 

excited states. Within this approach, we investigate carrier-mediated oxidation of molecularly 

adsorbed water on the rutile TiO2 (110) surface. We find that this process is possible in synergy 

with thermal effects at temperatures between 60 and 100 K only when defects like Ti interstitials 

are present in the subsurface region. This work was published as G. A. Tritsaris, D. Vinichenko, 

G. Kolesov, C. M. Friend, E. Kaxiras. Dynamics of the Photogenerated Hole at the Rutile TiO2 

(110)/Water Interface: a Nonadiabatic Simulation Study. Journal of Physical Chemistry C, 2014, 

V. 118, pp. 27393–27401. 

3.1. Introduction 

Light-assisted hydrogen production in photo-electrochemical cells (PECs) constitutes an 

important avenue towards solar energy conversion for the production of carbon-free fuel.1 Upon 

illumination the oxygen evolution reaction (water oxidation reaction) occurs on the anode of the 

cell, which can be described by: 

 2H2O + 4ℎ
+ = O2 + 4H

+ (3.1.1) 

with molecular hydrogen being produced on the cathode. The conversion efficiency of the PEC 

depends critically on the catalytic performance of the electrodes. Nanostructured devices based 

on titanium dioxide (TiO2) are promising candidates for wide use in photon-induced reactions 

because of this material’s photochemical stability, nontoxicity, and natural abudance.2-6
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TiO2 is a semiconductor metal oxide with an optical band gap of 3.2 eV in its bulk rutile 

form and band gap edges that straddle the water redox potentials; that is, the involved chemical 

reactions become thermodynamically accessible upon photon absorption. The catalytic activity 

of TiO2 can be enhanced by co-catalysts or by metal dopants or defects due to ambient 

contamination during catalyst preparation.7-11
 The effect of such structural modifications on the 

thermochemistry at the surface/adsorbate interface has been discussed extensively in the 

literature,3, 5, 12
 but a comprehensive atomistic description of dynamic processes, such as the 

transport of the photo-generated charge carriers in the surface, is lacking even for pure TiO2. 

Photon-induced water dissociation on the rutile TiO2 (110) surface has recently been reported in 

the scanning tunneling microscope study of Tan et al.,13
 which demonstrated a very low rate (few 

events per hour) O–H bond-breaking in water upon irradiation with ultraviolet (UV) light under 

ultrahigh-vacuum conditions at 80 K. However, according to the density functional theory (DFT) 

calculations reported by Patel et al.,14
 the highest occupied molecular orbitals of molecular water 

are 1.40 eV below the valence band maximum (VBM) of the surface, which raises the question 

whether the reported dissociation of water is light-driven. 

The measured properties of real materials depend on the preparation methods and 

conditions, which makes the identification of universal structure−property relationships a 

challenging task and hinders a systematic approach to catalyst optimization. Atomistic modeling 

and simulation of surface adsorbate interfaces can provide insights into the microscopic 

physicochemical processes that control catalysis,12, 15-17
 an inherently atomic-scale phenomenon, 

as well as interfacial charge-carrier transfer.18-20 Previous theoretical studies of photon-mediated 

catalysis on rutile TiO2 surfaces used ground-state calculations to investigate the effect of excited 

electronic states on reaction energetics and neglected the details of charge-carrier motion which 
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can strongly affect the overall reaction rate. This highlights the need for computational methods 

to investigate charge-carrier dynamics in materials accurately and realistically.21-23
 Here we use 

ab initio electronic structure calculations within DFT24
 and its time-dependent version 

(TDDFT)25
 to develop a framework based on the concept of localized and delocalized electronic 

states for the study of photocatalytic reactions on semiconductor surfaces. 

Within this framework we evaluate the possibility of splitting of molecularly adsorbed 

water by photo-generated holes on rutile TiO2 surfaces with (110) orientation, which provides 

insights at the femtosecond time scale (10−15  s). In addition, the time-domain description of the 

interaction of the hole with the water molecule could elucidate the reaction mechanism of other 

photochemical reactions where water is present. From our simulations we find that whether the 

first step of water dissociation is photon-induced or thermal depends sensitively on the local 

atomic environment and external parameters such as temperature. Specifically, oxidative 

dehydrogenation of molecular water by a photo-generated hole is possible in synergy with 

thermal effects only on surfaces with defects, such as subsurface interstitial Ti atoms which act 

as trap sites for the hole. Our explicit time-dependent modeling provides useful guidelines for the 

rational design of efficient light-driven catalysis through careful control of the active site on the 

surface.  

3.2. Models and methods 

TiO2 in its rutile form is a tetragonal crystal in the crystallographic space group 

𝑃42/𝑚𝑛𝑚 and has two formula units in the unit cell. Its most stable low-index surface is the one 

with (110) orientation (the calculated surface energy for the relaxed surface is 15.6 meV/au2).26
 

We used a unit cell of two Ti and four O atoms to model the bulk structure of rutile TiO2 and an 

extended, 4-trilayer thick slab containing 162 atoms to model the (110) surface (Figure 3-1). The 
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latter was constructed by a truncation of the bulk structure along the (110) crystallographic 

plane. The obtained unit cell was augmented by a vacuum region of 8 Å on each side of the slab 

in 𝑧 direction. 

 

To model the catalyst surface, we used supercells with (3×2) periodicity relative to the 

primitive unit cell. One side of the slab was terminated with additional hydrogen atoms (bonded 

to the exposed O atoms) and hydroxyl (OH) ions (bonded to the exposed Ti atoms) in order to 

eliminate spurious localized states associated with the dangling bonds of O and Ti atoms, 

respectively, and emulate the bulk region of the catalyst. The positions of all atoms were 

optimized while keeping the lateral dimensions of the unit cell fixed to the corresponding bulk 

values and the terminating OH groups constrained in the direction perpendicular to the surface. 

Figure 3-1. The structural model of the rutile TiO2 surface with (110) orientation.  

(a) Simulation cell of the stoichiometric surface with nearest O atoms in the surface plane. Blue, red, 

and white spheres represent Ti, O, and H atoms, respectively  

(b) A portion of the simulation cell, identified by the dashed area in (a), with a Ti interstitial defect 

in the subsurface region. The surface 5-fold coordinated Ti atom (Ti5c) and bridging O atom (Ob) are 

identified. 

(a) (b) 
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We performed total energy calculations using the GPAW code,27
 a grid-based 

implementation of the projector augmented-wave (PAW) method for all-electron calculations 

within the frozen core approximation.28 The PAW setup for Ti (O) accounts for 12 (6) valence 

electrons and 10 (2) electrons in the frozen core (GPAW setup release 9672). A real-space grid 

with spacing of 0.18 and 0.24 Å was used for static and time-dependent calculations, 

respectively, and the reciprocal space was sampled only on the Γ-point because of the large 

lateral dimensions of the supercell. We used the Perdew – Burke – Ernzerhof (PBE) functional to 

describe exchange and correlation in the electronic system.29 Because of the inadequate 

description of the strong Coulomb repulsion between semicore 3d-electrons localized on Ti, the 

PBE functional was augmented with the Hubbard-like term30 ∑ (𝑈𝑇𝑖(𝑑)/2)[𝑇𝑟(�̂�
𝛼) −𝛼

𝑇𝑟([�̂�𝛼]2)], following the rotationally invariant formulation of Dudarev et al.,31 where �̂�𝛼 is the 

atomic orbital occupation matrix of the 3d-orbital of the Ti atom 𝛼 and 𝑈𝑇𝑖(𝑑) is an effective 

parameter quantifying the screened Coulomb electron−electron interaction. This so-called 

DFT+U approach has been shown to describe trends in surface reactivity on TiO2 with 

satisfactory accuracy compared to experiment10, 30, 32 and with much less computational effort 

compared to approaches that use hybrid exchange and correlation functionals, which apply the 

same correction to the entire system regardless of where the error originates from. To obtain 

electronic configurations at the moment of vertical excitation, an electron is promoted to the 

bottom of the conduction band described by the wave function 𝜓𝑁+1 and we use a generalization 

of the Δ-self-consistent field method (Δ-SCF) to allow the hole to occupy specifically designed 

linear combinations of the 𝑁 occupied Kohn−Sham wave functions.33 This maintains charge 

neutrality in the total system. The high dielectric constant of rutile TiO2 (~100) contributes to the 
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screening of opposite charges from each other. The electron density, 𝑛(𝑟) at each self-

consistency cycle is calculated as:33 

 𝑛(𝑟) =∑𝜓𝑖
∗(𝑟)𝜓𝑖(𝑟)

𝑁

𝑖=1

− ∑ 𝑎𝑖
∗𝑎𝑗𝜓𝑖

∗(𝑟)𝜓𝑖(𝑟)

𝑁

𝑖,𝑗=1

+ 𝜓𝑁+1
∗ (𝑟)𝜓𝑁+1(𝑟) (3.2.1) 

The expansion coefficients, 𝑎𝑗, are optimized in a self-consistent manner so that the orbitals 

associated with the hole and electron – second and third terms in the equation (3.2.1) – resemble 

some input wave functions as much as possible. This approach has been used to study hole 

localization in rutile and anatase TiO2, giving results in agreement with published 

photoluminescence measurements.34 It has the additional benefit of constructing Kohn−Sham 

wave functions that are variationally optimized and not involving computationally expensive 

summations over many unoccupied electronic states, in contrast for example to calculations 

based on the linear-response TDDFT scheme or the solution of the Bethe–Salpeter equation. 

We used the Ehrenfest approximation within the framework of real-time TDDFT to 

couple the electronic and ionic dynamics in the excited-state catalytic system,25, 35-36
 which is 

evolved from time 𝑡 to time 𝑡 + Δ𝑡 using the time evolution operators �̂�𝑁 and �̂�𝑒 for the nuclear 

and electronic parts, respectively:35 

 �̂�𝑁,𝑒(𝑡, 𝑡 + Δ𝑡) = �̂�𝑁(𝑡, 𝑡 + Δ𝑡/2)�̂�𝑒(𝑡, 𝑡 + Δ𝑡)�̂�𝑁(𝑡 + Δ𝑡/2, 𝑡 + Δ𝑡) (3.2.2) 

The electronic subsystem is treated quantum mechanically, propagated using the Crank–

Nicholson semi-implicit scheme for �̂�𝑒 with a predictor-corrector time step of Δ𝑡/2 = 5 as (1 as 

= 10−18 s).37
 The forces on the classical ions result from a mean-field average over the electronic 

states, and the ionic subsystem is evolved in time by application of the standard velocity Verlet 

propagator, �̂�𝑁. The occupation of all the wave functions in the system remains fixed during the 

simulation. Examples of previous successful applications of Ehrenfest dynamics include the 
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study of charge-carrier transport in dye-sensitized TiO2 nanowires38 and hydrogen bombardment 

of graphene-like nanoflakes,35 and it is generally expected to work well in situations where the 

electronic states have similar character. In the present work we use TiO2 as an illustrative 

example because of the availability of experimental data, but our computational strategy is 

general and should be useful for the study of other metal oxides. 

In the rutile TiO2 crystal each Ti (O) atom in the unit cell of the bulk structure has 6 (3) 

nearest neighbors. After structural optimization of the unit cell of the bulk structure, the 

calculated lattice constants are 𝑎0 = 4.65 Å and 𝑐0 = 2.96 Å, in good agreement with 

experiment (the measured lattice constants at 15 K are 𝑎0 = 4.586 Å and 𝑐0 = 2.954 Å)39 and 

previous DFT calculations at the PBE approximation level (𝑎0 = 4.65 Å and 𝑐0 = 2.96 Å).30 

For all calculations in the present work we use 𝑈𝑇𝑖(𝑑) = 4.2 eV to improve the description of 

electronic screening in TiO2, as proposed in previous studies using Dudarev’s DFT+U approach 

within the PAW formalism.21, 40
 For 𝑈𝑇𝑖(𝑑) = 0 the calculated lattice constants change by less 

than 1%. The outermost atomic layer in the stoichiometric (110) surface exhibits 5-fold 

coordinated Ti atoms (Figure 3-1(b), Ti5c) and 2-fold coordinated O atoms, hereafter referred to 

as “bridging” O atoms (Figure 3-1(b), Obr). 

In a photo-electrochemical cell, a photon of adequate energy excites an electron in the 

semiconductor catalytic material to the conduction band, leaving a hole in the valence band. 

After the photo-generated hole reaches the surface it is transferred to the water molecule, which 

is oxidized to a hydroxyl species, assuming that recombination of charge carriers does not occur 

first (these radiative relaxation processes are not considered in the present work). The lowest 

energy needed for the creation of an electron–hole pair is determined by the material’s optical 

adsorption edge: according to calculations by Kang and Hybertsen based on the GW 
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approximation to the self-energy and the solution of the two-particle Bethe–Salpeter equation, 

the energy of the first dipole-allowed singlet exciton is 3.35 eV for bulk rutile TiO2, almost equal 

to the quasiparticle band gap, 3.34 eV.41 Within the framework of the density functional theory, 

the fundamental band gap of semiconductors and insulators is underestimated, but the DFT+U 

approach partially alleviates this problem.12 We calculate the Kohn–Sham band gap of the bulk 

structure of rutile TiO2 to be 1.69 eV for 𝑈𝑇𝑖(𝑑) = 0 and 2.33 eV for 𝑈𝑇𝑖(𝑑) = 4.2 eV. For the 

stoichiometric TiO2 (110) surface, the band gap is calculated to be 1.72 and 2.38 eV for 𝑈𝑇𝑖(𝑑) =

0 and 𝑈𝑇𝑖(𝑑) = 4.2 eV, respectively. Because the conduction band has mainly titanium 3d-orbital 

character and the valence band oxygen 2p -orbital character, the band gap widens in an 

asymmetric fashion with increasing 𝑈𝑇𝑖(𝑑)  as the CBM shifts to a higher energy. 

A single water molecule preferably binds to the surface directly above a Ti5c site; this is 

supported by experimental evidence from scanning tunneling microscopy studies under 

ultrahigh-vacuum conditions and theoretical work based on DFT investigations of the interaction 

between water and the rutile TiO2 (110) surface.13, 32 Upon oxidation of water, one of its H atoms 

is transferred to TiO2 where it binds to a bridging O atom, leaving an OH group adsorbed at the 

Ti5c site. To quantify the stability of water on the surface, we calculate the binding energy with 

respect to the clean surface and an isolated molecule. In this scheme, the lower the calculated 

value of the binding energy, the stronger the adsorption. For the coverage of 1/6 monolayer, 

adsorption is exothermic, and the calculated binding energy for molecular water is −0.96 eV, 

0.22 eV higher than that for dissociated water with a binding energy of −1.18 eV. The lateral 

dimensions of the supercell ensure no interaction between water molecules adsorbed at 

neighboring supercells, as it would be relevant to the low-coverage limit. Using nudged elastic 

band calculations,42
 we find that the minimum-energy barrier for thermal dissociation is 
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relatively low, 0.15 eV (14 kJ/mol). The relative stability of the two modes of adsorption, 

molecular and dissociative, and the energy barrier depend on the computational method and the 

details of the structural model employed, for instance, the thickness of the slab, as discussed in 

the work of Kowalski et al.43 For the structural model of the TiO2 (110) surface employed in our 

calculations, going from 4 to 5 trilayer thick slabs changes the binding energy for adsorption by 

only 0.06 eV and the center of the water O p-states, calculated as the first moment of the 

projected density of states on the O atom, is shifted to lower energy by 0.06 eV. From this test, 

we do not expect the conclusions of the present work to be affected by computational details 

such as the thickness of the slab. 

After ground-state structural optimization, the temperature of the catalytic system was 

raised from 0 K to a temperature relevant to experimental conditions.13 We first assigned initial 

velocities to the ions of the optimized surface/adsorbate configuration according to the 

equilibrium Boltzmann–Maxwell distribution at 100 K, and we subsequently performed a 

molecular dynamics simulation for 300 fs in the microcanonical ensemble (N, V, E) using a time 

step of 1 fs. The positions of the atoms in the bottom trilayer were kept fixed during the 

simulation. We then used an equilibrated configuration from this simulation as the ground state 

of the surface/adsorbate interface at the moment of the vertical excitation. To model the excited-

state surface/adsorbate interface, the electronic structure of the thermalized configuration was 

augmented by two wave functions: one to which we assign occupancy of −1 (hole) designed as 

discussed in the next section, and the other corresponds to the wave function associated with the 

CBM which is assigned occupancy of +1 (electron). The obtained electron–ion system 

corresponds to the excited state of the surface/adsorbate interface at the moment of the vertical 

excitation, which is defined as the zero of the time scale (𝑡 = 0). In this work, we concentrate on 
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the interaction of the hole with the adsorbate, and we do not consider exciton generation and 

diffusion or the separation of the charge carriers that precede hole transport to the surface. 

Instead, the excitation is represented by a weighted sum over Kohn–Sham wave functions in an 

electronic configuration that does not necessarily correspond to the initial excitation of the 

catalytic system by light which leads to exciton generation. The associated vertical excitation 

therefore may not contribute strongly to a true excitonic state of the surface/adsorbate interface, 

but investigation of the optical response of the material is beyond the scope of the current study. 

Our computational strategy for the study of the dynamics of the interaction between the 

surface and the molecule under conditions of photoexcitation can be summarized as follows: (1) 

After ground-state structural optimization, ab initio molecular dynamics in the microcanonical 

ensemble is used to bring the catalytic system to a desired temperature. (2) An excitation is 

created by promoting an electron from a state which is an expansion of the occupied Kohn–Sham 

wave functions to the bottom of the conduction band of the surface. (3) The excited state of the 

surface/adsorbate interface is evolved in time using Ehrenfest dynamics within the framework of 

real-time propagation TDDFT. The evolution of the catalytic system is studied by monitoring the 

difference in the electron densities between the system in the excited state and the ground state of 

the same ionic configuration at each time instant.  

3.3. Results 

We used three different orbitals for the hole to investigate its motion in the surface, 

discussed in order of increasing relevance to standard experimental conditions. The first was 

modeled after a wavefunction entirely localized at the water molecule adsorbed on the 

stoichiometric TiO2 (110) surface, chosen because the vertical excitation energy, 9.60 eV, was 

such that it ensured the dissociation of the water molecule. The main purpose of this excitation 
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was to evaluate the suitability of our methodology for the study of photon-induced dynamic 

processes at surface/adsorbate interfaces. The second hole wavefunction was localized at the 

surface, and the excitation energy was 3.93 eV, close to the band gap of the bulk material, which 

should correspond to realistic situations for irradiation with UV light. The third excitation energy 

was 1.00 eV in a configuration that included a hole wavefunction localized at a subsurface defect 

near the site of the water molecule absorption. The evolution of these three excited states in time 

is shown in Figure 3-2. We discuss them in detail in this order. 

In the first excitation, the wave function associated with the hole resembles as much as 

possible the nonbonding orbital of an isolated water molecule. The difference in energy between 

the excited and ground state at 𝑡 =  0 is 9.60 eV (equal to the vertical-excitation energy). This 

energy is more than 3 times higher than the band gap, and it corresponds to the extreme UV 

irradiation wavelength of 130 nm. This is because the molecular orbitals of water where the hole 

was created are energetically much lower than the TiO2 band gap edges: the center of the water 

oxygen p-states is 4.72 eV lower than the VBM and 7.09 eV than the conduction band minimum 

(CBM). It is natural to expect that such high excitation energy can generate a deep hole with the 

oxidative power to initiate splitting of water. We calculate the difference between the electron 

density of the excited state and the electron density of the ground state of the same ionic 

configuration at each instant as a means to monitor the evolution of the excited state electron−ion 

system (see also supporting information). Figure 3-2(a) shows that in comparison to the ground 

state, charge is depleted mostly in the region around the water O atom (light green) immediately 

after the vertical excitation (𝑡 =  0). It also reveals an image charge in the surface that screens 

the excitation as well as some charge redistribution within the water molecule and between the 

molecule and the nearest bridging O atom of the surface. The excess charge introduced by the 
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electron wave function is mostly localized on Ti atoms in the subsurface region and away from 

the water molecule. 

 

Figure 3-2. The excited-state dynamics of titania-water system.  

Difference between the electron densities of the excited state and the ground state of the TiO2(110) 

surface/water interface for the same ionic configuration at different time instants during simulation 

for three different vertical excitations: (a) 9.60 eV and (b) 3.93 eV in the stoichiometric surface and 

(c) 1.00 eV in a defected surface. The electron density differences are shown by isosurfaces with value 

0.01 𝑒/Å3 , where green and orange signify regions of electron charge depletion and charge 

accumulation, respectively. Black arrows point at the O−H bonds being broken. 

(a) 

(b) 

(c) 
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After the high-energy vertical excitation the system is evolved in time using Ehrenfest 

dynamics. Similar to the situation at 𝑡 =  0, at 𝑡 =  2.5 fs the hole is almost entirely localized 

on the water molecule, although some charge has also been depleted from the O atom in the 

subsurface region nearest to the water molecule. At 𝑡 =  5 fs the water molecule has dissociated, 

leaving one OH group bound to the Ti5c atomic site (Figure 3-2(a)) and at 𝑡 =  10 fs the hole has 

been transferred to the subsurface O atom and the charge distribution associated with the hole 

resembles the oxygen 𝑝𝑧-orbital (with two lobes aligned in the direction perpendicular to the 

surface). Part of the potential energy, about 2.7 eV, of the initial excitation is lost through energy 

transfer to the ionic motion. The distance between the O atom of the water molecule and the H 

atoms increases from 1.05 Å at 𝑡 =  0 to 1.21 Å at 𝑡 =  2.5 fs and to 1.62 Å at 𝑡 =  5 fs. The 

distance between the H atom of the water molecule and the nearest bridging O atom decreases 

from 1.52 Å at 𝑡 =  0 to 1.35 Å at 𝑡 =  2.5 fs and to 0.94 Å at 𝑡 =  5 fs. Inspection of Figure 

3-2(a) also reveals that during the entire simulation time the electron is virtually immobile. The 

next vertical excitation we considered, 3.93 eV (see Figure 3-2(b)), involves electronic states 

only near the band gap edges of the surface, which is relevant to experimental UV conditions. In 

photo-induced catalysis the charge carrier needs to reach the surface/adsorbate interface and to 

be stable until transferred to the adsorbate.5 In this respect, carrier trapping is an important issue 

in interfacial charge transfer, but the possible location of hole traps in the TiO2 surface remains a 

subject of investigation, although bridging and subsurface O atoms have been suggested as likely 

atomic sites for small polarons.5, 44-45 We also found these O atomic sites to mediate hole 

transport (Figure 3-2(a), 𝑡 = 5 fs). In order to better understand the effect of spatial localization 

of charge on the surface/adsorbate interaction, we analyze the electron localization function 

(ELF) which has proven useful in studying bonding in extended and molecular systems in a 
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chemically intuitive way.46-47 

 

Figure 3-3. The electronic structure of titania–water system. 

(a) Two-dimensional cross section of the electron localization function through the bridging oxygen 

(blue, green, and red for values of 0, 0.5, and 1).  

(b) Isosurfaces representing the maximally localized Wannier functions spanning the range of 

energies closest to the valence band maximum for the bridging (green cloud) and subsurface (violet 

cloud) oxygen atoms nearest to the water molecule.  

(c) Projections of the Wannier functions onto the Kohn−Sham states of the TiO2 (110) surface (the 

regions where green and violet weights overlap appear gray). The total area of each shaded plot 

equals 1. The black line marks the density of states of the bulk, and the middle of its band gap is 

defined as the zero of the energy scale. The shaded vertical strip delimits the band gap.  

(a) 

(c) 

(b) 
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The ELF is a positive quantity between 0 (blue regions in Figure 3-3(a)) and 1 (red 

regions in Figure 3-3(a)), used as a measure of finding an electron in the vicinity of another 

electron of the same spin (and therefore of the probability of opposite-spin pairs). Figure 3-3(a) 

portrays a two-dimensional cross section of the ELF through a bridging O atom. In the interior of 

the slab, the Ti−O has strong ionic character as evidenced by the high localization values, >0.8, 

near each O atom, as would be expected in the bulk structure of TiO2. For the exterior of the slab, 

in contrast to the bottom surface that is terminated with −OH groups, the top surface also exhibits 

high ELF values above the bridging O atoms, the signature of a dangling bond. While ELF 

provides insights into the spatial distribution of chemical bonds, it does not reveal the shape of 

orbitals where the electrons are expected to exist. To this end, we analyze the maximally 

localized Wannier functions of the valence band manifold, an approach which allows the 

representation of extended Bloch states with atomic-like orbitals. We used the Wannier9047 

utility interfaced to the Quantum Espresso48 code to produce the Wannier functions. The 

functions we obtained possess the expected character: in the bulk-like region of the slab, there is 

one Wannier function for each 𝜎-bond between Ti and O atoms and in the subsurface one “lone 

pair” orbital on each of the O atoms (represented by the purple clouds in Figure 3-3(b)). On the 

surface, each bridging O atom has a dangling bond which mixes with the lone pair, resulting in 

two almost equivalent Wannier functions (one of which is shown by the green clouds in Figure 

3-3(b)). Because the Wannier functions are linear combinations of the eigenfunctions of the 

Kohn–Sham Hamiltonian, they can be represented by the weights of the Kohn–Sham orbitals 

contributing to a given function. We find that the Wannier function corresponding to the 

dangling bonds of the bridging O atom is comprised mostly of the Kohn–Sham orbitals that span 

the range of energies near the top of the valence band (Figure 3-3 (c)). These Wannier functions 
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were used as a guide for modeling a hole wave function that is equally distributed over the 

bridging and subsurface O atoms nearest to the water molecule. In order to accomplish this 

spatial distribution of the hole wave function in Δ-SCF, we calculated the projections of the 

Wannier function on the atomic orbitals; the largest coefficients that correspond to the bridging 

oxygen s- and p-orbitals are: 𝑠 = 0.32, 𝑝𝑥 = 0.10, 𝑝𝑦 = 0.10, 𝑝𝑧 = 0.05. 

Using the previously thermalized ionic configuration, we model the excitation at 𝑡 = 0 

by augmenting the electronic system with a wave function which is a linear combination of the 

PAW atomic partial waves with the coefficients presented above and which resembles as much 

as possible the calculated Wannier functions shown in Figure 3-3(b). As in the case of the high-

energy excitation (vertical-excitation energy of 9.60 eV), the electron wave function corresponds 

to the state at the CBM. Upon excitation, charge is depleted from the region in the vicinity of the 

bridging and subsurface O atoms that are nearest to the water molecule, and there is also some 

redistribution of charge in the molecule and at the surface oxygen atoms (Figure 3-2(b), 𝑡 = 0). 

The vertical excitation energy, 3.93 eV, corresponds to photon wavelength of 313 nm, which lies 

within the typical range for irradiation with UV light in experiment.6 This low-energy excitation 

involves no bond-breaking events during the first 30 fs. We do not expect that propagation of the 

electron-ion system at longer times would lead to oxidation of water since already at 10 fs the 

hole has diffused to the interior of the slab. This is because the net positive charge at the 

surface/adsorbate interface gives rise to a gradient in the electrostatic potential that drives the 

hole away from the water molecule.45 Irrespective of the role of ionic motion, hole transport is 

mediated by atomic oxygen sites through transitions involving electronic states with strong 

oxygen p-level contribution. 
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The strong coupling between these atomic sites prevents the spatial confinement of the 

hole near the water molecule, and the initially localized redistribution of the electron density at 

𝑡 = 0 spreads over the entire lattice supercell (which comprises several primitive unit cells) 

within a few femtoseconds. Most importantly, although there is considerable overlap between the 

oxide surface and molecular O states at lower energies in the −6 to −2 eV range relative to the 

VBM, there are no molecular states near the band gap edge where the hole could reside as the 

projected density of states plot in Figure 3-4 reveals.14 For the calculation of the projected 

density of states we used the time-dependent wave functions, which although do not have a 

rigorous physical meaning, we used to obtain a qualitative description of the effect of the moving 

ions on the energy of molecular states. Modeling the orbital associated with the hole after a wave 

Figure 3-4. Density of states projected onto the p orbitals of the oxygen atoms in the top atomic 

trilayer of the TiO2 (110) surface (red) and the oxygen atom of the water molecule (blue) at 

simulation time of 30 fs after low-energy excitation (3.93 eV). The black line marks the density of 

states of the bulk (scaled by a factor of 1/72), and the middle of its band gap is defined as the zero of 

the energy scale.  
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function that is (a) entirely localized at a single bridging O atom, (b) equally distributed over all 

6 bridging O atoms in the supercell, or (c) equally distributed over the water molecule 

(nonbonding orbital) and the nearest bridging O atom, results in delocalization of the hole within 

20 fs.  

Calculations with 𝑈𝑇𝑖(𝑑) = 2.0 eV lead to the same outcome as for 𝑈𝑇𝑖(𝑑) = 4.2 eV. We 

conclude from our excited-state Ehrenfest dynamics that photon-induced dehydrogenation of 

molecular water on pure TiO2 (110) surfaces is not likely. The rutile phase of stoichiometric 

TiO2 has for long been of great scientific interest as a prototypical metal oxide. This phase is 

mostly inert and under standard conditions its surface is non-stoichiometric with excess Ti 

atoms.7 Surface and near-surface local imperfections, such as the common Ti interstitials and O 

vacancies, modify the surface chemistry of this material and can be beneficial to its efficiency as 

a catalyst. For example, Ti interstitials in the subsurface region can stabilize the bonding of 

chemical species as in the case of formadelhyde (CH2O), discussed in the DFT study of Haubrich 

et al.9 In what concerns the reactions of water on the rutile TiO2 surface, increased interaction 

with the surface induced by the defects should decrease the energy barrier for thermal 

dissociation. In addition, defect states reduce the minimum energy for photoexcitation from the 

UV range to the visible range and can act as local trap sites for the photo-generated hole until it 

is transferred to the water molecule to promote the oxidation reaction. 

Motivated by the above considerations, we studied the role of Ti interstitials in photon-

induced water splitting on the rutile TiO2 (110) surface. To model the defected catalytic surface, 

we introduced a single Ti atom in one of the ⟨110⟩ channels in the subsurface region of our 

structural model (see Figure 3-1(b)). This configuration is thermodynamically more stable (lower 

in energy) by 0.22 eV compared to a configuration with the Ti interstitial between two ⟨110⟩ 
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channels. The calculated binding energy for molecular water adsorbed on the Ti5c atomic site is 

−1.12 eV, less stable by 0.15 eV than dissociated water which has an adsorption energy of 

−1.27 eV, and more stable by 0.16 eV than adsorption on the stoichiometric surface (adsorption 

energy of −0.96 eV). Moreover, incorporation of the Ti interstitial in the TiO2 lattice introduces 

electronic states in the band gap. The calculated energy of these defect-related states depends on 

the details of the computational method, for instance the value of the parameter 𝑈 in the DFT+U 

approach.30, 49 For 𝑈𝑇𝑖(𝑑) = 4.2 eV, the defect-induced state is 1.00 eV below the CBM, in 

reasonable agreement with UV photoelectron spectroscopy on bulk reduced rutile TiO2 which 

reveals defect-related electronic states at about 0.9 eV below the CBM.50 Ti interstitials in the 

subsurface region also result in a lower energy barrier for thermal subtraction of hydrogen from 

water. During ground-state molecular dynamics in the microcanonical ensemble at 100 K, we 

find that an adsorbed water molecule spontaneously dissociates in the presence of a subsurface Ti 

interstitital, which suggests that the first step of water splitting on defect-containing TiO2 (110) 

surfaces can be an entirely thermally driven process even at relatively low temperatures. On the 

other hand, an adsorbed water molecule remains intact at a temperature of 60 K. A resonance 

between the two limiting structures of molecular and dissociated water occurs at the intermediate 

temperature of 80 K, and although no thermal dissociation is observed, for 28% of the total 

simulation time the water O–H bond is elongated more than 10% of its equilibrium value, 1.02 

Å, and is elongated by more than 20% of its equilibrium value for 12% of the total simulation 

time. This extension of the water O–H bond allows the H atom to be shared between the water 

and bridging O atoms. For comparison, in a simulation at 60 K this bond is never stretched by 

more than 15%. 
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To investigate the effect of photo-excitation on water dissociation in the defect-

containing surface at 80 K, we considered the situation where an electron is promoted at 𝑡 = 0 

from a defect-related state in the band gap to the CBM (shown in Figure 3-2(c)). This 

corresponds to an excited-state configuration within a polaronic description of a hole trapped by 

a defect, following irradiation with light of energy equal to or higher than the optical absorption 

edge of the material. At 𝑡 = 0, the distance between the water O and H atoms is 1.27 Å and the 

distance between the water H and bridging O atoms is 1.24 Å. Figure 3-2(c) shows that the hole 

is localized in the subsurface region at the Ti interstitial and partly overlaps the extended form of 

molecular water. The pinning of the hole near the surface weakens the restorative force on the H 

atom in the stretched water O–H bond, which leaves the H atom with enough kinetic energy to 

overcome the energy barrier for approaching the bridging O atom and binding to the surface 

within 15 fs. 

Ehrenfest dynamics is a semi-classical method that cannot capture quantum mechanical 

processes in the ionic subsystem. Upon including nuclear quantum effects a water H atom could 

hop onto the nearby bridging O atom at small separations (less than ~0.2 Å) between the water H 

and surface bridging O atoms. However, a more complete quantum-mechanical treatment, for 

example using surface hopping techniques,51-52 remains currently impractical for the study of our 

structural models because of size and time scale considerations. 

3.4. Discussion and conclusions 

Our results for the interaction of low concentrations of molecular water with 

stoichiometric and defected surfaces of rutile TiO2 with (110) orientation have important 

implications for the photocatalytic activity of the material. We can draw as a first conclusion that 

whether water photo-oxidation is possible depends on the local atomic environment and 
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experimental conditions. On the idealized stoichiometric surface a hole relaxed at the top of the 

TiO2 valence band cannot oxidize molecularly adsorbed water as the highest occupied molecular 

orbitals remain lower in energy than the VBM of the surface by −2 eV (Figure 3-4). Moreover, 

according to our molecular dynamics simulations, thermal dissociation does not occur at 

temperatures at least as high as 300 K. Increasing the coverage of water on the surface from 1/6 

to 1/3 of a monolayer with two water molecules adsorbed on adjacent Ti5c atomic sites has little 

effect on the electronic structure of the surface/adsorbate interface due to the weak interaction 

between the molecules (adsorption is stabilized by 2%). However, our model assumes ultrahigh 

vacuum, and the effects of complex environments such as electrolytes on the dynamics of the 

surface/adsorbate interface merit further investigation.53  

As a second conclusion, we find that the water photo-oxidation reaction could occur on 

surfaces containing Ti interstitials at temperatures between 60 and 100 K. In the work of Tan et 

al.,13 which reported water photo-oxidation, the pertinent scanning tunneling measurements were 

performed at a temperature of 80 K, a critical factor for photocatalytic dissociation according to 

our findings, in the presence of Ti interstitial defects (a feature not discussed in that work). 

Because the Ti interstitial participates in the reaction mechanism by modifying the potential 

energy landscape and by pinning the hole near the surface, the catalytic active site comprises 

both the Ti5c and Ti-interstitial atomic sites. We calculated that the hopping of a Ti interstitial 

between two adjacent equivalent equilibrium sites requires overcoming an energy barrier of 0.52 

eV (50 kJ/mol). From this fact, we expect that diffusion of Ti interstitials will be of secondary 

importance regarding the reaction mechanism of water oxidation at temperatures of practical 

interest. Care must be taken for the correct interpretation of our findings, which demonstrate the 

importance of thermal effects in water dissociation but the estimated short time for O–H bond 
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breaking, 15 fs, is not necessarily in quantitative correspondence with experimentally measured 

high rate. In contrast, as a number of necessary conditions must be met for the reaction to occur, 

the dissociation probability should be low, in support of the observation that rutile TiO2 (110) 

surfaces are inefficient as catalysts for the water photo-oxidation reaction under ultrahigh-

vacuum conditions.54 In addition, subsurface defects can act as recombination centers with 

adverse effects on the dissociation probability, but recombination of charge carriers is not 

considered in this work. In the same vein, the temperature window which favors a resonant state 

of adsorption will depend on the structural details of the surface, although the estimated 

temperature of 80 K is in agreement with experiment.13  

The interstitial-containing surface studied here can be thought of as a structural model of 

catalytic surfaces where a hole is trapped at the active site facilitating the reaction. This result 

highlights the importance of defects in photo-catalysis and suggests that careful control of the 

atomic structure and composition of the surface can enhance the reaction rate. For example, 

structural defects such as steps or kinks fit a generalized notion of a defect-containing active 

center,54-56 but further work is necessary in order to explore how morphologies other than 

extended flat surfaces mediate photon-induced catalysis.57  

Our methodology should also be useful for the study of adsorbates other than water. 

Although the alignment between the electronic levels of the TiO2 and molecular water is not 

favorable for the oxidation reaction to occur on the pure and flat (110) surface, the outcome of 

illumination can be different for species that chemisorb on the surface, such as methoxy (OCH3). 

The methoxy radical is a possible reaction intermediate of another important reaction – the 

methanol oxidation reaction.58-59 In our initial investigation of this system, the projected density 

of states calculation reveals that there is a significant population of methoxy O states at the VBM 



 

61 

 

of TiO2, and therefore methoxy should act as a hole scavenger enabling interfacial hole transfer. 

A more detailed investigation and analysis are the subject of the work described in Chapter 3. 

In conclusion, we developed a simple methodology for the modeling and simulation of 

dynamic processes at excited-state interfaces which we used to study charge-carrier motion and 

interaction with molecularly adsorbed water on rutile TiO2 (110) surfaces. We found that water 

photo-oxidation to hydroxyl is possible in synergy with thermal effects. On the stoichiometric 

surface there are no electronic states associated with water near the VBM of the TiO2 surface, 

and therefore oxidation by a photo-generated hole is not possible for excitation energies 

corresponding to the band gap of TiO2. By contrast, Ti interstitials in the subsurface region 

increase the binding strength of water on the surface, lower the minimum energy barrier for 

thermal dissociation of water, and act as trap sites for holes until they are transferred to water and 

oxidize it. Moreover, the reaction pathway critically depends on external conditions such as 

temperature. On the defected surface, low temperatures (<60 K, according to our molecular 

dynamics simulation) favor molecularly adsorbed water and higher temperatures (>100 K) favor 

dissociated water. Intermediate temperatures, ~80 K, favor a resonant state of adsorption that 

enables splitting of the molecule. Under these circumstances thermal and photon-induced effects 

act in a complementary manner that leave an ambiguity in the causal sequence: water 

dissociation can be equally considered a photon-induced and thermal process or a thermal and 

photo-assisted process. Although optimization of catalytic performance is ultimately a 

combinatorial challenge, this work paves the way for the investigation of the kinetics of photo-

electrochemical reactions on semiconductor surfaces and provides useful guidelines for the 

rational design of efficient photocatalytic materials by careful control of the active sites on the 

surface. 
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CHAPTER 4. PHOTO-INDUCED C–H ACIDITY 

REACTION MECHANISM 

We conclude Part I by demonstrating another example application of the Ehrenfest 

dynamics method to the case of methoxy photo-oxidation on rutile TiO2 (110) surface. We 

compare the ground-state and excited-state pathways of the reaction, demonstrate a way to 

translate the results of the computational simulations into Lewis structures, and establish a new 

reaction mechanism – “photo-induced C–H acidity”. This chapter is based on the work described 

in: G. Kolesov, D. Vinichenko, G. A. Tritsaris, C. M. Friend, E. Kaxiras. Anatomy of the 

Photochemical Reaction: Excited-State Dynamics Reveals the C–H Acidity Mechanism of 

Methoxy Photo-oxidation on Titania. Journal of Physical Chemistry Letters, V. 6, pp. 1624 – 

1627, to which Dmitry Vinichenko and Grigory Kolesov contributed equally. 

4.1. Introduction 

There is a great interest in the design of materials that can efficiently utilize solar energy 

to drive important chemical processes, including the synthesis of chemicals and fuels and the 

degradation of environmental pollutants. Most often, the choice of a photo-catalyst is guided by 

thermodynamic considerations, that is, a comparison of the energy of charge carriers (electrons 

and holes) created by photo-excitation to the energetic requirements for a specific reaction.1-5 

Although this is a necessary condition, it is not sufficient because the evolution of a system on 

the excited-state potential energy surface can have completely different features and driving 

forces compared to the ground-state. Thus, understanding heterogeneous photochemistry 

requires detailed insight into interactions of the key molecular intermediates with the 

semiconductor photo-catalyst, and their time evolution after excitation to produce the desired 
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reaction. To achieve this understanding, surface-bound intermediates and the reaction path to 

products must be identified. Such fundamental insights can provide a generalizable model for 

guiding the design of photo-catalysts for specific reactions. 

4.2. Rutile titania as a model photo-catalyst  

Titanium dioxide is among the most widely studied materials among metal oxides, with 

numerous proposed applications, from catalyst for water photo-oxidation to optical coating 

catalyst for environmental cleanup, and corrosion-protective coating.1, 6-7 Rutile is the most 

thermodynamically stable phase of titanium dioxide. It has tetragonal crystal structure (space 

group 𝑃42/𝑚𝑛𝑚) with distorted octahedron coordination of titanium atoms and trigonal 

coordination of oxygen atoms; the system does not have any localized magnetic moments.6, 8-9 In 

a localized-bonds description which can be obtained by carrying out the Wannier function 

analysis,10 each oxygen atom has 3 σ-bonds with neighboring titanium atoms and an out-of-plane 

p-type lone pair; each titanium atom has 6 σ-bonds to oxygen atoms in its coordination sphere. 

Due to an electronegativity difference between oxygen and titanium atoms, the bonds are 

polarized towards oxygen, and the structure has large ionic character. Therefore, the valence 

band is mostly spanned by oxygen p states, and the conduction band is spanned by titanium d 

states. The top of the valence band has large contributions from oxygen lone pairs. On the (110) 

surface the main features are the rows of five-fold coordinated titanium atoms, Ti5c, and the rows 

of two-fold coordinated “bridging” oxygen atoms, Ob.6, 11 The former typically act as adsorption 

sites for Lewis or Bronsted base adsorbates, such as water and alcohols, whereas the latter serve 

as Bronsted bases themselves and are prone to abstracting hydrogen atom with formation of the 

“bridging” hydroxyl species, OHb; the associated extra electron can get trapped on the lattice 

distortion in the subsurface region, forming a polaron.12 Another prominent feature is the 
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possibility of bridging oxygen abstraction with formation of a vacancy, VObr. Such vacancies 

give rise to polarons in the subsurface region of the material,13-17 often act as chemisorption 

sites,18-21 and alter the catalytic properties of the material.22 

4.3. Thermal chemistry of methanol on the rutile titania (110) 

surface 

The preferred adsorption pathway for methanol is binding to an oxygen vacancy 

according to CH3OH + VO + Ob = CH3Ob + OHb. The resulting products are fairly stable – the 

temperature-programmed desorption peak corresponding to their recombinative decomposition is 

at 480 K. Adsorption on the undercoordinated Ti rows results in a mixture of molecular 

adsorption with the desorption peak at 295 K and dissociative adsorption with the cleavage of O–

H bond and transfer of hydrogen atoms to neighboring bridging oxygen. Such dissociation of 

methanol to methoxy and bridging hydrogen has been studied computationally and is 

characterized by small positive enthalpy (~0.2 eV) and a reaction barrier of about 0.6 eV.23-24 A 

more reliable way to prepare dissociated methanol is to put it on the rutile TiO2 (110) surface 

with oxygen adatoms at 300 K – this procedure results in a pure layer of methoxy species 

residing on the 5-fold coordinated titanium rows.25 The methoxy intermediate is stable thermally, 

up to 600 K, when thermal C–H bond cleavage occurs, yielding formaldehyde and methanol.26-27  

From elementary considerations,28 the electronic structure of the methoxy oxygen can be 

described as two 𝜎-bonds to carbon and surface titanium, and two lone pairs, one of which lies in 

the C–O–Ti plane (𝑛𝜎), and the other perpendicular to that plane (𝑛𝑝). Methoxy oxygen fills the 

coordination sphere of the titanium atom on which it is adsorbed, and thus is analogous to a slab 

oxygen with lone pair pointing in the [-110] direction. This leads to methoxy states contributing 
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to the density of states in the region near valence band maximum (Figure 4-1), as observed in 

earlier computational work.29-30 

 

In order to get additional insight into the thermal chemistry of C–H bond cleavage, we 

use first-principles simulation to infer the transition state of the reaction. We use the climbing 

image nudged elastic band (CI–NEB) method31-32 as implemented in VASP33 software package. 

For the simulation of rutile TiO2 (110) surface we have used a slab shown in Figure 4-1, which 

we describe in more details below. The lattice parameters used correspond to optimized bulk 

lattice constant value, 𝑎𝑏𝑢𝑙𝑘 = 4.550 Å, 𝑐𝑏𝑢𝑙𝑘 = 2.974 Å. For the (110) surface slab the first 

lateral dimension, along the Ti5c rows, corresponds to the 𝑐 direction of bulk material; we include 

(a) (b) 

Figure 4-1. Rutile TiO2 (110) slab and its density of states (DOS). 

(a) Geometry of the rutile TiO2 (110) slab with adsorbed methoxy. Only the top three layers of 

titanium atoms in the slab are shown; O atoms are dark red, Ti – pink, C – cyan, H – white. 

(b) Total DOS and adsorbate-projected DOS. The total DOS is scaled down by a factor of 0.1 and 

shown in blue. The methoxy DOS is shown in red color. Hybridization of methoxy states with the 

top of titania valence band can be seen. 
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three Ti5c in a row in our simulation, resulting in the slab size in 𝑥 direction 𝑎𝑠𝑙𝑎𝑏 = 3𝑐𝑏𝑢𝑙𝑘 =

8.922 Å. The second lateral dimension is the [110] direction in the bulk material; the size of the 

slab along that dimension determines how many rows of undercoordinated Ti atoms are included 

in the simulation. We use a supercell with two rows of Ti5c, corresponding to the slab size in 𝑦 

direction 𝑏𝑠𝑙𝑎𝑏 = 2√2𝑎𝑏𝑢𝑙𝑘 = 12.869 Å. The thickness of the slab in the 𝑧 direction is 

determined by the number of layers of Ti atoms in the simulation cell; we have used 4-layer slab. 

The dangling bonds on the bottom of the slab were saturated with hydrogen atoms and hydroxyl 

groups. To enforce bulk-like geometric behavior, 48 atoms on the bottom of the slab were 

frozen. The Brillouin zone was sampled by the Γ point in all simulations. Since the slab contains 

6 adsorption sites, having one methoxy particle corresponds to the coverage by adsorbed 

methoxy molecules of 0.18 monolayer (ML), commensurate with the experimental results.25 

In modeling the electronic structure of TiO2, it is important to go beyond standard DFT 

methods in order to correctly describe the behavior of localized titanium 𝑑-shell electrons.12, 34-37 

It has been shown that without DFT+U or other methods which treat electron interactions more 

accurately, the polaronic structures in TiO2 cannot be resolved.12, 34 Here we employed DFT+U 

method38 that adds a correction for the on-site Coulomb interaction and allows to treat localized 

𝑑-electrons in a computationally efficient way. We applied DFT+U correction to the d-orbitals of 

titanium; our benchmarking simulations yielded a value of 𝑈 = 4.2 eV which is in agreement 

with that found in other works.12 We used the PBE39 exchange-correlation functional and 

standard PAW datasets of VASP program. 

We find the reaction enthalpy is 0.9 eV for thermal reaction CH3OTi + Ob = CH2OTi +

OHb. The energy barrier for this reaction occurring is 1.6 eV; the corresponding minimal energy 

path is shown on Figure 4-2. The electronic structure of the product of the reaction features two 
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bridging hydroxyls and localized electrons (polarons) associated with them. In the discussion of 

the excited state trajectory we will see how the final electronic structure will be the same as that 

of the ground-state trajectory. 

 

4.4. Excited-state dynamics of methoxy photo-oxidation 

The photo-oxidation of methanol is widely studied due to its hole scavenging ability,40-44 

as well as the first step of practically relevant route to synthesizing methyl formate.45-47 As 

mentioned before, the cleavage of methoxy C–H bond with formaldehyde formation can be 

alternatively achieved by creating an excitation across the titania band-gap of 3.1 eV.48 This 

reaction – production of formaldehyde from methoxy on rutile TiO2 (110) is an excellent test 

case for simulating an elementary reaction driven by creation of an excited state.  

4.4.1. Computational methods 

We used the self-consistent field (Δ-SCF) approach to create the photo-generated 

electron–hole pair, a procedure that includes promotion of one electron from the highest 

Figure 4-2. Minimal energy pathway for methoxy 

C–H bond thermal cleavage. 

NEB calculation showing the 1.6 eV barrier for 

the methoxy-to-formaldehyde reaction, and the 

0.9 eV reaction enthalpy. The geometry region 

corresponding to the reagent is of short C–H 

distance and large O–H distance; in the course of 

the reaction the O–H bond distance decreases to 

equilibrium value. 
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occupied to the lowest unoccupied orbital and simultaneous relaxation of all orbitals. We choose 

this approach for several reasons: 1) it has been shown to have good accuracy in modeling the 

lowest-energy excitation within certain symmetry, which is sufficient for the purposes of this 

work; 2) it can be in principle exact and 3) most importantly for the present study, in contrast to 

linear response TDDFT, the Δ-SCF approach does not build upon the Kohn-Sham (KS) 

eigenstates of the ground state Hamiltonian; instead, the orbitals are variationally optimized with 

the excitation. This can be thought of as being similar to a multi-configuration SCF scheme in 

quantum chemistry applied to a fixed number of singly-excited Slater determinants with fixed 

coefficients. This latter property of Δ-SCF method partially compensates for the charge-transfer 

state problem in TDDFT and makes it possible to describe the excited state as a single Slater 

determinant with two easy to track singly occupied excited orbitals. The resulting lowest 

excitation energy is 2.5 eV, close to the value of titania band gap. In order to capture the 

dynamics of the coupled electron-ion system we used non-adiabatic Ehrenfest dynamics in the 

context of real-time time-dependent density functional theory (TDDFT), as implemented in 

TDAP-2.0 code.49 This approach involves no empirical parameters and can reproduce with near 

chemical accuracy the essential features of the system. 

After geometry optimization, we sampled the potential energy surface using ground state 

Born-Oppenheimer molecular dynamics (BOMD) at 200 K until thermal equilibration to obtain a 

variety of starting point configurations for excited-state dynamics analogous to that shown in 

Figure 4-1(a). The majority of randomly selected configurations resulted in methoxy photo-

oxidation during the first 200 fs of the simulation, with all successful trajectories having 

qualitatively similar reaction mechanism. In the following, we discuss one of the most 

illustrative trajectories in order to highlight the relevant features of the reaction mechanism. 
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4.4.2. Lewis structures from first principles: the C–H acidity mechanism 

Response of the system to the motion of charge carriers can be inferred through the 

changes of the key bond lengths: the C–H bond being cleaved and the O–H bond being formed, 

which are presented in Figure 4-3 along with the length of adsorbate C–O bond. We can 

immediately infer the presence of an intermediate with bond order 1.5 and lifetime of ~60 fs, 

which is created after C–H bond cleavage; however, an analysis of the dynamics of electronic 

system is necessary to establish its identity. 

 

In order to analyze the electronic dynamics, we have tracked the time evolution of 

frontier orbitals: �̃�𝑁𝑜𝑐𝑐, the “hole” state, from which electron is removed, and �̃�𝑁𝑜𝑐𝑐+1, the 

previously vacant “electron” state; jointly, those states represent the spin polarization in the 

system and highlight the chemically active areas. The evolution of the hole state is the most 

Figure 4-3. Bond length evolution along the excited state path. 

Three clearly distinct regions can be inferred based on the average length of C–O bond: single bond 

of methoxy from 0 to 60 fs; bond of order 1.5 from 60 to 135 fs, and double bond of formaldehyde 

after 135 fs. 
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relevant for a photo-oxidation reaction; it represents depletion of spin-down electrons from 

previously occupied regions and accumulation of spin-up electrons in previously unoccupied 

regions. 

 

Remarkably, the snapshots of “hole” evolution in real time (Figure 4-4) contain a wealth 

of information about the intermediate steps of the reaction. This information is embodied in the 

shape changes of the hole orbital, which can be translated into a qualitative interpretation of the 

mechanism using Lewis structures, which we present below. The “electron” is transferred to the 

titanium atoms in the second subsurface layer with the formation of a polaron (that is, an electron 

trapped in a lattice distortion), where it stays throughout the simulation. This behavior is 

consistent with previous work characterizing titanium d states as efficient electron traps.12, 21, 34 

Figure 4-4. Snapshots of the “hole” and “electron” densities along the dynamics trajectory. 

(a) The “hole” state; blue isosurface (isosurface value 0.002 a.u.) depicts spin-up magnetization 

density. Prior to the proton abstraction (frames 1-2) spin-up magnetization density corresponds to 

depletion of electron density, while after the proton abstraction (frames 3-5) to the excess of it. 

(b) The “electron” state; green isosurface depicts spin-down magnetization density that corresponds 

to the excited electron. It forms a stable polaron and remains inactive during the simulation. 

(a) 

(b) 
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First, we note that after photo-excitation the hole state is delocalized throughout the slab 

on the p-type lone pairs of oxygen atoms, and partly on the 𝑛𝜎 lone pair of methoxy. Contrary to 

the commonly held view, the hole is not “trapped” on any of the surface sites, but is drawn to the 

molecule in the course of the reaction. A favorable coplanar arrangement of the C–Ht bond (Ht 

denotes the abstracted hydrogen atom) and the oxygen 𝑛𝜎 lone pair facilitates the transfer of 

electron density from the 𝜎-bond to the methoxy O atom through a hyperconjugation 

mechanism. As a result of this process, the hole density spreads to the C–Ht bond in ~20 fs 

(Figure 4-5). 

 

Due to the s-rich character of the 𝑛𝜎 lone pair, positioning the hole there is less favorable 

compared to the 𝑛𝑝 lone pair. During the interval of 20 to 50 fs the hole on methoxy O atom 

rotates to become almost normal to the C–O–Ti plane. At the same time, C–Ht bond rotates 

around the C–O axis to maintain the stabilizing hyperconjugation with the hole lobe on methoxy 

Figure 4-5. The first fragment of the trajectory. 

The snapshots of the hole wavefunction at the beginning of the trajectory (a) and at 19.4 fs (c). The 

onset of hole migration from the slab to the adsorbate is shown with electron pushing scheme in the 

Lewis structure (b). 

( ( ((a) (b) (c) 
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O atom. The pronounced directional character of the p-orbital results in a stronger overlap 

between 𝑛𝑝 and 𝜎CH𝑡 compared to that between 𝑛𝜎 and 𝜎CH𝑡. Therefore, electron donation from 

𝜎CH𝑡 increases simultaneously with O hole lobe rotation. Additional evidence for electron 

transfer from 𝜎CH𝑡 is provided by 0.07 Å increase of the amplitude of C–H stretching 

oscillations, which is consistent with the increase of the hole lobe size between those atoms and 

the weakening of the bond. Stabilizing hyperconjugation makes methoxy an energetically 

preferred location for the hole compared to oxygen lone pairs in titania, resulting in a complete 

one-electron oxidation of the adsorbate by 50 fs (Figure 4-6):  

 CH3O𝑎𝑑𝑠
− + ℎ𝑠𝑙𝑎𝑏

+  = CH3O𝑎𝑑𝑠
∙  (4.4.1) 

 

The depletion of electron density from the C–Ht bond manifests itself as an increase of 

the hole lobe in that region and weakens the 𝜎𝐶−𝐻𝑡  bond sufficiently to allow its pronouncedly 

Figure 4-6. Hole migration to the adsorbed methoxy species. 

The snapshots of the hole wavefunction at 19.4 fs (a) and at 53.2 fs (c). The complete electron 

transfer from methoxy to the titania slab, resulting in complete hole quenching, is shown with 

electron pushing scheme in the Lewis structure (b). 

( ( ((a) (b) (c) 
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heterolytic cleavage. The adjacent bridging oxygen serves as Brønsted base for proton 

abstraction in this process (Figure 4-7): 

 CH3O𝑎𝑑𝑠
∙ + O𝑏 = CH2O𝑎𝑑𝑠

∙− + OH𝑏
+ (4.4.2) 

 

Simultaneously with H abstraction, the hole on the C atom acquires a substantial back 

lobe, corresponding to the increase of p-type character as opposed to sp3-type. At the same time 

the remaining CH2O fragment acquires a planar geometry and the C–O bond shortens from 1.45 

Å (bond length typical for single bond in alcohols) to 1.35 Å, intermediate between a single and 

a double bond, indicating a bond order of 1.5. The C–Ht bond cleavage induces electronic 

structure rearrangements which can be represented as: 

 (𝑠𝑝C
3)1+𝛿 → (𝑝C)

1+𝛿 (4.4.3) 

Figure 4-7. The cleavage of The C–H bond. 

The snapshots of the hole wavefunction at 53.2 fs (a) and at 74.5 fs (c). The reorganization of 

formaldehyde anion-radical 𝜋 system and simultaneous hydrogen abstraction are shown in the 

Lewis structure (b). Note the increase in the size of the back lobe on carbon atom and the shape of 

the hole orbital in (c) strongly resembling 𝜋∗. 

( ( ((a) (b) (c) 
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 (𝑝C)
1+𝛿(𝑛𝑝,O)

2−𝛿
→ (𝜋CH2O)

2
(𝜋CH2O

∗ )
1
 (4.4.4) 

where 𝛿 stands for the fraction of the hole charge on the O 𝑛𝑝 lone pair. Interpretation of the hole 

state observed at 75 fs as a singly occupied formaldehyde antibonding 𝜋∗ orbital is further 

supported by its larger amplitude on the C atom, consistent with lower electronegativity of C 

compared to that of O. The presence of 3 electrons in the 𝜋 system of formaldehyde explains the 

intermediate C–O bond length. We note that the hole from this moment on represents the 

presence of excess spin-up electron in the previously unoccupied antibonding state. 

 

The settling of bond oscillations in the newly formed O–H bond takes place during a 

period of 40 fs after cleavage of the C–Ht bond, leading to the complete decoupling of the Ob–H 

and CH2O fragments (Figure 4-8). In the meantime, the 𝜋∗ state of formaldehyde overlaps with 

the 𝑑𝑧2 orbital of the surface Ti atom, due to the tendency of the anion-radical to transfer the 

Figure 4-8. Formaldehyde anion-radical intermediate. 

The snapshots of the hole wavefunction at 74.5 fs (a) and at 118 fs (c). The separation of methoxy C 

and transferred Ht atoms, as well as the symmetry-hindered transfer of extra electron from the 

intermediate to surface Ti5c are shown in the Lewis structure (b). 

( ( ((a) (b) (c) 



 

80 

 

electron from the antibonding orbital to the nonbonding level of the surface Ti atom. The 𝜋∗–𝑑𝑧2 

overlap is hindered by different symmetry with respect to the C–O–Ti plane. In order to achieve 

more favorable 𝜋 type overlap with the Ti 𝑑𝑧𝑥 orbital, formaldehyde rotates around the Ti–O 

bond and aligns with the [001] direction of rows of under-coordinated O and Ti atoms on the 

surface. This rapid rotation takes place between points 115 and 135 fs; the angle between the C–

O bond and the [001] direction decreases by 400 in that time interval.  

 

Comparison of the hole state snapshots (Figure 4-9) shows almost complete electron 

transfer from the formaldehyde 𝜋∗ orbital to the Ti 𝑑𝑧𝑥 on the surface. Consistent with that, the 

C–O average distance decreases to 1.23 Å, indicating an increase of the bond order between 

those species from 1.5 to 2. Overall, the final stage of the process can be written as 

 CH2O𝑎𝑑𝑠
∙− = CH2O𝑎𝑑𝑠 + 𝑒𝑝𝑜𝑙

−  (4.4.5) 

Figure 4-9. The formation of a polaron. 

The snapshots of the hole wavefunction at 118 fs (a) and at 156 fs (c). The transfer of an electron 

from the antibonding level of the intermediate to titania with formation of a polaron is shown in the 

Lewis structure (b). 

( ( ((a) (b) (c) 
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where 𝑒𝑝𝑜𝑙
−  indicates an electron trapped at the surface Ti atom with formation of a polaron. 

Additional insights can be obtained by studying the process energetics (Figure 4-10). On 

the excited-state energy landscape the system moves downhill in energy, and no substantial 

energy barriers are encountered. The initial excitation energy of 2.5 eV is expended in part (1.2 

eV) toward driving the endothermic methoxy-to-formaldehyde transformation, and the rest is 

dissipated through ionic motion. In the end of the excited-state trajectory the electronic structure 

becomes qualitatively similar to that of the ground state of the products, namely, a neutral 

formaldehyde molecule and two bridging hydroxyls with the extra electrons localized as 

polarons on Ti atoms. Therefore, we can consider the adsorbate oxidation reaction as a pathway 

for excitation quenching. 

 

  

Figure 4-10. The excited-state pathway of methoxy 

C-H bond cleavage. 

The electronic energy of the system after excitation 

along the reaction trajectory (red). The black line is 

a guide to the eye. In the course of the reaction the 

electronic system energy decreases by 1.2 eV. 
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Figure 4-11. The C–H acidity mechanism of methoxy photo-oxidation on titania. 

(a) The overall trajectory of the reaction; blue denotes the ground-state molecular dynamics, 

red – excited-state. Numbers correspond to the specific points in time: 1 – 19.4 fs, 2 – 53.2 

fs, 3 – 74.5 fs, 4 – 118.0 fs, 5 – 156 fs. Darker red corresponds to slow atomic motion, 

brighter red  (between points 2 and 3) highlights the rapidly traversed part of the trajectory. 

(b) The snapshots of the hole wavefunction in the specified time moments, see text for 

discussion. 

(c) Interatomic distances: C–H bond being cleaved, O–H being formed, and methoxy C–O. 

Based on the electronic structure analysis, the intermediate (highlighted in yellow) can be 

identified as formaldehyde anion-radical. Note the increase in C–O bond oscillation 

frequency with increase in bond order and the harmonic character of newly formed O–H 

bond vibrations. 

(d) Electron pushing schemes depicting the rearrangement of electronic structure leading 

from the previous time frame to the current one; reaction pathway from the oxidation of 

methoxy, through the C–H bond cleavage with the formation of anion-radical and, finally, to 

the formation of neutral formaldehyde and polaron on titania can be seen in its entirety. 
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Figure 4-11 (continued). 

(a) 

(b) 

(c) 

(d) 
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Our analysis enables us to put forward a generalization of the C–H acidity mechanism 

(Figure 4-11) – a set of design principles for efficient photo-oxidation reactions. First is the 

strong coupling of the reactants and reactive intermediates to the semiconductor surface – in our 

case, methoxy and the formaldehyde anion. Second is the ability of the semiconductor surface to 

accommodate the reaction products – for the rutile TiO2 (110) surface, it is the presence of 

efficient electron trapping sites on surface titanium atoms and Brønsted basic sites for proton 

abstraction on bridging oxygen atoms. Finally, the adsorbate should have non-hindered 

geometric and electronic structure rearrangement options, which make the adsorbed molecule a 

preferred location for the hole compare to the photo-catalyst. In this case this role was fulfilled 

by the hyperconjugation between the C–H bond and the oxygen lone pairs, as well as the 

sterically available rotations of different atomic groups in the adsorbate which sustained and 

enhanced that stabilizing effect. The above-mentioned properties will make the reaction pathway 

an efficient and fast channel for photo-generated carrier relaxation. 
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PART II 

MODELING THE DEFECT PROPERTIES OF 

SEMICONDUCTORS AND THE PERFORMANCE OF 

SEMICONDUCTOR-BASED SOLAR CELLS 

 

We start this part by discussing in Chapter 5 an internally consistent scheme for 

computation of defect formation energies in the density functional theory simulations. The key 

advantages of the described approach are the absence of free parameters and the applicability to 

both bulk semiconductor surfaces and two-dimensional materials. In Chapter 6 we discuss an 

application of that scheme to studying the properties of sulfur vacancies in a material of 

substantial interest – MoS2 monolayer. We analyze the defect-induced perturbations of electronic 

and geometric structure of the material and its behavior under strain in the context of 

“ripplocation” structure formation. Finally, in Chapter 7 we demonstrate a model for estimating 

the power conversion efficiency of p-i-n solar cells based on the electronic structure of the 

intrinsic absorber layer, and apply it to the important class of solar cells based on hybrid organic-

inorganic absorbers with perovskite structure. Our findings allow us to demonstrate how the 

device performance can be linked to the chemical composition of the material and the alignment 

of its electronic structure to that of carrier-transporting materials.  
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CHAPTER 5. A CONSISTENT METHOD FOR 

COMPUTATION OF DEFECT FORMATION ENERGIES 

IN NON-HOMOGENEOUS DIELECTRIC 

ENVIRONMENTS 

Defects can have a dramatic impact on the properties of semiconducting materials;1-2 the 

most prominent effect is the p- and n-doping of semiconductors, when the trace amounts of the 

dopant dramatically enhance the conductivity. More than that, the introduction of defect levels in 

the band gap changes the optical properties of the material: absorption or luminescence, and 

facilitates the non-radiative recombination of carriers on the defect levels in the band gap.3 An 

understanding of defect and impurities behavior is also important for rationalizing the structural 

properties of materials: defects modify the vibrational spectrum of the host, and are often 

involved in the diffusion processes during materials growth.4 A key quantity describing defect 

behavior is its formation energy as a function of charge. In this chapter we discuss a novel 

method for computation of defect formation energies of charged defects. The material presented 

here is being prepared for publication: D. Vinichenko, M. G. Sensoy, C. M. Friend, E. Kaxiras. 

Accurate formation energies of charged defects in solids: a systematic approach.  

5.1. Experimental methods for studying defect properties 

A wide variety of experimental techniques exist for investigating the properties of 

defects.5 Secondary ion mass spectrometry (SIMS) allows measurement of the depth profile of 

defect concentration inside the material, achieving sensitivity of 1013 cm−3 – however, 

identification of native defects is not possible with this method, unless isotope techniques are 

used.6 Another method for investigating point defect concentrations is positron annihilation 
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spectroscopy7 (PAS), which is typically limited to working with vacancies only. Optical 

techniques, such as photoluminescence (PL) spectroscopy, provide only information about the 

presence of the defects, but do not lend any insight into the nature of the PL peaks.8-9 Extended 

x-ray absorption fine structure (EXAFS) can directly provide information regarding the local 

atomic structure around impurity, but only for heavy atoms.10 Scanning tunneling microscopy11 

(STM) and a variable-bias extension thereof, scanning tunneling spectroscopy12 (STS) can be a 

powerful tool for revealing atomic and electronic structure of defects on surfaces and, in some 

cases, even for subsurface defects.13-15 While the STM data can be related to computational 

simulations, a careful analysis of STS data is oftentimes required.16 Finally, the most powerful 

tool for studying defects is the electron paramagnetic resonance17-18 (EPR) – it can provide 

information about local environment and concentrations of the defect. Since the key output of the 

method are the hyperfine parameters and g tensors of unpaired electrons, the applications are 

most often limited to paramagnetic defects. Additional insight can be derived by comparing the 

method’s output to computational simulations of the magnetic parameters,19 which however, 

involves some methodological intricacies associated with the implementation of gauge-invariant 

theory.20-21 However, even using EPR it is hard to establish the most important quantity 

determining the abundance of a given defect or impurity – its formation energy; it is due to 

comparative difficulty in getting the information about microscopic properties of the defects 

from the experimental data, the computational methods based on quantum theory of matter have 

been developed and used quite widely. 

5.2. First-principles approaches to defect simulation 

Several approaches to computation of defect electronic structure and formation energy 

were developed. First group of methods is based on the Green’s functions formalism;22-26 
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potentially they are capable of delivering accurate results, even for hyperfine couplings relevant 

in the context of EPR, but the implementation of those methods is very involved, which limits 

the applicability. Moreover, atomic relaxations typically associated with defect formation, are 

very hard to include. Another group of methods models the defect immersed a finite cluster of 

several shells of the host material.27-28 Such approach allows to take advantage of powerful 

methods of quantum chemistry for accurate treatment of electron correlation: configuration 

interaction (CI), complete active space self-consistent field (CASSCF), or coupled 

clusters(CC).29 On the other hand, such models require termination of the dangling bonds on the 

outer boundary of the model cluster, and the results of the simulation are typically sensitive to 

such finite-size effects. Variations of the method with embedding the cluster into a 

phenomenologically treated host material – so-called embedded cluster models, also exist.30 

Moreover, unfavorable scaling of the quantum-chemical approaches with the model system size 

puts very strict limitation on the size of the cluster under consideration, adding an extra layer of 

uncertainty to the problem. 

An alternative approach to the problem is based on the density functional theory-based 

(DFT) simulations with utilization of periodic boundary conditions – the so-called supercell 

method.31-32 In this method, the defect is introduced in one unit cell of the host material, and this 

cell is then surrounded by a shell of stoichiometric host cells. Moreover, defects in the surface 

regions can be simulated by creating surface slabs separated by a layer of vacuum. The resulting 

rectangular supercell is the model for an isolated defect, for which the electronic structure and 

corresponding total energy can be obtained by applying the DFT formalism, as implemented in 

the modern efficient plane-wave codes.33-34 Additionally, electrons can be added to or removed 

from the model in order to simulate the charge state of the defect in question. The formation 



 

93 

 

energy 𝐸𝑓
𝑞
 for an impurity in a charge state 𝑞 can be calculated in the Zhang-Northrup 

formalism35 as: 

 𝐸𝑓
𝑞 = 𝐸𝐷𝐹𝑇

𝑑𝑒𝑓,𝑞
− 𝐸𝐷𝐹𝑇

𝑠𝑡 −∑𝜇𝑖𝑛𝑖
𝑖

+ 𝑞(𝐸𝑉𝐵𝑀 + 𝐸𝐹) (5.2.1) 

where 𝐸𝐷𝐹𝑇
𝑑𝑒𝑓,𝑞

 is the DFT total energy of the supercell with a defect, 𝐸𝐷𝐹𝑇
𝑠𝑡  is the DFT total energy 

of the stoichiometric supercell, 𝜇𝑖 are the chemical potentials of the species added or removed to 

create the defects under appropriate thermodynamic conditions, 𝑛𝑖 are the stoichiometric 

coefficients for those species (𝑛𝑖 > 0 for added atoms, 𝑛𝑖 < 0 for atoms being removed), 𝐸𝑉𝐵𝑀 

is the absolute position of the valence band maximum, and 𝐸𝐹 is the Fermi level position of the 

material with respect to valence band maximum. 

The term in the brackets in equation 5.2.1, relevant for the charged state of the defects, 

corresponds to the chemical potential of the electrons in the host material; it is separated into two 

terms: 𝐸𝑉𝐵𝑀 and 𝐸𝐹 for the ease of comparison of different sets of results. This is important for 

carrying out comparisons of formation energies of different charge states for a given defect – for 

that purpose the formation energies are plotted as a function of parameter 𝐸𝐹 – Fermi level 

within band gap; the intersection points of lines corresponding to different charge states are the 

thermodynamic transition levels. They can be compared with the data from experimental 

techniques, such as deep level transient spectroscopy, which is capable of inferring thermal 

ionization energies.36 Such analysis allows to figure out which charge state of the defect is stable 

depending on the Fermi level position in the material; in the case when all present defects are 

known, the Fermi level in the material can be calculated1 through a self-consistent 

thermodynamic calculation. There are several limitations and typical sources of errors associated 

with the supercell method, which we consider in further discussion. 
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5.3. Main sources of errors in the supercell method 

The main complications resulting from utilization of supercell method based on DFT 

arise from two main sources: approximations of the density functional theory itself, and the 

artificial interactions of the defects in the adjacent supercells.1 We consider those groups of 

problems in turn. 

5.3.1. Errors resulting from the use of approximate functionals 

In the context of the supercell simulations for defects, the limitations of density 

functional theory manifest themselves in two important ways: first, the electronic structure of the 

host material can be described inaccurately enough to induce substantial errors in the geometrical 

structure of host material and, consequently, the relaxations associated with the defect; second, 

the potentially incorrect positions of the edges of valence and conduction band can result in 

incorrect determination of the chemical potential of electrons in the material and wrong positions 

of transition levels.37 Moreover, errors in computation of the band gap can lead to qualitatively 

incorrect classification of defects as shallow or deep. Those pitfalls have one common source – 

incorrect description of electron self-interaction, mentioned in chapter 2. In particular, the 

fundamental band gap 𝐸𝑔
𝑓
 of the material can be defined as the difference between the ionization 

energy 𝐼 = 𝐸𝑒𝑙(𝑁 − 1) − 𝐸𝑒𝑙(𝑁) and electron affinity 𝐴 = 𝐸𝑒𝑙(𝑁 + 1) − 𝐸𝑒𝑙(𝑁), where 𝐸𝑒𝑙(𝑁) 

is the electronic total energy as a function of number of electrons 𝑁; 𝐸𝑔
𝑓
= 𝐼 − 𝐴. For the exact 

exchange-correlation functional the fundamental band gap can be estimated from derivatives of 

electronic total energy: 

 𝐸𝑔
𝐷𝐹𝑇 = lim

𝛿→0

𝜕𝐸𝑒𝑙
𝜕𝑁

|
𝑁+𝛿

− lim
𝛿→0

𝜕𝐸𝑒𝑙
𝜕𝑁

|
𝑁−𝛿

 (5.3.1) 
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for the total number of electrons approaching 𝑁 from above and below, respectively. In the case 

of local or semilocal functionals this expression is written in terms of the eigenvalues 

corresponding to the highest occupied and lowest unoccupied orbitals, respectively: 𝐸𝑔
𝐿𝐷𝐴/𝐺𝐺𝐴

=

𝜖𝐿𝑈𝑀𝑂
𝐿𝐷𝐴/𝐺𝐺𝐴(𝑁) − 𝜖𝐻𝑂𝑀𝑂

𝐿𝐷𝐴/𝐺𝐺𝐴(𝑁). The main issue with this expression is the fact that the true 

exchange-correlation functional should experience a discontinuous change in the derivative once 

the number of electrons crosses 𝑁; for the approximate semilocal functionals, however, due to 

self-interaction (incomplete cancellation of Coulomb interaction of an electron with its own 

charge density), this is not the case – so the derivative of the exchange-correlation functional 

taken for 𝛿 > 0 is not equal to the Kohn-Sham eigenvalue 𝜖𝐿𝑈𝑀𝑂
𝐿𝐷𝐴/𝐺𝐺𝐴

 calculated for the system of 

𝑁 electrons – therefore, the band gap of the material obtained in the semilocal approximation is 

incorrect.  

The methods for coping with this band gap underestimation problem developed by 

scientific community can be divided into two broad categories: in the first are the empirical 

extrapolation approaches, and in the second are the methods for improving the electronic 

structure description. The extrapolation approaches are most often used in cases when the 

simplified semilocal functional suffices for the description of the geometry and total energy of 

the material, but fails for the band gap width. The simplest of such methods is a scissor operator 

for stretching the band gap in order to match its experimental value, leaving the defect levels 

with respect to the valence band intact.38-39 More involved techniques move the levels of the 

donor defects along with the band gap, while leaving the positions of acceptor defects intact;40 

even more sophisticated technique involves projection of the defect level onto valence and 

conduction bands of the material and shifting its position in proportion to the weight of the 

conduction band character.41 
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The methods of the second group involve fixing the underlying description of the 

electronic structure of the system in question. Since the band gap issues are the most prominent 

for the transition metal oxides, the most popular method for electronic structure correction is the 

earlier described LDA+U.42-43 More sophisticated approaches, for example, GW,44 can be 

applied, but they typically have a host of issues of their own, including various flavors of GW,45 

as well as prohibitive computational cost, hence their use is less widespread. A compromise 

option are the hybrid DFT46-47 functionals, which allow to address the self-interaction error 

without adjustable parameters (like DFT+U) and at a lower computational cost than GW. 

Overall, the electronic structure component of the problem should be addressed on 

compound-by-compound basis, and as long as the band gap is correctly described and the defect 

levels are correctly placed within the band gap, this aspect can be successfully decoupled from 

the errors inherent to the supercell method itself, which we discuss next.48 

5.3.2. Errors due to the interactions of a defect with its periodic images 

The first issue to address, perhaps not surprisingly, is the direct overlap of the 

wavefunctions corresponding to the defects in the neighboring cells. This problem manifests 

mostly in the cases of shallow defects, which give rise to delocalized states resonant with either 

conduction or valence bands; even from simple tight-binding-type considerations it is clear that 

such overlap will give rise to non-zero matrix element of the system Hamiltonian between those 

orbitals, and in turn the dispersion of the defect-induced band throughout the Brillouin zone will 

arise. Particularly dire is the situation when the band is degenerate and only partially occupied2, 

49 – for example, in the case of doubly charged vacancy in diamond, where only two of the three 

degenerate orbitals are occupied. Defect band dispersion in such situation will lead to the full 

occupation of defect band for part of the k-points, and non-occupied orbitals in the other part of 
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the Brillouin zone, which, in turn, will adversely affect the properties derived from weighted 

summation over k-points. It should be noted, however, that the importance of this source of 

errors is overestimated, especially the degeneracy part – in real simulations including ionic 

relaxations the degeneracy of the bands will be lifted anyway through the Jahn-Teller effect; 

moreover, such splitting will be larger than the artificial dispersion of the defect band for any 

reasonable sizes of the supercells involved. For example, even without ionic relaxation the 

dispersion effect is virtually non-existent for supercells of diamond involving more than 64 

atoms1 – by all modern measures an extremely modest supercell size, which will not be used in 

actual material simulations due to insufficiency of its size for containing the defect-induced 

relaxations. Another issue related to the wavefunction overlap is the magnetic interaction of the 

defects. For semiconductors, interaction between magnetic defects can be described by a 

Heisenberg-type Hamiltonian with the coupling coefficients decaying as inverse cube of the 

inter-defect separation – not surprisingly, since magnetism involves exchange interactions, which 

scale as differential overlap between orbitals involved. It should be noted, however, that the 

situation can be substantially different for metals – for some of them the magnetoelastic coupling 

is very strong, so the change of magnetic state can induce substantial geometric 

rearrangements.50 

The next major source of uncertainty is the elastic interaction between defects. Creation 

of a defect or impurity in the host lattice creates a perturbation in the electronic structure – bonds 

can be cleaved upon vacancy formation, they can be altered by introduction of atoms with 

varying electronegativity; finally, even the introduction of an atom of large radius or interstitial 

will create physical strain in the system. Such perturbation will exert forces on atoms and create 

a displacement field; the associated strain field is characterized by dipole elastic tensor,51 so the 
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elastic interactions between point defects have character of dipole-dipole interaction and the 

elastic energy of a periodic array of defects scales as inverse cube of the supercell size. 

Therefore, for any reasonable supercell size the associated elastic interactions can be considered 

to be absent if the simulation supercell is large enough to contain the defect-induced ionic 

relaxations and to have “bulk-like” region of unperturbed host material around the defect – the 

displacements are inversely proportional to square of distance from the defect, so if the 

relaxations are contained. One more feature of the geometry distortion by defects is the change is 

the normal modes of the lattice – however, such changes are typically smaller than the other 

sources of errors in the simulation – such as electrostatic interaction between charged defects, to 

which we turn next. 

5.3.3. Electrostatic energy in the supercell method 

Apart from the issue mentioned above, computation of the formation energy of charged 

defects involves a new component – electrostatic energy of the defect charge distribution. The 

issue is that utilization of the periodic boundary conditions in the supercell method imposes a 

constraint on the total charge of the simulation cell – it has to be neutral, otherwise the 

electrostatic energy of an infinite array of such supercells would diverge due to long-range nature 

of the Coulomb interaction.52 In practice this condition is enforced in the computational 

simulation by setting the average value of the electrostatic potential to zero, which is equivalent 

to having zero net charge. This situation gives rise to the spurious energy contributions from the 

interaction of the defect charge with the neutralizing background and the periodic images 

thereof. The magnitude of those interactions for point charge defects was shown to scale as an 

inverse of the supercell size,51, 53 with additional terms resulting from higher-order moments of 

the charge distribution scaling as inverse cube of the supercell size. It can be shown that the 
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additional term in the electrostatic potential resulting from the introduction of the uniform 

neutralizing background has parabolic shape, and the value at the charge origin is the same as the 

correction term mentioned before.54 The simplest of corrections accounting for electrostatic 

interaction is the Makov-Payne correction, amounting to a difference between electrostatic 

energy of a point charge under open boundary conditions, and the Madelung sum for its energy 

under periodic boundary conditions – however, in practical applications such correction was 

proven hard to reliably use;55-56 one of the reasons is that the expression for the correction energy 

has the macroscopic dielectric constant in the denominator – but the supercell method deals with 

the material on a microscopic scale and therefore the bulk limit might not be applicable. 

Therefore, variations on the topic were developed, where the true formation energy of an isolated 

defect would be calculated for a series of supercells with the same shape and progressively 

increasing size,57-59 and then the resulting energy would be fit to a scaling law with inverse size 

of the supercell, treating the dielectric constant of the material as a parameter of the model; 

variants of the scheme accounting for anisotropic dielectric tensor have been also implemented.60 

More advanced methods for correcting the electrostatic component of the energy 

recognize the difference between the actual non-trivial shape of the charge associated with the 

defect, |𝜙𝑑(𝑟)|
2, and a point charge. The simplest solution is to model the defect charge with a 

Gaussian fit – this allows to explicitly calculate incorrect component of the total energy – 

electrostatic self-energy of the Gaussian model under periodic boundary conditions 𝐸𝑃𝐵𝐶
𝑚𝑜𝑑 and the 

proper electrostatic energy term – energy of an isolated Gaussian charge 𝐸𝑖𝑠𝑜
𝑚𝑜𝑑.61-63 The benefit 

of using Gaussian charge is that the expressions for electrostatic energy in both cases are readily 

available: 
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 𝐸𝑖𝑠𝑜
𝑚𝑜𝑑 =

𝑞2

2𝜎𝜖√𝜋
 (5.3.2) 

 𝐸𝑃𝐵𝐶
𝑚𝑜𝑑 =

2𝜋

𝜖Ω
∑

[𝜌𝑚𝑜𝑑(�⃗�)]
2

𝐺2
�⃗�≠0

 (5.3.3) 

where 𝑞 is the total charge of the defect wavefunction, 𝜌𝑚𝑜𝑑 is the Gaussian fit for it, 𝜌𝑚𝑜𝑑(�⃗�) 

are the Fourier transform components for the Gaussian, 𝜎 is the width of Gaussian fit, 𝜖 is the 

dielectric constant of the material and Ω is the volume of the supercell. The expressions for the 

model potential induced by the Gaussian model charge 𝑉𝑃𝐵𝐶
𝑚𝑜𝑑

 are also readily available. This 

potential is supposed to represent the response of the host material to introduction of a charge in 

it – mainly the dielectric screening response –and the same potential field 𝑉𝑟𝑒𝑠𝑝 can be obtained 

by subtracting the electrostatic potentials resulting from the DFT calculations for the 

stoichiometric host material, 𝑉𝐷𝐹𝑇
𝑠𝑡 , and the charged defect, 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓,𝑞
: 𝑉𝑟𝑒𝑠𝑝 = 𝑉𝐷𝐹𝑇

𝑠𝑡 − 𝑉𝐷𝐹𝑇
𝑑𝑒𝑓,𝑞

. The 

Gaussian model does a reasonable job of describing the long-range behavior of the screening 

potential 𝑉𝑟𝑒𝑠𝑝, but the short-range part has some discrepancy between 𝑉𝑃𝐵𝐶
𝑚𝑜𝑑 and 𝑉𝑟𝑒𝑠𝑝 due to a 

much more complex structure of the actual defect wavefunction, including angular nodal 

features, compared to a simple isotropic Gaussian model. Since the computations are done under 

periodic boundary conditions, the cell averages for both 𝑉𝑃𝐵𝐶
𝑚𝑜𝑑 and 𝑉𝑟𝑒𝑠𝑝 are zero, and therefore 

the discrepancy in the short-range results in a constant shift in the values of those potentials in 

the long-range region. This additional terms is known as “potential alignment”, Δ𝑉,  and it is 

typically expressed as: 

 Δ𝑉 = 𝑉𝑃𝐵𝐶|𝑓𝑎𝑟 − (𝑉𝐷𝐹𝑇
𝑠𝑡 − 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓,𝑞
)|𝑓𝑎𝑟 (5.3.4) 
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With all the terms discussed earlier, the full expression for the electrostatic correction 

𝐸𝑐𝑜𝑟𝑟 can be written in terms of the model Gaussian energies for open 𝐸𝑖𝑠𝑜
𝑚𝑜𝑑 and periodic 𝐸𝑃𝐵𝐶

𝑚𝑜𝑑 

boundary conditions: 

 𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑖𝑠𝑜
𝑚𝑜𝑑 − 𝐸𝑃𝐵𝐶

𝑚𝑜𝑑 + Δ𝑉 (5.3.5) 

It is important to emphasize that the presence of Δ𝑉 term is solely due to usage of a crude 

model for the defect-induced charge |𝜙𝑑(𝑟)|
2; it was shown that the potential alignment term is 

unnecessary if the electrostatic energy part of the problem is properly described.48, 64 Another 

motivation to remove the potential alignment term is the fact that it becomes increasingly hard to 

define when the relaxation of ionic positions in the material are included in the model, since 

motion of atoms changes the electrostatic potential substantially, and it becomes practically 

impossible to carry out the alignment with “far” bulk-like region in the expression for Δ𝑉. 

The models discussed so far only deal with the case of the defects in the bulk 

semiconductors – however, for the case of defects in the surface regions of the materials, new 

complications arise. In all schemes considered before, the dielectric constant of the material was 

treated as a constant parameter, either obtained from DFT simulations, or taken to be equal to the 

experimental. However, when the defects on surfaces are simulated in the supercell method, a 

layer of vacuum is introduced in the direction normal to the surface; the thickness of the vacuum 

layer is typically chosen large enough so that the periodic images of the surface slabs do not 

interact. In such case the dielectric constant of the material turns into dielectric profile. 

Qualitatively, the situation is depicted in Figure 5-1: the output of DFT calculation for charged 

defect has the defect immersed into the compensating homogeneous background, and enclosed in 

a finite simulation cell, whereas the goal is to simulate the formation energy of an isolated defect 

on the boundary of vacuum and host material without any interaction with either periodic 
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replicas or neutralizing charge. Not surprisingly, the electrostatic energy of such model has 

spurious and strong dependence on artificial parameters of the simulation domain, such as 

vacuum layer thickness.65 In this work, we describe the implementation of the correction for 

electrostatic energy and propose an internally consistent method for computation of formation 

energy of defects in complex dielectric environments. 

 

5.4. Computation of the electrostatic energy correction 

As was discussed above, in the equation 5.3.5 for the electrostatic correction the key 

component is the difference between the open boundary conditions energy and periodic 

𝜌𝑑𝑒𝑓(𝑟) 𝜌𝑑𝑒𝑓(𝑟) 

𝜖𝑚𝑎𝑡  

(a) 

𝜌𝑛  𝜖0  𝜖0  

𝜖𝑚𝑎𝑡  

(b) 

Figure 5-1. Schematic representation of a charged defect on the surface of host material. 

(a) Model representing the output of DFT simulation for the surface slab containing the defect 

charge 𝜌𝑑𝑒𝑓(𝑟) on the boundary of the host material (blue shade) with dielectric constant 𝜖𝑚𝑎𝑡 and 

vacuum with permittivity 𝜖0. Dots indicate the neutralizing homogeneous background 𝜌𝑛, and the 

dashed lines denote the boundary of the slab simulation cell. 

(b) The target dielectric environment – an isolated defect charge on the boundary, with infinite layer 

of host material below it and infinite vacuum thickness above. 
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boundary conditions energy, 𝐸𝑖𝑠𝑜
𝑚𝑜𝑑 − 𝐸𝑝𝑒𝑟

𝑚𝑜𝑑. Here we describe first the practical aspects of 

implementating the calculation of energy for periodic boundary conditions, followed by the 

discussion of issues regarding open boundary conditions computation.  

5.4.1. Electrostatic energy under periodic boundary conditions 

The law governing the electrostatic potential 𝑉(𝑟) can be expressed in the Poisson 

equation: 

 𝜖0𝛻[𝜖(𝑧)𝛻𝑉(𝑟)] = −𝜌𝑑(𝑟) (5.4.1) 

where 𝜌𝑑(𝑟) is the unscreened charge distribution associated with the defect level 𝜙𝑑(𝑟) in the 

band gap, 𝜌𝑑(𝑟) = 𝑒|𝜙𝑑(𝑟)|
2; 𝜖0 is the dielectric permittivity of vacuum; 𝜖(𝑧) is the dielectric 

profile. After inferring the electrostatic potential, it is trivial to calculate the electrostatic energy 

under periodic boundary conditions by integrating over the simulation supercell volume: 

 𝐸𝑃𝐵𝐶
𝑚𝑜𝑑 =

1

2
∫𝑉(𝑟)𝜌𝑑(𝑟)𝑑𝑟
Ω

  (5.4.2) 

Here we assume that the simulation supercell is set up in such way that the 𝑧 direction is 

normal to the surface, and the size of the cell is (𝐿𝑥, 𝐿𝑦, 𝐿𝑧), so that 𝑥 ∈ [0, 𝐿𝑥], 𝑦 ∈ [0, 𝐿𝑦], 𝑧 ∈

[0, 𝐿𝑧]. With those assumption, the dielectric profile is piecewise-constant in 𝑧 direction, with the 

value of dielectric constant 1.0 for vacuum and the corresponding value for the material in 

question; following previous work65 we additionally introduce a smooth joining between the 

interfaces, described by an error function. We note that in principle the material can be 

anisotropic, that is, instead of a single dielectric constant characterized by up to three different 

diagonal components of the dielectric tensor: {𝜖𝑥𝑥, 𝜖𝑦𝑦 , 𝜖𝑧𝑧}. When simulating this material in 

surface slab geometry, instead of a single dielectric profile all its three components will have 

dependence on the z coordinate: {𝜖𝑥𝑥(𝑧), 𝜖𝑦𝑦(𝑧), 𝜖𝑧𝑧(𝑧)}. In such case all three dielectric profiles 
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will have the same interface positions, defined by the positions of the host material atoms. Our 

scheme can accommodate such case as well, as we will demonstrate below. We will describe in 

detail the procedure for obtaining dielectric profile in subsequent sections; for now, we assume it 

is known and is parameterized as described above. 

Since the problem is formulated with periodic boundary conditions, it naturally lends 

itself to solution in the Fourier space due to availability of the fast Fourier transform numerical 

routines, heavily used in modern plane-wave codes for computation of the electrostatic potential. 

In Fourier space, the derivatives of the functions correspond to multiplication by the 

corresponding wavevector: 

 �̂� [
𝜕𝑓

𝜕𝑥
] → 𝑖𝐺𝑥�̂�[𝑓] = 𝑖𝐺𝑥𝑓 (5.4.3) 

where �̂� is the Fourier transform operator, 𝑓 is the function in question, 𝑓 is its Fourier 

transform; and the product of two functions in real space corresponds to a convolution in Fourier 

space: 

 �̂�[𝑓 ⋅ 𝑔] → �̂�[𝑓] ∗ �̂�[𝑔] = 𝑓 ∗ �̂� = ∫𝑓(�⃗�′ − �⃗�)�̂�(�⃗�′)𝑑�⃗�′ (5.4.4) 

Using those expressions, we can transform the Poisson equation in the following way: 

 𝜖0𝛻[𝜖(𝑧)𝛻𝑉(𝑟)] = 𝜖0 [𝜖(𝑧) ⋅ Δ𝑉(𝑟) + 
𝜕𝜖(𝑧)

𝜕𝑧
⋅
𝜕𝑉(𝑟)

𝜕𝑧
] = −𝜌𝑑(𝑟) (5.4.5) 

where the second term includes derivative only with respect to 𝑧 dimension, since the dielectric 

profile is a function of 𝑧 only. In Fourier space the Poisson equation will look like 

 𝜖0[𝜖̂(𝐺𝑧) ∗ |𝐺|
2�̂�(�⃗�) + 𝐺𝑧𝜖̂(𝐺𝑧) ∗ 𝐺𝑧�̂�(�⃗�)] = �̂�𝑑(�⃗�) (5.4.6) 

where 𝜖̂ is Fourier transform of the dielectric profile, �̂� – Fourier transform of the 

potential, �̂�𝑑 – Fourier transform of the defect charge, and the negative sign in the right-hand 
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side has cancelled out with the negative sign coming from 𝑖2 resulting from second derivative in 

the Fourier space. In the following discussion we assume atomic system of units, with 𝜖0 =
1

4𝜋
,

𝑒 = 1, ℏ = 1,𝑚𝑒 = 1 for simplification of the expressions involved. It is important to note that 

due to the fact that the dielectric profile varies only in 𝑧 direction, the convolutions in equation 

5.4.6 are one-dimensional, along 𝑧 direction only; this simplifies the problem substantially, since 

with such assumptions only the 𝑧 components of the charge Fourier transform �̂�𝑑(𝐺𝑥, 𝐺𝑦, 𝐺𝑧′) 

and potential Fourier transform �̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧′) are coupled to each other for every value of 𝐺𝑥 

and 𝐺𝑦 – a much more tractable problem compared to full-blown three-dimensional convolution. 

In order to connect to the actual numerical description of the problem, we introduce the 

discretized version of those equations in the next section. 

5.4.2. Discretization of the Poisson equation 

In actual computational applications the quantities described above: charge density of the 

defect 𝜌𝑑(𝑟) and the corresponding potential 𝑉(𝑟) are represented on a discrete mesh of size 

(𝑁𝑥, 𝑁𝑦, 𝑁𝑧), and corresponding mesh spacings Δ𝑥 = 𝐿𝑥/𝑁𝑥, with analogous expressions for 

𝑦, 𝑧. According to the basic theory of discrete Fourier transforms, for such discrete mesh in real 

space the corresponding Fourier-space representation would be a mesh of wavevectors {�⃗�𝑖𝑗𝑘} =

(𝐺𝑥
𝑖 , 𝐺𝑦

𝑗
, 𝐺𝑧

𝑘) with an equal number of points to the real-space one. The spacing on the 

wavevector mesh is related to the real-space mesh through: 

 Δ𝐺𝑥 =
2𝜋

𝐿𝑥
;  Δ𝐺𝑦 =

2𝜋

𝐿𝑦
;  Δ𝐺𝑧 =

2𝜋

𝐿𝑧
 (5.4.7) 

and the values for wavevectors are conventionally taken to be 
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 {𝐺𝑥
𝑖} = −

𝜋(𝑁𝑥 − 1)

𝐿𝑥
…
𝜋𝑁𝑥
𝐿𝑥

 (5.4.8) 

with similar expressions for 𝐺𝑦
𝑗
 and 𝐺𝑧

𝑘. Like the real-space cell under periodic boundary 

conditions, the wavevector mesh is also invariant to translations by a full lattice vector, 
2𝜋𝑁𝑥

𝐿𝑥
=

2𝜋

Δ𝑥
, rendering the discrete Fourier transform periodic in the reciprocal space. The spacing in the 

real-space mesh, Δ𝑥, defines the minimal wavelength which can be resolved on such mesh 

through Nyquist condition, 𝜆𝑚𝑖𝑛 = 2Δ𝑥, since the wave has to be sampled at least twice on its 

wavelength to determine its phase. Correspondingly, the maximal wavevector for this 

wavelength is 𝐺𝑚𝑎𝑥
𝑥 =

2𝜋

𝜆𝑚𝑖𝑛
=

𝜋𝑁𝑥

𝐿𝑥
. Waves with wavevector components larger than that cannot 

be resolved on such grid and will in discrete representation look identical to a wave in which the 

corresponding component is smaller by 𝐺𝑚𝑎𝑥
𝑥  – hence the periodicity in wavevector space. 

Analogously, the smallest wavevector on the mesh, 𝐺𝑥 =
2𝜋

𝐿𝑥
 corresponds to the largest possible 

wavelength which would fit the cell, 𝜆𝑚𝑎𝑥 = 𝐿𝑥. It should be noted that attempting to represent 

the waves with wavelengths incommensurate with the mesh lengths will result in artificial 

effects, when the discrete Fourier transform is blurred; however, since for our application of 

interest the quantities like 𝜌𝑑 are enforced to be commensurate with the lattice by Bloch theorem, 

we do not encounter such effects in this work. 

With the definition of the mesh in the Fourier space, the integral in the convolutions in 

equation 5.4.6 is reduced to a sum: 

 ∫𝑓(�⃗�′ − �⃗�)�̂�(�⃗�′)𝑑�⃗�′ →∑𝑓(�⃗�′ − �⃗�)�̂�(�⃗�′)

𝐺′

 (5.4.9) 

and then the discretized form of the Poisson equation can be simplified as following: 
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𝜖̂(𝐺𝑧) ∗ |𝐺|
2�̂�(�⃗�) + 𝐺𝑧𝜖̂(𝐺𝑧) ∗ 𝐺𝑧�̂�(�⃗�)

=∑𝜖̂(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑧

′2�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

+∑𝜖̂(𝐺𝑧 − 𝐺𝑧
′)(𝐺𝑥

2 + 𝐺𝑦
2)�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧

′)

𝐺𝑧
′

+∑𝜖̂(𝐺𝑧 − 𝐺𝑧
′)(𝐺𝑧 − 𝐺𝑧

′)�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

𝐺𝑧
′

= �̂�𝑑(𝐺𝑥, 𝐺𝑦, 𝐺𝑧) 

(5.4.10) 

After making some rearrangements, one can arrive at a simplified version: 

 ∑𝜖̂(𝐺𝑧 − 𝐺𝑧
′)(𝐺𝑥

2 + 𝐺𝑦
2 + 𝐺𝑧𝐺𝑧

′)�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

= �̂�𝑑(𝐺𝑥, 𝐺𝑦, 𝐺𝑧) (5.4.11) 

which in the discrete representation will read as: 

 ∑𝜖𝑘−𝑙+1 ((𝐺𝑥
𝑖)
2
+ (𝐺𝑦

𝑗
)
2
+ 𝐺𝑧

𝑘𝐺𝑧
𝑙) 𝑉𝑖𝑗𝑙

𝑙

= 𝜌𝑖𝑗𝑘 (5.4.12) 

where we have introduced shorthand notation: 𝜖𝑘−𝑙 = 𝜖̂(𝐺𝑧
𝑘 − 𝐺𝑧

𝑙), 𝑉𝑖𝑗𝑙 = �̂�(𝐺𝑥
𝑖 , 𝐺𝑦

𝑗
, 𝐺𝑧

𝑙), and 

𝜌𝑖𝑗𝑘 = �̂�𝑑(𝐺𝑥
𝑖 , 𝐺𝑦

𝑗
, 𝐺𝑧

𝑙). It is clear that the presence of a non-trivial dielectric profile in 𝑧 direction 

results in coupling between components of 𝑉𝑖𝑗𝑙 and 𝜌𝑖𝑗𝑘 for 𝑘, 𝑙 = 1…𝑁𝑧. Since the coefficients 

along 𝑥 and 𝑦 directions are not coupled, the problem is factorized into 𝑁𝑥𝑁𝑦 systems of linear 

equations defined by matrices 𝐌𝑖𝑗 with matrix elements 𝑀𝑘𝑙
𝑖𝑗

 

 𝑀𝑘𝑙
𝑖𝑗
= 𝜖𝑘−𝑙+1 ((𝐺𝑥

𝑖)
2
+ (𝐺𝑦

𝑗
)
2
+ 𝐺𝑧

𝑘𝐺𝑧
𝑙) (5.4.13) 

Such expression can be readily represented in terms of the circulant matrix. For a vector 

of Fourier components of the dielectric profile 𝜖𝑘, 𝑘 = 1…𝑁𝑧 the circulant is a 𝑁𝑧 ∗ 𝑁𝑧 matrix  
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 �̂�[𝜖] =

(

 
 

𝜖1 𝜖𝑁𝑧
𝜖2 𝜖1

⋯
𝜖3 𝜖2
𝜖4 𝜖3

⋮ ⋱ ⋮
𝜖𝑁𝑧−1 𝜖𝑁𝑧−2
𝜖𝑁𝑧 𝜖𝑁𝑧−1

⋯
𝜖1 𝜖𝑁𝑧
𝜖2 𝜖1 )

 
 

 (5.4.14) 

It is interesting to note that the condition number of the circulant matrix is the ratio of the 

largest Fourier transform component of the original vector generating the circulant to the 

smallest one. In our case, since the vector 𝜖𝑘 is a Fourier transform itself, the condition number 

of the circulant will be the ratio of largest value of real-space dielectric profile to the smallest 

one. Given the framework for the dielectric profile we use in this work, this ratio ends up being 

equal to the dielectric constant of the material in question – so there are no concerns in our 

particular case. However, this is helpful to keep in mind when developing the test cases for the 

code involving circulants. 

With such definition, the matrix elements 𝑀𝑘𝑙
𝑖𝑗

 of the matrices 𝐌𝑖𝑗 defining the problem 

in question can be expressed through circulant formed from the vector of Fourier components of 

the dielectric profile: 

 𝑀𝑘𝑙
𝑖𝑗
= �̂�𝑘𝑙[𝜖] ((𝐺𝑥

𝑖)
2
+ (𝐺𝑦

𝑗
)
2
) + �̂�𝑘𝑙[𝜖](𝐺𝑧

𝑘𝐺𝑧
𝑙) (5.4.15) 

It is worth noting that since 𝑖, 𝑗 are parameters enumerating the wavevectors in uncoupled 

𝑥, 𝑦 dimensions, the first term in the sum is just the circulant multiplied by a real non-negative 

number. The second term in the sum is more involved – it is a Hadamard product of circulant 

with matrix 𝐆 with matrix elements defined by 𝐺𝑘𝑙 = 𝐺𝑧
𝑘𝐺𝑧

𝑙. That is, 𝐆 is an outer product of the 

vector containing all allowed values of the 𝑧-component of the wavevector on a given mesh. In 

most modern software libraries, the enumeration of wavevectors inside the {𝐺𝑥
𝑖} set is 

implemented in the following way: the first half of the set is the wavevectors from 𝐺𝑥
1 = 0 to 
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𝐺𝑥
𝑁𝑥/2 +1 =

𝜋𝑁𝑥

𝐿𝑥
, and the second half of the set are the negative wavevectors in ascending order, 

from 𝐺𝑥
𝑁𝑥/2 +2 = −

𝜋(𝑁𝑥−1)

𝐿𝑥
 to 𝐺𝑥

𝑁𝑥 = −
𝜋

𝐿𝑥
. With that notation, the outer product matrix 𝐆 has 

zero matrix elements along the first row and first column, having rank of 𝑁𝑧 − 1. Therefore, the 

Hadamard product �̂�[𝜖]𝐆 also is rank-deficit. For this reason, for the case 𝑖 = 1, 𝑗 = 1, when the 

components 𝐺𝑥
1 = 0, 𝐺𝑦

1 = 0, so is the first term in equation 5.4.15, and the matrix 𝐌11 is rank-

deficient. The component at the head of this matrix establishes the relation between the average 

value of the charge over the simulation cell, 𝜌111, and the cell average of the electrostatic 

potential under periodic boundary conditions, 𝑉111 (there are no other elements involved, since 

first row of 𝐌11 is comprised of zero elements as well). This situation is due to the fact that the 

average value of electrostatic potential is undefined for charged systems. An analogue of this 

effect can be seen in the simple version of the Poisson equation, with constant dielectric profile, 

𝜖Δ𝑉 =  −𝜌. In the discrete representation the Laplacian-type matrix corresponding to the 

divergence operator Δ has full rank under open boundary conditions. Imposing periodic 

boundary conditions leads to addition of the elements in the “upper-right” and “lower-left” 

corners of the operator matrix, turning a Laplacian into a circulant with an incomplete rank and a 

one-dimensional kernel. This manifests itself in that the solution of the Poisson equation – 

electrostatic potential is determined only up to a constant. Given the problem of having an 

infinite array of charges, the customary choice made is setting the average value of electrostatic 

potential to zero. By the same logic, any value can be set for the matrix element 𝑀11
11 – it does 

not affect the shape of the resulting potential, and only sets the average value. This, however, 

does not affect the final result, since the average value of the electrostatic potential is set to zero 

after carrying out the computation. Therefore, in practice the matrices 𝐌𝑖𝑗 have full rank, and the 

system of linear equations can always be solved correctly. For the condition numbers of these 



 

110 

 

matrices, we find the distribution from ~1 to ~1000, and the condition numbers tend to increase 

with increasing the finesse of the real-space mesh due to the presence of 𝐆 term. We find that for 

typically used values of the mesh spacing in our situation – around 0.2 Bohr – the condition 

numbers rarely exceed 1000, and the solution of equation (5.4.15) is numerically stable using the 

standard LU factorization method. For more sensitive cases, more stable linear system solvers 

based on the singular value decomposition (SVD) algorithm can be used.  

The scheme described here can be easily extended to the case of the host material with 

anisotropic dielectric tensor, when instead of one dielectric profile 𝜖(𝑧) the problem will have 

three profiles corresponding to the components of the dielectric tensor, {𝜖𝑥𝑥(𝑧), 𝜖𝑦𝑦(𝑧), 𝜖𝑧𝑧(𝑧)}. 

In this case the expression for the Poisson equation (5.4.10) will take the following form: 

 

{𝜖̂(𝐺𝑧)} ∗ |𝐺|
2�̂�(�⃗�) + 𝐺𝑧𝜖�̂�𝑧(𝐺𝑧) ∗ 𝐺𝑧�̂�(�⃗�)

=∑𝜖�̂�𝑧(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑧

′2�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

+∑𝜖�̂�𝑥(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑥

2�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

+∑𝜖�̂�𝑦(𝐺𝑧 − 𝐺𝑧
′)𝐺𝑦

2�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)

𝐺𝑧
′

+∑𝜖�̂�𝑧(𝐺𝑧 − 𝐺𝑧
′)(𝐺𝑧 − 𝐺𝑧

′)�̂�(𝐺𝑥, 𝐺𝑦, 𝐺𝑧
′)𝐺𝑧

′

𝐺𝑧
′

= �̂�𝑑(𝐺𝑥, 𝐺𝑦, 𝐺𝑧) 

(5.4.16) 

Correspondingly, after discretization the expressions for matrices 𝐌𝑖𝑗 can be written in 

terms of circulant matrices �̂�[𝜖𝑥𝑥], �̂�[𝜖𝑦𝑦], �̂�[𝜖𝑧𝑧] generated from the discrete Fourier transforms 

of {𝜖𝑥𝑥(𝑧), 𝜖𝑦𝑦(𝑧), 𝜖𝑧𝑧(𝑧)}, respectively: 
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 𝑀𝑘𝑙
𝑖𝑗
= �̂�𝑘𝑙[𝜖𝑥𝑥](𝐺𝑥

𝑖)
2
+ �̂�𝑘𝑙[𝜖𝑦𝑦](𝐺𝑦

𝑗
)
2
+ �̂�𝑘𝑙[𝜖𝑧𝑧](𝐺𝑧

𝑘𝐺𝑧
𝑙) (5.4.17) 

The same considerations regarding the condition numbers apply: the head element of the 

first matrix, 𝑀11
11 is set to arbitrary positive value, e.g. 1, and in the Fourier transform of the 

electrostatic potential obtained after solving all linear systems the head component 𝑉111, 

corresponding to the cell-averaged value of the electrostatic potential, is set to zero. We turn now 

to the question of implementation of the described scheme and questions of computational 

efficiency. 

5.4.3. Parallel implementation of the Poisson equation solver 

As we have discussed before, for the case of discretized representation on a grid of size 

(𝑁𝑥, 𝑁𝑦, 𝑁𝑧) the Poisson equation (5.4.6) reduces to 𝑁𝑥 × 𝑁𝑦 systems of linear equations defined 

by matrices 𝐌𝑖𝑗. Such structure of the problem naturally lends itself to parallel implementation. 

We have implemented the computation code in Python language, version 2.7; for both parallel 

and serial versions. For the parallelization we have used the message passing interface (MPI) 

protocol, as implemented in the mpi4py66 library. In the implementation, we have sought to 

achieve parallelization seamless for the user, so that the code can be run with minimal changes 

on both desktop and laptop machines with only standard Python interpreters, as well as large 

supercomputing facilities with the mpi4py library installed. We first describe the computational 

algorithm we have used in the serial case and its computational complexity, and then move on to 

parallel implementation and its efficiency. 

The procedure for computation is as following: 

1. Read in from file the charge density𝜌𝑑(𝑟𝑖𝑗𝑘) on a discretized grid – this is 

typically a file generated by a DFT computational package. Alternatively, for modeling and 

testing purposes, a Gaussian charge distribution of specified width and amplitude can be 
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generated. Obtain the dielectric profile parameters – positions of the material-vacuum 

boundaries, material dielectric constant, width of the smoothing error function. 

2. Carry out the Fourier transform of the charge field to obtain its reciprocal-space 

representation �̂�𝑑(�⃗�𝑖𝑗𝑘) = 𝜌𝑖𝑗𝑘. The Fourier transform is carried out using the fast Fourier 

transform (FFT) algorithm, as implemented in SciPy library.67 

3. For each 𝑖 = 1…𝑁𝑥, 𝑗 = 1…𝑁𝑦 form the corresponding matrix 𝐌𝑖𝑗, equation 

5.4.15; for 𝑖, 𝑗 = 1 set the head component 𝑀11
11 = 1.0. Then solve the linear systems for all 𝑖, 𝑗 

in order to obtain the Fourier components of the potential, 𝑉𝑖𝑗𝑘. Solution of the linear systems 

can be carried out using either LU factorization or singular value decomposition (SVD); both of 

those algorithms are implemented in the SciPy library.67 We find that LU algorithm is 

sufficiently stable for the case at hand, and use it in the following discussion. 

4. Set the cell average value of the potential to zero, 𝑉111 = 0, carry out inverse 

Fourier transform. 

5. Compute the electrostatic energy for the model under periodic boundary 

conditions, according to equation 5.4.2. 

There are two major components of the problem that require non-trivial computational 

effort: the fast Fourier transforms and the solution of linear systems 𝐌𝑖𝑗. The algorithm most 

often used these days for Fourier transforms – the fast Fourier transform, has computational 

complexity of 𝑂(𝑁 ln𝑁) for 1D transform; the 3D Fourier transform amounts to carrying out 

𝑁𝑥 × 𝑁𝑦 1D FFT’s in 𝑧 dimension with computational intensity 𝑂(𝑁𝑥𝑁𝑦𝑁𝑧 ln 𝑁𝑧), followed by 

𝑁𝑥 × 𝑁𝑧 1D FFT’s in 𝑦 dimension with computational intensity 𝑂(𝑁𝑥𝑁𝑧𝑁𝑦 ln 𝑁𝑦), and 𝑁𝑧 × 𝑁𝑦 

1D FFT’s in 𝑥 dimension with computational intensity 𝑂(𝑁𝑥𝑁𝑦𝑁𝑧 ln 𝑁𝑧). Overall the 

complexity of 3D FFT adds up to 𝑂(𝑁𝑥𝑁𝑦𝑁𝑧 ln(𝑁𝑥𝑁𝑦𝑁𝑧)). The solution of linear systems using 
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the LU factorization has the same computational complexity as matrix multiplication, 𝑂(𝑁2.8), 

where the reduction from normally-expected power of 3 to 2.8 is achieved by using Strassen 

algorithm.68 The savings in the algorithm come from representation of the problem at hand as a 

series of 2x2 matrix multiplications, which can be done in 7 operations instead of 8. Since there 

are 𝑁𝑥 × 𝑁𝑦 linear systems to solve of size 𝑁𝑧 ×𝑁𝑧, the overall complexity of the linear systems 

solution is 𝑂(𝑁𝑥𝑁𝑦𝑁𝑧
2.8). 

 

We see that for a typical problem size of interest, which is several hundred mesh points in 

each direction, the linear system part of the problem is the major component of the workload. We 

test the scaling on the code for the case of a Gaussian charge with width 1 Bohr in a simulation 

cell of 10 × 10 × 10 Bohr as a function of mesh size, as shown in Figure 5-2 using the double 

logarithmic coordinates. In such coordinates, 𝜏 = 𝐶𝑁𝑥𝑁𝑦𝑁𝑧
2.8 turns into ln(𝜏) = ln𝑁𝑥 + ln𝑁𝑦 +

Figure 5-2. Computational complexity of solving the linear systems 𝐌𝑖𝑗. 

Linear scaling with the size of the mesh in 𝑥 and 𝑦 direction is shown with red curve, and 

complexity of linear systems solution is shown with blue curve. The slope of the curve for scaling 

the number of points in 𝑧 dimension is 2.8, as expected from using Strassen algorithm for matrix 

multiplication. 
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2.8 ln𝑁𝑧 + 𝐶1. We demonstrate the dependence of computational time on each of those 

parameters changes separately. For reference, for a mesh size of 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 100, the time 

for FFT is about 1 second, whereas the linear system time is about 70 seconds, and with 

increasing the system size the difference becomes even more pronounced. 

Given the considerations of computational complexity of the parts of the problem 

discussed above, as well as the goal of having uniform design of the code for serial and parallel 

execution, we adopt the following approach for parallel implementation: we treat all the MPI 

processes on equal footing, and we impose the invariant of all MPI processes having all the main 

arrays involved in the computation: input charge 𝜌𝑑(𝑟𝑖𝑗𝑘), its Fourier transform �̂�𝑑(�⃗�𝑖𝑗𝑘), 

Fourier transform of the potential 𝑉𝑖𝑗𝑘 ≡ �̂�(�⃗�𝑖𝑗𝑘) obtained from solving linear systems (equation 

5.4.15), and the resulting real-space potential 𝑉(𝑟𝑖𝑗𝑘). In order to achieve that, the input is read 

in by each process independently, then Fourier transform is carried out serially each process. We 

choose to not parallelize the FFT routine since in our experience the time for doing the 

computation is comparable or even less than the time for doing the MPI collective 

communication, such as Scatterv. This situation holds for typical system sizes of up to ~500 

points in each direction, which is about the size of the systems which we deal with (indeed, in 

our experience with plane-wave codes, such as QuantumEspresso,33 where the FFT is 

implemented in parallel, the time for Fourier transforms is dominated by the MPI collective 

communication calls). Then, after each process carries out the FFT locally, the workload for 

solving linear systems is shared between processes. The right-hand side of equation 5.4.15, FT of 

the potential �̂�𝑑(�⃗�𝑖𝑗𝑘) is partitioned along the x axis; each of the processes gets assigned a slice 

of the array with full size in 𝑦, 𝑧 dimensions and reduced size in 𝑥. Then each process solves the 

𝑁𝑥
𝑙𝑜𝑐 ×𝑁𝑦 linear systems to get its local fragment of the potential Fourier transform, �̂�𝑙𝑜𝑐(�⃗�𝑖𝑗𝑘). 
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The full array with potential FT is created on each process after a collective communication MPI 

call, AllGatherv (the vectorized version of the call is used to accommodate the case of the mesh 

size in 𝑥 dimension not divisible by the number of processes). After that, the inverse FFT is 

carried out locally on each process, and as the result every process has the full solution of the 

Poisson equation, 𝑉(𝑟𝑖𝑗𝑘), in memory. The potential bottleneck for such scheme could be the 

amount of memory available to each process, since it has to be sufficient to hold the entire mesh. 

However, for practically used mesh sizes the amount of 2-4 GB per process is sufficient, so we 

have not experienced any problems with memory while running the code on modern 

computational clusters. We also note that in the case of serial execution the MPI calls are not 

executed, however exactly the same computational kernel used for solving part of the problem’s 

linear systems is called, but with the entire right-hand side, and all 𝑁𝑥 × 𝑁𝑦 linear systems are 

solved locally. 

With such scheme, the program consists of two parts: serial, with Fourier transforms, and 

parallel – the solution of linear systems and MPI calls. As such, the efficiency of parallelization 

over number of processors 𝑛𝑝𝑟𝑜𝑐 compared to serial execution can be expressed in terms of 

speedup 𝑆(𝑛𝑝𝑟𝑜𝑐) determined by Amdahl’s law: 

 𝑆(𝑛𝑝𝑟𝑜𝑐) =
𝜏𝑠 + 𝜏𝑝

𝜏𝑠 + 𝜏𝑝(𝑛𝑝𝑟𝑜𝑐)
 (5.4.18) 

where 𝜏𝑠 is the execution time of the serial part of the program (FFTs), 𝜏𝑝 is the execution time 

of the parallelizable part of the problem (linear systems) when running in serial, and 𝜏𝑝(𝑛𝑝𝑟𝑜𝑐) is 

the time spent on executing the parallel part of the program when running on 𝑛𝑝𝑟𝑜𝑐 (ideally, it 

should be 𝜏𝑝/𝑛𝑝𝑟𝑜𝑐). We test the performance of the code to ideal behavior for up to 24 

processors (about the number one would use for a real simulation), as shown in Figure 5-3. The 
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code scaling closely follows the limit imposed by Amdahl’s law. We should note that even for 

small system sizes the parallel part is two orders of magnitude more time-consuming than the 

serial, and the difference increases fast with system size – so the code can be parallelized to up to 

hundreds of processors. 

 

5.4.4. Sensitivity of the computational scheme 

For a given size of the simulation supercell (determined by the setup of the DFT 

computation), the key technical parameter determining the quality of the results is the mesh 

spacing. The main output of the simulation is the electrostatic energy obtained from the potential 

solved for above. We test the convergence of energy for the case of Gaussian charge distribution 

of width 𝜎 = 1 Bohr for the cases of charge in vacuum, charge at the boundary of vacuum and 

dielectric material with dielectric constant 𝜖 = 5.0, and in the material, 6 Bohr away from the 

boundary. We find that convergence of electrostatic energy to within 0.03 eV is achieved for 

mesh spacing Δ𝑥 = 𝜎/2, and the values of electrostatic potential converge to within 0.01 eV for 

mesh spacing of Δ𝑥 = 𝜎/5. It should be noted that for the charge distributions encountered in 

Figure 5-3. Comparison of the current implementation with Amdahl’s law (see discussion in the text). 
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real computations the characteristic size is over 2 Bohr, so the mesh spacing sufficient for 

satisfactory code performance is about 0.3 – 0.4 Bohr, which is lower than the values resulting 

from the DFT calculations well-converged with respect to that parameter. This fact enables 

downsampling the output of the first-principle codes by a factor of 2 to 3 in order to save the 

computational effort. 

We next consider the sensitivity of the electrostatic energy for a model Gaussian on the 

boundary of a dielectric material and vacuum (with charge position offset by 4 Bohr into the 

material) – the arrangement presented on Figure 5-4. The model is supposed to emulate a NaCl 

slab with thickness 21.2 Bohr (twice the lattice parameter) with a Cl vacancy-induced charge 

near the upper boundary. 

 

The key parameters in this model are: 1. separation between the center of the Gaussian 

charge and the closest material-vacuum boundary, 2. value of the dielectric constant of the model 

profile in the material region, 3. width of the error functions joining the material and vacuum 

region of the dielectric profile. We seek to understand by how much those parameters need to be 

Figure 5-4. Model setup for testing sensitivity to 

parameter variation. 

The model is a mesh with size 10.6 × 10.6 × 42.4 

Bohr. The dielectric constant 𝜖𝑚𝑎𝑡 = 3.1, with the 

vacuum and material joined by error function with 

width parameter 0.7 Bohr. Gaussian charge of 

width 2 Bohr is situated 4 Bohr away from the 

boundary (green line is the xy-average of the model 

charge). 

Model cell 𝑧 coordinate (Bohr) 
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changed in order to change the value of the electrostatic energy by 0.1 eV – typical accuracy of 

the modern plane-wave DFT codes for simulation cells larger than 100 atoms. We find that the 

most sensitive parameter is the distance between the Gaussian charge center and the closest 

material boundary – changes of 0.15 Bohr in this value change the electrostatic energy 

substantially. Next most important parameter is the value of dielectric constant – for material 

dielectric constant 𝜖𝑚𝑎𝑡 = 3.1 change of the constant by +/-0.3 is sufficient to change the model 

energy by 0.1 eV. We note, however, that such low value of 𝜖𝑚𝑎𝑡 is an extreme case, and the 

values of dielectric constant typical for real materials (10 and higher) have higher tolerance to 

errors. The least important parameter is the width of the error function – we find that one need to 

increase it by a factor of over 2, up to 2.0 Bohr, compared to the original value of 0.7 Bohr, in 

order to change the electrostatic energy substantially. Such results demonstrate the dangers 

associated with using Gaussian fits for modeling the real charge distributions – we will get to 

that point once again when discussing our approach to the problem in the next section. 

5.5. Computation of electrostatic energy for an isolated charge 

The electrostatic potential for isolated charge is also governed by the Poisson equation 

(5.4.1) with the boundary conditions for the potential to decay to zero at infinity, lim
𝑟→∞

𝑉(𝑟) = 0. 

This makes the explicit solution of Poisson equation by the discretization of Laplacian operator 

on a grid not tractable. Instead, a substantial number of modern approaches to electrostatic 

problem under open boundary conditions, like the fast multipole method (FMM)69 are based on 

direct summation of potential induced by discretized charge elements, with some techniques 

utilized for improving efficiency.70 In our case, however, inhomogeneous dielectric profile 

complicates the problem, so we have to resort to direct summation technique for potential 

computation, as described in the following section. 



 

119 

 

5.5.1. Implementation of direct summation 

The approach we implement here is based on the image charge method. The key idea is 

that for a discrete representation of the defect charge on the boundary of two dielectric media the 

potential induced by the point charge elements on both sides of the dielectric boundary can be 

calculated analytically.71 The situation is illustrated in Figure 5-5, which shows a schematic view 

of the slice of the charge distribution along 𝑥𝑧 plane. The thick black line denotes the boundary 

between two media with dielectric constants of 𝜖1 and 𝜖2, respectively. First of all, we note that 

for the potential computation an auxiliary grid is introduced, since the 1/𝑟 Coulomb potential is 

singular. We set this auxiliary grid to be shifted by a vector (
Δ𝑥

2
,
Δ𝑦

2
,
Δ𝑧

2
) compared to the charge 

mesh, and compute the potential values on it. The relative position of charge and mesh grids is 

shown in Figure 5-5, with charge points denoted by white dots and potential mesh points are red. 

For each charge point the contributions to all points on the potential grid are computed; there are 

two types of potential expression depending on the positions of charge and potential mesh points 

relative to the interface. For points on the same side of the interface, the potential is induced by 

the charge itself: 1/𝜖1𝑟1, with the dielectric constant corresponding to the material in that part of 

the simulation domain. Another contribution is so-called “image” charge, which induces 

potential with effective dielectric constant 
𝜖1−𝜖2

𝜖1+𝜖2
. In the limit of charge in vacuum near the metal 

surface, the effective dielectric constant is -1, which corresponds to well-known limit of image 

charge of the equal magnitude and the opposite sign. The lateral positions of the image charge 

are the same as of the original charge element, and the z coordinate is obtained by applying a 

mirror reflection operation in the plane separating the media. For the points on the opposite side 
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of the interface, only the original charge element has contribution with effective dielectric 

constant 
2

𝜖1+𝜖2
. 

 

After obtaining the potential values on the offset grid the values of the potential are 

interpolated back on the original charge mesh. From the perspective of computational intensity, 

this method is very demanding: 𝑂(𝑁𝑥
2𝑁𝑦

2𝑁𝑧
2), and a much smaller contribution for interpolation. 

However, it lends itself naturally to parallelization, since the interpolation time is about 3 orders 

Figure 5-5. Illustration of computation under open boundary conditions. 

The points on the mesh for discretizing charge are shown as hollow white circles, and points of the 

potential mesh are shown as red circles. Computation of the potential induced by a given charge 

point is demonstrated on an example of a point shown by black circle (and the corresponding 

image charge is shown by a green circle). For the potential points on the same side, both direct and 

image terms contribute, whereas for points on the opposite side of the boundary only a direct term 

is computed. 
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of magnitude smaller than the potential computation time. In parallelization, we follow the same 

strategy as described for the periodic computation: availability of important arrays (charge 

𝜌(𝑟𝑖𝑗𝑘), offset potential 𝑉𝑜(𝑟𝑖𝑗𝑘), and potential interpolated back to the original grid 𝑉(𝑟𝑖𝑗𝑘)) on 

all processes and unification of interface for serial and parallel implementation.  

 

With that in mind, we implement the computation in the following way: first, the charge 

distribution is read in by all processes. Then, the size of the offset mesh 𝑉𝑜(𝑟𝑖𝑗𝑘) is evaluated, 

and it is partitioned among the processes along 𝑥 direction. After that, each process uses its 

locally available full charge distribution for calculation of the local slice of the offset potential 

mesh; the direct summation can be easily vectorized using the Boolean arrays implemented in 

NumPy. Finally, the local parts of 𝑉𝑙𝑜𝑐
𝑜 (𝑟𝑖𝑗𝑘) are assembled into full array on each process using 

the AllGatherv MPI command, and then the interpolation to the original charge grid is done 

Figure 5-6. Comparison of the current implementation of the computation of the potential for 

isolated charge with the Amdahl’s law (see discussion in the text). 
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locally on each machine. The implemented code shows favorable scaling, closely following the 

idealized Amdahl’s law limit (Figure 5-6). 

The electrostatic energy for computation described above converges to within 0.05 eV 

when the mesh spacing is half of the Gaussian width, Δ𝑥 = 𝜎/2. We hypothesize that the fast 

convergence is due to the fact that energy computation according to equation 5.4.2 is a numerical 

integration, which is an error-cancelling procedure (as opposed to error-amplifying numerical 

derivative). We do not explicitly use the potential for isolated charge in this work, so we do not 

test its convergence.  

Having implemented computation of both periodic and open boundary conditions 

potential, we can evaluate the importance of the implemented correction and demonstrate its 

correctness. We consider the case of a Gaussian charge with width 1 Bohr in a simulation cell of 

10x10x20 Bohr near the interface of two dielectric media: vacuum and material with dielectric 

constant 4.0. We then compute the energy with periodic boundary conditions and open boundary 

conditions, according to the methods described above, upon varying the position of the charge 

center relative to the boundary. The results are presented in Figure 5-7: the region modeling 

material is on the left, with negative distance values, and vacuum region is on the right. When 

the charge position is far from the interface, its energy can be computed by adding up two 

components: first is the electrostatic self-energy of the Gaussian charge distribution: 

 𝐸𝐺 =
𝑞2

2𝜎𝜖√𝜋
 (5.5.1) 

where 𝑞 = ∫𝜌(𝑟)𝑑𝑟 is the total charge of the distribution, 𝜎 is the width of the distribution, and 

𝜖 is the dielectric constant of the medium in which the charge is immersed. Second is the energy 
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of interaction of the Gaussian with the image charge generated by it, treating the model Gaussian 

as a point charge 𝐸𝑖𝑚𝑔 =
𝑞2(𝜖1−𝜖2)

2(𝜖1+𝜖2)𝜖1𝑑
, where 𝑑 is the distance between the charge and its image.  

 

This energy is plotted in black curve in Figure 5-7; it demonstrates the attractive interaction of 

charge with its mirror image in the higher-dielectric constant medium, and repulsive interaction 

with the image in low-dielectric constant medium. However, this model energy diverges as the 

charge approaches the interface. On the contrary, energy values computed with the method for 

Figure 5-7. Electrostatic energy of Gaussian charge distribution as a function of its position 

relative to the dielectric media boundary.  

Dielectric material with 𝜖 = 4.0 is on the left, vacuum region – on the right. Red curve denotes the 

energy computed under open boundary conditions for isolated charge; black – self-energy of a 

Gaussian in the corresponding medium with energy of interaction with its mage charge; blue – 

energy of the charge distribution under periodic boundary conditions – this would be the 

electrostatic component of the total energy from charged defect DFT computation. 
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open boundary conditions (red curve), smoothly transition from one limit to another; 

analogously, the energy under periodic boundary conditions is continuous across the interface. It 

is important to note that the difference between the periodic boundary conditions energy and 

open boundary conditions energy can reach more than 1.5 eV in the vacuum region, and about 

0.4 eV deep in the material, with about 1 eV on the boundary. This illustrates the magnitude of 

potential errors in the computation of defect formation energies. It should be noted, however, 

that the energy difference will decrease with increasing the dielectric constant, increasing width 

of the charge distribution and increasing the size of the simulation cell – so in real simulations 

the energy difference might not be as dramatic, but still can be a source of substantial random 

error. 

5.5.2. Computation of energy for open boundary conditions by 

extrapolation 

The approach to computation of the electrostatic energy for isolated charge described 

above has two major drawbacks: first is the computational intensity – the method scales as the 6th 

power of mesh linear size; second is the simplicity of the model for dielectric media boundary – 

a single plane is a very crude approximation to the actual dielectric interface, and in reality the 

dielectric profile is actually a smooth function changing on the scale comparable to the typical 

scale of the defect charge distribution itself. Moreover, such boundary model accommodates 

only one interface, thereby effectively excluding 2D materials from consideration. Therefore, we 

investigate another approach to computing the electrostatic energy under open boundary 

conditions through extrapolation of the periodic boundary conditions energy to infinite cell size. 

This method is inspired by the “scaling relationships” discussed in earlier methodology work,59 

where it was shown that the error in electrostatic energy scales as inverse of the supercell size. 
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Such method was mentioned in the literature before,65 but it has several important caveats which 

we discuss here for the first time. While explicit construction of infinite model supercell is not 

feasible, the isolated energy can be recovered by carrying out a series of model electrostatic 

calculations for increasingly large supercells scaled by a factor 𝛼 compared to the original size, 

and then fitting the resulting energies to a straight line as a function of 1/𝛼; the limit of 1/𝛼 → 0 

is the electrostatic energy of an isolated charge. 

It is apparent that in the extrapolation method the key variable is the maximal 

extrapolation scale, since it determines how close does the straight line in energy vs 1/𝛼 

coordinates get to 0 corresponding to the isolated limit. In Figure 5-8 we demonstrate the 

situation for a Gaussian charge of width 1.0 Bohr in vacuum in a cell of 12x12x12 Bohr. The 

extrapolation procedure is carried out by computing the electrostatic energies for that charge for 

a number of scales up to 7 (84x84x84 Bohr), and fitting the resulting energies to a straight line. 

The result matches closely the true electrostatic self-energy of isolated Gaussian charge 

distribution in vacuum 𝐸𝐺𝑎𝑢𝑠𝑠 = 𝑞2/2𝜖𝜎√𝜋 = 0.2821 Ha = 7.672 eV. We investigate the error 

in the extrapolation as a function of the maximal scale. The results for Gaussian charge in 

vacuum demonstrate that for maximal scale of 3 times the original cell size the error is about 

0.05 eV, scale 5 – 0.03 eV and scale 7 – 0.02 eV. Bearing in mind that the computational 

workload scales as linear dimension of the cell to the power of 4.8, the additional accuracy 

comes at a very steep resource requirement. 

One should keep in mind that the electrostatic energies and, correspondingly, differences 

between them scale inversely with the dielectric constant of the system, so the calculations in 

vacuum represent an upper bound on the error estimates in our case. Therefore, in practice it 

should be sufficient to set the maximal scale to 4 or 5, depending on the available resources and 
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the size of the supercell in question. It is also important to note that the electrostatic correction 

decreases with the increase in the size of the original supercell, so for larger systems the error is 

dominated by random errors in the 𝐸(𝛼) values, which depend on the sampling of the defect 

charge state, especially for anisotropic wavefunctions and reach ~0.03 eV from our experience. 

 

Another important component of the problem is the initial shape of the cell containing the 

charge. We have found that even for a Gaussian charge in vacuum any deviation of the original 

cell shape from cubic will result in random errors which are very large (up to 5 eV for starting 

shape of 24 × 24 × 12 Bohr, Figure 5-9). This is a critical point never present in the discussion 

of the extrapolation to date. Only with cubic shape of the original supercell does the extrapolated 

energy converge to the proper limit – one can see that on the figure below for initial cell sizes of 

Maximal model cell scale in the 

extrapolation procedure 

Figure 5-8. Extrapolation of periodic boundary conditions electrostatic energy. 

(a) Blue circles – energies for Gaussian charge in vacuum for relative cell sizes 1 to 7 (compared 

to original 12 × 12 × 12 Bohr, see text); red line – linear least squares fit to inverse dependence 

of energy on inverse supercell size; green dot – energy for isolated Gaussian charge in vacuum. 

(b) Difference between energy of isolated charge and the approximate value obtained from 

extrapolation to maximal scale denoted on 𝑥 axis. See text for discussion. 
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12, 18, and 24 Bohr. This has pretty important implications for simulation of real materials, as 

we will show later. 

 

The next aspect of the problem is the question of applicability of such approach to 

computation of electrostatic energy for materials in real dielectric environments. Additional 

complication here is the ambiguity in relative position of the charge and the dielectric profile 

boundaries. This situation is demonstrated in Figure 5-10(a) below for the case imitating the 

charge distribution resulting from Cl vacancy in the NaCl slab. The outer boundary of the 

dielectric profile extends from the nuclei positions into the vacuum by the distance roughly equal 

to atomic radius of the comprising atoms (in this case we use the offset equal to 2.5 Bohr), 

Figure 5-9. Dependence of the extrapolated energy of Gaussian charge in vacuum on the model 

cell shape. 

Only cubic shape of the original cell results in correct extrapolated energy. The same condition 

holds for other cases, like charge on the boundary of dielectric media. 

Original model cell shape (Bohr, 𝐿𝑥 − 𝐿𝑦 − 𝐿𝑧) 
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whereas the charge distribution associated with the defect is typically centered around the former 

position of the atomic nucleus of the removed atom. In our test we’ve shown that the relative 

positions of the charge center and dielectric interface boundary have substantial impact on the 

resulting electrostatic energy. Therefore, upon scaling the system, we pad the mesh with the 

charge distribution with zeros on all sides, placing the old charge in the center of the scaled cell. 

 

For the case of semiconductor surface regions, we calculate the position of the dielectric 

profile boundary closest to the charge by setting the offset to be the same as in the original cell. 

The second boundary position is calculated by requiring the thickness of the material to increase 

Figure 5-10. Extrapolation with nontrivial dielectric profiles. 

(a) Model of a charge at the interface of material slab. Upon extrapolation, the distance to the 

nearest interface is kept fixed, whereas the width of model dielectric profile is increased in 

proportion to the scaling factor used. For simulation of dielectric profiles of 2D materials the 

width of the material is fixed as well. 

(b) Extrapolation of periodic energies for cases of scaling the model material thickness (“3D”) and 

keeping it constant (“2D”). 3D case is the model described above, 2D is Gaussian charge at the 

interface of a layer of dielctric with 8 Bohr thickness, in-plane component of dielectric constant 

𝜖∥ = 15.0, out-of-plane 𝜖⊥ = 6.0. 

Model cell 𝑧 coordinate (Bohr) 
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by the same amount as the supercell size. For the case of 2D materials we keep the material 

thickness the same. In both cases the extrapolation results in a linear dependence of energy of the 

scaled supercell on the inverse scale, which allows extrapolation to infinite supercell size. 

5.6. Computation of the model dielectric profile 

So far, we were assuming that a dielectric profile is given; in this section we will consider 

available methods for its computation. They are typically based on investigating the response of 

the electronic density of the model supercell to applied electric field. Since the applied external 

electric potential also has to obey periodic boundary conditions, then along with the constant 

electric field in part of the supercell with atom there has to be a part with oppositely directed 

electric field, such that where the potential goes back to the original value. Overall, this 

corresponds to so-called “saw-tooth” potential shape, implemented in many DFT codes.33 There 

are several ways to extract the dielectric response of the system. One of them is based on 

analysis of the change in exchange-correlation potential with application of electric field;72 the 

change in the self-consistent Hartree potential in the model cell upon application of electric field 

is calculated, and then the resulting slope of this difference term is divided by the slope of the 

sawtooth potential: 

 𝜖(𝑧) =
𝑉𝐻̅̅ ̅̅ 𝑒𝑙(𝑧) − 𝑉𝐻̅̅ ̅̅ ℎ𝑜𝑠𝑡(𝑧)

𝜕𝑉𝑠𝑎𝑤(𝑧)/𝜕𝑧
 (5.6.1) 

where 𝑉𝐻̅̅ ̅̅ ℎ𝑜𝑠𝑡(𝑧) is the 𝑥𝑦-averaged value of the host cell Hartree potential without applied 

electric field, 𝑉𝐻̅̅ ̅̅ 𝑒𝑙(𝑧) is the same quantity after applying the sawtooth potential 𝑉𝑠𝑎𝑤(𝑧). We 

find however, that this method is ripe with noise-amplifying procedures: subtraction, numerical 

derivative, and division; as a result, the dielectric profile is very noisy. 
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Therefore, we use another approach which takes advantage of classical electrostatics.73 It 

is known that the electric field in the dielectric materials causes a change in electronic density. In 

the following discussion we assume that the electric field is applied in the z direction, and we 

consider 𝑥𝑦 -plane averages of the necessary quantities. So the electric field �⃗⃗� = (0, 0, 𝐸𝑧) 

results in density displacement in z direction, Δ𝜌(𝑧). By definition, this density displacement is 

connected to a quantity called polarization, �⃗⃗�, through continuity-type equation, ∇�⃗⃗� = Δ𝜌(𝑧). 

Again, due to applied electric field being in the z direction, the polarization vector is pointing the 

same way, and the divergence turns into derivative with respect to z: 
𝑑𝑃𝑧

𝑑𝑧
= Δ𝜌(𝑧). Again, by 

definition, there is no polarization in the vacuum region at z=0, so with that boundary condition 

the polarization can be found explicitly by integration: 𝑃𝑧(𝑧) = ∫ 𝛥𝜌(𝑧′)𝑑𝑧′
𝑧

0
. NB that without 

the vacuum layer this would lead to uncertainty in polarization definition, so the dielectric 

response in bulk semiconductors is one of the core problems in modern condensed-matter 

physics. Next, we know that in case of dielectric materials the conserved quantity upon 

traversing borders is the perpendicular component of the electric displacement vector, 𝐷⊥
1 = 𝐷⊥

2. 

The electric displacement vector in the dielectric material is given by 𝐷(𝑧) = 𝐸(𝑧) + 4𝜋𝑃(𝑧), 

and from continuity equation we know that throughout the dielectric layer the displacement 

should be equal to the electric field in vacuum:  𝐸𝑣𝑎𝑐(𝑧) = 𝐸0 = 𝐷𝑣𝑎𝑐 = 𝐷𝑑𝑖𝑒𝑙(𝑧) = 𝐸𝑑𝑖𝑒𝑙(𝑧) +

4𝜋𝑃(𝑧). From the above, knowing the polarization expression, we can get the electric field 

inside the material, 𝐸𝑑𝑖𝑒𝑙(𝑧). Finally, it is well-known that the definition of electric susceptibility 

is the ratio of polarization to electric field in the dielectric: 𝜒(𝑧) = 4𝜋𝑃(𝑧)/𝐸(𝑧), and the 

dielectric profile is trivially related to susceptibility: 𝜖(𝑧) = 1 + 𝜒(𝑧). The final expression for 

the xy-averaged value of the dielectric profile is: 



 

131 

 

 𝜖(𝑧) = 1 +
4𝜋 ∫ 𝛥𝜌(𝑧′)𝑑𝑧′

𝑧

0

𝐸0 − ∫ 𝛥𝜌(𝑧′)𝑑𝑧′
𝑧

0

 (5.6.2) 

The necessary Δ𝜌(𝑧) is obtained as difference between total electron densities of the calculation 

with and without applied sawtooth potential.  

While this method provides a convenient framework for getting dielectric profiles, there 

are several uncertainties associated with it. First, the density functional theory itself has 

approximations built in the exchange-correlation kernel. Next, the results show a spurious 

dependence on the magnitude of applied electric field, as shown on Figure 5-11. 

 

Moreover, there is need for averaging the oscillations due to presence of atomic nuclei, 

and the averaging methods, typically based on a convolution with some sort of smoothing 

kernel,74 result in shifting of the media interface. Finally, this method ceases to be applicable 

when the ionic relaxations are included, because then the ionic displacements lead to too 

substantial rearrangements of the electronic density and to discontinuities in the dielectric 

profile. This could be remedied by carrying out a separate calculation for estimating the ionic 

contribution to screening, based on a charge partitioning scheme, but such calculations are 
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Figure 5-11. Computation of 

dielectric profile from applied 

sawtooth potential. 

The resulting dielectric profile 

amplitude can differ by over 1.0 

depending on the field strength 

used in the simulation. 
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typically implemented for bulk systems only and would not allow to infer position and shape of 

dielectric boundary interface.  

Overall, the number of issues pointed out throughout the chapter so far: sensitivity of 

electrostatic energy to position of model Gaussian charge, ambiguity in determining the 

dielectric profile from first principles, and presence of the legacy potential alignment term in the 

modern correction scheme, lead us to propose an internally consistent scheme for computation of 

defect formation energies, capitalizing on the electrostatic computation methodology described 

above. We describe this approach and its applications in the next section. 

5.7. Internally consistent electrostatic correction scheme 

The corrected formation energy of a charged defect, 𝐸𝑓(𝑞), is obtained after applying 

post-processing correction to the total energy of the supercell with a charged defect obtained 

from DFT, 𝐸𝐷𝐹𝑇
𝑑𝑒𝑓(𝑞): 

 𝐸𝑓(𝑞) = 𝐸𝐷𝐹𝑇
𝑑𝑒𝑓(𝑞) − 𝐸𝐷𝐹𝑇

𝑠𝑡 +∑𝜇𝑖𝑛𝑖
𝑖

+ 𝑞(𝐸𝑉𝐵𝑀 + 𝐸𝐹) + 𝐸𝑐𝑜𝑟𝑟 (5.7.1) 

where 𝐸𝐷𝐹𝑇
𝑠𝑡  is the DFT total energy of the stoichiometric slab, 𝜇𝑖 are the chemical potentials of 

the species added or removed to create the defects under appropriate thermodynamic conditions, 

𝑛𝑖 are the stoichiometric coefficients for those species, 𝐸𝑉𝐵𝑀 is the position of the valence band 

maximum for stoichiometric host material, 𝐸𝐹 is the Fermi level position of the material with 

respect to valence band maximum, and 𝐸𝑐𝑜𝑟𝑟 is the correction energy. This term is equal to the 

difference of electrostatic energies of the defect charge distribution under open boundary 

condition, 𝐸𝑖𝑠𝑜, and periodic boundary conditions, 𝐸𝑃𝐵𝐶. As discussed above, computation of 

those energies relies on two main inputs: defect charge distribution and the shape of the 

dielectric profile. The key difference of our approach is that we use the exact charge distribution 
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from the DFT computation, and fine-tune the dielectric profile features to eliminate the potential 

alignment term, as explained further in the text. We consider the case of positively charged Cl 

vacancy, VCl
+ on the NaCl (100) surface to facilitate comparison to previous work.65 For DFT 

computations in this section we use QuantumEspresso package.33 For simulation of NaCl 

surfaces we used 2 × 2 × 3 supercell with 4 × 4 × 1  k-point sampling grid, cutoffs for 

wavefunctions expansion in terms of plane waves of 30 Ry, and for density – 300 Ry. For MoS2 

(to be considered next) we use 6 × 6 supercell which we reshape to conform to rectangular 

shape, with Г point sampling for Brillouin zone, and 50 Ry cutoff for the wavefunctions, 500 Ry 

for charge density. 

Instead of using a Gaussian distribution for the defect-related charge, we use the actual 

|𝜙(𝑟)|2 obtained from the DFT calculation. There are several reasons for doing this: first, we 

find that very often the corresponding defect wavefunctions are highly anisotropic and have 

several lobes (Figure 5-12), so a smooth Gaussian model is an inappropriate description; second, 

the complex shape of the wavefunction leads to a substantial ambiguity in locating the center of 

the Gaussian and our model calculations reveal that the shift of the charge center in the direction 

perpendicular to the surface by 0.15 Bohr (well within the ambiguity involved) results in 

changing the electrostatic model energy by 0.1 eV. Similarly, the anisotropic shape of the 

wavefunction results in a poorly determined Gaussian fit width and the uncertainty in this 

parameter can lead to differences of up to 0.25 eV in the model energy. Moreover, for the multi-

lobe defect wavefunctions, like those of related to forming a sulfur vacancy in MoS2, the over-

estimation in the width of the Gaussian can lead to “spilling over” of the model charge from the 

simulation cell, which is the case when the cell dimensions are smaller than 8 standard deviations 

of the Gaussian fit (±4𝜎 is required to contain 99.99% of the charge). This is important, since 
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we find that losing more than 0.1% of the charge results in errors in electrostatic energy on the 

order of 0.1 eV. A Gaussian model is historically used due to the availability of analytical 

expressions for the electrostatic energy and fast convergence of the model electrostatic energy 

with respect to the discretized mesh size. In our parallel implementation of the potential 

computation this is not an important factor and we can explicitly use the defect wavefunction in 

the Poisson equation. 

 

The other input to our method is the shape of the dielectric profile. For this, we use a 

model of two constant dielectric regions joined by error functions at the materials interfaces, 

with the parameters defining the profile being: the material dielectric constant in each region (for 

vacuum it is 1.0 by definition) and the positions of the interfaces. As we have discussed before, 

computation of the dielectric profile based on DFT is flawed with limitations, such as the 

commonly employed semi-local exchange-correlation functionals, and inapplicability when the 

ionic relaxations are included. Moreover, since we are interested in microscopic screening 

properties, the bulk dielectric constant might not be the right data to use. Instead, we model the 

dielectric profile approximately starting from the experimental value for material dielectric 

Figure 5-12. Example of a defect-induced 

wavefunction. 

Top view of NaCl (100) surface with VCl
+. 

Green – Cl ions, yellow – Na ions. Blue cloud 

represents the 𝜌𝑑(𝑟) = |𝜙𝑑(𝑟)|
2 for the defect 

level in the bandgap. One can note asymmetry 

in the charge distribution shape and additional 

lobes on Cl atoms around the vacancy. 
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constant and using the average of atomic radii of the surface atoms to get the profile boundaries. 

We then fine-tune those parameters in order to achieve alignment to the DFT potential. As we’ve 

mentioned before, the entire notion of potential alignment was shown to define the mismatch of 

the potentials induced by the unscreened defect charge in the model calculation and in the actual 

DFT computation.65 This term is typically expressed as  

 Δ𝑉 = 𝑉𝑃𝐵𝐶|𝑓𝑎𝑟 − (𝑉𝐷𝐹𝑇
𝑠𝑡 − 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓(𝑞)) |𝑓𝑎𝑟 (5.7.2) 

where 𝑉𝐷𝐹𝑇
𝑠𝑡  is the electrostatic potential for the stoichiometric slab, 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓(𝑞) is the potential for 

the slab with a charged defect and subscript “far” denotes the vacuum region of the supercell 

farthest from the defect. The potential alignment term arises due to the approximations made in 

the electrostatic model. Since we are using the exact wavefunction of the defect, we adjust the 

dielectric profile parameters in a way that properly aligns the model potential and the DFT 

potential difference in the vacuum region of the simulation supercell far from the defect. 

The fitting procedure is greatly facilitated by the fact that the model electrostatic potential 

has qualitatively different dependence on the dielectric constant and the positions of the profile 

boundaries, as shown in Figure 5-13: varying the value of the dielectric constant changes the 

amplitude of the features on the model potential and the slope in the alignment region. For NaCl 

we choose the value of 2.8 which results in flat Δ𝑉, as shown on the right panel of Figure 5-13. 

Variation of the profile boundary position results in a rigid shift of the potential in vacuum. 

Overall, by adjusting those parameters one can find a combination resulting in a flat line about 

zero for Δ𝑉.  

Finally, we note that the inaccuracies associated with sampling the defect-induced charge 

lead to random errors of about 0.03 eV in the values of 𝐸𝑃𝐵𝐶. These errors do not converge fast 

with finer mesh sampling, so there is no need to specifically increase the sampling and plane 
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wave expansion cutoff in the DFT calculations. Moreover, we find that downsampling of the 

output wavefunction by a factor of 2 or 3 (to the mesh size of about 0.3-0.4 Bohr) changes the 

𝐸𝑃𝐵𝐶 by about 10−3 eV – which can be used to choose computational parameters optimally to 

reduce the cost of the calculations. 

 

It is worth reiterating that the extrapolation is valid only for the model supercell of 

strictly cubic shape; extrapolation from cells of different shape result in vastly different and 

incorrect 𝐸𝑖𝑠𝑜 values. Accordingly, when simulating real materials, the defect wavefunction has 

to be trimmed to a cubic shape for use in the extrapolation procedure. Specifically, upon scaling 

the system, we pad the trimmed charge distribution with zeros on all sides, placing it in the 

center of the scaled cell (Figure 5-10(a)). For the case of semiconductor surface regions, we 

calculate the position of the dielectric profile boundary closest to the charge by setting the offset 
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Figure 5-13. Potential alignment as a function of model profile parameters. 

(a) Potential alignment as a function of the dielectric constant of host material in the model 

dielectric profile. Potential alignment region is denoted by a black circle; position of the slab is 

denoted by shading, position of the defect – by a thick black line. 

(b) Potential alignment as a function of offset of the boundaries of the model dielectric profile 

compared to ionic positions of slab outer layer atoms. 

Model cell 𝑧 coordinate (Bohr) 

(a) (b) 

Model cell 𝑧 coordinate (Bohr) 
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to be the same as in the original cell. The second boundary position is calculated by scaling the 

thickness of the material proportionally to the supercell size. 

 

We investigate the performance of the correction scheme by calculating formation 

energies of VCl
+ on the NaCl (100) surface for several supercells with varying vacuum thickness 

and lateral dimensions. The results are shown in Figure 5-14 for the case of varying vacuum 

thickness. The variance in the uncorrected energies (blue line) is as substantial as the variance in 

Figure 5-14. Cl vacancy formation on NaCl (100) surface. 

(a) NaCl (100) surface with VCl
+. Green – Cl ions, yellow – Na ions; vertical direction is 

perpendicular to the surface. Blue cloud represents the 𝜌𝑑(𝑟) = |𝜙𝑑(𝑟)|
2 for the defect level in the 

bandgap. Solid line is DFT simulation cell boundary. Dashed line denotes the trimmed cubic part 

of the defect charge used in extrapolation procedure. 

(b)  Formation energy of VCl
+ as a function of vacuum size (in units of 𝑎NaCl = 10.6 Bohr). 

Uncorrected (blue) and corrected energies with non-cubic model cell (green) used for 

extrapolation show large variance; usage of the correct extrapolation procedure results in 

formation energy values consistent within 0.06 eV (red). 

(a) (b) 
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corrected energies with extrapolation from the wavefunction charge distributions of non-cubic 

shape (green line). Only correction with the proper extrapolation procedure results in consistent 

formation energies within 0.06 eV, independent of the supercell shape (red line). Analogously, 

the dependence on the lateral size of the cell is eliminated.  

The above scheme can be successfully used for 2D materials as demonstrate with the 

example of the VS
− defect in a MoS2 monolayer. The only change needed is the method of scaling 

the model profile in computing the 𝐸𝑖𝑠𝑜: in this case, the positions of both profile boundaries are 

fixed relative to the charge, which results in keeping the material thickness constant throughout 

the extrapolation procedure.  

An important feature of low-dimensional systems is that the actual values of the diagonal 

elements of the dielectric tensor do not affect the model potential as much as the positions of the 

boundaries of the dielectric profile. As shown in Figure 5-15, the values of the model potential in 

the alignment region are very close. We use the values of 𝜖⊥ = 6.0 for the out-of-plane 

component and 𝜖∥ = 15.0 for the in-plane component; we find the optimal position of the profile 

boundaries to be at an offset of 2.7 Bohr outwards from the S atoms. Application of our 

correction scheme results in elimination of the dependence of the vacancy formation energy on 

the vacuum layer thickness, the corrected formation energies being consistent to within 0.1 eV. 

In such manner, we avoid the spurious methods for estimating the dielectric profile by 

renormalizing charge density.76 
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Overall, we have demonstrated an internally consistent scheme for computation of 

charged defect formation energies in systems with complex dielectric profiles. The algorithm is 

the following: 

1. Construct the stoichiometric and defected slabs, obtain |𝜙(𝑟)|2, the defect charge 

density, and the absolute level of the VBM and electrostatic potentials 𝑉𝐷𝐹𝑇
𝑠𝑡 , 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓(𝑞). 

Figure 5-15. S vacancy formation in MoS2 monolayer. 

(a) Top view of MoS2 monolayer with VS
−. Yellow – S atoms, purple – Mo. The complex multi-

lobe structure of the charge distribution, 𝜌𝑑(𝑟) = |𝜙(𝑟)|
2 is apparent. 

(b)  Potential alignment of DFT potentials for Vs
− (black) and model potentials for a variety of 

choices for in-plane and out-of-plane components of the dielectric tensor. The material atom 

positions are denoted by the shading, the defect position – by a black vertical line, the alignment 

region – by a black circle. The evident mismatch in the alignment region can be fixed by moving 

the positions of the dielectric profile boundaries outwards. 
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2. Fine-tune the parameters of the model dielectric profile, that is, the values of the 

dielectric constant and the positions of interfaces in order to achieve alignment between the 

model 𝑉𝑃𝐵𝐶 and 𝑉𝐷𝐹𝑇
𝑠𝑡 − 𝑉𝐷𝐹𝑇

𝑑𝑒𝑓(𝑞); calculate the corresponding 𝐸𝑃𝐵𝐶. 

3. Trim |𝜙(𝑟)|2 to a cubic shape, change the dielectric boundary positions 

accordingly, calculate 𝐸𝑃𝐵𝐶 for a series of scaled model cells; obtain 𝐸𝑖𝑠𝑜 through extrapolation 

to infinite cell size. 

4. Add the correction 𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑖𝑠𝑜 − 𝐸𝑃𝐵𝐶 to the defect formation energy. 

We note that the electrostatic correction described here is best suited for applications to 

2D materials or semiconductors with low (< 10) dielectric constant. In materials with stronger 

screening the value of the electrostatic correction is small; at the same time, introduction of 

charged defects into the supercell results in substantial rearrangements of atoms, which are hard 

to contain in a supercell, even of a size as large as 1000 atoms. This leads to large errors due to 

elastic energy contributions, which become the dominant term among errors associated with the 

supercell method for such materials (an example of such case is TiO2). 
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CHAPTER 6. DEFECT PROPERTIES OF MONOLAYER 

MOLYBDENUM DISULFIDE 

Here we apply the method for computation of the defect formation energies described in 

Chapter 5 to a system of practical relevance – monolayer MoS2. We investigate the behavior of 

sulfur vacancy defects, the most abundant type of intrinsic defect in monolayer MoS2, using first-

principles calculations based on density functional theory. We consider the dependence of the 

isolated defect formation energy on the charge state and on uniaxial tensile strain up to 5%. We 

also consider the possibility of defect clustering by examining the formation energies of pairs of 

vacancies at various relative positions, and their dependence on charge state and strain. We find 

that there is no driving force for vacancy clustering, independent of strain in the material. The 

barrier for diffusion of S vacancies is larger than 1.9 eV in both charged and neutral states 

regardless of the presence of other nearby vacancies. We conclude that the formation of extended 

defects from S vacancies in both planar monolayer MoS2 and in the ripplocation structure is 

hindered both thermodynamically and kinetically. The work presented here is being prepared for 

publication as M. G. Sensoy, D. Vinichenko, W. Chen, C. M. Friend, E. Kaxiras. On the 

behavior of isolated and paired sulfur vacancy defects in monolayer MoS2: Implications for 

ripplocation formation; to which Dmitry Vinichenko and Mehmet Gokhan Sensoy contributed 

equally. 

6.1. Introduction 

The class of semiconducting, two dimensional (2D) materials referred to as transition 

metal dichalcogenides (TMDCs) has been the subject of intense research activity due to their 

interesting behavior which includes their PL properties,1-2 interlayer excitons,3 and valley 
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physics.4 The prototypical material in this class, MoS2, has been studied for potential 

applications in the context of catalysis,5-6 in energy storage,7 and as an electrode for hydrogen 

evolution.8-13 Moreover, single layers of this compound have been proposed for use in field-

effect transistors,14-19 including bendable devices,20 and integrated circuits.21-22 In most of these 

applications, the defect properties of MoS2 monolayers are of central importance. In this work, 

we use first-principles computations to study the sulfur vacancy in MoS2, which is the intrinsic 

defect with the lowest formation energy.23 We investigate the formation energy and diffusion 

barrier of this defect as a function of charge state and strain, as well as the collective behavior of 

vacancies, that is, the interactions between vacancy pairs at various distances. These aspects of 

their behavior are relevant in elucidating the nature of the recently proposed ripplocation 

structure.24 Specifically, we apply these results to understand how tensile strain, which is 

associated with the presence of ripplocations in monolayer MoS2 affects the formation energies 

and diffusion barriers for isolated and clustered vacancies, and what are the consequences for the 

electronic properties of the material 

6.2. Methodology 

Our calculations are based on the plane-wave, pseudopotential density functional theory 

(DFT) method as implemented in the Quantum Espresso code suite.25 We use Γ-point Brillouin 

zone sampling, a cut-off energy of 50 Ry for the wavefunction plane-wave expansion and 500 

Ry for the density, and a 6×6 (8×8) super-cell for the isolated defect (pairs) calculations with a 

16 Å vacuum region separating the periodic images of layers. All defect configurations are 

relaxed to the point where the calculated forces on atoms do not exceed in magnitude 0.05 eV/Å. 

The defect formation energy 𝐸𝑓(𝑞) in the thermodynamic limit is obtained from 
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 𝐸𝑓(𝑞) = 𝐸DFT
𝑑𝑒𝑓(𝑞) − 𝐸DFT

𝑠𝑡 + 𝜇S𝑛S + 𝑞(𝐸VBM + 𝐸𝐹) + 𝐸𝑐𝑜𝑟𝑟  (6.2.1) 

where 𝐸DFT
𝑑𝑒𝑓(𝑞) is the DFT total energy of the layer containing the defects in the charge state 𝑞, 

𝐸DFT
𝑠𝑡  is the DFT total energy of the stoichiometric layer, 𝜇S the chemical potential of S, 𝑛S the 

number of S vacancies in the simulation cell, 𝐸VBM the valence band maximum energy, 𝐸𝐹 the 

Fermi level with respect to the valence band maximum, and 𝐸𝑐𝑜𝑟𝑟 the electrostatic correction 

necessary for the charged states of the defect. For the chemical potential of S we use the DFT 

calculated energy of the S8 molecule in gas phase. For the computation of 𝐸𝑐𝑜𝑟𝑟 we parameterize 

the dielectric profile of the model slab 𝜖(𝑧) as a piece-wise constant joined by a smoothing error 

function, with the dielectric constant of the material being 𝜖⊥  =  6, 𝜖∥ = 15 in the directions 

perpendicular and parallel to the layer, respectively,26 and we take the effective layer thickness to 

be 6 Å. We obtain the defect charge distribution, 𝜌𝑑(𝑟), by summing the magnitude of the 

occupied defect states in the band gap. With this density, we solve for the defect-induced 

electrostatic potential under periodic boundary conditions, 𝑉PBC(𝑟), from the Poisson equation, 

∇ [𝜖(𝑧)∇𝑉PBC(𝑟)] = −𝜌𝑑(𝑟), and compute the corresponding defect charge electrostatic energy 

under periodic boundary conditions, 𝐸PBC  =
1

2
∫𝑉PBC(𝑟)𝜌𝑑(𝑟)𝑑𝑟. In order to obtain the 

electrostatic energy of the isolated charge under open boundary conditions, 𝐸𝑖𝑠𝑜, we extrapolate 

𝐸PBC to the limit of an infinite model cell. The correction is then calculated as a difference of 

those quantities, 𝐸𝑐𝑜𝑟𝑟 = 𝐸𝑖𝑠𝑜 − 𝐸PBC. This approach and its limitations and advantages are 

discussed in more detail in a forthcoming article.27 

6.3. Isolated vacancy 

MoS2 is a semiconductor, with band gap of 1.9 eV in monolayer28-31 and 1.3 eV in bulk 

form.32 The spin-orbit coupling, which is generally a prominent feature in TMDCs and especially 
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those formed by heavy atoms, does not have a substantial effect on the electronic structure of the 

MoS2 monolayer.33 Interestingly, the exciton binding energy is strongly enhanced in the 

monolayer relative to the bulk.34-35 The Mo atoms are surrounded by trigonals prism of S atoms 

(Figure 6-1). Upon the creation of an isolated S vacancy the relaxation of neighboring atoms is 

limited to within 4 Å from the vacancy in both the neutral and charged (𝑞 = −1) states (see 

Figure 6-2(a)). The displacements of atoms farther than 4 Å from the vacancy are smaller than 

0.05 Å and are not shown. Moreover, the atomic displacements around the vacancy are 10% 

larger for the charged state compared to neutral state. In order to understand these features, we 

analyze in detail the electronic structure of the defect. 

 

In a localized representation of the electronic states based on Wannier orbitals,36 the 

electronic structure of MoS2 can be described as a combination of directed 𝜎-bonds between Mo 

and S atoms, lone pairs on S atoms, pointing outwards, and non-bonding states localized on the 

Mo atoms. In this picture, the valence bands are spanned by the 𝜎-bonds and the valence band 

edge is composed of non-bonding states on Mo.37 Creation of a S vacancy introduces two 

Figure 6-1. Wannier function corresponding to the 𝜎-bond between Mo and S atoms, in (a) top and 

(b) side views. Mo atoms are cyan and S atoms yellow. Blue and red lobes are positive and negative 

the isosurfaces of the Wannier function. 

(a) (b) 
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unoccupied defect levels in the band gap of the material and one fully occupied state below the 

valence band maximum. The localized orbitals of the states in the gap originate from the three 

severed Mo−S 𝜎-bonds and, due to strong overlap between the 𝑑-orbitals on Mo atoms, they are 

delocalized between three Mo atoms adjacent to the vacancy. These localized states can 

potentially serve as electron traps and affect the exciton binding energy in monolayer MoS2. 

Qualitatively, the electronic structure of defect states can be understood by considering a Huckel-

type model for the hybrid orbitals of 𝜎-bonds between Mo and S atoms. For three bonds in 

trigonal arrangement the electronic structure is analogous to the cyclopropene 𝜋-system: one 

occupied level is resonant with the valence band and two band gap levels are degenerate, with 

one nodal plane in each of them. The nodal planes are in the xz and yz planes, so the orbitals are 

labeled 𝜑𝑥 and 𝜑𝑦, respectively, see Figure 6-2(b). Earlier work has shown that the S vacancy 

can act as an acceptor due to the presence of these empty levels.23 

We investigate how the absolute position of those states in the gap changes under 

uniaxial strain in the y direction as defined in Figure 6-1, the direction that is more susceptible to 

stretching and is relevant for the possible formation of defects in the recently discovered 

“ripplocation” structure.24 Overall, the band gap of the material decreases with applied strain, in 

line with previous computational results.38 Applying strain in the y direction leads to removal of 

the degeneracy between 𝜑𝑥 and 𝜑𝑦, with the energy of 𝜑𝑦 decreasing more than the energy of 

𝜑𝑥, see Figure 6-2 (c). We hypothesize that this is due to the presence of the nodal plane xz for 

𝜑𝑥, which is perpendicular to the strain direction, so the energy of this state is less affected by 

the decrease in the orbital overlap compared to 𝜑𝑦. 
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Figure 6-2. Properties of an isolated sulfur vacancy. 

(a) Magnitude of atomic displacements around the isolated S vacancy in monolayer MoS2, |Δ�⃗⃗�|, as 

a function of distance dxy between the atom and the vacancy in the xy-plane. 

(b) Isosurfaces of the defect states |𝜑𝑦(𝑟)|
2
 and |𝜑𝑥(𝑟)|

2. 

(c) Energy levels of the defect states 𝜑𝑦 (blue), 𝜑𝑥 (red) and thermodynamic charge transition level 

(black) in the band gap associated with a single S vacancy: their position within the gap range as a 

function of strain, relative to the valance band maximum of the unstrained monolayer MoS2, 𝜀VBM
(0)

. 

(d) Formation energy of isolated S vacancy as a function of strain. 
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Next, we calculate the formation energy of the isolated S vacancy in neutral (𝑞 =  0) and 

charged (𝑞 =  −1) states as a function of uniaxial strain up to 5%, the breaking strain for 

monolayer MoS2 being between 6 and 11%.39 We do not consider the charge state 𝑞 =  −2 since 

it was shown to be unstable in previous work.23 The results are presented in Figure 6-2(d). In the 

neutral state, for values of tensile strain up to 5% there is a clear trend, that is, an increase of the 

formation energy. For the charged state, the value of the formation energy shows a marginally 

decreasing dependence on applied strain. We suggest that this effect is due to occupation of the 

band gap defect levels 𝜑𝑥, 𝜑𝑦, which are localized on the Mo d-level and have antibonding 

character, as discussed above. Another factor could be the increase of the occupation of 𝜎∗ 

Mo−S antibonding orbitals surrounding the vacancy through the mechanism of geminal 

hyperconjugation, which facilitates the lattice relaxation for accommodating the defect, as 

evidenced by the larger relaxation of the lattice around the charged defect compared to the 

neutral vacancy, see Figure 6-2(a). 

We have also considered the transition level, that is, the position of the Fermi level of the 

material in the gap at which 𝐸𝑓(0) = 𝐸𝑓(−1), denoted by a black line in Figure 6-2(c), as a 

function of strain. We find that this level moves down in energy with increasing strain, indicating 

that the energy difference between charged and neutral defect states decreases, while the deep-

acceptor character of the isolated S vacancy is preserved. 

6.4. Vacancy pairs 

We address next the possibility of clustering of S vacancies in the MoS2 monolayer. To 

this end we calculate the formation energy of two S vacancies as a function of their spatial 

separation. We consider various configurations of the two vacancies: first on top of each other on 
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opposite sides of the sheet, labeled (0,0), and then, three different cases for vacancies on the 

same side of the sheet, for both x and y directions: immediately adjacent vacancies labeled (0,1x) 

and (0,1y), separated by one S atom labeled (0,2x) and (0,2y), and separated by two S atoms 

labeled (0,3x) and (0,3y). In Figure 6-3(a), we show the geometries of vacancy pairs along the x 

direction. As far as strain is concerned, we compared two cases: unstrained material and 5% 

tensile strain applied along the y direction. Formation energies along the x direction are shown in 

Figure 6-3(b). Formation energies along the y direction (not shown) are very similar to those 

along the x direction, indicating that the strain-induced anisotropy has negligible effect on 

vacancy cluster formation. For the neutral vacancies we see virtually no dependence of the 

formation energy on the relative position of the defects. We attribute this finding to the following 

effect: due to the two-dimensional nature of the material and its small dielectric constant26 the 

relaxation of the atoms around the defect is limited and, as in the isolated vacancy case, the 

relaxations are localized within 4 Å from the defect, leading to a small value for the elastic 

component of the defect interaction. Under 5% strain, the neutral vacancy pair formation energy 

increases almost uniformly by about 0.6 eV for all relative positions of the vacancies, which is 

very close to twice the 0.3 eV increase in formation energy of the isolated vacancy, see Figure 

6-2(d). From these results we conclude that the elastic interaction between neutral vacancies is 

negligible. For the case of two charged vacancies (𝑞 = −2) the formation energies of pairs of 

vacancies on the same side of the sheet (0, nx/y), n = 1, 2, 3 are very close to each other; the 

formation energy under strain decreases slightly, similar to the isolated vacancy case, see Figure 

6-2(d). For 𝑞 = −1 there is a slight increase in pair formation energy with strain.  

An interesting quantity is the difference of the pair formation energy from the energy of 

two isolated vacancies, Δ𝐸𝑓(𝑞), which is shown in Figure 6-3(c). For the neutral (𝑞 = 0) and 
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charged (𝑞 = −1) cases the pair formation energy is slightly (up to 0.1 eV) larger than the 

energy of two isolated vacancies. For 𝑞 = −2, the difference is more pronounced, a fact that we 

attribute to the higher electrostatic energy of the defect-induced charge.

 

Moreover, the distances between the Mo atoms around the (0,0) vacancy for 𝑞 = −2 are 

0.05 Å larger than in the neutral state, consistent with the occupation of defect-induced 

Figure 6-3. Clustering of sulfur vacancies. 

(a) Defect wavefunctions for the pairs of S vacancies in the x direction for various relative positions; 

black circles highlight the vacancy positions. 

(b) Formation energies 𝐸𝑓(𝑞) for vacancy pairs in charge states 𝑞 = 0,−1,−2 along the x direction 

for 0% (solid line, filled circles) and 5% (dashed line, open squares) tensile strain along the y 

direction. 

(c) Difference in formation energies of a pair of 𝑉S relative to the energy of two isolated S 

vacancies, Δ𝐸𝑓(𝑞). 
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antibonding levels. In all charge states, the formation energies of pairs in configurations (0,1x), 

(0,2x), (0,3x) are very close to each other indicating no thermodynamic driving force for the 

clustering of S vacancies. 

6.5. Diffusion energy barriers 

We have also considered the possibility of diffusion of the S vacancies. We use the 

climbing image nudged elastic band method (CI-NEB)40 for the computation of the activation 

energies for diffusion of the S vacancy between adjacent sites. We find that the barrier for 

isolated vacancy diffusion in the neutral (𝑞 = 0) state is 2.24 eV, a very large barrier for a 

thermally activated process. We investigated if the diffusion can be facilitated by other factors, 

such as applied strain, the presence of other vacancies nearby, or the charge state of the defect. 

We find that the barrier decreases with applied strain, to 1.95 eV for 5% uniaxial tensile strain, 

see Figure 6-4(a); this result can be rationalized by considering that the strained material can 

more easily accommodate the lattice relaxation related to defect diffusion. The presence of 

another vacancy nearby, that is, diffusion from position (0,1x) to (0,2x) in the notation of Figure 

6-3(a), does not change the barrier appreciably, see Figure 6-4(b). Finally, the diffusion barrier in 

the negatively charged (𝑞 = −1) state is lowered by 0.3 eV compared to the neutral case, for 

both the isolated vacancy and a pair of vacancies. This result is in line with our previous 

discussion of charge-induced lattice softening caused by occupation of the antibonding levels in 

the band gap. Overall, we find that the diffusion of sulfur vacancies is a thermodynamically 

hindered process, as confirmed by recent experimental work indicating a vacancy jump 

frequency of 1 per 40 s.41 Taking into account the absence of a driving force for clustering of the 

vacancies, we find that the formation of extended defects is an unlikely process barring strong 

external perturbation, like electron beam irradiation.41-42 
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6.6. Summary 

In summary we have reported a comprehensive examination of the properties of S 

vacancies, the most prevalent defects in monolayer MoS2, using first-principles calculations. We 

find that the formation energy of the neutral S vacancy increases under uniaxial strain in the y 

direction, and for the negatively charged vacancy it decreases slightly; we attribute this finding 

to the fact that defect-induced states in the gap have antibonding character and their occupation 

leads to lattice softening. Our results also indicate that defect-induced lattice reorganization is 

very localized and there is no elastic interaction between two adjacent vacancies in either the 

neutral or the charged state. Accordingly, there is no thermodynamic driving force for the 

clustering of S vacancies and the barrier for the diffusion of vacancies is high, larger than 1.95 

eV, in all cases considered. 

Figure 6-4. Energy barriers for S vacancy diffusion. 

(a) Diffusion barrier as a function of strain applied along the 𝑦 direction. 

(b) Minimal energy path for the diffusion of an isolated vacancy (solid line) and the diffusion of a 

vacancy between the positions 1x and 2x in the presence of another vacancy at position 0 (dashed 

line) for the neutral (blue, 𝑞 = 0) and charged (red, 𝑞 = −1) states. 
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It is interesting to examine these findings in the context of the recently reported 

“ripplocation” structure in exfoliated MoS2 and its luminescence properties. Firstly, the large 

formation energy of isolated S vacancies and pair of vacancies, as well as the large barrier for the 

diffusion, strongly suggest that such defects are unlikely to form under thermodynamic 

equilibrium conditions. Secondly, the presence of tensile strain, as is likely the case in large 

deformations such as the ripplocation, does not change the formation energy or diffusion barrier 

of S vacancies substantially to alter their equilibrium properties. Another important factor in the 

ripplocation geometry can be the bending of the monolayer, which we will consider explicitly in 

future studies. Therefore, if S vacancies are present they will have to be introduced by external 

factors, like large forces during exfoliation. Moreover, if vacancies are present, their 

luminescence properties will be affected by the local strain.  

We can estimate the energy of the photoluminescence peaks from our results as the 

energy difference between the lowest-energy defect state in the band gap, 𝜑𝑦 and the conduction 

band minimum. In the unstrained material this difference is 0.46 eV; in the material under strain 

this energy difference is 0.31 eV. In order to provide a better estimate for the photoluminescence 

peaks energy we rescale our DFT band gap of 1.6 eV to match the GW gap of MoS2 monolayer 

of 2.8 eV,35 as we consider the transition between the defect level and the conduction band 

without taking into account excitonic effects. Since the defect levels have Mo 𝑑-character, we 

scale the position of the defect level relative to the conduction band minimum in proportion to 

the band gap; after such scaling we infer that the approximate positions of defect-induced 

photoluminescence peaks are 0.81 eV for the unstrained material and 0.54 eV under 5% strain, 

representing a decrease of 0.27 eV after applying strain. We note that more accurate results can 

be obtained from time-dependent DFT simulations, which will be a subject of future work. 
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CHAPTER 7. MODELING THE EFFICIENCY OF 

PEROVSKITE-BASED SOLAR CELLS  

In this chapter we establish a framework for bridging the properties of materials 

established from first-principles simulations to the performance of devices based on them, using 

a novel class of solar cells with hybrid organic-inorganic perovskite absorber as an example. 

This type of solar cell has seen a seven-fold increase of efficiency, from ~3% in early devices to 

over 20% in research prototypes.1 Oft-cited reasons for this increase are: (i) a carrier diffusion 

length reaching hundreds of microns;2 (ii) a low exciton binding energy;3-4 and (iii) a high optical 

absorption coefficient. These hybrid organic-inorganic materials span a large chemical space 

with the perovskite structure. Here, using first-principles calculations and thermodynamic 

modelling, we establish that, given the range of band-gaps of the metal-halide-perovskites, the 

theoretical maximum efficiency limit is in the range of ~25-27%.  Our conclusions are based on 

the effect of level alignment between the perovskite absorber layer and carrier-transporting 

materials on the performance of the solar cell as a whole. Our results provide a useful framework 

for experimental searches toward more efficient devices. This chapter is based on the work that 

is submitted as a publication: O. Granas, D.Vinichenko, E. Kaxiras. Establishing the limits of 

efficiency of perovskite solar cells from first-principles modeling. 

7.1. Introduction 

Photovoltaic applications of metal halide perovskite absorbers face a number of 

outstanding challenges, including materials stability, hysteresis effects of the current-voltage 

characteristics, and fine-tuning of the absorption properties.5-6 The perovskite ABX3 structure, 

where A and B are typically organic or inorganic cations, and X is an oxygen or halogen anion, 
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offers a large chemical phase space, allowing many properties to be tailored, albeit not 

independently. We argue that reaching the ideal efficiency, apart from optimizing the quality of 

materials and interfaces, is more challenging than optimizing the photo absorber; when 

absorption properties are tailored by adjusting the composition, band alignment and effective 

masses are also affected. 

To establish the theoretical limits of efficiency, we assume ideal interfaces and defect-

free crystals. We investigate how the presence of different ions on the A, B and X site of the 

perovskite structure impacts the photovoltaic performance, using electronic structure calculations 

and available experimental information, together with thermodynamic considerations. We show 

that the level alignment to the electron- and hole-transporting media (ETM and HTM) is central 

to reaching maximum efficiency for heterogeneous positive-intrinsic-negative (PIN) junctions. In 

fact, the efficiency limit for many of the perovskites is similar, in the ~25-27% range, given 

perfect band-alignment to ETM and HTM. Current state-of-the-art cells reach >80% of the 

theoretical maximum efficiency, indicating that higher performance is mostly a matter of 

interface engineering and the construction of multi-junction cells. Our results shed light on the 

performance differences arising from different perovskite compositions, choices of electron and 

hole transporting media or modification of the heterojunctions.7-8 Thus, they serve as a guide to 

further work on what HTM and ETM are suitable for optimal device performance. 

7.2. Model of the solar cell 

We aim to establish theoretical limits for the power conversion efficiency (PCE) of the 

perovskite-based solar cells as a function of chemical composition of the perovskite layer and the 

electronic properties of the electron- and hole-transporting media, by using the thermodynamic 

approach pioneered by Shockley and Queisser.9 Recent experiments indicate that exotic effects 
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such as ferroelectricity are not responsible for the reported high efficiencies.10-11 The most 

important properties of the perovskites as photo-absorbers are the resilience to form 

recombination centers and the reasonable interface quality to many ETMs and HTMs. Thus, it is 

reasonable to determine efficiency limits of perovskite solar cells from arguments based on 

detailed balance. Experimental characterization of the heterojunctions suggests that perovskite 

solar cells are of PIN character,12-13 where the perovskite itself comprises the central intrinsic 

semiconductor. We model the cell as a PIN heterojunction, where the carriers are generated by 

photon absorption in the intrinsic perovskite layer, separated and injected across a corresponding 

interface into the electron- or hole-transporting medium. We model interfaces between the 

perovskite and carrier transporting media as diodes 𝐷𝐸𝑇𝑀/𝐻𝑇𝑀 with the constant voltage drop 

(CVD) approximation, that is, we ignore the band matching character. We also ignore back 

transfer of carriers, which has been experimentally proven a slow process.14 We present in Figure 

7-1(b) a schematic of the circuit. We assume a constant-entropy mode of operation; with that, the 

electrochemical potential of the cell can be expressed as: 

 Δ𝜇 = 𝑒𝑉𝑒𝑥𝑡 = 𝐸𝐺 − 𝑘𝐵𝑇ln [
2𝜋𝑘𝐵𝑇

ℎ2
4(𝑚𝑒

∗  𝑚ℎ
∗  )

3
2⁄

𝑛𝑒𝑛ℎ
] − Δ𝐸𝐻𝑇𝑀 − Δ𝐸𝐸𝑇𝑀 (7.2.1) 

where 𝐸𝐺  is the perovskite absorber band gap, 𝑚𝑒
∗ , 𝑚ℎ

∗  are carrier effective masses, 𝑛𝑒 , 𝑛ℎ are 

carrier densities, and 𝛥𝐸𝐻𝑇𝑀, 𝛥𝐸𝐸𝑇𝑀 are the potential drops at the boundaries between the 

perovskite layer and carrier-transporting media. The energy levels in our model are shown in 

Figure 7-1(c). We ignore shunt and series resistances, and consider only radiative recombination 

to provide the upper limit for experimental efforts. With these assumptions, the current is given 

by 𝐽 = 𝑒 (𝑁𝑝ℎ − 𝑅𝑅(𝑉𝑒𝑥𝑡 )), where 𝑁𝑝ℎ is the density of incident photons, and 𝑅𝑅(𝑉𝑒𝑥𝑡) is the 

rate of radiative recombination: 



 

164 

 

 𝑅𝑅(𝑉𝑒𝑥𝑡) = 𝑒
2𝜋

𝑐2ℎ3
exp (
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⁄ )∫
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exp (𝐸 𝑘𝐵𝑇
⁄ ) − 1

∞

𝐸𝐺

 (7.2.2) 

 

In order to compute the PCE, we use the NREL reference AM1.5 spectrum normalized to 

1 kW/m2. The maximal extractable power density is determined by maximizing 𝑃 = 𝑉𝑒𝑥𝑡𝐽(𝑉𝑒𝑥𝑡). 

From these considerations, we can identify three main components that determine the efficiency 

of the perovskite-based solar cell: the band gap of the absorber, the carrier characteristics 

Figure 7-1. Perovskite-based solar cell. 

(a) The crystal structure and composition of perovskites under consideration (in the organic cation, 

blue – N, brown – C, pink – H). 

(b) Equivalent circuit of the PIN photo absorbing heterostructure. 𝐽𝑝ℎ  denotes the photon induced 

current, 𝐷𝑟 the intrinsic diode (additional diode currents from Shockley-Reed-Hall recombination 

can be added), 𝐷𝐸𝑇𝑀/𝐻𝑇𝑀represent rectifying diodes, the diode voltage drop, as well as forward 

direction is determined by the energy level alignment.  

(c) A schematic of the energy level diagram of the intrinsic part, with band offsets 𝛥𝐸𝐸𝑇𝑀, 𝛥𝐸𝐻𝑇𝑀 

to ETM/HTM. 𝐸𝐹 is the position of the Fermi level, 𝐸𝑄𝐹
ℎ , 𝐸𝑄𝐹

𝑒  the quasi Fermi-levels under 

illumination with open circuit, 𝑉𝑀𝑃 the voltage for the maximum power point and 𝑉𝑂𝐶 the open-

circuit voltage. 

(a) (b) 

(c) 
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relevant for entropic contribution, and the alignment between absorber and carrier transporting 

media. In the following we discuss our approach to determining these quantities using a 

combination of first-principles modelling and available experimental data. 

The band gap of the perovskites is generally direct, or close to direct.15 Together with 

band edge characters that allow for dipolar transitions this leads to an extraordinarily high optical 

absorption coefficient, which allows for a thin-film cell architecture. The onset of absorption is 

determined by the band gap, which is crucial for estimating the fraction of absorbed photon flux.  

In the context of first-principles electronic structure calculations with density functional theory 

(DFT), due to incorrect Coulomb interaction asymptotes in semi-local functionals,16 the band gap 

is underestimated; for the hybrid organic-inorganic perovskites the error between different DFT 

calculations is fairly constant (for instance, the difference between the gaps of MASnI3 and 

MAPbI3 is only 0.07 eV, as inferred by comparison with GW results).17-19 In order to obtain 

realistic band gaps for the compounds studied here, we use MAPbI3 (for which reliable 

experimental data is available) as the reference material and calculate the difference in the DFT 

computed gap with all other compounds. Experimentally, the photo-induced excitons dissociate 

rapidly into free carriers due to low exciton binding energy of 10-50 meV;3-4 for this reason it is 

not necessary to model excitonic effects. 

For the DFT simulations, we use the PBE20 exchange-correlation functional with van der 

Waals corrections,21-22 as implemented in VASP.23-26 We also employ the HSE hybrid density 

functional27 for an independent estimate of the shifts in band gaps. We use a Г-centered k-point 

grid of 8×8×8 and a plane-wave energy cutoff of 550 eV. The band gap of the perovskites under 

consideration ranges between 1.2 eV and 2.1 eV (in PBE) or between 0.9 eV and 2.3 eV (in 

HSE).  
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Charge mobility is a very important factor for efficient solar cells and is key to the high 

reported efficiencies. Long mean free paths have been observed in experiments: early work 

measured over 1 μm for polycrystalline samples13 while more recent work reported values up to 

175 μm under illumination and 3 mm under weak light2. Apart from the diffusion length, the low 

carrier masses decrease the entropic loss of the open-circuit voltage. Small masses are 

manifested as funnel-like structures on the electronic density of states, with a minimal number of 

states at the band edges. The perovskite compounds have a pronounced funnel effect (see Figure 

7-2), which contributes to the high cell efficiency at operating temperatures. We compute the 

average of the effective mass tensor of the carriers from the band structure using a high density 

Figure 7-2. Perovskite electronic structure.  

Densities of states for methylammonium lead iodide (MAPbI3) and formamidinium tin bromide 

(FASnBr3), showing contributions from the organic cation and the inorganic sublattice. The band 

edges are spanned by metal and halogen states, with the cation having only minor hybridization. The 

inset shows the shallow DOS (“funnel”) near the VBM, characteristic for tin-based compounds, and 

shallow DOS near the CBM, typical of Pb-based compounds. 
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(approximately 2 ⋅ 107 k-points/Å-3) mesh. Finally, we determine the entropy contribution of the 

excited carriers to the quasi Fermi level splitting using an effective density of excited states of 

1015 cm-3.28 The carrier masses of the compounds under consideration are smaller than, for 

example, Si which results in a smaller effect of the temperature arising from carrier entropy and 

a smaller deviation from the Shockley-Queisser limit.29 The results show a clear trend: Pb 

compounds have lower conduction band mass and higher valence band mass in relation to the Sn 

counterparts. The effective masses range between 0.1 and 0.3 in units of 𝑚𝑒. 

Properties like the natural level alignment and the absorption onset are difficult to 

measure from an experimental point of view. Interface and surface dipoles, defects and sample 

inhomogeneities result in substantial differences in available experimental data. For example, the 

depletion layer is reported to be somewhere between 45 to 300 nm,30-31 indicating that level 

alignments play a crucial role for the carrier concentrations and for the potential gradient in the 

perovskite. The calculation of the natural band alignment from first principles using core levels 

or by inspecting how the average electrostatic potential changes on a site in different 

environments has been treated extensively in the literature.32-33 We employ a method of 

alignment similar to what was first suggested by Massidda et al.,34 and later refined by Wei and 

Zunger,35 and by Lang et al.36 We estimate the relative positions of valence and conduction 

bands of perovskites with different composition using the average electrostatic potential on the B 

site ion, or, in the case of B ion substitution, on the X site ion. We also use the equivalent 

formalism of core-levels as a test for consistency. The band alignments, from the relative 

position of band edges to those of MAPbI3, are used to map the corresponding potential drops for 

the rectifying diodes appearing at the heterojunctions between the perovskite and the charge-

transporting media. We do not explicitly model the P and N materials; instead, we map out the 
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efficiency as a function of the natural band alignment with respect to MAPbI3. Recent 

computational work provided estimates for the potential alignment of a number of common 

semiconductors in relation to MAPbI3; with our results, this can be used directly to estimate how 

the efficiency is altered.37  

MAPbI3 has a cubic structure at high temperature and undergoes a transition to a 

tetragonal structure close to room temperature. The two phases are known to co-exist to much 

lower temperatures. To reduce the complexity of calculating the level alignments, we concentrate 

on the cubic phase of the perovskite cell. This involves calculating: the core-level (CL) 

alignment in the super cell between the left (L) and right (R) perovskites; the CL alignment to 

valence band maxima (VBM) in the strained materials (with strain according to the relaxed 

heterostructure); the CL alignment to VBM in the relaxed structure. To account for possible 

steric effects from the orientation of the organic cations, we consider them oriented in the plane 

orthogonal to the super cell stacking, which resembles the tetragonal phase. This procedure 

allows us to determine the natural band alignment between MAPbI3 and the other perovskites 

under consideration. Reviewing other theoretical approaches reveals a significant spread in 

reported data,38 but the trends are consistent with our findings. Previous work on GaAs/AlAs 

heterojunctions estimated errors in absolute value on the order of 0.05 eV.35 For the calculations 

reported here, we expect slightly larger errors due to the complex symmetry breaking by the 

organic cation. Previous studies using similar methods but without taking into account strain 

effects reported similar values of band alignment for the compounds under consideration.39 

In cases where an increase (decrease) in the potential for electrons (holes) occurs, the 

voltage drop over the junction depends exponentially on the barrier height, with most of the 

external bias over the junction. In these cases, the quasi Fermi-level splitting goes to zero, 
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inducing strong recombination in the junction, and the value of 𝐽𝑠𝑐 effectively goes to zero as 

well. An accurate treatment of the junctions requires knowledge of the dielectric properties and 

density of states of specific HTMs and ETMs. 

7.3. Results and discussion 

We have investigated 16 hybrid organic-inorganic compounds with the perovskite 

structure of the general composition ABX3. For A, we have considered 4 organic cations, the 

traditionally used methylammonium, and three other ions of similar size and conjugated π system 

of increasing size: methyleneiminium (ME =  CH2NH2
+), formamidinium (FA =  CH(NH2)2

+) 

and guanidinium (GU =  C(NH2)3
+). We consider Pb2+ and Sn2+ ions for the B position, and Cl- 

and Br- ions for the X position. The most important feature of the electronic structure of these 

compounds is that, regardless of the size of the π system of the A cation, the band edges are 

spanned by s- and p-states of the B ion and by p-states of the X ion. The A ions act mostly as 

spacers and affect the electronic structure and properties of the perovskite through the changes 

they induce in lattice structure, as we discuss below. 

The bottom of the conduction band is spanned mostly by the p-states of B ions with an 

admixture of p-states of X ions. There are two factors in action when the B site is changed: the 

relative electronegativity of Pb and Sn, and the strength of spin-orbit coupling, which leads to 

splitting of the bottom of the conduction band. Those factors lead to lowering of the absolute 

position of the CBM for Sn compared to Pb. Moreover, due to stronger spin-orbit coupling in Pb, 

the CBM splitting is larger, which leads to higher curvature of the CBM and, therefore, to lower 

effective masses for electrons in Pb-based perovskites (~0.1 𝑚𝑒) compared to Sn-based 

perovskites (~0.2 – 0.3 𝑚𝑒). With Br in the X position the CBM is higher due to the more 

covalent character of the bonds and larger splitting between bonding and antibonding orbitals. 
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The top of the valence band consists of an antibonding combination of X p-states and B 

s-states leading to a lower absolute position of the VBM with increasing electronegativity of the 

X ion. Substitution of Pb by Sn on the B site leads to an increase of the VBM energy due to 

larger overlap of the Sn s-states with the X p-orbitals. An increase in the size of the A cation 

leads to a decrease in the VBM energy due to the expansion of the lattice structure from the 

decrease in overlap between the s-orbitals of B and the p-orbitals of X, and the concomitant 

lowering of the antibonding level energy. Smaller overlap between the s-orbitals of B and the p-

orbitals of X also leads to a less dispersive band and an increase in the effective carrier mass for 

the holes for Pb (~0.15–0.3 𝑚𝑒) compared to Sn (~0.07–0.1 𝑚𝑒). A similar effect is introduced 

by increasing the size of the A cation. Another factor is the Darwin term effect on the s-orbitals 

of B ion levels, which is larger for Pb, resulting in flatter bands. 

From the absolute positions of the CBM and VBM we obtain the value of the band gap, 

which is in the 1.1 – 1.6 eV range for most compounds except for FA-, MA-, and GU-based 

perovskites with PbBr3 lattice backbone. Based on our calculations, we conclude that all of the 

compounds studied (except for those mentioned above) demonstrate power conversion efficiency 

of 25-27% regardless of actual chemical composition, provided optimal band alignment is 

satisfied. This clearly demonstrates that the intrinsic properties of hybrid organic-inorganic 

compounds, that is, band gap and carrier effective masses, are not the limiting factor in 

determining the efficiency. Rather, it is the misalignment of the absolute positions of the band 

edges that can lead to substantial performance deterioration (about 5% PCE for every 0.2 eV of 

mismatch). We map out the band edge positions, which are equivalent to the optimal carrier-

transporting material levels, and the PCE achieved with optimal level matching in Figure 7-3. 
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Our overall conclusion is that experimental efforts should be directed towards optimization of 

the device as a whole, using as a guide the results outlined above.  

 

In particular, the chemical composition of the perovskite has a profound effect on the 

position of VBM and CBM levels: an increase in the size of the A ion leads to lowering of the 

VBM; compounds with Pb on the B site have lower VBM and higher CBM compared to Sn-

based perovskites; Br-based compounds have lower VBM and higher CBM compared to I-based 

ones. These principles can be used to tailor the composition of the perovskite absorber in order to 

optimize the efficiency of the cell overall by ensuring optimal level matching with the carrier-

transporting materials. 

Figure 7-3. Cell efficiency as a function of level alignment in relation to MAPbI3  

Classes of compounds are colored according to their inorganic backbone: PbI3 – purple, PbBr3 – 

blue, SnI3 – green, and SnBr3 – red. The PCE determine the height of the cylinders. Note that the 

spread in VBM is much larger than the spread in CBM. 
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