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Competition and Coexistence in Yeast Experimental Evolution
Abstract

Natural selection gives rise to biodiversity by purging the less-fit among variants that are too similar

(a principle known as character displacement), but to predict how fit or different an organism needs

to be to survive is hard. In the simplest theoretical case, the probability whether one lineage versus

another survives depends only on their relative fitness and random fluctuations. In more complex

scenarios, this probability may depend on the fitness of all the other lineages in the population,

mutations that these and other lineages acquire before the outcome of competition is decided,

and additional ecological interactions. These complexities evolve readily in laboratory microbial

populations, suggesting that they are the norm in Nature, and have been extensively studied

theoretically. This thesis provides one of the few empirical examples in which the evolution and

mechanism of some of these complexities have been characterized and modeled sufficiently to make

basic predictions, such as whether a mutation will fix or go extinct, which competing lineages may

or may not coexist, and how do these processes relate? This work was carried out in an established

system for experimental evolution, populations of asexual budding yeast (S. cerevisiae) in microtiter

plates.

Chapter 2 demonstrates an experimental design and modeling approach to infer the distribution

of fitness effects of beneficial mutations from the population-dynamics of genetic markers. The

inferred distribution accurately predicts fixation probabilities of lineages and adaptation rates of

populations. Chapter 3 describes a new example of spontaneously-evolved coexistence between

types competing for the same resources, including the physical mechanism, genetic basis and a

mathematical model of the coexistence. The conclusion provides additional analyses to connect

the findings from these two chapters and discusses their implications for microbial evolution more

generally and directions for future work.
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1
Introduction

1.1 What can be learned from experimental evolution?

The general aim of evolutionary biology is to understand how organisms change over the

course of generations, from the origin of life to the present and future. Laboratory evo-

lution experiments provide relatively brief and simple instances of this process that can

be dissected and rigorously understood. The motivations for this pursuit are three-fold:

first, one may hope to derive principles of evolution that provide insight into the biodi-

versity of Nature. Secondly, different aspects of biology together determine any particular

outcome of evolution; hence to understand and predict these outcomes can lead to a more-

integrated understanding of biological systems. For example, populations of budding yeast
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(S. cerevisiae) propagated at higher-than-normal temperatures are reproducibly taken over

by mutants that have duplicated chromosome III.137 Why chromosome III? It turns out that

elevated expression of a cluster of genes on chromosome III improves growth at high temper-

ature. Why not then only duplicate this cluster or elevate its expression specifically? That

happens during subsequent evolution: the chromosome duplication reproducibly reverts,

while elevated expression of certain genes remains. So why the aneuploid intermediate?

This question points to a generalizeable principle: chromosomal rearrangements and copy

number changes occur so frequently that when such mutations can produce a strongly favor-

able phenotype, they may typically take over a population before other kinds of beneficial

mutations arise. Because such drastic genetic changes are likely to produce far-from-optimal

solutions, they may also typically become partially reversed by subsequent evolution. In

Nature, many fungal species are descendant from a whole genome duplication roughly 100

million years ago.135,71 Why this ancient duplication was favored is uncertain, but it coin-

cided with the evolution of angiosperms (plants with fruits), and the duplications that were

retained suggest that it enabled yeasts to compete better for sugar.21 Likewise in cancer,

loss of tumor suppressors and activation of oncogenes often occurs through loss or duplica-

tion of chromosomes.2 Together these examples illustrate how the study of cell biology and

experimental and natural evolution inform one another.

Thirdly, we perform evolution in the laboratory to see it happen in detail.15 One of

Darwin’s contemporaries, William Dallinger, was the first to realize that the rapid genera-

tion time of microorganisms could allow one to directly observe evolution in an experiment.

He collected three species of plankton and grew them at increasing temperature for several

years.24 Initially, the organisms tolerated no more than 70◦F, but eventually, he raised their

growth temperature to 158◦F and found that they now no longer survived at their natural

temperature of 60◦F. What can be learned from such an experiment? It was a foregone
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conclusion, given the experimental design, that the organisms’ thermotolerance would in-

crease. Moreover, most organisms survive only in a relatively narrow range of conditions,

so their loss of tolerance to low temperatures was not surprising. Darwin praised the work

as a demonstration of how algae in hot springs are evolutionarily related to algae in cooler

waters, but as Dallinger remarked, evolution did not need further proof. More interestingly,

Dallinger periodically performed pilot experiments to determine the earliest moments and

maximum extent to which he could raise the temperature without loss of viability and used a

heated microscope stage to record morphological changes that accompanied these increases

in thermotolerance (Fig. 1.1). His observation of increased vacuole number and size in all

three species suggests that these morphological changes were adaptive. He also noted that

the pace of adaptation, as indicated by these increases in temperature, varied between year-

long periods when the temperature could not be raised at all and other periods when the

populations tolerated increases of several degrees per month. Irregular, almost step-wise

increases in stress tolerance have since been observed in other contexts, such as bacterial

populations adapting to increasing antibiotic concentrations.124 This pattern stands in con-

trast to observations from another evolution experiment started a century later by Richard

Lenski, in which a dozen populations of E. coli have been propagated in batch culture since

1988 for over 64 thousand generations and counting.134 This experiment established some

general expectations for how adaptation proceeds in a constant environment: the pace of

phenotypic change becomes progressively slower, but the pace of genetic changes may re-

main the same or even increase (Fig. 1.2), with the caveat that occasionally, these organisms

evolve to change their environment or develop ecological interactions, initiating fresh phases

of adaptation.12,98

The preceding examples illustrate some patterns of genetic and phenotypic changes

in evolution, but what determines such patterns? The possible answers may be classed

3



Figure 1.1: Increase in maximum-tolerable incubation temperature and morphological
changes of three protozoan populations. The three species (M. dallingeri, M. drysdali, T.
rostratus ) were maintained in separate vessels at a common temperature that was raised at
the maximum rate permitted by their viability. Each morphology was drawn at the (time
point, temperature) indicated. The timing of the final three data points is unclear. Data
from Dallinger 24 .
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Figure 1.2: Fitness gains and number of fixed mutations in Richard Lenski’s Long-term
Evolution Experiment. Reprinted with permission from Good & Desai 48 .

into two general categories: mathematical or population-genetic and biological, physical,

chemical. For example in the case of yeast adapting to heat stress, one may predict that

the observed pattern depends on population size. If the population were sufficiently larger,

mutants with duplicated chromosome III might have been out-competed by rarer mutants

that specifically activated the relevant genes on the chromosome. However, an increase in

population size would also hasten the partial reversion of chromosome III duplication, so

perhaps these double mutants would prevail. To predict the probabilities of these different

outcomes, one needs to know how often different kinds of mutations arise and how quickly

they spread through a population, a rate known as the selective effect or coefficient. This

general process is referred to as the dynamics of adaptation, which is discussed in Sec. 1.2

below. Alternatively, one might wonder what biological, physical, chemical changes enabled

cells to grow faster at higher temperature? In this case, altered sterol composition of the

membrane appears to have conferred thermolerance.17 There have been successes in bridging

these two approaches, termed “functional synthesis.”30,35,34
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Experimental evolution can also provide insight into ecology. Populations adapt because

offspring inherit traits from their parents, but not all offspring become parents themselves.

Evolutionarily fitter traits are then those that increase the chances of producing more

offspring, at least in the long run, and differences in traits arise by mutation. Hence over

time, populations enrich for fitter lineages (an individual organism and its descendants).

Given this process, how can so many different species, with vastly varied fecundities, survive

in Nature? This is one of the basic questions of ecology. In the case of microorganisms,

simple coexistence-ecologies have evolved de novo in laboratory environments, in which the

hows and whys of their origins can be fully elucidated. These examples are discussed in

Sec. 1.3 and Ch. 3.

This thesis takes an experimental-evolution approach to address two specific questions

touched upon already: 1) How do the dynamics of adaptation determine which mutations in

a population survive, and relatedly, how can we infer from these dynamics what mutations

arose? 2) How can different types of microorganisms coexist while competing for the same

resources? Some history and background to these questions is given in the next two sections,

and the new results are described in chapters 2 and 3, respectively.

1.2 Dynamics of Adaptation

Mutations are random and therefore rarely beneficial, but microbial populations can be

enormous: one milliliter of growth media may easily contain 108 yeast or 109 bacteria. The

mutation rate is typically 10−9 - 10−10 per base pair per generation. Hence in a population

of 108 yeast, every base pair has mutated on average once after roughly 20 generations

or 1-2 days for laboratory strains given ample nutrients. So beneficial mutations may be

extremely rare among all mutations and yet arise frequently in modest-sized laboratory
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Figure 1.3: Schematic of competition assay to measure relative fitness. During the assay,
populations are propagated using the same protocols and conditions as during longer-term
experimental evolution.

microbial populations.

One might expect microorganisms to be near-perfectly optimized after billions of years

of evolution, but typically, microbial species evolve to proliferate more quickly when prop-

agated in laboratory conditions.88,87 In other words, it is not necessary to apply a special

stress or selection pressure to observe adaptation. As mentioned, an organism becomes more

fit when it acquires beneficial mutations that enable it to produce more offspring; however,

growth rate and fitness are not exactly the same thing. The difference is somewhat technical:

fitness is the slope of a genotype’s proportion in a population plotted through time, which

empirically, is the time-average of the relative growth rate over some interval, measured

using a competition assay (Fig. 1.3). Unless stated otherwise, the assumption here is that

the relative fitness of genotypes is simply a constant, not dependent on their proportion or

frequency, and that the population proliferates asexually, as most microorganisms usually

do.
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This definition of fitness implies two different ways one may observe the dynamics of

adaptation: one is to compete an evolved population versus a reference strain, typically

the ancestor of the population, which is how the fitness data in Fig. 1.2 were obtained,

and the other is to track the frequency of genotypes in a population through time, an

approach known as marker divergence. The first method reveals the average fitness increase

of an evolved population but provides little information about variation in fitness within

the population or the fitness effects of the mutations responsible for adaptation. To see

beneficial mutations spread through a population, Novick & Szilard performed the first

marker divergence experiment by tracking the proportion of bacteria resistant to phage in a

chemostat.103 Less than ten years prior, Luria & Delbruck had shown that phage resistance

was caused by mutations,94 and here, these mutations had little or no fitness effect because

the chemostat was free of phage. Instead the resistance phenotype served as a convenient

genetic marker to track the dynamics of adaptation in a population. Some of those data

are shown in Fig. 1.4.

For nearly half a century, marker divergence data were interpreted in terms of periodic

selective sweeps,4 as illustrated in Fig. 1.4. The key assumption was that beneficial mu-

tations must be so rare that populations essentially alternate between two distinct states:

waiting for a beneficial mutation, during which time neutral genetic diversity accumulates,

and experiencing a selective sweep, when this diversity is purged (Fig. 1.5A). Several im-

plications follow from this assumption: except during relatively brief periods of selective

sweeps, all genetic diversity within a population is neutral or deleterious; adaptation rate

scales linearly with mutation rate and population size; and the probability a mutation fixes

or goes extinct is determined solely by the population size and its selection coefficient.

Despite a few reports,55,1 it was not widely appreciated until the late 1990s that these ex-

pectations are largely inaccurate, at least for laboratory microbial populations.40,29 Instead,

8



Figure 1.4: Marker-divergence data interpreted assuming periodic-selection (i.e. successive
selective sweeps, as illustrated in Fig. 1.5A). Data from Novick & Szilard 103 and annotations
adapted from Paquin & Adams 105 .
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Figure 1.5: Muller diagrams illustrating the dynamics of adaptation when beneficial mu-
tations are rare (A) versus frequent (B) in an asexual population with initial genotype A.
Letters B-E correspond to newly-arising beneficial mutations that escape genetic drift.

beneficial mutations occur frequently enough that microbial populations routinely contain

multiple beneficial mutations segregating simultaneously (Fig. 1.5B). Hence the adaptation

rate has a complex dependency on mutation rate and population size, as well as other fac-

tors, and the probability individual mutations fix or go extinct depends more weakly on

their individual fitness effects and more on the effects of all the other mutations segregating

in the population.32,33,81

The main aim of marker divergence experiments has been to learn about the frequency

and effect sizes of beneficial mutations. Are one in a million mutations beneficial or one

in a billion? Stated more precisely, what is the distribution of fitness effects of benefi-

cial mutations, drawn schematically in Fig. 1.6? Answering this question when beneficial

mutations occur frequently enough to produce complex dynamics of adaptation like those

illustrated in Fig. 1.5B is not feasible using the traditional approach of Fig. 1.4 because to
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Figure 1.6: Schematic of the distribution of fitness effects of new mutations. In an adapting
population, selection amplifies rare beneficial mutations from the right of the distribution,
giving rise to dynamics of adaptation like those in Figs. 1.2, 1.4, 1.5.

do so essentially requires inferring the dynamics of multiple genotypes in the population

from the time-series of only one.54 The work described in Ch. 2 provides a solution to this

problem, based on tracking frequencies of labeled lineages through time much like prior

marker divergence experiments but with a new experimental design (carefully chosen initial

conditions) to make these dynamics more informative. Since then, others have developed

DNA-sequencing-based method to track thousands of lineages simultaneously, which also

solves the problem because the number of simultaneously-segregating beneficial mutations

is typically far fewer.91,65

1.3 Evolution of Coexistence

Consider a flask of two microbial species or strains growing together in nutritive broth: each

day we let them grow until the nutrients are exhausted; then we take a small aliquot from

the flask and inoculate it into another one of fresh broth and repeat. After a long time,

does one expect two species or one in the flask? This experiment is the competition assay

illustrated in Fig. 1.3, so we expect one survivor and can calculate when that outcome would
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be reached by measuring the change in proportion over a short interval: with a measured

relative fitness s, population size N , and roughly equal initial proportion, the expected time

to fixation is 1
s ln(N) generations.

But over the years, many researchers (including the author) sometimes found two not

one and wondered, why? More generally, the question is how can different species or types

coexist while competing for the same resources? Such coexistence needs explanation because

of the competitive exclusion principle,52 which may be stated as follows: if two species are

locked in competition such that the increase of one necessarily implies the decrease of the

other, then extinction of one species is inevitable, unless prevented by some mechanism of

coexistence. Even if the two are perfectly matched, random fluctuations are expected to

bring one species to extinction. The competitive exclusion principle is tautological, so its

usefulness is only that whenever it appears to be violated, that indicates something to be

discovered.

For example, Hutchinson’s 1961 article “Paradox of the Plankton” pointed out that

the diversity of prototrophic marine microorganisms is vastly greater than the diversity of

their resources, yet no mechanisms of coexistence among them were known.61 This spurred

many efforts to identify such mechanisms19 or revisit the assumption that they were nec-

essary, since in a dynamic natural environment species may tend toward extinction with-

out ever getting there.60 As a result, theoretical conditions permitting stable coexistence

of N species on less than N resources were systematically cataloged through analysis of

mathematical-ecological models.19,3,127,90 The question of this line of research then became,

when are these theoretical mechanisms of coexistence applicable? Direct efforts to answer

this attempted to recapitulate natural ecologies in controlled laboratory environments,18,121

but fortuitously, coexistence sometimes also evolved spontaneously in experiments.97,68 To

clarify, in these cases, populations are initially clonal and then become genetically diverse
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through acquisition of mutations during the experiment, and coexistence emerges between

the recently-diverged lineages in these populations. Ecologically, such coexistence is like

that of species because these populations are asexual (at least in experiments so far), but

one would not classify these coexisting lineages as different species but rather as diverged

strains.

Theoretically-derived mechanisms of coexistence generally assume trade-offs in fitness

between species or types. The empirical hallmark of coexistence is that one may isolate

at least two types; mix them together at different proportions (e.g. 99:1 and 1:99); propa-

gate the mixtures and observe convergence to some common intermediate proportion (e.g.

50:50)—a phenomenon known as negative frequency-dependent selection because the fitness

of each type varies inversely with its prevalence in the population (Fig. 1.7). A mechanism of

coexistence is a model that explains the observed pattern of negative frequency-dependent

selection, thereby delineating the necessary conditions for coexistence. For example, the

first reported case of spontaneously-evolved coexistence was in populations of E. coli prop-

agated in flasks as described above and was explained by a model postulating a so-called

gleaner-opportunist trade-off.89,122,50 The basic hypothesis is that different adaptations may

be required to increase growth rate when nutrients are abundant versus scarce, so that the

opportunist type grows faster when the population is first inoculated into a flask, while the

gleaner type grows relatively faster as nutrients become depleted. This intuitive explanation

turns out to be incorrect. Trade-offs between growth at rich versus scarce nutrient concen-

trations have so-far been found to be too weak to support coexistence,126 and instead such

coexistence is commonly maintained by cross-feeding interactions, typically in which one

type partially metabolizes the carbon source and secretes a secondary metabolite scavenged

by the other.56,112,126 The secretion of secondary metabolites is a common feature of micro-

bial metabolism and not as wasteful as it seems because the secreted metabolites may be
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Figure 1.7: General form of negative frequency-dependent selection. A genotype whose
fitness is positive when rare and negative when common, as illustrated by the solid black
line, will tend to persist at a stable, intermediate equilibrium frequency. Mutations may
push this equilibrium to either 0 or 1 by shifting the fitness-frequency relation as illustrated
by the grey arrows and line.

taken up and consumed later.37 Performing these different metabolic stages simultaneously

within the same cell may be sub-optimal because different proteins are required.8

Trade-offs in fitness that enable coexistence can be eliminated by evolution to create

one type uniformly better than the other. Hence the applicability of theoretically-derived

mechanisms of coexistence depends on the strength of evolutionary constraints imposed by

biophysical properties of organisms, their environments or other factors. Whenever coexis-

tence evolves spontaneously, it suggests that perhaps the assumed trade-off has a biophysical

basis or perhaps that one uniformly superior type is unlikely to arise for population-genetic

reasons. For example in one of the populations of Richard Lenski’s long-term evolution

experiment, two cross-feeding types, L and S, have stably coexisted for more than 30,000

generations.85 However the stability of the coexistence is revealed to be more tenuous when

clones of each type isolated from different time points are competed against one another:

S-type clones from earlier time points can be driven extinct by L-type clones from later
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time points.85 The specific adaptations that enable the L-type to sometimes eliminate the

S-type are unknown, but conceptually, their effects may be either to weaken the trade-off

or to increase the relative fitness of the L-type to such a degree that the trade-off cannot

maintain coexistence, as illustrated in Fig. 1.7. The new example of spontaneously-evolved

coexistence described in Ch. 3 also exhibits this property that two types stably coexist due

to negative frequency-dependent selection, but adaptation of one may cause extinction of

the other.
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2
The Fates of Mutant Lineages and the

Distribution of Fitness Effects of Beneficial
Mutations

The outcomes of evolution are determined by which mutations occur and fix. In rapidly

adapting microbial populations, this process is particularly hard to predict because lineages

with different beneficial mutations often spread simultaneously and interfere with one an-

other’s fixation. Hence to predict the fate of any individual variant, we must know the rate

at which new mutations create competing lineages of higher fitness. Here, we directly mea-

sured the effect of this interference on the fates of specific adaptive variants in laboratory

Saccharomyces cerevisiae populations and used these measurements to infer the distri-

bution of fitness effects of new beneficial mutations. To do so, we seeded marked lineages

with different fitness advantages into replicate populations and tracked their subsequent fre-

quencies for hundreds of generations. Our results illustrate the transition between strongly

advantageous lineages which decisively sweep to fixation and more moderately advanta-

geous lineages that are often outcompeted by new mutations arising during the course of

16



the experiment. We developed an approximate likelihood framework to compare our data

to simulations and found that the effects of these competing beneficial mutations were best

approximated by an exponential distribution, rather than one with a single effect size. We

then used this inferred distribution of fitness effects to predict the rate of adaptation in a

set of independent control populations. Finally, we discuss how our experimental design

can serve as a screen for rare, large-effect beneficial mutations.

2.1 Introduction

Evolutionary adaptation is driven by the accumulation of beneficial mutations. There are

two basic questions one can ask about this process. First, what are the set of mutations

available to the population? That is, what is the overall mutation rate, U , and the distribu-

tion of fitness effects, ρ(s), of new mutations? Second, what is the fate of those mutations

that occur? In other words, how does the frequency of each mutation change over time

until it eventually fixes or goes extinct?

When beneficial mutations are rare, these two questions are independent. Mutations

of a given fitness effect, s, occur at rate Uρ(s). The fate of each mutant is then decided

entirely on its own merits: it increases in frequency (or is lost due to random drift) at

a rate commensurate with its selective effect. Experiments, however, have shown that

even for modestly sized laboratory populations of viruses and microbes, multiple beneficial

mutations often spread simultaneously and interfere with one another, an effect known

as clonal interference29,101,66,107,33,67,86 (see Sniegowski & Gerrish 120 for a recent review).

This means that the fate of each beneficial mutation depends not only on its own effect, but

also on its interactions with the rest of the variation in the population.81,83 In this regime,

the mutation rate and the distribution of fitness effects of beneficial mutations (the DFE,
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ρ(s)) controls the availability of competing mutations, which then play an important role

in determining the fate of each new beneficial mutation.40,49

These factors highlight the importance of the DFE as a central parameter in adap-

tation, determining which new mutations occur and influencing their subsequent fate.

Some theoretical work has argued that the DFE will typically be exponential.44,104 How-

ever, this is fundamentally an empirical question, and in principle the details of the DFE

could be highly system-specific. There has thus been extensive experimental effort de-

voted to measuring the DFE of beneficial mutations in a variety of laboratory popula-

tions63,113,115,5,69,16,107,111,96,9,99 (a separate literature has used population genetic methods

to infer the DFE in natural populations, reviewed by Keightley & Eyre-Walker 70).

Experimental efforts to measure the DFE of beneficial mutations in laboratory popu-

lations have largely taken one of two complementary approaches. The first approach is to

isolate mutants and directly assay their fitness. The difficulty with this method is that

beneficial mutations are rare, so many clones must be screened to isolate comparatively few

beneficial mutations.115,69 To avoid this difficulty, some studies have imposed a harsh se-

lection and studied the survivors, which by definition must have a beneficial mutation.96,99

However, this approach is limited to harsh and typically narrow stresses (e.g. treatment

with antibiotic), which may not be representative of adaptation to other conditions.

The second common experimental approach is to track the frequencies of genetic mark-

ers over time, and use the resulting dynamics to infer the underlying DFE. Such “marker

divergence” experiments typically use two or more strains that differ by a single neu-

tral genetic marker which can be easily tracked through time (e.g. antibiotic resistance

or a fluorescent reporter). These strains are mixed, usually in equal proportions, and

allowed to evolve in competition. The changes in frequencies of the neutral markers

then reflect subsequent beneficial mutations that occur in one or the other genetic back-

18



ground.103,4,55,105,1,63,5,28,107,54,67,6,81,45,7 Inferring the DFE from such data typically requires

estimating the fitness effects of many mutations from the dynamics of relatively few markers,

which is naturally quite difficult.54,108,138,62,27 In principle, this difficulty could be removed

by reducing the population size to such a degree that only one or zero beneficial mutations

usually arise in each population.107 However, this requires careful tuning of the population

size, in order to make it small enough to minimize multiple mutations but also large enough

to ensure that many replicates acquire a beneficial mutation.

Here, we introduce a twist on the traditional design of marker divergence experiments

that produce dynamics more directly revealing of the underlying DFE. Rather than using

neutral markers, we tracked the frequencies of marked lineages with a fitness advantage

relative to a reference strain. We seeded these marked lineages at low frequency into pop-

ulations of the reference, so that their subsequent dynamics are reflective of the fates of

beneficial mutations with a particular selective advantage. Since the DFE controls the

availability of competing mutations and hence the likelihood of clonal interference, we can

exploit the observed fates of seeded lineages to infer the DFE. Using lineages with different

fitness advantages enabled us to probe different corresponding portions of the DFE. This

approach is particularly suited to infer those aspects of the DFE that are most important in

determining the fates of new beneficial “driver” mutations, e.g. the high-fitness tail, which

is otherwise hard to measure directly. In the process, we also directly measured how clonal

interference alters a key quantity in adaptation: the fixation probability of a beneficial

mutation as a function of its fitness effect.
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2.2 Materials & Methods

2.2.1 Strains

All strains used in this study were derived from the base strain DBY15084, a haploid

S. cerevisiae strain derived from the W303 background with genotype MATa, ade2-1,

CAN1, his3-11 leu2-3, 112, trp1-1, URA3, bar1∆::ADE2, hmlα∆::LEU2. Each experi-

mental population included a resident and a seeded lineage. The resident lineage was

DBY15108, a derivative of DBY15084 in which the fluorescent protein ymCherry was in-

tegrated at the URA3 locus.81 The seeded lineages were descendants of strain DBY15104

isolated from timepoints of an earlier long-term evolution experiment.81 To allow us to track

their frequency using flow cytometry, we amplified a pACT1-ymCitrine pTEF-HISMX6 cas-

sette from plasmid pJHK043 (provided by John H. Koschwanez) and integrated it at the

HIS locus using oligos oGW137 (5’-TTGGTGAGCG CTAGGAGTC-3’) and oGW138 (5’-

TATGAAATGCTTTTCTTGTTGTTCTTACG-3’) provided by Gregg Wildenberg. From

this pool of transformants, we selected strains EFY11-17 based on fitness assays described

below.

2.2.2 Experimental procedures

To obtain seeded lineage strains with a range of fitnesses, we isolated a large number of

evolved clones and assayed their fitnesses as described in Lang et al. 81 Briefly, this protocol

is to mix each strain in roughly equal proportion with a reference strain that bears a

different fluorescent reporter, propagate these mixed populations for 30 generations, and

measure the ratio of the strains at generations 10 and 30 using flow cytometry. Relative

fitness was calculated as s = (1/20) · log(final ratio/initial ratio). From among these clones,
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we chose EFY11-17 to use as seeded lineages and remeasured their fitnesses in 10 replicates.

These additional assays showed that strains EFY12-14 and EFY15-16 had indistinguishable

fitnesses, and so for the purposes of analysis, strains EFY11, EFY12-14, EFY15-16 and

EFY17 were respectively grouped into the fitness classes indicated in Fig. 2.1.

To begin the evolution experiment, we grew up an individual resident clone to saturation

in 3mL of standard growth media (YPD supplemented with 100 µg/mL ampicillin and 25

µg/mL tetracyclin). We transferred 128µL of this culture into each well of a 96 well-plate,

diluted these cultures 210-fold into twelve 96-well plates containing fresh media, allowed

these cultures to grow for 10 generations, and froze them at -80oC in 15% glycerol. Later,

these plates were thawed and propagated for 30 generations (as described below) to re-

acclimate them to this environment. In parallel, we prepared the seeded clones in the

same fashion. We then mixed seeded and resident populations to found a total of 1044

populations in twelve 96-well plates (see Table A.1). These populations were propagated at

30oC in 128µl YPD per well and diluted every 24 hours by a factor of 210 into new plates

containing fresh media. This corresponds to an effective population size Ne ≈ 105.81,130

Each plate contained a set of 9 empty wells as cross-contamination controls. All control

wells remained sterile throughout the experiment except for two accidents involving plate

mixing. This contamination was resolved by restarting from glycerol stocks of an earlier

time point. Transfers were carried out using a Biomek FX pipetting robot.

At approximately 50-generation intervals, seeded lineage frequencies were measured us-

ing flow cytometry. In particular, BD Biosciences Fortessa and LSR-II flow cytometers with

high-throughput plate samplers counted ∼100,000 cells per population for the initial time

point and ∼30,000 cells per population for time points thereafter. Repeated measurement of

populations and blanks indicated that roughly ∼100 cell counts per sample were carry-over

from previous samples. Therefore the uncertainty in frequency at the first time point was
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∼0.1% and ∼0.5% thereafter. These raw data were processed in FlowJo version 9.2. All

processed data are provided in Table A.1.

We also assayed the fitness of 16 additional control populations founded with only the

resident strain. To do so, these populations were thawed from frozen-archive plates, each

was duplicated into 4 replicates, these were propagated for 30 generations to acclimate

them, and then their fitness was assayed as described above.

Note that 386 of the populations were later excluded from analysis, leaving a total

of 658 replicate populations, apportioned among the seven seeded lineages and controls

as described in Table A.1. In 232 of these, frequency dependent selection emerged. We

identified these by first investigating 15 populations in which lineages co-existed at constant

proportion for hundreds of generations. We found that this co-existence was maintained

by frequency dependent selection exclusively in populations having a characteristic pellet

morphology (see Ch. 3), so we excluded from analysis all populations that also had this

morphology. In the other cases, the initial frequency of the seeded lineage was so low that

it could not be precisely determined or extinction due to drift was common. To exclude

these without biasing the statistics of trajectories, we chose a cut-off for the initial frequency

of each seeded strain such that in all replicates in which the initial frequency was above

the cut-off, the seeded lineage rose to at least 5%. All replicates below the cut-off were

excluded.

2.2.3 Simulations

For a given DFE, we simulated lineage trajectories using a forward-time algorithm designed

to mimic the conditions of our experiment. Between each transfer, each cell expanded

clonally for 10 generations at a deterministic exponential growth rate r = r0 + X, where

X is the fitness of the cell relative to the resident ancestor strain. At the transfer step,
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the population was downsampled to Nb = 104 individuals with Poisson sampling noise.

Mutations accumulate during the growth phase, but we assumed that they did not influence

the fitness of the cells until the next transfer cycle. Thus, mutation was approximated by

assuming that each individual has a probability 10Ub of gaining a beneficial mutation at

the end of a transfer step, with additive fitness effects drawn from the underlying DFE. In

order to speed computation, we binned the fitnesses of individual cells into discrete fitness

classes of width ∆s = 0.01% for all simulations except those in Fig. 2.7, which required

information from individual mutations.

Each replicate simulation began at generation t = 0 with a homogeneous seed population

with initial fitness s0 and initial size f0Nb, and a resident population of size (1 − f0)Nb,

with s0 and f0 as measured experimentally. The initial genetic composition of each resident

population was obtained by simulating deterministic growth from a single-cell to 3 × 108

cells, followed by a Poisson dilution down to Nb cells and four transfer cycles as described

above. Simulated trajectories were then obtained by propagating the seeded lineage and

the resident and recording the number of descendants of the seeded lineage at the same

timepoints as the experiment, up to the time required for the fixation or first-peak used in

the inference. Simulations for the rate of adaptation were carried out in a similar manner

for populations consisting only of the resident (without the four transfer cycles prior to

t = 0). A copy of our implementation is available upon request.

2.2.4 DFE parameter estimation

To determine the likelihood of the data for a particular set of DFE parameters, the 650

measured trajectories were partitioned into 13 classes such that the seeded lineages within

each class shared the same initial fitness s0 and differed in their initial frequency f0 at

most 2-4 fold (Table A.1). We classified each trajectory into one of 17 bins of (fpeak, sdown)
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values as described in the text. To estimate the relative probabilities of each of these bins,

we simulated a large number of trajectories for each of the 13 seeded lineage classes and

recorded the fraction of times that each trajectory bin was observed. The total likelihood

of the data for a given set of DFE parameters was then estimated as the product of the

trajectory bin probabilities for each of the 650 measured trajectories.

We determined the most-likely parameters for a particular DFE shape by scanning

across a grid of Ub and s̄ values, which was locally resampled at finer resolutions until the

most-likely parameters could be identified with a reasonable level of confidence. We first

simulated a coarse grid of parameter values with a mean rate of adaptation between 0 and

5% per 100 generations. We confirmed by visual inspection that the likelihood surface

smoothly sloped toward the most-likely point identified in this coarse grid. We drew a

rectangle around this peak and resampled points and adjusted the boundaries of this region

until they satisfied the following criteria:

(1) Any infinitesimal area of the region contained at least one point whose likelihood un-

certainty (due to the finite number of simulated trajectories) was less than 0.5 log-likelihood

units (LLU). Here, infinitesimal areas correspond to 10% increments of Ub and 0.1% incre-

ments of s̄. We estimated the uncertainty in the likelihood using the Wilson confidence

interval14 and employed a minimum of 104 simulated trajectories per parameter value.

(2) Each infinitesimal area on the border of the peak region contained a point with

likelihood at least 10 LLU below the peak and whose uncertainty was less than 0.5 LLU.

Once these criteria were met, the most-likely parameters for the candidate DFE shape

were estimated to be the grid point with the highest likelihood value. We estimated the

confidence regions in Fig. 2.4 by re-fitting the most-likely parameters for 104 bootstrapped

datasets, which we obtained by resampling the observed trajectories with replacement in

such a way that the total number of trajectories in each of the 13 trajectory classes was
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preserved. Fig. 2.4 shows the scatter of parameters that were found to be most-likely for at

least 1% of these bootstrapped data sets.

2.2.5 Statistical tests

We used a standard likelihood ratio test to evaluate whether the most-likely exponential

DFE provided a significantly better fit than the most-likely δ-function DFE. To obtain the

null distribution of the likelihood ratio, we simulated 104 data sets using the most-likely

δ-function DFE and determined the most-likely parameters for each of these simulated

datasets under the exponential and δ-function DFEs as described above. We then estimated

the p value as the fraction of simulated data sets whose likelihood ratio was more extreme

than the value obtained from the measured trajectories. A similar procedure was used to

compare the exponential and truncated exponential DFEs, with the exponential DFE now

taking the role of the null hypothesis.

To obtain an absolute measure of goodness-of-fit for the exponential and δ-function

DFEs, we used the estimated maximum likelihood as a test statistic and generated 104

simulated datasets given the most-likely values of Ub and s̄. We then estimated the p-value

as the fraction of simulated datasets whose estimated maximum likelihood was lower than

that of the actual data.

The significance of the slowdown in adaptation rate was assessed with a non-parametric

bootstrap procedure. We generated 104 bootstrapped datasets obtained by resampling the

16 populations with replacement, and for each of these, further resampling from the four

fitness measurements at each timepoint. The null distribution for the change in adaptation

rate, ∆v, was obtained by calculating the change in adaptation rate in each bootstrapped

dataset and subtracting the observed value from the original data. We then estimated the

p-value as fraction of bootstrapped datasets in which |∆v| was greater than that of the
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actual data.

2.3 Results

2.3.1 Tracking the fates of seeded lineages

Any beneficial mutation creates a new lineage that is more fit than the genetic background

in which it arose. To systematically study the fates of such lineages, we prepared a set

of fluorescently labeled haploid budding yeast strains (the seeded lineages) with measured

fitness advantages, s0, of approximately 3, 4, 5 and 7% relative to a closely related but

separately labeled reference strain. We founded 658 replicate populations of the reference

(the resident), and introduced one of the seeded lineages at low frequency into each replicate

population. We propagated these populations asexually in batch culture for hundreds of

generations at an effective population size of Ne ≈ 105, measuring the frequency of the

seeded lineage in each population approximately every 50 generations (see Methods). This

allowed us to track the fate of the seeded lineages over time, as illustrated in Fig. 2.1.

Each seeded lineage was introduced at an initial frequency f0 large enough that genetic

drift is expected to be weak relative to natural selection (i.e. f0 ≫ 1
Ns). In the absence

of additional mutations, this implies that the frequency f(t) of each seeded lineage should

increase deterministically according to the logistic equation, f(t) = f0est

1+f0(est−1) . This ex-

pectation is indicated by the dashed curves in Fig. 2.1. As is apparent from the figure,

most seeded lineages initially conformed to this expectation (the exceptions are lineages

whose initial frequencies were only several-fold greater than 1
Ns , which is low enough that

genetic drift could partially reduce their initial rate of increase). Subsequently, many lin-

eages diverged into a variety of qualitatively distinct fates. Since both genetic drift and

measurement errors are expected to be small relative to this divergence (see Methods), the
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variation in the fates of seeded lineages indicates that their relative fitnesses were modified

by new beneficial mutations arising during the experiment.

2.3.2 Fates of seeded lineages reflect supply of competing beneficial

mutations

The trajectory of each seeded lineage provides information about the beneficial mutations

that did (or did not) arise within the competing resident population. Consider for example

the case where a seeded lineage of fitness s0 peaks and then declines in frequency. This

reflects a clonal interference event, where one or more new beneficial mutations in the

resident population create a competing lineage with fitness greater than s0 (see Fig. 2.2). By

considering the range of outcomes in replicate populations, we can estimate the probability

of these events (Fig. 2.3). A higher probability of clonal interference implies a larger supply

of beneficial mutations that can generate successful competing lineages.

Comparing the fates of seeded lineages of different fitnesses provides additional insight

into the mutations responsible for clonal interference. For example, the seeded lineage with

fitness advantage s0 = 7% always swept to fixation without any detectable deviation from

the expectation in the absence of interference. In contrast, the lineage with s0 = 5% swept

in 84% of replicates. Together, these two results suggest that clonal interference in the s0 =

5% case was primarily due to beneficial mutations in the resident that created competing

lineages with fitness advantages between 5 and 7 percent. Extending this logic, comparing

the fates of seeded lineages with s0 = 5, 4, and 3 percent provides information about the

probabilities that beneficial mutations create competing lineages of fitness between 4 and 5

percent and between 3 and 4 percent.

While this intuition is straightforward, quantitative inference of the DFE requires us

to connect the rates of individual mutations with the fitnesses of competing lineages. This
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Figure 2.1: Trajectories of seeded lineages. Each line represents the frequency over time
of a marked lineage with fitness advantage s0 seeded into a replicate resident population.
Colors correspond to the initial frequency f0 of the seeded lineage according to the legend
at right. Time is measured in generations, with t = 0 defined as the time at which each
trajectory reached frequency 0.05. The dashed curves show the expected trajectories in
the absence of new beneficial mutations (i.e. without clonal interference). (Note that the
seeded lineages for s0 ≈ 4% and 5% consisted of multiple strains; see Methods).
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Figure 2.2: The fates of seeded lineages. We classified the trajectory of each seeded lineage
according to whether it increased monotonically to fixation (a selective sweep, shown left)
or peaked and subsequently declined in frequency (clonal interference, shown right). Each
clonal interference event implies that the resident adapted fast enough to overtake the seeded
lineage in fitness. These cases were further classified by the seeded lineage’s peak frequency,
fpeak, and relative fitness after this peak, sdown, as indicated in the schematic at right.

is complicated because competing lineages may often contain multiple beneficial “driver”

mutations. In addition, beneficial mutations may also arise in seeded lineages, despite their

initially much smaller population sizes. To fully account for these effects, we now introduce

a computational method for inferring the DFE.

2.3.3 DFE inferred from seeded lineage dynamics

We implemented an approximate likelihood method which uses information from the shapes

of the trajectories of seeded lineages to infer the DFE of beneficial mutations. Any particular

trajectory only carries information about the beneficial mutations that rose to significant

frequency in that population (i.e. the “contending” mutations; Rozen et al. 113), but by

modeling the trajectories of many populations together, we can learn about the overall dis-

tribution of possible beneficial mutations for the strains in our experiment. In order to make

this inference tractable, we limited ourselves to single-parameter DFE shapes characterized
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Figure 2.3: The fates of seeded lineages as a function of their fitness. We show the
fraction of replicate populations in which the seeded lineage had the indicated fate.

by an average fitness effect s̄ and beneficial mutation rate Ub. For concreteness, we consid-

ered three canonical distributions commonly used in the literature: an exponential DFE,

ρexp(s) =
1
s̄e

−s/s̄, a uniform DFE ρunif(s) = Heaviside(2s̄ − s)/(2s̄), and a δ-function DFE

where all beneficial mutations have the same fitness effect, ρδ(s) = δ(s− s̄). We explain

the significance of these choices in the Discussion.

To compute the likelihood of particular DFE parameters, we ran forward-time simula-

tions of the experiment and estimated the likelihood as the fraction of replicate simulations

that matched the data (see Appendix). In principle, we could use the complete trajectory

of each seeded lineage for this comparison, identifying a match between simulations and

data whenever the two were identical. However, in practice this was not computationally

tractable. Instead, we focused on two features of the dynamics: the first peak frequency,

fpeak, of each seeded lineage (binned into quartiles, including fixed lineages) and the rate

at which the seeded lineage declined in frequency following this peak, sdown (binned into
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2% intervals). These are illustrated in Fig. 2.2. We chose to focus on these two quantities

because we expect them to be particularly sensitive to the DFE: fpeak indicates how quickly

a competing lineage arose in the resident population, while sdown measures how much the

relative fitness of the resident population increased in this time. In addition, this focus on

early-time dynamics ensures that most relevant mutations occur in the resident (due to its

initially much larger population size), minimizing the effects of potential differences in the

DFEs of the seeded genotypes.

For the three considered DFE shapes, we identified the most-likely parameters Ub and s̄

by scanning a grid of candidate values. These parameters are shown in Fig. 2.4, along with

confidence bounds estimated by bootstrapping (see Appendix). For each of these most-

likely parameters, we show simulations of the s0 = 3% seeded lineage trajectories in Fig. 2.5

and for the s0 = 4, 5 and 7% lineages in Figs. A.1-3. Using a likelihood ratio test, we found

that the exponential DFE provided a significantly better fit to the data than either the

δ-function (p < 10−4) or uniform distribution (p < 10−4) and that the uniform provided a

better fit than the δ (p < 10−4).

Since the seeded lineage with s0 = 7.3% always swept to fixation, indicating that larger-

effect mutations must be rare, we checked whether truncating the high fitness end of the

exponential DFE would improve its fit to the data. To do so, we considered an exponential

DFE truncated at 7.3% and performed the same inference and statistical tests as above. We

found that this truncated exponential provided a better fit to the data, but not significantly

so (p > 0.08, likelihood ratio test). We also checked whether truncating the low-fitness end of

the exponential would affect its fit to the data. We varied this truncation and found that, for

the inferred exponential DFE parameters, discounting mutations with fitness effects below

2.1% improved these parameters’ fit to the data, but only marginally so. This indicates

that the seeded lineages were not strongly affected by mutations with fitness effects below
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∼ 2%.

2.3.4 Measurements of adaptation rate corroborate DFE inference

In addition to determining the dynamics of seeded lineages, the DFE determines the rate

of adaptation. Thus to test our inferences, we measured the changes in fitness over time

of 16 control populations that consisted of the resident strain alone. We compared the

average fitness of the control populations with the predictions of the most-likely exponential,

uniform and δ-function DFEs. As seen in Fig. 2.6, the inferred exponential is fairly accurate

in predicting these data, whereas the uniform and δ-function are less so.

Throughout our analysis, we have implicitly assumed that the DFE remained the same
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across all genotypes in the experiment, which implies that the fitnesses of populations should

increase linearly on average after some initial transient. In contrast, the rate of adaptation

slowed after generation 380 (p < 3 · 10−3, see Appendix), which is reminiscent of declines

in adaptation rate commonly observed in other evolution experiments36. Fortunately, we

based our DFE inference on the early features of seeded lineage dynamics, most of which

transpired prior to this time. Thus the change in adaptation rate is not inconsistent with

our method.

2.4 Discussion

Interest in the DFE stems from a desire to know what beneficial mutations are available

and which of these drive adaptation. In asexual populations, the DFE also determines the
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distribution of competing mutations and the frequency of clonal interference. Here, we have

described a simple experiment which exploits this connection in order to infer the DFE in

experimental populations of S. cerevisiae. By introducing lineages with different fitnesses

and tracking their subsequent dynamics, we inferred the DFE from the statistics of observed

interference events. In the process, we directly observed how initial fitness advantages and

clonal interference jointly influence the fixation or loss of adaptive lineages.

Previous experimental work has analyzed several other cases where an introduced lin-

eage is outcompeted by a less-fit resident population.43,131 Unlike our experiment, these

earlier studies focus on the fates of a few key mutations (e.g., antibiotic resistance or micro-

bial “cheaters”) without attempting to infer the underlying DFE. Nevertheless, our results

complement this earlier work by showing the transition between fitness effects that are

susceptible to clonal interference and those that decisively sweep to fixation, which has

previously been studied theoretically.116,102,49 In our system, this transition occurs when

the fitness of the seeded lineage is about 5 percent, which represents a critical effect size re-

quired for a mutation to drive adaptation. Of course, in natural populations some adaptive

variants may arise in populations with substantial standing fitness variation, rather than

the homogeneous resident populations employed here. In this case, the transition between

mutations that sweep and those that experience interference is determined both by the DFE

and by the distribution of fitnesses in the resident population. Further work is needed to

address this situation.

Our computational inference method allowed us to distinguish between three represen-

tative DFE shapes: exponential, uniform, and δ-function (in which all mutations have the

same effect). These represent idealized approximations to the actual DFE, and it is likely

that a larger number of replicates or more sophisticated computational techniques could

produce other DFE shapes with a significantly better fit. Yet one cannot continue this
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process indefinitely without reaching a point where further determination of the fine-scale

DFE becomes irrelevant for any particular application. In the end, certain features of the

DFE matter for predicting certain aspects of the evolutionary process, and the required

level of resolution is ultimately determined by the aspect of adaptation one wishes to study.

Our present experiment, which focuses on the fates of advantageous mutants, provides a

concrete illustration of this principle. Previous work has suggested that the dynamics of

adaptation can be summarized by a single characteristic fitness effect, with a magnitude

that depends on the actual DFE and the level of clonal interference within the popula-

tion.54,32,49 By rejecting the δ-function and uniform DFEs in favor of the exponential, we

have shown that this assumption breaks down when one considers more detailed features

of the lineage trajectories.

Given these caveats, the DFE that we inferred is worth pondering. We estimated an

exponential distribution with mean s̄ = 0.85% and total beneficial mutation rate Ub =

1.0 · 10−4. Our modeling indicated that of these mutations, only those with effects greater

than 2% affected the fates of seeded lineages, and that these mutations are predicted to arise

at a rate of order 10−5 per individual per generation. If one assumes a per-genome point

mutation rate of roughly 4·10−3 95, this would imply that of order 1 in 1000 mutations confer

a fitness advantage of two percent or more. This is consistent with past work in a related

system33, and is also similar to DFEs reported for bacteria adapting to rich laboratory

media.107,69,134 In such permissive environments, other studies in yeast that have identified

specific adaptive mutations report a mix of loss-of-function versus other kinds of beneficial

mutations.67,133,64,83,80 If a large fraction of beneficial mutations in our system are loss

of function, and if roughly ten percent of spontaneous mutations in a gene cause loss of

function,82 our results would suggest that about 1 in 100 genes are beneficial to disrupt.

This is at least qualitatively consistent with direct measurements using the yeast deletion
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Figure 2.7: A screen for beneficial mutations. We simulated the evolutionary dynamics
for a range of seeded lineages, and then simulated picking a single clone at random from
the resident population immediately after a clonal interference event. The bars indicate the
average fitness of this clone and its largest effect mutation (±1 s.d., scale at left). We also
show the fraction of replicate populations in our simulations in which clonal interference
occurs (scale at right). The simulations assumed the most-likely exponential DFE inferred
in the study.

collection.119,10 Together, these results illustrate how inferences from lineage dynamics can

combine with other lines of evidence to help build a more complete picture of adaptation.

Finally, we note that our experimental design has a potential practical application as a

screen for beneficial mutations. Whenever a seeded lineage with fitness advantage s0 expe-

riences clonal interference, the resident must contain a mutant lineage at appreciable fre-

quency with fitness greater than s0. Thus, by picking clones from the resident immediately

after a clonal interference event, we should in principle be able to isolate rare large-effect

beneficial mutations. This is similar in spirit to earlier studies which used the dynamics of

neutral markers to screen for adaptive clones (e.g. Rozen et al. 113). However, because our

seeded lineages are more fit than the resident, we can screen for beneficial mutations with

particularly large effects. Further, since the resident must quickly generate a competing
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lineage, our approach is more likely to find clones with fewer mutations of larger effect

rather than many of smaller effect, as well as limit the number of non-beneficial hitchhik-

ing mutations. To illustrate this idea, we simulated seeded lineage trajectories and then

simulated picking a clone from the resident population after observed clonal interference

events. In Fig. 2.7, we show the average fitness of each of these simulated clones and of the

largest-effect mutation in each clone. As is apparent from the figure, it should be feasible

to use this approach with a seeded lineage of the appropriate fitness to isolate large-effect

beneficial mutations with specific fitness effects.
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3
Crowded Growth Leads to the Spontaneous

Evolution of Semi-Stable Coexistence

Identifying the mechanisms that create and maintain biodiversity is a central challenge in

biology. Stable diversification of microbial populations often requires the evolution of differ-

ences in resource utilization. Alternatively, coexistence can be maintained by specialization

to exploit spatial heterogeneity in the environment. Here, we report spontaneous diver-

sification maintained by a related but distinct mechanism: crowding avoidance. During

experimental evolution of laboratory Saccharomyces cerevisiae populations, we observed

the repeated appearance of “adherent” lineages able to grow as a dispersed film, in con-

trast to their “crowded bottom-dweller” ancestors. These two types stably coexist because

dispersal reduces interference competition for nutrients among kin, at the cost of a slower

maximum growth rate. This tradeoff causes the frequencies of the two types to oscillate

around an equilibrium over the course of repeated cycles of growth, crowding, and disper-

sal. However, further coevolution of the adherent and bottom-dweller types can perturb

and eventually destroy their coexistence over longer timescales. We introduce a simple

mathematical model of this “semi-stable” coexistence, which explains the interplay between
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ecological and evolutionary dynamics. Since crowded growth generally limits nutrient ac-

cess in biofilms, the mechanism we report here may be broadly important in maintaining

diversity in these natural environments.

3.1 Introduction

The spontaneous evolution of stably coexisting lineages has been documented in several lab-

oratory microbial evolution experiments. Such coexistence is typically maintained by some

form of resource partitioning, either through specialization to different nutrients in the

environment39,12,22 or cross-feeding.56,114,89,112,126,85 However, natural environments often

harbor a greater diversity of microorganisms than nutrients, suggesting that many species

stably coexist while competing for the same resources.61 Understanding how this diversity

is maintained despite the principle of competitive exclusion has long been an important

challenge in biology.52,50,123,117 An extensive body of theoretical work has sought to ad-

dress this challenge by proposing a number of potential mechanisms that could maintain

coexistence among lineages engaged only in exploitive competition (i.e., consumption of

shared resources).19,3

Some of these mechanisms have been found to evolve spontaneously in experimental

systems.97,68 For example, coexistence can be maintained by cross-feeding of secondary

metabolites in homogeneous environments containing a single limiting nutrient.56 How-

ever, most experimental examples of the spontaneous evolution of coexistence on the same

resources have involved spatially heterogeneous environments.84,109,110 For example, lab-

oratory Pseudomonas fluorescens populations diversify from a planktonic ancestor that

occupies the liquid phase of statically incubated cultures into a second type that forms a

mat at the broth surface.110 This coexistence is stabilized by a tradeoff between the cost
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of mat formation and its benefits in conferring privileged access to oxygen.77 Coexistence

based only on temporal heterogeneity is also possible122 and has been investigated experi-

mentally.126 An evolved trade-off between nutritional competence and stress resistance has

been found to maintain coexistence in the gut of gnotobiotic mice.26

Theory has suggested another mechanism of coexistence based on crowding avoidance:

If access to resources is density-dependent and competing lineages positively assort, then

competition within a lineage will be more intense than competition between lineages.127,25

Here, we describe the first experimental observation of spontaneous diversification due to

this crowding avoidance effect. As in earlier studies,110 coexistence depends on spatial

structure and a tradeoff between the ability to grow and maintain access to nutrients.

However, nutrient access varies here according to cells’ local density rather than the spatial

heterogeneity of nutrients in the environment. This type of interference competition is

widespread in microbial populations, particularly in biofilms.73,136 We introduce a simple

mathematical model of this mechanism, which explains our observations and shows that

this coexistence is semistable: It can be changed or destroyed by evolution on longer time

scales.

3.2 Results

3.2.1 Spontaneous Evolution of Stable Coexistence

In earlier laboratory evolution experiments,38,81 we tracked the frequencies of fluorescently

marked lineages over ∼1,000 generations in ∼1,000 haploid, asexual budding yeast pop-

ulations propagated by serial passaging (with daily 1:210 dilutions) in unshaken 96-well

microplates. In most cases, natural selection eliminated diversity over time as these popula-

tions adapted, driving the marked lineage to either fixation or extinction. In 13 populations,
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Figure 3.1: Coexistence due to negative frequency-dependent fitness. (A) Frequency of a
fluorescently marked lineage over time. Colors represent independently evolved populations;
each line is a replicate of the corresponding population in which the initial frequency of the
marked lineage was perturbed to a given value. (B) Fitness of the marked strain as a
function of its frequency, as calculated from the data in A. (C) Fluorescent image of one
population shows that the marked lineage is located on the well walls, whereas the B type
is located at the well bottom. (D) Microtiter wells containing isolated strains of the two
types.

however, we observed marked lineages that remained at constant intermediate frequencies

for hundreds of generations.

To test the stability of this coexistence, we used sorting cytometry to perturb the fre-

quency of each marked lineage. Specifically, we varied the frequency of the marked lineage

from 0 to 1 across 24 replicates generated from each of the original 13 populations. In many

cases, the marked lineages returned to their original frequencies (Fig. 3.1A and Figs. B.1

and B.2), indicating that coexistence is stably maintained by negative frequency-dependent

selection in these populations. However, lineages in different populations have different

equilibrium frequencies and fitness-frequency relationships (Fig. 3.1B and Fig. B.1).
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3.2.2 Identification of Adherent and Bottom-Dweller Types

Visual inspection of these lines revealed that all populations exhibiting stable coexistence

also display a “dispersed” pellet morphology, with some cells able to grow across a greater

range of the well surface (Fig. 3.1C). When we isolate clones from these populations, we

find two types: adherent (A) types that can grow on the well walls and bottom-dweller (B)

types that grow in a compact pellet at the well bottom (Fig. 3.1D). Yeasts are nonmotile,

and these populations are grown in unshaken wells of media. Hence, adherence enables cells

to colonize the walls only when they are diluted into a fresh well of media and adhere to the

polystyrene well walls during initial sedimentation at the start of a new cycle of growth. In

other words, unlike B cells, A cells tend not to tumble down to the bottom of the well once

they land on a sloped surface, as seen in Movies B.1, B.2, B.3.

Competition assays revealed that the relative fitness of any pair of A and B clones

is negative frequency-dependent, although different pairs have different fitness-frequency

relationships (Fig. B.1). We found that the convergence of each marked lineage to its

equilibrium frequency (Fig. 3.1A and Fig. B.1) is recapitulated by the pair of A and B

clones isolated from the same population (Fig. B.1). We isolated clones from 59 other

populations that had evolved dispersed morphology during the same experiment.38 All of

these populations contained A types, and we found that they could arise from any of the

marked lineages (i.e., founding genotypes).

3.2.3 Role of Spatial Structure

The observation that cocultured A and B strains tend to occupy different regions of a

microtiter well (Fig. 3.1C) suggests that their coexistence depends on spatial structure. In

support of this view, we find that the frequency-dependent selection disappears and the A
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Figure 3.2: Adherence phenocopied using antifungal drugs. The B ancestral strain
(DBY15108) was grown at a range of drug concentrations in round-bottom wells. After
saturation, cells were resuspended by shaking, allowed to settle, and imaged (Materials and
Methods).

and B types no longer coexist when microtiter plates are continuously shaken during growth

or have a different well geometry (flat rather than round bottoms; Fig.B.1).

3.2.4 Genetic Basis of Adherence

Mating of A clones to their ancestors revealed that the A phenotype is a recessive Mendelian

trait that segregates 2:2. To identify these mutations, we performed bulk segregant anal-

ysis of three independently evolved A clones,118,13 and found a single mutation linked to

the phenotype in each one (enzyme ERG3 and transcription factors UPC2 and HAP1, re-

spectively). These genes are all related to the ergosterol biosynthesis pathway, and the

nature of the mutations (Dataset B.1) led us to hypothesize that they reduce production

of ergosterol. To test this hypothesis, we deleted ERG3 in the ancestral background, and

the resulting strain is an A type that stably coexists with its B ancestor. We also found

that adherence can be phenocopied by growing the ancestor at sublethal concentrations

of azole antifungal drugs (Fig. 3.2), which inhibit another part of the ergosterol pathway

(ERG11). Together, these data show that A lineages typically arise by single mutations

that disrupt the ergosterol pathway and that such mutations alone are sufficient to give rise
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Figure 3.3: Effect of crowding on the growth of A and B strains. A schematic illustration
of growth during one cycle is shown.

to coexistence.

3.2.5 Dynamics of A-Type vs. B-Type Growth

When cells are inoculated into a well at the beginning of each growth cycle, B cells accumu-

late at the bottom, whereas A cells also colonize the walls. We therefore hypothesized that

adherence allows cells to escape crowding at the well bottom, dispersing them over a larger

surface area, and therefore conferring a growth advantage during the high-density phase

of each cycle of dilution and growth (illustrated schematically in Fig. 3.3). Coexistence

then requires the A type to grow more slowly than the B type at low densities, as seen in

Fig. 3.4. Accordingly, deleting ERG3 leads to a growth defect at low densities (Dataset

B.1) and each A clone is less fit than the B clone isolated from the same population when

grown in shaken or flat-bottom microplates (Fig. B.1).

The mechanism of coexistence proposed here implies a biphasic approach to the equi-

librium frequency: The B type increases in frequency at low densities early in each cycle,

but the A type later gains an advantage by better maintaining its growth rate as density

increases. To test this hypothesis, we measured the relative frequencies of cocultured A and
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B types over the course of two growth cycles (Fig. 3.4A and Fig. B.3). As expected, the

frequencies of A and B types oscillate, with the B strain favored at the beginning of each

cycle and the A type favored at the end. These dynamics are also qualitatively consistent

with the growth curves of A and B strains cultured in isolation (Fig. 3.4B and Fig. B.4),

which show that the B type grows faster at low density but slower at high densities.

3.2.6 Model of Coexistence

We can describe these dynamics using a simple mathematical model. At low density, both

A and B types grow exponentially, at rates rA and rB, respectively. However, the growth

rate of the B type declines at high densities due to crowding and burial. We model this

decline as a transition to linear growth at rate rBnB, which reflects the continued growth

of only a surface layer of nB bottom-dwelling cells. In contrast, the A type continues to

grow exponentially, because it is dispersed over a larger surface area. This mechanism does

not require any differences in resource utilization, and accordingly, we find that the relative

fitness of A and B types in shaken or flat-bottom plates is frequency-independent. For

simplicity, we thus approximate the carrying capacity, K, of all strains to be the same.

Together, this implies that during each daily growth cycle, the dynamics of the A and B

types are given by

dA

dt
= ArA ·Θ

(
1− A+B

K

)
dB

dt
= BrB ·

[
1 +

B

nB

]−1

Θ

(
1− A+B

K

)
(3.1)

Here, A and B represent the total number of A and B cells, and Θ is the Heaviside

function (which states that all growth stops when the total population size reaches K).
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Figure 3.4: Population dynamics within growth cycles. (A) Frequency of the A type
over the course of two growth cycles. Eighteen representative populations starting with
different initial frequencies are shown (of 180 total populations; complete data are provided
in Fig. B.3). (B) Ratio of the densities of the A type relative to the B type when each
strain is grown in isolation (absolute density measurements are provided in Fig. B.4). (C)
Net fitness of the A type across growth cycles in all populations as a function of starting
frequency, calculated from the data in A and Fig. B.3. Dashed lines are the best-fit model
prediction.
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After each growth cycle, the cells are uniformly diluted into a fresh well (reducing both A

and B by a factor of 210) and the cycle begins anew.

This model predicts that the A type declines in frequency during the initial phase of

the growth cycle when the number of B cells is much less than nB, because the B type

has a faster maximum growth rate (rB > rA). If the A type is at higher frequency at the

start of a growth cycle, this phase is prolonged (driving the A frequency down), because

there are then fewer B cells initially, and hence they take longer to approach nB. On the

other hand, the A type increases in frequency later in the growth cycle, when the growth of

the B type is limited by crowding. If the B type starts at high frequency, it more quickly

approaches nB and begins to feel these crowding effects, prolonging this second phase of

the growth cycle (driving the A frequency up). Our mathematical model of these effects

accurately reproduces the resulting biphasic convergence toward the equilibrium frequency

(Fig. 3.4A) and the resulting fitness-frequency relationship (Fig. 3.4C). It also reproduces

the qualitative differences in the growth curves of the two types when grown independently

(Fig. 3.4B). To obtain these predictions, we set K = 9 · 106 cells per well and rB = ln(2)/80

min−1 based on independent growth curve data (Fig. 3.4B and Fig. B.4), and fit the free

parameters rA and nB, finding rA = ln(2)/89 min−1 and nB = 0.28K. This inferred nB

corresponds to an ∼ 10% slowdown of the B-type growth at 3 · 105 cells per well. Note that

in Fig. 3.4B, the model overestimates the ratio of A- and B-type densities 12-20 h after

inoculation; this transient discrepancy arises because we neglect the details of precisely how

growth slows near saturation (Fig. B.4). These details can be incorporated into the model

with additional parameters but are not necessary for accurately predicting the dynamics of

the two types in co-culture.
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3.2.7 Interplay Between Ecological and Evolutionary Dynamics

Although the two types occupy different spatial niches, they compete for shared nutrients.

This competition implies that interplay between evolutionary and ecological factors will

affect the long-term stability of coexistence. For example, both rA and rB can change over

evolutionary time as the A and B types adapt. Our model predicts quantitatively how the

equilibrium frequency of the two strains depends on the ratio of these growth rates, rA/rB

(dashed curve in Fig. 3.5). Here, we use relative fitness in flat-bottom wells as a proxy for

rA/rB (details are provided in Materials and Methods and Fig. B.5), because flat wells have

vertical walls to which A cells hardly adhere, so that both types experience the same degree

of crowding. Note this model prediction requires no additional fitting, because it depends

only on the value of nB/K estimated from Fig. 3.4. In principle, nB and K could also

evolve, and we could use our model to predict how this evolution would affect coexistence.

However, we treat these parameters as constant because they are determined primarily by

the fixed geometry of the microplate wells and the total nutrients in the media.

To test our predictions for how changes in rA and rB affect coexistence, we considered all

possible pairwise combinations of 25 A strains and four B strains chosen to span a large range

of fitnesses (Dataset B.1). Because we identified no A strains with fitness defects relative

to B types greater than 10%, we also engineered a cycloheximide-resistant B strain and

titrated the cycloheximide concentration in the media to decrease the relative growth rate of

the A types artificially, and thus vary rA/rB over a broader range. For these competitions,

we chose strains whose carrying capacities were unaffected by the cycloheximide for most

of its concentration range (up to 100 nM). We found that our model accurately predicts

how the equilibrium frequency depends on rA/rB (Fig. 3.5). Consistent with the model

prediction, Fig. 3.5 shows that the B type will be driven extinct if the growth rate of the
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Figure 3.5: Semistability of the coexistence. We show the equilibrium frequency of A
and B types as a function of their relative fitness in flat wells, which is a proxy for their
ratio of growth rates, rA/rB. Each point represents the competition between one pair of A
and B strains. Orange points are all pairwise combinations between 25 A strains and four
B strains. The orange triangle is the constructed erg3∆ A strain vs. one of the B strains.
Green points are competitions between four A strains and a cycloheximide-resistant B strain
at a range of cycloheximide concentrations. Circled points correspond to two A strains that
attained consistently higher than predicted equilibria, given their fitness. The dashed line
is the model prediction; note this prediction involves no fitting.
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Figure 3.6: Dependence of coexistence on fitness. (A) All pairwise competitions between
a set of A strains (color-coded) and B strains of varied fitness. These fitness measurements
were included in an earlier publication.38 (B) Similar data for A strains (strain numbers
are indicated in the figure) vs. EFY64. Dashed curves show the model fit obtained by
choosing the indicated values of rB = ln(2)/τB. EFY5 is the A strain in Fig. 3.4; hence, its
rA = ln(2)/89 min−1. The rA values of the other A strains are determined by their fitness
relative to strain EFY5.

A type, rA, evolves to match or exceed the growth rate of the B type, rB. Conversely, the

B type will drive the A type extinct if it achieves a growth rate [1− nB ln(d)/K]−1 ≈ 25%

higher (here, d is the dilution factor).122

Furthermore, these data imply that adaptation within the subpopulations of coexisting

A and B types tends to increase their equilibrium frequency vs. one another. To test

this hypothesis, we confirmed that the fitness of A and B types, when competed against

reference strains of the same type, positively correlates with their equilibrium frequency

vs. strains of the opposite type (Fig. 3.6). We also conducted competition assays between

combinations of two A strains and one B strain, and found that the A type with higher

equilibrium frequency eliminates the one with lower equilibrium (Fig. 3.7 and Fig. B.6).
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nB and K inferred from Fig. 3.4, and growth rates inferred from the equilibrium frequencies
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3.2.8 Evolution of Filamentous Type that Disrupts Coexistence

During prior evolution experiments,38,81 another distinct pellet morphology evolved in ad-

dition to the adherent A type, which we term filamentous (F) type (Fig. 3.8A). F-type

pellets weakly stick together like a delicate fabric when aspirated from the bottom of a

well or resuspended by shaking, and the strains appear to floculate in suspension. Sev-

eral clones were isolated from two F-type populations (BYB1-B1 and BYB1-H6 in Lang

et al. 81) and mixed in roughly-equal proportion with populations containing coexisting A,

B types (two populations from each round-well panel of Figs. B.1, B.2 at ∼130 genera-

tions). One of the F clones drove both A and B types extinct in all 26 populations within

40 generations. Another clone did so more slowly, as shown in (Fig. 3.8B). Preliminary

data (not shown) indicate that F-type fitness versus the other types is positive frequency

dependent. Fewer than half of spores inherited the phenotype in crosses with the ancestor,

indicating multiple causal mutations, which is consistent with the F-type’s relatively rare

occurrence across populations: roughly 1 in 1000, compared to roughly 20% for the A phe-
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Figure 3.8: Identification of filamentous F type. (A) Pellet morphology of the F type
compared to adherent and bottom-dwelling types. (B) Dynamics of all three types co-
cultured in two independent populations (color-coded red, black).

notype. The F-type’s ecological properties and their basis remain largely unknown, but its

lattice-like pellet morphology and fitness suggest perhaps this phenotype is another means

of crowding-avoidance.

3.3 Discussion

The spontaneous evolution of stable coexistence between competing lineages generally in-

volves some type of tradeoff between traits affecting fitness.117 A number of specific cases

have been characterized in laboratory evolution experiments. For example, the growth of

experimental P. fluorescens populations near the surface of a static broth creates an oxygen

gradient, and coexistence arises between an evolved type able to colonize the oxygen-rich

broth surface and an ancestral type able to grow faster but confined to oxygen-poor regions

below.110,77

Coexistence between A and B types in our system arises due to a conceptually similar
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tradeoff between the ability to grow vs. maintain access to nutrients. However, in our

system, the A type achieves better access through crowding avoidance (i.e., reducing its

density), rather than by occupying a privileged position near a nutrient source. Because

growing nonmotile cells tend to become surrounded by their progeny, density-dependent

interference competition for nutrients is typically more intense among kin. Hence, the A

and B types meet the classic condition for competitive coexistence: Intraspecific competition

within types is greater than the interspecific competition between them.59 The two types

exhibit different strategies for coping with this common form of intraspecific competition:

The B type produces progeny as fast as possible but faces crowding sooner and more severely,

whereas the A type mitigates crowding to grow at a slower but more sustainable rate.

Here, crowding avoidance improves access to a fixed pool of nutrients. This effect is

closely related to other ecological mechanisms, such as dispersal, which, instead, typically

involve gaining access to new resources. For example, the growth of microbial colonies in

nutrient agar favors faster spreading away from regions of existing growth where nutrients

are already depleted.132,75,51 If cells are nonmotile, then spreading is achieved by growth

itself, and there is essentially a single selection pressure for faster growth.75 However, motile

cells may face a trade-off between growth and motility, which can sustain coexistence.93

Thus, crowding avoidance and dispersal can lead to similar selection pressures and ecological

consequences.

One might expect the link between adherence and slower growth to represent a funda-

mental tradeoff if adherence required production of proteins (e.g., adhesins) or secretion of

an extracellular matrix. However, we have no evidence that such is the case in our system,

and overexpression of adhesins is typically associated with flocculation,129 which we do not

observe. Instead, the association between adherence and slower growth may be incidental

to mutations disrupting the ergosterol pathway. Previous studies have shown that such
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mutations reduce growth rate41 and that deletions of ERG3 and ERG4 can increase and

decrease adherence, respectively.128 Most likely, A mutants are more hydrophobic, because

adherence to polystyrene is itself a measure of cell-surface hydrophobicity.74,53 Consistent

with this speculation, pellet morphologies of A cells become indistinguishable from B cells in

the presence of detergent (<0.05% Tween-20, a nontoxic concentration). However, the pre-

cise link between the ergosterol pathway and adherence is unknown (although this pathway

is targeted by most antifungal drugs and adherence is a virulence factor).

Together, our findings show how an apparent tradeoff between faster growth and crowd-

ing avoidance evolves repeatedly and fosters ecologically stable coexistence that can be

shifted and even eliminated by evolution on longer time scales. Here, this “semistability”

is explained by a simple mathematical model that accurately predicts the full range of pro-

portions at which the A and B types coexist as a function of their growth rate and related

parameters. Semistable coexistence has also been studied in the context of cross-feeding.85

Our findings suggest the following recurring evolutionary scenario. First, A types evolve

from B types by loss-of-function mutations disrupting ergosterol biosynthesis. The result-

ing A types stably coexist with their B-type progenitors because these mutations incur

a pleiotropic growth defect or occur on unfit genetic backgrounds. Subsequently, if both

types adapt at the same rate, rA/rB will be constant and the equilibrium frequency will

not change. However, due to the inherent randomness in evolution, and possibly due to

differences in the available mutational spectrum (e.g., the potential for compensatory adap-

tation in the A lineages), rA and rB will typically evolve at different rates. Thus, evolution

can cause the equilibrium frequency to change over time, and potentially even destroy co-

existence. These effects could explain our observations in previous work of populations

sometimes gaining and then losing a dispersed pellet morphology.81 Furthermore, as these

changes occur, additional A mutants can arise in the adapting B population. If the B type
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has been adapting more rapidly than the A type, these new mutants are likely to be able

to displace the original A type (a similar phenomenon of repeated recolonization of an es-

tablished niche is observed in experimental Burkholderia biofilms125). These expectations

are supported by competition assays between two A strains and one B strain, which show

that A strains with higher equilibrium frequencies (relative to the B strain) displace those

A strains with lower equilibria (Fig. 3.7 and Fig. B.6).

Our results and mathematical model highlight a simple mechanism for semistable diver-

sification via crowding avoidance, which arises repeatedly even in a very simple laboratory

system. Although the precise form of frequency-dependent selection we observe here is

specific to the details of our system, this general mechanism of coexistence is likely to be

broadly relevant. For example, microbial biofilms are usually characterized by periodic

growth, competition, and dispersal. Crowding and adherence are key to these processes,

and play a particularly important role in pathogenicity. Opportunities to reduce crowding,

and hence relieve density-dependent competition within a lineage, may therefore play an

important role in maintaining the extensive diversity of microbes in nature.

However, it is important to note that our system harbors more complexity than our

model describes. For example, fitness differences among some B strains are affected by well

geometry (Fig. B.2 and Dataset B.1), which cannot be explained in terms of growth rate

and saturation density. A cells also often collapse in large numbers to the well bottom

during later stages of growth, suggesting that they too experience some effects of crowding

and may even actively bury the B cells below (Movies B.1, B.2, B.3). Possibly for this

reason, some A strains attain consistently higher than predicted equilibria (circled points in

Fig. 3.5). Given these caveats and complexities, these populations are a rich and tractable

system for studying microbial ecology and eco-evolutionary dynamics.
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3.4 Materials and Methods

3.4.1 Strains

All strains in this study are derived from a haploid MATa W303 ancestor. Specifically,

strains EFY1-6, EFY50, and EFY67-85 are descendants of DBY15108 isolated from pop-

ulations that evolved dispersed pellet morphology during an earlier long-term evolution

experiment.38 EFY20, EFY27, EFY37, EFY38, EFY40, EFY43, and EFY46 are descen-

dants of EFY10-17 similarly isolated from the same experiment. EFY10-17 and EFY61-64

are descendants of DBY15104 and DBY15105, respectively, which were isolated from a dif-

ferent evolution experiment.81 EFY10-17 were engineered to express a fluorescent reporter

as previously described.38 To construct the erg3∆ strain (MJM179), we amplified regions

flanking the G418 resistance cassette of the yeast deletion collection erg3∆ mutant42 and

integrated the PCR product into the ERG3 locus of DBY15108. The deletion was confirmed

by PCR and Sanger sequencing.

3.4.2 Bulk Segregant Analysis

To identify mutations causing the A phenotype, we sequenced three A clones and back-

crossed each with an α-ancestor, resulting in three diploids heterozygous for all mutant

sites present in the corresponding clone. We sporulated these diploids and dissected tetrads

to isolate 40 recombinant haploids. Each haploid was inoculated into a round-bottom well

and scored for the presence or absence of the A phenotype (Materials and Methods, Assay

for Adherence). These haploids were split into two pools of clones containing either only

A types or B types. Genomic DNA was obtained from each pool and genotyped by Sanger

sequencing at each candidate locus. Causal loci were identified as those loci for which the
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A pool exhibited only the mutant allele and the B pool exhibited only the ancestral allele.

3.4.3 Cell Culture

Yeast populations were propagated as previously described,81 with slight modifications.

Briefly, this protocol is to grow cells in 96-well polystyrene microplates containing 128µL of

rich media (YPD) at 30◦C and dilute them daily 210-fold into fresh plates using a pipetting

robot (Beckman BioMek FX). To ensure consistent dispersal of the A type, plates were

shaken 10-30 s (1,100 rpm; Heidolph Titramax 100) immediately after inoculation. Mi-

croplates had round or flat bottoms and were incubated either with or without continuous

shaking (1,350 rpm; Titramax 100) as indicated above.

3.4.4 Measurement of Lineage Frequencies and Relative Fitness

Cell densities and frequencies of fluorescently labeled lineages were simultaneously deter-

mined by flow cytometry (BD Biosciences LSRII or Fortessa with attached high-throughput

samplers). Because cytometry sample preparation requires washing cells in PBS, which dis-

rupts population-level spatial structure, populations were assayed after their daily dilution

or, in the case of Fig. 3.4 and Figs. B.3, B.4, B.5, by destructive sampling of replicates.

To measure relative fitness, two strains of the same type are mixed together in equal pro-

portion and propagated in co-culture for 30 generations.81 The fitness is determined from

their frequencies at generations 10 and 30 according to the formula: s = ln((fx/fy)t =

T/(fx/fy)t = 0)/T , where fx and fy are frequencies of lineages x and y and T is the num-

ber of population doublings (in this case, equal to 20). This formula is also used to calculate

fitness from other lineage frequency data (e.g., Fig. 3.1A).
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3.4.5 Direct Measurements of Maximal Growth Rates

To measure maximum growth rates (rA and rB in our model) directly, we maintained strains

in the same way as described above, and assayed lineage frequencies and cell densities by

destructively sampling replicates before saturation. For Fig. 3.4B and Fig. B.4, we measured

total cell densities of one pair of A- and B-type strains at several time points. Because of the

need to count many cells at very low densities in populations maintained in small volumes,

it was not practical to measure direct growth rates accurately in this way for many strains.

In addition, systematic errors can easily arise because the relevant growth rate differences

are small, and these differences must be measured within the correct narrow time window

during the first hours of growth before crowding effects become significant. Thus, to avoid

these difficulties, we used fitness in flat-bottom wells as a proxy for rA/rB to test the model

predictions shown in Fig. 3.5. To verify that these two quantities are correlated, we directly

measured differences in maximum growth rates for 50 strain combinations (half of those

strain combinations in Fig. 3.5). We did so by preparing replicates of strain pairs in coculture

and assayed their relative frequencies 2 and 5 h after inoculation by destructive sampling

of replicates. We then calculate (1/τx − 1/τy) = log2((fx/fy)t = T/(fx/fy)t = 0)/T ,

where T = 180 min and τx and τy are the doubling times of strains x and y. Although

these measurements are noisy and may contain systematic biases for the reasons described

above, we find that they are significantly correlated with relative fitness in flat-bottom wells

(Pearson correlation = 0.55, P < 10−5; Fig. B.5).

3.4.6 Measurements of Equilibrium Frequency

Equilibrium frequency is measured by mixing A- and B-type strains at a range of ratios

and propagating the populations in parallel, as shown in Fig. 3.1 and Fig. B.1. Equilibrium
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and its uncertainty then equal the mean and SE of the final frequencies. For Fig. 3.5, the

propagation was truncated before populations converged to a common ratio. In these cases,

the equilibrium is estimated from the fitness-vs.-frequency data (illustrated in Fig. 3.1B)

using least-squares linear regression, and the uncertainty is computed by bootstrapping

(SD of equilibria inferred from data sampled with replacement). In Fig. 3.5, the fitness

and equilibrium between a cycloheximide-resistant B strain (DVD101) and two sensitive

A strains (EFY3, EFY5, EFY68, and EFY85) were varied by competing these strains in

media supplemented with cycloheximide concentrations ranging from 12.5 to 150 nM, in

12.5 nM increments.

3.4.7 Imaging

To obtain the fluorescent and time-lapse images of pellet morphologies (Fig. 3.1C and Movies

B.1, B.2, B.3 respectively), we used a Zeiss LumarV12 stereoscope. For bright-field images

(Fig. 3.1D), we used an Epson Perfection V700 transparency scanner.

3.4.8 Modeling

Our model predicts that equilibrium frequencies are determined by the ratios of parameters

rA/rB and K/nB. To obtain the predictions in Fig. 3.3, we set rB = ln(2)/80 min−1 and

K = 9 · 106 cells per well based on the growth curve data for single-strain populations

(Fig. 3.4B and Fig. B.3). We then determined rA and nB by minimizing χ2 error with

respect to lineage frequencies and densities at the end of each cycle, assuming measurement

uncertainties of 2.5% and 10% for lineage frequencies and cell densities, respectively. These

computations were performed by a commercial differential equation solver and minimization

algorithm [ode45 and fminsearch in MATLAB (MathWorks), version 2012a].
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The value K/nB ≈ 3.5 inferred from Fig. 3.4 is assumed to be the same for all B

strains. The model, given this assumption, implies a one-to-one correspondence between

the fitnesses of strains of the same type and their ratio of growth rates, as well as between

the equilibrium frequency of strains of the opposite type and their ratio of growth rates.

Consequently, data in different figures can imply different values for the same parameters.

For example, in Fig. 3.6A, the theoretical ratio of growth rates for strains EFY1 and EFY5

is 1.09 based on their different equilibria, but in Fig. 3.6B, it is 1.01 based on their difference

in fitness. Likewise, in Fig. 3.7 and Fig. B.6, the predictions may be based on either the

equilibria or fitnesses shown in Fig. 3.6B. We based predictions on the equilibria because,

overall, this method produced better agreement with the data, but there are discrepancies

when A strains have a larger difference in fitness than implied by their equilibria or vice

versa. For example, EFY46 has a slightly lower equilibrium than EFY1, but a relatively

large fitness defect (Fig. 3.6B). Hence, EFY46 declines faster than predicted by the model

in Fig. 3.7 (Left).

The fitness values of the 14 A-type strains in Fig. 3.6B were inferred from 49 pairwise

fitness measurements (Fig. B.7). We chose EFY5 as the zero-fitness reference and inferred

the remaining 13 fitness values by minimizing χ2 error under the assumption that fitness is

transitive. The horizontal error bars show the parameter variation that increases χ2 error

by one unit around its minimum.
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4
Conclusion

This thesis addresses some basic evolutionary questions—essentially, which lineages are

likely to fix, go extinct or stably persist?—in a very specific system: populations of asexual

budding yeast passaged in microtiter plates. Chapter 2 focuses on the question of fixation

or extinction by directly measuring this process and using the data to infer the distribution

of fitness effects of beneficial mutations, which generally governs lineage dynamics in an

adapting population. Chapter 3 dissects a new example of coexistence that evolved spon-

taneously during the experiments of chapter 2, finding that it arose from the common fact

that during growth, microorganisms compete for nutrients with nearby cells, which tend

to be their own kin. The coexisting types, named bottom-dweller (B) and adherent (A),

exhibit different strategies of dealing with this dilemma: cells may grow fast initially be-
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fore becoming crowded by their progeny or employ some means (in this case adherence) to

reduce crowding and grow at a slower but more sustainable rate.

Mathematical modeling and experiments reveal how the coexistence between these sub-

populations and competition within them both largely depend on growth rate. As a result,

the size of each subpopulation is coupled to the dynamics of adaption within them, and using

the distribution of fitness effects inferred in chapter 2, one can predict how the equilibrium

proportion of these coexisting types changes over time. Simulations of these dynamics are

shown in Fig. 4.1A, with the corresponding non-frequency-dependent dynamics in Fig. 4.1B.

Note that the time to fixation or extinction in the non-frequency dependent case is domi-

nated by waiting for the first selective sweep, whereas with negative frequency-dependent

selection, fitness gains within lineages incrementally shift their frequency, such that for ev-

ery 1% increase in the average fitness of a lineage, its frequency may increase by ∼4% (see

Fig. 3.5). As expected, negative frequency-dependent selection prolongs the coexistence of

lineages (Fig. 4.1C). The coupling between adaptation and population size advantages the

majority lineage because it is more likely to gain further beneficial mutations (a positive

feedback loop). Hence negative frequency-dependent selection on average shortens coex-

istence at very low or high frequencies (Fig. 4.1C) and increases the fixation probability

of the majority lineage (Fig. 4.1D). Given the dynamics in Figs. 4.1AB, the stability of

experimentally-evolved lineages seen in Figs. B.1, B.2 appears highly improbable. However,

these dozen populations were selected among ∼1000 specifically for the unusual stability of

their lineages, so the accuracy of predictions such as those in Fig. 4.1 would need to be eval-

uated in future work. In any case, the dynamics predicted by Figs. 4.1AC are likely too fast

because they assume a fixed distribution of fitness effects, whereas the rate of adaptation

typically slows as fitness increases.79,88,20,72

These results complement a larger body of empirical83,79,100,81,78,33 and theoretical
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work32,76,47,46,49,23 related to this experimental system, but how may they relate to evo-

lution more generally? Some answers are provided in the discussion sections of the body

chapters, but here this question is addressed more broadly. The typical way of thinking

about evolution and ecology in Nature is to imagine that different types of organisms cor-

respond to distinct niches or populations. Does this hold for the A and B types? In this

case, relatively weak beneficial mutations may sweep only within whichever type they oc-

cur, but sufficiently strong mutations can drive the other type extinct, as illustrated by the

data in Sec. 3.2.8 and Fig. B.6. So to some extent they are two populations, and to some

extent they are one. The balance between these two extremes depends on the distribu-

tion of fitness effects of beneficial mutations and quantitative details of the mechanism of

coexistence. The evolution of this type of scenario has also been identified in E. coli popula-

tions competing for glucose and acetate,85,39,58,57 but its wider prevalence and evolutionary

implications are open questions. The dynamics of adaptation in natural microbial popula-

tions are increasingly accessible through DNA sequencing, which also reveals an incredible

diversity of microorganisms that largely remains to be explained.11,92,106,31 If one were to

generalize based on the results of this thesis, it would suggest that in these populations,

the difference between stably-coexisting species or ecotypes and directly-competing lineages

varies continuously rather than discretely.
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Figure 4.1: Lineage dynamics with vs. without negative frequency-dependent selection.
(A) and (B) show simulations of 20 populations initially consisting of 2 clonal lineages at
equal proportion. In (A), the lineages initially stably coexist at equal proportion according
to the model in Ch. 3, in which case one type has a fitness advantage of ∼12.5% (see
Fig. 3.5). Beneficial mutations arise within both lineages according to the distribution of
fitness effects inferred in Ch. 2, shifting their equilibrium proportion over time. (B) shows
the corresponding dynamics in absence of frequency-dependent selection, in which case
the lineages have equal initial fitness. (C) and (D) show the effect of negative frequency-
dependent selection on average duration of lineage coexistence and fixation probability,
determined by 1000 simulations like those in (A) and (B) for each starting frequency.
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A
Supplement to Chapter 2

Table A.1: Supplementary file containing all the data plotted in Fig. 2.1.

67



0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
re

qu
en

cy
 o

f s
ee

de
d 

lin
ea

ge
, f

(t
)

Generations after seeded lineage reaches frequency .05

Initial frequency, f0

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.002

0.004

0.006

0.008

0.01

Data (s0=3.8%) sExponential (   = 0.85%, Ub = 1.0.10-4) 

sδ-function (   = 5.85%, Ub = 5.1.10-7) sUniform (   = 3.2%, Ub = 2.0.10-6) 

Figure A.1: Lineage dynamics data and simulations for s0 = 3.8%. Each panel shows the
trajectories of seeded lineages with initial fitness s0 = 3.8% as observed in the experiment
(top left) and as reproduced by simulations assuming the DFE parameters indicated above
each panel.
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Figure A.2: Lineage dynamics data and simulations for s0 = 5.0%. Each panel shows the
trajectories of seeded lineages with initial fitness s0 = 5.0% as observed in the experiment
(top left) and as reproduced by simulations assuming the DFE parameters indicated above
each panel.
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Figure A.3: Lineage dynamics data and simulations for s0 = 7.3%. Each panel shows the
trajectories of seeded lineages with initial fitness s0 = 7.3% as observed in the experiment
(top left) and as reproduced by simulations assuming the DFE parameters indicated above
each panel (which are also the ones indicated by the star, triangle and square in Fig. 2.4).
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Figure A.4: The fitness over time of 16 experimental control populations (grey curves)
and their mean (black curve). The error bars are ±1 s.e.m.
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Figure B.1: Coexistence due to negative frequency-dependent fitness (full data). Column 1 shows the
original observation of marked lineages remaining at intermediate frequencies, suggesting frequency-
dependent selection. (Insets) All these populations had dispersed pellet morphology. Columns 2 shows
these lineages returned to their original frequencies after perturbation by sorting cytometry (Materials
and Methods; note that the sharp decline in frequencies around generation 180 is an artifact of an
experimental error, in which populations were temporarily propagated at dilution factors ≫ 210.
Column 3 shows the resulting lineage dynamics when these populations were duplicated from round-
bottom into flat-bottom wells (A cells do not adhere to the vertically sloped walls of flat wells, which
eliminates the crowding avoidance effect by causing both types to be similarly confined to the well
bottom, and hence prevents coexistence). Column 4 shows the competition of clones, one A and one
B, drawn from the source population of each row and propagated in unshaken (solid lines) and shaken
(dashed lines) round-bottom wells.
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Figure B.2: B types do not exhibit frequency dependent fitness. Column 1 shows the
observation of marked lineages remaining at intermediate frequencies in populations sub-
sequently shown to lack frequency-dependent selection. (Insets) None of these populations
had dispersed pellet morphologies. Column 2 shows the dynamics of these lineages after
perturbation by sorting cytometry, and column 3 shows their dynamics after duplication
from round-bottom to flat-bottom wells.
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Figure B.3: A vs. B dynamics within each growth cycle. A strain frequencies in 162
populations are shown, in addition to the 18 shown in Fig. 3.4A.
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Figure B.4: Growth curves of A and B strains. The densities of the A and B strains
in Fig. 3.4 (EFY5 and EFY10, respectively) as measured in 15 replicates (mean ±SEM,
horizontal error bars of ±30 min). The dashed lines are simulated growth curves given
eqns. 3.1 and parameters K = 9 · 106 cells per well, rB = ln(2)/80 min−1, rA = ln(2)/89
min−1 and nB = 0.28K (see Materials & Methods). The ratio of these measured and
simulated growth curves is shown in Fig. 3.4B.
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Figure B.6: Competition between two A strains and one B strain. Dynamics in populations containing all
pairwise combinations between two sets of A strains, indicated by numbering of rows and columns, and one B strain
(EFY64). Data points are color-coded according to strain, and symbols (×, ⋄, ◦, •) correspond to independent
populations. Dashed curves are model predictions based on measured initial frequencies and parameters inferred
from Figs. 3.4 and 3.6B (Materials and Methods). Measurements at generations 40 and 50 were performed on
samples stored for ∼24 hours at 4◦C, which appears to have biased those frequencies in favor of the nonfluorescent
strain (EFY64).
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Figure B.7: Transitivity of fitness among A strains. All pairwise fitnesses between two
sets of seven A strains measured in triplicate are shown. These data were used to determine
the absolute fitnesses shown in Fig. 3.6B and were found to be consistent with transitive
fitness among A strains (χ2 = 0.6; Materials and Methods).

Movie B.1: Time-lapsed growth in round-bottom wells. An A-type strain (EFY5) grown
in isolation is shown. The time-lapse movie consists of images taken every 20 min for 22 h
in standard growth conditions.

Movie B.2: Time-lapse movie of the growth of a B-type strain (EFY10) in a round-bottom
well. Images taken every 20 min for 22 h in standard growth conditions.

Movie B.3: Time-lapse movie of the growth of A-type and B-type strains (EFY5 and
EFY10) in coculture, mixed at equal initial proportions, in a round-bottom well. Images
taken every 20 min for 22 h in standard growth conditions.

Data Set B.1: Summary of fitness data for all strains in Ch. 3; equilibrium frequencies
for all pairs of strains tested; and the specific mutations in genes ERG3, UPC2, and HAP1
identified by bulk segregant analysis.
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