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Abstract 

The ability to integrate 'omics' (i.e., transcriptomics and proteomics) is becoming 

increasingly important to the understanding of regulatory mechanisms. There are 

currently no tools available to identify differentially expressed genes (DEGs) 

across different 'omics' data types or multi-dimensional data including time 

courses. We present a model capable of simultaneously identifying DEGs from 

continuous and discrete transcriptomic, proteomic and integrated proteogenomic 

data. We show that our algorithm can be used across multiple diverse sets of 

data and can unambiguously find genes that show functional modulation, 

developmental changes or misregulation. Applying our model to several 

proteogenomics datasets, we identified a number of important genes that showed 

distinctive regulation patterns. The package is available at R Bioconductor and 

also at http://software.steenlab.org/fCI/. 

 

Introduction 

Data from ‘omics’ technologies, e.g. DNA microarray, Next-General Sequencing (NGS) 

and Mass Spectrometry (MS) based proteomics approaches, have become inexpensive 

and accessible. Yet, the vast majority of studies consider each data set independently. 

The ability to combine and synergistically integrate these different datasets will provide 

an understanding of gene expression and regulation across transcription and translation 

(1–9). 

There is much literature that documents differences in transcript abundance and protein 

abundance in non-steady state systems. This difference is caused by several steps of 

regulation between the transcript and the protein. Every transcript has a particular 

stability and the regulation of this stability can be modulated by several mechanisms 

including micro-RNAs mediated degradation. The translation of every transcript is 

regulated and has its own kinetics, thus the response of an increase in a particular 

transcript may not be reflected in an immediate increase in the protein. Furthermore, 

post-translational modifications such as ubiquitination can lead to the degradation of a 

particular proteins such that the protein levels are not reflective of mRNA levels. In the 

most extreme cases some proteins have very slow turnover such as eye lens crystallin 

and collagen have very long lifetimes or half-lives >70 and 117 years respectively (10) 

thus one cannot expect the measurement of the transcript to correlate with the 

measurement of protein abundance. Given this information, we need to understand 

regulation of expression at both the transcript and protein levels in biology and disease 

before we can intervene to cure disease. 



 3 / 19 
 

Measuring and comparing gene expression and protein abundance is not trivial for a 

number of reasons related to instrumentation and data types used as explained here. 

Transcript expression using microarray technology has been used for decades. 

Microarrays quantify transcript expression by measuring probe hybridization signal 

intensity - a continuous number. Recent advances in NGS (i.e. RNA-Seq) technologies 

have ensured that NGS is now the dominant high-throughput method to study transcript 

expression. NGS methods produce digital read counts for each gene which can be 

normalized as RPKM or FPKM (11). NGS methods exhibit low background noise and 

have a higher dynamic range (105 compared to 102) compared to microarray 

measurements (3, 5, 11, 12). Mass spectrometry based proteomics is currently the most 

sensitive and accurate method for the quantification of proteins. Protein expression 

using Mass Spectrometry based proteomics is measured by counting spectrum 

assigned to each protein or by measuring peak intensities of peptides that are found in 

those proteins (1). Thus, there are fundamental differences in the measurements and 

data types which require specialized statistical methods for comparing data from 

transcript to protein. However, we have devised the fCI method which allows us to 

compare across these different data type. 

Currently, no tools exist to identify Differentially Expressed Genes (DEGs) 

simultaneously and consistently across data types (6, 13, 14). Because each data type 

has unique properties, specialized statistical models have been developed to analyze 

each type of data. For example, a discrete Negative Binomial approach is used in 

DESeq and EdgeR to identify DEGs in RNA-Seq data, where the data type is 

characterized by discrete read counts (2–4, 11). In contrast, the three major analysis 

approaches used for microarray data include the t-test, a regression model and mixture 

model, which are used to predict DEGs from continuous DNA probe intensity data (5, 12, 

13). On the proteomics front, the G-test has been used to detect DEGs in spectrum 

count data (6, 14–16). Given the wide variety of statistical tests across these various 

datasets, it is difficult to compare data from multiple 'omics' platforms despite the fact 

that these data are generated from the same samples. This paucity of a global method 

that can be used across data types to identify DEGs has been raised and the 

development of tools to analyze multiple data types from the same experimental 

paradigm is of general importance (17–20).  

  
To overcome current limitations, we developed a novel approach, which is compatible 

with several data types from different 'omics' platforms and does not rely on frequency-

based statistical learning methods. As a null hypothesis, we assume that the control 

samples, regardless of data types, do not contain DEGs and that the spread of the 

control data reflects the technical variance in the data. In contrast, the case samples 

contain a yet unknown number of DEGs. Removing DEGs from the case data leaves a 
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set of non-differentially expressed genes whose distribution is identical to the control 

samples. Our method, “f-divergence Cut-out Index” (fCI) identifies DEGs by computing 

the difference between the distribution of fold-changes for the control-control data and 

remaining (non-differential) case-control gene expression ratio data (see Fig. 1.a-b) 

upon removal of genes with large fold changes. To do this we use the Hellinger distance 

measure or cross entropy methods (see materials and methods) (25–27). These 

approaches compute an optimal fold change cutoff that minimizes the divergence. Thus, 

genes having a fold change larger than the chosen cutoff are treated as DEGs and are 

removed from the case data (see Fig. 1.c-e). Importantly, this fold-change based 

divergence minimization algorithm can be used across multiple 'omics' datasets. The 

package is available at R Bioconductor and also at http://software.steenlab.org/fCI/.  

Below, we evaluate the performance of fCI using a wide range of datasets with different 

experimental designs. 

 

Materials and Methods 

Our method considers transcriptomic (e.g. RPKM values from mapped reads of RNA-

Seq experiment) and/or proteomic (e.g. protein peak intensities isobaric LC-MS/MS) 

data from two biological conditions (e.g. mutant and wild-type or case and control). The 

goal is to identify the set of genes whose RNA and/or protein levels are significantly 

changed in the case compared to the control.  

In the basic scenario, we require each condition to have two replicates (e.g., transcript, 

protein or integrated transcript & protein expression data). To identify a set of DEGs in 

the case samples, the fCI method compares the similarity between the distribution of 

the case-control ratios (subject to logarithm transformation), denoted P, and similarly 

the control-control ratios (the empirical null), denoted Q (see Fig 1.c and Supplementary 

Pseudocode). By construction, Q represents the empirical biological noise, i.e. the ratios 

from repeated measurements of the same sample. Under mild assumptions, the Almost 

Sure Central Limit Theorem ensures that P and Q will converge to a 

univariate/multivariate normal for large sample sizes (28). Similarly, we could also 

construct distributions of P and Q from integrated/multi-dimensional data. In the 

simplest scenario of a time-course study consisting of two case and control replicates 

recorded at two time points, the empirical distribution P will be a matrix of two column 

vectors representing the technical noises, and Q will be a second matrix with case-

control ratios, both measured at two time points respectively. Detail construction of 

these distributions are provided at supplementary pseudo-code, Fig. 1.a-f and 

supplementary Fig. 1.  
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To identify DEGs, we consider the difference between the distributions P and Q as 

quantified by the f-divergence (25). The f-divergence is a generalization of the Kullback-

Leibler divergence, the Hellinger distance, the total variation distance and many other 

ways of comparing two distributions based on the odds ratio. Currently, we have 

implemented two different instances of f-divergence, but it is straightforward to extend 

the fCI code by adding additional divergences. 

 The Hellinger distance, H, is one of the most widely used metrics for quantifying the 

distance between two distributions and it is defined as 

         
 

 
            . 

The Hellinger distance has many advantageous properties such as being nonnegative, 

convex, monotone, and symmetric (26, 27). To calculate the Hellinger distance, we first 

use the Maximum Likelihood Estimate(MLE) to obtain the parameters of the 

distributions P and Q assuming Gaussian distributions. Let x1, x2, ..., xn be the 
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Furthermore, we also consider the cross entropy, CE, for quantifying the differences 
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where S is the entropy and KL is the Kullback-Leibler divergence. To calculate CE, we 
use and asymptotically unbiased nonparametric entropy estimator based on k-nearest 
neighbor approach (29). 
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If we divide the case-control ratio data into differential and non-differential genes, the 

remaining non-differential genes (upon the removal of DEGs) from the case-control data 

should be drawn from the same distribution as the empirical null (7). Therefore, the 

divergence will be at a global minimum close to 0.  

When multiple biological/technical replicates are considered, the control-control ratio 

and case-control ratio can be formed in pair by mathematical combinations (see Fig 1.b). 

Otherwise, if replicates are not available for control data, P and Q will be the direct 

logarithm-transformed distribution of the original gene expression. fCI uses Hellinger 

distance by default. Empirically, we have found that the cross entropy approach 

provides more conservative results compared to the Hellinger distance. 

 

Results and Discussions 

In order to evaluate the model’s performance, we considered multiple data sets that 

encompass commonly encountered multidimensional/integrated “omics” data: 1) an 

experiment with both DNA microarray and isobaric-labeling LC/MS-MS expression 

measurements (multiple developmental stages of ESCs differentiated into beta cells); 2) 

a proteogenomic dataset (embryonic cortical tissues from mice treated with rapamycin); 

3) and temporal mRNA-Seq dataset on the L4 dorsal root ganglion (DRG) of rats. We 

then studied several distinctive omics datasets to directly compare fCI with existing 

methods including: 4) a spiked-in microarray dataset; 5) an RNA-Seq dataset with 

known mRNA expression levels; 6) an integrated proteogenomics dataset measured 

over a series of time points; 7) a single-cell RNA-Seq dataset; and 8) a simple RNA-Seq 

data where one gene was engineered to be over-expressed. Thus, we establish the 

validity of our methods by benchmarking them against standards in the field.  

We first considered experiments for which multidimensional transcriptomic or proteomic 

data, and/or proteogenomic data were available. By multi-dimensional, we refer to data 

that has been generated for multiple related samples, i.e. time course and/or different 

tissue/cell types and/or in cases where both transcriptomic and proteomic data are 

available. Currently, multi-dimensional "omics" data are analyzed separately using 

fundamentally different methods. Thus, we implemented a multi-dimensional fCI 

methodology, which for the first time allows the discovery of co-regulated genes that are 

changed jointly in multi-dimensional "omics" data. fCI provides a coherent framework 

which can be used to analyze multi-dimensional datasets, even when the nature and 

type of the data are fundamentally different. We tested the algorithm in a time-course 

RNA-Seq data and a proteogenomic data. 

We started with a bivariate fCI analysis on a dataset (see supplementary material 1-1) 

with expression levels measured in both DNA microarray and isobaric labeling LC-
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MS/MS experiments. In this dataset, both RNA and protein levels (ratios with respect to 

reference channel using TMT 6-plex isobaric tags) were recorded for six different time 

points (six cell differentiation stages) with three replicates in each time point. As ESCs  

differentiate, both RNA and protein contents were changed (see supplementary Fig. 2). 

However, the extent of change and the genes affected were not directly correlated. 

Nevertheless, fCI enabled us to find genes whose expression levels were significantly 

changed in both transcriptional and translational levels, and the changes across time 

points may be synchronized or delayed (see Fig 2.a-b).  

To give an unbiased estimate of fCI's performance, we benchmark fCI with limma (32), 

a widely used tool for differential expression analysis, on the same integrated 

proteogenomics dataset (see supplementary material 1-1). Although limma could be 

used to analyze continuous data type, it's not designed for LC-MS/MS data where 

proteins were measured by log2 ratios and RNAs by probe hybridization intensity. 

Therefore, we standardized all the transcript and protein expression with a mean of  0 

and standard deviation of 1. Subsequently, we run limma on the standardized data, 

which contain transcript and protein expression measured on three replicates 

respectively. A total of 2828 genes were used for this analysis. The  LIMMA identified a 

total of 310 DEGs, and fCI identified 484 DEGs. An overlap of 116 genes was shared by 

the two software tools. The limma analyses requires that we combine the control 

microarray data and the mass spectrometry (MS) data directly as well and the case MS 

and microarray data because the method compares the mean values of two populations. 

This is not ideal as the two dataset MS and microarray are vastly different in terms of 

magnitude and nature. For example, the gene Serpinb9 is four-fold higher in 

experimental conditions for both the microarray data and LC-MS/MS data. However, 

limma was still not able to identify this gene. In addition, gene Alcam and Prdx3 has 

insignificant opposite changes in LC-MS/MS and microarray data, but limma treated it 

as a DEG).  For more genes identified by fCI and limma, see  supplementary table 1.  

Next, we performed a bivariate fCI analysis on a proteogenomic data (~2,500 genes) 

that was collected in-house (see supplementary material 1-2). Results showed that 103 

significant DEGs were jointly changed. If a separate fCI analysis was performed 

separately on the RNA-Seq and the proteomics dataset, 777 RNAs and 29 proteins are 

significantly misregulated respectively. A closer inspection of the results showed that 

the RNA and protein changes were not always directly correlated (see supplementary 

Fig. 3) as several studies have shown previously (24–26). For example, out of the 10 

DEGs shown both in Proteomic data and RNA-Seq data, only 5 of them appeared in the 

bivariate data and the remaining 5 showed opposite regulations. Integration of the 

information from both expression levels in the same model enables the construction of a 

robust covariance matrix, thus reducing bias and error. Therefore, the combined 
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proteogenomic analysis provided a unique perspective on the regulation of significant 

DEGs at the transcriptional and translational levels. 

The third (bivariate) dataset is a time series RNA-Seq dataset (see supplementary 

material 1-3) with both control and treatment samples analyzed at two time points 

(27).In previous analysis, scientists need to perform two separate analyses to identify 

two sets of DEGs, and then find the commonly differentially expressed genes by 

intersecting the two DEG sets. A number of marginally changed genes that are chosen 

by only one or neither of the two analyses may be removed from subsequent analysis. 

However, such genes may be important targets for subsequence studies if they are 

closely co-regulated. In this study, we performed fCI analysis by two separate fCI 

analyses and a bivariate analysis to evaluate the model performance. Overall, fCI found 

a total of 2,931 co-regulated DEGs when both time points were analyzed jointly using 

our multi-dimensional fCI, compared to only 1,283 DEGs reported in individual analyses 

(see Fig. 2.c-d). In contrast, other algorithms, including DESeq, fail to find any targets 

jointly on the same bivariate data (see supplementary table 2), suggesting that more 

than half of the DEGs could not be effectively identified if the two time points were 

analyzed separately. Since the bivariate fCI analysis incorporated covariance 

information between the two time points, it was able to find marginal changes that were 

not significant in each of the univariate analysis. In addition, fCI also enabled us to 

identify the optimal cutoff ratios for both time points based on the 3-dimensional 

divergence scores (see Fig. 2.e). 

Having established the performance of the method on complex multidimensional data 

sets, we next benchmarked fCI with specialized tools that were developed for 

microarray, RNA-Seq or LC-MS/MS data analysis on the corresponding dataset 

respectively.  

We first evaluated the applicability of fCI on a DNA microarray dataset (28) with 

normalized expression and known external spike-in standards (see supplementary 

material 1-4), which allowed us to validate the methods A common practice to evaluate 

and validate the software performance in spike datasets where DEGs are known in 

advance is to compute the True Positive Rate (TPR), False Positive Rate (FPR) and 

Area Under the Receiver Operating Characteristic (AUROC). In this analysis, we found 

that fCI achieved a AUROC of 98.9% (supplementary Fig 4 and supplementary 

materials 1-4), thus outperforming current best microarray analysis methods (37) using 

AUROC by close to 10%. Subsequently, we chose only two replicates from the control 

samples and one replicate from the case samples to illustrate fCI's analysis workflow 

(see Fig. 2.f). Results showed that after DEGs are removed by fCI, the remaining non-

differential case-control ratio distribution and control-control ratio distribution are nearly 

identical (see Fig. 2.f-g). Therefore, these spiked-in standards validated our assumption 
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that the case sample (after DEGs are removed) displays a similar distribution as the 

control data. 

We then applied the fCI on a second dataset (2) (see supplementary material 1-5) 

containing quantitative data for approximately 1,000 genes whose expression levels 

were measured using qRT-PCR to benchmark RNA-Seq technology and DEG 

algorithms. In this dataset (supplementary material 1-5), we have four replicates for 

control samples and four replicates for case (experimental) data. Therefore, a total of 6 

empirical combinations and a total of 16 case-control combinations will be found (see 

supplementary Fig. 1 for details on constructing fCI combinations). In total, we run fCI 

for 6*16 (or 96) times. For each could be identified as a DEG from 0 to 96 times. 

Therefore, we assign a detection frequency/score (0 to 1) for each gene based on the 

number of times it is detected in the 96 fCI analyses. Again, we obtained similar results; 

fCI achieved a AUROC of 99.1% (see supplementary Fig 5a). The AUROC for fCI was 

more than 10% higher (2) than DESeq (3), an R-Bioconductor package for RNA-Seq 

data analysis, showing the accuracy of fCI method on transcriptomic data with 

benchmarked expression measurements. 

In fact, the true DEGs consistently have larger fCI detection frequencies than the genes 

that are not differentially expressed (see the following histogram), and we created a 

histogram showing the distribution of fCI detection frequencies based on DEGs and not 

differentially expressed genes (supplementary Fig. 5b). The  histogram shows that all 

fCI predicted DEGs with a detection score >0.7 are known(spiked) DEGs based on the 

validation labels. In addition, ~80% of the known DEG genes have a detection score of 

0.7. In other words, fCI achieved a detection specificity of 100% and a sensitivity of ~80% 

under the threshold of 0.7. As the curve continues, the sensitivity keeps increasing 

(more spiked known DEGs are identified) however the specificity decreases (i.e. some 

non-differentially expressed genes present with a detection score that may be larger 

than the known standards). At the threshold score of 0.45, all real DEGs are found 

(sensitivity equals to 1) at the price of identifying ~20% DEGs that are false positives. 

In the above analysis, we compare fCI outcomes with true DEGs based on the log fold-

change of 0.5. However, we investigated the performance of fCI when the  log fold-

change is more stringent. In a previous analysis (2), scientists performed experiments 

using increasing log2 expression ratios (from 0.5 to 2 with increments of 0.10. Results 

showed that fCI's AUC ROC values dropped steadily with the increased cutoff 

(supplementary Fig. 5c). However, fCI still produces the best results when compared 

with other methods 

We continued to tested our software on a published time-course dataset (see 

supplementary material 1-6) where mRNA and protein levels were obtained from bone 

marrow derived dendritic cells (DCs) growth in two conditions at six time points (29). 
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DCs were treated either by LipoPolySaccharide (LPS) or Mock (no stimulation) for 

protein level estimations. We computed the genes that are differentially expressed for 

each time point with the reference time point, and then plotted the change in y-axis (a 

value of 0 will be given for time points showing no significant change with respect to 

reference time point) across different time points. Consistent with published results, we 

have shown that mRNA levels contributed to the changes of protein expression levels in 

genes such as Cebpb, Trafd1 (see Fig. 3). Our analysis also suggested that LPS-

induced and Mock cells show very distinctive (i.e. opposite) regulations in a number of 

genes (see supplementary Fig. 6).  

Furthermore, we used fCI to investigate gene expression variability in mouse embryonic 

stem cells (mESCs) cultured in serum and in a two-inhibitor medium(39) (see 

supplementary materials 1-7). In single cell gene expression analysis we used a 

different approach with fCI. We analyzed the distribution of gene expression for 

individual genes across the individual cells, as opposed to the previous cases where we 

analyzed the distribution of multiple genes between samples (our reasoning for this 

approach is in the supplementary materials 1-7). With fCI, it is possible to monitor gene 

expression changes between cells undergoing different treatments (see supplementary 

Fig. 7). Results showed that gene expression values (878 out of 1492 genes) were 

more variable in cells cultured in traditional serum medium compared to genes (104 out 

of 1492 genes) from cells cultured in a two-inhibitor medium, which confirmed >80% of 

published results (40) (see supplementary Table 3). For example, fCI confirmed that 

Pou5f1, Sox2 and Pcna were more variable in  the serum condition compared to the 

two-inhibitor condition. In contrast, Ccna2 and Ccnb1 were both expressed similarly in 

the given conditions(40). This allowed us to utilize fCI and single cell RNA-Seq to 

evaluate sample variability and DEGs based on transcriptome similarities between cells.  

In fact, a comparison of the spread of control-control and case-control distributions can 

already carry useful information whether DEGs should be expected in the case sample. 

For this reason, we performed the last fCI analysis using a dataset (see supplementary 

material 1-8) using both DESeq and fCI. The kernel density plot showed that the 

empirical null distribution had larger noise levels (see supplementary Fig. 8) compared 

with case-control distribution. Such an outcome should be the ground for concerns 

about the existence of large experimental noise levels (similar or larger than the 

treatment effect) and an indication of the absence of differential expression. fCI thus 

reported a large divergence value and failed to detect any targets within the defined limit 

(10 fold change), while DESeq reported 864 (~5%) DEGs (3).   

To know how confident fCI can identify “differentially expressed” genes in the previous 

analyses, we calculated the approximate type-1 error rate in the following. Given a 

dataset containing multiple control replicates and experimental replicates, fCI computes 

the divergence scores between control-control (empirical null) and case-control 
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distributions.  fCI calculates the optimal fold change cutoff that minimizes the 

divergence score between the empirical null and the case distribution. This cutoff allows 

the identification of truly differentially expressed genes which are then reported. Based 

on the assumption of fCI, we construct the following null hypothesis and alternative 

hypothesis. H0: No genes are differentially expressed between replicates of the control 

samples (the empirical null). and Ha: The genes are considered differentially expressed 

if their fold-change ratios between the case and controls are greater than the ratio 

defined by fCI's divergence estimation algorithm. 

Ideally, if the fold change cutoff is chosen without error (no false positives), we should 

not observe any gene in the control-control ratios (empirical null distribution) with a fold 

change larger than the chosen cutoff. However, in reality, with real world data there may 

be genes whose fold change ratios are larger than the cutoff due to technical noise.  

The proportion of such genes in the empirical null distribution is equivalent to a type I 

error rate (incorrect rejection of a true null hypothesis). Using the RNA expression data 

(see supplementary material 1-5), we detected an optimal fold change of 1.3 using fCI 

(see supplementary Fig 9). However, we noticed that in the empirical null distribution 

(computed from control replicates), there are 23 genes that have a fold change greater 

than 1.3 fold in more than half of the 6 pairwise fCI empirical null combinations. The 

proportion of these 23 genes, divided by the total sample size of 1043 genes, is the type 

1 error rate of 0.0221. In other words, the 2.21% DEGs are incorrectly rejected. 

Furthermore, to evaluate the top DEGs according to the detection frequency whether 

they are false predictions or not, we provided the estimation of False Discovery Rate 

(FDR) below. We could estimate the FDR directly using spike-in samples which 

contained known DEGs. Let TP represents true positive matches and FP to be false 

positive matches, the number of matches in the target database is TP + FP and the 

number of matches in the decoy database is FP. The False Discovery Rate is denoted 

as:  (FDR) = FP / (FP + TP). 

In the spiked-in RNA expression dataset (supplementary material 1-5), we already knew 

all the genes that were spiked-in to be differentially expressed based on the 

experimental design (2). Therefore, the FDR could be directly calculated. After 

conducting fCI analyses, we identify a total of 757 genes to be differentially expressed 

with a 1.3 fold change cutoff. After matching the 757 predicted DEGs with the known 

differential targets, we found a total of 19 genes to be incorrectly predicted as DEGs 

and 738 true predictions. The FDR thus become 19/(19+738)=2.51%.  

On the other hand, we could also obtain a permutation-based FDR approximation using 

the same dataset without relying on prior information about the true DEGs. To achieve 

this, we randomly permute the replicates between control and experimental samples (i.e. 

we form an empirical null distribution by computing the ratio between the 2nd control 
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replicate and the 1st experimental replicate), and then we computed the ‘DEGs’ from this 

permuted fCI combination. This concept is equivalent to the Target-Decoy database 

search that are widely used in proteomics study for FDR estimation (see supplementary 

Fig. 10). In theory, we do not expect to find any DEGs from the 'decoy' (or the 

permutated) sample. In contrast, the DEGs that are truly differentially expressed should 

be only found in the true (or target) database, which are constructed by real empirical 

null (a control-control pair) and the case-control (a case-control pair) distribution 

respectively.  

In this experiment, we created a database consisting of 100 targeted fCI combinations 

and 100 permuted 'decoy' fCI combinations. According to our definition, we shouldn't 

find any true DEGs in the permuted 'decoy' fCI analysis. Results showed us that 921 

DEGs were reported for a total of 71449 times (all identified DEGs) in the 200 fCI 

analysis. However, only 23 DEGs (the decoy DEGs) are identified in the 100 permuted 

fCI analysis. For the remaining 100 (target) fCI analyses, we consider a DEG to be a 

false positive if it has at least 50% detection frequency, and we ended up with 288 

incorrect genes that showed up 3998 times (the false targets) as DEGs in these fCI 

analyses.  Therefore, the FDR becomes (3998+23)/(71426+23), which become 5.63%. 

The analyses showed us that the permutation FDR is 2% higher than the true FDR. This 

could be due to the repeated sampling. In other words, it also showed us that the 

permutation FDR estimation is a conservative estimation. 

Taken together, these results demonstrated fCI's versatile ability to identify DEGs using 

gene quantities in the form of probe hybridization signal intensity from microarrays, read 

counts from RNA-Seq and ion intensities from proteomic LC-MS/MS data. 

 

Conclusions 

In summary, we demonstrated that fCI is a tool that enables cross-omic analyses which 

could not have been performed prior to its development. Firstly, it performed as well or 

better in finding DEGs across diverse data types (both discrete and continuous data) 

from various ‘omics’ technologies compared to methods that were specifically designed 

for the experiments. Secondly, it fulfills an urgent need in the ‘omics’ research arena by 

providing a means to analyze proteome and transcriptome data together. Thirdly, fCI 

does not rely on statistical methods that require sufficiently large numbers of replicates 

to evaluate DEGs. Instead fCI can effectively identify changes in samples with very few 

or no replicates. However, biological and/or technical replicates benefit the analyses as 

users cannot only choose commonly regulated DEGs, but can also inspect uniquely 

changed genes in specific samples for validation. Furthermore, as we are excited about 

the cell specific data from single cell RNA-Seq experiments, fCI was tailored to process 
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this type of data and show that it offers an understanding of specific gene expression 

levels in individual cells (41) (supplementary material 1-7). Compared to the formal 

cutoff index method (7, 8), fCI has a completely different scope, uses completely 

different statistical methods, implementation and applications. In addition, fCI allows us 

to compute DEGs with various data types from transcriptomics, proteomics, integrated 

proteogenomics and time-series multi-dimensional data. In summary, the efficacy and 

applicability of fCI across experimental designs is rigorously tested and validated and 

fulfils a need in the rapidly evolving 'omics' landscape.  
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Figure Legends 

Figure 1: Flowchart of fCI analysis. (a) Formation of replicate pairs in control and 

case samples. Gene expression levels from the control and case replicates are 

collected. Each replicate must contain the same number of genes. For the chosen 

control samples, fCI forms a list of the control-control combinations each containing two 

unique replicates from the full set of control replicates. Similarly, fCI forms a list of 

control-case combinations each containing a unique replicate from the control and a 

unique replicate from the case samples.  (b). Generation of fCI  pairwise combinations. 

fCI choose one control-control combination and one control-case combination to form a 

pair for a single fCI analysis. The total number of fCI analysis will be the product of 

control-control combinations and control-case combinations. In this figure, we choose 

one of the four fCI pairs for illustration purpose. (c) Formation of empirical & 

experimental distributions. The ratio of the chosen fCI control-control (or control-case) 

pair will undergo logarithm transformation and normalization (see Method and Materials) 

for the analysis in step 3 if the pathological/experimental condition causes a number of 

genes to be up-regulated or down-regulated, a wider distribution which can be 

described by Gaussian distribution compared to the control-control empirical null 

distribution will be observed. fCI then gradually removes the genes from both tails 

(representing genes having larger fold changes) using the Hellinger Divergence or 

Cross Entropy estimation (supplementary method) until the remaining case-control 

distribution is very similar or identical to the empirical null distribution, as indicated by 

the Gaussian distribution. fCI then resume the iteration at step 3 on the remaining fCI 

pairs. (d-e) Identification of fCI Differential Expressed Gens (DEGs) based on target 

frequency. (d) fCI combines all the pairwise analysis results each containing a list of 

misregulated genes in the chosen pair. (e) fCI produces a summary table which 

contains the total number of times a gene is found to be misregulated and the coverage 

percentage (total observations divided by all pairwise combinations considered) for 

each gene. (f). Formation of empirical & experimental distributions on integrated and/or 

multidimensional (i.e. time course data). In this example, gene expression values are 

recorded at c dimensions (c=2 in this figure) with m replicates at each condition from a 

total of n genes. The ratio of the chosen fCI control-control (or control-case) on 2-

dimensional measurements will undergo logarithm transformation and normalization for 

the analysis. If the pathological/experimental condition causes a number of genes to be 

up-regulated or down-regulated, a wider distribution which can be described by kernel 

density distribution (indicated by the 3D ellipse in red) compared to the control-control 

empirical null distribution (indicated by the 3D ellipse in blue) will be observed.  
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Figure 2: Analysis of Transcriptome and Proteomic dataset using fCI. (a-b) The 

box-plot of RNA and protein expression changes in gene AASS during five cell 

differentiation stages (see supplementary material 1.1). (a).RNA expression was 

measured by microarray hybridization intensity, and (b) the protein abundance was 

measured as the median log-2 ratio with respect to the reference channel (time-0). (c-e) 

Identification of DEGs in bivariate RNA-Seq data. (c) The left panel shows the 3-way 

Venn diagram for the univariate fCI targets found in time-1 (orange), time-2 (red) and 

bivariate fCI targets found the two time points were analyzed jointly (green), using the 

time-course RNA-Seq dataset (supplementary material 1-5). (d) The scatterplot of the 

gene expression ratio from univariate fCI targets found at time-1 only (orange), time-2 

only (red), for the bivariate analysis (green), and targets only found in bivariate fCI 

analysis (black).  (e) The distribution of Hellinger divergence (log2)(z-axis) between 

case-control distribution and empirical null distribution after genes with a ratio greater 

than the cutoff specified in time-1 (x-axis) and time-2 (y-axis) were removed. The  

divergence scores would reach a global minimum point which manifests the optimal fold 

change cutoff for transcript and protein (or in time point 1 and 2 respectively) in the 

integrated (or multidimensional) data set under study (f). The MA plot of empirical 

Control-Control and Case-Control (the first replicate of the pooled control and case 

samples respectively) ratios from Microarray data (supplementary material 1-4). (g The 

Gaussian kernel density plot of Control-Control (blue), the original Case-Control (red) 

and the remaining Case-Control (green) after misregulated genes are removed by fCI.  

 

Figure 3. Analysis of protein and mRNA changes in time-course data using fCI. 

Protein levels were measured in two treatment conditions (LPS and Mock) and two data 

recording methods (H/L and M/L) respectively. mRNA levels were were measured in 

two treatment conditions (LPS and Mock)  respectively. Both protein and mRNA levels 

were recorded at 0h,1h, 2h, 4h, 9h and 12h. At each time point, fCI determined whether 

the given gene is differentially expressed or not compared to reference time point 0h. If 

no significance was found, a fold change of 0 was assigned. Otherwise, the ratio will be 

reported for significant changed time points. Effect of gene regulation with respect to the 

6 time points were shown on gene ‘Cebpb’ and ‘Trafd1’ respectively.  

 

 


