
A Longitudinal U.S. State-Level Analysis of Organic 
Food Production and Greenhouse Gas Emissions

Citation
Squalli, Jay J. 2016. A Longitudinal U.S. State-Level Analysis of Organic Food Production and 
Greenhouse Gas Emissions. Master's thesis, Harvard Extension School.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797399

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797399
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Longitudinal%20U.S.%20State-Level%20Analysis%20of%20Organic%20Food%20Production%20and%20Greenhouse%20Gas%20Emissions&community=1/14557738&collection=1/14557739&owningCollection1/14557739&harvardAuthors=82149a2d7cd8d9a1c8a8de2a3c17a9d1&department
https://dash.harvard.edu/pages/accessibility


 

 

A Longitudinal U.S. State-Level Analysis of Organic Food Production and Greenhouse 

Gas Emissions 

 

 

 

Jay J. Squalli 

 

 

 

A Thesis in the Field of Sustainability and Environmental Management 

for the Degree of Master of Liberal Arts in Extension Studies 

 

Harvard University 

November 2016  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016 Jay Squalli



 

Abstract 

 

The question of whether organic farming is environmentally beneficial is not only 

contentious but also not well understood. Organic farming, which has been centered on 

the idea that increased soil health and vitality would result in more nutritious food and 

pest resistant crops, can also represent a significant means to tackle climate change. My 

research addresses the following question: Controlling for other sources of greenhouse 

gas (GHG) emissions, how do GHG emissions vary across U.S. states and over time with 

the proportion of total farmland devoted to organic cropland? This research question 

leads to three testable hypotheses. The first hypothesis, denoted as the Neutrality 

Hypothesis, posits that there exists no statistically significant relationship between 

organic cropland acreage and GHG emissions. The second hypothesis, denoted as the 

Mitigating Effect Hypothesis, is that increased organic cropland acreage is associated 

with lower GHG emissions. The final hypothesis, denoted as the Polluting Hypothesis, is 

that more organic cropland acreage is associated with higher GHG emissions. Most 

previous research has relied on lifecycle analysis (LCA) and has yielded estimation 

results that varied across products, product groups, locations, methodology, data, and 

even across studies assessing the same products. On the other hand, a recent study using 

multiple regression analysis presented questionable evidence contending a negative 

environmental impact for organic farming.  

My research deviates from LCA by making use of U.S. state-level data over the 

1997-2010 period excluding the years 1998, 1999, and 2009, multiple regression analysis, 

and a model consistent with the Stochastic Impacts by Regression on Population, 



Affluence, and Technology approach. Overall, there is evidence supporting the 

Mitigating Effect Hypothesis. Indeed, after controlling for other sources of GHG 

emissions, a one percent growth in organic farming is estimated to lower GHG emissions 

by 0.06% across U.S. states. This suggests that at the current rate of growth in organic 

farming, GHG emissions could decrease by about 7.7% by 2030 and by 12.8% by 2050 

relative to the current level of emissions. In addition, in an assessment of the interaction 

between organic farming and the transportation sector, I find that the effect of organic 

farming on CH4 and N2O emissions depends on a state’s transportation output share (% of 

total state GDP). More specifically, at the current levels of transportation output, growth 

in organic farming is expected to mitigate CH4 and N2O emissions across most U.S. 

states. This would suggest that the environmental harm that transportation output 

contributes to organic food production might be too negligible to outweigh the 

environmental benefits of organic farming practices. A cluster analysis confirms these 

findings by showing that the environmental impact of organic farming is below the 

country average for most U.S. states and across three measures of emissions.  

Although organic farming practices are already environmentally beneficial, 

further improvements can be achieved through the adoption of regenerative organic 

farming and by replacing the current competitive environment between conventional and 

organic farming with a more symbiotic coexistence. The current study reveals GHG 

mitigation benefits associated with organic food production.  Policymakers and scientists 

can build on these results to further develop the evidence base and policies needed to 

maximize the benefits of adopting organic farming practices.
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Chapter I  

Introduction 

 

Although organic farming practices date back to the Neolithic era, Lord 

Northbourne is credited for having been the first person to use the term “organic” to 

describe the alternative farming process currently practiced worldwide (Paull, 2014). In 

his book Look to the Land, Northbourne (2003) warned that the reliance on synthetic 

fertilizers and pesticides deprived farms of “biological completeness” (p. 96). 

Northbourne’s holistic view was that a farm had to be treated as a living organism where 

the soil, microorganisms, insects, and plants were naturally symbiotic. He encouraged the 

use of biodynamic practices in organic farming based on the work of Rudolf Steiner 

(2004), which involved a focus on revitalizing soil health and fertility.  

To this day, organic farming has been centered on the idea that increased soil 

health and vitality would result in more nutritious food and pest resistant crops (Kuepper, 

2010). Current thinking has further evolved to posit that in addition to better nutrition and 

pest resistance the adoption of organic farming practices worldwide can be a significant 

means to tackle climate change. Indeed, such practices are estimated to have the potential 

to sequester up to one third of current anthropogenic emissions (Jordan, Müller, & Oudes, 

2009). Organic agriculture owes this ability to its reliance on natural ecological processes 

in land, soil, and crop management in lieu of synthetic inputs. As a result, soils that are 

managed using organic practices are not only healthier but also more resilient to extreme 

weather events (Niggli, Fließbac, Hepperly, & Scialabba, 2009).  

With the agricultural sector accounting for about 24% of global carbon emissions 
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(IPCC, 2015), it represents the single most promising carbon mitigator and a potentially 

significant net carbon sink (Bellarby, Foereid, Hastings, & Smith, 2008). In fact, the 

annual mitigation potential for agriculture has been estimated at 6 Gt of CO2-eq, with 

soil carbon sequestration contributing about 89% to this potential (Bellarby et al., 2008). 

According to some estimates, the economic value of ecosystem services in organic 

farming can range from $1,610 to $19,420 per hectare (ha) per year versus $1,270 to 

$14,570 in conventional farming (Sandhu, Wratten, Cullen, & Case, 2008). In addition, 

non-market ecosystem services in organic farming can range from $460 to $5,240 per ha 

per year versus $50 to $1,240 in conventional farming (Sandhu et al., 2008). 

Surprisingly, despite increasing consumer interest in organic foods, proponents of 

organic food production have been labeled as “activists” (Paarlberg, 2013), and by 

implication, anti-science and devoid of objectivity. Previous research has contributed to 

this categorization by providing largely mixed results about the environmental impact of 

organic farming, with some reporting a positive association (e.g. Wood, Lenzen, Dey, & 

Lundie, 2006) and others reporting a negative association (e.g. Cooper, Butler, & Leifert, 

2011) or no significant difference across organic and conventional sites (e.g. Syvasalo, 

Regina, Turtola, Lemola, & Esala, 2006). Admittedly, there are concerns that the increase 

in land use arising from a larger organic farming sector could increase carbon emissions 

and reduce global carbon sequestration capacity. Combined with the concerns about 

climate change and the environmental implications of food production, there is an urgent 

need to more thoroughly understand organic food production’s association with GHG 

emissions. 

Most previous research addressing this relationship has relied on site-specific 
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methods contrasting emissions across organic and conventional sites. For instance, 

lifecycle analysis (LCA) is a common tool used to assess the environmental impact of 

farming. LCA uses a “ground-up” approach, which considers the impacts of individual 

stages of a product’s lifecycle. Estimates based on LCA are typically derived through 

assumptive processes, which can involve the use of different data sources and underlying 

assumptions about energy consumption across studies, especially those analyzing the 

same products (Ayres, 1995). LCA research often lacks generalizability and yields 

estimates that vary depending on products, product groups, geography, methodology, and 

data. Multiple regression is another method that has been used to assess the 

environmental impact of organic food production. However, it is limited to a study by 

McGee (2015), which made use of U.S. state level data but suffered from significant 

weaknesses that cast doubt on the reliability of its results. 

 

Research Significance and Goals  

My research deviates from LCA by applying a “top-down” approach similar to 

McGee’s (2015) in the assessment of the environmental impact of organic food 

production. More specifically, rather than focus on specific sites, my research aims to 

assess organic food production and greenhouse gas emissions at the aggregate level. The 

benefit of this approach lies in the ability to derive estimates measuring the proportionate 

change in greenhouse gas emissions arising from a change in organic food production at 

the state level. These estimates essentially measure the net state-level environmental 

impact of organic food production. As a result, they allay concerns about lack of 

generalizability arising from idiosyncratic differences across sites. In addition, by using 
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appropriate data and an empirical model grounded in a well-established theoretical 

literature, I expect to effectively address McGee’s weaknesses. This research should be of 

interest to scientists, policymakers, and activists alike, and could have significant policy 

implications. They should also provide the necessary foundation for future research on 

the environmental impact of organic food production. 

 

Background   

The Organic Foods Production Act of 1990 introduced the United States 

Department of Agriculture’s (USDA) National Organic Program (NOP) to provide 

systematic oversight of organic certification of food production in the United States 

(Kuepper, 2010). The NOP is designed to prevent producers from claiming that their food 

is organic unless they have satisfied the standards set by the law. Broadly speaking, 

producers are not permitted to use any substances prohibited by the NOP in their land for 

at least three years before their first organic harvest. They are also required to manage 

soil health through tillage, crop rotations, cover crops, composting, and animal waste. 

Furthermore, pest control and weed management are primarily handled using biological 

and manual practices and in exceptional cases using approved synthetic substances 

(Kuepper, 2010).   

The organic farming sector in the United States grew from 1.77 million acres in 

2000 to 5.3 million acres in 2011 (USDA, 2013) and from $3.6 billion in sales in 1997 to 

$43.3 billion in 2015 (Organic Trade Association, 2016). This substantial growth puts the 

annual compound growth rate for acreage at about 9.5% and that for sales at about 15%. 

However, in 2014, average organic cropland in the United States represented less than 
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1% of total state farmland despite organic food sales making up about 5% of total food 

sales (Organic Trade Association, 2016). Figure 1 shows that average state-level organic 

cropland barely represented 0.54% of total state farmland in 2010, up from about 0.19% 

in 2000. As for organic sales, as shown in Figure 2, they were slightly below 9% of total 

farming sales in Vermont in 2007, representing the country’s largest share. Organic sales 

in other states were below 3.5%, with the vast majority falling below 1%.  

 

 

Figure 1. Average state-level organic cropland acreage (% of total farmland) (Data 

Source: USDA). 
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Figure 2. Organic farming sales (% of total state farming sales), 2007 (Data Source: 

USDA). 

 

Environmental Impact of Agriculture 

 Food production can contribute to GHG emissions in a number of ways. Figure 3 

shows a simplified systems diagram that summarizes the various channels through which 

food production can affect GHG emissions, amongst others. The most important 

environmental concerns that food production raises are soil erosion and the spillover of 

fertilizers and pesticides onto third parties (Papendick, Elliott, & Dahlgren, 1986). Soil 

erosion can adversely affect plant growth by depriving land of organic matter and 

associated nutrients. As a result, farmers usually resort to synthetic fertilizers to maintain 

soil productivity. These in turn release nitrogen in the atmosphere and increase nitrate 
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runoff into streams, rivers, and groundwater reserves. It is estimated that emissions from 

agricultural soil management make up about 5% of total emissions and about 61% of 

agricultural emissions (Takle & Hofstrand, 2008). 

 

 

Figure 3. Simplified systems diagram of how food production contributes to GHG 

emissions. 

 

Farms involved in manure management whether as a by-product of raising cattle 

for meat production or for use as fertilizers also contribute to GHG emissions. Methane 

emissions are released through enteric fermentation of ruminant animals and anaerobic 

decomposition from manure storage. It is estimated that emissions from these sources 
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make up about 2.2% of total emissions and about 27% of agricultural emissions (Takle & 

Hofstrand, 2008). 

The consumption of fossil fuel also contributes to carbon emissions. These 

emissions arise from transportation and energy use throughout all stages of production 

including the use of on-farm equipment for the provision of inputs, irrigation, application 

of fertilizer and pesticides, harvesting, processing, and packing. Additional carbon is also 

emitted during the transportation of the final products to their wholesale and retail 

destinations. Emissions from fossil fuel consumption in agriculture are estimated to make 

up 0.6% of total emissions and about 7% of agricultural emissions (Takle & Hofstrand, 

2008). 

Food production undoubtedly results in deforestation and increased land use 

especially to meet the ever-increasing demand for food. Such changes deprive our 

environment of the important ecosystem services that forests provide. Soil tillage, which 

is often combined with herbicides to rid land of weeds and to prepare the soil for planting, 

also releases previously sequestered carbon into the atmosphere. Emissions arising from 

agriculture represent about 8.2% of total emissions and forests are estimated to sequester 

the equivalent of about 9.6% of total carbon emissions (Takle & Hofstrand, 2008). This 

suggests that forests can result in a net carbon reduction. In addition, agricultural soils are 

estimated to sequester the equivalent of about 0.4% of total emissions (Takle & 

Hofstrand, 2008). It is worth noting that the carbon mitigation potential of soils can be 

substantial depending on agricultural practices such as restoration and reclamation of 

degraded soils, tillage, and crop residue management, amongst others. Indeed, the annual 

carbon sequestration potential for soils in the United States is estimated to range between 
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144 Tg and 432 Tg (equivalent to a range of 0.52 to 1.58 Gt of CO2-eq) over a 30-year 

period compared to the current sequestration rate of barely 17 Tg (Lal, Follett, & Kimble, 

2003). Globally, the annual sequestration potential can reach up to 6 Gt of CO2-eq (Smith 

et al., 2008). 

 Agricultural waste is not limited to food but also includes hazardous solid waste, 

such as nitrogen, biological pathogens, additives, metals, and salts, amongst others 

(Loehr, 1978). While these undoubtedly have major public health and environmental 

implications, food wastage remains a major concern. In fact, it is estimated that about one 

third of all food produced for human consumption is wasted or lost throughout various 

stages of the food supply chain (Food and Agriculture Organization of the United Nations, 

2013). The carbon footprint of food wastage after accounting for land use changes is 

estimated at 3.3 gigatonnes of CO2e (Food and Agriculture Organization of the United 

Nations, 2013), which is equivalent to about one third of global emissions from fossil 

fuels (Boden, Marland, & Andres, 2015). 

Organic farming practices can mitigate GHG emissions in a number of ways. First, 

the fact that they limit the application of synthetic fertilizers, herbicides, pesticides, and 

fungicides and their high embodied energy can potentially reduce GHG emissions and the 

runoff of nitrate and toxic chemicals. It is estimated that the total energy needs covering 

all stages of the lifecycles of nitrogen, phosphorous, and potash exceed 90 GJ per metric 

ton (Bhat, English, Turhollow, & Nyangito, 1994). On the other hand, the total energy 

needs for the production of the active ingredients used for major U.S. herbicides, 

pesticides, and fungicides are estimated to exceed 816 GJ per metric ton (Bhat et al., 

1994). Second, reduced water runoff and evaporation could decrease water use and 
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energy needs for irrigation. In fact, based on farming trials across various countries, 

organic farms are estimated to use 45% less energy than their conventional counterparts 

(Rodale Institute, 2014). In these trials, organic farming is also found to produce fewer 

GHG emissions and to perform better in years of drought than its conventional 

counterpart.  

The fact that organic farming already makes use of cover crops, crop rotations, 

and compost can play an important role in maintaining optimal soil health, increasing 

carbon sequestration, and reducing GHG emissions. Cover crops can limit competition 

for nutrients with weeds and reduce water runoff and evaporation. They also represent a 

nitrogen sink especially for subsequent crops (Hartwig & Ammon, 2002). As for crop 

rotation, it can increase groundwater storage (Dakhlalla, Parajuli, Ouyang, & Schmitz, 

2016), enhance microbial richness and diversity (Venter, Jacobs, & Hawkins, 2016), and 

result in lower N2O emissions (Petersen et al., 2006). Finally, organic farming can 

eliminate emissions from waste by converting organic waste into compost for use as 

fertilizer. However, special attention should be given to bulking agents as in their absence 

composting may contribute more significantly to climate change than do other direct 

sources of GHG emissions (Bong et al., 2016). 

 

Previous Evidence on the Environmental Impact of Organic Food Production 

Previous assessments of the environmental impact of organic food production 

have yielded mixed results largely due to high variability in LCA research across 

products, product groups, geography, and sometimes even across studies of the same 

product or product group. The following represent examples of relevant previous research. 
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In a study using LCA based on an input-output framework differences in 

environmental impact were estimated across organic and conventional farming sites in 

Australia (Wood et al., 2006). The study found that direct energy use, energy related 

emissions, and greenhouse gas emissions were higher in the organic site, but argued that 

accounting for indirect contributions, emissions could be higher in the conventional site. 

While using an input-output framework can enhance completeness and specificity, it 

suffers from a number of limitations. The most important is the fact that the parameters 

determining the technical requirements across input and output sectors are assumed to be 

constant over time and across products and product groups. In other words, estimates 

typically rely on the expectation that no changes in technology, relative prices, and trade 

patterns that can alter the mix of inputs used across sectors have occurred over time. 

Another study made use of a randomized block design in three farming systems in 

Western Finland (Syvasalo et al., 2006). GHG fluxes and nitrogen leaching and 

concentration were compared in grass production and livestock raising across organic and 

conventional production systems and were measured in cereal production without 

livestock under conventional production. There was no statistically significant difference 

in measured GHG emissions between organic and conventional plots. In contrast, 

however, Cooper et al. (2011) used LCA but found emissions to be much larger per 

hectare in conventional farms. Moreover, after accounting for on-site bio-energy 

generation in conventional farms, emissions from farming operations were offset by 

energy production, whereas accounting for pyrolysis of crop remains in organic farms 

resulted in negative net emissions. 
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In a meta-analysis of 71 studies covering 170 cases, the environmental impact of 

organic farming was assessed relative to conventional farming (Tuomisto, Hodge, 

Riordan, & Macdonald, 2012). The study found soil organic matter to be 7% higher in 

organic farms and estimated nitrogen leaching in organic farms to be 31% lower per unit 

of area but 49% higher per unit of product. The analysis associated the lower nitrogen 

level to fewer nitrogen input applications and the higher nitrogen level to a mismatch 

between nitrogen availability and a crop's nitrogen intake.  It also posited that lower 

nitrogen leaching per unit of product arose from the use of cover crops in organic farming. 

The study also found that organic farms used 21% less energy. However, differences in 

greenhouse gas emissions between conventional and organic farms seemed to vary across 

product groups. For instance, emissions in organic farms were lower for the production of 

olives, beef, and some crops but were higher for milk, cereals, and pork. 

In 2009, the International Federation of Organic Agriculture Movement (IFOAM) 

compiled case studies contrasting organic farming with its conventional counterpart 

across a number of countries, of which the most notable were the United States, The 

Netherlands, Egypt, and Switzerland. The American case was based on Rodale Institute’s 

farming trials, which assessed energy use, carbon sequestration, and yields in the 

production of corn, wheat, and soybeans. The conventionally managed system was 

estimated to use 30% more energy than its organic counterpart (IFOAM, 2009). The 

annual carbon sequestration potential for the organic system was estimated to reach 2.3 

metric tons per hectare and organic yields were found to be 28 to 34% higher especially 

during dry and wet seasons. 
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A similar farming trial spanning over 21 years was conducted in Switzerland. The 

trial was referred to as the DOK (bio-Dynamic, bio-Organic, and Konventionell) system 

comparison trial, which compared soil fertility, nutrient input, energy input, and yields 

across organic and conventional farming systems. These systems were for the production 

of grass-clover, potatoes, and winter wheat. The results of the DOK trial were covered by 

a number of studies (Mäder et al., 2002;  Fließbach, Oberholzer, Gunst, & Mäder, 2007; 

Leifeld, Reiser, & Oberholzer, 2009). In particular, Mäder et al. (2002) estimated that the 

organic system required 34 to 51% less nutrient input and 20 to 56% less energy input 

than the conventional system. Yields, on the other hand, were found to be lower in the 

organic system across all analyzed crops. 

The Dutch case was based on a meta-analysis contrasting GHG emissions in 

organic and conventional dairy farms across the Netherlands (Bos, De Haan, & Sukkel, 

2007). It estimated organic dairy farms to emit between 11 and 17 metric tons of CO2 

equivalent (MTCE) per hectare and between 1.31 and 1.46 MTCE per 1,000 kg of milk 

versus between 14.5 and 34 MTCE per hectare and between 1.45 and 1.65 MTCE per 

1,000 kg of milk in their conventional counterparts. The lower emissions in the organic 

dairy farms were attributed to the absence of chemical fertilizers, less reliance on 

concentrate feed, and increased grazing. In particular, grazing during up to ten months of 

the year was expected to contribute to carbon sequestration by continuously adding 

organic matter to the soil. In fact, organic dairy farms were estimated to sequester 

annually 0.4 metric tons of carbon per hectare. 

The Egyptian case focused on the effectiveness of composting in improving the 

carbon content of reclaimed desert soils (Luske and van der Kamp, 2009). The compost 
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applied to the trial farms consisted of chicken and cow manure, rice straw, and green 

waste procured locally. Over a 30-year period, the per-hectare soil carbon stock increased 

from 3.9 metric tons to 30.3 metric tons, resulting in an annual increase of 0.85 metric 

tons per hectare. 

In one of the most comprehensive studies to date, a meta-analysis of 107 studies 

published between 1977 and 2012 assessed the environmental impact of organic farming 

(Lee, Choe, & Park, 2015). The study found that the effect of organic farming on energy 

intensity varied depending on data source, sample size, and farm products, whereas the 

effect on greenhouse gas emissions varied depending on farm products, cropping patterns 

(i.e. monocropping versus multicropping), and measurement unit (i.e. emissions per area 

versus per unit). 

Of particular relevance to my research, McGee (2015) examined the relationship 

between organic farming acreage and agricultural emissions using multiple regression 

analysis. He found that organic farming at the U.S. state level was associated with higher 

greenhouse gas emissions. The author relied on data from the World Resources Institute, 

which disaggregates state emissions into specific sectors. In particular, emissions from 

the agricultural sector are constructed using data from the USDA, Commercial Fertilizers 

report, and the Fertilizer Institute (WRI, 2015). He also used data from the USDA on 

total farmland and organic cropland acreage. However, the fact that environmental 

emissions data and acreage are at least in part from the same source raises important 

concerns. More specifically, the data used for the response variable (emissions) are by 

construction similar to those for the key predictor variables (total farmland and organic 

cropland acreage). This is especially problematic for total farmland acreage, which is 
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likely highly correlated with agricultural emissions. It is evident that increased farmland 

acreage will inevitably result in an increase in the use of pesticides, fertilizers, herbicides, 

and fungicides, which in turn will increase GHG emissions. Indeed, based on the same 

data that McGee used for his analysis, correlation between these total farmland and 

agricultural emissions is estimated at 0.75 versus 0.55 when using total GHG emissions. 

On the other hand, correlation between agricultural emissions and organic cropland 

acreage is estimated at 0.47 versus 0.21 when using total GHG emissions. Thus, positive 

association between organic farming acreage and emissions is not surprising when both 

variables are highly collinear.  

Another surprising dimension in McGee’s analysis is the contention that organic 

farming practices harm the environment is connected to what he dubbed as the 

“displacement paradox theory.” The basic idea of this theory is that an expansion of 

organic farming practices, which are largely viewed as sustainable, does not necessarily 

result in the displacement of conventional farming practices. Rather, market forces are 

believed to create the necessary conditions for the addition of organic food products to 

existing markets. In other words, consumers of organic products would essentially 

represent new demand, with no noticeable impact on the demand for conventionally 

produced products. McGee (2015) also added that higher emissions were likely caused by 

lax USDA organic production standards and the corporatization and scaling of organic 

farming operations especially to compensate for lower yields under organic production. 

These conclusions, however, ignored not only the fact that yields in organic farming are 

not always lower than those in conventional farming but also the existing evidence 

supporting lower energy use and higher carbon sequestration by organic farming. More 
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importantly, the author failed to substantiate his contentions with supportive evidence of 

any sort. 

In sum, site specificity in previous research introduces variability in 

environmental impact estimates across products, product groups, and geography. In 

addition, the subjectivity in data selection and assumptions about energy consumption 

limit the generalizability of the results. 

 

Research Question and Hypotheses 

My research addresses the following question: Controlling for other sources of 

GHG emissions, how do GHG emissions vary across U.S. states and over time with the 

proportion of total farmland devoted to organic cropland? This research question leads to 

three testable hypotheses. The first hypothesis, denoted as the Neutrality Hypothesis, 

posits that there exists no statistically significant relationship between organic cropland 

acreage and GHG emissions. The second hypothesis, denoted as the Mitigating Effect 

Hypothesis, is that organic cropland acreage is associated with lower GHG emissions. 

The final hypothesis, denoted as the Polluting Hypothesis, is that organic cropland 

acreage is associated with higher GHG emissions. 
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Chapter II 

Methods 

 

 The broad nature of the research question described in the previous chapter 

necessitates addressing the relationship between organic food production and GHG 

emissions from an aggregate perspective. Rather than focus on specific sites, which 

would yield results that are not necessarily generalizable to the state or country level, this 

analysis focuses on state-level indicators. As a result and contrary to LCA research, 

which relies on primary data collected from selected sites, I make use of state-level 

secondary data. Using secondary data has a number of advantages. First, such data are 

usually publicly available and free of charge. Second, easy and free access to data allows 

the replication and extension of my research by other researchers. Third, the available 

data come from well-known and reliable sources. In what follows, I describe the data 

used to assess the relationship between organic food production and GHG emissions in 

addition to the empirical framework. 

 

Data 

This research makes use of U.S. state-level data over the 1997-2010 period, 

excluding years 1998, 1999, and 2009, which are missing from USDA data. All other 

datasets cover the 1997-2010 period. Environmental data come from CAIT-US, a 

database developed by the World Resources Institute (WRI), which consists of state-level 

emissions of the six major greenhouse gases. The data used in this research is limited to 
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total greenhouse gas (GHG) emissions, methane (CH4), and nitrous oxide (N2O) 

emissions, all measured in metric tons of CO2 equivalent. The first set of data consists of 

total GHG emissions including land-use change and forestry (LUCF), which represents 

net emissions/removals attributable to forest and land use changes. Such data essentially 

account for the role that deforestation, reforestation, and land use changes play as sources 

of carbon emissions or as carbon sinks. The remaining data consist of CH4 and N2O 

emissions, respectively. Data for CO2 emissions are available but are excluded from the 

analysis due to high correlation with total GHG emissions (𝑟 = 0.92). Indeed, CO2 

emissions represent the largest share of GHG emissions. As a result, environmental 

impact estimates using total GHG emissions will closely match those using CO2 

emissions. 

CAIT-US reports emissions across various energy sectors, namely residential, 

commercial, industrial, transportation, fugitive emissions, industrial processes, 

agriculture, and waste (WRI, 2015). In addition, it also reports fuel use during cross-

border transportation as well as changes in emissions related to land use changes and 

forestry (LUCF). CAIT-US data are developed based on the State Inventory Tool (SIT) 

of the Environmental Protection Agency (EPA), which represents an interactive 

spreadsheet model that helps develop state-level GHG inventories. The SIT default data 

consists primarily of data collected by federal agencies such as the EPA, the Energy 

Information Administration (EIA), Federal Highway Administration (FHA), Mineral 

Management Services (MMS), the USDA, and the U.S. Geological Survey (USGS) as 

well as other sources such as the Fertilizer Institute (WRI, 2015). For instance, the 

agricultural component of GHG emissions is estimated using data from the USDA, 
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Commercial Fertilizers Report, and the Fertilizer Institute, whereas LUCF is estimated 

based on data from the EPA and USGS (WRI, 2015). While the SIT is also designed to 

allow for the provision of potentially more reliable data by state agencies, CAIT-US only 

makes use of SIT’s default data. According to WRI (2015), CAIT-US follows this 

approach to ensure a reasonable degree of consistency across states. 

There are evidently uncertainties about CAIT-US as would normally be the case 

for databases estimating hard-to-measure variables. Relying exclusively on SIT default 

data raises a number of concerns. First, the provision of potentially more reliable activity 

data supplied by individual states may cast doubt on the reliability of EPA’s data. Second, 

simplifying assumptions in the EPA’s methodology introduces further uncertainties. For 

instance, the SIT assumes that landfills across all locations have the same type of waste, 

which is inconsistent with reality. Third, estimates produced by CAIT-US suffer from 

data omissions. In particular, CAIT-US excludes CH4 emissions arising from activities 

related to oil and natural gas, emissions from the production of nitric acid, adipic acid, 

HFCF-22, and various minerals, and emissions from industrial wastewater (WRI, 2015).   

Data for per capita GDP (in chained 2009 dollars), real utilities output (percent of 

state GDP), real manufacturing output (percent of state GDP), and real oil and natural gas 

output (percent of state GDP) are from the Bureau of Economic Analysis. Data for 

vehicle miles traveled (VMT) are from the U.S. Department of Transportation’s Federal 

Highway Administration. Finally, data on state organic cropland, organic pasture, and 

total farmland acreage are from the USDA’s Economic Research Service. 

Using state-level data has important advantages. Such data are from the same 

sources and ensure a reasonable degree of consistency, accuracy, and reliability. 
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Moreover, U.S. states have a common language and similar social norms and must 

comply with common federal laws, thus reducing potential unobserved heterogeneity. Of 

course, unobserved heterogeneity across states arising from demographic, geographic, 

natural resource, and regulatory idiosyncrasies, amongst others, can raise important 

concerns. Such concerns are undoubtedly legitimate and are addressed next. 

 

Preliminary Analysis of the Data 

 Table 7 in the appendix provides summary statistics of the main variables used in 

this analysis. Although most variables have 550 longitudinal observations, there are some 

that suffer from missing observations, thus reducing the sample size to as low as 421 

observations. Broadly speaking, the between and within standard deviations (SD) appear 

to vary for each of the listed variables. This suggests that the variation in these variables 

across states differs greatly from that observed within a state over time. In other words, 

the variables of interest are driven by variation across states and across time. It is also 

important to note that data for GHG and CH4 emissions may take negative values for 

some states, such as Idaho, Montana, Oregon, and Vermont for total GHG and New 

Hampshire for CH4. For instance, in New Hampshire the reduction of CH4 emissions 

from the conversion of landfill gas to energy may outweigh emissions arising from other 

sources. Indeed, the agricultural sector in New Hampshire, which is generally a major 

source of CH4 emissions, represented barely 0.09% of the state’s economy in 2011 (BEA, 

2016). Thus, to avoid problems in log transformation, a value of 20 metric tons of CO2 

equivalent is added to each GHG observation, whereas a value of 5 metric tons of CO2 
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equivalent is added to each CH4 observation. The values presented in Table 7 reflect 

these adjustments. 

 In a preliminary assessment of the association between organic food production 

and environmental emissions, Figure 4 plots the relationship between organic cropland 

share and log total GHG emissions based on mean values over the 1997, 2000-2008, and 

2010 periods. While the fitted regression line shows a negative relationship, it appears to 

be heavily influenced by observations from the state of Vermont. To verify this 

contention and identify potential influential observations, I derive median and median 

average deviation (MAD) values for each state. This approach is superior to using the 

standard deviation around the mean, which is known to be sensitive to outliers (Leys, Ley, 

Klein, Bernard, & Licata, 2013). To be consistent with previous research (e.g. Leys et al., 

2013), I use the following moderately conservative decision criterion:  

𝑥𝑖 − 𝑀𝑒𝑑𝑖𝑎𝑛

𝑀𝐴𝐷
 > | ± 2.5| 

which suggests that observations for which the deviation from the median exceeds 2.5 

times the median average deviation should be considered for potential exclusion from the 

analysis. Table 1 provides a snapshot of the states for which corresponding values are 

relatively high. There are at least six states that meet the decision criterion and that could 

be considered outliers. These states are Vermont, Maine, New York, California, Idaho, 

and Wisconsin. Indeed, this finding appears to be consistent with Figure 4, which 

distinctively shows observations for these states farther from the origin and from the 

observable cluster of other states. As for the remaining states, with the exception of New 

Hampshire, none meet the decision criterion. Although New Hampshire’s decision 

criterion value is equal to 2.5, it does not appear to be influential enough to be excluded. 
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Table 1. Decision criterion values for identifying outliers. 

State |(xi - 

Median)/MAD| 

VT 25.59447 

ME 11.6047 

NY 6.791471 

CA 6.624961 

ID 4.878464 

WI 4.380838 

NH 2.50074 

MI 2.455881 

MN 2.194822 

 

 

Figure 4. Scatter plot of the relationship between organic cropland share and GHG 

emissions (mean over 1997, 2000-2008, and 2010 years). 

 

Figure 5 helps explore the change in the fitted regression line after excluding the 

six states identified as outliers. While the relationship between organic cropland share 
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and GHG emissions appears to remain negative, its corresponding fitted line is less steep 

suggesting that the excluded states may have previously heavily influenced the 

relationship. It is important to note, however, that although the relationship between 

organic cropland share and GHG emissions appears to be negative, the scatter plot is 

bivariate and ignores other sources of emissions that may interact with organic cropland 

share and other variables in explaining GHG emissions. 

 

 

Figure 5. Scatter plot of the relationship between organic cropland share and GHG 

emissions without outliers (mean over 1997, 2000-2008, and 2010 years). 

 

Statistical Methods 

In order to assess the relationship between organic farming and GHG emissions, I 

develop a set of models based on the extensive literature on the Stochastic Impacts by 

Regression on Population, Affluence, and Technology (STIRPAT) approach (e.g. Dietz 
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& Rosa, 1994; Cole & Neumayer, 2004; Squalli, 2009, 2010, 2014). The STIRPAT 

approach sets up the framework for analyzing the various factors contributing to 

environmental impact and is particularly useful in estimating ecological elasticities, 

which measure the responsiveness of emissions to changes in certain explanatory 

variables. The STIRPAT approach is based on the IPAT mathematical identity, which 

posits that I = PAT. The STIRPAT equation can be generally expressed as: 

𝐼𝑖𝑡 = 𝑎𝑃𝑖𝑡
𝑏𝐴𝑖𝑡

𝑐 𝑇𝑖𝑡
𝑑 

where environmental impact (I) in state i during period t is a function of population (P), 

affluence (A), and technology (T). Given that per capita GDP is generally a proxy for 

affluence, the product of population and affluence is such that P×𝐴=𝐺𝐷𝑃. Thus, the 

technology component can be written as 𝑇=𝐼/𝐺𝐷𝑃, which represents impact per unit of 

GDP. Although the technology component is typically captured by the error term, it can 

be disaggregated into impact components (York, Rosa, & Dietz, 2003), an approach that I 

pursued in this thesis. It is worth noting that the literature estimating the STIRPAT model 

using U.S. state-level data is limited to a handful of studies (i.e. Squalli, 2010; Squalli, 

2014; McGee, 2015). 

After log-linearization and the introduction of relevant explanatory variables, the 

first base model is specified as follows: 

ln 𝐺𝐻𝐺𝑖𝑡

= 𝛼0 + 𝛼1 ln 𝑃𝑂𝑃𝑖𝑡 + 𝛼2 ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡 + 𝛼3(ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡)2 + 𝛼4 ln 𝑉𝑀𝑇𝑖𝑡

+ 𝛼5𝑂𝐼𝐿𝑖𝑡 + 𝛼6𝑈𝑇𝐼𝐿𝑖𝑡 + 𝛼7𝑀𝐴𝑁𝑈𝐹𝑖𝑡 + 𝛼8𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + 𝛼9 ln 𝐹𝐴𝑅𝑀𝐿𝐴𝑁𝐷𝑖𝑡

+ 𝛼10 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 𝜇𝑖 + 𝜇𝑡 + 𝜀𝑖𝑡 

(1) 



 25 

where log total GHG emissions including LUCF for state i in period t are estimated with 

respect to log population (POP), log real per capita GDP (INCOME), log real per capita 

GDP squared, log vehicle miles traveled (VMT), oil and natural gas output as % of state 

GDP (OIL), output from the utilities sector as % of state GDP (UTIL), output from the 

manufacturing sector as % of state GDP (MANUF), output from the transportation sector 

as % of state GDP (TRANS), log total farmland acreage (FARMLAND), and log organic 

cropland acreage (ORGCROP). Augmented specifications are also estimated after adding 

log organic pasture acreage (ORGPAST) and an interaction term representing the product 

between ln ORGCROP and TRANS (ORGCROP-TRANS). The model also includes an 

error term, which is decomposed whenever applicable into a state-specific component, 𝜇𝑖, 

a year-specific component, 𝜇𝑡, and an idiosyncratic shock, 𝜀𝑖𝑡. 

Similarly, the remaining base models for CH4 and N2O emissions are specified as 

follows: 

ln 𝐶𝐻4𝑖𝑡 =  𝛽0 + 𝛽1 ln 𝑃𝑂𝑃𝑖𝑡 + 𝛽2 ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡 + 𝛽3(ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡)2

+ 𝛽4 𝑂𝐼𝐿𝑖𝑡 +𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + 𝛽6 ln 𝐹𝐴𝑅𝑀𝐿𝐴𝑁𝐷𝑖𝑡 + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 𝜃𝑖 + 𝜃𝑡 + 𝜏𝑖𝑡 

 

(2) 

ln 𝑁2𝑂𝑖𝑡 = 𝛿0 + 𝛿1 ln 𝑃𝑂𝑃𝑖𝑡 + 𝛿2 ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡 + 𝛿3(ln 𝐼𝑁𝐶𝑂𝑀𝐸𝑖𝑡)2 + δ4ln 𝑉𝑀𝑇𝑖𝑡

+ 𝛿5 𝑀𝐴𝑁𝑈𝐹𝑖𝑡 +𝛿6𝑇𝑅𝐴𝑁𝑆𝑖𝑡

+ 𝛿7 ln 𝐹𝐴𝑅𝑀𝐿𝐴𝑁𝐷𝑖𝑡 + 𝛿8 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 𝛾𝑖 + 𝛾𝑡 + 𝜉𝑖𝑡 

(3) 

where Equation 2 includes the primary sources of CH4 emissions, namely livestock 

farming, and the production, processing, transportation, storage, distribution, and use of 

natural gas and petroleum. Equation 3 also controls for the primary sources of N2O 

emissions, namely industrial or chemical production and transportation, amongst others.  
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 The variable POP controls for the potential impact of population on emissions and 

also represents a scale variable. As a proxy for affluence, I used real per capita GDP (also 

known as income) and also introduced it as a quadratic term to control for potential 

nonlinearity in the relationship between income and greenhouse gas emissions. This is 

consistent with the Environmental Kuznets Curve hypothesis (Grossman & Krueger, 

1995), which posits that the relationship between income and emissions can be bell-

shaped, suggesting that emissions increase with income up to a certain level before 

eventually declining.  

As for the technology variable, it is decomposed into the OIL, UTIL, MANUF, 

and TRANS variables, which are used to control for emissions that are driven by large oil 

and natural gas production, manufacturing, utilities, manufacturing, and transportation 

sectors, respectively. Given that CH4 data omit emissions arising from activities related to 

oil and natural gas, including the OIL variable serves a particular purpose. A properly 

specified CH4 model requires the coefficient estimate for OIL to be statistically 

insignificant. I also introduced log VMT as an explanatory variable to control for the 

potential effect of driving and transportation on GHG emissions. Finally, I included an 

interaction term between log organic cropland acreage and TRANS in order to assess to 

what degree the interaction between organic farming and the transportation sector 

contributes to GHG emissions. In other words, by including this variable, it is possible to 

estimate how changes in transportation output affect GHG emissions for given levels of 

organic cropland acreage and how changes in organic cropland acreage affect GHG 

emissions for given levels of transportation output. The transportation sector is 

particularly important as it is not necessarily expected to mitigate emissions from its 



 27 

interaction with organic farming practices. Organically produced food could possibly 

depend on the transportation sector just as much as its conventionally produced 

counterpart. 

The key variables of interest include ln ORGCROP, ln FARMLAND, ln 

ORGPAST, and the interaction term between TRANS and ln ORGCROP. The 

ORGCROP variable represents organic cropland acreage and is used in conjunction with 

the FARMLAND variable, which represents total farmland acreage. These two variables 

when jointly included control for emissions arising from the agricultural sector and for 

the relative size of the organic farming sector. Special attention must be given to the 

interaction term. Without it, the coefficient estimate for TRANS would be interpreted as 

a measure of the partial effect of TRANS on GHG emissions, for given levels of other 

factors. However, with its inclusion, the effect of TRANS on GHG emissions must be 

interpreted by taking into account both the coefficient estimate of TRANS and that of the 

interaction term. 

It is important to note that log transformation yields a number of benefits. First, 

estimates using log-transformed variables are less sensitive to outliers and 

heteroskedastic residuals. Second, coefficient estimates can be interpreted as ecological 

elasticities, measuring the % responsiveness of the dependent variable to % changes in a 

dependent variable, for given levels of other variables. Third, the interpretation of 

coefficient estimates is more meaningful because log transformation scales the data to a 

common unit of measurement. 

Unobserved heterogeneity is virtually inevitable and cannot be expected to be 

independent of the included variables in the empirical specifications. Estimations not 
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accounting for such heterogeneity would suffer from omitted variable bias and would 

yield biased and inconsistent estimates. Such heterogeneity usually arises from time-

invariant factors such as demographic distribution, location, natural resource endowment, 

regulatory regime, and other hard-to-measure factors. The fixed effects estimator allays 

such concerns due to its ability to control for time-invariant factors, for potential 

geographic non-independence of data points (spatial autocorrelation), and for the 

potential spillover effects that can arise from being in a particular location. For 

completeness and whenever applicable, I estimated my specifications using random and 

fixed effects, one-way (state) random and fixed effects, and two-way (state and time) 

random and fixed effects. The choice of the appropriate estimator is determined using a 

Hausman test, whereas the choice of including the year-specific component is determined 

using a Wald test. All estimations are completed using standard errors that are cluster-

robust to arbitrary heteroskedasticity and arbitrary intragroup correlation. 

As described in the previous chapter, the regression estimations test the null 

hypothesis that the coefficient estimate for organic food production is statistically equal 

to zero. The null hypothesis represents the Neutrality Hypothesis, which when not 

rejected suggests the absence of statistically significant association between organic 

cropland acreage and GHG emissions. If the null hypothesis is rejected, a positive 

coefficient estimate for organic cropland acreage would provide support for the Polluting 

Hypothesis, whereas a negative coefficient estimate would support the Mitigating Effect 

Hypothesis. 
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Chapter III 

Results 

 

In order to identify the most suitable estimator, I first made use of a Hausman test 

for the null hypothesis that the differences in coefficients between random and fixed 

effects estimations were not systematic. I then tested for the inclusion of the year-specific 

component using a Wald test for the null hypothesis that the coefficient estimates for the 

year dummies were jointly equal to zero. Table 2 shows that for the GHG model, the null 

hypothesis is not rejected, favoring the random effects estimator. In contrast, however, 

the null hypothesis for both CH4 and N2O models is rejected (𝑝 < 0.01), providing 

support for the fixed effects estimator. 

 

Table 2. Hausman test for estimator selection and Wald test for the introduction of year 

dummies. 

 GHG 

Model 

CH4 

Model  

N2O 

Model 

Hausman Test    

 𝜒2 12.94 49.28 81.48 

p value 0.37 0.00 0.00 

Wald Test    

𝜒2 80.07 7.56 20.43 

p value 0.00 0.00 0.00 

 

As for the year-specific component, Table 2 shows that the null hypothesis that 

the coefficient estimates of all year dummies are jointly statistically significant is rejected 

for all three models (𝑝 < 0.01). This suggests that temporal variation must be accounted 
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for by including a set of dummy variables for each year of the data sample except a 

reference year. Accordingly, dummy variables are introduced for the years 1997 and 

2000-2008 and the year 2010 is assumed as the reference year and is omitted from the 

estimations. 

 

Estimation Results for total GHG Emissions Including LUCF 

Table 3, Table 4, and Table 5 summarize the main estimation results. Column (1) 

of Table 3 shows the random effects estimation results for the base model specified in 

Equation 1 of the previous chapter. Column (2) shows estimation results for the 

augmented specification introducing the interaction term, whereas column (3) shows 

results for the specification introducing the ln ORGPAST variable. Columns (4) through 

(6) show results for the same specifications but after accounting for the year-specific 

component. 

The gradual introduction of variables appears to increase the explanatory power 

of the estimated specifications. However, the specification results in column (3) appear to 

have relatively similar explanatory power to those in column (2) despite the fact they are 

based on a smaller sample. Indeed, the explanatory variables included in the 

specifications reported in columns (1) and (2) explain about 83% of the variation in GHG 

emissions with a sample size of 496, whereas those for the specification reported in 

column (3) explain 82.8% of the variation in GHG emissions with a sample size of 421. 

Focusing on column (3) estimation results, the coefficient estimate for population 

has the expected sign and is statistically significant (𝑝 < 0.01). The coefficient estimates 

for oil and natural gas, utilities, and manufacturing also have the expected sign and are 
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statistically significant at the 0.01, 0.05, and 0.01 levels, respectively. As for the variables 

of interest, the coefficient estimate for log farmland is positive and statistically significant 

(𝑝 < 0.01). This suggests that for a one percent increase in farmland acreage, GHG 

emissions are expected to increase by 0.13%. On the other hand, the ecological elasticity 

coefficients for log organic cropland and log organic pasture are both negative and 

statistically significant (𝑝 < 0.05). This suggests that as organic farming acreage 

increases by one percent, total GHG emissions are likely to decrease by about 0.06% and 

as organic pasture acreage increases by one percent, GHG emissions are expected to 

decrease by about 0.007%. Finally, neither the coefficient estimate for the transportation 

variable nor that for the interaction term are statistically significant, suggesting that the 

effect of transportation output on GHG emissions does not vary with changes in organic 

farming.  

 The introduction of the year-specific component leaves some results unchanged 

but also yields a number of important changes. All specifications in columns (4) through 

(6) yield similar results. The coefficient estimates for population, oil and natural gas, 

manufacturing, and farmland maintain the same sign and remain statistically significant. 

However, the coefficient estimate for utilities, log organic cropland, and log organic 

pasture are no longer statistically significant. This suggests that organic farming has no 

statistically significant impact on GHG emissions. It is important to note, however, that 

the explanatory power of the estimated specifications has decreased after the introduction 

of the year-specific component (i.e. R2 decreased from 0.828 to 0.81). Although the 

change is relatively small, it may still suggest that the interpretations based on the 

specifications that exclude the year-specific component may be more statistically robust. 
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As a result, and for consistency, I will revert to the estimation results in column (3) for 

future discussions. 

 

Table 3. Random effects estimation results for GHG emissions incl. LUCF (n = 50). 

Variables (1) (2) (3) (4) (5) (6) 

log population 0.400** 0.433** 0.541** 0.434** 0.464** 0.520** 

 (0.142) (0.142) (0.165) (0.159) (0.154) (0.173) 

log income 21.271 23.675 22.139 21.953 24.325* 21.996 

 (12.930) (12.768) (15.883) (12.081) (12.358) (14.978) 

(log income)2 -0.973 -1.087 -1.012 -0.994 -1.106 -0.999 

 (0.600) (0.593) (0.737) (0.560) (0.573) (0.696) 

log vmt 0.183 0.148 0.042 0.177 0.146 0.090 

 (0.142) (0.142) (0.169) (0.169) (0.165) (0.187) 

Oil & natural gas 0.030** 0.030** 0.035** 0.031** 0.032** 0.037** 

 (0.007) (0.007) (0.010) (0.009) (0.009) (0.011) 

Utilities 0.097** 0.093** 0.068* 0.048 0.040 0.004 

 (0.029) (0.030) (0.034) (0.052) (0.055) (0.064) 

Manufacturing 0.017** 0.017* 0.020** 0.017* 0.017* 0.020* 

 (0.006) (0.007) (0.006) (0.007) (0.008) (0.008) 

Transportation 0.019 -0.044 -0.058 0.031 -0.032 -0.042 

 (0.027) (0.032) (0.055) (0.027) (0.027) (0.051) 

log farmland 0.118** 0.118** 0.131** 0.103** 0.103** 0.105** 

 (0.036) (0.035) (0.036) (0.034) (0.033) (0.034) 

log organic crop -0.015* -0.039* -0.059* -0.001 -0.025 -0.040 

 (0.006) (0.018) (0.027) (0.006) (0.015) (0.027) 

log organic crop 

x 

 0.007 0.010  0.008 0.010 
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Transportation  (0.005) (0.007)  (0.004) (0.007) 

log organic   -0.007*   -0.002 

pasture   (0.003)   (0.004) 

Constant -121.717 -134.381 -127.066 -126.976 -139.457* -126.921 

 (69.960) (69.063) (85.718) (65.535) (66.970) (80.822) 

Year dummies No No No Yes Yes Yes 

N 496 496 421 496 496 421 

Overall R2 0.830 0.831 0.828 0.819 0.820 0.810 

Notes: Robust standard errors in parentheses. The coefficient estimates of the year 

dummies are omitted from the estimation results. ** p<0.01, * p<0.05. 

 

Estimation Results for CH4 Emissions 

Table 4 summarizes the fixed effects estimation results for CH4 emissions. 

Column (1) reports estimation results for the specification described by Equation 2, 

whereas columns (2) and (3) augment this specification with the interaction term and log 

ORGPAST, respectively. Columns (4) through (6) report the same specifications but after 

introducing the year-specific component. As expected, the coefficient estimate for 

population is positive and statistically significant (𝑝 < 0.01) across all specifications. As 

described earlier, the OIL variable could have been excluded from the model due to the 

fact that the data used omit CH4 emissions from oil and natural gas. This is confirmed by 

the fact that the coefficient estimate for OIL is statistically insignificant across all 

estimations. The coefficient estimate for transportation output is statistically significant 

(𝑝 < 0.05) but only in the base specification in column (1). Adding the interaction term 

in column (2) not only increases the explanatory power of the specification but also 

results in a negative and statistically significant coefficient estimate for log organic 
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cropland and a positive and statistically significant coefficient estimate for the interaction 

term. 

  

Table 4. Fixed effects estimation results for CH4 emissions (n = 50). 

Variables (1) (2) (3) (4) (5) (6) 

log population 0.517** 0.525** 0.782** 0.683** 0.664** 0.870** 

 (0.164) (0.161) (0.181) (0.173) (0.168) (0.226) 

log income -0.298 1.576 1.748 3.138 5.059 4.584 

 (7.374) (6.474) (4.847) (6.634) (6.061) (4.524) 

(log income)2 0.018 -0.070 -0.072 -0.130 -0.220 -0.194 

 (0.347) (0.305) (0.229) (0.312) (0.284) (0.212) 

Oil & natural gas 0.015 0.014 0.011 0.011 0.009 0.009 

 (0.008) (0.009) (0.007) (0.008) (0.009) (0.007) 

Transportation 0.039* -0.027 -0.064 0.036 -0.036 -0.040 

 (0.016) (0.025) (0.038) (0.022) (0.027) (0.043) 

log farmland 0.059 0.116 0.156 -0.058 0.008 0.070 

 (0.233) (0.226) (0.203) (0.240) (0.234) (0.233) 

log organic crop -0.010 -0.033* -0.052** -0.008 -0.033* -0.047** 

 (0.006) (0.013) (0.010) (0.006) (0.014) (0.011) 

log organic crop  0.007* 0.012**  0.008** 0.010** 

x Transportation  (0.003) (0.003)  (0.003) (0.003) 

log organic pasture   -0.007   -0.007 

   (0.004)   (0.004) 

Constant -5.085 -15.884 -21.789 -25.583 -36.304 -38.191 

 (38.298) (33.017) (25.276) (33.854) (30.596) (23.305) 

Year dummies No No No Yes Yes Yes 
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N 496 496 421 496 496 421 

Overall R2 0.400 0.478 0.436 0.183 0.266 0.327 

Notes: Robust standard errors in parentheses. The coefficient estimates of the year 

dummies are omitted from the estimation results. ** p<0.01, * p<0.05. 

 

 

The augmented specification in column (3) yields similar results in addition to a 

slight increase in the size of the relevant coefficient estimates. However, although the 

introduction of the year-specific component leaves the estimation results relatively 

unchanged, the CH4 model faces a decrease in explanatory power (i.e. R2 decreases from 

0.436 to 0.327). Consistent with estimations for the GHG model, interpretations will be 

based on the results reported in column (3).  

The fact that the coefficient estimate for the interaction term is positive and 

statistically significant suggests that the effect of transportation output on CH4 emissions 

varies with organic farming. This means that as log organic cropland takes different 

values, the effect of transportation output on GHG emissions changes accordingly. The 

relationship between transportation output and CH4 emissions can be expressed by 

rewriting Equation 2 to reflect the main effect of transportation output on emissions at 

given levels of log organic cropland. The relevant expression is shown in the following: 

ln 𝐶𝐻4𝑖𝑡 

=  𝛽0 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 𝛽8(ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 ×  𝑇𝑅𝐴𝑁𝑆)

= 𝛽0 + ⋯ + (𝛽5 + 𝛽8 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃) 𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡

= 𝛽0 + ⋯ + (−0.064 + 0.012 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃) 𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 

where the main effect of transportation output is a combination of the partial effect that is 

captured by 𝛽5 and the one from the interaction component 𝛽8 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃. After 
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substituting with the relevant coefficient estimates from Table 4 and taking into account 

all decimals in the regression output, log organic cropland must take a value 

approximately equal to 5.43 for transportation output not to affect CH4 emissions. This 

threshold value is calculated by dividing 0.0639871 (𝛽5) by 0.011781 (𝛽8). The 

coefficient estimate for TRANS is negative when −0.064 > 0.012 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 and 

positive when −0.064 < 0.012 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃. Thus, an increase in transportation output 

will decrease CH4 emissions when ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 < 5.43 and increase emissions when 

ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 > 5.43. 

The relationship between transportation output and CH4 emissions can be better 

visualized using a predictive margins plot. This plot helps show how changes in log 

organic farming influence the impact of transportation on CH4 emissions. A meaningful 

plot requires the selection of relevant values for each of the two variables in the 

interaction term.  

Table 7 provides important insight about these two variables. In fact, according to 

this table, values for log organic cropland range between 0.69 and 13.12, whereas values 

for transportation output range between 1.34 and 11.79.  
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Figure 6. Predictive margins plot of the effect of transportation output on CH4 emissions 

for given levels of log organic cropland. 

 

Figure 6 shows a “butterfly”-shaped predictive margins plot. Each line shown 

reflects the effect of transportation output on CH4 emissions for given levels of log 

organic cropland acreage. The lines starting from the left wing of the plot represent 

values ranging from 1 to 13 increasing from top to bottom. For instance, the first line 

from the top shows that when log organic cropland takes a value of 1, an increase in 

transportation output results in lower CH4 emissions. This is true until log organic 

cropland reaches a threshold of 5.43 at which higher transportation output will have no 

effect on CH4 emissions. For values beyond this threshold, as organic farming expands, 

the effect of transportation output on CH4 emissions is positive and rises at an increasing 

rate. 

Similarly, the main effect of organic farming can be captured with the following 
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expression: 

ln 𝐶𝐻4𝑖𝑡 

=  𝛽0 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 𝛽8(ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 ×  𝑇𝑅𝐴𝑁𝑆)

= 𝛽0 + ⋯ + (𝛽7 + 𝛽8𝑇𝑅𝐴𝑁𝑆) ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡  + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡  

= 𝛽0 + ⋯ + (−0.052 + 0.012 𝑇𝑅𝐴𝑁𝑆) ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 

from which the transportation output threshold is estimates at approximately 4.41, 

calculated by dividing 0.0520068 (𝛽7) by 0.011781 (𝛽8). Thus, an increase in organic 

cropland acreage will mitigate CH4 emissions when 𝑇𝑅𝐴𝑁𝑆 < 4.41 and will increase 

CH4 emissions when 𝑇𝑅𝐴𝑁𝑆 > 4.41.  

It is worth noting that although the coefficient estimate for log organic cropland 

acreage is negative and statistically significant (𝑝 < 0.01), it does not mean that organic 

farming mitigates CH4 emissions, net of other sources of emissions. Rather, since log 

organic cropland interacts with transportation output, it must be interpreted for given 

levels of transportation output. In other words, a one percent increase in organic crop 

acreage would result in a 0.052% decrease in CH4 emissions when transportation output 

takes a value of zero. This is evidently unrealistic and does not capture the true 

interaction between organic farming and transportation output. 
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Figure 7. Predictive margins plot of the effect of organic farming on CH4 emissions for 

given levels of transportation output. 

 

As described above, transportation output observations take values ranging 

between 1.34 and 11.78. A predictive margins plot can provide insight on how organic 

farming affects CH4 emissions for given levels of transportation output. Figure 7 shows a 

plot with a pattern relatively similar to that shown in Figure 6. The lines starting from the 

left wing represent values for transportation output ranging from 1 to 11. Once again, for 

low levels of transportation output, an increase in organic farming appears to mitigate 

CH4 emissions. Once transportation output exceeds the 4.41 threshold, the effect of 

organic farming on emissions reverses to start causing CH4 emissions to rise. 
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Estimation Results for N2O Emissions 

Table 5 summarizes the estimation results for N2O emissions. Just like previous 

estimations, column (1) shows the estimation results of the base specification as 

described by Equation 3. This is followed by the estimation results of two specifications 

that are augmented with the interaction term and log organic pasture, respectively. 

Columns (4) through (6) show estimation results for the same specifications but with the 

introduction of the year-specific component. 

 

Table 5. Fixed effects estimation results for N2O emissions (n = 50). 

Variables (1) (2) (3) (4) (5) (6) 

log population -1.013** -0.956** -0.962** 0.062 0.024 0.006 

 (0.210) (0.220) (0.209) (0.278) (0.269) (0.342) 

log income 26.529* 31.129** 37.225** 32.861** 36.479** 41.012** 

 (11.199) (8.793) (10.847) (7.917) (6.874) (7.854) 

(log income)2 -1.242* -1.457** -1.744** -1.501** -1.673** -1.887** 

 (0.525) (0.412) (0.509) (0.368) (0.317) (0.364) 

log vmt 0.028 -0.027 0.063 -0.048 -0.078 0.082 

 (0.237) (0.240) (0.222) (0.242) (0.242) (0.213) 

Manufacturing 0.008 0.009 0.012* -0.001 0.001 0.002 

 (0.006) (0.006) (0.006) (0.004) (0.004) (0.004) 

Transportation 0.035 -0.140** -0.304** 0.047 -0.101** -0.200* 

 (0.024) (0.043) (0.077) (0.035) (0.035) (0.085) 

log farmland -0.363 -0.215 -0.340 -0.455 -0.325 -0.364 

 (0.489) (0.463) (0.548) (0.381) (0.372) (0.444) 

log organic crop -0.027** -0.088** -0.160** -0.011 -0.063** -0.110** 
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 (0.008) (0.025) (0.027) (0.008) (0.019) (0.024) 

log organic crop  0.020** 0.035**  0.016** 0.026** 

x Transportation  (0.005) (0.007)  (0.004) (0.006) 

log organic 

pasture 

  0.004   0.008 

   (0.004)   (0.004) 

Constant -119.413 -146.09** -176.61** -171.71** -191.51** -215.820** 

 (59.828) (46.904) (55.944) (42.928) (37.682) (42.445) 

Income TP ($) 43,396 43,432 43,199 56,742 54,463 52,510 

Year dummies No No No Yes Yes Yes 

N 535 535 454 535 535 454 

R2 0.650 0.518 0.612 0.599 0.614 0.470 

Notes: Robust standard errors in parentheses. Income TP stands for income turning point. 

The coefficient estimates of the year dummies are omitted from the estimation results. ** 

p<0.01, * p<0.05. 

 

The estimation results reported in column (1) show that the coefficient estimate 

for population is negative and statistically significant (𝑝 < 0.01). This is somewhat 

surprising as after controlling for other sources of emissions, population is expected to 

increase N2O emissions (e.g. Squalli, 2014). There is also evidence of an EKC suggesting 

that N2O emissions increase with income up to a turning point of $43,396 after which 

emissions decline. The coefficient estimate for log organic cropland is negative and 

statistically significant (𝑝 < 0.01) suggesting that a one percent increase in organic 

farming acreage would result in a 0.027% decrease in N2O emissions, net of other factors. 

After the introduction of the interaction term and log organic pasture, the results remain 

relatively unchanged. However, with the interaction term being statistically significant 
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(𝑝 < 0.01), the interpretation of the effect of organic farming on N2O emissions will 

depend on the values that transportation output may take. 

The introduction of the year-specific component appears to leave the estimation 

results largely unaffected. With the exception of the coefficient estimates for population, 

which become statistically insignificant, all other results remain relatively unchanged. 

Based on the estimation results in column (6), there is still evidence of an EKC but at a 

higher turning point of $52,510. The coefficient estimates for transportation output, log 

organic cropland, and the interaction term are all statistically significant (𝑝 < 0.05, 𝑝 <

0.01, and 𝑝 < 0.01, respectively). Consistent with previous estimation results, 

explanatory power declines with the introduction of the year-specific component (i.e. R2 

declines from 0.612 to 0.470).  

Interpreting the effect of transportation output on N2O emissions requires an 

analysis similar to the one completed for CH4 emissions. Since the coefficient estimates 

for log organic cropland and for the interaction term are statistically significant, the main 

effect of transportation output on N2O emissions will vary with values of log organic 

cropland. The following expression reflects the main effect of transportation output on 

N2O emissions: 

ln 𝑁2𝑂𝑖𝑡 = 𝛽0 + ⋯ + (−0.30 + 0.035 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃)𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 

from which a threshold for log organic cropland at which transportation output does not 

affect N2O emissions can be identified. After substituting with the relevant coefficient 

estimates from Table 5 in the appendix, log organic cropland is estimated to take a value 

approximately equal to 8.77. Thus, an increase in transportation output will decrease N2O 

emissions when ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 < 8.77 and increase emissions when ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 >
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8.77. This threshold value is calculated by dividing 0.3042878 (𝛽5) by 0.0346843 (𝛽8). 

 

 

Figure 8. Predictive margins plot of the effect of transportation output on N2O emissions 

given levels of log organic cropland. 

 

A predictive margins plot can once again confirm this threshold and provide a 

visual representation of the interaction between organic farming and transportation output 

in influencing N2O emissions. As Figure 8 shows, for any value ranging between 1 and 8 

for log organic cropland, an increase in transportation output results in lower N2O 

emissions. For values of log organic cropland that are higher than 8.77 (≥ 9 in the figure), 

changes in transportation output increase N2O emissions at an increasing rate. 
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Figure 9. Predictive margins plot of the effect of organic farming on N2O emissions given 

levels of transportation output. 

 

The effect of organic farming on N2O emissions can also be expressed with the 

following simplified equation and visualized using predictive margins plots: 

ln 𝑁2𝑂𝑖𝑡 = 𝛽0 + ⋯ + (−0.16 + 0.035 𝑇𝑅𝐴𝑁𝑆) ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 

for which the corresponding threshold is approximately equal to 4.61, calculated by 

dividing 0.1599946 (𝛽7) by 0.0346843 (𝛽8). Thus, an increase in organic farming will 

mitigate N2O emissions when 𝑇𝑅𝐴𝑁𝑆 < 4.61 and will increase N2O emissions when 

𝑇𝑅𝐴𝑁𝑆 > 4.61. Figure 9 shows a predictive margins plot of the effect of organic farming 

on N2O emissions, which confirms these findings. 

 

Sensitivity Analysis 

As described in the previous chapter, the relationship between organic farming 
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and emissions may be biased from the inclusion of influential observations. Based on 

absolute deviation around the median, the following states were identified as outliers: 

Vermont, Maine, New York, California, Idaho, and Wisconsin. Although the exclusion of 

these states from the analysis does not guarantee improved robustness, it helps allay 

concerns about biased estimates.  

Table 8 in Appendix 1 summarizes random effects estimation results for GHG 

emissions including LUCF and excluding the states classified as outliers. Overall, the 

estimation results are similar to those reported in Table 3. The key difference between the 

results reported for the original specification and those reported for the outlier-adjusted 

model is that the coefficient estimate for log organic cropland is no longer statistically 

significant in the base specification and in the one augmented with the interaction term as 

reported in columns (1) and (2), respectively. Nevertheless, the results in column (3) 

show that even with the exclusion of outliers, the coefficient estimates for the key 

variable log organic cropland remain negative across both specifications, statistically 

significant (𝑝 < 0.05), and relatively equisized (-0.059 in the original specification 

versus -0.061 in the outlier-adjusted specification). One important exception is that the 

coefficient estimate for log organic pasture becomes statistically insignificant after the 

exclusion of outliers. 

Recall that the introduction of a year-specific component into the original 

specification stripped the key variable log organic cropland of statistical significance 

(Table 3). This is also the case in the outlier-adjusted specification under the base model 

as well as under those augmented with the interaction term and log organic pasture. In 

addition, explanatory power declines with R2 decreasing slightly from 0.77 to 0.75. Thus, 
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the main conclusions drawn from the original specifications remain relatively unchanged. 

Table 9 in Appendix 1 summarizes the fixed effects estimation results for CH4 

emissions after the exclusion of outliers. Overall, the results reported in columns (3) and 

(6) appear to mirror those in Table 4. The coefficient estimate for log organic cropland is 

negative, that for the interaction term is positive, and both parameters are statistically 

significant (𝑝 < 0.01). In addition, both coefficient estimates approach those reported in 

Table 4. However, contrary to previous estimations, the coefficient estimate for log 

organic pasture is negative and statistically significant (𝑝 < 0.05). 

Since the coefficient estimates for log organic cropland and for the interaction 

term are statistically significant, the main effect of transportation output on CH4 

emissions will vary with values of log organic cropland. Consistent with the previous 

section and focusing on the estimation results in column (3), an expression reflecting the 

main effect of transportation output on emissions is shown in the following: 

ln 𝐶𝐻4𝑖𝑡 

= 𝛽0 + ⋯ + (−0.067 + 0.013 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃)𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 

for which a threshold for log organic cropland at which transportation output does not 

affect CH4 emissions can be identified. After substitution with the relevant coefficient 

estimates from Table 9, log organic cropland is estimated to take a value approximately 

equal to 5.3. Thus, an increase in transportation output will decrease CH4 emissions when 

ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 < 5.3 and increase emissions when ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃 > 5.3. This threshold 

value is calculated by dividing 0.0665248 (𝛽5) by 0.0125356 (𝛽8).  

With the exclusion of outlier states log organic cropland ranges between 0.69 and 

12.79, whereas transportation output ranges between 1.34 and 11.78. Based on these 
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values, a predictive margins plot of the effect of transportation output on CH4 emissions 

can provide a visual description of these results. Figure 10 confirms that for values of log 

organic cropland less than 5.3, an increase in transportation output results in lower CH4 

emissions. Beyond this threshold, an increase in transportation output results in higher 

CH4 emissions. 

 

Figure 10. Predictive margins plot of the effect of transportation output on CH4 emissions 

for given levels of log organic cropland (excluding outliers). 

 

Consistent with previous estimates, the main effect of organic farming on CH4 

emissions can be captured with the following simplified expression: 

ln 𝐶𝐻4𝑖𝑡 = 𝛽0 + ⋯ + (−0.053 + 0.013 𝑇𝑅𝐴𝑁𝑆) ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 

from which the threshold for transportation output is estimated at about 4.21, calculated 

by dividing 0.0527906 by 0.0125356. That is, an increase in log organic cropland will 

mitigate CH4 emissions when 𝑇𝑅𝐴𝑁𝑆 < 4.21 and will increase CH4 emissions when 
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𝑇𝑅𝐴𝑁𝑆 > 4.21. Once again, the predictive margins plot in Figure 11 confirms these 

findings. 

 

 

Figure 11. Predictive margins plot of the effect of organic farming on CH4 emissions for 

given levels of transportation output (excluding outliers). 

 

Table 10 in Appendix 1 reports fixed effects estimation results for N2O emissions 

after the exclusion of outlier states. In comparison to those for the original specifications 

reported in Table 5, the new estimation results leave the key conclusions unchanged. 

Focusing on column (3) of Table 10, the coefficient estimates for transportation output 

and log organic cropland remain both negative and statistically significant (𝑝 < 0.01). In 

addition, the coefficient estimate for the interaction term also stays positive and 

statistically significant (𝑝 < 0.01). The size of such parameters appears to also be 
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affected only slightly by the exclusion of outliers. Similarly, the estimation results 

reported in column (6) do not appear to be affected by the missing states. 

The following simplified expressions capture the effect of transportation output 

on N2O emissions for given levels of log organic cropland and the effect of organic 

farming on N2O emissions for given levels of transportation output:  

ln 𝑁2𝑂𝑖𝑡 = 𝛽0 + ⋯ + (−0.27 + 0.032 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃)𝑇𝑅𝐴𝑁𝑆𝑖𝑡 + ⋯ + 𝛽7 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 

ln 𝑁2𝑂𝑖𝑡 = 𝛽0 + ⋯ + (−0.145 + 0.032 𝑇𝑅𝐴𝑁𝑆) ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + ⋯ + 𝛽5𝑇𝑅𝐴𝑁𝑆𝑖𝑡 

from which the log organic cropland threshold is estimated at about 8.5, calculated by 

dividing 0.2709086 by 0.0318446. On the other hand, the transportation output threshold 

is estimated at about 4.54, computed by dividing 0.1445786 by 0.0318446. Thus, an 

increase in transportation output will mitigate N2O emissions as long as 

𝐿𝑂𝐺𝑂𝑅𝐺𝐶𝑅𝑂𝑃 < 8.5 and will increase emissions as long as 𝐿𝑂𝐺𝑂𝑅𝐺𝐶𝑅𝑂𝑃 > 8.5. In 

addition, an increase in organic farming will mitigate N2O emissions as long as 

𝑇𝑅𝐴𝑁𝑆 < 4.54 and will increase emissions as long as 𝑇𝑅𝐴𝑁𝑆 > 4.54.  

Figure 12 shows a predictive margins plot of the effect of transportation output on 

N2O emissions. For given levels of log organic cropland below 8.5, an increase in 

transportation output mitigates N2O emissions. However, as log organic cropland moves 

towards the threshold, the mitigating impact decreases. Furthermore, for values of log 

organic cropland exceeding 8.5, an increase in transportation output will increase N2O 

emissions and the effect worsens as log organic cropland expands. 
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Figure 12. Predictive margins plot of the effect of transportation output on N2O emissions 

for given levels of log organic cropland (excluding outliers). 

 

The predictive margins plot in Figure 13 illustrates the main effect of organic 

farming on N2O emissions. This figure confirms again that for given levels of 

transportation output below the threshold of 4.54, an increase in organic farming will 

mitigate N2O emissions but the effect declines as transportation output approaches the 

threshold. On the other hand, an increase in organic farming will increase emissions for 

given levels of transportation output exceeding 4.54 and this effect worsens as 

transportation output increases. 
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Figure 13. Predictive margins plot of the effect of organic farming on N2O emissions for 

given levels of transportation output (excluding outliers). 

 

Cluster Analysis 

  Although regression analysis helps estimate the relationship between organic 

farming and GHG emissions, it can also be insightful in spatial analysis. More 

specifically, regression estimates can be used to derive environmental impact estimates 

for individual states. This type of analysis can help identify potential patterns and group 

environmental impact across states according to identifiable characteristics. Accordingly, 

Equations 1 through 3 are re-estimated in order to derive estimates for the error term. It is 

worth noting that in random effects estimations the error component is comprised of the 

state-specific component and the idiosyncratic shock, whereas in fixed effects estimations, 

the state-specific component is captured by the intercept. Thus, cluster analysis requires 

point estimates of the state-specific component and the idiosyncratic shock from random 
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effects estimations and point estimates of only the idiosyncratic shock from fixed effects 

estimations.  

The error terms are derived from the estimations while ensuring that the 

idiosyncratic shock is different for each state at each point in time and that the state-

specific component varies across states but not across time. Thus, in order to compute 

individual values of the idiosyncratic shock for each state, I first derive estimates for each 

state at different periods then take the mean of these values for each state across time. 

The state-specific component and idiosyncratic shock are summed together to derive the 

error term for GHG estimations, whereas only the idiosyncratic shock is used for N2O 

estimations. 

The following environmental impact equations are derived using only statistically 

significant coefficient estimates for the key variables and point estimates of the state-

specific component and idiosyncratic shock. Mean values for each of the relevant 

variables are then substituted into these equations to derive point estimates of the state-

level environmental impact. For consistency, I focus on the results presented in column 

(3) of Table 3, Table 4, and Table 5 given the fact that they have higher explanatory 

power (based on the reported R2 values) than those in column (6).   

ln 𝐺𝐻𝐺𝑖𝑡

= 0.131 ln 𝐹𝐴𝑅𝑀𝐿𝐴𝑁𝐷𝑖𝑡 − 0.059 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 − 0.007 ln 𝑂𝑅𝐺𝑃𝐴𝑆𝑇𝑖𝑡 + 𝜇𝑖 + 𝜀𝑖𝑡 

ln 𝐶𝐻4𝑖𝑡 =  −0.052 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 0.012 (ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡  ×  𝑇𝑅𝐴𝑁𝑆𝑖𝑡) + 𝜏𝑖𝑡 

ln 𝑁2𝑂𝑖𝑡

= 176.61 − 0.304 𝑇𝑅𝐴𝑁𝑆𝑖𝑡

− 0.16 ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡 + 0.035 (ln 𝑂𝑅𝐺𝐶𝑅𝑂𝑃𝑖𝑡  ×  𝑇𝑅𝐴𝑁𝑆𝑖𝑡) + 𝜉𝑖𝑡 
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It is worth noting that only the key variables of interest are considered for the 

environmental impact calculations since including all variables would yield 

environmental impact estimates arising from all included sources of emissions. Table 11 

in Appendix 1 shows environmental impact estimates that are based on the equations 

above and relevant point estimates of the included variables. However, these estimates 

are relatively meaningless on their own unless used within the context of a comparative 

cluster analysis. Thus, environmental impact estimates can be interpreted as the effect of 

organic farming independently of other sources of emissions.  

 The values presented in Table 11 can be plotted on a map of the United States to 

provide a visual depiction of the spatial distribution of the environmental impact of 

organic farming across states. However, it is important to first visually inspect the 

statistical distribution of the data. Figure 14 show histograms plotted using the data 

representing environmental impact estimates for total GHG, CH4, and N2O emissions. 

The histogram for GHG emissions appears right-skewed with the majority (more than 

80%) of the observations around the mean. There are even a few observations that take 

extreme values exceeding the mean plus three standard deviations. The histogram for 

CH4 provides a similar picture although not as heavily skewed, and shows some extreme 

values. In contrast, the histogram for N2O shows a distribution that approaches normality 

with no noticeable extreme values. 
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Figure 14. Histograms of environmental impact estimates. 

  

The mapping of these estimates provides a spatial perspective of the distribution 

of the environmental impact of organic farming across the United States. I make use of a 

user-written Stata spmap command to derive distributional maps of the United States 

following the approach introduced by Madu (2009). Different shades of blue are used to 

show quintiles for environmental impact, with the darker shades representing quintiles 

with a larger environmental impact. Furthermore, to allay concerns about skewed data 

distribution, as it is the case for GHG and CH4 data, I plot maps using deviation from the 

mean in addition to those plotted in quintiles. In fact, these ought to highlight the 

importance of using the proper class breaks in interpreting spatial distributions. Figure 15 

in Appendix 2 shows the spatial distribution of the environmental impact of organic 

farming based on total GHG emissions data. Each color represents one of five quintiles 
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with a darker shade of blue representing a higher environmental impact class. Nine states 

appear in the top quintile registering environmental impact exceeding 3.2. In particular, 

five of these states, namely Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia, 

appear to form a cluster. However, other than geography, it is not clear what is common 

across these states that could help explain such a high environmental impact from organic 

farming. In fact, as Table 12 in Appendix 1 shows, Indiana’s mean organic cropland 

share (% of total farmland) is barely around 0.04%, Kentucky’s is 0.017%, Ohio’s is 

0.244%, Pennsylvania’s is 0.271%, and West Virginia’s is 0.02%. Of course, there are a 

number of factors other than organic farming that can help explain such differences. For 

instance, the error terms, which vary across states can play a role. In addition, how 

certain variables interact with each other may vary significantly across states. This is 

evidently a multi-dimensional question that cannot have a categorical answer and is 

beyond the scope of this research.   

Rather than delve into an endless number of scenarios, it is evident that using 

equal classes (e.g. quintiles) may not necessarily yield meaningful interpretations. This is 

particularly problematic when analyzing data that are skewed and where the division of 

the data into equal groups may not provide useful insight. Thus, it may be more 

appropriate to assess the spatial distribution of the environmental impact of organic 

farming using deviation from the mean rather than quintiles or a division of the data into 

equal groups. In fact, this approach helps identify states or clusters of states and their 

corresponding deviation from the country’s average environmental impact. 

Figure 16 in Appendix 2 captures the spatial distribution of the environmental 

impact of organic farming in terms of total GHG emissions using such a criterion. The 
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different shades of color going from the lightest shade to dark blue represent classes 

measuring the U.S. states for which the environmental impact is less than the country 

mean, ranges between the mean and 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑, ranges between 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑 and 

𝑚𝑒𝑎𝑛 + 2 𝑠𝑑, ranges between 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑 and 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑, and exceeds 𝑚𝑒𝑎𝑛 +

3 𝑠𝑑, respectively. The area that raises the most concern is when environmental impact 

exceeds 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑 as this suggests that a particular state experiences abnormally high 

environmental harm in the outlier range. 

The most important observation from Figure 16 is that most U.S. states have the 

lightest shade of blue, suggesting overall lower than average environmental impact from 

organic farming. For instance, with the exception of California and North Dakota, the 

fifteen states with the largest organic cropland share in Table 12 appear among such 

states. West Virginia is the only state where the environmental impact of organic farming 

exceeds the 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑 level. North Dakota and Wyoming come next with 

corresponding environmental impact ranging between 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑 and 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑. 

Texas stands on its own with environmental impact ranging between 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑 and 

𝑚𝑒𝑎𝑛 + 2 𝑠𝑑. As for states with environmental impact ranging between the mean and 

𝑚𝑒𝑎𝑛 + 1 𝑠𝑑, the Southern part of the United States is represented by California, New 

Mexico, Louisiana, Alabama, and Florida, whereas the mid-central and mid-eastern 

region is represented by a cluster of states comprised of South Dakota, Iowa, Illinois, 

Indiana, Kentucky, Ohio, and Pennsylvania. The remaining 34 states cover all parts of the 

country and have an environmental impact that is less than the country’s average impact 

(including Alaska and Hawaii, although not displayed on any of the plotted maps). 
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Figure 17 in Appendix 2 plots the spatial distribution of environmental impact 

estimates in terms of CH4 emissions. Each quintile is represented by a variety of U.S. 

states stretching across the entire country. For instance, California, Colorado, Michigan, 

and most of the Northeastern region except RI represent the lowest quintile, whereas the 

second quintile consists of Washington, Oregon, Idaho, Arizona, New Mexico, Florida, 

South Dakota, Minnesota, Virginia, and North Carolina. On the other hand, Figure 18 in 

Appendix 2 plots the spatial distribution of environmental impacts following the 

deviation from the mean criterion used in Figure 16. Alaska and Nebraska are the only 

states with environmental impact values exceeding the 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑 level. This is 

followed by Wyoming, which takes a value ranging between 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑 and 𝑚𝑒𝑎𝑛 +

3 𝑠𝑑 and by Montana and Arkansas, which take values ranging between 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑 

and 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑. Values ranging between the mean and 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑 appear primarily 

within a cluster of 13 states overlapping across the mid-west, southwest, and southeast. 

As for the remaining 30 states, they have an environmental impact below the country 

average and form clusters along the mid-Atlantic, northeast, the west coast, the western 

part of the southwest, and the northern part of the mid-west. 

Figure 19 in Appendix 2 shows the spatial distribution of the environmental 

impact in terms of N2O emissions using quintiles. Each quintile appears to be represented 

by a relatively similar number of states, which is largely due to the distribution of the 

relevant data. For instance, eight states from various parts of the northeast, mid-Atlantic, 

southeast, and Midwest appear in the top quintile. The second top quintile consists of 

nine states also stretching across the same area in addition to the west and northwest. 

Figure 20 provides a more meaningful map using the deviation from the mean criterion. 
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No states appear in the range exceeding the 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑 level. Only Delaware and 

Rhode Island take values ranging between 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑 and 𝑚𝑒𝑎𝑛 + 3 𝑠𝑑 and only 

Connecticut, South Carolina, Alabama, Louisiana, and Nebraska take values between 

𝑚𝑒𝑎𝑛 + 1 𝑠𝑑 and 𝑚𝑒𝑎𝑛 + 2 𝑠𝑑. Sixteen states (including Hawaii) take values ranging 

between the mean and 𝑚𝑒𝑎𝑛 + 1 𝑠𝑑, whereas values for the remaining 26 states are 

below the country mean.
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Chapter IV 

Discussion 

 

About ten years ago, The Economist (2006) warned that organic farming was so 

unsustainable that its global adoption could result in the virtual destruction of the rain 

forest. The question of whether organic farming is environmentally beneficial is 

undoubtedly contentious. However, such alarmist message only turns the well-needed 

constructive debate about our choice of sustainable farming practices into a pipe dream. 

The most obvious threat that organic farming poses is to the survival of several industries 

connected to the development, transportation, distribution, and consumption of fossil 

fuels, synthetic fertilizers, pesticides, herbicides, and genetically modified organisms. 

Indeed, alarmists and proponents of conventional farming represent cautionary signals 

that highlight the challenges of balancing the pressures from special interests in 

protecting their stake with those related to fighting climate change through sustainable 

practices. 

Our poor understanding of the environmental impact of organic farming is largely 

due to the fact that most relevant research often lacks generalizability and fails to exhibit 

consistency in the assessment of food production’s environmental impact. Such research 

has varied across products, product groups, geography, methodology, and data, thus 

resulting in mixed messages and confusion. Although organic farming may indeed lag 

behind conventional farming in terms of land use and yield, it undeniably provides 

important ecosystem services. Organic farming practices are by design sustainable in the 
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role they play in maintaining optimal soil health, increasing carbon sequestration, and 

reducing GHG emissions. Yet, various articles in the media and research outlets (e.g. 

Gray, 2015; McGee, 2015; Paarlberg, 2013) make an effort to discredit organic food 

production on the grounds that it cannot be scaled without causing environmental harm. 

Such parties usually focus their attention on conventional farming practices for their 

ability to take advantage of technological improvements that are designed to increase 

yield, but fail to acknowledge the resulting potentially irreparable environmental 

degradation. Most importantly, they often base their contentions on speculation, 

questionable, inadequate, or non-existent empirical evidence. 

 

Table 6. Summary of the main results. 

  n = 50 n = 44 

  GHG CH4 N2O GHG CH4 N2O 

Organic  -0.059* -0.052** -0.16** -0.061* -0.053** -0.145** 

Farming 

Interaction X 0.012** 0.035** X 0.013** 0.032** 

with transport        

Pasture -0.007* X X X -0.008* X 

Thresholds     X   

log organic 

cropland 

X 5.43 8.77 X 5.3 8.5 

Transportation X 4.41 4.61 X 4.21 4.54 

Notes: ** p<0.01, * p<0.05. The thresholds represent the value that log organic cropland 

takes at which transportation output does not affect emissions and the value that 

transportation output takes at which organic farming does not affect emissions. X denotes 

a statistically insignificant coefficient estimate. 

 

This thesis provides such empirical evidence. The key finding in this research is 

that organic farming is generally beneficial to the environment. Table 6 provides a 

summary of the main results. After controlling for other sources of emissions, a one 
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percent increase in organic farming acreage is estimated to result in a 0.06% decrease in 

total GHG emissions. This estimate is also robust to the exclusion of U.S. states with 

potentially influential observations. 

The relationship between organic farming and CH4 emissions depends on the 

interaction between organic cropland acreage and transportation output. An increase in 

transportation output is expected to lower CH4 emissions for given levels of log organic 

cropland below 5.43 and to increase CH4 emissions for levels above 5.43. This threshold 

decreases slightly to 5.3 with the exclusion of outliers. On the other hand, growth in 

organic farming is expected to decrease CH4 emissions for given levels of transportation 

output below 4.41 and to increase CH4 emissions for levels above 4.41. This threshold 

also decreases slightly to 4.21 after the exclusion of outliers.  

These thresholds are evidently more meaningful when put in context. Although 

the relationship between organic farming and CH4 emissions is negative and statistically 

significant, it must be interpreted with respect to transportation output. In fact, a closer 

look at log organic cropland data reveals that 92.3% of the observations take values 

greater than or equal to the 5.43 threshold. More specifically, only 45 observations out of 

585 have values less than or equal to 5.43. Thus, growth in transportation output will 

inevitably contribute to more emissions from a growing organic farming sector. In 

addition, approximately 85.33% of transportation output observations are less than or 

equal to 4.41, suggesting that for most cases, organic farming will have a mitigating 

impact on CH4 emissions. In fact, on average, only seven states currently have 

transportation output that exceeds this threshold. These states include Alaska (9.76), 

Nebraska (7.67), Wyoming (5.93), Tennessee (4.84), Arkansas (4.75), Montana (4.73), 
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and Kentucky (4.56). It is worth noting that states with a large organic farming sector do 

not necessarily have high transportation output. Indeed, log organic cropland and 

transportation output are far from being correlated (𝑟 = 0.08) and transportation output is 

even negatively correlated with organic cropland share (% of total farmland) (𝑟 = −0.24). 

 Organic farming is evidently not the only contributing factor to emissions. 

California and Vermont are important examples illustrating this concern. California on 

average has the most organic acreage in the country but its transportation output share 

ranks in the 37th spot at 2.44%. On the other hand, Vermont has the largest share of 

organic cropland (% of total farmland) but takes the 43rd spot in transportation output 

with 2.09%. Thus, based on the presented evidence, growth in organic farming will likely 

mitigate CH4 emissions in most states at the current levels of transportation output.   

The relationship between organic farming N2O emissions also depends on the 

interaction between organic cropland acreage and transportation output. Growth in 

transportation output is expected to mitigate N2O emissions for given levels of log 

organic cropland below 8.77 and increase N2O emissions for levels higher than 8.77. On 

the other hand, growth in organic farming is expected to mitigate N2O emissions for 

given levels of transportation output below 4.61 and to increase N2O emissions for given 

levels above 4.61. Both of these threshold values decrease slightly after the exclusion of 

outliers to 8.5 and 4.54, respectively. 

Putting these thresholds in context, the data reveal that about 39% of log organic 

cropland observations take values less than or equal to 8.77. This is not surprising given 

that organic farming remains at its infancy in the United States. However, the fact that it 

will likely expand in the future suggests that growth in transportation output will increase 
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N2O emissions. In addition, approximately 88% of transportation output observations are 

less than or equal to 4.61. In fact, on average, only six states currently have transportation 

output that exceeds this threshold. Just like before, these states include Alaska (9.76), 

Nebraska (7.67), Wyoming (5.93), Tennessee (4.84), Arkansas (4.75), and Montana 

(4.73). Thus, based on the estimates presented above, at the current levels of 

transportation output, growth in organic farming in the remaining states would likely 

mitigate N2O emissions. 

The findings related to the interaction between transportation output and organic 

cropland lead to two important conclusions. First, transportation output is perhaps one of 

few economic activities that cannot be influenced by the adoption of organic farming 

practices. This is confirmed by the results presented above, which assert that growth in 

transportation output will inevitably increase CH4 and N2O emissions at the current levels 

of organic cropland across most U.S. states. Second, while transportation output may be a 

“necessary evil,” growth in organic farming will likely mitigate CH4 and N2O emissions 

at the current levels of transportation output. This would suggest that the environmental 

harm that transportation output contributes to organic production might be too negligible 

to outweigh the environmental benefits of organic farming practices.  

This important finding is supported by the cluster analysis described in the 

previous chapter in which the environmental impact of organic farming is below the 

country average for most U.S. states across all three measures of GHG emissions. These 

findings are contrary to McGee’s (2015) contention that scaling organic farming is 

harmful to the environment. In fact, with organic farming acreage in the United States 

growing at about 9.5% annually, at this growth rate, GHG emissions would decrease by 
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about 7.7% by 2030 and by 12.8% by 2050 relative to the level of emissions of 2016. 

While this projected decrease in emissions may seem insignificant, it is important to note 

that average organic cropland acreage, which represents less than one percent of total 

farmland, has substantial growth potential. For instance, if organic cropland were to 

double annually for the next six years to reach 32% of total farmland, GHG emissions 

could decline by 32% relative to the current levels of emissions within the same time 

frame. 

In sum, the estimation results presented in this research show that after controlling 

for various sources of emissions, there is evidence supporting the mitigating effect 

hypothesis. That is, growth in organic food production is likely to mitigate GHG 

emissions. The estimation results also show that the mix between organic cropland 

acreage and transportation output plays an important role in determining the 

environmental effect of organic food production. In particular, organic food production is 

likely to mitigate CH4 and N2O emissions at the current level of transportation output and 

potentially moving forward across most U.S. states. 

 

How Can Organic Farming Mitigate GHG Emissions? 

Current organic farming practices can already allay many of the environmental 

concerns about conventional agricultural and play an important role in mitigating GHG 

emissions. However, scaling organic farming to meet increasing demand for organically 

grown food calls for an enhancement of farming practices and the movement towards 

increased sustainability. Regenerative organic agriculture and its management practices 

are potentially significant means to sequester more than current global annual emissions 
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and to reverse the greenhouse effect (Rodale Institute, 2014). Regenerative organic 

agriculture’s premise lies on nature’s ability to regenerate and correct imbalances 

internally rather than through external inputs. This requires the creation of an ecosystem 

endowed with diverse and symbiotic populations of plants, insects, and organic matter. 

Indeed, the shifting of current cropland and pasture to regenerative organic agriculture is 

expected to sequester up to 111% of annual carbon emissions, thus resulting in annual 

negative emissions (Rodale Institute, 2014).  It is important to note that although the 

estimated models in this thesis made use of data for GHG emissions including LUCF, 

which accounts for sequestered carbon arising from land use and forestry management, 

they do not capture stored soil carbon from organic farming practices. Thus, the potential 

environmental benefits of organic food production may be even larger than those 

presented in this research. Since stored soil carbon may vary greatly across sites and 

product groups, it would be better suited for LCA analyses. This is an area that 

undoubtedly deserves more attention in future research. 

An important channel through which regenerative organic farming can mitigate 

GHG emissions is by minimizing soil erosion and runoff through the use of conservation 

tillage (CT). CT involves leaving at least 30% of the previous year’s crop residue on 

fields to minimize soil erosion, runoff, and to maintain organic material into the soil 

(Abdalla et al., 2013). CT is expected to improve soil health and the soil’s ability to 

sequester more carbon. Thus, replacing conventional tillage practices with CT is expected 

to reduce GHG emissions through the soil’s ability to sequester more carbon. 

Of course, organic farming practices must be viewed as moving targets that can 

always benefit from further improvements. In particular, the strict adhesion to a fixed set 
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of principles by organic farming should be seen as a barrier to progress rather than an 

advantage. A farming activity that is not flexible enough to take advantage of scientific 

discoveries cannot be environmentally or economically sustainable. For instance, modern 

conventional farming has limited its environmental impact by making use of pest-

resistant genetically modified seeds and precision farming (e.g. application of fertilizers 

to specific areas) using GPS-based technologies (Paarlberg, 2013). While organic 

farming understandably rejects genetic modification, it can undoubtedly benefit from 

precision farming. Thus, an important question remains: can the current competition 

between conventional and organic farming be replaced with a more symbiotic 

relationship?  

 

Research Limitations and Suggestions 

Contrary to LCA studies, which yield inferences on the various stages of organic 

food production’s lifecycle, the present analysis makes general inferences. This is not 

problematic given the aggregate nature of the data and the fact that total GHG emissions 

data control for land use and forestry changes. Nevertheless, there are always concerns 

that omitted variable bias may result in not rejecting the null hypothesis because of 

potentially large residual error and the error in estimating other variables. While this is 

indeed true in virtually all studies applying multiple regression and that suffer from 

omitted variable bias, it does not apply to the current research. This research benefits 

from the use of random effects and fixed effects estimators and a nonlinear STIRPAT-

inspired empirical model that is consistent with a large and established literature. These 

factors jointly limit the bias arising from omitting variables potentially highly correlated 

with GHG emissions. Indeed, the fact that most empirical models have high R2 values 
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suggests that the estimated models have high explanatory power and are relatively 

complete and properly specified. 

There are, however, a number of concerns about data quality. Ideally, the CH4 

model would include a variable capturing municipal solid waste from homes and 

businesses while accounting for the conversion of CH4 emissions to energy, cross-state 

diversion, disposal, and transfer of municipal solid waste. However, to the author’s 

knowledge, no appropriate data are available at the state level. The N2O models could 

also benefit from the inclusion of a variable capturing agricultural soil management (i.e. 

the use of nitrogen-based fertilizers). However, no data are available at the state level.  

The current study reveals GHG mitigation benefits associated with organic food 

production.  Policymakers and scientists can build on these results to further develop the 

evidence base and policies needed to maximize the benefits of adopting organic practices. 
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Appendix 1 

Ancillary Statistical Results 

 

Table 7. Summary statistics of the variables included in estimations. 

Variables  Max Min SD Mean Obs. 

log GHG Overall 6.70 2.30 0.79 4.63 N = 550 

 Between 6.68 2.99 0.79  n = 50 

 Within 5.12 2.88 0.14  T = 11 

log CH4 Overall 4.31 1.40 0.55 2.55 N = 550 

 Between 4.21 1.54 0.56  n = 50 

 Within 2.81 2.30 0.06  T = 11 

log N2O Overall 3.28 -1.82 1.15 1.33 N = 550 

 Between 3.11 -1.47 1.15  n = 50 

 Within 1.65 0.89 0.10  T = 11 

log population Overall 17.44 13.10 1.01 15.10 N = 550 

 Between 17.38 13.15 1.02  n = 50 

 Within 15.26 14.83 0.04  T = 11 

log GDP Overall 11.15 10.25 0.18 10.69 N = 550 

 Between 11.06 10.32 0.17  n = 50 

 Within 10.92 10.42 0.06  T = 11 

log VMT Overall 12.70 8.39 0.98 10.52 N = 550 

 Between 12.67 8.49 0.99  n = 50 

 Within 10.74 10.21 0.06  T = 11 

Oil & natural  Overall 38.05 0.00 3.91 1.50 N = 511 

gas Between 19.54 0.00 3.66  n = 50 

 Within 20.01 -3.79 1.11  T = 10.2 

Utilities Overall 4.37 0.61 0.63 2.12 N = 550 

 Between 3.51 0.69 0.57  n = 50 

 Within 3.08 1.22 0.28  T = 11 

Manufacturing Overall 29.81 1.75 5.48 12.46 N = 550 

 Between 27.24 1.97 5.34  n = 50 

 Within 26.13 4.43 1.42  T = 11 

Transportation Overall 11.79 1.34 1.51 3.30 N = 550 

 Between 9.97 1.43 1.50  n = 50 

 Within 5.13 1.79 0.28  T = 11 

log farmland Overall 18.69 11.00 1.57 15.95 N = 550 

 Between 18.69 11.11 1.59  n = 50 

 Within 16.10 15.84 0.03  T = 11 

log organic  Overall 13.12 0.69 2.26 9.01 N = 535 

cropland Between 12.27 4.73 2.18  n = 50 

 Within 13.24 3.52 0.77  T = 10.7 

log organic  Overall 14.19 1.61 2.53 7.88 N = 456 
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pasture Between 13.03 3.43 2.37  n = 50 

 Within 11.93 2.39 1.16  T = 9.12 

log organic Overall 98.81 0.95 14.84 29.84 N = 535 

crop x Between 86.39 6.75 14.56  n = 50 

Transportation Within 46.70 -5.30 3.87  T = 10.7 

 

 

Table 8. Random effects estimation results for GHG emissions incl. LUCF without 

outliers (n = 44). 

Variables (1) (2) (3) (4) (5) (6) 

log population 0.485* 0.523** 0.671** 0.543** 0.573** 0.637** 

 (0.199) (0.198) (0.249) (0.204) (0.197) (0.238) 

log income 25.96 29.16* 30.41 26.07 29.44* 29.36 

 (14.48) (14.33) (18.18) (13.31) (13.51) (16.42) 

(log income)2 -1.189 -1.341* -1.397 -1.189 -1.348* -1.348 

 (0.673) (0.665) (0.844) (0.617) (0.627) (0.764) 

log vmt 0.0688 0.0266 -0.115 0.0540 0.0226 -0.0436 

 (0.190) (0.190) (0.244) (0.208) (0.202) (0.245) 

Oil & natural gas 0.028** 0.029** 0.034** 0.031** 0.032** 0.038** 

 (0.00690) (0.00709) (0.0105) (0.00915) (0.00947) (0.0122) 

Utilities 0.105** 0.099** 0.075* 0.0421 0.0315 -0.00710 

 (0.0308) (0.0318) (0.0362) (0.0434) (0.0482) (0.0581) 

Manufacturing 0.018** 0.018** 0.021** 0.018* 0.018* 0.021** 

 (0.0055) (0.0058) (0.0056) (0.0072) (0.0074) (0.0076) 

Transportation 0.0178 -0.0489 -0.0700 0.0288 -0.0411 -0.0604 

 (0.0293) (0.0314) (0.0571) (0.0307) (0.0269) (0.0500) 

log farmland 0.110** 0.111** 0.127** 0.099** 0.099** 0.102** 

 (0.0361) (0.0359) (0.0397) (0.0343) (0.0333) (0.0361) 

log organic crop -0.0105 -0.036 -0.061* -0.0012 -0.028 -0.048 
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 (0.00668) (0.0197) (0.0301) (0.00545) (0.0167) (0.0282) 

log organic crop 

x 

 0.00805 0.0116  0.00843 0.0121 

Transportation  (0.00534) (0.00819)  (0.00471) (0.00768) 

log organic   -0.00444   2.84e-05 

pasture   (0.00309)   (0.00407) 

Constant -147.2 -164.0* -171.7 -149.0* -166.7* -166.0 

 (78.52) (77.68) (98.22) (72.33) (73.34) (88.65) 

N 433 433 360 433 433 360 

Overall R2 0.794 0.793 0.777 0.774 0.774 0.754 

Notes: Robust standard errors in parentheses. The coefficient estimates of the year 

dummies are omitted from the estimation results. ** p<0.01, * p<0.05. 

 

Table 9. Fixed effects estimation results for CH4 emissions without outliers (n = 44). 

Variables (1) (2) (3) (4) (5) (6) 

log population 0.480** 0.505** 0.762** 0.616** 0.621** 0.815** 

 (0.175) (0.171) (0.193) (0.181) (0.178) (0.247) 

log income 0.267 2.797 3.647 3.676 6.365 6.575 

 (8.280) (7.263) (5.858) (7.570) (6.836) (5.469) 

(log income)2 -0.008 -0.128 -0.161 -0.156 -0.283 -0.288 

 (0.390) (0.342) (0.277) (0.356) (0.321) (0.257) 

Oil & natural gas 0.015 0.014 0.012 0.011 0.010 0.009 

 (0.008) (0.009) (0.007) (0.008) (0.009) (0.008) 

Transportation 0.040* -0.031 -0.067 0.035 -0.042 -0.046 

 (0.016) (0.026) (0.038) (0.022) (0.029) (0.044) 

log farmland 0.062 0.150 0.197 -0.047 0.048 0.122 

 (0.246) (0.234) (0.210) (0.251) (0.238) (0.236) 
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log organic crop -0.009 -0.034* -0.053** -0.008 -0.036* -0.050** 

 (0.006) (0.014) (0.010) (0.006) (0.015) (0.011) 

log organic crop  0.008** 0.013**  0.009** 0.011** 

x Transportation  (0.003) (0.003)  (0.003) (0.003) 

log organic pasture   -0.008*   -0.008* 

   (0.004)   (0.004) 

Constant -7.630 -22.621 -32.321 -27.519 -43.123 -48.696 

 (43.364) (37.325) (30.951) (39.101) (34.962) (28.937) 

Year dummies No No No Yes Yes Yes 

N 433 433 360 433 433 360 

Overall R2 0.298 0.425 0.353 0.0818 0.201 0.248 

Notes: Robust standard errors in parentheses. The coefficient estimates of the year 

dummies are omitted from the estimation results. ** p<0.01, * p<0.05. 

 

Table 10. Fixed effects estimation results for N2O emissions without outliers (n = 44). 

Variables (1) (2) (3) (4) (5) (6) 

log population -0.962** -0.893** -0.916** 0.111 0.100 0.078 

 (0.232) (0.237) (0.245) (0.318) (0.310) (0.422) 

log income 28.287* 33.247** 41.395** 35.390** 39.466** 46.172** 

 (11.356) (9.343) (11.943) (8.506) (7.612) (8.791) 

(log income)2 -1.313* -1.547** -1.929** -1.612** -1.806** -2.122** 

 (0.534) (0.439) (0.562) (0.396) (0.353) (0.409) 

log vmt -0.333 -0.368 -0.313 -0.397* -0.412* -0.264 

 (0.196) (0.202) (0.259) (0.186) (0.189) (0.275) 

Manufacturing 0.005 0.006 0.009 -0.003 -0.001 0.000 

 (0.006) (0.006) (0.007) (0.004) (0.004) (0.005) 

Transportation 0.028 -0.130** -0.271** 0.041 -0.099** -0.181* 
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 (0.023) (0.040) (0.073) (0.036) (0.035) (0.082) 

log farmland -0.597 -0.413 -0.524 -0.622 -0.460 -0.500 

 (0.498) (0.481) (0.573) (0.388) (0.384) (0.466) 

log organic crop -0.023** -0.079** -0.145** -0.010 -0.060** -0.102** 

 (0.008) (0.024) (0.026) (0.008) (0.019) (0.022) 

log organic crop  0.018** 0.032**  0.016** 0.025** 

x Transportation  (0.005) (0.007)  (0.004) (0.006) 

log organic 

pasture 

  0.004   0.008 

   (0.004)   (0.005) 

Constant -123.216 -152.70** -193.87** -180.35** -203.61** -239.39** 

 (62.204) (51.642) (64.665) (48.200) (43.823) (50.823) 

Income TP ($) 47,473 46,427 45,604 58,361 55,629 53,146 

Year dummies No No No Yes Yes Yes 

N 469 469 390 469 469 390 

Overall R2 0.698 0.608 0.638 0.731 0.726 0.669 

Notes: Robust standard errors in parentheses. The coefficient estimates of the year 

dummies are omitted from the estimation results. ** p<0.01, * p<0.05. 

 

Table 11. Environmental impact estimates of organic farming. 

State GHG CH4 N2O State GHG CH4 N2O 

AK 2.294 1.446 175.891 MT 1.711 1.056 176.236 

AL 2.908 0.898 176.439 NC 2.204 0.813 176.265 

AR 2.094 1.046 176.225 ND 5.489 1.015 176.208 

AZ 2.469 0.828 176.156 NE 2.349 1.457 176.518 

CA 2.989 0.715 175.932 NH 1.837 0.774 176.359 

CO 2.708 0.786 176.051 NJ 2.697 0.883 176.256 

CT 2.065 0.787 176.442 NM 3.062 0.795 176.148 

DE 2.665 0.831 176.643 NV 2.275 0.913 176.234 

FL 3.262 0.814 176.157 NY 2.435 0.679 175.990 

GA 2.313 0.955 176.250 OH 3.462 0.829 176.125 

HI 2.682 0.969 176.215 OK 2.749 0.912 176.210 
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IA 2.798 0.892 176.133 OR 1.770 0.816 176.076 

ID 2.520 0.819 176.063 PA 3.691 0.842 176.149 

IL 2.886 0.899 176.162 RI 2.789 0.834 176.631 

IN 3.639 0.902 176.222 SC 2.101 0.883 176.520 

KS 2.679 0.947 176.180 SD 2.909 0.806 176.068 

KY 3.742 1.022 176.226 TN 2.515 1.043 176.205 

LA 3.205 0.940 176.400 TX 4.025 0.903 176.135 

MA 2.353 0.766 176.341 UT 2.243 0.918 176.147 

MD 2.565 0.773 176.248 VA 2.365 0.792 176.186 

ME 1.696 0.767 176.129 VT 2.072 0.714 176.051 

MI 2.471 0.757 176.069 WA 1.729 0.792 176.089 

MN 2.058 0.826 176.045 WI 1.867 0.829 176.074 

MO 2.539 0.908 176.166 WV 7.773 0.910 176.347 

MS 1.953 0.942 176.365 WY 4.892 1.202 176.314 

 

Table 12. Mean organic cropland (% of total farmland), 1997, 2000-2008, and 2010. 

State Organic Cropland State Organic Cropland 

VT 3.130 FL 0.137 

ME 1.496 SD 0.133 

NY 0.933 NV 0.110 

CA 0.914 WY 0.109 

ID 0.710 VA 0.096 

WI 0.652 IL 0.089 

NH 0.432 AR 0.082 

MI 0.427 KS 0.077 

MN 0.396 MO 0.074 

UT 0.368 TX 0.061 

ND 0.332 AZ 0.057 

MA 0.322 NM 0.044 

WA 0.316 IN 0.039 

NJ 0.306 NC 0.037 

OR 0.305 AK 0.035 

PA 0.271 OK 0.023 

OH 0.244 DE 0.023 

HI 0.236 WV 0.020 

CO 0.223 KY 0.017 

IA 0.216 GA 0.012 

MT 0.213 TN 0.012 

RI 0.203 LA 0.005 

MD 0.196 MS 0.004 

NE 0.159 SC 0.003 
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CT 0.143 AL 0.003 

Note: The values are computed using data from the USDA. 
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Appendix 2 

Cluster Analysis Maps 

 
Figure 15. Spatial distribution of the environmental impact (ln GHG) of organic farming (quintiles). 
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Figure 16. Spatial distribution of the environmental impact (ln GHG) of organic emissions (deviation from the mean). 
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Figure 17. Spatial distribution of the environmental impact (ln CH4) of organic farming (quintiles). 
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Figure 18. Spatial distribution of the environmental impact (ln CH4) of organic farming (deviation from the mean). 
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Figure 19. Spatial distribution of the environmental impact (ln N2O) of organic farming (quintiles). 
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Figure 20. Spatial distribution of the environmental impact (ln N2O) of organic farming (deviation from the mean). 
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