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Abstract

In this dissertation, we propose methodology to account for missing data as well as a
strategy to account for outcome heterogeneity.

Missing data occurs frequently in empirical studies in health and social sciences, of-
ten compromising our ability to make accurate inferences. An outcome is said to be miss-
ing not at random (MNAR) if, conditional on the observed variables, the missing data
mechanism still depends on the unobserved outcome. In such settings, identification is
generally not possible without imposing additional assumptions. Identification is some-
times possible, however, if an exogeneous instrumental variable (IV) is observed for all
subjects such that it satisfies the exclusion restriction that the IV affects the missingness
process without directly influencing the outcome. In chapter 1, we provide necessary and
sufficient conditions for nonparametric identification of the full data distribution under
MNAR with the aid of an IV. In addition, we give sufficient identification conditions that
are more straightforward to verify in practice. For inference, we focus on estimation of
a population outcome mean, for which we develop a suite of semiparametric estimators
that extend methods previously developed for data missing at random. Specifically, we
propose inverse probability weighted estimation, outcome regression based estimation
and doubly robust estimation of the mean of an outcome subject to MNAR. For illustra-
tion, the methods are used to account for selection bias induced by HIV testing refusal in
the evaluation of HIV seroprevalence in Mochudi, Botswana, using interviewer charac-
teristics such as gender, age and years of experience as IVs.

The development of coherent missing data models to account for nonmonotone miss-

ing at random (MAR) data by inverse probability weighting (IPW) remains to date largely
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unresolved. As a consequence, IPW has essentially been restricted for use only in mono-
tone MAR settings. In chapter 2, we propose a class of models for nonmonotone missing
data mechanisms that spans the MAR model, while allowing the underlying full data law
to remain unrestricted. For parametric specifications within the proposed class, we intro-
duce an unconstrained maximum likelihood estimator for estimating the missing data
probabilities which is easily implemented using existing software. To circumvent poten-
tial convergence issues with this procedure, we also introduce a constrained Bayesian
approach to estimate the missing data process which is guaranteed to yield inferences
that respect all model restrictions. The efficiency of standard IPW estimation is improved
by incorporating information from incomplete cases through an augmented estimating
equation which is optimal within a large class of estimating equations. We investigate the
tinite-sample properties of the proposed estimators in extensive simulations and illustrate
the new methodology in an application evaluating key correlates of preterm delivery for
infants born to HIV infected mothers in Botswana, Africa.

When a risk factor affects certain categories of a multinomial outcome but not oth-
ers, outcome heterogeneity is said to be present. A standard epidemiologic approach for
modeling risk factors of a categorical outcome typically entails fitting a polytomous logis-
tic regression via maximum likelihood estimation. In chapter 3, we show that standard
polytomous regression is ill-equipped to detect outcome heterogeneity, and will gener-
ally understate the degree to which such heterogeneity may be present. Specifically, non-
saturated polytomous regression will often a priori rule out the possibility of outcome
heterogeneity from its parameter space. As a remedy, we propose to model each category
of the outcome as a separate binary regression. For full efficiency, we propose to estimate
the collection of regression parameters jointly by a constrained Bayesian approach which
ensures that one remains within the multinomial model. The approach is straightforward

to implement in standard software for Bayesian estimation.
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1.1 Introduction

Selection bias is a major problem in health and social sciences, and is said to be present
if, in an empirical study, features of the underlying population of primary interest are
entangled with features of the selection process not of scientific interest. Selection bias
can occur in practice due to incomplete data, if the observed sample is not representa-
tive of the true underlying population. While various ad hoc methods exist to adjust for
missing data, such methods may be subject to bias unless under fairly strong assump-
tions. For example, complete-case analysis is easy to implement and is routinely used
in practice. However, complete-case analysis is well-known to produce biased estimates
when the outcome is not missing completely at random (MCAR) (Little and Rubin, 2002).
Progress can still be made if data are missing at random (MAR), such that the missing data
mechanism is independent of unobserved variables conditional on observed data. Prin-
cipled methods for handling MAR data abound, including likelihood-based procedures
(Little and Rubin, 2002; Horton and Laird, 1998), multiple imputation (Rubin, 1987; Ken-
ward and Carpenter, 2007a; Horton and Lipsitz, 2001; Schafer, 1999), inverse probability
weighting (Robins et al., 1994; Tsiatis, 2006; Li et al., 2013) and doubly robust estimation
(Scharfstein et al., 1999; Lipsitz et al., 1999; Robins et al., 2000; Robins and Rotnitzky, 2001;
Neugebauer and van der Laan, 2005; Tsiatis, 2006; Tchetgen Tchetgen, 2009).

The MAR assumption is strictly not testable in a nonparametric model without an ad-
ditional assumption (Gill et al., 1997; Potthoff et al., 2006) and is often untenable. An
outcome is said to be missing not at random (MNAR) if, conditional on the observed
data, the missingness process remains dependent on the unobserved outcome (Little and
Rubin, 2002). Identification is generally no longer available under MNAR without an ad-
ditional assumption (Robins and Ritov, 1997). A possible approach is to make sufficient
parametric assumptions (Little and Rubin, 2002; Roy, 2003; Wu and Carroll, 1988) about
the full data distribution for identification. However, this approach can fail even with
commonly used fully parametric models (Miao et al., 2014; Wang et al., 2014). Other ex-
isting strategies for MN AR include positing sufficiently stringent modeling restrictions on

a model for the missing data process (Rotnitzky et al., 1998) or obtaining sensitivity anal-



ysis and bounds (Moreno-Betancur and Chavance, 2013; Kenward and Carpenter, 2007b;
Robins et al., 2000; Vansteelandt et al., 2007). Another common identification approach
under MNAR involves leveraging an instrumental variable (IV) (Manski, 1985; Winship
and Mare, 1992). Heckman’s framework (Heckman, 1979, 1997) is perhaps the most com-
mon IV approach used primarily in economics and other social sciences to account for

outcome MNAR. A valid IV is known to satisfy the following conditions:

(i) the IV is not directly related to the outcome in the underlying population, conditional

on a set of fully observed covariates, and

(ii) the IV is associated with the missingness mechanism conditional on the fully ob-

served covariates.

Therefore a valid IV must predict a person’s propensity to have an observed outcome,
without directly influencing the outcome.

One can in principle use a valid IV to obtain a nonparametric test of the MAR assumption.
However access to an IV does not point identify the joint distribution of the full data and
therefore its functionals. Heckman'’s selection model (Heckman, 1979) is generally not
known to be identifiable without an assumption of bivariate normal latent error in defin-
ing the model (Wooldridge, 2010). Estimation using Heckman-type selection models may
be sensitive to these parametric assumptions (Winship and Mare, 1992; Puhani, 2000), al-
though there has been significant work towards relaxing the assumptions (Manski, 1985;
Newey et al., 1990; Das et al., 2003; Newey, 2009). An alternative sufficient identification
condition was considered by Tchetgen Tchetgen and Wirth (2013) which involves restrict-
ing the functional form of the selection bias function due to non-response on a given
scale for the outcome (mean additive, mean multiplicative or logistic) under the specified
model. However, as shown in simulation studies below, their approach is likely sensitive
to bias due to model misspecification, and a more robust approach is warranted.

In this paper, we develop a general framework for nonparametric identification of selec-
tion models based on an IV. We describe necessary and sufficient conditions for identi-
fiability of the full data distribution with a valid IV. For inference we focus on estima-

tion of an outcome mean, although the proposed methods are easy to adapt to other
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functionals. We develop three semiparametric approaches that extend analogous meth-
ods previously developed under missing at random (MAR) settings: inverse probability
weighting (IPW), outcome regression (OR) and doubly robust (DR) estimation. The con-
sistency of each estimator relies on correctly specified models for parts of the joint full
data law. Extensive simulation studies are used to investigate the finite sample properties
of the proposed estimators. For illustration, the methods are used to account for selection
bias induced by HIV testing refusal in the evaluation of HIV seroprevalence in Mochudi,
Botswana, using interviewer characteristics including gender, age and years of experience

as IVs. All proofs are delegated to an appendix.

1.2 Notation and Assumptions

Suppose that one has observed n independent and identically distributed observations
(X, RY, R, Z) with fully observed covariates X and R is the indicator of whether the per-
son’s outcome Y is observed. The variable Z is a fully observed IV that satisfies assump-
tions (i) and (ii) formalized below. In the evaluation of HIV prevalence in Mochudi, X
includes all demographic and behavioral variables collected for all persons in the sam-
ple, while HIV status Y may be missing for individuals who failed to be tested, i.e. with
R = 0. Let 7(X,Z) = Pr(R = 1|X, Z) denote the propensity score for the missingness
mechanism given (X, 7). As a valid IV, we will assume that Z satisfies the following

assumptions.

Assumption 1.
(IV.1) Exclusion restriction:

Pyix z(ylx,2) = Pyix(y|z) forallz,z.

(IV.2) IV relevance:
7(z,2) —w(x,2") #0 forall z.

Exclusion restriction (IV.1) states that the IV and the outcome are conditionally indepen-

dent given X in the underlying population, that is the IV does not have a direct effect
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on the outcome, which places restrictions on the full data law for identification. IV rele-
vance requires that the IV remains associated with the missingness mechanism even after
conditioning on X, which allows for full rank conditions in estimation. In spite of (IV.2),
(IV.1) implies that Z cannot reduce the dependence between R and Y, therefore under
MNAR 7 (z,y,2) = P(R = 1|z,y, z) remains a function of y even after conditioning on
(x,2). In addition, (IV.1) and (IV.2) implies that under MNAR the IV remains relevant
in 7(z,y, z) conditional on (z,y). Both of these facts will be used repeatedly throughout.
7(z, z) is typically referred to as the propensity score for the missingness process, and we

shall likewise refer to 7(z,y, z) as the extended propensity score.

1.3 Identification

Although (IV.1) reduces the number of unknown parameters in the full data law, identi-
tication is still only available for a subset of all possible full data laws. As an illustration,
consider the case of binary outcome and IV. For simplicity and without loss of generality,
we omit covariates X. Assumption (IV.1) implies P(z,y) = P(y)P(z). We are only able
to identify the quantities P(z,y|R = 1), P(z|R = 0), P(R = 1) from the observed data.
These quantities are functions of the unknown parameters: P(Z = 1), P(Y = 1), and
P(R = 1]z,y). So we have six unknown parameters, but only five available independent
equations, one for each empirically identified parameter given above. As a result, the full
data law is not identifiable, and P(Y = 1) is not identifiable.

The IV model becomes identifiable once one sufficiently restricts the class of models for
the joint distribution of (Z,Y, R). Let Py(R, Z,Y), P,(Z) and P¢(Y) denote the collection
of such candidates for P(R = 1|z,y), P(z) and P(y), respectively. Members of the sets are
indexed by parameters 6, n and ¢, which may be infinite dimensional. The identifiability
of the model is determined by the relationship between its members. Proofs for all results

and examples are relegated to an appendix.

Theorem 1. Suppose that Assumption 1 holds, then the joint distribution P(z,y,r) is
identifiable if and only if Py(R, Z,Y) and P¢(Y) satisfy the following condition: for any
pair of candidates in the model { P, (R = 1|2,y), P, (y) } and { Py, (R = 1|z,y), P, (y)}, their
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ratios are not equal:

P91<R:1"Zvy) PE2(y)
P92(R:1|Zvy) Pfl(y)

for at least one value of z and y.

(1.1)

Theorem 1 presents a necessary and sufficient condition for identifiability of the joint
distribution of the full data, and thus a sufficient condition for identifiability of its func-
tionals. Although condition (1.1) of Theorem 1 can be readily verified for parametric
distributions, it may not be so for semiparametric and nonparametric distributions with
less tractable forms for Py(R,Z,Y) and P:(Y) . We have the following corollary which

provides a more convenient condition to verify.

Corollary 1. Suppose that Assumption 1 holds, then the joint distribution P(z,y,r) is
identifiable if the ratio Py, (R = 1|z,y)/Fs,(R = 1|z, y) is either a constant or varies with z
for any two elements I, (R, Z,Y') and P, (R, Z,Y’) of the model.

Although Corollary 1 provides a sufficient condition for identification of the joint distri-
bution of the full data, it is still possible to characterize the identifiability of a large class of
parametric or semi-parametric models by verifying the condition in the corollary, which

we illustrate with several examples.
Example 1. For binary outcome with binary instrument, consider the candidate set
Pg(R, Z, Y) = {P(R = 1|Z, Y) = eXpit [00 + 012 + QQY + 93ZY] . (00, 01, 02, Qg) S R4} s

which are saturated in (Z,Y). It can be shown that candidates from this set do not sat-
isfy inequality (1.1) in Theorem 1 and therefore the joint distribution of (Z,Y, R) cannot
be identified without reducing the dimension of # through modeling assumptions. By

Corollary 1, the joint distribution can be identified for the candidate set
Po(R,Z,Y) = {P(R=1|Z,Y) = expit [0y + 61Z + 0:Y] : (6, 61,05) € R*},

i.e. with the additional assumption that the association of the outcome Y with the miss-
ingness mechanism is constant within levels of Z, on the logit scale. A more general result
on the identifiability of separable logistic missing data mechanisms, which also holds for

continuous Y and 7, is given in Example 2.



Example 2. The separable logistic missing data mechanism
Po(R, Z,Y) = {P(R=1|Z,Y) = expitlq(Z) + h(Y)]}. (1.2)

is identifiable, where ¢(-) and h(-) are unknown functions differentiable with respect to
Z and Y respectively. Identification also holds if either or both of Z and Y are binary or

discrete random variables.
Example 3. The separable probit missing data data mechanism
Po(R, 2,Y) = {P(R=1|Z,Y) = ®la(Z) + h(Y)]}. (1.3)

is identifiable, where ¢(-) and h(-) are unknown functions assumed to be differentiable

with respect to Z and Y respectively.
Example 4. Under MAR, the missing data mechanism
Po(R,Z,Y) ={P(R=1|2.Y) = 9(Z)} (1.4)

is identifiable. Its members satisfy the conditions of Corollary 1. It is clear that the ratio

of any pair of members is either a constant or varies with Z.

1.4 Estimation and Inference

In this section, we consider estimation and inference under a variety of semiparametric IV
models that are assumed to satisfy the identifiability conditions of Theorem 1. We denote
the collection of such identifiable models as M. As a measure of departure from MAR,

we introduce the selection bias function

P(R = 1!»“6,3/,2)/
P(R =0|z,y, 2)

n quantifies the degree of association between Y and R given (X, Z) on the log odds
ratio scale. Under MAR, P(R = 1|z,y,2) = P(R = 1|z, 2) and n = 0. Using the model-

(1.5)

P(R=1|z,Y =0,z
n(z,y, ) zlog{ ( | )}

P(R=0|z,Y =0,z)

ing framework proposed by Chen (2007), under mild conditions the conditional density
P(r,y|x, z) can be represented in terms of the selection bias function 7 and baseline den-

sities as

P(r,ylz,z) = C(z,2)  exp[(r — Dn(z,y, 2)]f(y|R = 1,2,2)P(r|lY =0,z, 2), (1.6)



where C(z,2) = P(R = 1Y = 0,z,2) + P(R = 0)Y = 0,z, z) E{exp[—n(z,Y, 2)]|R =
l,z,2} < +oo for all (z, z) is a normalizing constant. We can therefore characterize the

joint data law conditional on X as
P(r,y, z|r) = C(z,2) " expl(r — Dn(z,y, 2)| f(y|R = 1,2, 2) P(r[Y = 0,2, 2)q(z[z). (1.7)

By (1.6), the selection bias function 7 needs to be correctly specified for any of the three
proposed estimators to be consistent. This is significant in that for any observed data law
and each selection bias function 7, one can identify a unique full data law that marginal-
izes to the observed data law (Scharfstein et al., 2003). Absent of restrictions such as
Assumption 1, the selection bias function is not identifiable from the observed data law
since different values of 1 can lead to the same observed data likelihood. In order to
address this identification problem, an existing strategy is sensitivity analysis whereby
one conducts inferences assuming 7({y) is completely known and repeats the analysis
upon varying the assumed value of ¢, (Robins et al., 2000; Rotnitzky et al., 1998, 2001;
Scharfstein et al., 1999; Vansteelandt et al., 2007). A different approach is possible with an
IV since 7 is in principle identified under Theorem 1 from the observed data and there-
fore needs not be assumed known. It is impossible to disentangle the full data law from
the selection process without evaluating 7. Therefore, we will proceed by assuming that
although a priori unknown, one can correctly specify a model 1(¢) for the selection bias
function which can be estimated from the observed data. To fix ideas, throughout we sup-
pose that one aims to make inferences about the population mean ¢ = E(Y'), although
the proposed methods are easy to extend to other full data functionals.

Although identification results given in the previous section in principle allow for non-
parametric inference, in practice estimation often involves specifying parametric models,
at least for parts of the full data law. This will generally be the case when a large number
of covariates X and Z are present and therefore the curse of dimensionality precludes the
use of nonparametric regression to model the association between Y and R given (X,Y)
(Robins and Ritov, 1997). IPW estimation typically requires a correctly specified model

for the extended propensity score 7 (x,y, z). The extended propensity score under logit



link function is

7T($a Y, Z) = 1/{1 + eXp[_n(‘ra Y, Z) - )‘<:U7 Z)]}7 (18)

where 1(z, y, 2) is the selection bias function given in (1.5) and A(z, z) = log{ P(R = 1Y =
0,z,2)/P(R = 0]Y = 0,x, 2)} is the baseline missing data model, a function of P(r|Y =
0, , z). While IPW estimation can be applied for any proper link function for the extended
propensity score, as we show below, DR estimation relies on using the logit link function

to model the extended propensity score. We consider IPW estimation in the model

where the parametric models indexed by ({,w, ) respectively are assumed to be correctly
specified, and the baseline outcome model f(y|R = 1, z, z) in (1.7) is unrestricted.

Outcome regression based estimation under MAR typically requires a model for f(y|R =
1,z,2) = f(y|z,z), which can be estimated based on complete-cases. However, under
MNAR f(y|R =1,X,7) # f(y|R =0, X, Z) and estimation of f(y|R = 0, z, z) is difficult
since outcome is not observed for this subpopulation. When a valid IV is available, the

same conditional density f(y|R = 0, z, z) has an equivalent exponential-tilt representation

__ Prle,z)  expl=( =y, )] f (YR =11, 2)
S 2) = B0 e, 2yapty) ~ Blespl—(l— rn(@.Y, )R =L oz} )

and therefore relies on correctly specified models for the selection bias function 7 and

baseline outcome model f(y|R = 1, z, z) for complete-cases. We consider OR estimation

in the model

which allows the baseline missing data model P(r|Y = 0, z, z) to remain unrestricted.

We also propose a doubly robust estimator which is consistent in the union model
Mpw U Mor. The DR estimator holds appeal in that it remains consistent if the condi-
tional density ¢(z|x) is correctly specified, and either one of the models P(y|R = 0, X, Z; 0)
or P(r|Y, X, Z;w), but not necessarily both, is correctly specified, thus rendering it more

robust against model misspecifications.



Throughout the next section, we let éMLE and fMLE denote the maximum likelihood esti-
mators of the parametric models P(y|R = 1,z, 2;0) and ¢(z|x; ) respectively, and let P,
denote the empirical measure P, f(O) =n~' >, f(O;).

1.4.1 Inverse probability weighted estimation under M,,,

IPW is a well known approach to acount for missing data under MAR. In this section
we describe an analogous approach under MNAR. Standard approaches to estimating
the propensity score under MAR such as maximum likelihood say of a logistic regression
model of the propensity score cannot be used here since 7(z,y, z) depends on Y which
is only observed when R = 1. Therefore, we propose an alternative method of moments

approach which resolves this difficulty. Within the model M, (é , W) solves

P, {U™ (§us G ) | = 0 (1.10)

where U™ (-) consists of the estimating equations

R
P — =1 (X, Z) } = 1.11
gzt meea} o _—
R .

P e {ma(zx) - B[z 06l =0 a)
Equations (1.11) and (1.12) estimate unknown parameters in P(r|Y = 0,z,2;w) and

n(x,y, z; () respectively, where h, and h, are arbitrary functions of (z, z) with same di-
mensions as w and ( respectively. Specific choices of (hq, h,, g) can generally affect effi-
ciency but not consistency. Optimal choices are described in the next section. To illustrate
IPW estimation, suppose that Z is binary and consider the following logistic model for

the extended propensity score
logit m(X,Y, Z) = wo + w1 X + we XZ + (Y, 1 = (wo,wr,ws, ().

Thus, n(z,y, 2; () = (y and logit P(R = 1|Y =0, z, z;w) = wo+wiz+wsxz. Suppose further
that ¢(Z = 1|z;€) = B(z;€) = {1 +exp [—(1,2)7¢] }_1. We obtain (¢, &) by solving

P, { {WRM — 1} (1, X, XZ)T} =0

P, {ﬂfw)y{z— B(X;éMLE)}} — 0.
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Proposition 1. Consider a model My, C M,, which satisfies the identification condition

in Theorem (1). Then the IPW estimator

o™ =P, {ﬂ} (1.13)
(1)

is consistent and asymptotically normal as n — oo, that is
Vi (8™ = 00) 5 N (0,V)
in model M, under suitable regularity conditions, where V' is given in (1.14) below.

Let M (9) represent the stacked vector of the following estimating functions: score func-
tions for estimating £, U™ (¢, (,w) and G(¢,(,w) = {% - <b}, where 0 = ((,w, &, @).
Then under standard regularity conditions for M-estimation (Newey and McFadden,
1993), the asymptotic variance V is given by the diagonal entry corresponding to ¢ of

the following variance-covariance matrix

e {8M(5) }

-1
= B {M(60)M(5,)"}
where §y = (o, wo, &0, ¢0) is the probability limit of 6 = (5 , W, f , 95) A consistent sandwich

] , (1.14)
)

|

estimator for the above asymptotic variance can be constructed by evaluating unknown

expectations as sample means at the estimated parameter value 6.

1.4.2 Outcome regression estimation under M,

We consider inferences under a parametric model for the outcome, i.e. under model M.

Using the parametrization given in (1.9), consider the parametric model
exp [—77(% Y,z C)] f (y|R =1,z éMLE)
E {eXP[—U(«% Y,z; Q)[R =12,z éMLE}

Py|R=0,z,z; C,éMLE) =

We arrive at the estimate ¢ of the selection bias function n(¢) as the solution of the esti-
mating equation

IP)n {UOR (C; éMLE; éMLE7 qi, q2> } =

Po{au(X, 2) = B [i(X, 2)|Xi | } {1 = BB (X, )| R = 0.X, 2:¢, 0uss) + Rax(X. V) |

=0, (1.15)
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where q1, g» are vectors of the same dimensions as (.
Proposition 2. Consider a model M, C M,, which satisfies the identification condition
in Theorem (1). Then the outcome regression estimator
R —p_ {RY+(1 ~R)E (Y’R:O,X, 7 ﬁ,éMLE)} (1.16)
is consistent and asymptotically normal as n — oo, that is
Vi (8% = ¢) % N (0,V)
in model M under suitable regularity conditions.

A consistent sandwich estimator for the asymptotic variance V' analogous to (1.14) is

straightforward to obtain.

1.4.3 Doubly robust estimation under M,,, U M,,

Estimation approaches described thus far depend on correct specifications of missing data
model and outcome model for the IPW and OR estimators respectively. Here we pro-
pose a doubly robust estimator that remains consistent if the selection bias function 7
and the conditional density ¢(z|x; &) are correctly specified, and any one of two models
P(y|R, X, Z;0) or P(r|Y, X, Z,w) is correctly specified, but not necessarily both. we first
derive a DR estimator fDR of the selection bias function 7(() that remains consistent in

M pw U Max. In this vein, let

GDR <R7 X7 Y7 Za C7 Cd, éMLEa ’LL)

_ 7r<éij)u(x, Y) - i_(z—’(i’)w)E <u(X, Y))R —0,X,7:(, éMLE>
- W(gw) {u(X, Y)—E (u(X, Y)‘R —0,X,7:(, éMLE>}
v E <u(X, Y)‘R —0,X,Z:C, éMLE) , (1.17)

where u(X,Y) is of the same dimensions as (. We obtain ((, &) as the solution to the

estimating equation (1.11) combined with
P, {UDR <C7 w, éMLE; éMLE) u, U) } =

IPn{ [U(X, Z)—E (’U(X, Z)’X;éMLEﬂ [G’DR (R, X,Y,Z;g,w,éMLE,u)] } —0.  (1.18)
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Proposition 3. Consider a union model (M, U M) C My which satisfies the identifi-

cation condition in Theorem (1). Then the doubly robust estimator

~

o =P, { G (R, XY, 2, Con, 0,0 } (1.19)
where u(X,Y) =Y is consistent and asymptotically normal as n — oo, that is

Vi (9™ =) S N (0,V)
in the union model M, U M, under suitable regularity conditions.

The notion of doubly robust estimation was first introduced in the context of semi-
parametric non-response models under MAR (Scharfstein et al., 1999), and the approach
was further studied by others (Lipsitz et al., 1999; Robins et al., 2000; Lunceford and Da-
vidian, 2004; Neugebauer and van der Laan, 2005) with theoretical underpinnings given
by Robins and Rotnitzky (2001) and van der Laan and Robins (2003). A doubly robust
version of estimating equation (1.19) of mean outcome under MNAR was previously de-
scribed by Vansteelandt et al. (2007) who, as described earlier, assume that the selection
bias function 7 is known a priori within the context of a sensitivity analysis. An important
contribution of the current paper is to derive a large class of DR estimators of the selection
bias using an IV. To the best of our knowledge, this is the first time that a DR estimator for

the mean outcome has been constructed in the context of an IV for data subject to MNAR.

1.5 Semiparametric Estimation Theory

In the semiparametric model given by Assumption 1, we consider estimation of ¢ and the
full data functional ¢ = E(Y') based on the observed data O = (R, RY, X, Z) by deriving
their respective ortho-complement nuisance tangent spaces N/ go +and NV ¢O . Throughout
this section, spaces refer to sub-spaces of the Hilbert space of mean zero measurable ran-
dom functions with bounded second moments, equipped with covariance inner product
evaluated at the truth. The spaces N, go *and NV, ¢O " are of interest since for sufficiently
smooth models, the influence functions of regular and asymptotically linear (RAL) esti-

mators for ¢ and ¢ are normalized versions of elements in these ortho-complement nui-
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sance tangent spaces respectively (Tsiatis, 2006). For example, the set of influence func-
tions of all RAL estimators of ¢ is the space [F, = {E(AS¢)‘1A; AeNy ’L}, where an
element of N, ¢O "~ is a one-dimensional function of the observed data and S, is the score
for ¢, all evaluated at the truth. Taking an element A* € N/ f - we can estimate ¢ by
¢ which solves > A <Oi; gﬁ) = 0. Under regularity conditions, ¢ is an RAL estimator
with the expansion n'/? <<;A5 - gbO) =n"Y2E(A*Sy)7 Y, A*(Oy; d0) + 0,(1), with influence
function E(A*S,) 1 A*(O; ¢o) € IF, (Bickel et al., 1993). This motivates derivation of the
ortho-complement nuisance tangent space, since estimators can be constructed by identi-
tying and solving empirical versions of the elements in the space.

It is shown in the appendix that the ortho-complement nuisance tangent spaces of the

selection bias parameter (, and the population mean outcome ¢, are given by

N?LZ{N?%O—CO:RKﬁLﬂﬁﬂm+ﬂ—RM4®—REW—RMJ@MMw@y

a.=E[C—-CIR=0,X,Z]
(1.20)

and

NP (Y = go) +C = CT) 4+ E{ VNP (k(Y = 6o) + C = CT) |g, } NP (D = D)

0,1 _
N = { ki
1s any constant
(1.21)

respectively, where C' = c¢(L)is any arbitrary functionof L = (V,X,Z)and CT =
E[C|Z,X] + E[C|Y,X] — E[C|X]. D and D' are defined similarly. The estimator ¢

of the population mean outcome given in Proposition 3 corresponds to the element
NO* (R(Y = 60)) + B { VNP (B(Y = 60)) o} NP (Don — D) € N9,

for a particular choice of Dy corresponding to the element NIO - (DDR — D;gR) € /\/’CO’L of
fDR. The influence function of the efficient RAL estimator for ¢, is given in the following

result.

Proposition 4. Under Assumption 1, the efficient influence function of all RAL estimators

of ¢ is proportional to
NOH (Y = 60) = M+ B{Ve [NO* (b(Y = 90) = M] o} U (122)

14
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up to a normalizing constant, where M = II (Nlo’l (k(Y — ¢0)) | {Nlo’L (C-cCh): C}),
I1(-) is the projection operator and U = N (Deff - Djff> denote the influence function of
the efficient RAL estimator of (,. The estimator of ¢, with the efficient influence function

(1.22) is

FF =P, {GDR (R, XY, Z, Core, u) I (GDR (R, XY, Z, Conr, u> | {NlovL (c-cf): 0}) } ,
(1.23)

where prp is the efficient estimator of {; and u(X,Y) =Y.

Finding the closed form expression for (1.22) may be difficult in general. However, in the

special case where both Z and Y are binary variables, C — CT can be expressed as
b(XY = E(V[X)}H{Z - E(Z]1X)},
indexed by some function b(X) so that

NOH(C=CT) = (X)) x {R{Y — E(Y|X)}{Z — E(Z|X)} /= (L) +
(1- RE{Y - E(Y|X)}{Z - E(Z|X)}|X,R =0,Z]
“RE[(1- R)E[{Y - E(Y|X)}{Z - E(ZIX)}|X.R = 0,2]|L] / (L)}
= (X)W

Let the efficient influence function for RAL estimators of the selection bias parameter (,

be I Ff = d*(X)W. Then by Theorem 5.3 of Newey and McFadden (1993),
E{d (X)W (¢)?d(X)} = E{Vd(X)W(()} for all d(X)
solving which yields
d°(X) = E{W (O° IX} " E{VW () |X}.

Let 0*(X)W be the projecion of H = N2 (k(Y —¢)) onto the space
{Nlo t(C-ct): C}. It follows by the property of projection that
E{[H -0 (X)Wh(X)W} = 0 for all b(X). Therefore F{HW —b*(X)W? X} = 0
which yields [FE™ = H — b*(X)W = H — E{HW|X} E{W2|X} ' W.
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In practice, the conditional expectations in b*(X') and d*(.X') usually need parametric mod-
eling, especially when the covariate X is high-dimensional or continuous. However, even
if they are misspecified, the models remain functions of the covariate X and therefore the
resulting estimators é and gg are still consistent and have influence functions that belong to
the spaces (1.20) and (1.21) respectively. If the posited parametric models contain the true
model, then the resulting estimators attain the local semiparametric efficiency bounds as
described in Proposition 4.

Instead of directly solving empirical versions of the respective efficient influence func-
tions to obtain (AEFF and g%EFF, we use a result due to Bickel et al. (1993) which states that
starting with an initial /n-consistent estimator, the efficient estimator can be obtained by
a one-step update in the direction of the estimated efficient influence function. Therefore,

we can first obtain fEFF by the formula
-1
S O it | I ol 129
where  is an initial estimate of any /n-consistent estimator of ¢, and I/F\CEFF is the empirical

version of [ F™ with estimated conditional expectations evaluated at (. Subsequently, we

obtain ¢ by a further one-step update

-1
¢EEFF = ¢2 - {Z [V@FFS (57 gEFF} } Z [@> éa 6EFF} ) (1.25)

% 7

where ¢ is an initial estimate of any /n-consistent estimator of ¢.

1.6 Simulation study

In order to investigate the finite-sample performance of the proposed estimators, we car-

ried out a simulation study involving i.i.d. data (Y, Z, X;, X,). For each of sample sizes
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n = 1000, 2000, 5000, we generated 1000 simulation replicates as followed,

X ~ Bernoulli(p = 0.4), X, ~ Bernoulli(p = 0.6)
Y’Z, Xl,XQ ~ N(07 - 05X1 -+ O.5X2, 1)

P(R=1|X1,X,,Y, Z) = expit(—=1.2 + 2.5Z 4+ 0.3X; + 0.82X, + Y).

Estimation was then based on the observed data (X, X5, Z, R, RY'). Under the above
data generating mechanism, Z satisfies (IV.1) and (IV.2), with the true value of ¢, =
E(Y) = 0.8. The selection bias model is a(z, y, z) = (y with true value {; = 1. The model
is identified since the missing data mechanism follows the separable logistic regression
model described in Example 2. For IPW estimation, we specified the correct extended
propensity score and conditional p.m.f. f(Z = 1|X;, X5;¢), and solved (7)-(9) with h; =
(Z,X1,72X,)T, g =Y and hy = Z. For OR estimation, we let (¢, ) = (Z,Y) in (13) and

specified the outcome regression models

E [Yexp(—CY)\R = 17X17X27Z] = M(Za X17X2;9)
E[exp(_CY”R = 1aX17X27Z] = M(Za XlaXQ;Ql)

where 1 (z,x1,x9;0) is saturated in terms of (z,z, x2) and obtained (é, 0 > via ordinary
least squares using complete-cases only. DR estimation was carried out by combining the
above estimators as described in the previous section.

To study the performance of the proposed estimators in situations where some models
may be misspecified, we also evaluated the estimators within submodels in which either
the extended propensity score model or the complete-case outcome density model was

misspecified by replacing them with the models
P(R =1]X1,X5,Y, Z) = expit(w + (Y)

YIR=1,Z,X1,Xs~ N (6o + 0.X1,07)

respectively.
In each simulated sample, we evaluated the standard error of the estimator using the

sandwich estimator given in (12) and (13). The coverage rate for the true value ¢, = 0.8
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across 1000 simulations was calculated based on Wald 95% confidence intervals. Bias is
given as the difference between mean Monte Carlo estimates and ¢,. We solved the esti-
mating equations using the R package BB (Varadhan and Gilbert, 2009) and evaluated the
Jacobi ans at estimated parameters with the R package numeric (Gilbert and Varadhan,

2012). Results for the simulation are presented in Table 1.1.

Table 1.1: Estimation of the average response ¢, = 0.8 from 1000 simulation replicates.
ASE refers to the median standard error obtained using sandwich estimator. Coverages
are based on 95% Wald confidence intervals. The bias in estimation of selection bias pa-
rameter (y = 1 is also included.

Misspecified extended propensity score

Estimator n  Bias qg MCSE ASE % Cov Bias é
IPW 2000 -0.175 0.063 0.051 146  0.367
5000 -0.173 0.041 0.033 2.5 0.339

OR 2000 -0.006 0.048 0.046 954  0.077
5000 -0.003 0.029 0.029 96.0 0.031

1000 -0.007 0.072 0.062 92.8 0.149

DR 2000 -0.006 0.048 0.044 92.7 0.077
5000 -0.003 0.029 0.028 944  0.031

Misspecified complete-case outcome density

Estimator n  Bias¢ MCSE ASE 9% Cov Bias(
1000 0.001 0.069 0.060 953 0.072

IPW 2000 0.004 0.043 0.042 957 0.033
5000 0.004 0.025 0.026 95.8 0.007

1000 0.068 0.050 0.049 709 -0.495

OR 2000 0.065 0.035 0.035 528 -0.484
5000 0.064 0.022 0.022 189 -0.485

1000 -0.003 0.069 0.061 942  0.082

DR 2000 -0.005 0.047 0.044 949 0.055
5000 -0.002 0.028 0.027 95.0 0.020

Both models correct

n  Bias¢ MCSE ASE % Cov Bias(
1000 -0.005 0.069 0.066 941 0.126
DR 2000 -0.005 0.048 0.047 95.1 0.074
5000 -0.003 0.029 0.029 96.6  0.030

Estimator

Under correct model specification, all estimators have negligible bias for ¢, and ¢, that
diminishes with increasing sample size, with empirical coverage near the nominal 95%
level. In agreement with our theoretical results, the IPW and OR estimators are biased
with poor empirical coverages when A(X, Z) or f(Y|R = 1, X, Z;6) is misspecified, re-

spectively. The DR estimator performs well in terms of bias and coverage when either
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model is misspecified but the other is correct.

1.7 Applications

To illustrate the proposed IV approach, we obtained data from a household survey in
Mochudi, Botswana to estimate HIV seroprevalence among adults adjusting for selective
missingness of HIV test results. The data consist of 4997 adults between the ages of 16 and
64 who were contacted for the survey, out of whom 4045 (81%) had complete information
on HIV testing. Of those who did not have HIV test results (R = 0), 111 (2%) agreed
to participate in the HIV test but their final HIV outcomes are unknown, and 841 (17%)
refused to participate in the HIV testing component. It is likely that refusal to participate
in the survey when contact is established presents a possible source of selection bias.

Fully available individual characteristics from the survey include participant gender (X).
Candidate IVs include interviewer gender (Z;), age (Z,) and years of experience (Z3).
These interviewer characteristics are likely to influence the response rates of individuals
who were contacted for the survey, but are unlikely to directly influence an individual’s
HIV status, given that interviewer deployment was determined at random prior to the
survey. We implemented the proposed IPW, OR and DR estimators by making use of in-
terviewer gender, age and years of experience as IVs. For IPW estimation, the missingness

propensity score is specified as a linear main effects model with logistic link
IOglt P(R = 1|X, YV, Z) = W + le =+ w221 + CL)3ZQ + (JJ4Z3 —+ CY (Al)

where Y indicates HIV serostatus as our outcome of interest and the selection bias func-
tion is specified as a(z,y, 2) = (y. The posited missing data mechanism belongs to the
separable logistic class, therefore the average HIV prevalence can be identified by Propo-

sition 2. For OR estimation, we specified the regression model
loglt P(Y = 1‘R = 1, X, Z) = 90 + 91X + 02Z1 + 9322 + 0423. (AZ)

Finally, the doubly robust estimator is implemented by incorporating both of the above

two models. Since more than one IV was available, estimating equations U™, U™
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and U™ were solved using the generalized method of moments (GMM) package in R
(Chaussé, 2010). Standard errors were obtained using the proposed sandwich estimator.
For comparison, we also carried out standard complete-case analysis and standard IPW

estimation assuming MAR given (z, z) under the propensity score model
10glt P(R = 1|X, Z) ZWO+W1X+WQ21 —I—w3Z2 —|—OJ4ZQ,. (A3)

Results from the analysis are presented in table 1.2.

Table 1.2: Estimation for HIV seroprevalence (¢) and magnitude of selection bias (¢) in Mochudi,
Botswana with 95% Wald confidence intervals.

Estimator [0) ¢ ¢ p-val
CC 0.214 (0.202, 0.227) - -
MARIPW 0.213 (0.201, 0.226) - -
IVIPW  0.260 (0.175, 0.341) -1.601 (-2.992,-0.210)  0.02
IV OR 0.241 (0.175,0.307) -0.757 (-1.889, 0.376)  0.19
IV DR 0.258 (0.174,0.342) -1.121 (-2.433,0.191)  0.09

IV-based point estimates of HIV seroprevalence are 12.6 — 21.5% higher than the crude
estimate of 0.214 (95% CI: 0.202-0.227) based on complete-cases only. Standard IPW pro-
duced similar estimates as complete-case analysis. The negative point estimates of the
selection bias parameter (¢ suggest that HIV-infected persons are less likely to participate
in the HIV testing component of the survey, although this difference is statistically signifi-
cant at 0.05 a-level only for IPW. The larger confidence intervals of the three IV estimators
of ¢y compared to those of the CC and MAR estimators are a more accurate reflection of
the amount of uncertainty involving inferences about ¢,, since the CC and MAR estima-
tors do not take into account the uncertainty about the underlying MNAR mechanism
by assuming MCAR and MAR respectively. ¢™ and ¢™ are close to each other. This
comparison is useful as an informal goodness of fit test in that their similarity suggests
that the missingness propensity score may be specified nearly correctly (Robins and Rot-
nitzky, 2001). In addition, by incorporating all possible pairwise interaction terms in the
outcome logistic regression model (A2) and therefore allowing it to be more flexible, the
OR point estimate ¢°® increases to 0.246 (95% CI: 0.179-0.314) and becomes closer to ¢™
and ¢"®.
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1.8 Discussion

In this paper, we have considered a pernicious form of selection bias which can arise
from outcome missing not at random. We have argued that under fairly reasonable as-
sumptions this problem can be made more tractable with the aid of an IV, and proposed
a general framework for establishing identifiability of parametric, semiparametric and
nonparametric models. We have proposed IPW and OR estimators which are consistent
and asymptotically normal if the selection bias and the IV models are correctly specified,
when either the extended propensity score or the outcome regression model is correctly
specified respectively. We also constructed a DR estimator that remains consistent if either
of the two models is correct, which gives the analyst two chances, instead of only one, to
get correct inferences about the magnitude of selection bias and the mean outcome in the
underlying population of interest.

Several interesting extensions could be explored in the future, including analogous meth-
ods for longitudinal data, as well as for dependent censoring of a survival outcome. It
may also be of interest to extend the approach to a regression framework with covariate

missing not at random.
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2.1 Introduction

Missing data is a major complication which occurs frequently in empirical research. Non-
response in sample surveys, dropout or non-compliance in clinical trials and data exci-
sion by error or to protect confidentiality are but a few examples of ways in which full
data is unavailable and our ability to make accurate inferences may be compromised.
Missingness could also be introduced into a study by design, e.g. multi-stage sampling
plans in order to reduce the cost associated with measurements for all subjects. In many
practical situations, the missing data pattern is nonmonotone, that is, there is no nested
pattern of missingness such that observing variable X, implies that variable X; is also
observed, for any j < k. Nonmonotone missing data patterns may occur, for instance,
when individuals who dropped out of a longitudinal study re-enter at later time points
or in a cross-sectional regression analysis in which the outcome and covariates may be
missing in patterns that are arbitrary across persons. The missing data process is said
to be missing-completely-at-random (MCAR) if it is independent of both observed and
unobserved variables in the full data, and missing-at-random (MAR) if, conditional on
the observed variables, the process is independent of the unobserved ones (Rubin, 1976;
Little and Rubin, 2002). A missing data process which is neither MCAR nor MAR is said
to be missing-not-at-random (MNAR).

While complete-case (CC) analysis is the easiest to implement and often used in practice,
the method is generally known to produce biased estimates when the missingness mecha-
nism is not MCAR (Little and Rubin, 2002), although in regression settings, a CC analysis
remains unbiased provided the missingness process does not depend on the outcome
given observed covariates included in the regression model (Little and Rubin, 2002; Little
and Zhang, 2011). Other commonly used procedures include last-observation-carried-
forward analysis most commonly used in longitudinal studies and other single impu-
tation techniques. However, such ad-hoc approaches typically provide valid inferences
only under restrictive and often unrealistic conditions (Molenberghs et al., 2004; Siddiqui
and Ali, 1998; Little and Rubin, 2002). More principled methods to appropriately ac-

count for missing data include parametric likelihood or Bayesian inference (Little and
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Rubin, 2002; Horton and Laird, 1999; Ibrahim and Chen, 2000; Ibrahim et al., 2002, 2005)
and parametric multiple imputation (MI) inference (Rubin, 1977; Schafer, 1999) which
is widely utilized through its incorporation into mainstream statistical software (Horton
and Lipsitz, 2001)

Inverse probability weighting (IPW) (Horvitz and Thompson, 1952; Little and Rubin,
2002; Robins et al., 1994; van der Laan and Robins, 2003; Tsiatis, 2006; Li et al., 2013;
Seaman and White, 2013) is another method to reduce selection bias from missing data
or unequal sampling fractions. IPW estimation does not require specification of the full-
data likelihood, but the missingness mechanism needs to be modeled. The development
of coherent models and practical estimation procedures for the response mechanism of
nonmonotone missing data is challenging, even under the assumption that the data is
MAR. To the best of our knowledge, and as discussed in the seminal missing data book
of Tsiatis (2006), there currently is not available, a general approach to model an arbitrary
nonmonotone missing data generating process strictly imposing MAR only. This repre-
sents an important gap in the missing data literature, which has essentially restricted the
use of IPW estimation to monotone missing data settings.

There has been some debate in literature about the plausibility of the MAR assumption
with nonmonotone missing data, and it has been argued that MNAR may be a more
natural mechanism under such settings (Robins and Gill, 1997; Little and Rubin, 2002).
Methods based on nonmonotone MNAR generally require and can be sensitive to addi-
tional parametric assumptions for the full data and missingness mechanism (Troxel et al.,
1998; Ibrahim et al., 2001), or for just the missingness mechanism (Rotnitzky et al., 1998).
An analysis assuming MAR may be preferable to one assuming MCAR even if the miss-
ingness mechanism is strictly MNAR (Little and Rubin, 2002; Molenberghs et al., 2014),
and in some empirical settings yield more accurate predictions of the missing values than
those based on MNAR for nonmonotone missing data (Rubin et al., 1995). The analytic
simplifications with methods based on MAR for the often nuisance missingness mech-
anism benefit the main focus of inquiry (Schafer and Graham, 2002; Schafer, 2003). In
addition, estimation under the MAR assumption provides a principled framework for

anchoring inference in the presence of incomplete data (Molenberghs et al., 2014). Such
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inference can and should subsequently be supplemented with sensitivity analyses to as-
sess the extent to which a violation of MAR might lead to bias (Scharfstein et al., 2003).

In this paper, we propose a class of models for arbitrary nonmonotone MAR data pat-
terns. In order to estimate the missingness mechanism required for IPW estimation, we
present two approaches: unconstrained maximum likelihood estimation (UMLE) and
constrained Bayesian estimation (CBE). The first approach is easily implemented in stan-
dard software, say using existing procedures in SAS or R. However, despite this appealing
feature, as we illustrate in the simulation studies, UMLE has a major drawback, in that
the estimator may not be defined in finite samples, even if all regression models are cor-
rectly specified. This problematic feature of the approach is mainly due to certain natural
restrictions of the model. In addition to UMLE, we introduce a CBE approach (Gelfand
et al., 1992) which largely resolves any convergence difficulty and is easily implemented
in standard Bayesian software packages. As IPW may be inefficient in practice, we im-
prove its asymptotic efficiency by recovering available information from incomplete cases
through implementing an augmented IPW (AIPW) estimator which is optimal within a
very large class of AIPW estimators. The approach, which combines the proposed esti-
mators of the nonmonotone missing data process with ideas originating from the seminal
work of Robins et al. (1994) and further developed by van der Laan and Robins (2003) and
Tsiatis (2006), holds appeal in the fact that it leverages available information from incom-
plete cases without having to specify a model of the full data distribution. We present
a simulation study to investigate the finite-sample properties of both constrained and
unconstrained inferences in the context of logistic regression with nonmonotone miss-
ing outcome and covariates, followed by an analysis of preterm delivery on a cohort of

women in Botswana to illustrate an application of the methods.

2.2 Notation and Assumptions

Let L = (Ly, ..., L) be a random K-vector representing the complete data. Let R be the
scalar random variable encoding the different missing data patterns. For missing data

pattern R = m, where 1 < m < 2%, we only observe L,y € L. For each of n individuals,
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we observe an independently and identically distributed realization of (R;, L(r);), i =
1,2,...,n, and we suppress the subject index i when not essential. We reserve R = 1 to
denote complete cases. Let P, denote the empirical measure P, f(O) = n~ Y, f(O;).

We assume that the missing data process is MAR (Rubin, 1976; Robins et al., 1994). IPW
methodology essentially requires for unbiasedness that MAR holds for all persons in the
population and so, more specifically, we shall assume everywhere MAR (Seaman et al.,
2013), also sometimes called missing-always-at-random (Mealli and Rubin, 2015) such

that Vi, ~,

Pr{R; = m|li; v} = Pr{R; = m|l};~}, (2.1)

Vm, l;, 7 such that l(m); = (),

where (I;,[}) represents a pair of possible values of L;, so that the conditional probability
of having missing data pattern m, which we denote by ,, (/(,)), depends only on the
observed variables for that pattern. The finite or infinite dimensional parameter indexing
the missing data mechanism is denoted by . Throughout, we also make the positivity

assumption that Vi,
m(l;) > o >0 VI; in the support of L;, (2.2)

for a fixed positive constant 0. That is, the probability of being a complete case is bounded
away from zero with probability 1. Assumption (2.2) is necessary for identification of the
full data law and smooth functionals of the latter (Robins et al., 1994), and ensures finite
asymptotic variance of the IPW and AIPW estimators.

A key implication of assumptions (2.1) and (2.2) is that the missing data process is non-
parametrically identified. We note that for likelihood-based methods the weaker assump-
tion of realized MAR (Seaman et al., 2013) already implies that if separate parameters in-
dex the missing data mechanism and the full data distribution, efficient estimation of the
parameters of the missing data process can be obtained by maximizing its partial likeli-

hood, ignoring the part of the likelihood corresponding to the full data.
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2.3 Estimation of Missing Data Mechanism

Although the missingness mechanism is in principle nonparametrically identified under
assumptions (2.1) and (2.2), in practice estimation typically entails specifying parametric
models as dictated by the curse of dimensionality, since L is typically of moderate to high
dimension (Robins and Ritov, 1997). To motivate our discussion of nonmonotone miss-
ing data models, we briefly review strategies for modeling some common missing data
structures. In the simple case of two missing data patterns, i.e. R = 1,2, the probability
of being a complete case is 1 — m (L(2)) and the parameters v of a model 5 (L2);7) can
be estimated by maximizing the likelihood function

H {1—m (L)) }ﬂ(Rz:l) {7 (L) }171(&:1) .

The two-missing-data-pattern scenario arises in familiar settings such as in regression
analysis with incomplete data only on the outcome for a subset of the sample.

When M > 2 the missing data is said to be monotone if for some ordering of the variables
in L, the k™ variable is observed only if the k& — 1™ variable was observed, and therefore
one can sort the missing data patterns in such a way that L, 1) C L(y,) form =1, ..., M —
1. Some of the earliest works in this area include weighting methods to adjust for non-
response in panel studies with monotone missing data patterns (Little and David, 1983).
In general, any monotone response mechanism can be modeled using a discrete hazard
function (Robins et al., 1994; Tsiatis, 2006) by defining

Pr(R=m|R <m,L), m# 1.

A (Lim) =
(L(m)) {17 _—

The discrete hazard \,,(-) is a function of L,,) only since

Pr(R = m|L) T (L(m))

Pr(R<m|L) 1- Zj>m i (L))

and Ljy C Ly for all j > m by the monotone missing data structure. Defining

Kn(Lgny) =Pr(R<m|L) = [ {1 = N(Ly)}, m#1L,

Jjzm
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the conditional probability for each missing data pattern is

Ton(Lim)) = K1 (Lmt1)Am(Limy ), m < M.
m\&(m) A (L(my) m — M.

and in particular the complete case probability is

m(L) = Ky(L») = Pr(R <2|L) = []{1-A

§j>2

To estimate the hazard functions \,,(L()), in practice we may run a series of logistic
regressions of the indicator variable 1(R = m) on L(,,) among individuals with R < m,
m = 2,...,M. Alternatively, one may pool information by allowing A,,(Ly,) to share

parameters acCross m.

2.3.1 The failure of standard polytomous regression

For nonmonotone missing data patterns, the nesting of patterns L,,;1) C L, is no longer
available, and building coherent models for the conditional probabilities of the various
missing data patterns is challenging even under assumptions (2.1) and (2.2) (Robins et al.,
1994; Robins and Gill, 1997; Tsiatis, 2006). A straightforward approach to model 7, (L))
using standard polytomous regression for the multinomial missing data process will of-
ten have the unintended consequence of imposing more restrictive conditions than what
MAR assumption (2.1) strictly entails (Robins and Gill, 1997). We illustrate this using an
example from Robins and Gill (1997), which we adapt to a general bivariate pattern (Lit-
tle and Rubin, 2002, pp. 18-19). Suppose the full data is bivariate L = (L, L2) and one
encodes the missing data patterns as follows: R = 1 if L is observed; R = 2 if one only
observes L) = Li; R = 3 if one only observes L3y = Lo; and R = 4 if neither variable is

observed. In general, the MAR assumption (2.1) for this scenario is Vv,
Pr{R =m|L;v} = Pr{R = m|L¢;v}, m=1,2,3,4.

A standard polytomous logistic regression for R corresponds to

exp(Yom + YimL1 + YamLo)

Pr{R =m|L;~} = = ’
L+ s exp(Yor + vkl + YorL2)

m=2,3,4. (2.3)
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By the MAR assumption, since for R = 4 neither variable is observed, the probability
Pr{R = 4|L} depends on neither L, nor L, so that v;; = 7»; = 0 for j = 2, 3,4. Therefore
assuming model (2.3) under MAR implies MCAR. In general, it can be shown using a
similar argument that the missing data pattern probabilities modeled using polytomous
logistic regression can at most depend on the intersection of the sets of observed variables
Ly, m = 2,3,..., M (i.e. the set of fully observed variables), which is strictly stronger
than the MAR assumption (2.1). This suggests that standard polytomous regression is
ill-suited as modeling strategy for nonmonotone missing data process under MAR.

As a remedy, Robins and Gill proposed a large class of models for the missing data mech-
anism, which they call the randomized monotone missingness (RMM) processes, that
are guaranteed to be MAR for a non-monotone missing data mechanism without nec-
essarily being MCAR (Robins and Gill, 1997). This class of models does not span the
space of all MAR models and therefore it is indeed possible to test whether the proposed
class of models includes the true missing data mechanism. However, estimation of the
missing data mechanism within this class is complex and computationally demanding,
even for small to moderate sample sizes and number of different missing data patterns,
and no software is currently available to implement the approach, which has limited its
widespread adoption. In this paper we take a different direction and propose a class of
models for nonmonotone missing data that spans the entire MAR model (with the class
of RMM processes being a possible submodel) and therefore, with enough data such that
non-parametric models can be used reliably, in principle one would not be able to reject

MAR based on the observed data.

2.3.2 Proposed nonmonotone missing data model

Our approach involves modelling the conditional probability for each missing data pat-

tern separately as

Pr{R =m|L} = mn(L(m)), m=2,..., M. (2.4)
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The probability of observing complete data is

M
Pr{R=1|L} =m(L) =1- Y mn(Lim), (2.5)

which depends on the union set of observed variables | J_, L. To ground ideas, con-

sider as a parametric submodel of (2.4) the series of simple logistic models
-1
Tm (L(m)Q”Vm) = {1 + exp |:—”)/m (1, L(m))T:| } , m=2 ..M,
M 1y -1
m(Liy)=1-) {1 + exp [—’ym (1, Limy) } } ;Y= (2 - YM)- (2.6)
m=2

By assumption (2.2), model (2.6) must satisfy the constraint

M
1= (Lmy; Ym) > o with probability 1. (2.7)

m=2
Consider the UMLE estimator of «, defined as the value which maximizes the uncon-

strained log-likelihood function corresponding to missing data model (2.6).

Z { [Z L(R; = m)1ogm, (Linyi; vm) | + L(R; = 1)log [1 — Z o (Lkyis Ve ] } (2.8)

with corresponding score equation

|

for the parameters ~,, for missing data pattern m, where ,, and (1, L(m))T have the same

L(R=1) L(R=m)
m (L) T (Lom)

] (1 =) (1, L(m))T} =0 (2.9)

dimension.

It may be in practice that maximizing (2.8) fails to converge. This could happen if there is
at least one individual for whom the empirical version of constraint (2.7) is not satisfied
in the process of finding the maximum, in which case the fitted complete case probability
may be near zero or possibly negative, a real possibility especially at small or moderate
sample sizes. Thus, we have referred to (2.8) as an unconstrained log-likelihood function,
as it does not naturally impose constraint (2.7).

Note that even if the missingness mechanism were known, constraint (2.7) which depends
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on ngz L,y can only be observed for complete case individuals. In fact, only complete
cases need to satisfy the constraint in order to ensure that the UMLE can be computed
in practice. Thus, one could in principle attempt to maximize the observed data log-
likelihood (2.8) together with the observable constraints

M
1(R;=1) Zwk (Layisyw) <1—o0* fori=1,2,.., N, (2.10)
k=2

where o is a user-specified small positive constant. Still, this is potentially computation-
ally prohibitive, since there are as many constraints as complete case observations.

Instead, in addition to UMLE, we develop a constrained Bayesian estimation approach
where samples are drawn from the unconstrained posterior conditional distribution for
v and only those draws that fall into the constrained parameter space (2.10) are retained
(Gelfand et al., 1992). An additional appeal of this approach is that the posterior credible
intervals of v are guaranteed to satisfy constraint (2.10), which is useful if one wishes to
perform hypothesis testing to identify significant predictors in the missing data regres-
sion models. Constrained Bayesian estimation has been used previously in several other
settings, for instance to estimate risk ratio and relative excess risk regressions (Chu and
Cole, 2010, 2011); however, to the best of our knowledge, it has not been used in the cur-
rent context. To implement the approach, we specify a diffuse prior distribution g(~) for
v = (72, ..., 7u) under model (2.6) and incorporate constraint (2.10) in the posterior dis-
tribution of 7. Under the constrained Bayesian model, the posterior distribution of v is

proportional to

f(vldata) < f(dataly)g H { H {7m (Lim) Z,fym)}ﬂ(Ri:m) x Q(~, Li)ﬂ(RFl)} 9(7)

=1

(2.11)

where
M
Qv, L { [1 - Zﬂ'k Lwyis Vi ] x 1 [Zm (L) <1-— a*] } .
k=2
We define the CBE estimator of vy as the posterior mode (or mean) from distribution (2.11).

We note that in practice there may be some missing data patterns that are sparsely ob-

31



served. In such cases, a simple approach entails combining across patterns with small
event probabilities and estimating the missingness process under an additional assump-
tion that the probability of any pattern within the combined set only depends on the
intersection set of variables observed for all patterns in the combined set. Although the
suggested approach to handle sparse patterns may introduce some bias, we do not antic-
ipate the magnitude of this bias to be significant provided the combined set of patterns
remains relatively rare compared to other more prominent missing data patterns. If the
combination of sparse patterns gives rise to a monotone missing data pattern in the over-
all data set, then the standard approach of modeling variationally independent discrete
hazards described earlier may be used. The probabilities of the missing data patterns are
not variationally independent because of the nesting of patterns, i.e. probability of pat-
tern m depends on hazards from m to M while that of pattern m + 1 depends on hazards
m + 1 to M. The proposed approach subsumes monotone nonresponse patterns as a spe-
cial case. However, some care is needed to ensure that the parameterization of models
for each pattern respects their natural nesting in this setting. Nonetheless it will lead to a
complicated estimation procedure without any apparent benefit in bias reduction or effi-
ciency. Therefore in practice, existing discrete hazard function models should be used to

construct weights with monotone missing data patterns.

2.4 IPW Inference

Suppose we observe n i.i.d. realizations of the vector L, and we wish to make inferences
about the parameter 3, which is the unique solution of the full data population estimating

equation
E{M(L; o)} =0 (2.12)

where expectation is taken over the distribution of the complete data L. Note that we do
not require a model for the distribution of the full data L; in fact, estimation is possible
under certain weak regularity conditions (van der Vaart, 1998) as long as full data unbi-

ased estimating functions exist. In the presence of missing data, the estimating function
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in (2.12) may only be evaluated for complete cases, which may be a highly selective sub-
sample even under MAR. This motivates the use of IPW estimating functions of complete
cases to form the following population estimating equation

1(R=1) ' B
E {—m(L) M(L,ﬁo)} = 0. (2.13)

The unbiasedness of the above estimating equation holds by straightforward iterated ex-
pectations. We note that the IPW estimator 3;,,, which solves empirical versions of (2.13)
is inefficient especially when the fraction of complete-cases is small, since incomplete
cases are discarded except in that they may be included in the estimation of the weights
m(L;%). In the next section we will describe a strategy to recover information from in-
complete cases by augmenting estimating function (2.13) to gain efficiency:.

The IPW estimating equations framework encompasses a great variety of settings under
which investigators may wish to account for non-monotone missing data. This includes
IPW of the full data score equation, where the score function is such an unbiased esti-
mating function, given a model f(L|5) for the law of the full data, in which case (2.13)
reduces to

1(R =1) dlogf(L|5)
mi(L) a3

E — 0. (2.14)

Bo

Note that equation (2.14) does not necessarily correspond to the observed data score equa-
tion, and will therefore generally not achieve the efficiency bound for the model. Estima-
tion can also be extended to classes of semiparametric models which specify only certain
marginal relationships in L and in which scientific interest focuses on some low dimen-
sional functional 8 = (F7},) of the distribution F}, of the full data L. For instance, in many
health related applications it is common to specify a model g(X, 3) for the conditional
mean of the outcome response Y given a set of covariates X = (X1, Xy, ..., Xp)?. Here
L = (Y, X) and either the outcome or any covariate may be missing. Then the parameter
of interest can be identified by the population IPW estimating equation

1(R=1),, B
p{ME Dy -y mlnen} -0
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where h(X) is a user-specified function of X of the same dimension as ;. Regression
parameters in semiparametric models for right censored failure time data can likewise be
identified by similar IPW population estimating equations, e.g. Cox proportional hazards
regression and Aalen’s additive hazards regression. Analogous estimating equations are
also available for longitudinal and clustered data. In all cases empirical estimating equa-
tions are obtained by replacing population expectations with their empirical counterparts,
and 7 (L) with a consistent estimator.

To fix ideas, let 1 (L;y) = 1 — Zf\f:? {1 + exp [—'}m (1, L(m))T} }1 where 4 = (%2, ...%m)
is either the UMLE (assuming it can be computed) or CBE estimate. Then, an estimate
for the parameter of interest f3, is given by the solution f;,, to the inverse probability

weighted estimating equation

7T1(L§’AY)

Subject to standard regularity conditions and assuming that the missing data model given

P, {@M(L; 5)} = 0. (2.15)

in (2.6) is correctly specified, we show in the supplementary material that 3, is consis-

tent and asymptotically normal

VB = B0) 5 N (0. B{VT (B0, 70)} ™" Var [1(o, 30) = W (B0, 70)) EXVaT (o, 70)} ")
(2.16)

whereI'(5,7) = {1(R = 1) /m(L;v)} M (L; B), S, is the score function (2.9) for the missing

data mechanism evaluated at the truth and

W (Bo,70) = E [T(B0,70)S%] E [S4057] ™ S

The asymptotic variance in (2.16) can be consistently estimated by replacing the terms

under expectation with empirical averages evaluated at <Bipwa ’3’)
B{V4L(8,4)} " Var [0(8,7) = W(3,3)] B{Var(3. 9}~ (2.17)

Although the posterior mode (or mean) is asymptotically efficient by the Bernstein-von
Mises Theorem (van der Vaart, 1998), in finite sample the CBE estimate may not neces-

sarily correspond to the solution of the score function (2.9). For inference under the con-
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strained Bayesian approach, we therefore apply a finite-sample correction to the variance

estimate
E{VAL(3,4)} " Var [L(8,3) = W(B,4) + E{W(B,4)}] B{VaL (39} 18)

so that the term in \//SE[] has mean zero empirically. The correction term E{W(3,%)}
is expected to vanish as sample size increases. A conservative, albeit more easily im-
plementable, estimate of the asymptotic variance in (2.16) is obtained by the standard

sandwich variance formula (Robins et al., 1994)
B{V4L(8,4)} " Var [1(3,9)] B{Var(3. 9} (2.19)

24.1 Improved IPW estimator via augmentation

The efficiency of the IPW estimator introduced in the previous section, which only makes
direct use of complete cases, can be improved by incorporating information from individ-
uals with missing data via augmentation of the IPW estimating equation (Robins et al.,
1994; van der Laan and Robins, 2003; Tsiatis, 2006). The approach is based on a result
due to Robins et al. (1994) who show that under assumptions (1) and (2), all regular and
asymptotically linear (RAL) estimators based on observed data, of a functional /3, can be
shown to be asymptotically equivalent to an estimator solving

LR=1) _
Pn{7;@T4ugﬁy+A(&ng}_o. (2.20)

U(L;8) is an element of U, the set of all full data estimating equations of f,, and
A (R, L(g)) is an element of the space A spanned by all scores of the missing data mecha-
nism which are of the form

>

r#1

1(R=1) 1(R=r)

m(L) (L)

tdh&}a

where t, (L(r)) is an arbitrary ¢-dimensional function of the observed data L, corre-
sponding to missing data pattern R = r (Robins et al., 1994). The class of estimating
equations obtained by varying U(L) over U" and A (R, L(r)) over A is referred to as
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augmented estimating equations, since it entails augmenting a standard IPW estimat-
ing equation by an arbitrary score function of the missingness process (Robins et al., 1994;
Tsiatis, 2006). In principle, one can therefore construct an efficient estimator by identify-
ing the optimal full data estimating function U € U” paired with the optimal choice of
augmentation Ay, € A to use in equation (2.20). Unfortunately the optimal index lead-
ing to a semiparametric efficient estimator is generally not available in closed form and
often computationally prohibitive in most problems of interest. Instead, we take a more
practical approach to improve efficiency by using a restricted class of estimators (Tsiatis,
2006).

We illustrate the approach using an example with two levels of missingness. Suppose the
full data L, = (Y, X;) is independent and identically distributed for ¢ = 1,2, ..., n, where
Y is the binary response variable and X = (X;, X,)” are two univariate covariates. For
a subsample of individuals, only (Y, X;) was observed. Let the missing data indicator
be R; = 1 if the i-th individual is a complete-case and R; = 2 if we only observe L); =

(Y:, X1;). Suppose we assume the substantive model to be
Pr(Y =1|X) = [1 +exp(87X)] " = u(X,B),

and we are interested in estimating 3 = (3o, 41, 52)7, then the class of all augmented IPW

estimators (AIPW) will be any estimator that solves

1(R=1) 1(R=2)
m(L) w2 (L)

1(R=1)
P, {Whﬁxl(X»ﬁ) Y —u(X,B8)] +

.f3><1(Y7 Xl)} = 0

The functions hs.1 (X, 8) and f3x:(Y, X;) are any arbitrary functions of X and (Y, X)
respectively, where the subscripts denote their dimensions. The optimal AIPW estima-
tor in terms of asymptotic variance corresponds to a specific choice which we denote as
hP' (X, 8) and f5F, (Y, X;). The optimal choice (k3 fs¥;) is only available in closed
form in special simple settings, and typically require solving complicated integral equa-
tions for each observation (Robins et al., 1994; Tsiatis, 2006). This will generally be the
case for nonmonotone nonresponse, and therefore we consider a more practical approach,

which we introduce here in the simple case with two levels of missingness, in the interest
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of simplifying the presentation. The supplement includes a detailed description of the
approach for general nonmonotone patterns.
The proposed approach entails approximating hSP' (X, 3) and fs&: (Y, X;) with a lin-
ear combination of basis functions. For instance, the choice of basis functions
Jh (X)) = {1, X1, Xo, X2, X2, X, X5} and JL (Y, X1) = {1,Y, X1, Y2, X2, Y X, }7 allows
for quadratic relationships in (X5, X;) and (Y, X;) respectively. The approximations to
(hE,, f5P)) are by, = AsyeJi, and fi,, = BaxgJl,, respectively, where As,s and Bsyg
are arbitrary constant matrices. We can then consider the class of augmented estimators
I(R=1) 1(R=2)
771<L) N T2 (L(z))

P, {thxl(‘x) Y — (X, B8)] +

Fia (Y, Xl)} =0. (Al

It is possible to estimate the unique constant matrices As.s and Bsx¢ in the class of esti-
mators (A1) which give the optimal efficiency in the class. This estimator is guaranteed
to be more efficient asymptotically compared to the simple IPW estimator typically used
by analysts which solves

L(R=1) _— B
P { M X ) ) | <o

An appeal of the proposed approach of approximating the optimal functions with linear
combinations of basis functions is that it does not require specification of the full data law
beyond the substantive model of interest as well as assumptions (1) and (2) to estimate

the weights 7 (L; 7).

2.5 Simulation

In this section we report a simulation study to investigate the finite-sample properties
of the proposed estimators. Independent and identically distributed (Y, X) is generated
where X = (X, Xy, X3) follow the truncated normal distributions X; ~ N(u = 1,0 =
0.5), Xo ~ N(u = XqU,0 = 0.5) and X3 ~ N(p = X;X5,0 = 0.5) on the support X €
0,2]* with U ~ Unif(0,1). The binary outcome variable Y is then generated with the
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substantive model
logit Pr(Y = 1|X) = By + £1.X1 + S2X2 + $3X3. (2.21)

The generated full data is then induced with missing values following missing data model

(2.6) under three scenarios.

251 MAR Mechanism which depends on both the outcome and co-
variates

Scenario 1 concerns nonmonotone missing data with three patterns Ly = (Y, X), L) =

(Y, X1) and L) = (X3, X3) generated under the MAR mechanism

logitPr{R = 2|Y, X} = {7ya0 + 1Y + 722 X1}

logit Pr{R = 3|V, X} = {730 + 731.X2 + 732X}, (2.22)

with the probability of being a complete case Pr{R = 1|Y, X} = 1 — Pr{R = 2|Y, X} —
Pr{R = 3|Y, X }. This mechanism may be reasonable when, for example, certain combi-
nations of variables in a survey data increase the risks of personal identification and are

withheld from the analysts due to confidentiality concerns (Molenberghs et al., 2014).

2.5.2 MAR Mechanism which depends on covariates only

In scenario 2, the missing data model is independent of the outcome Y given covariates X
in the substantive model of interest. Nonmonotone missing data patterns L) = (Y, X),
L9 = (X1) and L3y = (X;, X3) are generated under the MAR mechanism

logit Pr{R =2|Y, X } = {720 + 721 X1}

lOglt PI‘{R = 3|Y, X} = {’)/30 + ’)/31X2 + ’Ygng}. (223)

2.5.3 MNAR Mechanism

Scenario 3 concerns a MNAR missing data model, which has been argued as a more nat-
ural mechanism with nonmonotone missing data (Robins and Gill, 1997; Little and Ru-

bin, 2002). Missing data with three observed patterns Ly = (Y, X), L) = (Y, X;) and
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L3 = (X», X3) is generated under the MNAR mechanism

logit Pr{R = 2|Y, X } = {720 + 721Y + 722 X1 + 723Xo + 724 X3}

logitPr{R = 3]Y, X} = {730 + +731Y + 732X1 + 733 X2 + 134 X3}, (2.24)

i.e. the missing data mechanism for each pattern depends on all the variables in the
substantive model, although only L, is observed for m = 1,2,3. The missing data
process is generated from a multinomial distribution with the probabilities in (2.22)-(2.24)
for the three scenarios respectively and only the corresponding observed data for the
sampled pattern contributes to estimation. We perform 1000 replicates each with sample
sizes n = 500, 1000. Each simulation replicate has approximately 30% to 40% of complete
cases.

For IPW and AIPW estimators, the missing data models are specified as (2.22) in scenar-
ios 1 and 3, and (2.23) in scenario 2. The choice of basis functions for AIPW estimation
includes linear and quadratic terms. The parameters 7 of the missing data models are
estimated using both the UMLE and CBE to construct the weights, and the substantive
model is correctly specified as (2.21). The UMLE estimator of v is implemented using the
R function optim with the quasi-Newton method BFGS. We obtain the CBE estimator of
as the posterior mean of distribution (2.11) with independent diffuse priors y ~ N (0, 10?)
and o* = 107%. Adaptive Gibbs sampling (Gilks et al., 1995) was implemented through
“BRugs” , the R interface to the OpenBUGS MCMC software (Lunn et al., 2009). More
details on the implementation as well as the sample OpenBUGS code for estimation of
missing data model in scenario 1 are included in the supplementary materials.

For comparison, two likelihood-based MI methods are also included: full predictive dis-
tribution sampling assuming multivariate normality (NORM) (Schafer, 1997) and multi-
variate imputation by chained equations (MICE) (van Buuren and Oudshoorn, 2000; van
Buuren and Groothuis-Oudshoorn, 2011) based on the variables (Y, X)) in the substantive
and missing data models. For NORM the imputed Y value is dichotomized to the binary
1(Y > 0). The imputation model for outcome Y in MICE is the correctly specified sub-

stantive model (2.21), while the continuous variables X are imputed via predictive mean
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matching (Rubin, 1986). The results for both MI methods are based on 10 imputed data
sets in each simulation replicate. Lastly we also implement unweighted complete-case
(CC) regression to evaluate the magnitude of selection bias, and carry out MLE based on
the full data (Full MLE) to assess the extent of efficiency loss due to missing data. The

results of the simulation study for scenarios 1-3 are shown in tables 2.1-2.3 respectively.

Table 2.1: Absolute value of empirical bias (|Bias|), mean square root of estimated variance (MSE)
and Monte Carlo standard error (MCSE) for estimation of 3 in the substantive model with MAR
mechanism! which depends on both outcome and covariates (scenario 1). The true value of 3 is
(Bo, B1, B2, B3) = (—2.5,0.7,0.8,1.0). All entries are original values multiplied by 1000.

So o) fa fs
n Method | |Biasj] MSE MCSE | |[Biasj] MSE MCSE | |Biasj] MSE MCSE | |Biasj MSE MCSE
Full MLE 29 297 309 19 266 266 7 291 296 14 260 265
CC 262 450 465 151 406 403 113 464 467 117 409 423
500 IPW 81 470 472 53 419 405 20 482 482 28 422 432
AIPW 96 400 434 56 350 369 24 460 483 32 408 432
NORM 119 349 355 42 308 316 | 124 369 421 | 100 334 398
MICE 52 394 401 65 346 351 55 461 467 24 413 432
Full MLE 9 209 214 2 187 187 3 205 205 7 183 187
CC 301 313 328 119 282 288 109 324 339 111 285 288
1000 IPW 28 330 328 14 292 280 8 340 347 17 296 297
AIPW 42 281 299 21 243 251 11 328 347 19 288 297
NORM 193 238 245 32 212 223 | 119 260 302 99 229 265
MICE 19 276 284 45 241 249 58 321 340 11 287 294

TTrue value of «y in the missing data model is (20, v21, Y22, 30, Y31, ¥32) = (—0.8,—1.5,0.2, -1.2,0.3,0.3).

Table 2.2: Absolute value of empirical bias (|Bias|), mean square root of estimated variance
(MSE) and Monte Carlo standard error (MCSE) for estimation of 3 in the substantive model with
MAR mechanism' which depends on the covariates only (scenario 2). The true value of 3 is
(Bo, B1, B2, B3) = (—2.5,0.7,0.8,1.0). All entries are original values multiplied by 1000.

/30 /31 /32 ﬂiﬁ
n Method | |Bias] MSE MCSE | |[Biasj] MSE MCSE | |Biasj] MSE MCSE | |Biasj] MSE MCSE
Full MLE 36 298 290 8 266 255 22 292 292 5 260 267
CC 90 531 540 23 475 472 53 543 569 16 477 481
500 IPW 108 544 567 29 486 487 67 553 596 19 487 499

AIPW 109 534 570 29 478 489 68 539 599 20 477 500
NORM 236 385 442 76 343 382 61 382 472 108 341 405

MICE 63 542 541 6 487 481 25 550 570 36 487 491

Full MLE 11 209 214 2 187 188 11 205 217 8§ 183 184

CC 33 367 370 6 331 334 12 377 403 24 332 353

1000 IPW 33 379 389 7T 338 342 10 387 415 23 338 359
AIPW 33 374 390 6 335 343 9 381 416 24 335 359

NORM 298 271 304 83 245 274 106 263 339 103 235 302

MICE 8§ 372 377 15 338 348 12 375 410 36 336 369

TTrue value of «y in the missing data model is (20, ¥21, V30, V31, ¥32) = (—0.8,0.2, -1.2,0.3,0.3).

In scenario 1, the CC estimator has substantial bias irrespective of sample size since the

missing data model involves both the outcome and covariates. Among the estimators

40



Table 2.3: Absolute value of empirical bias (|Bias|), mean square root of estimated variance (MSE)
and Monte Carlo standard error (MCSE) for estimation of 3 in the substantive model with MNAR
mechanism' (scenario 3). The true value of 3 is (B, 81, B2, 43) = (—2.5,0.7,0.8,1.0). All entries
are original values multiplied by 1000.

Bo B B2 B3
n Method | |Bias] MSE MCSE | |[Bias)] MSE MCSE | |Bias] MSE MCSE | |Bias] MSE MCSE
Full MLE 28 298 303 20 266 264 0 291 285 11 260 255
CcC 309 403 401 206 366 355 127 415 421 95 367 366
500 IPW 21 412 404 78 373 348 88 423 428 62 373 370
AIPW 20 368 387 72 323 329 91 414 430 63 366 373
NORM 234 333 338 20 301 301 75 356 386 47 315 346
MICE 75 366 372 55 323 322 33 416 415 55 370 374
Full MLE 22 210 213 3 187 187 16 205 202 5 183 181
CcC 328 282 276 177 255 258 143 291 291 84 257 257
1000 IPW 38 289 279 51 260 251 101 296 296 48 261 263
AIPW 47 259 266 37 226 236 102 291 295 50 257 263
NORM 253 236 228 8 213 215 31 248 265 82 219 242
MICE 88 256 257 26 226 233 48 291 289 50 262 266

True value of  in the missing data model is (Y20, Y21, Y22, Y28, V24> 730> Y31, V32, 33, Y34) =

(-1.0,-1.5,0.3,—0.1,-0.2, —1.4,0.4,0.4, —0.8,0.1).
which account for missing data, the NORM estimator is generally the most efficient, al-
though it also has the greatest bias, since it places strong assumptions on the full data
law by specifying multivariate normality. Compared to the NORM estimator, the MICE
estimator is less biased, but also less efficient. The imputation model for the binary out-
come is correctly specified as the substantive model, and predictive mean matching is
less vulnerable to misspecification than explicit models for the distribution of the missing
values conditional on the observed ones (Andridge and Little, 2010). The IPW and AIPW
estimators, which place no further restrictions on the full data law beyond the substan-
tive model of interest, are generally the least biased. The efficiency of the IPW and CC
estimator is similar, though in instances where CC estimator is biased such differences
of efficiency are not meaningful. By incorporating incomplete cases in the estimation,
the AIPW estimator achieves efficiency which is on par with that of MICE. The asymp-
totic relative efficiency comparing AIPW to IPW estimates varies between 0.69-0.95 based
on estimated variances. For the current data generating mechanism, the estimated vari-
ances of the IPW, AIPW, NORM and MICE estimators are generally biased downwards
compared to empirical variances in finite samples, but show improvement at the larger
sample size n = 1000.

The proportion of simulation replicates for which the UMLE converged increased slightly
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with a doubling of sample size (96.5% and 99.4% for n = 500, 1000) under scenario 1. The
smallest estimated complete-case probabilities for non-convergence cases hover around
zero, suggesting that, as we have previously hypothesized, lack of convergence of the
UMLE approach may be due mostly to empirical complete case probabilities that effec-
tively violate the positivity assumption (2.2), which may occur by chance particularly in
small samples, even when the assumption holds in the population and the missing data
model is correctly specified. In contrast, the CBE is guaranteed to produce an estimate for
the complete case probabilities within the parameter space of the model. Since CBE and
UMLE produce similar estimates for the weights (when the latter converges), only the
results from CBE estimation of the weights are shown for the IPW and AIPW estimators
in tables 1 to 3.

Under scenario 2, the NORM estimator similarly has the greatest bias while being the
most efficient. The bias and efficiency of AIPW and MICE estimators are similar. The
CC estimator also has low bias, since in this case the missing data mechanism depends
on only the covariates in the regression model (Little and Rubin, 2002; Little and Zhang,
2011; White and Carlin, 2010), and is in fact slightly more efficient than the AIPW and
MICE estimators. Lastly, under the MNAR mechanism in scenario 3, all four estimators
IPW, AIPW, NORM and MICE are biased. However, their bias is smaller than that of
the CC estimator, as the missing data mechanism depends at least in part on some of the
observed variables in each missing data pattern. Therefore, assuming MAR in accounting

for missing data is able to mitigate some but not all selection bias.

2.6 Application

The empirical application concerns a study of the association between maternal exposure
to highly active antiretroviral therapy (HAART) during pregnancy and birth outcomes
among HIV-infected women in Botswana. A detailed description of the study cohort has
been presented elsewhere (Chen et al., 2012). The entire study cohort consists of 33148 ob-
stetrical records abstracted from 6 sites in Botswana for 24 months. Our current analysis

focuses on the subset of women who were known to be HIV positive (n = 9711). The birth
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outcome of interest is preterm delivery, defined as delivery < 37 weeks gestation. 6.7% of
the outcomes are unobserved. The data also contains a number of predictors of interest
with unobserved values (Table 2.4): maternal hypertension in pregnancy (6.5% missing),
whether CD47" cell count is less than 200 pL (53.4% missing) and whether a woman con-
tinued HAART from before pregnancy or not. Our goal is to correlate these factors with
preterm delivery. We applied the proposed IPW and AIPW estimators in logistic regres-
sion as well as performed CC analysis. We also provide results for MICE and imputation

assuming multivariate normality (NORM) for comparison (Table 2.5).

Table 2.4: Tabulation of non-monotone missing data patterns as a percentage of total data (n =
9711). Missing variables are indicated by 0. Complete-cases are given in the first pattern R = 1.

R Preterm Delivery Hypertension Low CD4" Cont. HAART % of data
1

1 1 1 1 437
2 0 1 1 1 2.0
3 1 0 1 1 0.7
4 0 0 1 1 0.2
5 1 1 0 1 449
6 0 1 0 1 29
7 1 0 0 1 4.0
8 0 0 0 1 1.6

Table 2.5: Analysis for outcome preterm delivery with estimated odds ratios from logistic regres-
sion. Wald 95% confidence intervals for IPW / AIPW estimators are based on estimated asymptotic
variances. The standard errors for MICE and NORM are estimated by Rubin’s formula (Rubin,
1987) with M = 50 imputed samples.

Method Hypertension Low CD4* Cont. HAART

CC  1.29(1.06,1.57) 1.12(0.89,1.40) 1.31(1.04,1.65)
IPW  1.55(1.19,2.01) 1.12(0.84,1.50) 1.52(1.18, 1.97)
AIPW 141 (1.22,1.61) 1.08(0.88,1.34) 1.46 (1.28, 1.66)
MICE 134 (1.17,1.54) 1.03(0.77,1.39) 1.22(1.09,1.36)
NORM 1.35(1.19,1.54) 1.08(0.91,1.29) 1.21(1.09,1.35)

Analysis combining missing data patterns R = 3,4

IPW  1.55(1.20,2.01) 1.13(0.85,1.52) 1.52 (1.1
AIPW 140 (1.22,1.61) 1.11(0.90,1.37) 1.46(1.2

The IPW estimator of the logistic regression for preterm delivery uses to estimate the
weight a missing data model of the form given by (2.6), which includes the main effects
of observed variables L, for each missing data pattern m = 2, ..., 8. Given the fairly large
sample size (n = 9711), the results for IPW are similar using UMLE and CBE to estimate

the missing data process, consistent with findings from both the simulation study and
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Table 2.6: Posterior medians with 95% credible intervals from constrained Bayesian estimation
(CBE) of missing data model parameters v for each missing data pattern R = m, m = 2,3, ...,8.

Asterisk denotes exclusion of zero from the credible interval.

intercept

Preterm delivery

Hypertension

Low CD4+ Count

Cont. HAART

PR UTEWN |

-4.24(-4.45,-4.05)+
-5.12(-5.46,-4.81)x
-6.31(-6.95,-5.77)%
-0.51(-0.56,-0.45)+

-4.04(-4.21,-3.87)%
-3.47(-3.63,-3.33)*
-4.04(-4.21,-3.87)%

0.94( 0.45, 1.39)+
0.16( 0.07, 0.26)*
1.27( 1.08, 1.48)x

1.06( 0.78, 1.35)x

-0.13(-0.24,-0.03)+
1.06( 0.82, 1.30)x

0.58(0.24, 0.90)+
-0.55(-1.54, 0.19)
-1.08(-4.13, 0.73)

-0.33(-0.68, 0.03)
-0.26(-0.86, 0.30)
-0.82(-2.72, 0.47)
1.25( 1.16, 1.34)%
0.72( 0.48, 0.96)+
-0.93(-1.23,-0.64)+
-0.34(-0.77, 0.05)

asymptotic theory. Hence, only results for CBE are presented for the IPW estimator in Ta-
ble 2.5. The results of CBE for the missing data model parameters v are shown in Table 2.6,
and suggest that assuming MAR and a correctly specified missing data model, preterm
delivery, maternal hypertension and continued HAART treatment are the main variables
influencing the missing data process as shown by the exclusion of zero from the 95%
credible intervals of their respective parameters 7. In particular, the dependence of the
missing data process on the outcome variable preterm delivery suggests that unweighted
CC estimates should differ from adjusted estimates. More specifically, the positive poste-
rior median estimates of v associated with the outcome variable in missing data patterns
R = 3,5, 7 suggest that women with preterm delivery are less likely to be observed with
complete data.

MICE specifies a univariate imputation model for each of the incomplete variables
preterm delivery, maternal hypertension and low CD4™ (the variable continued HAART
treatment is fully observed in the sample and not imputed). The binary variables preterm
delivery, hypertension and low CD4* are imputed using logistic regressions, to provide
a total of M = 50 imputed data sets for linear regression before pooling the results in the
final analysis. The imputed values for missing variables L in NORM are dichotomized to
the binary values 1(L > 0). In a separate analysis, the two sparsely observed missing data
patterns R = 3,4 with 75 and 15 samples respectively are combined into one pattern. The
probability of observing this combined pattern depends on the set of covariates L3y N L),
i.e. low CD4" and continued HAART treatment.

The IPW and AIPW estimated odds ratio for preterm delivery associated with maternal
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hypertension and continued HAART treatment increased by approximately 15% respec-
tively compared to CC estimates. The point estimates of the effect for low CD4" are sim-
ilar between CC and IPW. The observed ARE of AIPW compared to IPW differs across
different coefficients: 0.28 for maternal hypertension, 0.53 for low CD4" and 0.24 for con-
tinued HAART treatment. The observed ARE of AIPW compared to MICE are 1.00 for
maternal hypertension, 0.51 for low CD4* and 1.25 for continued HAART treatment. The
analysis which combines missing data patterns R = 3,4 for IPW/AIPW gives similar
results to the original analysis. Point estimates from MICE show that the odds ratio for
preterm delivery associated with maternal hypertension increased marginally by about
4%, but the odds ratios associated with low CD4* and continued HAART treatment de-
creased by 8% and 7% respectively. Results from MICE and NORM are similar, although
the latter tends to produce smaller standard errors, in agreement with theory and simu-
lation study.

Differences between MICE / NORM and IPW / AIPW estimates may reflect differences
of modeling assumptions, since the former relies on model assumptions about full data
univariate conditional or multivariate laws while the latter relies on a model for the miss-
ing data mechanism. In the current application, neither the conditional distribution of
covariates in the full data nor the missing data model is of primary scientific interest. Al-
though model compatibility of the conditional laws specified in MICE may be an issue
(White et al., 2011; van Buuren, 2007), simulation studies suggest that this may not be a
serious problem in certain practical settings (van Buuren et al., 2006). In general, more
efficient estimators can be obtained by specifying a full data model, and the NORM es-
timates indeed have the smallest standard errors among the methods being compared.
However, in this particular application, the proposed AIPW estimator produces standard
errors which are comparable to those of MICE, while at the same time entirely avoiding
the need to model the full data law. This is in agreement with simulation study results

which show similar efficiency between the AIPW and MICE estimators.

45



2.7 Discussion

We have proposed a simple yet general class of missing data models for nonmonotone
MAR mechanisms which makes no assumption about the full data distribution. Our
models are explicit in their dependence on only the observed variables, and the proposed
IPW estimator can easily be implemented using existing software. The paper makes two
important contributions, first we describe a simple UMLE approach to estimate the miss-
ing data mechanism that is straightforward to implement although that may suffer from
convergence issues in small samples. Our second contribution offers a remedy to failure
of UMLE by introducing a constrained Bayesian estimator which circumvents any po-
tential convergence difficulty encountered with UMLE. Another contribution shows that
AIPW can achieve substantial gains in efficiency over simple IPW estimators by recov-
ering information from incomplete cases, while avoiding having to model the full data
distribution. Assuming no model misspecification, the proposed IPW / AIPW estimators
corrects the bias of CC analysis and may be used whenever one has available a full data
estimating equation and the nonmonotone MAR missing data mechanism potentially de-
pends also on the outcome. The constrained Bayesian estimator is guaranteed to produce
valid probability weights for subsequent estimation of a full data regression or other func-
tionals of interest. In addition, constrained Bayesian estimation of the missing data model
parameters is able to elucidate important variables that influence the missingness process
by studying the properties of the Monte Carlo approximations to their posterior distribu-
tions (e.g. posterior medians and 95% credible intervals, as illustrated in the application).
Constrained Bayesian estimation under a parametric model for the missing data process
also allows for sensitivity analysis under a unified framework to explore the possibility
that the process is MNAR, which is part of future work.

Lastly, Robins and Gill have argued that the class of RMM models represents the most
general plausible physical mechanism for generating non-monotone missing data (Robins
and Gill, 1997). Therefore, they have effectively argued that any model within our class
that is not RMM may be difficult to motivate scientifically. We emphasize that the per-

spective we have presented is completely agnostic as to whether a particular submodel
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of MAR may be more scientifically meaningful than another; in fact, RMM, like any other
submodel of MAR, can be accommodated by the proposed approach, but would require
placing additional constraints while sampling from the posterior, to ensure that one re-
mains within the submodel. This will necessarily result in a more complicated fitting
procedure, with little apparent benefit for bias reduction or efficiency gain. This is be-
cause, as well established in the missing data literature, it is generally advisable for effi-
ciency considerations in IPW estimation under MAR, that one estimates the probability of
a complete-case using as richly parameterized a regression as empirically feasible (Robins
et al.,, 1994). This implies that even if RMM is correctly specified, one would generally
benefit from including correlates of the full data estimating equation into a model for
the missing data mechanism, even if such variables do not necessarily correlate with the
missing data process. We believe such efficiency considerations trump any concern for
scientific interpretation of the model for the missing data process, particularly since after
all, the missing data process is technically a nuisance parameter not of primary scientific

interest.
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3.1 Introduction

Categorical outcomes are of common occurrence in epidemiologic practice. A standard
modeling approach to evaluate risk factors in such settings involves fitting by maximum
likelihood, a polytomous logistic regression for the multinomial outcome (Agresti, 2002).
In empirical studies, an important form of outcome heterogeneity arises when a given
risk factor affects certain categories of the outcome but not necessarily others. This form
of outcome heterogeneity, also sometimes called etiologic heterogeneity (Begg and Zabor,
2012), has in recent years drawn considerable interest in medicine and other health sci-
ences (Troester and Swift-Scanlan, 2009; Begg et al., 2014; Wang et al., 2015). In this paper,
we establish that standard polytomous logistic regression is often ill-suited to model this
type of outcome heterogeneity, in the sense that the approach may understate the degree
to which such heterogeneity may be present. Specifically, standard polytomous regres-
sion will often a priori rule out the possibility of outcome heterogeneity from its parame-
ter space, because under the model a risk factor for a given category of the outcome must
necessarily be a risk factor for all other categories of the outcome. In the following sec-
tions we demonstrate how this phenomenon is manifested with a certain paradox that
arises in the context of using polytomous logistic regression in the presence of outcome
heterogeneity, and propose an alternative general multinomial regression approach with
constrained Bayesian estimation of the regression parameters. We investigate the finite-
sample properties of the proposed estimators in a simulation study and illustrate the new
methodology in an application evaluating risk factors for death from cardiovascular heart

disease (CHD), stroke and cancer in the original cohort of the Framingham Heart Study.

3.2 Methods
3.2.1 A paradox from using polytomous logistic regression

To describe the paradox, suppose that the outcome Y takes one of three possible values
k =0,1,2, where Y = 0 denotes disease-free persons, whereas Y = 1 denotes individuals

with the given disease of the first subtype, while Y = 2 denotes diseased persons with
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the second subtype. Also suppose that two continuous risk factors (X7, X,) are known to

be associated with diseased individuals, i.e.
Pr {Y#O’l’l,lj} = T (.Tl,fEQ) (31)

varies both in (x1, z3), where z; denotes a possible value of X;. A standard approach to

model such data entails positing a polytomous logistic regression, such as say

exp {Bro + L1 X1 + B2 Xo}

Pr{y = k| X} = . (32
{ X} 1+ exp {Bio + L11 X1 + B12Xo} + exp { a0 + B Xy + Pa2 X} (3.2)
k=12
where X = (1, X, X;), and
Pr{YV =0|X}=1—-Pr{Y =1|X} - Pr{Y = 2/X}. (3.3)

Now, suppose also that, reflecting the presence of outcome heterogeneity, the first risk
factor X, only affects the first disease subtype, while X, only affects the second disease
subtype, i.e.

Pr{Y = 1|z, 22} = m (21), forall z; and each x; (3.4)

and

Pr{Y = 2|xy, 22} = mo (22), for all z; and each xs. (3.5)

Then, for equation 3.4 to hold under the polytomous regression model, it must be that

Pr2 = Ba2 =0, (3.6)

so that the right-hand side of equation 3.2) does not depend on X,. Likewise, for equation

3.5 to hold under the polytomous regression model, it must be that

B = P21 =0, 3.7)

so that the right-hand side of equation 3.2 does not depend on X,. However, both equa-
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tions 3.6 and 3.7 would imply that

exp { B0} + exp {Fa}

Pr{Y #0|X} = 14 exp {Bio} + exp {fx}

depends neither on X; nor on X5, which contradicts the fact that X is a risk factor for Y’
as given by equation 3.1, giving rise to the paradox.

The above paradox stems from the fact that a standard polytomous logistic regression
of the form given in expression 3.2 cannot simultaneously encode assumption 3.2, and
assumptions 3.4 and 3.5. This is because such models do not have a specific parameter
or set of parameters which can be set to a value that solely implies either assumption
3.4 or 3.5, without also implying that Y is altogether independent of either X;or X,
respectively. Note that incorporating interactions and nonlinearities in X; and X, would
in principle make the regression model somewhat more flexible, however, this would
not necessarily resolve the above paradox, unless a genuine nonparametric model were
used in place of a parametric model. Even under a nonparametric polytomous regression
framework, it is unclear whether one could easily encode assumption 3.4. Note also that
this form of paradox will become even more ubiquitous when multiple risk factors are
being considered, in which case nonparametric regression may no longer be practical. We
may conclude that polytomous logistic regression is generally ill-suited to either detect
or model outcome heterogeneity of the type described above. In the next section, we
describe a simple alternative approach which circumvents this difficulty. Before doing so,
we briefly note that in the special case where the outcome is rare for all levels of X, the

paradox may not be as relevant since expression 3.2 can then be approximated by

Pr{Y = k| X} ~ exp {Bro + Br1 X1 + BraXa} . (3.8)
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3.2.2 A general multinomial regression approach to model outcome
heterogeneity

The proposed approach involves modeling each category of the outcome (other than a
reference level) with a separate binary regression model. To fix ideas, let us reconsider
the example from the previous section. Suppose that instead of equation 3.2, one posits

the following pair of logistic regressions

logit Pr{Y = 1|z, 22} = Bio + Bu1 X1 + B12Xo (3.9)
loglt Pr {Y = 2|.CE1, ZL’Q} = 620 + 621X1 + 622)(2 (310)

and as before Pr {Y = 0|z, 22} is given by equation 3.3. The intercept /5, may be inter-
preted as the log-odds that Y = k, k = 1,2 when x; = x5 = 0. The regression coefficient
fBr; corresponds to a difference in the log-odds of the event /{Y = k} versus its comple-
ment /{Y # k} per unit increment in X; conditional on the value of the other covariate,
i.e. (B, captures the association between X; and the risk of disease subtype k. The degree
of outcome heterogeneity as it relates to X; is therefore measured by the difference in the
regression coefficients 31; and (s, the associations of X; with disease subtype 1 and 2,
respectively. Likewise, the degree of outcome heterogeneity as it relates to X, can be cap-
tured by comparing /12 and (2. Notably, the hypothesis corresponding to equations 3.4
and 3.5 is readily encoded without imposing further restriction by setting 812 = 821 = 0.
In contrast to the interpretation of the parameters in separate logistic models 3.9 and 3.10,
Br; in polytomous regression 3.2 corresponds to a difference in the log-odds of the event
I{Y = k} versus the baseline event /{Y = 0} per unit increment in X; while holding the
value of the other covariate constant, i.e. the referent event is different. However, 3, in
the two models should be approximately the same when all the outcome types are rare
compared to the baseline level Y = 0, for all values of (z1, z3), since in this special case
both models can be approximated by 3.8.

For inference, one could in principle estimate 5, = (Bko, Bk, Bra)’ by separately maximiz-

ing the likelihood function for the corresponding logistic regression in equations 3.9 and
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3.10, with binary outcome I {Y = k} . However, such a strategy has two potential limita-
tions that make it unattractive. First, the approach is potentially inefficient, since it does
not respect the multinomial nature of ¥ and therefore, does not make use of all available
information in estimating /3 separately. A second concern, is that although the logit link
function in equations 3.9 and 3.10 guarantees that the resulting estimate of the predicted
probability Pr{Y = k|X;, X,} for each person in the sample, falls within the unit interval
(0,1), it does not ensure that the resulting estimate of Pr {Y = 0/.X;, X, } given by equation
3.3 also falls within the unit interval.

In order to resolve these limitations, we propose that the collection of regression param-
eters be jointly estimated using the following constrained Bayesian approach, which en-
sures model coherence, and maximizes efficiency. The approach basically entails specify-
ing a prior distribution 7 (3) for the vector of unknown parameters 3 = (3, 3,)", which
combined with the observed data likelihood, gives rise to a posterior distribution propor-

tional to
m(B) [ [f (VilXs; 8) T{Pr{Y = 1|X;; 1} + Pr{Y = 2|X;; B} < 1} (3.11)

where f (k| X;;8) = Pr{Y = k|X;; 8}, and the indicator function ensures that posterior
samples are restricted to values of 3 for which the multinomial model is well defined, i.e.
0<Pr{Y =0/X;;5} =1-Pr{Y =1|X;; 51} —Pr{Y = 2|X;; 52} < 1. The posterior mode
(or mean) provides an efficient estimate of 5 and 95% credible intervals can likewise be
obtained from the resulting posterior sample. For posterior computation, we may specify
the diffuse priors S;; ~ N(0,10%). Adaptive Gibbs sampling (Gilks et al., 1995) may be
implemented through BRugs, the R interface to the OpenBUGS MCMC software (Lunn
et al., 2009). Sample OpenBUGS code for posterior estimation in the simulation study
is included in the Appendix. One may then assess convergence by visually inspecting
the trace plots as well as through the Gelman-Rubin convergence statistic (Gelman and
Rubin, 1992).

The approach is easily extended to handle a multinomial outcome K > 3 levels. As
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before, we simply define K — 1 logistic regression models
logit Pr{Y =klz} =X, k=1,..,.K -1

where X is a vector of J risk factors, with first component set to 1 for the intercept. The
density 7 () is again a diffuse prior for = {fj,: j =1,...,J;k =1,..., K — 1} . The pos-

terior distribution for the general case is proportional to

Hf (Yi|Xi;8) I {ZPr{Y = k| X3 B} < 1}

k>0
where the indicator function constrains the posterior sampling space so that 0 <

Pr{Y = 0|X;; 5} < 1. Implementation of the approach is as described above.

3.3 Simulation

This section reports a simulation study to evaluate the finite-sample properties of the
proposed constrained Bayesian estimator compared with the polytomous and sepa-
rate logistic estimators. Full data consists of n independent and identically distributed
(Yi, X1, X2;), @ = 1,...,n where Y denotes the categorical outcome and (X;, X») the two
risk factors. The vector (Z;, Z) is generated from a bivariate standard normal distribu-
tion with correlation coefficient p = —0.3 and X; = ®(7;), X = ®(Z3) where ®(-) is the

CDF of the standard normal distribution. The categorical outcome is generated as

Pr(Y = 1) = {1+ exp[—(Bi0 + f11 X1 + B12X2)]}
Pr(Y =2) = {1 + exp[—(Ba + B X1 + B2 Xo)]}
Pr(Y =3) = {1+ exp[—(f30 + B51.X1 + BSQXQ)]}il
Pr(Y =0) = Pr(Y =1) = Pr(Y =2) — Pr(Y = 3),
with true parameter values (f5i0,011,612) = (—1.1,0.3,0.0), (Ba20,21,022) =

(—0.9,0.0,—0.4) and (B30, fs1, F32) = (—1.1,0.3,—0.3) for n = 200,500 with 1000 simu-

lation replicates at each sample size. Table 3.1 shows the results of polytomous logistic
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regression based on the model
exp {ago + a1 Xy + e Xo}

1 + 233':1 exXp {Oéjo + Oélel + Oéngg}
k=1,2,3

Pr{Y =k|X} = (3.12)

where X = (1, X3, Xy) and Y = 0 is the referent level. Separate logistic (SL) regression

estimates are based on the model

logit Pr{Y = k| X} = yo + 71 X1 + 72X, (3.13)

k=1,2,3

while the constrained Bayesian (CB) estimates are the Monte Carlo mean values of the

posterior distribution which is proportional to

i=1 (k=

) ] { {Pr{Y; = k| X;; )} 9 1 (Z Pr{Y; = j|X;;n} < 1) } (3.14)

j=1

where

logit Pr{Y; = k| Xi; me} = ko + i X1 + k2 Xo,
k=1,2,3

The OpenBUGS code for fitting model 3.14 can be found in the Appendix. The results for
SL and CB analyses are included in Table 3.2.

The simulation results from polytomous logistic regression show that the mean estimated
odds ratios for covariates X; and X differ from one (OR # 1.0) across each of the three
comparison groups. Based on model 3.12, this implies that (X, X5) are risk factors for
each of the three levels of outcome in Y, and therefore appears to contradict the out-
come heterogeneity of risk factors (X, X) with Y under the true model. In order to be
a coherent model for outcome heterogeneity in the present data generating mechanism,
polytomous logistic regression must depend neither on X; nor X, (OR = 1.0), as argued
in the paradox previously described. Model 3.12 is therefore a misspecified model for the

full data law incorporating outcome heterogeneity, and the odds ratio estimates suggest
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Table 3.1: Simulation Results Based on Polytomous Logistic Regression.

Y =1 Y =2 Y =3
versus Y =0 versus Y =0 versus Y =0
n  Variable | OR RMSE* MCSE | OR RMSE MCSE | OR RMSE MCSE

Intercept | 1.49  1.26 111 | 3.05 342 297 1075 0.79 0.71
200 X1 1.79  1.55 140 | 248 278 242 053 0.55 0.48
X5 146 131 117 314 371 325 | 061 0.66 0.57

Intercept | 1.32  0.58 054 | 244 132 128 | 0.61 0.33 0.33
500 X1 154  0.69 066 |197 1.08 099 |045 025 0.25
Xo 135 0.61 061 |242 132 122 | 049 0.27 0.26

Abbreviations: OR, mean estimated odds ratio; RMSE, square root of mean estimated variance;
MCSE, Monte-Carlo standard error.

¢ Estimated variance of odds ratio is derived from estimated variance of coefficient estimates
using the delta method.

that it is unable to differentiate between risk factors that influence a particular outcome
category and those risk factors that do not. Estimates of variance tend to be conservative
compared to the empirical variance in finite samples.

The odds ratio estimates from SL and CB regressions are consistent for the true odds ratios
with vanishing biases as sample size increases. The CB regression estimator appears to
be slightly less biased than the SL estimator in finite samples. The variance estimator
based on the posterior distribution in the CB approach performs well, while those for SL
tend to be conservative in finite samples. In addition, the asymptotic relative efficiency
comparing SL and CB estimates (i.e. Var((/)\RCB)/ Var((/)\RSL)) varies between 0.59-0.88
and 0.81-0.90 for sample sizes n = 200 and n = 500 respectively. This is in agreement
with theory since the CB estimation incorporates all available information from the data
by simultaneously estimating all parameters.

Even though 3.13 is the correct model, the SL estimate 1/3}(}/ = 0|X71, X») is negative for
at least one sample in 11.2% and 0.15% of the simulation replicates when n = 200 and
n = 500 respectively. Therefore fitted probabilities for the reference outcome sometimes
do not lie in the unit interval, which occurs despite the absence of model misspecification.
Estimation with the proposed CB approach ensures that estimates Pr(Y = 0/X;, X>) all

lie within the unit interval.

56



Table 3.2: Simulation Results Based on Separate Logistic and Constrained Bayesian Re-
gressions.

Y=1 Y =2 Y =3
versus Y # 1 versus Y # 2 versus Y # 3
n  Method Variable | [Bias|orx RMSE® MCSE | |Bias|og RMSE MCSE | |Bias|opg RMSE MCSE
Intercept 0.03 0.20 0.19 0.30 1.22 1.17 0.19 0.85 0.80
SL X3 0.06 0.26 0.25 0.22 0.95 0.93 0.11 0.58 0.55
9200 X, 0.02 0.20 0.19 0.30 1.26 1.18 0.19 0.68 0.62
Intercept 0.04 0.19 0.19 0.09 0.93 0.93 0.19 0.75 0.76
CB X3 0.02 0.21 0.22 0.21 0.81 0.82 0.15 0.54 0.53
X, 0.01 0.18 0.17 0.24 1.06 1.00 0.16 0.60 0.59
Intercept 0.01 0.11 0.10 0.11 0.57 0.53 0.07 0.42 0.39
SL X 0.02 0.14 0.14 0.08 0.44 0.41 0.05 0.29 0.29
500 X, 0.02 0.12 0.12 0.07 0.57 0.53 0.06 0.32 0.32
Intercept 0.01 0.11 0.10 0.04 0.51 0.50 0.08 0.39 0.40
CB X3 0.01 0.13 0.13 0.08 0.40 0.40 0.06 0.28 0.30
X, 0.01 0.11 0.11 0.08 0.54 0.53 0.05 0.30 0.32

Abbreviations: |Bias|or, mean absolute bias of estimated odds ratio; RMSE, square root of mean estimated
variance; MCSE, Monte-Carlo standard error; SL, separate logistic; CB, Constrained Bayesian.

@ Estimated variance of odds ratio is derived from estimated variance of coefficient estimates using the
delta method.

3.4 Empirical Illustration

The empirical application concerns a cohort study of community health in Framingham,
Massachusetts (Dawber et al., 1963). Categories of the multinomial outcome Y are differ-
ent causes of death in the present analysis, with 261 (6.2%) subjects who died from CHD,
164 (3.9%) subjects who died from stroke, 539 (12.9%) subjects who died from cancer and
3218 (76.9%) subjects who survived by the last examination taken in the years between
1979 and 1982. Our goal is to investigate the associations of different risk factors includ-
ing gender (female coded as 1), age in years, body mass index (BMI), serum cholesterol
(mg/100 mL) and high blood pressure (systolic blood pressure >140 mm/Hg or dias-
tolic blood pressure >90 mm/Hg), taken at baseline during the first examination in the
years 1948 to 1953, with the separate causes of death. There are 4060 (97%) subjects with
complete information on the outcome and risk factors, and 122 (3%) subjects with miss-
ing values are excluded from the analysis. The results of polytomous logistic regression
are shown in Table 3.3, while the results from separate logistic and constrained Bayesian

logistic regressions of Y on the risk factors are shown in Table 3.4.
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Table 3.3: Estimated Odds Ratio of Mortality from Various Causes by Risk Factors Based
on Polytomous Logistic Regression.

CHD Stroke Cancer
versus Survival | versus Survival | versus Survival

Variable | OR | 95%CI | OR | 95%CI | OR | 95%CI

Age 1.11 | 1.09,1.13% | 1.18 | 1.15,1.21% | 1.10 | 1.09, 1.10%
Female | 0.19 | 0.14,0.26% | 0.57 | 0.41, 0.81x | 0.52 | 0.43, 0.63x
Choles. | 1.01 | 1.00, 1.01% | 1.00 | 0.99,1.00 | 1.00 | 0.99, 1.00

BMI 1.03 | 0.99,1.07 | 1.00 | 0.96,1.04 | 0.99 | 0.97,1.02
High BP | 2.25 | 1.02, 1.55% | 2.21 | 1.55,3.16% | 1.26 | 1.02, 1.55x

Abbreviations: OR, odds ratio; CI, confidence interval; BP, blood
pressure.
*Denotes significance with P < 0.05.

The results from polytomous logistic regression suggest that increasing values in age and
serum cholesterol, as well as male gender and high blood pressure, are significantly as-
sociated with greater risks of death from at least one of the three causes (CHD, stroke
and cancer) relative to survival rates by the end of the follow-up period. Only BMI is not
significantly associated with the risks of death from any cause. Based on a main effects
polytomous logistic model, the results suggest that age, serum cholesterol, gender and
high blood pressure are significant risk factors for all causes of death.

Estimation using the separate logistic method suggests that increasing values in age is
significantly associated with greater risks of death from CHD, stroke and cancer. On
the other hand, the risk factors gender and high blood pressure show more heterogeneity.
Being female is significantly associated with lower risk of death from CHD and cancer, but
not stroke. High blood pressure is a significant risk factor for greater risk of death from
CHD and stroke, but not from cancer. 18 persons have negative estimated probabilities
of surviving through the follow-up period under the separate logistic method. Results
from the constrained Bayesian and separate logistic methods for age, gender and high
blood pressure are similar. The estimated asymptotic relative efficiency of the constrained
Bayesian estimator compared to the separate logistic estimator varies between 0.61 to
0.98. More efficient estimation from the constrained Bayesian method identifies serum

cholesterol as a statistically significant risk factor for greater risk of death from CHD, but
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Table 3.4: Estimated Odds Ratio of Mortality from Various Causes by Risk Factors Based
on Separate Logistic and Constrained Bayesian Regressions.

CHD Stroke Cancer
versus non-CHD | versus non-Stroke | versus non-Cancer

Method Variable | OR | 95%CI | OR | 95%CI | OR | 95%CI

Age 1.08 | 1.06,1.10+« | 1.15 | 1.12,1.17+« | 1.08 | 1.07, 1.10%

Female | 0.23 | 0.17,0.31« | 0.82 | 0.58, 1.15 0.63 | 0.52,0.76%
SL Choles. | 1.01 | 1.00, 1.01% | 1.00 | 0.94, 1.00 1.00 | 0.99, 1.00
BMI 1.03 | 0.99,1.07 | 1.00 | 0.96, 1.04 0.99 | 0.97,1.02
High BP | 2.03 | 1.53,2.69% | 1.92 | 1.35,2.73x | 1.08 | 0.88,1.33

Age 1.06 | 1.05,1.08+« | 1.13 | 1.11, 1.15% | 1.08 | 1.07, 1.09x

Female | 0.25 | 0.19,0.34x | 0.92 | 0.67,1.28 0.66 | 0.55, 0.80*

CB Choles. | 1.01 | 1.00, 1.01% | 0.99 | 0.99,1.00% | 0.99 | 0.99, 1.00%
BMI 1.03 | 1.01, 1.06% | 0.99 | 0.96, 1.03 1.00 | 0.98, 1.02
High BP | 1.88 | 1.43,2.48« | 1.78 | 1.26,2.52x | 1.05 | 0.86, 1.29

Abbreviations: SL, separate logistic; CB, constrained Bayesian; OR, odds ratio; CI,
confidence interval (or credible interval for constrained Bayesian regression); BP,
blood pressure.

x*Denotes significance with P < 0.05 or exclusion of one from 95% credible interval.

is paradoxically significantly associated with lower risks of death from stroke and cancer.
These apparent “protective” associations could be essentially due to competing risk from
death by CHD. Higher BMI is found to be significantly associated with death from CHD,
but not from stroke or cancer.

Using constrained Bayesian estimation, it appears that high blood pressure is associated
with increased CHD and Stroke mortality but not cancer, whereas outcome heterogene-
ity is entirely understated by polytmous logistic regression. Likewise, using constrained
Bayesian estimation, being a female is associated with lower CHD and cancer mortality
but not stroke, another level of outcome heterogeneity undetected by polytomous logistic
regression. We see then that the problem described in this paper with polytomous logistic
regression is not simply theoretical; it can and does arise in practice. Continued use of this
standard approach might perpetuate lack of detection of scientifically relevant outcome

heterogeneity in epidemiological practice.
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3.5 Discussion

Polytomous regression is the standard approach in the analysis of data from clinical or
observational studies with polytomous outcome. However, a peculiar feature of this
model is that its parameterization cannot encode or detect simple outcome heterogeneity,
whereby certain risk factors contribute exclusively to the occurrence of some outcomes,
but not others. We propose an alternative approach to polytomous logistic regression,
which involves modeling each category of the outcome (other than a reference level) with
a separate binary regression model. By doing so, our multinomial regression readily
encodes a broad range of outcome heterogeneity of practical interest. In order to en-
sure coherent inferences and maximize efficiency, the collection of regression parameters
are jointly estimated, which is straightforward to implement in standard software for
Bayesian estimation. The constrained Bayesian approach should form a part of the stan-

dard statistical methods for assessing outcome heterogeneity.

60



References

AGRESTI, A. (2002). Categorical Data Analysis. Wiley.

ANDRIDGE, R. R. and LITTLE, R. J. A. (2010). A review of hot deck imputation for survey

non-response. International Statistical Review 78(1) 40-64.

BEGG, C., SESHAN, V., ZABOR, E., FURBERG, H., ARORA, A., SHEN, R., MARANCHIE,
J., NIELSEN, M., RATHMELL, W., SIGNORETTI, S., TAMBOLI, P., KARAM, J., CHOUEIRI,
T., HAKIMI, A. and HSIEH, J. (2014). Genomic investigation of etiologic heterogeneity:
methodologic challenges. BMC Medical Research Methodology 14 138.

BEGG, C. B. and ZABOR, E. C. (2012). Detecting and exploiting etiologic heterogeneity in

epidemiologic studies. American Journal of Epidemiology .

BICKEL, P.,, KLAASSEN, C. A., RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive
Estimation for Semiparametric Models. Johns Hopkins series in the mathematical sciences,

Johns Hopkins University Press.

CHAUSSE, P. (2010). Computing generalized method of moments and generalized empir-
ical likelihood with R. Journal of Statistical Software 34 1-35.
URL http://www. jstatsoft.org/v34/i11/

CHEN, H. Y. (2007). A semiparametric odds ratio model for measuring association. Bio-

metrics 63 413-421.

CHEN, J. Y., RIBAUDO, H. J., SOUDA, S., PAREKH, N., OGWU, A., LOCKMAN, S., POWIS,

K., DRYDEN-PETERSON, S., CREEK, T., JIMBO, W., MADIDIMALO, T., MAKHEMA, J.,

61



Essex, M. and SHAPIRO, R. L. (2012). Highly active antiretroviral therapy and ad-
verse birth outcomes among hiv-infected women in botswana. The Journal of Infectious

Diseases 206(11) 1695-1705.

CHU, H. and COLE, S. R. (2010). Estimation of risk ratios in cohort studies with common

outcomes: A bayesian approach. Epidemiology 21(6) 855-862.

CHU, H. and COLE, S. R. (2011). Estimating the relative excess risk due to interaction: A

bayesian approach. Epidemiology 22(2) 242-248.

DAs, M., NEWEY, W. K. and VELLA, F. (2003). Nonparametric estimation of sample

selection models. Review of Economic Studies 70(1) 33-58.

DAWBER, T. R., KANNEL, W. B. and LYELL, L. P. (1963). An approach to longitudinal
studies in a community: The framingham study. Annals of the New York Academy of

Sciences 107 539-556.

GELFAND, A. E., SMITH, A. F. M. and LEE, T.-M. (1992). Bayesian analysis of constrained
parameter and truncated data problems using gibbs sampling. Journal of the American

Statistical Association 87(418) 523-532.

GELMAN, A. and RUBIN, D. B. (1992). Inference from iterative simulation using multiple

sequences. Statistical Science 7(4) 457-511.

GILBERT, P. and VARADHAN, R. (2012). numDeriv: Accurate Numerical Derivatives. R
package version 2012.9-1.

URL http://CRAN.R-project.org/package=numDeriv

GILKS, W., BEST, N. and TAN, K. (1995). Adaptive rejection metropolis sampling within
gibbs sampling. Applied Statistics 44(4) 455-472.

GILL, R. D., VAN DER LAAN, M. J. and ROBINS, J. M. (1997). Coarsening at random:
Characterizations, conjectures, counter-examples. In Lecture Notes in Statistics (D. Lin

and T. Fleming, eds.). Springer-Verlag.

62



HECKMAN, J. J. (1979). Sample selection bias as a specification error. Econometrica 47(1)
153-161.

HECKMAN, J. J. (1997). Instrumental variables: A study of implicit behavioral assump-

tions used in making program evaluations. Journal of Human Resources 32(3) 441-462.

HORTON, N. J. and LAIRD, N. M. (1998). Maximum likelihood analysis of generalized

linear models with missing covariates. Statistical Methods in Medical Research 8 37-50.

HORTON, N. J. and LAIRD, N. M. (1999). Maximum likelihood analysis of generalized

linear models with missing covariates. Statistical Methods in Medical Research 8 37-50.

HORTON, N. J. and LipsiTZ, S. R. (2001). Multiple imputation in practice: Compari-
son of software packages for regression models with missing variables. The American

Statistician 55(3) 244-254.

HORvITZ, D. and THOMPSON, D. (1952). A generalization of sampling without replace-

ment from a finite universe. Journal of the American Statistical Association 47(260) 663—685.

IBRAHIM, J. G. and CHEN, M.-H. (2000). Power prior distributions for regression models.

Statistical Science 15 46—60.

IBRAHIM, J. G., CHEN, M.-H. and LIPSITZ, S. R. (2001). Missing responses in generalised
linear mixed models when the missing data mechanism is nonignorable. Biometrika 88

551-564.

IBRAHIM, J. G., CHEN, M.-H. and L1PsITZ, S. R. (2002). Bayesian methods for general-
ized linear models with covariates missing at random. Canadian Journal of Statistics 30

55-78.

IBRAHIM, J. G., CHEN, M.-H., L1PsITZ, S. R. and HERRING, A. H. (2005). Missing-data
methods for generalized linear models: A comparative review. Journal of the American

Statistical Association 100 332-346.

KENWARD, M. and CARPENTER, J. (2007a). Multiple imputation: Current perspectives.
Statistical Methods in Medical Research 16 199-218.

63



KENWARD, M. and CARPENTER, J. (2007b). Sensitivity analysis after multiple imputation
under missing at random: A weighting approach. Statistical Methods in Medical Research

16 259-275.

L1, L., SHEN, C,, LI, X. and ROBINS, J. M. (2013). On weighting approaches for missing
data. Statistical Methods in Medical Research 22 14-30.

LipsiTZ, S., IBRAHIM, J. and ZHAO, L. (1999). A weighted estimating equation for miss-
ing covariate data with properties similar to maximum likelihood. Journal of the Ameri-

can Statistical Association 94 1147-1160.

LITTLE, R. and DAVID, M. (1983). Weighting adjustments for non-response in panel sur-

veys. Bureau of the Census technical report .
LITTLE, R. J. and RUBIN, D. B. (2002). Statistical Analysis with Missing Data. Wiley.

LITTLE, R. J. and ZHANG, N. (2011). Subsample ignorable likelihood for regression anal-
ysis with missing data. Journal of the Royal Statistical Society: Series C (Applied Statistics)
60 591-605.

LUNCEFORD, J. and DAVIDIAN, M. (2004). Stratification and weighting via the propen-

sity score in estimation of causal treatment effects: A comparative study. Statistics in

Medicine 23 2937-2960.

LUNN, D., SPIEGELHALTER, D., THOMAS, A. and BEST, N. (2009). The bugs project:

Evolution, critique and future directions. Statistics in Medicine 28(25) 3049-3067.

MANSKI, C. F. (1985). Semiparametric analysis of discrete response: Asymptotic proper-

ties of the maximum score estimator. The Econometrics Journal 27(3) 313-333.

MEALLI, F. and RUBIN, D. B. (2015). Clarifying missing at random and related defini-

tions, and implications when coupled with exchangeability. Biometrika .

Miao, W., DING, P. and GENG, Z. (2014). Identifiability of normal and normal mixture
models with nonignorable missing data. Journal of the American Statistical Association

Submitted.

64



MOLENBERGHS, G., FITZMAURICE, G., KENWARD, M., TSIATIS, A. and VERBEKE, G.
(2014). Handbook of Missing Data Methodology. Chapman & Hall/CRC Handbooks of
Modern Statistical Methods, CRC Press.

MOLENBERGHS, G., THIJS, H., JANSEN, I. and BEUNCKENS, C. (2004). Analyzing incom-

plete longitudinal clinical trial data. Biostatistics 5(3) 445-464.

MORENO-BETANCUR, M. and CHAVANCE, M. (2013). Sensitivity analysis of incomplete
longitudinal data departing from the missing at random assumption: Methodology

and application in a clinical trial with drop-outs. Statistical Methods in Medical Research .

NEUGEBAUER, R. and VAN DER LAAN, M. (2005). Why prefer double robust estimators

in causal inference? Journal of Statistical Planning and Inference 129 405-426.

NEWEY, W. and MCFADDEN, D. (1993). Large sample estimation and hypothesis testing.
In Handbook of Econometrics (D. McFadden and R. Engler, eds.), vol. 4. North-Holland.

NEWEY, W. K. (2009). Two-step series estimation of sample selection models. The Econo-

metrics Journal 12(S1) S217-5229.

NEWEY, W. K., POWELL, J. and WALKER, J. (1990). Semiparametric estimation of selec-

tion models: some empirical results. The American Economic Review 80(2) 324-328.

POTTHOFF, R. F.,, TUDOR, G. E., PIEPER, K. S. and HASSELBLAD, V. (2006). Can one as-

sess whether missing data are missing at random in medical studies? Statistical Methods

in Medical Research 15 213-234.

PUHANI, P. (2000). The heckman correction for sample selection and its critique. Journal

of Economic Surveys 14(1) 53-68.

ROBINS, J., ROTNITZKY, A. and SCHARFSTEIN, D. (2000). Sensitivity analysis for selection
bias and unmeasured confounding in missing data and causal inference models. In
Statistical Models in Epidemiology, the Environment, and Clinical Trials (E. Halloran and
D. Berry, eds.). Springer-Verlag.

65



ROBINS, J. M. and GILL, R. D. (1997). Non-response models for the analysis of non-

monotone ignorable missing data. Statistics in Medicine 16 39-56.

ROBINS, J. M. and RITOV, Y. (1997). Toward a curse of dimensionality appropriate (coda)

asymptotic theory for semi-parametric models. Statistics in Medicine 16 285-319.

ROBINS, J. M. and ROTNITZKY, A. (2001). Comment on “inference for semiparametric

models: Some questions and an answer”. Statistica Sinica 11 920-936.

ROBINS, J. M., ROTNITZKY, A. and ZHAO, L. P. (1994). Estimation of regression coeffi-
cients when some regressors are not always observed. Journal of the American Statistical

Association 89(427) 846-866.

ROTNITZKY, A., ROBINS, J. M. and SCHARFSTEIN, D. O. (1998). Semiparametric regres-

sion for repeated outcomes with nonignorable nonresponse. Journal of the American

Statistical Association 93 1321-1339.

ROTNITZKY, A., SCHARFSTEIN, D. O., SU, T. and ROBINS, J. M. (2001). Methods for con-
ducting sensitivity analysis of trials with potentially non-ignorable competing causes

of censoring. Biometrics 57 103-113.

ROY, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent
dropout class model. Biometrics 59 829-836.

RUBIN, D. B. (1976). Inference and missing data. Biometrika 63 581-592.

RUBIN, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents

in sample surveys. Journal of the American Statistical Association 72 538-543.

RUBIN, D. B. (1986). Statistical matching using file concatenation with adjusted weights

and multiple imputations. Journal of Business & Economic Statistics 4 87-94.
RUBIN, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons.

RUBIN, D. B., STERN, H. S. and VEHOVAR, V. (1995). Handling “don’t know” survey
responses: The case of the slovenian plebiscite. Journal of the American Statistical Associ-

ation 90 822—-828.

66



SCHAFER, J. (1997). Analysis of Incomplete Multivariate Data. Chapman and Hall.

SCHAFER, J. L. (1999). Multiple imputation: a primer. Statistical Methods in Medical Re-
search 8 3-15.

SCHAFER, J. L. (2003). Multiple imputation in multivariate problems when the imputa-

tion and analysis models differ. Statistica Neerlandica 57 19-35.

SCHAFER, J. L. and GRAHAM, J. W. (2002). Missing data: Our view of the state of the art.
Psychological Methods 7 147-177.

SCHARFSTEIN, D. O., DANIELS, M. J. and ROBINS, ]J. M. (2003). Incorporating prior be-
liefs about selection bias into the analysis of randomized trials with missing outcomes.

Biostatistics 4(4) 495-512.

SCHARFSTEIN, D. O., ROTNITZKY, A. and ROBINS, J. M. (1999). Adjusting for nonignor-
able drop-out using semiparametric nonresponse models (with discussion). Journal of

the American Statistical Association 94 1096-1146.

SEAMAN, S., GALAT], J., JACKSON, D. and CARLIN, J. (2013). What is meant by missing

at random? Statist. Sci. 28 257-268.

SEAMAN, S. R. and WHITE, I. R. (2013). Review of inverse probability weighting for
dealing with missing data. Statistical Methods in Medical Research 22 278-295.

SIDDIQUI, O. and ALI, M. W. (1998). A comparison of the random-effects pattern mix-
ture model with last-observation-carried-forward (locf) analysis in longitudinal clinical

trials with dropouts. Journal of Biopharmaceutical Statistics 8(4) 545-563.

TCHETGEN TCHETGEN, E. (2009). A simple implementation of doubly robust estimation

in logistic regression with covariates missing at random. Epidemiology 20(3) 391-394.

TCHETGEN TCHETGEN, E. J., ROBINS, ]J. M. and ROTNITZKY, A. (2010). On doubly robust

estimation in a semiparametric odds ratio model. Biometrika 97 171-180.

67



TCHETGEN TCHETGEN, E. J. and WIRTH, K. (2013). A general instrumental variable
framework for regression analysis with outcome missing not at random. Harvard Uni-

versity Biostatistics Working Paper Series Working Paper 165.

TROESTER, M. A. and SWIFT-SCANLAN, T. (2009). Challenges in studying the etiology of

breast cancer subtypes. Breast Cancer Research 11 104.

TROXEL, A. B., LIPSITZ, S. R. and HARRINGTON, D. P. (1998). Marginal models for the
analysis of longitudinal measurements with nonignorable non-monotone missing data.

Biometrika 85 661-672.
TSIATIS, A. (2006). Semiparametric Theory and Missing Data. Springer.

VAN BUUREN, S. (2007). Multiple imputation of discrete and continuous data by fully

conditional specification. Statistical Methods in Medical Research 16 219-242.

VAN BUUREN, S., BRAND, J., OUDSHOORN, C. and RUBIN, D. (2006). Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation

76(12) 1049-1064.

VAN BUUREN, S. and GROOTHUIS-OUDSHOORN, K. (2011). mice: Multivariate imputa-

tion by chained equations in r. Journal of Statistical Software 45 1-67.

VAN BUUREN, S. and OUDSHOORN, C. (2000). Multivariate imputation by chained equa-

tions: Mice v1.0 users manual. Leiden: TNO Prevention and Health .

VAN DER LAAN, M. J. and ROBINS, J. M. (2003). Unified Methods for Censored Longitudinal
Data and Causality. Springer.

VAN DER VAART, A. (1998). Asymptotic Statistics. Cambridge University Press.

VANSTEELANDT, S., ROTNITZKY, A. and ROBINS, ]J. M. (2007). Estimation of regression
models for the mean of repeated outcomes under non-ignorable non-monotone non-

response. Biometrika 94 841-860.

68



VARADHAN, R. and GILBERT, P. (2009). BB: An R package for solving a large system of
nonlinear equations and for optimizing a high-dimensional nonlinear objective func-

tion. Journal of Statistical Software 32 1-26.

WANG, M., KUCHIBA, A. and OGINO, S. (2015). A meta-regression method for study-
ing etiological heterogeneity across disease subtypes classified by multiple biomarkers.

American Journal of Epidemiology 182 263-270.

WANG, S., SHAO, J. and K1V, J. K. (2014). An instrumental variable approach for identi-

fication and estimation with nonignorable nonresponse. Statistica Sinica 24 1097-1116.

WHITE, I. R. and CARLIN, J. B. (2010). Bias and efficiency of multiple imputation com-
pared with complete-case analysis for missing covariate values. Statistics in Medicine 29

2920-2931.

WHITE, I. R., ROYSTON, P. and WOOD, A. M. (2011). Multiple imputation using chained

equations: Issues and guidance for practice. Statistics in Medicine 30(4) 377-399.

WINSHIP, C. and MARE, R. (1992). Models for sample selection bias. Annual Review of
Sociology 18 327-350.

WOOLDRIDGE, J. (2007). Inverse probability weighted m-estimation for general missing
data problems. Journal of Econometrics 141 1281-1301.

WOOLDRIDGE, ]. (2010). Economic Analysis of Cross Section and Panel Data. MIT press.

WU, M. and CARROLL, R. (1988). Estimation and comparison of changes in the presence
of informative right censoring by modeling the censoring process. Biometrics 44 175—

188.

69



Appendix A

Proofs of Instrumental Variable
Identification and Consistency of
Estimators

A.1 Theorem 1

Proof of Theorem 1. The proof is based on contradiction. By the exclusion restriction as-

sumption (IV.1) the decomposition of the joint distribution for (Z,Y, R) is
P9¢,777;,£¢(Z7 Y, T) = Pei (T‘Zv y)Pm(’Z)P& (y)> i=1,2...n

The only quantities we can identify from the observed data are the joint distribution
P(z,y,R = 1) and IV distribution P(z). Suppose we have two sets of candidates sat-

isfying the same observed quantities:

P91(ZvyaR: 1) :P92<Z7y7R: 1)

P771 (Z) = Pﬁz(z)
Substituting the above observed quantities into the joint distribution gives
P91 (R = 1‘Z7y)P£1 (y) = P02<R = 1|27 y)P&(y)

or equivalently
Do (R=1[zy) _ Pe(y)

P92(R:1|27y) P&(y)
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This contradicts with the requirement that the ratios are unequal. Therefore the condition
that the ratios are unequal is equivalent to ruling out the possiblity that we can have two

sets of candidates satisfying the same observed quantities. O

A.2 Examples 1-3

Proof of Example 1. For binary outcome Y and binary instrument Z, let P(R =
11Z2,Y;0) = expit [y + 61 Z + 0:Y +605ZY] and P(Y = 1;£) = exp(§). We show that for
every (6, €), there exists (6, £) # (8, €) such that

P(R=1|2,Y;0) P(Y;{)
P(R=1|Z,Y;0) P(Y;¢

= PVie) (A)

Let =9 — exp(y) for some py # 0, then £

= exp(po + p1Y) where

pr = log {exp(—=po — &) + [exp(&) — 1]/ exp(&)} -

Equality (A) then holds by choosing (9, ) such that

6o = 0o — po — log(av)

6, = 6, +log(ag) — log(ay)

Oy = 0y — p1 + log(ag) — log(az)

05 = 05 +log(ay) + log(ay) — log(ag) — log(as)

§=&+po+p1,

where ag = 1+exp(fy)—exp(6o—po), a1 = 1+exp(0p+61)—exp(bo+61—po), aa = 14+exp(bo+
) —exp(Bg+ 02— po—p1) and az = 1+exp(Oy+ 01 + 02+ 05) —exp(Bg + 01 + 05+ 605 — po — p1).
For example, choose (po, p1) = (0.3, —0.38) and equality (A) holds for (6, 61,62, 63,&) =
(0.3,0.6,0.1,0.7, —0.2) and (y, 01, 0>, 05, €) = (—0.3,0.41,0.91,1.37, —0.28).

Next, we consider the missingness mechanism P(R = 1|Z,Y;0) = expit [0y + 0,1 Z + 6,Y],

where the interaction effect between (Z,Y") is absent. Under this mechanism, we have
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05 = 05 = 0 and therefore ayas = agas which implies the equality

exp(f2 + po)
exp (b2 + po) + [1 — exp(po)]

exp(po + p1) = (B)

Since exp(py + p1Y) is the ratio of the two probability mass distributions for Y, py and
po + p1 should be of opposite signs. Based on (B), if exp(py) > 1 then exp(py + p1) > 1 and
similarly if exp(py) < 1 then exp(py + p1) < 1, which implies that the only possibility is
po = p1 = 0 and hence (0, €) = (0, €). O

Proof of Example 2. Consider the case where Z and Y are both continuous random vari-
ables. Suppose two sets of candidates in the separable logistic missing data mechanism
has the following relationship

expit(q1(2) + hi(y))
expit(g2(2) + ha(y))

=g(y)

for some function g(-), i.e. the ratio is a function of y only. Taking derivative with respect

to Z on both sides (assuming IV relevance (IV.2) holds) gives

expit(q(2) + h(y) _ gexpit(ga(2) + ha(y))

expit(qi(z) + hi(y))  expit(ga(2) + ha(y))

or equivalently

9q1(2)/9z _ 1+ exp(qi(2) + M(y))
0q2(2)/0z 1+ exp(qa(z) + ha(y))

(A)

Taking derivatives with respect to Y on both sides leads to

% exp(q2(2) — 1 (2)) = % exp(hy(y) — ha(y))

The left hand side of the above equation depends only on Z but the right hand side de-

pends only on Y/, so it must be that

% eXp((b(Z) - C]1<Z)) =C

for some constant c;. Substituting the above expression into equality (A) leads to
cr{exp(—a2(2)) + exp(ha(y))} = exp(—a1(2)) + exp(hu(y))
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and therefore

crexp(—q2(2)) +ca = exp((—q1(2)), crexp(ha(y)) — ca = exp((h1(y))

for some constant c,. Substituting the above equalities into the ratio of propensity scores

expit(qi(2) + hi(y))
expit(gz(z) + ha(y))

=1+ cyexp(—hi(y)) = g(y)

Note that g(y) is the ratio of two candidate densities of Y, and so it must be that ¢, = 0
and the two sets of candidates are equivalent, leading to a contradiction. Therefore the

ratio
expit(q1(2) + hi(y))
expit(g2(2) + ha(y))

is either a constant or depends on z, which by Corollary 1 leads to identifiability of this

class of missing data models.
Consider the case where Z is a binary random variable, and assume two sets of candidates

in the separable logistic missing data mechanism has the following relationship

expit(mz + hi(y))
expit(z + h(y)  0Y)

The above relationship holds for z = 0, 1, therefore

expit(hi(y)) _ expit(m + h(y))
expit(ha(y))  expit(n: + ha(y))

and
exp(n2) — exp(n1)
exp(nz) — exp(m + 102

Since ¢(y) is the ratio of two densities, we must have 7, = 7, and g(y) = 1, leading to a

g(y) =1+ ) exp[—ha(y)].

contradiction. The proof for Y or Z as discrete variables is similar to the above proof for

binary Z. O

Proof of Example 3. Suppose two set of candidates in the separable probit missing data

mechanism has the following relationship

P(q1(2) + hi(y))
D(qa(2) + ha(y))

=9(y)
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for some function ¢(-), i.e. the ratio is a function of y only. Taking derivatives with respect

to Z on both sides (assuming inclusion restriction (IV.2) holds) gives

2L 6(q1(2) + M) _ 252 6(a(2) + ha(y))
(=) + M (y)) (2(2) + ha(y))

or equivalently

Slq(2) + ha(y)) 228
d(q2(2) + ha(y)) TNERAC

Oz
9q2(2)
{@2(2) + ha(9)}* — {q1(z) + li(y)}* =2 {1055@ + 10gg<y)} (A)
oz

The right hand side of the above equation does not include any interaction term between

z and y, therefore

for some constant c. Substitute ¢5(2) = ¢1(2)/c and ho(y) = chi(y) into equality (A) leads

to

1
{Z -1} + (2 - um) = 2(-toge + logalu)
The right hand side does not depend on z, so ¢ = 1 and ¢:1(2) = ¢(2), h(y) = ha(y),

leading to a contradiction. Therefore the ratio

D(q1(2) + ha(y))
D(qa(2) + ha(y))

is either a constant or depends on z, which by Corollary 1 leads to identifiability of this

class of missing data models.

A.3 Propositions 1-4

Proof of Proposition 1. Let (1o, wy, &) denote the true values of the parameters for para-

metric models 7(x,y, z; ), P(r|Y = 0,z, z;w) and ¢(z|z;£) which are assumed to be cor-
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rectly specified. It is clear that &, has a probability limit equal to &. Consider estimating

function for (1.11) which under the law of iterated expectations equals to

R
EL{E{|——— 1| mX, )XY, 2
{ {L(Coawo) } ! )}’ }
W(Co, wO)
Under the law of iterated expectations, the estimating function for (1.12) equals

B{ a0 {1a(2,X) - Elhe(Z ) 1Xs6])
B {g(Y, X){ha(Z, X) — Blhn(Z, X)|X: ]} }

=B {Blg(Y, X)|X]{hs(Z, X) — Blin(Z,X)[X:&]}} by AV:D
=B (Blg(Y, X)X Bl (Z, X)|X:6] — Blha(Z,X)|X: ]} }

=0.

Therefore (7, wy) are the probability limits of the solutions to estimating equations (1.11)
and (1.12). The IPW estimator is also unbiased,

p{ By =

by taking iterated expectations with respect to (X, Y, Z). The consistency and asymptotic
normality of ¢"™ can be established under standard regularity conditions for GMM es-
timators (Newey and McFadden, 1993) , typically by placing moment restrictions on the
vector of estimating functions. In particular, we require that the probability of observing
the outcome is bounded away from zero, a necessary assumption for identification of a

full data functional (Robins et al., 1994).
m(z,y,2) >0 >0 with probability 1 (A1)
for a non-zero positive constant o > 0. [

Proof of Proposition 2. Let (1, 6y, &) denote the true values of the parameters for para-
metric models n(z,y, z; (), f(y|R = 1,x, z;0) and ¢(z|x; ) which are assumed to be cor-

rectly specified. The probability limits of the MLEs (éMLE, éMLE) are (0y,&). Under true
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parameter values, the expectation of the estimating function for (1.15) is

E{a(X,Z) = E[q(X, Z2)|X; &H(1 = R)E (¢2(X,Y)|R =0, X, Z; G, 00) + Rga(X,Y) }}
—E{E(|R=0,X,Z) x Pr(R=0|X,2Z)} + E{E(|R=1,X, Z) x Pr(R = 1|X, Z)}
=E({a(X, Z) - Ela(X, 2)[X: &l} Bl (X, Y)|X, Z))
=E({a(X, Z) — Elgi(X, Z)|X; &} Elg2 (X, Y)|X]) by (IV.1)
=E ({Eln(X, 2)[X; &) — Ella1 (X, 2)|X;: &l Elg2(X, V)| X])

=0,

so that (, is the probability limit of the solution ¢ of (1.15). The OR estimator is unbiased

since

E{RY + (1 - RE(Y|R=0,X,Z;Cy,00)}
=E{E{RY + (1 - R)E(Y|R=0,X,Z)|R=0,X,Z} x Pr(R = 0|X, Z)}

+ E{E{RY +(1- R)E(Y|R=0,X,Z)|R=1,X,Z} x Pr(R =1|X, Z)}
—E{E{Y|R=0,X,Z} x Pe(R=0|X,2)} + E{E{Y|R=1,X,Z} x Pr(R = 1|X, Z)}
—E{E{Y|X,Z}}

=E{Y} = ¢o.

The consistency and asymptotic normality of $°R can be established under standard regu-
larity conditions for GMM estimators (Newey and McFadden, 1993) . A necessary condi-

tion is that the probability of observing the outcome is bounded away from zero (A.1). [J

Proof of Proposition 3. Under model M, let § denote the true value for para-
metric model ¢(z|z;¢) and it is clear that &ar has a probability limit equal to &.
Let superscript asterisks denote possibly misspecified models. Let 6* denote the

probability limit of estimation under model f*(y|R = 1,z,2;0) and let p(X,Z) =

eXP[—U(SanvZ;C)]f(y\R:LﬂCvZ;G)
[ u(z,y) Toml Gl A=) dn ) du(y). Then at true parameter values ((y, wy),

E{GDR <R7 X> Y7 Z? CO,WO,Q*,U)‘X’K Z}
=u(X,Y) = p*(X, Z;0,07) + p"(X, Z5 G0, 07) = u(X,Y),
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and therefore the estimating function for (1.18), under iterated expectations with respect

to (X,Y, Z) at (&, (o, wo), is

{{ (X.2) - E(v(X, 2)|X)] {u(M)}}

E{ (0(X, 2)| X)) {E (u(X.Y)|X, 2)} }
:E{ (0(X, 2)|X)] {E (u(X, Y)|X)}} by (IV.1)
:E{ o(X, 2)|X) - B (u(X, 2)|X)] {E<u<X,Y>|X>}}

In addtion, under iterated expectations with respect to (X,Y, 2),
E {GDR (R, X? }/’ Z? COa wo, 0*7 u = Y)} == E{Y}

Under model M, let w* denote the probability limit of estimation under model P*(r|Y =

0,, z;w). Then at true parameter values ((p, 6p),

E{G™ (R, XY, Z;(y,w",00,u)| X, Z}

—E{ S Y) - g x|, 2

B R{1 — 7({p,w
= { W(CO; w*)
=E{R {e” VWXV YZ0OI f4y(XY) — p(X,Y)}X, Z} + E{u(X,Y)|X, Z}

*)}{u(X,Y) — p(X, Y)}'X,Z} + E{p(X,Y)+ R{u(X,)Y) — p(X,Y)}I X, Z}

=e MY LB (X, Y)e MEVEOIR = 1, X, Z] — Elu(X,Y)e "0 R =1, X, 7]} Pr(R = 1|X, Z)
+ E{u(X,Y)[X, Z}

=F{u(X,Y)|X, 7} (S1)

The estimating function for (1.18), under iterated expectations with respect to (X, Z) at
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(507 C(b 90)/ is
:E{ W(X,Z) - E (v(X, 2)|X)]{E (w(X,Y)|Z, X))} }

—E{ [v(X,Z) - E (v(X, Z)|X)] {E (u(X,Y)|X)} } by (IV.1)

~5{ B (6(X.2)1%) - B (o(X. ZIX)HE (X, V)IX) |

=0.

In addition, under iterated expectations with respect to (X, Z) and with similar reasoning

given in (S1),
E{GDR (R7 X?K ZJ <0,(U*790,'U, = Y)} = E{Y}

The consistency and asymptotic normality of ¢PR can be established under standard regu-
larity conditions for GMM estimators (Newey and McFadden, 1993) . A necessary condi-

tion is that the probability of observing the outcome is bounded away from zero (A.1). [

Proof of Proposition 4. Let (L, R) = (X, Z,Y, R) denote the complete data. Suppose we
observe O = (R, X, Z,Y R). Furthermore, assume that Z is a valid missing data IV, such
that (i) Y is independent of Z given X, and (ii) R given (X,Y, 7) follows a model logit
P{R=1|X.Z)Y} = ay(X,Z) + o, (Y, X, Z) with o (X, Z) unrestricted and o, (Y, X, Z)
known, and «, (0, X, Z) = 0. Throughout, we assume that Pr{R = 1|X,Z, Y} > o0 > 0
w.p.1 for some constant 0. Let N} and N, denote the tangent space of the full data and
the missing data model respectively, such that A" = A/, @\, is the tangent space in the
full data model. Rotnitzky et al. (1998) established that the observed data tangent space is
given by VO = N + N2, where N° = R (g o I1;) where R (-) is the range of the operator
g : QLR — 0O is the conditional expectation operator g (-) = E[-|O], QLH) and Q)
are the spaces of all random functions of (C, L) and O respectively. II; is the Hilbert
space projection operator from Q%) onto N; and S is the close linear span of the set S.

We wish to characterize the orthocomplement to the tangent space in the observed data
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model VOt = NP+ N Ny Rotnitzky et al. (1998) showed that

NP+ = {Nf)vL = Rm(L)/7 (L) + Near : m (L) € Ni" and Ny, € Neo, }
where

Newr = {New =1 —R)a(0)— RE[(1 - R)a(0)|L] /7 (L): foranya(0) € Q?}.

Thus we need to characterize Nj-. By the exclusion restriction, all scores of f (L) may be

written as
Ni={s(L) =s1 (V[X) + 52 (Z|X) + 53 (X) : E(51]X) = E(52]X) = E(53) = 0}.
Therefore
N ={C—-C":C=c(Y,X,Z) arbitrary, C' = E[C|Z, X] + E[C|Y, X] — E[C|X]},

a result given by Bickel et al. (1993) and Tchetgen Tchetgen et al. (2010). Therefore, we

have that V" consists of functions
R{C - C"} /m(L)+ (1 = R)a(O) — RE[(1 - R)a(O)|L] /m (L)

for arbitrary functions C' = ¢(L) and A = a(O). Also, Rotnitzky et al. (1998) establish that
Ny =1{b(0) : b(0) € N3} and therefore,

NOL = {N?L eNO L E [N2N10’i] —0,N, € J\@} .
Note that Ny = {Ny = (R — 7 (L)) g(X, Z) for all g}, which leads to the following result.

Lemma 1.

AOL { NY* (ae) = R{C = C'} /7 (L) + (1 = R)a, (0) = RE[(1 = R)a. (0) |L] /7 (L) }
a.=FE[C—ClR=0,X,Z]

Proof. N (a,) is clearly in N7, it suffices to show that the unique solution to the equa-
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tion £ [Nf)v“z\@] — 0, for all Ny € Aj is given by NO* = N (a,) . In this vein

0 = E [N?”NQ}

- (MR Y] <o

B R{C —C1Y Jx (L) +( R “(0)
S | R oy }<R ”)’”)}

& 0=F[(1-n(L){C -0} X, Z] - E[(1 -7 (L)r(L)a" (0)|X,Z]
—E[(1 = (L) E[(1 = R)a” (0) [L] X, Z]

© 0=E[1-m(L){C-C}|X 2] - E[(1-n(L)a" (0)|X,Z]

& 0=E[[E[{C-C"}|X,R=0,Z] —a*(0)] (1 - R)|X, Z]

Upon writing a*(O) = aj(L)R + a5(X,Z)(1 — R), we have that o} (X,2) =
E[{C-C'}|X,R=0,Z] = a., proving the result. O

Therefore the ortho-complement to the tangent space in a model where (i) and (ii) hold
is given by N9+, Next, we consider the goal of estimating a full data functional ¢ =
¢ (F1) = E(Y) in the missing data model given by (i) and (ii). Let /F,; = Y — ¢ denote
the full data influence function in the nonparametric model which does not assume (i).

Then, in the model that assumes (i) and (ii) hold we have that

e k-1F4,+C — CT: for all constants k and
L7 C=c(Y,X,2) arbitrary,CT = E[C|Z, X]|+ E[C|Y, X] — E[C|X]

Similar to Lemma 1, we get the following set of influence functions for ¢ in the model

given by (i) and (ii)
Lemma 2.
N N (o) = R{k-IF;, +C —CT} /m (L)
NO+ = +(1 = R)a. (O) — RE[(1 — R)a, (O)|L] /(L) :
acp =E[k-1Fy; +C —C'|R=0,X, 7], for arbitrary C = ¢ (Y, X, Z) and constant k

The proof is similar to that of Lemma 1. Next, lets suppose that (ii) does not hold, and
instead, we have (iii) a parametric model «, (Y, X, Z;y) with unknown p-dimensional

parameter . Let F; (R, L) denote the complete data submodel indexed by t such that
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Fy(R,L) = F (R, L).Under the submodel, we have that Let ¢(v:, t) denote the solution to
0=E; {Nlo’L (Ge,p; D(L), e, t)} for all ¢ in the model
and therefore

0 = ViB NP (aesi 6(0).70.1)}
= B{NO (a0:60)) S} + B { VNP (a0:6(0). 70,1}
= BN (004 6(1) S} + B {VNP (04 0) } V.0(0)
+E {nyﬁlo " (eg; ¢, 7)} Ven
+E {Vﬂf“ (e 6,7, t)}

Now since N 10 - (ac,p; @,7,1) is orthogonal to all nuisance parameters in the model where
(¢,7) is known E {vtz\?f“ (Gep; Dy, t)} = 0, therefore, we get
~ -1 ~ ~

Vig(t) = —E {V¢N10’l (e ¢)} X (E {NIO’J_ (a5 (7)) 5} +E {Vleo’L (acg; @, 7)} Vm)
Note that by Lemma 1

Vive=F (Nlo’L (aq) S)
where N (ag) € N9t with a4 = E[D— D|R=0,X,Z] with D an arbitrary p-
dimensional function of L . Therefore, we conclude that

~ —1
Vio(t) = ~EB{VsN" (au5:0) |
< { [N (a1 6(0) + B { T, N0 (a5 6,0) | NP ()] 5}

proving that the orthocomplement to the nuisance tangent space in the model given by

(i) and (iii) is given by
NP (acgi ¢()) + E {Vvﬁf’L (ac: ¢, 7)} NP (aa)

Now, we note that N7 (a,4; ¢(7)) can be written N (ag; ¢(7)) + N2 (ag; 6(7)) where
a.=E[C—-CIR=0,X,Z]anday = E[k-IF4;|R=0,X,Z]
Qe = E [k‘ 'IF¢71 —|—O— C”R = O,X,Z} .
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Let
M = NP (0 9) = T (NP (g 00) [{ N0 (@i 6(1) )
and let U = NP (ag+) denote the efficient influence function of ~. Then we have that the

efficient influence function of ¢ is given by
370, L . O.-L .
NP (a4 9) = M+ B{V,, NP (agi7) = M (3)] } U

since N7 (ap; @) — M is in the tangent space of the model, and so is U.

In the special case where Z and Y are binary, C — C' can be written
b(X)Y = E(Y[X)}{Z - E(Z]X)}
for some function b, so that

NP (ac é(7)) = b(X) x {R{Y = E(Y|X)}{Z ~ E(Z|X)} /x (L) +
(1-RE[{Y —E(Y|X)}{Z-E(Z|X)}|X,R=0,Z]
—RE[1=R)ER{Y - E(Y[X)}{Z - E(Z|X)} X, R=0,Z]|L] /= (L)}

= b(X)xW

Therefore, letting H = Nlo -+ (ag; &(7))

M = (NP (a5 00) | { NP (0 6(7) s c})
= E{HW|X}E{Wx}'W

and U = N7 (ag-) solves
E {Nlo (ag) Ny (ad)} = E {VWNIO’L (am)} for all D.
one can verify that NO* (a4-) = D* (X) x W () where

D" (X) = E{W ()®*|X} " E{V,W (7)|X}
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Appendix B

Proofs of results for nomonotone MAR
IPW

B.1 Restrictions imposed by polytomous logistic regres-
sion model

Suppose there are M missingness patterns, each with observed variables L), m =
1,...,M. Choosing pattern j as the baseline category, we model the other missingness

pattern probabilities as

/
m L m
Pr{R = m|L} = Pt L)

1111

Let L1 = (Veqr,. myp\ (i3 Lom)- Then by the MAR assumption, each of the above proba-
bilities Pr{R = m|L} depends on L, respectively. But they can only depend on L;. If
not, then the probability for one of the missing data patterns i will depend on variables
Ly \ L; that another pattern does not have. This is not possible due to the linked nature

of the terms in the denominator of the probability expression.

B.2 Asymptotic results for IPW estimator

The consistency of 5 can be established under general conditions for 2-step estimators
(Newey and McFadden, 1993) to show uniform convergence of estimating equation (2.15)
in 3, where we make use of the fact that 4 2 ~. Typically one would need to impose

moment assumptions on 7 (L; ) and M (L; 5) (Wooldridge, 2007).
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To investigate the asymptotic distribution of /3, under suitable regularity conditions ex-

pand (2.15) around the true values 3, and subsequently ~y,
1 < .
V(B — Bo) = [ Zvﬁr (5, )] 7 > Ti(Bo, )
i=1

_ [%ZVﬁFi(ﬁ ) X [%ZFi(BOfYO)"' (%ZvWPi(ﬁo,fy*)> V(E =)

where $* and 7* are the mean values and I'(3,v) = {1(Ry = 1)/m(L; )} M (L; 5). When

4 is the maximum likelihood estimator or a Bayes point estimator satisfying conditions
in the Bernstein-von Mises Theorem, it is an asymptotically linear estimator with the

influence function
V(d =) \/‘ ZE (550571 Sivo + 0p(1) (B.1)

where S, is the score function with respect to the missing data model parameters 7. Sub-

stituting the influence function representation into previous expansion gives

V(B — Bo)
= —E{Vﬂr(ﬁoﬁo)}_I% Z{ (B0, 70) + E{V,T(Bo,70) }E [S4, 70} o Sﬂo} + 0p(1).
. (B2)

In addition, from the assumption that the parameters governing full data and the missing
data process are separable, under standard regularity conditions we have for observed

data O

E[L(8,7)] = / L(8,7)£(0: ,7) dO = 0

%E[P(M] -/ %F(ﬁ,v)f(o; ﬁ,w =y r(/s,v%f(o; £.7)dO = 0

(0;8,7)

— E{V.,T(v,8)} = —/ (8,7 )W

f(O; B8,7)dO = —E[I'(8,7)5,].
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Substituting the above equality to (B.2)

V(B — o) =
— E{VsT'(Bo,70)}~ \/—Z{ (Bo,70) — E[L(Bo, 70)S3]E [S5055,] Sfyo} + 0,(1).

An application of Slutsky’s theorem shows that

\/ﬁ(ﬁ — o) i N (07 E{ng(ﬁo, ’Yo)}_lvar [F(ﬁo,%) — W (B, ’Yo)] E{Vﬁr(ﬁoﬁo)}_lT)
(B.3)

where

W(Bo,0) = [(50770) ] [S’YOSVO} 1570-

The sandwich estimator is consistent for E{VsI'(530,70)} E [I'(80,70)®?] E{VﬁF(ﬁo, o)}
In the Hilbert space of mean-zero random functions, E [I'(5y,70)5% ] E [S,, Sﬂ Sy is

the projection of I'( 5y, 79) onto the linear subspace spanned by elements of S,,. Therefore

by Pythagorean Theorem

B [ 0)®%] = B [{T(60.20) ~ E[[(60 0S5 E [8,85] ™ 520} |

is positive semi-definite and the sandwich estimator provides conservative estimate for

the true asymptotic variance.

B.3 Implementation and sample OpenBUGS code for sim-
ulation study

We obtain the BCE estimator of 7y as the posterior median of distribution (11) with diffuse
priors v; ~ N (0,10%) and o* = 107%. Adaptive Gibbs sampling (Gilks et al. 1995) was
implemented through BRugs, the R interface to the OpenBUGS MCMC software (Lunn
et al. 2009). We assessed convergence by visually inspecting the trace plots as well as
through the Gelman-Rubin convergence statistic (Gelman and Rubin 1992), and included
an adaptive phase of 10* iterations out of a total of 2 x 10* iterations.

In the OpenBUGS code for estimation of the missing data model (29) in scenario 1 of

the simulation study, individuals are assigned to their respective missing data patterns,
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R, = 1,k = 1,2,3, with R, = 1 denoting complete-cases. For a person with missing
data pattern R;, = 1, the encoding follows that R; = 0 for j # h. The first part of the
code describes the contribution of each missing data probability of the n individuals to
the likelihood function corresponding to missing data model (29). Then the diffuse prior
distributions for the parameters in the missing data model are specified as independent
N(0,10%). Finally, constraints (10) are imposed on the n. complete-cases with user-defined
o*, where the input dataset is ordered such that the first n. individuals are complete-
cases. Posterior mean, median and 95% credible intervals can be obtained directly from
Markov-chain Monte-Carlo sampling in R through BRugs, an interface to the OpenBUGS

software.

Model <- function () {

L[i] <= RI[i]#pil[i]+R2[i]*pi2[i]+R3[i]*pi3[i]

#Probability for each missing data pattern

logit (pi2[i])<- g[1]1+g[2]+Y[1]+g[3]+X1[1i]
logit (pi3[i])<— gl4]1+g[5]*X2[1i]1+g[6]*X3[i]
pil[i] <- 1-pi2[i]-pi3[i]

}

#Priors for parameters in missing data model
for (J in 1:6) {

glj] =~ dnorm(0, 0.01)

86



# implementing the constraints for complete-cases
for (k in 1l:n_c){

ones[k] <- 1

ones[k] 7 dbern(Cl[k])

Clk] <- step(pill[k]-sigma_star)

B.4 Augmented inverse probability weighted (AIPW) esti-
mators

We consider the restricted augmentation space A* C A formed by the span of a finite

vector of linearly independent functions
I(R=1) 1L(R=r)

e (L) k=1, K, »,
{ n(l) (L) (L) }

where for each r, t;(L(,) is a K,-vector of user defined functions of L), r = 1,..., M.

It is recommended to include in A* scores corresponding to the model used to estimate
the missing data mechanism, which leads to simplification in estimating the asymptotic
variance of the resulting estimator (Robins et al. 1994; Tsiatis 2006). Specifically, under
model (2.6), A* includes the score functions given by (2.9).

Similarly, we consider a restricted linear subspace U"* C U spanned by [ linearly in-
dependent full-data estimating equations, where [ > ¢. The resulting class of restricted
augmented estimating equations is given by

P, {%QU*(L; B) + CoA*(R, Lip; %)} =0 (54)

for any choice of constant matrices C'; of dimensions ¢ x [ and C; of dimensions ¢ x k
where k = 3 ., K,. U*(L; ) is a I-dimensional vector of basis functions spanning U"*
and A*(R, L(g); ) is a k-dimensional vector of basis functions spanning A*. Using a result

due to Tsiatis (2006) one can show that the optimal choice of (C}, C3) within the class (S4)
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is given by the solution to

Ull U12

opt opt
.G ]{UE; Uns

} = [Hy, Hy]

where

U,=FE {%UL*)(W}M

Vo= b {%U*(B)A*T}M

Up = E { A AT}

- (o5

HQ — 0q><k

The matrices (U1, Usg, Hy) that involve full data L can be estimated from the complete
cases only by standard inverse probability weighted empirical averages and the matrix
U, by an empirical average of the observed data. Constrained Bayesian estimation of the
missing data process involves centering A* so that it has mean zero empirically. Then the
optimal AIPW estimator (3, in the restricted class of estimating equations is given by the
solution to

r { MO =D Em (0 9)+ G004 (R i ) | =0 5)

and a consistent estimator for the asymptotic variance of (3, is given by
~ A ~ ~ ~ ~ -1
{ B Bopt) T B HT (B} (S6)

where
1

o't = ((711 - 1712(7;21(7@* .

(Tsiatis 2006). Finding the solution f3,,; to (S5) involves estimating the matrices for each
value of 3, which can be computationally intensive. Instead, an estimator asymptotically

equivalent to /3, is obtained by the simple one-step update of a standard IPW estimator
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~

B = B + TF5 (B ($7)

-1

ﬁﬁ <Bipw> = {—Za {];(fz—:,;))M(Li;Bipw)} /3ﬁ} X

LR =1) Ay s o s o A
{Z |: 77-(1(1/,7_))01]) (ﬁlpw)U (Llaﬁzpw) + C2p (6zpw)A <R17L(R),w’}/):|}

and [, is the standard IPW solution to (15). It is straightforward to show that under
standard regularity conditions and in the absence of model misspecification, the influence

function of 3* , is identical to that of Bopt (van der Vaart 1998).

opt
The asymptotic efficiency of the optimal restricted AIPW estimator in relation to the semi-
parametric efficiency bound for a given full data semiparametric model of interest de-
pends on how close the span of A* and U™ is to A and U” respectively. One can show
that as one suitably enriches the span of A* and U™* with elements of A and U so that the
former two vector spaces increasingly become dense in the latter two subspaces respec-
tively, the asymptotic variance of n!/? (Bopt - B()) nearly attains the semiparametric local

efficiency bound for the semiparametric model of the full data and only other restriction

that data are MAR (Newey 1993).
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Appendix C

Implementation of Constrained Bayesian
Estimation for Outcome Heterogeneity

The OpenBUGS code for posterior computation in the simulation study is shown below.
For the i*" individual with outcome Y = k, the encoding follows that Y;[i] = 1 and Y;[i] =
0 for j # k. The first part of the code describes each individual’s contribution to the
observed data likelihood. Diffuse prior distributions for the parameters in the model
are specified as independent N(0,10?). The final part of the code imposes constraints
on the sampling space so that 0 < Pr{}’::m)Q;B} < 1 for all individualsi = 1,2, ...,n
Posterior mean, median and 95% credible intervals can be obtained directly from Markov-

chain Monte-Carlo sampling in R through BRugs, an interface to the OpenBUGS software.

Model <- function () {
for (i in 1:N){
z[1] <-1
z[1] " dbern(plil)
pli]  <— L[i]
L[i] <— YO[il#piO[il+Y1[il#pil[i]+Y2[i]l*pi2[i]+Y3[i]xpi3[i]

#Probability for each of the outcomes Y=1,2,3.

logit (pil[i])<-betal[l]l+beta[2]*X1[i]+beta[3]*xX2[1i]
logit (pi2[i])<-betald]l+beta[5]*xX1[i]+betal[6]*X2[1]
logit (pi3[i])<-betal[7]+beta[8]*X1[i]+beta[9]*xX2[1i]
piO[i] <= 1-pil[i]l-pi2[i]-pi3[i]

}

#Priors for parameters in missing data model
for (j in 1:9) {

90



betalj] = dnorm(0, 0.01)
}

# implementing the constraints
for (k in 1:N){

ones[k] <- 1

ones[k] 7 dbern(Clk])

Cl[k] <- step(piO[k])
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