
Simultaneous Inference of Cell Types, Lineage 
Trees, and Regulatory Genes From Gene 
Expression Data

Citation
Furchtgott, Leon A. 2016. Simultaneous Inference of Cell Types, Lineage Trees, and Regulatory 
Genes From Gene Expression Data. Doctoral dissertation, Harvard University, Graduate School 
of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493563

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493563
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Simultaneous%20Inference%20of%20Cell%20Types,%20Lineage%20Trees,%20and%20Regulatory%20Genes%20From%20Gene%20Expression%20Data&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=da90f02d4932528a283578eb59faa7bc&departmentBiophysics
https://dash.harvard.edu/pages/accessibility


 
 

 
 
 
 

 
Simultaneous Inference of Cell Types, Lineage Trees, and Regulatory Genes from 

Gene Expression Data 
 

A dissertation presented 
by 

Leon Adam Furchtgott 
to 

The Committee on Higher Degrees in Biophysics 
 

in partial fulfillment of the requirements 
for the degree of 

Doctor of Philosophy 
in the subject of 

Biophysics 
 
 

Harvard University 
Cambridge, Massachusetts 

  
May 2016 

  



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

© 2016 Leon Adam Furchtgott 
All rights reserved



iii 
 

Dissertation Advisor: Prof. Sharad Ramanathan           Leon Adam Furchtgott 
Simultaneous Inference of Cell Types, Lineage Trees, and Regulatory Genes from 

Gene Expression Data 
 

Abstract 
Important goals of developmental biology include identifying cell types, understanding the 
sequence of lineage choices made by multipotent cells and unconvering the molecular 
networks controlling these decisions. Achieving these goals through computational 
analysis of gene expression data has been difficult. In this dissertation supervised by Sharad 
Ramanathan, I develop a probabilistic framework to identify cell types, infer lineage 
relationships and discover core gene networks controlling lineage decisions. Working with 
Sandeep Choubey and Sumin Jang, we infer the gene expression dynamics of early 
differentiation of mouse embryonic stem cells, revealing discrete state transitions across 
nine cell states. Using a probabilistic model of the gene regulatory networks, we predict 
that these states are further defined by distinct responses to perturbations and 
experimentally verify three such examples of state-dependent behavior. Working with 
Vilas Menon and Sam Melton, we infer a lineage tree for early neural development and 
putative regulatory transcription factors from single-cell transcriptomic profiles. The 
lineage tree shows a prominent bifurcation between cortical and mid/hindbrain cell types, 
and the inferred lineage relationships were confirmed by clonal analysis experiments. In 
summary, this study provides a framework to infer predictive models of the gene regulatory 
networks that drive cell fate decisions.  
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Chapter 1.  Introduction 
1.1. The problem: understanding development 

During development, organisms generate a plethora of specialized cell types, each 
with unique defining characteristics and functions. Remarkably, this process starts from a 
single cell, which successively divides and differentiates, leading to the generation of all 
of the cell and tissue types in an adult organism. Many fascinating questions remain about 
how the developmental process self-organizes in both space and time. How do millions of 
individual cells specialize and coordinate in order to build complex patterned organs or 
powerful networks of neurons? 

A step on the way to addressing these questions of developmental patterning and 
of interactions between cells is the question of how an individual cell makes decisions 
during development. More concretely, major goals in the field of developmental biology 
include (a) categorizing and characterizing what constitute the distinct cell types that an 
individual cell might belong to, (b) understanding the sequence of transitions between these 
different cell types that an individual cell might make, and (c) characterizing the molecular 
network that underlies this sequence of transitions. But underlying each cell’s behavior is 
an incredibly complex molecular network composed of thousands of different types of 
proteins (which are themselves translated from RNA molecules transcribed from DNA), 
external signaling molecules, epigenetic factors, etc. Moreover, as the cell changes cell 
state or is in different environments, this molecular network also changes. The number of 
potential interactions between the different factors comprising a cell’s molecular network 
is astronomical. Understanding and making predictions about such a complicated system 
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is truly challenging, because of the large number of parameters that are impossible to 
characterize fully. How then can we proceed? 
1.2. Two approaches: traditional biology and large-scale data analysis 

Traditional developmental biology and large-scale gene profiling and analysis 
represent two diverging paradigms for studying development. Traditional developmental 
biology has made great strides in understanding differentiation in certain key systems (such 
as mammalian hematopoiesis and Drosophila development) as the result of decades of 
careful experiments (Gilbert, 2014; Kondo et al., 1997; Orkin and Zon, 2008; Till and 
McCulloch, 1961). However, in many systems (including human neural development), 
little is known about the number of cell types, their lineage relationships, or the genes 
guiding development. The advent of large-scale gene expression profiling techniques 
(including microarrays (Heng and Painter, 2008) and, more recently, single-cell RNA-Seq 
(Jaitin et al., 2014; Klein et al., 2015; Zeisel et al., 2015)) offers the promise that large gene 
expression datasets can allow us to make testable predictions about development. 

When we contrast the respective approaches and paradigms used by traditional 
developmental biologists and by computational biologists, the differences are striking. 
Take for example studies of differentiation in the hematopoietic system. Hematopoiesis is 
the development of all of the different cell types that exist in the blood, from red blood 
cells to white blood cells such as T- and B-cells. All of these cell types have a common 
ancestor – hematopoietic stem cells – a fact that was established in the early 1960s (Till 
and McCulloch, 1961). Since then, biologists have attempted to piece together the exact 
“family tree” of hematopoietic differentiation by isolating and defining one intermediate 
progenitor at a time. Biologists have also been able to identify many of the key genes 
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involved in hematopoiesis by carefully discovering one gene at a time using the tools of 
classical genetics.  

 

 
Figure 1.1: Traditional picture of hematopoiesis. Figure reproduced from (Orkin and 
Zon, 2008). Traditional picture of hematopoiesis, with different mature cell types coming 
about through a series of cell-fate decisions mediated by key transcription factors. Key 
genes, as determined through conventional gene knockouts, are indicated by red bars; those 
associated with oncogenesis in black. Abbreviations: LT-HSC, long-term hematopoietic 
stem cell; ST-HSC, short-term hematopoietic stem cell; CMP, common myeloid progenitor; 
CLP, common lymphoid progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, 
granulocyte/macrophage progenitor; RBCs, red blood cells. 

 
As Figure 1 illustrates, the picture that emerges from traditional biology is one in 

which hematopoietic stem cells give rise to the different cells in the blood through a series 
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of binary cell-fate decisions, collectively describing a tree. Each cell-fate decision is the 
result of a small number of key “master” genes, which in turn control other genes and 
unleash a process that gives each cell type a defined identity. This picture suggests that it 
is possible to extract key genes from the cell’s complex set of molecular interactions, and 
these key genes are determinants of cell fate.  

A very different picture is painted by approaches that take comprehensive sets of 
gene expression data and use statistical methods to infer the gene regulatory networks 
underlying hematopoiesis (Basso et al., 2005; Jojic et al., 2013; Laurenti et al., 2013; 
Novershtern et al., 2011). As Figure 2 shows, instead of a hierarchy of decision-making 
master genes, these models show “strong evidence for the role of complex interconnected 
circuits in hematopoiesis” (Novershtern et al., 2011). Other recent papers relying on single-
cell transcriptomics conclude that one of the cell types in Figure 1 (the common myeloid 
progenitor) in fact should be seen as a composite of multiple distinct subpopulations (Guo 
et al., 2013; Paul et al., 2015). The explosion of biological measurement has not only 
provided larger amounts of high-quality data. It has caused us to reevaluate the 
organization of molecular networks and how they give rise to distinct cell fates. 
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Figure 1.2: Gene regulatory networks inferred from computational models. (A). 
Figure reproduced from (Basso et al., 2005). Subnetwork of the B-cell developmental 
network surrounding transcription factor Myc (green). Circles represent genes. (B). Figure 
reproduced from (Jojic et al., 2013). Diamonds represent coexpressed gene modules; 
circles represent putative module regulators.  
 

From the “complex systems” point of view of the modern computational biologists 
of Figure 2, the traditional “master gene” view of Figure 1 is hopelessly naïve. Rather than 
being determined by a small number of master genes, cell fate is a property of the molecular 
network as a whole. Yet the traditional master-gene vision has certain advantages, and 
complex-systems approaches have yet to account for them properly. 

First, although hematopoietic development undoubtedly involves the coordination 
of a very large number of molecular factors, the macroscopic phenomenon that results – 
namely the daily production of a hundred billion blood cells by hematopoietic progenitors 
– is one that is robust, reliable and consists of a series of cell-fate decisions. The traditional 
picture gives a mechanistic model for how cells make decisions, which allows for tracking 
cells, generating further hypotheses, and modeling the system. In contrast, it is unclear how 
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a complex network such as the ones shown in Figure 2 can give rise to a series of simple 
cell-fate decisions. 

Furthermore, recent reprogramming and transdifferentiation experiments 
demonstrate that a small number of key transcription factors (fewer than 4) are sufficient 
to induce changes in cell state (Graf and Enver, 2009; Iwasaki and Akashi, 2007; Takahashi 
and Yamanaka, 2006). If cell state is determined by a complex network, reprogramming 
and transdifferentiation should be almost impossible. Reprogramming could not have been 
predicted from the complex networks of Figure 2. The fact that reprogramming and 
transdifferentiation have been observed in a large variety of contexts suggests that some 
kind of simple structure exists under all of the complex details of the regulatory networks. 
1.3. A toy model 

A third potential reason to worry about large-scale computational approaches to 
understanding development has to do with the assumptions behind techniques used for 
network inference.  
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Figure 1.3: Generation and analysis of a synthetic gene network  (A) Gene network 
used to generate the data. Top: the core network is composed of pairs of mutually-
inhibitory master gene modules (g1-g15) which sequentially drive subsequent gene pairs.  
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(Figure 1.3, continued) Bottom: 1000 additional genes are driven by the master genes with 
couplings that can be either positive or negative (pointed or flat arrows), and with strengths 
taken from a Gaussian distribution (represented by the different arrow thicknesses). (B) 
Lineage tree generated by the network, containing 15 cell types denoted A-O. The master 
gene module associated with each decision is shown above the corresponding arrow. (C) 
Interaction network between the 48 modules (yellow diamonds) and 141 regulator genes 
(circles) identified by Module Networks for gene expression data generated by the network 
shown in (A). Arrows from regulator genes to modules indicate regulation of the module 
by the gene; arrows from modules to regulator genes indicate inclusion of the regulator 
gene within the modules. The red circles indicate true master genes; blue circles indicate 
non-master genes that are identified as regulator genes. (D), (F) Average-linkage 
hierarchical clustering dendrograms of cell types A-O from the computationally-generated 
gene expression data. The distance metrics used are the Euclidean distance of the gene 
expression data for all genes (D) and for only the master genes (F). (E) Scatter plots of the 
expression of genes g4b and g5c in the replicates of cell types B, D and E (left) and all cell 
types (right). The value of Pearson correlation (r), shown above each scatter plot, is 
negative when calculated over cell types B, D and E but positive when calculated over all 
cell types. 

 
To better understand the computational challenges in lineage and regulatory 

network inference, we built a mathematical model of a network that gives rise to a series 
of lineage decisions. Inspired by the traditional picture from Figure 1, and numerous 
examples of mutually-inhibitory pairs of factors determining cell fate (Graf and Enver, 
2009; Qi et al., 2013; Thomson et al., 2011; Zhang et al., 1999), our model gene network 
contains 7 mutually-inhibitory pairs of ‘master’ gene modules, with global activatory and 
inhibitory interactions between modules as well as activatory and inhibitory interactions 
within modules. In addition, the network includes one thousand other genes randomly 
coupled to the master genes (Figure 2A). This simulated network gives rise to 15 progenitor 
and terminally-differentiated cell types along a lineage tree (Figure 2B). We generated 
triplicate gene expression data for the different cell types by adding noise to our underlying 
network to reflect measurement noise as well as biological variability (Figure 2C). We hid 
the original network and the lineage relationships from ourselves, and sought, using only 



9 
 

this gene expression data, to infer both the lineage relationships between the cell types and 
the core master-gene network. 

None of the established computational methods we applied to our data were 
successful in recovering either the original lineage tree or the key features of the underlying 
differentiation network. Classification of the genes using Module Networks (Segal et al., 
2003), a widely-used network inference algorithm, yielded 48 distinct gene modules, only 
11 of which contained the master genes that generated the lineage tree. Additionally, the 
Module Networks analysis categorized 141 genes as being regulators of modules, 
producing a network of modules and regulators (Figure 2C). It was not possible to recover 
the original master genes from this complex network, nor was it clear how the network 
gave rise to the observed lineage tree. Further, distances between cell types in hierarchical 
clustering and principal component analysis (PCA) showed significant differences from 
the actual lineage (Figure 2D). Thus, inferring the correct lineage relationships from gene 
expression data alone was also not possible. 

We next asked why computational methods failed at inferring the correct network. 
Key genes involved in lineage decisions showed changing patterns of relative expression 
during differentiation and thus changing values of correlation between each other. For 
example, pairs of master genes which have mutually inhibitory relationships in the original 
network (such as g4b and g5c in our model, Figure 2A) show a strongly negative 
correlation when evaluated over the progenitor and its descendant cell types (r=-0.75 in B, 
D, E), and a weak positive correlation (r=+0.20) when evaluated using all the cell types 
(Figure 2G). Reuse of factors in different lineage decisions in real developmental networks 
can only exacerbate such changes in correlation. In the absence of any knowledge of the 
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lineage relationship, changing patterns of correlation are hard to interpret. Thus, network 
inference methods that depend on correlation patterns evaluated over all cell types miss 
these changing patterns of expression in key genes and fail at inferring the correct network.  

To understand why inferring lineage relationships between cell types using gene 
expression is challenging, we questioned whether the distance metrics between cell types 
used by these methods accurately reflected lineage relationships. When we performed PCA 
and hierarchical clustering of the cell types using only the original master genes, relative 
distances corresponded better to lineage relationships (Figure 2F). Clustering methods and 
PCA measure distances between cell types in gene expression space by using either 
Euclidean distance (square root of the sum of the squared differences in expression of each 
gene following Pythagoras) or Hamming distance (the total number of genes that are 
differentially expressed in the two cell types). Since only a subset of genes reflected the 
lineage relationships between cell types, we hypothesized that the inclusion of all the other 
genes corrupted distance metrics.  

In this example, measuring more genes does not give more accuracy when 
measuring similarities between different cell types – only the original master genes serve 
this purpose. Furthermore, the network inference algorithm was incapable of recovering 
the original master-gene network from the overall complex network, suggesting that the 
algorithm’s assumptions are naturally biased towards complex-looking networks. 
1.4. Bridging the gap 

A goal of this dissertation is to develop computational methods to take large-scale 
gene expression data and to find key variables in order to get to a picture closer to the 
traditional picture in Figure 1 than the complex networks of Figure 2. This is not because 
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I am taking sides and saying that the traditional picture is completely correct or that I 
dismiss the inherent complexity of developmental networks. Rather, fitting data to a 
traditional lineage tree with key control variables is a useful approximation for the 
important features of the differentiation network.  It gives an interpretable, experimentally 
testable model of differentiation, and it allows for computational modeling and prediction 
using a small number of key variables.  

This dissertation describes a computational framework to infer cell states, cell state 
transitions and key genes from gene expression data. The computational framework 
developed fits the gene expression data to a small, sparse, subset of variables. By projecting 
the gene expression into a correctly-chosen subspace, we can also infer lineage 
relationships between cell types and cluster individual cells more accurately. This 
framework bridges a gap between computation and experiment because it looks for 
interpretable and measureable variables, probabilistically ranking potential functional 
genes for each cell-fate decision. 

I have applied this framework to gene expression data from mouse hematopoiesis, 
mouse germ layer differentiation, and human cortical development; these efforts are 
described respectively in Chapters 2, 3 and 4 in this dissertation.  
1.5. Open questions: reaction coordinates in biological processes 

I am interested in exploring the role of reaction coordinates in building coarse-
grained models of high-dimensional complex systems. There is an extensive literature in 
the field of computational molecular simulation interested in finding optimal “reaction 
coordinates” or order parameters for protein folding trajectories  (Best and Hummer, 2005, 
2011; Du et al., 1998; Krivov, 2013; McGibbon and Pande, 2016). This reduction in 
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dimensionality still captures and allows for modeling of the slowest-timescale dynamics of 
the system.  

 
Figure 1.4: Protein Folding Reaction Coordinates  Figure reproduced from (Chung et 
al., 2015). Can we do the same for cellular differentiation? 
 

This work is somewhat analogous to this body of research in that it is looking for 
reaction coordinates for cell state transitions. I am interested in exploring the theoretical 
implications of this work: what role do reaction coordinates have in an era of abundant 
multi-dimensional next-generation sequencing? What constitute good reaction coordinates 
for biology? And how can we go from a “hairball” complex-network picture of biological 
networks to a “reaction-coordinate” picture?  
1.6. Open questions: definition of cell type 

Recent advances in single-cell genomics and transcriptomics have allowed for 
comprehensive probing of gene expression in thousands of cells in a single experiment. An 
important goal from these experiments is to identify rare cell types or subpopulations of 
known cell types that could not be previously recognized due to limitations in bulk 
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population measurements, which average the expression levels of thousands of cells (Paul 
et al., 2015; Trapnell, 2015).  

Traditionally, cell types have been identified according to certain functional assays, 
surface markers, and developmental potential (Orkin and Zon, 2008; Pereira et al., 2007). 
In contrast, given single-cell gene expression measurements for thousands of cells, cell 
types can be identified in an unbiased way by clustering the cells according to their gene 
exprression using various statistical techniques (Macosko et al., 2015a; Satija et al., 2015).  
 Ultimately, however, every individual cell is its own microstate and is slightly 
different from every other cell. Clustering techniques can classify cell types with arbitrary 
resolution and with different outcomes depending on assumptions about the nature of the 
heterogeneity. In order to have useful definitions of cell types, some kind of functional 
information is necessary. This is currently missing from most single-cell transcriptomics, 
but it will be important in order to make progress. 
1.7. Open questions: data complexity and data analysis. 

The framework described in this dissertation looks for one-dimensional patterns in 
individual genes in order to infer cell types, lineage relationships and key genes. Are one-
dimensional patterns in fact sufficient to reconstruct the lineage tree and network? In 
Chapter 2, we verify that, at least for known lineage relationships in B- and T-cell 
development, one-dimensional patterns are correlated with and predictive of lineage 
relationships. In addition, some of the experimental predictions from the framework in the 
context of germ layer differentiation and neural development have been experimentally 
tested, and others are in accordance with previous literature. The fact that the simple model 
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can make experimental predictions suggests the developmental networks we have studied 
might have a low-dimensional structure.  

We could certainly imagine other systems in which one-dimensional patterns are not 
nearly enough to rebuild the network or to make experimental predictions. Such systems 
would require recognizing patterns of two genes, three genes, or more in order to 
reconstruct the network, suggesting that cell identity would be determined by 
combinatorially complex gene interactions (e.g. cell type A goes to cell type B only if gene 
1 and gene 2 are upregulated and gene 3 is downregulated, but cell type A goes to cell type 
C only if gene 1 and gene 3 are upregulated and gene 2 is downregulated). How to build 
methods for data analysis that take into account the combinatorial complexity of the 
underlying data, and how to independently measure this combinatorial complexity, is an 
open question. 
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Chapter 2.  Simultaneous inference of lineage trees and regulatory genes 
from gene expression data 

[A large part of this chapter is in preparation for submission as Leon Furchtgott, Samuel 
Melton, Ling-Nan Zou, Sharad Ramanathan, “Simultaneous inference of lineage trees and 
regulatory genes from gene expression data.” LF and SR designed the study. LF and SM 
performed computational analyses. LNZ and SR developed the gene regulatory network 
model and linear programming method. LF and SR wrote the manuscript with input from 
LNZ and SM.] 
Abstract 

Two goals of developmental biology are to determine the sequence of lineage 
choices made by multipotent cells and to understand the molecular networks controlling 
these decisions. Achieving these goals through computational analysis of gene expression 
data has been difficult. Here we show that challenges in inferring lineage relationships and 
gene networks are intrinsically related. We develop a probabilistic framework to 
simultaneously infer lineage relationships and discover core gene networks controlling 
lineage decisions. The only free parameter of this framework is our expectation for the 
number of master regulators for each lineage decision. By applying our methods to analyze 
gene expression data from the hematopoietic system, we discover both the sequence of 
lineage decisions and the core network controlling each one. Our study provides a 
conceptual approach for discovering and quantitatively modelling gene regulatory 
networks controlling lineage decisions and for making predictions about reprogramming. 
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2.1. Introduction 
During development, pluripotent cells make a series of lineage decisions to give 

rise to the different cell types of the body. These lineage decisions are controlled by an 
intra-cellular molecular network that includes transcription factors and signaling molecules. 
There are two fundamental questions associated with understanding the differentiation of 
individual cells.  The first is to identify lineage relationships: how cells and their progeny 
move from pluripotent through intermediate to terminally differentiated cell states. The 
second is to identify the architecture and dynamics of the gene networks that allow cells to 
make fate decisions along their developmental trajectory.  

The problems of reconstructing cell lineages and computationally inferring gene 
networks have typically been approached separately. Determining lineage relationships 
between cells, a problem studied since the 19th century, has involved tracking cells and 
their progeny over time (Buckingham and Meilhac, 2011). This principle has been used 
repeatedly in different biological contexts. In the nematode Caenorhabditis elegans, for 
example, progenitor cells have been followed visually to determine the lineage of each cell 
in the entire organism (Sulston et al., 1983). The hierarchy of hematopoietic progenitors 
has been studied extensively through experiments involving transplantation of 
prospectively isolated hematopoietic progenitors into lethally irradiated recipients and 
tracking of the cell progeny (Orkin and Zon, 2008).  

Determining lineage relationships between cell types using gene expression alone 
is challenging because, unlike a tracking dye injected in a progenitor or heritable mutations 
in DNA, gene expression changes are dynamic and transient. While cell types can be 
characterized by the gene expression levels of thousands of genes, it is unclear how to 
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measure distances between cell types in this high-dimensional gene expression space. 
Figure 2.1B shows the principal component analysis (PCA) of gene expression data for 
1,459 transcription factors from 11 early hematopoietic progenitors (Figure 2.1A) (Heng 
and Painter, 2008). Distances between cell types in this PCA projection and in hierarchical 
clustering of the cell types (Figure 2.1C) show notable discrepancies with lineage distances 
known from experimental models of the early hematopoietic cellular hierarchy (Figure 
2.1D). Because of the challenges associated with determining lineage from gene expression 
data, DNA sequencing has been used to determine lineage relationships, for example by 
tracking mutations in hyper-mutating regions of the genome in mouse tumors (Frumkin et 
al., 2008). 
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Figure 2.1: Application of common data analysis methods to gene expression data from early hematopoietic progenitors. (A) Hematopoietic cell types considered. Listed 
for each cell type are the abbreviation used in this paper and its full name and phenotype. 
(B) Projections of the early hematopoietic progenitors along first two principal components. 
(PC1: 30%; PC2: 17%). Each point represents a different replicate. Note the proximity 
between ETP and MPP samples (red circle), which does not reflect either of the lineage 
models shown in (D).  
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(Figure 2.1, continued) (C) Average-linkage hierarchical clustering dendrogram of the 
early hematopoietic progenitors. The distance metric used is the Euclidean distance of the 
log2-transformed gene expression data. Note that ETP does not cluster with CLP or FrA, 
which does not reflect either of the lineage models shown in (D). (D) Two models of the 
hierarchy of early hematopoietic progenitors, both built based on prospective isolation of 
lineage-restricted progenitors, include (left) the traditional model, in which the first split 
strictly separates myeloid and lymphoid lineages (Akashi et al., 2000; Kondo et al., 1997; 
Reya et al., 2001) and (right) an alternative hierarchy proposed by Adolfsson and 
colleagues, in which lymphoid progenitors subsequent to the first split retain some 
myeloid potential (Adolfsson et al., 2005). (E) Module Networks analysis of transcription 
factor microarray data for the 11 early hematopoietic progenitors results in 48 distinct 
gene modules  (rows) with expression levels across all cell type replicates (columns). Bar 
graph indicates number of genes in each module (left). (F) Interaction network between 
143 regulator genes (blue circles) identified in (A) and 48 modules (yellow diamonds). 
Arrows from regulator genes to modules indicate regulation of the module by the gene; 
arrows from modules to regulator genes indicate inclusion of the regulator gene within 
the modules.  
 

Considerable progress has been made in developing algorithms for inferring gene 
regulatory networks from gene expression data (Bansal et al., 2007; Levine and Davidson, 
2005; Margolin et al., 2006; Segal et al., 2003). Such analyses have characterized gene 
networks as complex and scale-free (Basso et al., 2005) or as complex circuits composed 
of many interconnected modules of genes (Laurenti et al., 2013; Novershtern et al., 2011). 
Figure 2.1E and 1F show the complex network of modules and regulators for the same 
early hematopoietic progenitors, inferred from gene expression data by Module Networks, 
a widely-used network inference software (Segal et al., 2003). These methods allow us to 
infer the structure of the underlying networks through the analysis of gene expression 
patterns across cell types, but understanding how the networks inferred by these methods 
lead to the sequence of lineage decisions is difficult.  

In this chapter, we show that determining lineage relationships between different 
cell types using only gene expression data allows us to simultaneously infer the networks 
that control the lineage decisions. We first studied simulated data generated by a 
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mathematical gene regulatory network model. Despite the simplicity of the network that 
generated the data, conventional analysis techniques produced incorrect, complex 
networks with densely interconnected modules and were unable to reconstruct the lineage 
tree. We next developed a probabilistic approach that infers both lineage relationships and 
the underlying network simultaneously. We then applied our approach to analyze gene 
expression data from the hematopoietic system; by computationally reconstructing the 
lineage tree of the early hematopoietic progenitors we could infer the underlying 
transcription factor network involved in lineage decisions. Finally, we developed a 
framework for quantitatively modeling the inferred transcription factor network and made 
specific predictions about the hematopoietic system, including possibilities of 
reprogramming. In sum, we show that difficulties inherent in inferring lineage trees and in 
inferring gene networks can be overcome when considering both problems simultaneously, 
allowing us to model the underlying network effectively. 
2.2. Results 
2.2.1. A low-dimensional pattern correlated with lineage transitions 

In order to discover patterns of gene expression that are predictive of lineage 
relationships, we studied known lineage relationships between 41 cell types from B- and 
T-cell development (Figure 2.2A-B). We identified 150 triplets of cell types with 
experimentally-verified lineage relationships constituting both cell fate decisions (e.g. cell 
type A gives rise to cell types B and C) and lineage progressions (cell type A gives rise to 
cell type B which then gives rise to cell type C). For each triplet, we noted which cell type 
was the progenitor or intermediate cell type (“intermediate” cell type henceforth) and 
which cell types were not (“daughter” cell types henceforth). We analyzed transcription 
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factor microarray gene expression data for these triplets from the Immunological Genome 
Consortium, including between 2 and 4 biological replicates per cell type (Heng et al 2008).  

For each triplet of cell types, we sought to find low-dimensional patterns that were 
correlated with the lineage relationship. In particular, we evaluated three potential gene-
expression patterns across the 150 triplets (Figure 2.2C-E): 

- Genes with a “downregulation pattern” for cell type A show strong 
downregulation of gene expression in cell type A compared to cell types B and C, resulting 
in a statistically significant minimum expression level of the gene in cell type A (p < 0.005, 
two-sample t-test). 

- Genes with a “median pattern” for cell type A show significant 
downregulation of gene expression in B (or C) and strong upregulation of gene expression 
in C (or B), with a statistically significant median expression level of the gene in cell type 
A (p < 0.01, two-sample t-test). 

- Genes with an “upregulation pattern” for cell type A show strong 
upregulation of gene expression in cell type A compared to cell types B and C, resulting in 
a statistically significant maximum expression level of the gene in cell type A (p < 0.005, 
two-sample t-test). 



28 
 

 
Figure 2.2: Lineage relationships in B- and T-cell development are correlated with 1-dimensional gene expression patterns. (A). Known lineage relationships between 42 cell 
types in B- and T-cell development.   
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(Figure 2.2, continued) Two examples of triplets of cell types are shown, with the 
intermediate cell type indicated in blue. (B) Projection of cell types along first two principal 
components of their gene expression data (PC1: 34%; PC2: 16%). (C)-(E) Genes showing 
the downregulation, median, or upregulation patterns in triplet (B.T1, B.FrE.BM, B.Fo). 
Each gene is represented by a dot. For each pattern (downregulation, median, and 
upregulation), the gene’s p-value for the pattern is plotted on the x-axis, and the cell type 
featured by the pattern (e.g. gene downregulated in B.T1) is plotted on the y-axis. The p-
value threshold is indicated by the gray dotted line.(F)-(H) For each pattern, number of 
genes showing the pattern in the three cell types of each triplet. The number of genes in the 
intermediate cell type of each triplet is indicated in blue; the number of genes in the two 
daughters is represented in yellow and red. For each pattern, the triplets are ordered 
according to the total number of genes showing the pattern in the triple.(I)-(K) Statistics of 
the relative number of genes showing the pattern in each triplet, for triplets with 10 or more 
genes. Left plot: fraction of triplets in which the intermediate cell type has the minimum, 
median or maximum number of genes showing the pattern, compared to the two daughter 
cell types. Right plot: fraction of triplets in which the cell type with the most genes showing 
the pattern is the intermediate or daughter cell type.(L) Inference strategy: identification of 
genes showing the downregulation pattern leads to a vote against the cell type in which 
they are downregulated, allowing for inference of lineage relationship topology. 

 
In order to evaluate the predictive power of each pattern, we determined for each 

triplet the number of genes showing the pattern in each of the cell types (Figure 2.2C-E). 
The total number of genes showing a downregulation, median, or upregulation pattern in a 
given triplet varied between 0 and 118. For each of the three patterns, we considered the 
triplets with more than 10 genes showing the pattern, and we asked whether the relative 
number of genes showing the pattern in the different cell types of a triplet was correlated 
with the lineage relationship (Figure 2.2F-H).  

Among the 84 triplets with more than 10 genes showing a downregulation pattern, 
the number of genes downregulated in the intermediate cell type was much smaller than 
the number of genes downregulated in either of the two daughter cells (mean 1.3 compared 
to 7.5). In 87% of these triplets, the intermediate cell type had the fewest significantly 
downregulated genes; in the remaining 13% of triplets, the intermediate cell type had the 
median number of downregulated genes (Figure 2.2I, left). Importantly, in each triplet, the 
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cell type with the most downregulated genes was always one of the daughter cell types 
(Figure 2.2I, right). 

The other two patterns showed weaker correlation with lineage relationships. For 
the median pattern, the intermediate cell type had the highest number of genes that were 
significantly up- and down-regulated in 78% of triplets, but a daughter cell type had the 
most such genes in 22% of triplets (Figure 2.2J). For the upregulation pattern, the 
intermediate cell type had the fewest upregulated genes in 70% of triplets, but also the most 
such genes in 10% of triplets (Figure 2.2K). 

Of the three patterns that we evaluated, we identified the downregulation pattern as 
having the strongest correlation with lineage relationships: in particular, our results show 
that in a given triplet, the cell types with the most downregulated genes are most likely not 
the intermediate cell type. The gene expression pattern that we observed in known lineage 
relationships suggested a strategy to discover unknown lineage relationships from gene 
expression data by identifying genes with significant downregulation (Figure 2.2L). We 
next developed a Bayesian framework to determine significantly downregulated genes and 
to sum up the contributions of different genes in order to find the most likely cell lineage 
topology. 
2.2.2. Bayesian statistical approach to infer cell states and state transitions 

The pattern discovered in the previous section suggests a method for lineage 
inference resting on two assumptions: 

1. Lineage relationships can be inferred from genes that have a clear minimum 
expression level in one of the three cell types. 
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2. Each gene that has a minimum expression level in a cell type contributes to the 
probability that this cell type is not the intermediate state. 

We next developed a Bayesian probabilistic framework that reflects our confidence 
in whether or not these assumptions are satisfied. This framework, given gene expression 
data for a collection of ݊ cell types, infers lineage relationships between cell types and 
finds the key sets of marker genes {ߙ௜} defining each cluster and transition genes {ߚ௜} 
determining transitions between cell types. We assume that lineage relationships between 
cell types are characterized by “transition” genes {ߚ௜} showing the downregulation pattern 
in the daughter cell types as observed in our corpus of triplets; we also assume that certain 
marker genes {ߙ௜} are expressed in one cell type and nowhere else (Figure 2.3A-B). Given 
this model, the framework that we developed finds the most likely lineage tree and sets of 
marker and transition genes given the gene expression data.  

Since the transition gene pattern that our model is based upon is between 3 cell 
types, we first determined lineage relationships and key genes for all sets of 3 cell types, 
and then built a tree using the set of inferred relationships. We note that we seek to infer 
the topology of the relationship between the three cell types: given our lack of any temporal 
information, we will not distinguish between A being the progenitor of B and C and A 
being an intermediate cell type through which B makes a transition to C or vice versa. We 
present an outline of the underlying math below and the details in Chapter 5 Appendix: 
Mathematical derivation of Bayesian Framework. 

Let a set of three cell types be A, B and C, with gene expression data {݃௜஺,஻,஼} for 
all genes (݅ = 1 to ܰ) in cell types A, B and C including data from biological and technical 
replicates for each cell type.  The term ݃௜஺,஻,஼ denotes the expression data for just gene ݅ in 



32 
 

the three cell types. We would like to infer the topology ܶ of the relationships between cell 
types A, B and C. We note that ܶ can take on four possible values:  ܶ = ࣛ: cell type A is 
the intermediate (either A is the progenitor of B and C, or A is an intermediate cell type 
between B and C); ܶ = ℬ : cell type B is the intermediate; ܶ = ࣝ : cell type C is the 
intermediate; or ܶ = ∅: we cannot determine the topology. We thus want to compute the 
probability of each of the possible topologies given the gene expression data, ݌(ܶ|{݃௜஺,஻,஼}).  

For each gene ݅, we define a variable ߙ௜ equal to 1 if the gene is a marker gene and 
0 if not, and a variable ߚ௜ equal to 1 if the gene is a transition gene and 0 not. Given the 
replicate measurements of the gene expression of gene ݅ in cell types A, B and C, we can 
determine probabilistically whether each gene is a transition gene. The probability that a 
gene is a transition gene  ݌൫ߚ௜ = 1ห݃௜஺,஻,஼൯ will be closer to one if the gene has a unique 
minimum expression level in one cell type. For each gene, we can calculate the odds ௜ࣩ 
that its expression level has a unique minimum in one cell type, ௜ࣩ ≡
௜ߚ൫݌ = 1ห݃௜஺,஻,஼൯ ௜ߚ൫݌ = 0ห݃௜஺,஻,஼൯ൗ .  

Each gene with high odds of being a transition gene tells us that the cell type in 
which its expression level is a minimum cannot be the intermediate state. In our 
probabilistic framework, each transition gene casts a vote ݌൫ܶ│݃௜஺,஻,஼ , ௜ߚ = 1൯ against the 
topology in which the cell type with the minimum expression level of that gene is 
intermediate, and thus equally for the two other topologies in which it is not. To determine 
the probability of a topology, we next must add up the votes from all the genes, weighted 
by the probability that they are transition genes.  
  



33 
 

Figure 2.3: Identification of lineage topology and gene sets for 3 cell types. (A) Model 
of lineage tree underlying inference framework. Lineage relationships between cell types 
are characterized by “transition” genes {ߚ௜}  showing a downregulation pattern in the 
daughter cell types as observed in our corpus of triplets; marker genes {ߙ௜} are expressed 
in one cell type and nowhere else. (B) Gene expression patterns of marker genes, transition 
genes, and irrelevant genes in cell types A, B and C. Marker genes are highly expressed in 
only one cluster, whereas transition genes are highly expressed in two clusters and 
downregulated in the third. High probability transition genes alone are used for the 
determination of set of transitions; both high probability transition and marker genes are 
used for re-clustering. (C) Dot plot of the cell type that is most likely to have the minimum 
mean expression of each gene among CMP, ST and MPP as a function of the odds ܱ௜ of 
that gene being a transition gene. Each gene votes against the topology whose central node 
has the minimum mean among the three cell types, and this vote is weighted by the odds 
that the gene is a transition gene (Equation 3). Two groups of genes (boxed) are most likely 
to be transition genes and thus cast a strong vote against CMP or MPP being the 
intermediate cell type. (E) Computed probability of the topology given gene expression 
data indicates .84 probability that ST is the intermediate type. (F) Dot plot for triplet 
MEP/GMP/FrBC of the cell type that is most likely to have the minimum mean expression 
as a function of the odds ܱ௜  of that gene being an asymmetric gene. (G) Computed 
probability of the topology given gene expression data is the null hypothesis (.99). (H)-(I) 
Plot of the probabilities of the topologies given the data, ݌൫ܶห൛݃௜஺,஻,஼ൟ൯ as a function of the 
prior odds of genes being transition genes, ߚ)݌௜ = ௜ߚ)݌/(1 = 0) , for triplets 
CMP/ST/MPP and MEP/GMP/FrBC. For both triplets, the dominant topology is not 
affected by the choice of prior odds over a large range of values. (J) – (K) Replicates of 
cell types CMP, ST and MPP (dots colored based on cluster identity) in the gene expression 
space defined by transition and marker genes (probability > 0.8) associated with triplet 
CMP/ST/MPP .  Axes represent the normalized log expression values of each class of 
transition genes (J), and marker genes for the three cell types (K). The most likely gene of 
each class is represented in curly brackets. 
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(Figure 2.3, continued) 
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2.2.2.1 Summing up votes from different genes  
In order to obtain the probability of the topology given gene expression for all genes, 

൫ܶ│݃௜஺,஻,஼݌ ൫ܶ│ ൛݃௜஺,஻,஼ൟ൯, we must sum up each gene’s vote݌ , ௜ߚ = 1൯. Using a Bayesian 
framework, we derive this sum as (Methods):  

൫ܶห൛݃௜஺,஻,஼ൟ൯݌  ∝ (ܶ)݌ ි ቆ1 + ଵ
௣(்) ௜ࣩ × ൫ܶห݃௜஺,஻,஼݌ , ௜ߚ = 1൯ቇ

௜
, (1) 

where ݌(ܶ) is the prior probability of ܶ. Thus each gene’s contribution ݌൫ܶ│݃௜஺,஻,஼ , ௜ߚ =
1൯  to the probability of the topology given total gene expression ݌൫ܶ│ ൛݃௜஺,஻,஼ൟ൯  is 
weighted by the odds ௜ࣩ that it is a transition gene. 

The joint probability of the topology and the marker and transition genes is then: 
,൫ܶ݌ ,{௜ߙ} ൛݃௜஺,஻,஼ൟ൯│{௜ߚ} = ൫ܶห൛݃௜஺,஻,஼ൟ൯ ෑ݌  ௜ߙ൫݌ , ,௜หܶߚ ݃௜஺,஻,஼൯௜ ,(2) 

where ݌൫ߙ௜ , ,௜หܶߚ ݃௜஺,஻,஼൯ is the joint probability of gene ݅ being a transition gene or marker 
gene for topology ܶ given the gene expression data.  

Equation (1) can be rewritten as:  
൫ܶห൛݃௜஺,஻,஼ൟ൯݌ ∝ (ܶ)݌ ෑ ቀ1 + ଷ

ଶ ௜ࣩൣ1 − ௜்ߤ൫݌ is minห݃௜஺,஻,஼ , ௜ߚ = 1൯൧ቁ௜ , (3) 

where, for ܶ = ஺௜ߤ൫݌ ,ࣛ is minห݃௜஺,஻,஼ , ௜ߚ = 1൯ is the probability that the mean ߤ஺௜  of the 
distribution of gene  in cell type A is less than those of cell types B and C. Every gene 
casts a vote −݌൫ߤ௜் is minห݃௜஺,஻,஼ , ௜ߚ = 1൯ against cell type ܶ being the progenitor, and this 
vote is weighted by the odds  of the gene ݅ being a transition gene and having a unique 
minimum. Genes that are in fact expressed in only one of the cell types automatically get 
a low vote since their confidence to tell which of the three cell types has minimum gene 
expression is small. Similarly, genes expressed in all three cell types at a comparable level 

i

Oi
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have a low vote. On the other hand, transition genes get a high vote since these genes can 
determine with much higher confidence the cell type in which the expression level is the 
minimum.  

2.2.2.2 Computing the terms in equations (1)-(3)  
The weights of the votes of each gene and the sum of these votes arise naturally in 

our Bayesian framework, allowing us to calculate the probability of the topology given all 
gene expression data. The odds ܱ௜ of a gene being a transition gene, the probabilistic vote 
൫ܶห݃௜஺,஻,஼݌ , ௜ߚ = 1൯ it casts for different topologies, and its probability ݌൫ߙ௜ , ,௜หܶߚ ݃௜஺,஻,஼൯ 
of being a marker or transition gene given the topology can all be calculated using this 
framework. They depend on the likelihood of the data ݌൫݃௜஺,஻,஼หܶ, ௜ߙ , ௜൯ߚ  given the 
topology and whether the gene is a transition or marker gene. Each of these probabilities 
,൫݃௜஺,஻,஼หܶ݌ ௜ߙ ,  ௜൯ must be computed numerically by integrating over a prior probabilityߚ
distribution of the means and standard deviations of the distribution functions of gene 
expression in cell types A, B and C, with the constraints on which cell type has the 
minimum mean defining the domains of integration (Materials and Methods). The odds ܱ௜ 
of a gene being a transition gene is proportional to the prior odds ߚ)݌௜ = ௜ߚ)݌/(1 = 0) in 
the absence of any data of a gene being a transition gene. The prior odds are the one free 
parameter in our model, and we vary this sparsity parameter to test the robustness of our 
results. 
2.2.3. Application to hematopoietic gene expression data 

We used our Bayesian framework to understand the lineage and gene network 
governing early hematopoietic differentiation. We considered 11 early hematopoietic 
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progenitors from the ImmGen Consortium microarray data set (Heng and Painter, 2008), 
and focused our analysis on transcription factor gene expression. Given only the gene 
expression data for these different subpopulations of cells, we determined the lineage 
relationships and the key factors associated with each lineage decision. We calculated the 
probabilities of topology and marker and transition genes for the ቀ113 ቁ = 165  possible 
triplets of cell types using equations (1) and (2). To illustrate our method, we first describe 
the analysis of the expression data from two such triplets of cell types: CMP/ST/MPP and 
MEP/GMP/FrBC (Figure 2.3). We then assembled the triplets to form an undirected 
lineage tree (Figure 2.4).  

We computed the most likely topology and the identity of the transition genes 
simultaneously by maximizing ݌൫ܶ, ,{௜ߙ} ൛݃௜஺,஻,஼ൟ൯│{௜ߚ}  determined by Equation (2). 
Following Equation (3), each gene votes against the topology whose central node has the 
minimum expression of that gene among the three cell types, and this vote is weighted by 
the odds that the gene is a transition gene. To illustrate this for the triplet of cell types CMP, 
MEP and GMP, we plotted the topology each gene voted most against, i.e. the topology ܶ 
for which ݌൫ߤ௜் is minห݃௜஼ெ௉,ௌ்,ெ௉௉ , ௜ߚ = 1൯ is the maximum, versus the odds ௜ࣩ  of that 
gene being a transition gene (Figure 2.3C). 

We find two groups of genes that are much more likely to be transition genes than 
any of the other genes, with values of ܱ௜ ∼ 10ଶ compared to 10଴ at most for other genes 
(Figure 2.3C, blue boxes). These two groups of genes have a large value for either 
஼ெ௉௜ߤ൫݌ is minห݃௜஼ெ௉,ௌ்,ெ௉௉ , ௜ߚ = 1൯ or ݌൫ߤெ௉௉௜ is minห݃௜஼ெ௉,ௌ்,ெ௉௉ , ௜ߚ = 1൯ and thus vote 
against ܶ = ܶ cell type CMP is the intermediate or :ܲܯܥ =  cell type MPP is the :ܲܲܯ
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intermediate. Together these genes that have a high odds of being transition genes appear 
to most support topology ܶ = ܵܶ ≡ ܲܯܥ − ܵܶ −   .ܲܲܯ

In fact, the intuition in Figure 2.3C is borne out in the calculation of 
൫ܶห൛݃௜஼ெ௉,ௌ்,ெ௉௉ൟ൯݌ . Using Equation (1) above and assuming prior odds ߙ)݌௜ =
௜ߙ)݌/(1 = 0) in the absence of any data of a gene being a transition gene to be 0.05, we 
calculate that there is an 84% chance that the topology is ܵܶ (Figure 2.3D).  

In contrast to the case of the triplet of cell types CMP/ST/MPP, for triplet 
MEP/GMP/FrBC, there are no genes that have a much higher likelihood of being transition 
genes than other genes, and the distributions of genes supporting different topologies are 
similar (Figure 2.3E). Thus the most likely topology calculated using equation (1) is the 
null hypothesis (99%), which is that transition genes, if they exist, do not have patterns that 
depend on the cellular topology (Figure 2.3F), in which case there is insufficient evidence 
to classify the triplet according to a particular non-null topology. 

2.2.3.1 Choice of prior odds does not affect the most likely topology  
The only free parameter in our calculation above is a sparsity parameter: the prior 

odds of gene i being a transition gene, ߚ)݌௜ = ௜ߚ)݌/(1 = 0) required in equations (1)-(3). 
At one extreme, if ߚ)݌௜ = 1) ௜ߚ)݌ = 0)⁄ → 0, then ݌൫ܶ|൛݃௜஺,஻,஼ൟ൯ →  if we assume : (ܶ)݌
that none of the genes are transition genes, then knowing gene expression does not give us 
any new knowledge of the topology  since only transition genes are informative about 

. At the other extreme, if ߚ)݌௜ = 1) ௜ߚ)݌ = 0)⁄ → ∞ then the null hypothesis dominates: 
if all genes are transition genes, then there will be negative votes against all topologies. We 

T ,
T
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computed the behavior of ݌൫ܶ|൛݃௜஺,஻,஼ൟ൯  between these two limits to determine the 
sensitivity of our answer to ߚ)݌௜ = 1) ௜ߚ)݌ = 0)⁄ . 
Figure 2.3G and Figure 2.3H shows the dependences of the probabilities ݌൫ܶ|൛݃௜஺,஻,஼ൟ൯ on 
the prior odds for triplets CMP/ST/MPP and CLP/MEP/GMP for values of 
௜ߚ)݌ = 1) ௜ߚ)݌ = 0)⁄  between 10-8 and 102. For triplet CMP/ST/MPP the topology ܵܶ ≡
ܲܯܥ − ܵܶ − ௜ߚ)݌ dominates for ܲܲܯ = 1) ௜ߚ)݌ = 0)⁄  between 10-2 and 10, whereas for 
triplet MEP/GMP/FrBC there is no value of the prior odds that strongly favors a non-null 
topology. For most triplets, the most likely topology does not depend on the choice of prior 
odds; we ignore those triplets where different choices of prior odds lead to different most-
likely topologies. 

2.2.3.2 Transition and marker genes for the CMP/ST/MPP triplet 
For each triplet, we evaluated each gene’s probability of being a transition or 

marker gene. Figure 2.3I shows the names and associated probabilities of the 15 genes 
most likely to be transition genes for the triplet CMP – ST – MPP. The transition genes fall 
into two groups, corresponding to the two boxes in Figure 2.3C. One group, which includes 
genes Gata1, Dach1, and Gata2, has higher expression in CMP than in MPP; the other 
group, which includes Hlf, Tsc22d1, and Hoxa9, has higher expression in MPP. Although 
the values of the probabilities of the genes being transition genes vary with the value of the 
sparsity parameter, the relative order of different genes does not change. The genes 
identified include many genes previously identified as being important for lineage 
specification (Crispino, 2005; Gazit et al., 2013; Miyawaki et al., 2015). The transition 
genes we discovered thus not only have gene expression patterns that reflect the lineage 
decision but also include functionally important genes.  
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In addition to the transition genes, we identified marker genes present only in ST 
(including Mpl and Rai14, consistent with (Solar et al., 1998)) and then symmetrically 
downregulated in both CMP and MPP (Figure 2.3J, L). Marker genes for CMP include Srf, 
Zeb2, Rbpj and Irf8 (consistent with (Goossens et al., 2011; Kurotaki et al., 2013; Ragu et 
al., 2010; Robert-Moreno et al., 2005; Tamura et al., 2000)); marker genes for MPP include 
Satb1, consistent with (Satoh et al., 2013). Although these genes were not used to 
determine the topology, they are good markers for cell types ST and LT. 

Plotting the cell types using the mean expression levels of the two transition gene 
classes captures the fork in the gene expression space associated with the cell-fate decision 
(Figure 2.3K). In contrast with the PCA analysis of the cell types (Figure 2.1A), in which 
MPP appears to be an intermediate between the hematopoietic stem cell types (LT and ST) 
and CMP, the projection of the cell types onto the transition-gene subspace cleanly shows 
that ST splits into CMP and MPP.  

2.2.4. A lineage tree for early hematopoiesis 
We next constructed both the lineage tree for the cell types and a gene regulatory 

network. Out of the 165 possible triplets of hematopoietic progenitors, 144 showed one 
single non-null topology with probability greater than 0.6 over a large range of values of 
the prior odds.  

To illustrate the construction of the tree from individual triplets, consider first the 
gene expression data for four cell-types:  long-term hematopoietic stem cell (LT), short-
term hematopoietic stem cell (ST), multipotent progenitor (MPP) and common myeloid 
progenitor (CMP) (Heng and Painter, 2008). We first infer the topology of the ቀ43ቁ = 4  
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triplets involving those cell types. For each triplet, we found a non-null topology that had 
high probability over a large range of prior odds (Equation (1), Figure 2.4A-D). We 
assembled these triplet topologies into a tree that recapitulates each of the local topologies. 
Although triplet CMP/LT/MPP has topology CMP – LT – MPP (Figure 2.4D), we could 
determine that LT cannot be the direct progenitor of CMP or MPP, because ST is an 
intermediate between LT and both cell types (Figure 2.4A, C). We can thus “prune” this 
triplet to infer the local lineage relationships between the four cell types (Figure 2.4E). The 
inferred tree between the four cell types is undirected; however, it is interesting to note that 
triplet CMP – LT – MPP, although not necessary for the construction of the tree, gives a 
hint of directionality, suggesting that LT is an ancestor of CMP and MPP, not an 
intermediate.  
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Figure 2.4: Determination of lineage tree and transition and marker genes given gene expression for early hematopoiesis. (A)-(D) Determination of the topologies of the four 
triplets involving cell types LT, ST, MPP and CMP: LT/ST/MPP (A), CMP/ST/MPP (B), 
LT/ST/CMP (C), and MPP/LT/CMP (D). Left: Plots of the probabilities of the topologies 
given the data, ݌൫ܶห൛݃௜஺,஻,஼ൟ൯ as a function of the prior odds of genes belonging to the 
asymmetric class, ߙ)݌௜ = ௜ߙ)݌/(1 = 0), for the four triplets. Right: For each triplet, there 
is a non-null topology that has high probability over a large range of prior odds 
(probabilities indicate the maximum probability of the topology over the range of prior 
odds).  
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(Figure 2.4, continued) (E) Schematic of the pruning rule used to assemble the triplet 
topologies into a tree that recapitulates each of the local topologies. Although triplet 
CMP/LT/MPP has topology CMP – LT – MPP (Figure 2.4D), LT cannot be the direct 
progenitor of CMP or MPP, because ST is an intermediate between LT and both cell types 
(Figure 2.4A, C). Left: Superposition of all four topologies, before using the pruning rule. 
Right: Resulting tree after using the pruning rule, eliminating the connections from LT to 
CMP and MPP. (F) Final lineage tree, with key inferred transition genes indicated along 
cell fate decisions. 
 
 

The ST/CMP/MPP triplet immediately allows us to distinguish between two 
competing models regarding the hierarchy of early hematopoietic progenitors. According 
to the traditional picture (Iwasaki and Akashi, 2007), MPP is the progenitor of CMP, and 
ST is the progenitor of MPP – therefore MPP should be an intermediate between ST and 
CMP and the topology of triplet ST/MPP/CMP should be ST – MPP – CMP (Figure 2.1D, 
left). According to a model suggested by Adolfsson and colleagues (Adolfsson et al., 2005), 
ST splits into CMP and MPP (Figure 2.1D, right), and the topology should be CMP – ST 
– MPP. We identify both CMP – ST – MPP and CMP – LT – MPP as the correct topologies, 
lending support to the Adolfsson model. 

We determined the topologies of the remaining triplets of cell types, and we 
constructed the full lineage tree by assembling and pruning the triplets we identified as 
connected. For each triplet of cell types, we discovered marker and transition genes genes. 
The lineage tree that we determined is consistent with the Adolfsson model and contains 
three additional lineage decisions (Figure 2.4F). First, CMP gives rise to MEP 
(megakaryocyte/erythroid progenitor) and GMP (granulocyte/macrophage progenitor). 
Second, MPP gives rise to MLP (multilineage progenitor), which then splits into the GMP 
and CLP (common lymphoid progenitor) cell types. The final lineage decision, in which 
CLP gives rise to the ETP (pre-T) and FrA (pre-pro-B) and FrBC (pro-B) cell types. 
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Many genes we discover as belonging with high probability to the transition and 
marker classes of genes at each lineage decision are known in the literature to be 
functionally important genes. Marker genes for LT include Egr1 and Fus, consistent with 
(Sugawara et al., 2010) and (Min et al., 2008)). For the CMP/MEP/GMP decision, markers 
for CMP include Pbx1 and Mycn, known to be important for renewal of the pluripotent 
state (Ficara et al., 2013; Laurenti et al., 2008), transition genes  maintained in MEP include 
Gata1 and Mllt3, involved in erythroid and megakaryocytic cell fate (Pina et al., 2008; 
Zhang et al., 1999), and transition genes maintained in GMP include known myeloid 
regulators Sfpi1, Cebpa, and Gfi1 (Koschmieder et al., 2005; van der Meer et al., 2010; 
Radomska et al., 1998; Zhang et al., 1999). In the subsequent lineage decisions, we again 
rediscovered a number of known regulators, including lymphoid regulators Satb1, Ikzf1 
and Notch1 (Rebollo and Schmitt, 2003; Satoh et al., 2013; Stier et al., 2002), and factors 
important for the B/T cell-fate decision such as Ebf1, Pax5, Irf8, Nfatc2, and Runx2 
(Busslinger, 2004; Macian, 2005; Vaillant et al., 2002; Wang et al., 2008).  

At the different lineage decisions along the tree, we found that several genes are 
reused and belong to multiple gene classes as differentiation progresses. For example, the 
transition genes present in LT and ST and expressed CMP but downregulated in MPP 
exhibit three distinct behaviors in the lineage decision from CMP to MEP and GMP. First, 
some genes such as Zbtb16 do not have differential expression in the CMP/MEP/GMP 
lineage decision. Second, some genes including Pbx1 and Gata2 are symmetrically 
downregulated in both MEP and GMP. Gene Gata1, on the other hand, is upregulated from 
CMP to MEP but downregulated in GMP. Thus, in cell type CMP, the set of transition 
genes from ST to CMP contains three new subclasses, one that does not have any role in 
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the next lineage decision, a second that is symmetric and potentially contributes to 
stabilizing CMP, and a third that serves as a transition gene at the next decision. We find a 
similar pattern of reuse in the other lineage decisions, with genes acting as transition genes 
or marker genes in multiple cell-fate decisions. 

Our approach allowed us to categorize different genes within a particular cell-fate 
decision as different classes of transition or marker genes. Based on the behavior of genes 
in the different cell-fate decisions along the tree, we grouped genes into 25 modules 
(Methods), with genes in each module showing the same binarized expression pattern along 
the lineage tree (Figure 2.5A-B). We will denote each module by a representative gene, but 
most modules contain multiple genes (Figure 2.6A-B). By simultaneously inferring both 
the lineage tree and the gene regulatory network, we were thus able to discover a simple 
core gene network that gives rise to the lineage tree.  

As we show next, inferring the lineage relationships and the underlying network 
can help us quantitatively understand the gene regulatory networks that govern 
differentiation. 
 



46 
 

 
Figure 2.5: Quantitative modeling of the core network underlying hematopoiesis. (A) 
Binary gene expression patterns across all cell types (columns) for the 25 inferred gene 
modules. Each gene module represents multiple genes that have similar behaviors along 
the lineage tree. (B) Gene expression patterns of the 25 modules in the 11 hematopoietic 
cell types (colors according to A).  
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(Figure 2.5, continued) Straight lines indicate asymmetric regulation favoring the colored 
branch; dots indicate symmetric downregulation in the subsequent two branches. (C) Plot 
of the production rate of module ݅,  ݎ௜( ሬ݉ሬԦ), as a function of the drive from the other modules 
߶௜( ሬ݉ሬԦ) = ∑ ௜௝ܬ  ௝݉ே௝ୀଵ . The production rate is equal to 1 if the drive is greater than a critical 
drive ߶଴ and 0 otherwise. (D) Shared features of the inferred gene regulatory networks 
between the 25 modules. Green arrows represent couplings whose average values across 
5000 sampled solutions are positive; red arrows represent couplings with negative mean 
values. Line thickness represents the mean strength of the coupling; transparency 
represents the coefficient of variation (c.v.) of the coupling. The modules are shown in 
groups that have similar interactions with other modules. Four groups of modules are 
characteristic of the four terminal cell types (MEP, GMP, FrA/BC and ETP) and have 
mutually inhibitory interactions. There is also a group of modules that are characteristic of 
the HSC cell types (LT and ST), and one that is characteristic of the lymphoid cell types 
(MPP and MLP). The progenitor cell types are stabilized through a combination of positive 
and negative interactions. (E) Table of reprogramming predictions. Shown are the start and 
end states of the prediction, the modules to overexpress, the probability of reaching the end 
state given starting in the starting state and overexpressing the given modules, and any 
prior experimental validation of the prediction.  
 
2.2.5. Modeling the underlying network 

The Bayesian analysis in the last section allowed us to obtain the probabilities of 
lineage relationships as well as the marker and transition genes for each triplet of cell types. 
Classifying genes based on their patterns of expression along the inferred lineage tree rather 
than by gene-gene correlations allowed us to identify 25 modules of genes with similar 
expression patterns in successive cell-fate decisions (Figure 2.5B). Here we describe a 
framework, distinct from the preceding method, for building a mathematical model to 
obtain a quantitative understanding of hematopoietic differentiation. 

We assume that the expression of each module is driven by the expression of all 
other modules. We consider a network that contains only direct interactions, in which each 
module j exerts a drive on module i which is equal to an interaction strength ܬ௜௝ (positive 
or negative) multiplied by the concentration of module j. The total drive on module i is the 
sum of the drives from the different modules. We further consider that the total drive on 
module i affects expression in a highly non-linear manner, with high gene expression for 



48 
 

drives that exceed a critical drive ߶଴, and low gene expression otherwise (Figure 2.5C).  
Thus the effective dynamics of expression levels, ݉௜ of each module ݅ of genes is given by 
the non-linear equation:  

  
݀݉௜
ݐ݀ = ܪ ቆ෍ ௜௝ܬ ௝݉ − ߶଴

௝
ቇ − ݉௜

߬ , 

where ܪ is the Heaviside step function and ߬௜ is the effective lifetime of module ݅. The 
effective lifetime can be absorbed into the other parameters in the model through rescaling, 
and in steady state ݉௜ will have high and low expression levels that can be rescaled to be 
0 and 1 (Methods). 

This model has to be constrained by our data. To do so, we make the assumption 
that experimentally discovered cell types must be stable over a certain period of time.  Thus, 
we asked what set of interactions ܬ௜௝ were consistent with the observed cell types (LT, ST, 
CMP, etc.), defined by the appropriate expression patterns of the modules in each cell type, 
being stable states of the network. If state ሬ݉ሬԦఈ = {݉ଵఈ, … , ݉ଶହఈ } with expression level ݉௜ఈ 
in module ݅ is a stable state of the network, then the interactions ܬ௜௝ must be such that the 
total drive on each module that is expressed in ሬ݉ሬԦఈ is greater than the critical drive, and the 
total drive on each module that is not expressed in ሬ݉ሬԦఈ is less than the critical drive: 

݉௜ఈ = 1 ⇒  ∑ ௜௝ܬ ௝݉ఈ ≥  ߶଴,௝   
݉௜ఈ = 0  ⇒  ∑ ௜௝ܬ ௝݉ఈ <  ߶଴.௝  (4)  
Thus, for each stable state, we have 25 constraints on the possible values of ܬ௜௝, one 

for each module. Given 11 cell types, there are 275 inequalities that constrain the values of 
the 625 different interaction strengths ܬ௜௝. Clearly, the problem is underdetermined, and 
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there is an infinite number of solutions that would allow for the observed cell types to be 
stable states. Faced with this massive parameter uncertainty, we noted recent research 
(Machta et al., 2013) that shows that when fitting high-dimensional models to data, some 
parameters or combinations of parameters, referred to a “sloppy” parameters, have little 
effect on model behavior, whereas a small number of parameter combinations, designated 
as “stiff”, tend to be well-constrained and crucial for the model behavior. Inspired by this 
work, we sought to determine which interaction strengths in the network were the most 
important for producing the known cell types, and which interaction strengths could take 
on a wide variety of values and still produce these cell types. 

We used a linear programming method with the constraints set by Equation (4) to 
generate a representative set of models and study their behaviors (Methods). We sampled 
5,000 different solutions ܬ௜௝ for which the known cell types are stable, and we explored any 
common features of these networks. We found that 79 couplings could be considered near-
universally positive or negative (70% or more of the sampled couplings were of one sign 
or another, corresponding to coefficients of variation less than 2). The remaining 546 
couplings could take a wide range of values and still produce the observed stable states. 
We were thus able to discover a core network between the different modules that is shared 
by the majority of solutions and is thus necessary to produce the observed cell types (Figure 
2.5D).  

The inferred functional network (Figure 2.5D) shows certain motifs common across 
cell fate decisions. First, in all 5000 solutions, the parameters for interaction strengths are 
tuned such that the cell-fate decisions along the tree are controlled by mutually-inhibitory 
interactions between modules that serve as transition genes along the decision. For example, 
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in a majority of models, mutual inhibition between modules Zbtb16 and Tsc22d1 is 
responsible for the decision from ST to CMP and MPP. Second, activatory interactions 
stabilize the mutually inhibitory interactions in the progenitor. For example, modules 
Zbtb16 and Tsc22d1 are present together in cell types LT and ST; their mutual inhibition 
is stabilized through indirect activation of both factors by modules Egr1 and Rai14 through 
Gata2 and Hlf respectively.  

Similarly, the decision of CMP cells to differentiate to MEP or GMP is controlled 
by the strong mutual inhibition between modules Gata1, Klf1 and Mllt3 on the one hand 
and modules Sfpi1 and Cebpa on the other hand, and these modules are stabilized in CMP 
through activation by Gata2 and Satb1. The transition from MPP to MLP is mediated by 
the mutual inhibition between module Jun, which is downregulated from MPP to MLP, 
and modules Ikzf1 and Irf8, which are upregulated from MPP to MLP. The decision from 
MLP to GMP and CLP is controlled by the mutual inhibition between Cebpa and Clpb, 
and Ikzf1 and Ebf1; this inhibition is stabilized in MLP by modules Sfpi1 and Ir8. Finally, 
the FrA/ETP split is controlled by the mutual inhibition between Nfatc2 and Irf8, and the 
mutual inhibition between Ebf1 and both Hnf4a and Ikzf2 is further responsible for the 
split between ETP and FrBC. These modules are stabilized in CLP by Ikzf1 and Meis1. 

In sum, we find that the network contains 4 groups of modules each of which is 
characteristic of one of the 4 terminal cell types (MEP, GMP, FrBC and ETP). These four 
groups have mutually inhibitory interactions, and the progenitor cell types (LT, ST, CMP, 
MPP, MLP and CLP) are stabilized through positive interactions with symmetrically-
downregulated modules. 
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2.2.5.1 Reprogramming predictions  
We next used the sampled solutions to make reprogramming predictions. Given the 

set of possible coupling constants that satisfy the fixed-point constraints ൛ܬ௜௝ൟ, we modeled 
the dynamics of moving between the stable states of the network. Given any two stable 
states ሬ݉ሬԦఈ  and ሬ݉ሬԦఉ , we calculated the probability of moving from ሬ݉ሬԦఈ  to ሬ݉ሬԦఉ  when 
overexpressing some set of modules  (Figure 2.5E, Methods). Our model identified 
modules whose overexpression could achieve transdifferentiation between the terminal cell 
types of the tree.  Thus reprogramming to MEP can be achieved by overexpressing 
members of modules Gata1 and Klf, consistent with reprogramming experiments involving 
Gata1 (Iwasaki and Akashi, 2007). Similarly, transdifferentiation to GMP can be achieved 
through overexpression of modules Cebpa, Irf8 and Clpb, consistent with experimentally 
observed Cebpa or Sfpi1 overexpression (Iwasaki and Akashi, 2007), and 
transdifferentiation to ETP and FrA/BC is successful through overexpression of modules 
Nfatc2 and Ebf1, respectively. Transdifferentiation to B-like cells has been achieved using 
overexpression of Ebf1 (Pongubala et al., 2008) but has not been successfully attempted 
for T-like cells.  

Our model also predicts modules for reprogramming to the pluripotent and early 
multipotent progenitors. For example, reprogramming to LT-HSC, MPP, CMP and CLP 
from the more terminal cell types can be achieved through overexpression of members of 
modules Egr1, Hlf and Ikzf2, Gata2 and Meis1 respectively. Several members of these 
modules have been successfully employed in attempts to convert differentiated cells 
towards hematopoietic stem cells, including genes Mycn, Hlf, Lmo2, Meis1 and Pbx1 
(Riddell et al., 2014). 
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In conclusion, we have shown that we can categorize the relevant genes into 
different modules, and these modules can be the starting point for successfully modeling 
the core differentiation network responsible for the cell-fate decisions along the tree and 
making transdifferentiation and reprogramming predictions. 
2.3. Discussion 

Gene expression patterns during the course of differentiation give us snapshots of 
the dynamics of the molecular network that leads progenitor cells to more differentiated 
states. Not all genes give us equal information about the sequence of lineage decisions 
pluripotent cells make, and in fact, the expression levels of many genes corrupt this 
information. We first studied known lineage relationships and found that one-dimensional 
downregulation patterns in individual genes are correlated with lineage relationships. We 
built a probabilistic framework based on the lineage-decision expression patterns we 
observed.  This framework allowed us to weigh the data from each gene while employing 
a sparsity parameter, the prior probability for any gene to be a transition gene. When we 
fail to detect patterns that support any lineage relationship, our probabilistic approach 
allows us to declare failure in finding the correct topology and the genes. Using this 
framework, we identified both lineage relationships and known master factors for the 
hematopoietic system, including Gata1, Cebpa, Sfpi1, Ebf1 and Pax5 (Orkin and Zon, 
2008). By using the patterns of gene expression along the inferred lineage tree we build 
models, sampled 5,000 possible combinations of parameters and found the key interactions 
of networks that lead to hematopoiesis. We were thus able to uncover simple core networks 
involving a small number of key transcription factors, in agreement with the traditional 
paradigm in the study of hematopoiesis (Iwasaki and Akashi, 2007; Orkin and Zon, 2008), 
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but in contrast with recent computational studies arguing for the role of complex networks 
in hematopoiesis (Basso et al., 2005; Novershtern et al., 2011). Using our models, we can 
also predict factors that can reprogram one cell type into another, with many of our findings 
consistent with recent literature.  

There are many examples of genes known to be functionally important for lineage 
decisions whose expression patterns fit the downregulation pattern that we observed. In the 
case of patterning involving lateral inhibition, progenitor cells express genes together (for 
example, Notch and Delta) which are differentially expressed in the differentiated states 
(only Notch or only Delta) (Perrimon et al., 2012). The same pattern is also seen in multiple 
examples of lineage decisions often involving mutual inhibition, where key genes 
expressed in the progenitor are differentially regulated in the progeny (Graf and Enver, 
2009; Qi et al., 2013; Thomson et al., 2011; Zhang et al., 1999). In these latter examples, 
the proteins that integrate external signals to decide whether progenitor cell type A 
differentiates into cell types B or C are (a) present in A before the decision is made and (b) 
not only favor one of the two differentiated cell fates but also inhibit the progenitor cell 
from choosing the other fate, so their levels must be downregulated in the differentiated 
cell type whose fate they inhibit. In each of these examples, the genes show a clear 
minimum expression level in one of the three cell states, and the cell type in which their 
expression is a minimum is not the progenitor. Given the prevalence of the downregulation 
pattern among known functional genes, it is perhaps not surprising that the transition genes 
that we discovered based on their gene expression pattern are good candidates for having 
a functional role, and indeed include known regulators of hematopoiesis. 
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Our observation that downregulation patterns are correlated with lineage 
relationships in B- and T-cell development suggests that this pattern, seen anecdotally in 
the context of important functional regulators of cell state, may be one that can be observed 
more generally in a larger number of transcription factors and wide variety of lineage 
transitions, including lineage progressions.  

The transitions of multipotent cells from one cell state to another are controlled by 
a network involving a very large number of molecular factors and interactions. One 
approach to studying complex biological networks is to carefully measure every variable 
and rate constant in the underlying network and then build mathematical models for the 
different interactions (Karr et al., 2012).  In striking contrast, state transitions of complex 
physical systems have been studied successfully by extracting, often using symmetry 
principles, reduced sets of key variables known as order parameters. Such approaches have 
led to a deep understanding of a diverse set of phenomena including complex metallic 
alloys transitioning to a superconducting state and the localization of electrons in 
disordered solids to the acquisition of magnetism in solids (Abrikosov, 2004; Anderson, 
1978; Landau and Lifshitz, 1951).  
The two classes of transition genes at each lineage decision best describe the cell state 
transition: in the two-dimensional space of these two classes of transition genes, the 
progenitor cells must trace a fork as they transition to the two differentiated cell types 
(Figure 2.2L and Figure 2.3K).  The two classes of transition genes thus constitute the 
relevant order parameters for the cell fate decision. Monitoring the levels of these genes in 
real time in single cells should capture the dynamics of transitions of individual cells at a 
lineage decision, thus allowing us to understand how individual cells make developmental 
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decisions, whether their transitions from one state to another are probabilistic, and how 
different cells coordinate their decisions. Similar to the dimension-reduction approaches 
for the analysis of protein-folding trajectories to obtain correct reaction coordinates (Best 
and Hummer, 2005), our framework leads us to the transition genes as the ‘reaction 
coordinates’ for understanding lineage decisions. 

Single-cell data being generated for different developmental systems (Klein et al., 
2015; Macosko et al., 2015b) gives us glimpses into how single cells make lineage 
decisions.  Our finding that distance measurements using all genes are misleading implies 
that the analysis of this data might require more than straightforward clustering (Jaitin et 
al., 2014; Zeisel et al., 2015). A probabilistic approach that simultaneously determines the 
cluster identity of each cell, the lineage relationships between cell types and the underlying 
networks, rather than treat each problem independently, will be needed to understand 
single-cell transcriptomics data. Combining such statistical approaches with 
phenomenological modeling of developmental signaling networks (Corson and Siggia, 
2012) will likely help us understand the networks that control the decisions of individual 
cells.  
2.4. Methods 
2.4.1. Gene Expression Data 

Hematopoietic gene expression data was downloaded from the Immunological 
Genome Project (Heng et al., 2008; GEO GSE15907) and log-2 transformed. We restricted 
the genes considered to 1,459 transcription factors.  
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Table 2.1 Hematopoietic Cell Types Considered. Listed for each cell type considered in 
this paper are the Immunological Genome Project descriptor for the cell type, its common 
name and phenotype, its age and location, and the number of replicates in the data set. 
 

Abbreviati
on in text 

Immgen 
Descriptor 

Long name Phenotype Age Location 
# of 
replicates 

LT SC.LT34F.BM 
Long-Term 
reconstituting Stem 
Cell (LT-HSC) 

CD34- Flk2- Lin- 
ckit+ Sca1+ 

8w 
Bone 
marrow 

3 

ST SC.ST34F.BM 
Multipotent 
Progenitor (ST-HSC) 

CD34+ Flk2- 
Lin- ckit+ Sca1+ 

8w 
Bone 
marrow 

2 

MPP SC.MPP34F.BM 
Multipotent 
Progenitor (MPP) 

CD34+ Flk2+ 
Lin- ckit+ Sca1+ 

8w 
Bone 
marrow 

2 

MLP MLP.BM 
Multilineage 
Progenitor 

Lin- AA4+ Kit++ 
IL7Ra- B220- 

6w 
Bone 
marrow 

4 

CMP SC.CMP.BM 
Common Myeloid 
Progenitor 

Lin- IL7R- Sca1- 
ckit+ 
FcgRloCD34+ 

8w 
Bone 
marrow 

2 

MEP SC.MEP.BM 
Megakaryocyte-
Erythroid Progenitor 

Lin- IL7R- Sca1- 
ckit+ 
FcgRloCD34- 

8w 
Bone 
marrow 

2 

GMP SC.GMP.BM 
Granulocyte-
Monocyte Progenitor 

Lin- IL7R- Sca1- 
ckit+ 
FcgRhiCD34+ 

8w 
Bone 
marrow 

3 

CLP proB.CLP.BM 
Common Lymphoid 
Progenitor 

Lin- AA4+ Kit+ 
IL7Ra+ B220- 

10w 
Bone 
marrow 

4 

FrA proB.FrA.BM Fr. A (pre-pro-B) 
Lin- AA4+ Kit+ 
IL7Ra+ B220+ 

10w 
Bone 
marrow 

4 
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(Table 2.1, continued) 

FrBC proB.FrBC.BM Fr. B/C (pro-B) 
Lin- AA4+IgM-
CD19+CD43+H
SA+ 

10w 
Bone 
marrow 

3 

ETP preT.ETP.Th 
Early T lineage 
Precursor 

4- 8- 11b- 11c- 
19- NK1.1- TCR- 
44hi 117hi 25- 

6w Thymus 3 

 
2.4.2. Software 

Calculations were performed using custom written MATLAB code (The 
Mathworks) on the Harvard Research Computing Odyssey cluster. Module Networks 
software (Segal et al., 2003) was downloaded as part of the Genomica suite 
(http://genomica.weizmann.ac.il/) and was run using default parameters.  
 
2.4.3.  Membership in the transition and marker gene classes 

Membership in classes G1-G15 was calculated by assuming a prior of 5 × 10ିଶ for 
the hematopoietic data. The threshold for membership was ߙ)݌௜|݃௜ , ܶ) > 0.8  or 
௜|݃௜ߚ)݌ , ܶ) > 0.8. 
2.4.4. Determination of gene modules 

A total of 265 genes belong to any of the marker and transition gene classes. We 
partitioned the transcription factors into a total of 41 subclasses, each of which is a unique 
intersection or set difference of the marker and transition gene classes. We determined 
binary gene expression profiles by calculating the mean log2 fold-change in expression 
level for each subclass. Some subclasses had identical binary gene expression profiles: for 
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example, gene Mpl is present in ST, downregulated symmetrically in CMP and MPP, and 
then further downregulated asymmetrically from CMP to GMP. Such a gene expression 
pattern would require 3 distinct levels (high in ST, medium in CMP, and low in GMP); 
instead, our binary representation of Mpl matches that for Rai14: on in LT and ST and off 
in all other cell types.  

We grouped subclasses with identical binary expression profiles together, leaving 
us with a total of 25 modules with unique binary gene expression profiles. We denote each 
module by a representative gene; the genes that belong to each module are shown in Table 
2.2. The binary profiles for each module are shown in Figure 2.6A, and the number of 
genes per module is shown in Figure 2.6B. 
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Table 2.2: Composition of the 25 Gene Modules. 
Module 
name 

Module members 

Tsc22d1 Hoxa9 Tsc22d1               
Hlf Hlf                 
Cebpa Cebpa Gfi1               
Sfpi1 Bmyc Hcls1 Hdac5 Lass5 Lass6 Lbh Sfpi1 Zscan2   

Satb1 
Aff3 Arid5b Elk3 Erg Esr1 Etv6 Hhex Mef2c Ncoa3 
Rel Satb1 Smad5 Sry Stat4 Zbtb20 Zfp238     

Runx2 Runx2 Smarca2               
Irf8 Irf8                 

Clpb 
Clpb Men1 Nfe2 Nfkbib Pdlim1 Polr2l Psmd9 Ruvbl2 Rxrb 
Tcfec Tysnd1               

Hnf4a Ctbp2 Hnf4a Nfil3 Pbx4 Prdm5         
Ebf1 Ddx54 E2f2 Ebf1 Pax5           
Mycl1 Mycl1                 
Nfatc2 Nfatc2 Nr1d2               

Ikzf1 

672048
9N17Ri
k 

Adnp Ankrd6 
Arhgap1
7 

Arid1a Atf2 Atf6 Atf7ip   

Bach2 Baz2a Bbx Brd8 Carf Clock Crebbp Ctcf   
Ddx58 Dido1 Elf1 Elk4 Ep300 Ets1 Ezh1 Foxj3   

Foxp1 Grlf1 Helz Hipk2 Hivep1 Hmbox1 
Hmg20
a 

Huwe1   

Ikzf1 Irf1 Irf2 Irf7 Klf6 Klf7 Lcor Mllt10   
Myst4 Nab1 Ncoa1 Ncoa6 Ncor1 Nfatc1 Nfatc3 Notch1   
Nsd1 Otud4 Papolg Pbrm1 Pdcd11 Phf21a Pias2 Pogk   

Pou2f1 
Ppp1r16
b 

Rara Rbl1 Rfc1 Rfx3 Rnf38 Runx1   
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Runx3 

 
Sertad2 

 
Sin3a 

 
Smad4 

 
Smad7 

 
Smarca5 

 
Sox4 

 
Sp1 

  

Stag1 Stat1 Suz12 Tcerg1 Tcf12 Tcf20 Tcf7l2 Tial1   

Trim24 Trim30 
Trp53b
p1 

Trps1 Ubp1 Wasl 
Zdhhc1
5 

Zeb2   

Zfp113 Zfp131 Zfp182 Zfp39 Zfp407 Zfp606 Zfp81 Zfp90   

Zfx Zhx1 
Zkscan
1 

Zkscan3 Zmynd11      

                  
Fmnl2 Fmnl2 Hdac9               
Meis1 Meis1 Cdc5l Zfp192             
Ikzf2 Atf1 Ikzf2 Klf10 Limd1 Lmo2 Nfic Nfix Taf1a Zfp295 
Jun Jun Atoh1               

Klf1 

633041
6L07Ri
k 

Aebp2 
Ankrd3
2 

Ccnt2 Fem1b Klf1 Mid1 Nudt12 Pms1 

Polr3e Zfp597               

Mllt3 

181000
7M14Ri
k 

Ahctf1 Ankhd1 Arid4a Ash1l Atm 
BC0032
67 

Bcl11a   

Bclaf1 Brwd1 Cebpg Cebpz Creb1 Dek Dmtf1 Garnl1   
Hltf Jmy Lcorl Mef2a Mga Mll1 Mll3 Mll5   
Mllt3 Mtf2 Myst3 Narg1 Ncoa2 Nfat5 Nr3c1 Nrip1   
Nsbp1 Papola Phf14 Rb1 Rbm39 Rybp Shprh Sirt1   

Sp4 Taf1 Tcf4 
Tmem13
1 

Uhrf2 Wwp1 Zbtb1 Zeb1   

Zfp148 Zfp281 Zfp292 Zfp36l1 Zfp386 Zfp445 Zfp451 Zfp59   
Zfp68 Zfp748 Zmym2        
                 

(Table 2.2, continued) 
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Zfpm1 

 
Zfpm1 

                

Zbtb16 Zbtb16                 
Gata1 Gata1                 
Gata2 Dach1 Gata2 Pbx1             
Rai14 Mpl Rai14               

Egr1 
Atf4 Cbx7 Cited2 Egr1 Fli1 Foxo1 Fus Gata3   

Id2 Lass4 Mycn Ndn Nfkbiz Sfrs5 
Tsc22d
3 

    

 
  

(Table 2.2, continued) 
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Figure 2.6: Characteristics of Gene Modules and Quantitative Modeling of the Core Network Underlying Hematopoiesis. (A) Binary gene expression patterns across all cell 
types (columns) for the 25 inferred gene modules. Color code of gene modules as in Figure 
2.5. (B) Bar graph indicating the number of genes in each module. (C) Probability 
distribution of the number of stable states for each sampled network. Distribution estimated 
using sampling of 5,000 distinct solutions ܬ௜௝. (D) Fraction of solutions ܬ௜௝ in which each 
state is stable. Shown are the states which are stable in the greatest fraction of states. Apart 
from the null state ሬ݉ሬԦ = 0ሬԦ and the states associated with the 11 cell types, no state was 
stable in more than 5% of solutions. 
 
2.4.5. Local-field gene regulatory network model for gene modules 

In order to build a quantitative model relating the gene modules, we write a N-
component gene regulatory network governed by a set of differential equations: 
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 ሶ݉ ௜ =  − ݉௜

߬௜
+ ௜଴ݎ + )௜ݎ ሬ݉ሬԦ),          ݅ = 1, … , ܰ,  

where ߬௜ and ݎ௜଴ are respectively the life-time and basal production rate of module ݅; we 
will rescale ߬௜ = 1 and ݎ௜଴ = 0 with loss of generality. We denote the level of module ݅ as 
݉௜ . We assume here that modules interact only by modulating each-other’s rate of 
production, described here by rate functions ݎ௜( ሬ݉ሬԦ)  which depend on the state ሬ݉ሬԦ =
[݉ଵ, … , ݉ே] of the gene regulatory network. We model inherent biological variability 
through a Gaussian noise term ߟ௜(ݐ) with mean 0 and variance ߪnoiseଶ . 

As above, we consider that the production rate ݎ௜( ሬ݉ሬԦ)   is the result of only direct 
interactions, in which each gene j exerts a drive on gene i which is equal to an interaction 
strength ܬ௜௝ (positive or negative) multiplied by the level of module j. The total drive ߶௜ on 
gene i is the sum of the drives from the different modules: 
 ߶௜( ሬ݉ሬԦ) =  ෍ ௜௝ܬ ௝݉  .

ே

௝ୀଵ
  

We now assume ݎ௜ has a universal scaling form that is the same for all factors, 
 
)௜ݎ  ሬ݉ሬԦ) = ௜߶)ߤ]ݎ − ߶଴)],  

where ݎ(߶; ߶଴,  is a monotonic sigmoidal function centered at ߶଴ and bounded by the (ߤ
limits 
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(߶)ݎ  = ൜0,    ߶ ≪ ߶଴
1,    ߶ ≫ ߶଴

;   

the sharpness of crossover is determined by the nonlinearity parameter ߤ. The upper bound 
of ݎ௜ = 1 sets the maximum sustainable expression at ݉௜ = 1. In the limit ߤ →  (߶)ݎ ,∞
becomes the Heaviside step function, and ݉௜ ∈ {0,1} is binary.  

Suppose state ሬ݉ሬԦఈ = {݉ଵఈ, … , ݉ଶହఈ }  with expression level ݉௜ఈ  in module ݅  is a 
stable state of the network. In the limit ߤ → ∞, the condition for ሬ݉ሬԦఈ to be a fixed point is: 
 
 

݉௜ఈ = ܪ ቌ෍ ௜௝ܬ ௝݉ఈ − ߶଴
௝

ቍ,    ݉௜ఈ, ௝݉ఈ ∈ {0,1},  

where ܪ is the Heaviside step function. (Note that if ߶଴>0 then ሬ݉ሬԦ = 0ሬԦ is always a stable 
fixed point of the network, i.e. the network will not spontaneously come back from the 
dead.) 

In this limit, each state ሬ݉ሬԦఈ of the network is associated with N constraints given by 
inequalities of the form 
 
 ݉௜ఈ = 0  ⇒  ෍ ௜௝ܬ ௝݉ఈ <  ߶଴,

௝
  

 ݉௜ఈ = 1  ⇒ ෍ ௜௝ܬ ௝݉ఈ >  ߶଴.
௝

     

If ሬ݉ሬԦఈ is a fixed point, all N of its constraints must hold. If we know the fixed points 
of the network, then we can write down a system of inequalities that constrain possible 
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values for ܬ௜௝. Since gene-gene interactions cannot be infinitely strong, ܬ௜௝ must be bounded. 
We take หܬ௜௝ห < 1 and ߶଴ = 0.1. 
2.4.6. Linear programming 

The constraints placed on ܬ௜௝ by the fixed point condition are linear in ܬ௜௝. We can 
take advantage of this fact and use linear programming methods to obtain solutions for ܬ௜௝ 
by extremalizing a linear objective function of the form 
 
 ܷ൫ܬ௜௝൯ = ෍ ܽ௜௝ܬ௜௝ = constant,

௜,௝
  

where ܽ௜௝ are constant coefficients. The system of constraints defines a ܰଶ-dimensional 
polytope in ܬ -space that encloses all solutions of ܬ௜௝  consistent with the fixed-point 
constraints, and ܷ defines a ܰଶ − 1 dimensional hyperplane. Linear programming returns 
a solution for ܬ௜௝ (a point in ܬ-space) where the polytope contacts a ܷ-plane of extremal 
value. The solution will lie on the boundary of the polytope and is in general non-unique. 
There is no general principle with which to select any specific ܷ-plane as the “best” 
objective function. Furthermore, one would like to sample points in the interior of the 
polytope, and not just on its surface. Here, guided by the fact that we seek pertubative 
solutions for ܬ௜௝  that ideally lie close to the origin, we impose a fictitious additional 
constraint on the polytope in the form of a hyperplane that contains the origin 
 
 ෍ ܽ௜௝

௜,௝
௜௝ܬ ≤ 0,    ܽ௜௝ ∈ {0,1} ,   
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where the coefficients ܽ௜௝are randomly chosen; this in effect slices the polytope in two and 
exposes an interior plane. Then, using the same choices of ܽ௜௝to define a ܷ-plane, we seek 
a linear programming solution that maximizes ܷ, i.e. a solution that lies on the now-
exposed interior plane (if possible). Because these fictitious constraints radiate from the 
origin, points in the polytope that lie closest to the origin are sampled more densely. 
2.4.7. Common features of the sampled networks 
By using many different randomly generated fictitious constraints to sample the polytope, 
we can study the ensemble of model networks that all satisfy the fixed point constraints, 
and attempt to determine whether they share any common regulatory motifs. As discussed 
in the main text, we sampled 5,000 solutions ܬ௜௝ that satisfied the fixed-point constraints 
defined by the binarized expression patterns of the known cell types. We then calculated 
the mean and coefficient of variation (c.v.) for each coupling. We were thus able to discover 
a core network between the different modules that is shared by the majority of solutions 
(Figure 2.5D). 
2.4.8. Spurious fixed points 

By construction, the 11 observed cell types (and the null state ሬ݉ሬԦ = 0ሬԦ) are fixed 
points for all 5,000 sampled solutions for ܬ௜௝ . However, each solution ܬ௜௝  may have 
additional spurious fixed points. The number of fixed points associated with each solution 
 ௜௝ varied between 12 and 95, with an average of 33 (Figure 2.6C). However, none of theܬ
spurious fixed points occurs in more than 5% of sampled solutions (Figure 2.6D). 



67 
 

2.4.9. Reprogramming predictions 
Given a particular solution ܬ௜௝, any arbitrary state of the network ሬ݉ሬԦ (not necessarily 

a fixed point) will have dynamics obeying  
 

݉௜(ݐ + 1) = ܪ ቌ෍ ௜௝ܬ ௝݉(ݐ) − ߶଴
௝

ቍ,     ( 1 ) 

where ݉௜(ݐ) and ݉௜(ݐ + 1) are the level of module ݅ at successive discretized time points.  
For each particular solution ܬ௜௝, cells will get stuck in spurious fixed points; yet 

these spurious fixed points are highly unlikely to exist since they are stable in only a small 
number of the sampled ܬ௜௝. We can capture the average dynamics of different states of the 
network given the set of sampled solutions ൛ܬ௜௝ൟ by calculating the probability over all 
sampled solutions of moving from one arbitrary state ሬ݉ሬԦ௔ to another arbitrary state ሬ݉ሬԦ௕. 
This allows us defines a 225 x 225 state-to-state transition matrix ࣮: 
 
 ௕࣮←௔ = ൫ሬ݉ሬԦ௔݌ → ሬ݉ሬԦ௕ห൛ܬ௜௝ൟ൯ .    ( 2 ) 

If we denote as ݌Ԧ(ݐ) the vector of probabilities of being in the 225 different states at time ݐ, 
then 
 
ݐ)Ԧ݌  + 1)  =  ( 3 )    .(ݐ)Ԧ݌ ࣮

In order to test reprogramming hypotheses, we calculated the probability of moving 
between fixed points ሬ݉ሬԦఈ  and ሬ݉ሬԦఉ  when overexpressing some set of modules {݉௜}. We 
calculated the dynamics using the transition matrix ࣮ and enforced the overexpression of 
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the set of modules at each time point, updating the probabilities ݌Ԧ(ݐ) accordingly. The 
probabilities shown in Figure 2.5 are after 1,000 time steps. 
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Chapter 3.  Probabilistic model of gene networks controlling embryonic 
stem cell differentiation inferred from single-cell transcriptomics 

[A large part of this chapter is in review as Sumin Jang*, Leon Furchtgott*, Sandeep 
Choubey*, Ling-Nan Zou, Adele Doyle, Vilas Menon, Ethan Loew, Anne-Rachel Krostag, 
Refugio A. Martinez, Linda Madisen, Boaz P. Levi, Sharad Ramanathan, “Probabilistic 
model of gene networks controlling embryonic stem cell differentiation inferred from 
single-cell transcriptomics.” SR designed the study. SJ performed experiments and data 
analysis. LF and SC performed single-cell transcriptomic analysis based on method 
developed by LF. SC and LF implemented the gene regulatory network model and linear 
programming method developed by LNZ and SR. LNZ, AD, VM, EL, ARK, RM, LM and 
BL performed experiments. SJ, LF, SC and SR wrote the manuscript with input from all 
of the authors.] 
Abstract 

A quantitative understanding of how gene regulatory networks lead multipotent cells 
to acquire different cell fates has been challenging.  Using a novel Bayesian framework to 
analyze single-cell transcriptomics data, we infer the gene expression dynamics of early 
differentiation of mouse embryonic stem cells, revealing discrete state transitions across 
nine cell states. Using a probabilistic model of the gene regulatory networks, we predict 
that these states are further defined by distinct responses to perturbations. We 
experimentally verify three predictions of such state-dependent behavior: that whether 
(i) Sox2 overexpression represses Oct4, (ii) Snai1 overexpression represses Oct4, and (iii) 
LIF and BMP promote pluripotency or differentiation into neural crest, all depend on cell 
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state. This study provides a framework to infer predictive models of the gene regulatory 
networks that drive cell fate decisions.  
3.1. Introduction 

During differentiation, cells repeatedly choose between alternative fates in order to 
give rise to a multitude of distinct cell types. A major challenge in developmental biology 
is to uncover the dynamics of gene expression and the underlying gene regulatory networks 
that lead cells to their different fates. Given the complexity of gene regulatory networks, 
with their large number of components and even larger number of potential interactions 
between those components, building detailed predictive mathematical models is 
challenging. The lack of sufficient data requires a large number of assumptions to be made 
in order to constrain all the parameters in such models (Karr et al., 2012).  

A potential alternative approach to modeling gene regulatory networks underlying 
the dynamics of differentiation is through the application of tools developed and used for 
understanding the statistical physics of state transitions in complex physical systems 
(Anderson, 1984; Landau and Lifshitz, 1980). The key to understanding these physical 
systems is based on the discovery that in every one of them, instead of measuring the large 
number of variables associated with the constituents of the system, the experimentally 
measured value of low-dimensional order parameters (Figure 3.1A) was sufficient to 
accurately describe both the state and the state transitions of the underlying dynamical 
system. Mathematical models based on order parameters have led to a fundamental 
understanding of state transitions in a variety of physical systems (Ekspong, 1993, 2008; 
Lundqvist, 1992). We asked whether we could similarly determine the suitable parameters 
to quantitatively describe and model cell state transitions during development.  
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Figure 3.1: Single-Cell Gene Expression Profiling of mESCs during early germ layer differentiation. (A). States and state transitions in complex physical systems are 
characterized by order parameters whose value (x-axis) changes as the system changes 
state. Theoretical models based on effective potential functions (y-axis) of these order 
parameters are formulated to understand and make quantitative predictions about both the 
statistical mechanics and dynamics of the systems.  (B). Mouse embryonic stem cells 
(mESCs) were exposed to various differentiation conditions to perturb FGF, WNT, and 
TGF-beta signaling for up to five days of differentiation. Single cells, collected every 24 
hours during differentiation, were transcriptionally profiled using CEL-Seq. (C). Images 
of immunostained mESCs undergoing differentiation show cell-to-cell variability in their 
expression of known germ layer marker genes. (Scale bar = 100μm) 
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Here we study the specific example of early mammalian germ layer differentiation 
of pluripotent mouse embryonic stem (mES) cells, which are derived from the inner cell 
mass of the peri-implantation-stage embryo (see pictorial summary in Figure 3.2A). During 
this stage, both mES cells and cells in vivo express key pluripotency factors, such as Nanog, 
Sox2, Oct4, Klf4, Jarid2, and Esrrb, which mutually activate one another to form a 
pluripotency circuit (Kim et al., 2008; Young, 2011; Zhou et al., 2007). Following 
implantation, naïve pluripotent ES cells of the inner cell mass downregulate Klf4 and 
upregulate Otx2, Dnmt3a, and Dnmt3b, as they transition into “primed” pluripotent cells 
found in the epiblast (Nichols and Smith, 2009). Over the next few days of differentiation, 
TGF-beta signaling factors, with the aid of WNT/beta-catenin signaling, promote and 
inhibit the differentiation of pluripotent cells into mesendodermal (characterized by genes 
such as Brachyury (T), FoxA2, Mixl1 and Gsc) and ectodermal (characterized by Eras, Sez6, 
Stmn3, and Stmn4) cell fates, respectively (Gadue et al., 2006; Hart et al., 2002; Li et al., 
2015; Lindsley et al., 2006; Tada et al., 2005; Watabe and Miyazono, 2009). 
Mesendodermal progenitors further differentiate into mesoderm and definitive endoderm 
progenitors. Mesoderm cells are usually distinguished by expression of Gata4 and Eomes, 
and endoderm cells by Sox17 and FoxA2, although in mouse these genes are shared 
between both lineages, with differences only in their timing and level of expression (Arnold 
and Robertson, 2009; Kanai-Azuma et al., 2002; Kim and Ong, 2012; Lumelsky et al., 
2001; Rojas et al., 2005).  Along the ectodermal lineage, BMP signaling pushes ectodermal 
cells toward epidermis, while in the absence of BMP signaling, ectodermal cells acquire a 
neural fate (Wilson and Hemmati-Brivanlou, 1995). Epidermal cells are characterized by 
Keratins, whereas neural cells express Sox1 and Pax6 (Koch and Roop, 2004; Pevny et al., 
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1998; Sansom et al., 2009; Streit and Stern, 1999). The cells at the physical border between 
epidermal and neural cells give rise to neural crest cells (expressing Sox10, Msx2, Snai1 
and Slug) in response to WNT and BMP signaling, which are often described as a fourth 
germ layer because of the diverse range of tissues to which they give rise (Gans and 
Northcutt, 1983; Knecht and Bronner-Fraser, 2002; Le Douarin, 1991). Despite the detailed 
understanding of early embryonic development revealed by decades of work in genetics 
and developmental biology, a quantitative understanding of how the underlying gene 
regulatory network leads cells through a series of cell fate decisions has remained elusive.  
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Figure 3.2: Literature summary and single-cell transcriptomic analysis. (A). Diagram 
summarizing the literature on cell types (each represented by a colored circle labeled by its 
name) that arise during early mouse germ layer differentiation, their lineage relationships 
(represented by lines connecting cell types), and genes that characterize each cell type 
(listed in boxes that surround the cell types in which they are expressed).  
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(Figure 3.2, continued) (B). Summary of cell culture conditions that were used to generate 
populations enriched with neural/non-neural ectoderm, definitive endoderm, or mesoderm-
like cells over the course of up to five days. Undifferentiated ES cells were maintained in 
LIF/PD0/CHIR (i.e. Lif2i) conditions, and duration of differentiation was measured from 
the time at which these conditions were removed. (C). Histogram of the number of Unique 
Molecular Identifiers (UMIs) mapping to annotated genes per cell. Note that this histogram 
includes 84 control (empty or ERCC-only) wells. (D). Box and whisker plots of the number 
of UMIs mapping to annotated genes per cell, grouped by cell cluster (total cells = 288). 
(E). Percentage of reads mapping to the transcriptome, to the genome (i.e. regions outside 
the reference transcriptome annotation), and to ERCC spike-in control sequences, and 
percentage of reads unmapped per cell. Cells are grouped by cell cluster. (F). Box and 
whisker plots of the number of genes detected (UMI>0) per cell, grouped by cluster, using 
the full data set (clear boxes) and after subsampling cells to 20,000 transcriptome-mapping 
UMIs (red boxes). (G). Representative plots for two cells, showing the number of UMIs 
detected for each ERCC species versus the putative number of molecules spiked in. UMI 
counts are based on subsampling to 20,000 transcriptome-mapping UMIs. Pearson’s R 
values in log space, using all ERCC species and using only ERCC species present at > 1 
molecule (in parentheses) are shown for each cell. (H). Same as (E), but with mean and 
SEM values for all clustered cells, after subsampling to 20,000 transcriptome-mapping 
UMIs per cell. (I). Fraction of times a given ERCC species is detected (UMI>0) in all 
clustered cells, after subsampling to 20,000 transcriptome-mapping UMIs per cell, versus 
the putative number of ERCC molecules spiked in. The red line indicates expected 
detection fractions based on Poisson statistics of dilution, whereas the black line indicates 
the best fit through the experimental data. The fit suggests that the detection rate is 1 out 
of 35 molecules. (J). Clustered heatmap of Pearson’s correlation coefficients among 
clustered cells based on ERCC UMI expression values. Clustering was done using average 
linkage with a distance metric of 1 – Pearson’s R. The color bar at the top identifies the 
cluster membership of each cell; cells of the same type do not cluster together based on 
ERCC expression, suggesting a lack of process-related artifacts in the final clusters. All 
box and whisker plots use boxes to represent the 25th and 75th percentile, and whiskers 
represent 1.5 times the intraquartile range. 
 

We use single-cell RNA-seq to determine how gene expression patterns change as 
mouse embryonic stem cells differentiate into different germ-layer progenitors. Motivated 
by approaches in statistical physics, we adopt a Bayesian framework to simultaneously 
infer cell states, the sequence of transitions between these states, and the key sets of genes 
whose expression patterns provide a parameter space in which the cell states and cell state 
transitions are inferred. Our computational analysis, together with flow cytometry and live-
cell imaging of an Otx2 reporter mES cell line, shows that cells reside in discrete states and 
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rapidly transition from one state to another. By requiring models of the underlying gene 
regulatory network to replicate the existence of the observed discrete cell states, we extract 
probability distributions of model parameters. Our probabilistic predictions using this 
model gene regulatory network show that the discrete cell states first inferred from their 
gene expression patterns are further defined by their unique responses to the same 
perturbations in signals and transcription factor levels. We experimentally validate these 
predictions using molecular tools, live-cell microscopy and flow cytometry. Finally, we 
discuss the biological implications of our results. 
3.2. Results 
3.2.1. Acquiring single-cell transcriptomics data during early differentiation 
We differentiated populations of mES cells by exposing them to one of four combinations 
of signaling factors and small molecules to perturb FGF, WNT, and/or TGF-beta signaling 
for up to five days (Figure 3.1B; see also Figure 3.2B, Methods). Although cells in each 
population were differentiated in a monolayer culture and therefore exposed to nearly 
uniform conditions, we observed significant heterogeneity in the expression – as measured 
by immunofluorescence – of various known early germ layer marker genes (such as T, 
Pax6, Slug, FoxA2, and Gata4) in each population, suggesting a diversity of cell types 
under the same signaling conditions (Figure 3.1C). Further, undifferentiated pluripotent 
cells persisted in differentiating populations. Therefore, to capture the cell-to-cell 
variability within differentiating populations, we collected and transcriptionally profiled 
single cells every 24 hours over the course of five days of differentiation using a modified 
version of CEL-seq (Hashimshony et al., 2012). We obtained gene expression data from a 
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total of 288 cells (Figure 3.2C-J; Methods) with a median of 508,939 mapped reads, 48,475 
transcripts and 7,032 genes detected per cell.  
3.2.2. Bayesian statistical approach discovers appropriate coordinate 

systems to infer cell states and state transitions 
We developed a Bayesian probabilistic framework (Chapter 2. ; Chapter 5. ) that, 

given gene expression data from single cells{݃௜}, simultaneously infers (i) cell cluster 
identities of the cells, {ܥ} ≡  {ܿଵ, ܿଶ, … , ܿே}, (ii) the sets of transitions {T} between these 
clusters, (iii) the key sets of marker genes {ߙ௜} that define each cell cluster and (iv) the sets 
of genes {ߚ௜} that determine the transitions between clusters. We determined the maximum 
likelihood estimates of these variables using an iterative algorithm (Figure 3.3A; see also 
Figure 3.4A and Mathematical Appendix in Chapter 5). 

We started by clustering the single-cell gene expression data for the 288 cells into 
12 clusters {ܿଵ଴, ܿଶ଴, … , ܿଵଶ଴ } using Seurat (Satija et al., 2015), restricting the analysis to 
transcription factors (2,672 total) because of their functional role in orchestrating global 
gene expression. Seurat identifies cell clusters by performing density-based clustering on 
a t-distributed Stochastic Neighboring (t-SNE) map of the gene expression data (Van der 
Maaten and Hinton, 2008). These clusters {ܥ଴} = {ܿଵ଴, ܿଶ଴, … , ܿଵଶ଴ }, ranging in size from 14 
to 47 single cells, served as a seed for our algorithm. 
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Figure 3.3: Bayesian framework to obtain cell cluster identities and transition relationships from single-cell transcriptomics data.  (A). Maximization algorithm to 
determine most likely cluster identities {࡯} ≡ ,૚܋} ,૛܋ … , {ܖ܋ , sets of transitions {܂} , 
marker genes (࢏ࢻ = ૚) and transition genes (࢏ࢼ = ૚), given single-cell gene expression 
data {࢏ࢍ}.  
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(Figure 3.3, continued) Starting from a seed clustering scheme {࡯૙}, iterative maximization 
of the conditional probabilities {܂})࢖, ,{࢏ࢻ} ,{࢏ࢍ}|{࢏ࢼ} ({࡯}  and {࢏ࢍ}|{࡯})࢖, ,{܂} ,{࢏ࢻ} ,{࡯}) converges to most likely set ({࢏ࢼ} ,{܂} ,{࢏ࢻ}  See also) .({࢏ࢼ}
Figure 3.3A and Chapter 5. ) (B). Gene expression patterns of marker genes, transition 
genes, and irrelevant genes in cell clusters c1, c2, and c3. Marker genes are highly expressed 
in only one cluster, whereas transition genes are highly expressed in two clusters and 
downregulated in the third. High probability transition genes alone are used for the 
determination of set of transitions; both high probability transition and marker genes are 
used for re-clustering. (C).  For the three initial clusters ࢉ૚૙, ࢉ૛૙ and ࢉ૜૙, plot of the odds of 
each gene (represented by a dot) being a transition gene (x-axis) and the cluster with the 
minimum expression of the gene (y-axis). In our framework, each gene’s odds of being a 
transition gene is used to compute the probabilities of the sets of transitions ܂ between the 
three clusters (Methods and Chapter 5). A gene whose expression is lowest in ࢑ࢉ૙ casts a 
probabilistic vote against ࢑ࢉ૙ being the intermediate state (i.e., against the relationships ܂ =
 ࢑૙), which is weighted by the odds that the gene is a transition gene, given the clusterࢉ
identities. Two groups of genes (boxed) are the highest likelihood transition genes, casting 
a strong vote against ࢉ૚૙ or ࢉ૛૙ being the intermediate cell type. The computed probability 
of the topology given gene expression data indicates with .99 probability that ࢉ૜૙ is the 
central node. (D). Left: single cells belonging to clusters ࢉ૚૙ −  ૝૙ (dots colored based onࢉ
cluster identity) in the gene expression space defined by transition and marker genes 
(probability > 0.8) associated with triplet ࢉ૛૙, ࢉ૜૙, ࢉ૝૙. Axes represent the normalized log 
expression values of, respectively, transition genes expressed in ࢉ૛૙ and downregulated in 
 ૛૙; the most likely gene of each class is represented inࢉ ૜૙, and marker genes forࢉ ૝૙ andࢉ
curly brackets. Right: after re-clustering cells in the subspace defined by high probability 
marker and transition genes, clusters ࢉ૚૙ and ࢉ૜૙ have merged. 

 
We next considered every possible group of 3 clusters (e.g., ܿଵ଴, ܿଶ଴ and ܿଷ଴) from a 

total of  such combinations. For each triplet of clusters, we first determined the 
probability that each gene was a marker gene (ߙ௜ = 1), a transition gene (ߚ௜ = 1) or neither 
௜ߙ) , ௜ߚ = 0) based on the distribution of their expression patterns in cells of each cluster. 
The marker and transition genes are defined as follows (Figure 3.3B): 
(i) A marker gene ݃௜ (ߙ௜ = 1) has a distribution of expression levels that is highest in one 
cluster, and well separated from the distribution of its expression levels in the other two 
clusters (Figure 3.3B, the better this separation the higher the probability that the gene is a 
marker gene). Marker genes distinguish one of the clusters from the other two. 

12C3 = 220
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(ii) A transition gene ݃௝ (ߚ௝ = 1) has a distribution of expression levels that is lowest in 
one cluster, and well separated from the distribution of its expression levels in the other 
two clusters (Figure 3.3B).  Each such transition gene establishes relative relationships 
between the three clusters, implying a closer relationship between the two clusters in which 
it is expressed than with the cluster in which it is not. 
(iii) Genes that are neither marker (ߙ = 0) nor transition genes (ߚ = 0) do not follow 
constraints (i), (ii) on expression level distributions. 

Computing the probability of each gene being a marker gene, a transition gene or 
neither allowed us to determine the most likely set of transitions T between each triplet of 
clusters. Each gene’s contribution to the posterior probability of T is weighted by the odds 
ratio that the gene is a transition gene (Figure 3.3C; see also Supplemental Experimental 
Procedures). For example, for clusters ܿଵ଴, ܿଶ଴ and ܿଷ଴, a gene whose expression is lowest in 
ܿଶ଴ casts a vote against ܿଶ଴ being the intermediate state (i.e., against the transition T = ܿଶ଴, 
where ܿଶ଴  is intermediate, Figure 3.3C, right) that is weighted by its odds of being a 
transition gene for those three clusters (Figure 3.3C, left). Our Bayesian framework led to 
a summation of these weighted votes to determine the most likely set of transitions between 
the three clusters and concomitantly the most likely marker and transition genes 
corresponding to these clusters and transitions (Figure 3.3C, right).  

For the seed cluster set {ܥ଴}, we determined 179 sets of transitions between clusters 
and identified 1,035 transcription factors that were high probability (probability > 0.5) 
marker or transition genes for at least one of the identified transitions. We next re-clustered 
the single cells in the gene expression space defined by these 1,035 marker or transition 
genes, using Seurat, to obtain a new cluster set {ܥଵ} = {ܿଵ଴, ܿଶ଴, … , ܿଵ଴଴ }, consisting of 10 
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clusters. In this process, cells changed cluster identities, and certain clusters merged (Figure 
3.3D).  

 
Figure 3.4: Details of clustering and lineage determination algorithm. (A). Workflow 
for clustering and lineage determination algorithm. (B). Three-dimensional plots for 
triplets (C0, C1, C2), (C0, C1, C3), and (C1, C2, C3). Each dot in this space represents a single 
cell, and cells are colored based on their cluster identity.   
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(Figure 3.4, continued) The x- ,y- and z-axes are, respectively, the normalized log 
expression levels of the two classes of transition genes and the marker gene class for the 
intermediate. The probabilities of the inferred lineage topology are shown. In all three cases, 
cluster C1 is inferred to be the intermediate cluster. Combining the inferred relationships 
between the four clusters, we obtain the relationships between the cell clusters C0, C1, C2 and C3. 

By iteratively determining the most likely sets of transitions and the most likely 
marker and transition genes, and by re-clustering the cells within the subspace of these 
genes, our algorithm converged upon the most likely set of cell clusters, the sets of 
transitions between these cell clusters (Table 3.2), as well as the marker and transition 
genes for each set of three clusters after five iterations (Figure 3.5A). The final cluster set 
consists of 9 cell clusters ranging in size between 14 and 57 cells; every cell was mapped 
to a cluster. We combined the local sets of transitions between different triplets of clusters 
(Table 3.2) in order to infer the most parsimonious lineage tree between the clusters (Figure 
3.5A; see also Figure 3.3B and Supplemental Experimental Procedures). Finally, we 
obtained identical final clusters starting with different seed cluster sets and using k-means 
clustering with the gap statistic, to show that our results were robust to the choice of seed 
clusters and clustering method (Figure 3.6; see also Supplemental Experimental 
Procedures). 
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Figure 3.5: Iterative algorithm converges upon a set of cell clusters and local 
transitions that together define a multi-potent lineage tree. (A). Iterative determination  
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(Figure 3.5, continued) of the most likely sets of transitions {܂} and re-clustering of cells 
in the resulting subspace of transition and marker genes, starting from a seed set of cluster 
identities {࡯૙}. With each iteration, the cluster identities as well as the total number of 
clusters change, as shown by the Seurat t-SNE maps (each dot represents a cell, colored 
based on its cluster identity). The inferred sets of transitions between clusters at each 
iteration are represented as a lineage tree (each circle represents a cell cluster; see also 
Figure 3.4B). After five iterations, the algorithm converged upon a set of 9 clusters (shown 
in box). (See also Figure S3) (B). Left: Top ten genes (x-axis) with highest probability of 
being marker genes for clusters C1 (yellow), C2 (light red) and C3 (light green) plotted 
against their probability of being marker genes. Right: The cell-cell correlation matrix 
computed using these 30 marker genes for the 108 cells belonging to clusters C1, C2 and 
C3 shows three clear blocks of high correlation along the diagonal. (C). Left: Top ten genes 
(x-axis) with highest probability of being transition genes for clusters C1, C2 and C3, plotted 
against their probability of being transition genes (y-axis). The transition genes belong to 
one of two classes, those that show high expression in cells belonging to C1 and C2 but low 
expression in C3 (red), and those expressed at high levels in cells in clusters C1 and C3 but 
low levels in C2 (green). The cell-cell correlation matrix (right) computed using these 20 
transition genes shows that the 29 cells belonging to cluster C1 have intermediate levels of 
correlation with cells in both C2 and C3, whereas the 46 cells in C2 show low correlation 
levels with the 33 cells in C3. (D). The cell-cell correlation matrix computed using all genes 
with coefficient of variation greater than 10, which includes transition and marker genes, 
shows a barely-detectable signature of the underlying cell clusters and the set of transitions 
between them. (E). The inferred clusters and their lineage relationships can be represented 
in a three-dimensional coordinate system where the x- and y- axes are the normalized log 
expression level of the two classes of transition genes (genes in (B), left) and the z-axis 
measures the normalized log expression level of the marker genes for cluster C1 ((A) left 
in yellow). Each dot represents a single cell, and cells are colored based on their cluster 
identity. 

 
The inferred lineage relationships between the final clusters could be visualized in 

the subspace of inferred marker and transition genes. We illustrate this first for the three 
clusters C1, C2, and C3. We identified three classes of marker genes, each consisting of 
high-probability marker genes specific to one of the three clusters (Figure 3.5B). Each gene 
class is denoted by its highest probability member gene in curly brackets (e.g., {Otx2}). 
When the cell-cell Pearson correlation matrix between the cells in these three clusters was 
determined using all high-variance genes, the matrix showed a barely detectable structure 
(Figure 3.5D). In contrast, the same matrix computed using high-probability marker genes 
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for clusters C1, C2, and C3 showed three distinct blocks of high correlation along the 
diagonal, each corresponding to a different cluster (Figure 3.5B). When the cell-cell 
correlations were measured using the two classes of inferred transition genes (Figure 3.5C, 
left), each consisting of high-probability transition genes present in C1 and downregulated 
either in C2 or in C3, the correlation matrix showed intermediate correlation levels between 
C1 and either C2 or C3, and low correlation levels between C2 and C3 (Figure 3.5C, right). 
The distribution functions of these transition genes in the different clusters led to the 
inference that clusters C2 and C3 are connected via cluster C1 with a probability of 0.83. 

We visualized the gene expression changes that characterize transitions from one 
cell cluster to another by plotting the cells in C1, C2 and C3 in a three-dimensional gene 
expression subspace (Figure 3.5E), using as axes the mean normalized expression levels of 
the two transition gene classes down-regulated in C2 or C3 (in red and green in Figure 3.5B) 
and of the marker gene class specific to C1 (Figure 3.5A in orange). Like the order 
parameters used to describe state transitions in physical systems, these axes constitute a 
low-dimensional coordinate system for the inferred set of transitions between C1, C2 and 
C3. 
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Figure 3.6: Iterative clustering and lineage determination algorithm using two different clustering methods for seed clusters and re-clustering : (A) Seurat, and (B) k-
means clustering with the gap statistic. For each clustering method, the seed clusters were 
computed using the gene expression of all 2,762 transcription factors.   
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(Figure 3.6, continued) The top plot shows the number of marker and transition genes 
identified at each iteration and used for the subsequent reclustering. The cluster identities 
for the single cells in different iterations are represented in different colors below. Despite 
starting with different seeds, both clustering methods converge to the same cluster 
identities after 4 iterations. (C). Two-dimensional projection of expression data from 288 
single cells using Seurat. Each cell (single dot), colored by its cluster identity (there are 12 
clusters in total), defined by k-means clustering, showing that t_SNE and k-means 
clustering lead to different seed cluster configurations. 
 

Similarly, the inferred transitions across all sets of three clusters (Table 3.2) 
together form a lineage tree (Figure 3.7A) that spans all nine identified cell clusters, which 
can be visualized in gene expression space through a series of local transition and marker 
gene classes (Figure 3.7C). We next investigated the gene expression variability among 
cells within each cluster by performing principal component analysis (PCA) on the 
transcription factor gene expression for cells within each cluster. We found that for all 
clusters, no principal component is statistically significant (compared to randomizations of 
the data; Figure 3.7B), suggesting that within each inferred cluster, the cells have the same 
identity within the resolution of our data.  

The inferred dynamics of differentiation can therefore be visualized in a low-
dimensional subspace of gene expression, suggesting that differentiation occurs through a 
sequence of discrete cell state transitions. 
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Figure 3.7: Cells transition from one discrete state to another during differentiation. (A). Computationally inferred cell clusters and sequence of transitions are shown in the 
appropriate subspace of gene expression.  
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(Figure 3.7, continued) Each dot represents a single cell, and cells are colored based on 
their cluster identity. For a linear transition sequence of cell states (such as from C0 to C1), the transitions are represented in a 2 dimensional plot with the axes defined by the 
normalized mean log of the unique reads of genes that are most differentially regulated in 
the two states, while for lineage bifurcations between alternative daughter cell states, the 
plots are shown in 3 dimensions, where the x and y axes are normalized mean log unique 
reads of the associated set of transition genes, and the z axes are the normalized mean log 
unique reads of the marker genes associated with the inferred progenitor state. Labeled in 
parenthesis next to each cluster are the abbreviated names of the putative corresponding 
cell types found in vivo (Epi: epiblast; bi_Ec: bi-potent ectoderm; ME: mesendoderm; NE: 
neural ectoderm; NC: neural crest; M: mesoderm; DE: definitive endoderm). (B). Top: Plot 
of the variances of the first ten principal components of the gene expression of cells in 
cluster C0. The red line is the maximum principal component variance over 1000 
randomizations of the data, showing that no principal component is statistically significant. 
Bottom: variances of the first principal component of each cluster, normalized by the 
maximum principal component variance of the randomized gene expression data for the 
corresponding cluster. (C). A list of high probability genes that belong to the various 
marker and transition gene classes that define the axes of the plots in Figure 3.7A, each 
represented by one gene in curly brackets. The curly brackets contain the gene name with 
the highest probability for that class, and other high probability genes (as in Figure 3.5A 
and Figure 3.5B) are listed in the table. While some of the genes are used only once, others 
such as Otx2 and Oct4 are repeatedly reused in different subspaces to describe the transition. 
(D). Flow cytometry analysis of cell populations sampled every 24 hours during 
differentiation and immunostained for nine genes (two shown at a time for each density 
contour plot): Klf4, Otx2, Oct4, Sox2, Slug, Pax6, FoxA2, Gata4 (each taken from a 
different gene class shown in Figure 4C), and T recapitulate the predicted structure and 
temporal ordering of transitions through discrete cell states. Axes represent the log of gene 
expression, normalized by the range between the minimum and maximum across each gene. 
Plots in pink and green represent C2 and C3 lineages following the split from C1, respectively. (E). Live cell microscopy of Otx2 reporter (mCitrine) cell line to infer the 
dynamics of cell state transition from C0 to C1. Sample images (shown) at t=0, 6, 12, 18, 
and 24 hours of differentiation. Cells were terminated at approximately 25 hours into 
differentiation and immunostained for Nanog (ES marker gene, Figure 3.8A), which shows 
an anti-correlation between Otx2 and Nanog expression levels. (Scale bar = 100μm) (F). 
Top: Time series (x-axis) traces of single-cell Otx2 (y-axis) expression dynamics taken 
every 15 minutes show that the duration of transition from Otx2-low (C0) to Otx2-high (C1) is approximately 4 hours, which is well within the time frame of one cell cycle (~10 hours). 
The end-point (t = 25h) Otx2 levels show a clear separation between high and low 
(histogram of ~200 cells shown to the right in gray), indicating that some cells have made 
the transition from C0 to C1 while others not. Each trace is colored by its relative end-point 
Nanog immunofluorescence intensity level. Otx2 levels are normalized by the mean level 
at t = 0. Bottom: Histogram (y-axis = log (cell count)) of residence durations of ~400 cells 
in the Otx2-low C0 state, showing that transition times vary across multiple cell cycle 
lengths (time lapse length = 48 hours). Inset bar shows mean (gray) as well as upper (white) 
and lower (Rojas et al.) quartiles of the transition durations of cells.  
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3.2.3. Correspondence of cell states discovered ab initio from single-cell data 
to known in vivo cell types  
Inspection of the genes that make up the local transition and marker gene classes 

(Figure 3.7C) allowed us to match clusters to embryonic cell types found in vivo that show 
similar gene expression.  

Cluster C0 is characterized by the high expression of pluripotency genes Oct4, Sox2, 
Sall1, Etv5, Jarid2, Esrrb, Klf4 and Klf5, whereas cluster C1 has lower Jarid2, Esrrb, Klf4 
and Klf5, and higher Otx2, Bptf, Cbx1 and Dnmt3a/b expression compared to cluster C0, 
suggesting that clusters C0 and C1 correspond to naïve ES and primed epiblast pluripotent 
cell types, respectively (Borgel et al., 2010; Goller et al., 2008; Kim et al., 2001; Nichols 
and Smith, 2009; Tesar et al., 2007; Zhou et al., 2007).  

Clusters C2 and C3, which branch out from C1, show differential expression of 
pluripotency genes relative to C1; Bptf and Cbx1 are downregulated in both C2 and C3, Oct4, 
Etv5 and Dnmt3a are downregulated in cluster C3 but maintained in C2, and Sox2, Otx2 
and Dnmt3b are downregulated in cluster C2 but maintained in cluster C3. Cluster C2 is 
further characterized by a high expression level of primitive streak markers Mixl1 and T 
(Hart et al., 2002; Tada et al., 2005), whereas cluster C3 is characterized by Sez6, Stmn3 
and Stmn4, which have recently been shown to characterize the previously elusive 
mammalian bi-potent ectoderm progenitor population (Li et al., 2015). Together, these 
patterns strongly suggest that clusters C2 and C3 represent mesendoderm and bi-potent 
ectoderm progenitor cell types, respectively.  

The bi-potent ectoderm progenitor-like cluster C3 is then followed by a lineage split 
into clusters C5 and C6. While Stmn4 is downregulated in both C5 and C6 compared to C3, 
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Sez6 is downregulated in only C5, and Stmn3 as well as neural progenitor marker Pax6 are 
downregulated in C6 but maintained in C5. Cluster C5 is further characterized by Smarce1 
and Zic2, and cluster C6 by Slug and Msx2, suggesting that C5 and C6 may be related to 
neural progenitor and neural crest cells, respectively (Brown and Brown, 2009; Le Douarin, 
1991; Vogel-Ciernia and Wood, 2014).  

Cluster C4, although similar in its expression level of Mixl1 and T to cluster C2, 
shows higher expression of other primitive streak genes such as FoxA2 and Tcf3 (Merrill 
et al., 2004). Cluster C4 is then followed by a bifurcation between clusters C7 and C8. 
Cluster C8 shows high expression levels of Gata4 and Snai1, indicative of its relation to 
mesoderm, and cluster C7 is characterized by high FoxA2 compared to clusters C4 and C8, 
suggestive of its relation to definitive endoderm (Kim and Ong, 2012; Rojas et al., 2005). 
We predict that cluster C4 represents a primed bi-potent mesendoderm cell type relative to 
cluster C2 (Nakanishi et al., 2009). 

Together, these results suggest that the cell clusters and sets of transitions 
computationally inferred from single-cell transcriptomics data correspond to known in vivo 
cell types and their lineage relationships.  

 
3.2.4. Differentiation occurs through a series of discrete cell state transitions 

The fact that gene expression in each cell cluster does not vary significantly allows 
for genes to be sorted into a few gene classes that show highly correlated expression 
patterns across clusters (Figure 3.7C). This suggests that one can validate the inferred 
sequence of cell state transitions and its gene expression dynamics by measuring the 
expression of one gene from each class in differentiating cells over time.  
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In order to confirm the gene expression dynamics over the inferred sequence of cell 
state transitions, we assessed populations of cells for their expression levels of key 
transition and marker genes (each taken from a different gene class) via immunostaining 
and flow cytometry. We sampled mES cell populations every 24 hours during 
differentiation and immunostained each for Klf4, Otx2, Oct4, Sox2, Pax6, Slug, FoxA2, 
Gata4 and T. (Although T is not assigned to a specific gene class, it is highly expressed in 
the mesendoderm-like states C2 and C4, and it thus allows us to distinguish C2 from the 
earlier epiblast-like state C1.) The flow cytometry density contour plots shown (Figure 
3.7D) are characterized by high-density peaks which are separated from one another by 
regions of low density, mirroring the discreteness of the cell states inferred from single-
cell transcriptomics data. The relative locations of these high-density peaks and the time at 
which they appear and disappear recapitulate the inferred gene expression dynamics of the 
cell state transitions of the lineage tree. 

During the first two days of differentiation, all cell populations downregulated Klf4 
and upregulated Otx2, as shown in the first row of density contour plots in Figure 3.7D. 
This is consistent with the first observed state transition in our inferred lineage tree from 
the naïve ES C0 state to the primed epiblast-like state C1. On day three of differentiation 
(third column of plots in Figure 3.7D), Sox2 and Oct4 are asymmetrically downregulated 
relative to the preceding population, as is seen in mesendoderm-like state C2 and bi-potent 
ectoderm-like state C3 relative to the epiblast-like state C1. Sox2-high, Oct4-low cells on 
day three are either high for Pax6 or for Slug, consistent with comparisons between the 
neural ectoderm-like state C5 and neural crest-like C6. On day 4, the Pax6-high and Slug-
high populations become proportionally larger as the Pax6/Slug-low population shrinks, 
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supporting the inferred temporal ordering that C5 and C6 arise from the bi-potent ectoderm-
like state C3. Oct4-high, Sox2-low cells on day three of differentiation are high for T, but 
show two discrete levels of FoxA2, mirroring the difference between the two 
mesendoderm-like states C2 (FoxA2-low) and C4 (FoxA2-high). Finally, at days four and 
five, we observe FoxA2-high, Gata4-low and FoxA2-low, Gata4-high cell populations, 
which correspond to the primed mesendoderm and definitive endoderm-like states C4 and 
C8 and the mesoderm-like state C7, respectively. We thus confirmed that differentiating 
cell populations recapitulate the gene expression dynamics of cell state transitions inferred 
from single-cell data (Figure 3.7A).  

The observation that the majority of randomly sampled cells are found to belong to 
one of nine discrete cell states (both transcriptionally and at the protein level) suggests that 
cell state transitions occur within a relatively short timeframe compared to the amount of 
time cells spend within each state. We tested this hypothesis on the first cell state transition 
from the naïve ES C0 state to the primed epiblast-like state C1 (Figure 3.7A). To do so, we 
generated an Otx2-mCitrine fusion protein reporter mES cell line (Figure 3.7C, Methods) 
and observed the single-cell-resolution dynamics of Otx2 expression for up to two days 
(Figure 3.7E and Figure 3.7F).  

In agreement with our hypothesis, we observed that Otx2 levels, at the end of 24 
hours of differentiation, show a bimodal distribution (Figure 3.7F), and cells tend to occupy 
either an Otx2-low state (corresponding to ES state C0) or an Otx2-high state 
(corresponding to epiblast-like state C1). We find that cells transition from an Otx2-low to 
an Otx2-high state well within the duration of a single cell cycle (mean transition duration 
of 4.52 hours compared to the cell-cycle length of approximately 10 hours). In contrast, 
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cells tend to stay in either Otx2-low or -high states for up to multiple cell cycles, with a 
large amount of cell-to-cell variability in the residence duration (Figure 3.7F). Together 
with our results from the analysis of single-cell transcriptomics data, these observations 
show that cells reside in discrete states in gene expression space and correspondingly 
undergo abrupt state transitions. 

 
Figure 3.8: Nanog expression before and after differentiation. (A). Histogram of Nanog 
expression (as measured by immunostaining and flow cytometry) before differentiation 
(yellow; Lif2i C0 state) and after two days of differentiation (orange; D2 PD03 C1 state) 
shows that Nanog expression is downregulated throughout most of the population during 
the first two days, similar to the observed changes of Klf4 during this time (Figure 3.7D). 
We thus use Nanog immunostaining, which produces better signal compared to Klf4 
antibodies, to identify cells that are still remaining in the naïve pluripotent C0 state. 
 
3.2.5. A probabilistic model that replicates the observed discrete cell states 

predicts state-dependent interpretation of perturbations 
Our analysis of single-cell gene expression data revealed a lineage tree composed 

of discrete cell states, and identified genes associated with individual cell states and 
transitions between cell states.  Our analysis also inferred the coordinate system in which 
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to visualize these transitions. We next sought to build a predictive quantitative model of 
the underlying gene regulatory network based on the expression patterns of the marker and 
transition genes.  

Since some transition genes inferred from our Bayesian analysis are re-used to infer 
multiple local state transitions (Figure 3.7C, e.g., Oct4, Otx2), we classified transcription 
factors and signaling genes based on their distinct binarized patterns of expression across 
all nine cell states, with genes showing the same patterns belonging to the same module 
(Supplemental Experimental Procedures, Figure 3.9A, Table 3.4). We categorized the 184 
marker and transition genes and signaling gene groups into 23 gene modules, each of which 
showed distinct patterns of expression across the cell states. We denote each gene module 
by a representative gene in square brackets; for example, the gene module that uniquely 
characterizes the ES state C0 is denoted as [Klf4] (  
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Table 3.3). 

 
Figure 3.9: Construction of gene regulatory network.  (A). River diagram of the gene 
expression patterns of the 23 modules in the 9 cell clusters. Straight lines indicate 
asymmetric regulation favoring the colored branch; dots indicate symmetric 
downregulation in the subsequent two branches. (B). Plot of the production rate of module 
(ሬሬሬԦ࢓)࢏ࣘ as a function of the drive from the other modules ,(ሬሬሬԦ࢓)࢏࢘  ,࢏ = ∑ ࢐ୀ૚ࡺ࢐࢓࢐࢏ࡶ  . The 
production rate is equal to 1 if the drive is greater than a critical drive ࣘ૙ and 0 otherwise. 

By construction, any mathematical model of a network between these 23 modules 
must produce the nine cell states seen in Figure 3.7A. We considered a network that 
contains direct interactions, in which each module j exerts a drive on module i, which is 
equal to an interaction strength ܬ௜௝ (positive or negative) multiplied by the concentration of 
module j. The total drive on module i is the sum of the drives from the different modules. 
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We further considered that the total drive on module i affects expression in a highly non-
linear manner, with high gene expression for drives that exceed a critical drive ߶଴, and low 
gene expression otherwise (Figure 3.9B).  Thus the effective dynamics of expression levels 
݉௜ of each module ݅ are given by the non-linear equation:  
  

݀݉௜
ݐ݀ = ܪ ቆ෍ ௜௝ܬ ௝݉ − ߶଴

௝
ቇ − ݉௜

߬௜
 (1) 

where ܪ  is the Heaviside step function and ߬௜  is the effective lifetime of module ݅ 
(Supplemental Experimental Procedures). 

We determined the set of interactions ܬ௜௝ that are consistent with the observed cell 
states (C0-C8, Figure 3.7A) being stable fixed points of the network. If state ሬ݉ሬԦఈ =
{݉ଵఈ, … , ݉ଶଷఈ } with expression level ݉௜ఈ in module ݅ is a stable fixed point of the network, 
then the interactions ܬ௜௝ must be such that the total drive on each module that is expressed 
in ሬ݉ሬԦఈ  is greater than the critical drive, and the total drive on each module that is not 
expressed in ሬ݉ሬԦఈ is less than the critical drive: 

݉௜ఈ = 1 ⇒  ∑ ௜௝ܬ ௝݉ఈ ≥  ߶଴,௝   
݉௜ఈ = 0  ⇒  ∑ ௜௝ܬ ௝݉ఈ <  ߶଴.௝  (2)  
Thus, for each stable state, we have 23 constraints on the possible values of ܬ௜௝, one 

for each module. Given that we have nine cell states, there are 23*9 = 207 inequalities that 
constrain the values of the 232 = 529 different parameters, ܬ௜௝. The problem is therefore 
underdetermined, and there are an infinite number of solutions that would allow for the 
observed cell states to be stable. 
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To overcome this problem, we exploited recent developments based on 
renormalization group approaches to determine which microscopic variables are relevant 
for the observed data (Machta et al., 2013). By using a linear programming method to 
obtain 10,000 sets of ܬ௜௝  interactions (Supplemental Experimental Procedures), each 
satisfying the constraint that all nine cell states are stable fixed points, we estimated the 
probability distribution for the 529 parameters of the model, as shown in Figure 3.10A, 
giving us a probabilistic model of the underlying network. 
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Figure 3.10: Quantitative modeling of the network underlying germ layer 
differentiation.   
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(Figure 3.10, continued) (A). The inferred gene regulatory network from 10,000 sampled 
solutions that stabilize each of the nine cell states. Each circle represents a gene module. 
Mean positive and negative interactions between the modules are shown in red and green, 
respectively, and their thickness and transparency are proportional to the absolute 
magnitude of the mean and the coefficient of variation (c.v.), respectively. The colored 
circles represent the gene modules expressed uniquely in only one of the cell states (color 
code matched with Figure 3.7A for each state). (B, C). Subsets of the network consisting 
of gene modules that are expressed in (and stabilize) the naïve ES C0 state (B) and epiblast-
like C1 (C) state. As cells transition from C0 to C1, expression of [Klf4], [Apex1], [Ets2], 
[Atf2] modules is downregulated (shown in gray) while [Hes6] and [Otx2] modules are 
upregulated, leading to changes in the effective interaction strengths between gene modules 
that are common to both C0 and C1 states, such as [Sox2] and [Oct4]. (D). [Sox2] 
overexpression (x-axis) plotted against the probability of [Oct4] downregulation (y-axis) 
computed over 10,000 models (Supplemental Experimental Procedures). In the C1 state 
(solid line), [Oct4] is downregulated in an increasing fraction of models following [Sox2] 
overexpression, while in C0, [Oct4] is stable in >95% of the models (dotted line). (E, F). 
Subsets of the model consisting of gene modules that are expressed in the epiblast-like C1 (E) and mesendoderm-like C2 (F) states, and their interactions with [Snai1], which is not 
normally expressed in C1 or C2. As cells transition from the C1 to C2 state, [Hes6], [Sox2], 
[Otx2], [Churc] are downregulated (shown in gray), while [Hmga1], [T], [Atf2], [Hes1], 
[Ets2], [Apex1], and [Smarce1] are upregulated, leading to changes in the effective 
interaction strengths between [Snai1] and modules that are common to both C1 and C2, such as [Oct4]. (G). The probability of [Oct4] being downregulated (y-axis) as a function 
of [Snai1] overexpression (x-axis). In the C1 state (blue line), the over expression of [Snai1] 
has no effect on [Oct4] levels in ~90% of the 10,000 models whereas in the C2 state (red 
line), the overexpression of [Snai1] leads to [Oct4] downregulation in up to 35% of the 
models. (H). The C3 state shows a downregulation of [Oct4] and [BMP], and upregulation 
of [Tead1], [Apex1], [Pax6], [Smarce1], [Ets2], [Atf2], [Hes1] modules relative to C1. (I). Cells in different states are predicted to respond differently to morphogens. Plot showing 
the percentage of models (y-axis) where states C1 and C3 (x-axis) transition to C6 (characterized by unique marker gene module [Msx2]), in response to [LIF]+[BMP]. C1 cells remain stable in response to [LIF]+[BMP] signaling in >97% of the models whereas 
C3 cells are destabilized and move to the C6 state in 23% of the models. 
 

To functionally validate the cell states and the gene expression dynamics of cell 
state transitions inferred from our single-cell data, we used this probabilistic model to make 
testable predictions as to how different cell states respond to perturbations. We found that 
the individual cell states not only have distinct transcriptional profiles but are also predicted 
to have distinct phenotypic responses to the same perturbations.  
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We made three probabilistic predictions that we experimentally tested, each 
probing different aspects of the model gene regulatory network. We first considered 
changes in the effective interaction strengths between two gene modules as a function of 
cell state. To this end we looked at two kinds of gene module pairs: (i) gene modules that 
are co-expressed in two cell states and (ii) gene modules that are never co-expressed in any 
cell state.  

Gene modules [Sox2] and [Oct4] are highly expressed in both the ES cluster C0 and 
the epiblast-like C1 cluster, after which they are asymmetrically downregulated in the 
mesendoderm-like C2 and ectoderm-like C3. We find that for 81% of the 10,000 sampled 
solutions, [Sox2] and [Oct4] have mutually inhibitory interactions (i.e., negative coupling 
constants). However, their effective interactions are altered in different ways in each cell 
state by the presence of other gene modules. As cells transition from state C0 to C1, they 
downregulate gene modules [Klf4], [Atf2], [Apex1] and [Ets2], and upregulate [Hes6] and 
[Otx2], among others (Figure 3.10B and Figure 3.10C), leading to changes in the effective 
interaction strength between [Sox2] and [Oct4]. By incrementally increasing [Sox2] levels 
and assessing the fraction of models that show [Oct4] downregulation, we found that [Oct4] 
levels are predicted to be more stable to [Sox2] overexpression in state C0 than in C1 (Figure 
3.10D).  

On the other hand, [Snai1] and [Oct4] are not expressed together in any of the nine 
cell states. We investigated the predicted effects of [Snai1] overexpression on [Oct4] in the 
epiblast-like state C1 and mesendoderm-like state C2, both of which normally express [Oct4] 
but not [Snai1]. Although [Snai1] has a negative interaction with [Oct4] in 87.5% of the 
models, the modules expressed in C1 exert a greater positive drive on [Oct4] (Figure 3.10E 
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and Figure 3.10F) than those expressed in C2. This leads to the prediction that [Oct4] is 
less sensitive to [Snai1] overexpression in state C1 compared to C2 (Figure 3.10G).       

We next considered the effect of morphogen signals in different states. Specifically, 
we considered the LIF, BMP, WNT and FGF signaling pathways, which are known to play 
a significant role in patterning the early embryo. We grouped signaling genes by their 
respective pathways (defined by GO categories) and assigned each group to a module based 
on its average expression pattern across the nine cell states. Because WNT and FGF 
modules show no changes in expression across all cell states, we focused on investigating 
the effects of LIF and BMP signaling on cells in the epiblast-like C1 and in the bi-potent 
ectoderm-like state C3 (Figure 3.10H). Given an initial state C1 or C3, we calculated the 
probabilities that cells either remain in the same state or move to a different state in 
response to [LIF] and [BMP] (Methods). Our simulations found that cells that are initially 
in state C1 either remain stabilized in C1 or move to state C0 in response to [LIF] and [BMP], 
with a probability of 82.4% and 15.8%, respectively. However, in response to the same 
perturbation, cells in the C3 state transitioned to the neural crest-like state C6 state with a 
probability of 19.6%, and remained in the C3 state in 77.3% of the models (Figure 3.10I). 
To summarize, we predict that [Oct4] expression is less sensitive to [Sox2] overexpression 
in state C0 than in C1; [Oct4] expression is less sensitive to [Snai1] overexpression in state 
C1 compared to C2; and cells in state C3, but not in C1, can transition to state C6 following 
[LIF]+[BMP] exposure. 

Thus, by categorizing genes into different modules by their expression patterns 
across the observed cell states, these modules provide a starting point for modeling the 
gene regulatory network responsible for cell-fate decisions, allowing us to make and test 
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predictions for how the network gives rise to different phenotypic responses to perturbation 
across different cell states.  
 
3.2.6. Interpretation of Sox2, Snai1, and LIF+BMP are cell state dependent 

We next experimentally tested the model’s predictions of state-dependence in cells’ 
responses to perturbations. We first tested how cells’ Oct4 levels respond to Sox2 
overexpression in the naïve ES and epiblast-like states C0 and C1. We transiently 
transfected cells with a plasmid containing a Tet-inducible bi-directional promoter, flanked 
by the open reading frames of Sox2 and mCerulean, which we used as a fluorescent reporter 
of induction (Figure 3.11A). We induced overexpression in cells either in the 
undifferentiated C0 state or the epiblast-like C1 state (Figure 3.11B). As a control, we used 
identical populations that were transfected with a plasmid containing only mCerulean 
under the inducible promoter. In such experiments, we typically saw mCerulean 
fluorescence appear approximately three hours into induction and persist for about three to 
four days after transfection. We therefore induced overexpression for 24 hours to minimize 
the effect of plasmid loss but still allow for several cell cycles to occur during induction. 
Following induction, we fixed and immunostained the cells for Oct4, and analyzed the 
results via flow cytometry. In agreement with our predictions (Figure 3.10D), we found 
that Sox2 overexpression correlates with downregulation of Oct4 in the epiblast-like state 
C1 (significant relative to control, ݌ = 5.72 × 10ିଷଵ; see also Figure 3.11C), whereas this 
effect was not observed in undifferentiated cells (state C0) (Figure 3.12A and Figure 3.12B).  
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Figure 3.11: Overexpression experiments.  (A). (Right) mCerulean fluorescence level 
correlates with increasing total Sox2 levels, validating the use of mCerulean fluorescence 
as a measure for Sox2 overexpression. (Left) As a control, we show that Sox2 levels do 
not increase when only mCerulean is overexpressed. (B). Histogram of Otx2 expression 
(as measured by immunostaining and flow cytometry) following 24 hours of Sox2 
overexpression in either naïve ES C0 cells (Lif2i; yellow) or epiblast-like C1 cells (D2 PD0; 
orange). In determining the effects of Sox2 overexpression in the epiblast-like C1 state 
(Figure 6A), we excluded cells that showed Otx2 expression less than two standard 
deviations above the mean of Otx2 levels in Lif2i (threshold shown in dotted line). (C). 
Overexpression of only mCerulean does not show any effect on Oct4 levels in both C0 (left; 
Lif2i) and C1 (right; D2 PD0) cell states. (D). At day 3 of differentiation using CHIR99021 
and Activin A (Methods), populations consist of cells in C1 (FoxA2-low, T-low) C2 (FoxA2-low, T-high) and C4 (FoxA2-high, T-high) states (right). The fraction of cells in 
C4 is 17%. FoxA2 and T levels in undifferentiated C0 state cells (Lif2i) are shown as a 
reference (left).  
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(Figure 3.11, continued) (E). At day 2.5 of differentiation using PD0325901 (Methods), 
populations consist of cells in C1 (Oct4-high) and C3 (Oct4-low) states. At this point cells 
have not yet upregulated Pax6 (left two panels) or Slug (right two panels), showing that 
cells have not yet transitioned to either state C5 or C6. 
 

We then tested the effects of Snai1 overexpression on Oct4 in the epiblast-like state 
C1 and mesendoderm-like state C2, using the same experimental framework as described 
above. On day three of differentiation, cell populations either contain a mixture of C1, C2 
and (minimally) C4 cell states, or a combination of C1, C3 and C5 (or C6), depending on the 
signaling conditions (Figure 3.7D; see also Figure 3.11D). Using the signaling conditions 
that yield the former set of cell states, we transfected cells at 2.5 days into differentiation, 
and drove overexpression of Snai1 12 hours later in a population consisting primarily of 
cells in C1 and C2 states (Figure 3.12D). After 24 hours of Snai1 overexpression and further 
differentiation, we fixed and immunostained the cells for T to distinguish cells in C1 (T-
low) and C2 (T-high) states. We also immunostained the cells for Oct4 to distinguish the 
C1 state from other T-low states that arise during the last 24 hours of differentiation 
following the initiation of induction. We found that the fraction of C1 cells within the 
transfected population was significantly reduced relative to control (݌ = 1.98 × 10ିଵଷ), 
suggesting that cells in this state had downregulated Oct4 levels in response to Snai1 
overexpression. On the other hand, the fraction of C2 cells within the transfected population 
and their Oct4 levels were maintained relative to control, in agreement with our predictions 
(Figure 3.10G, Figure 3.12C, and Figure 3.12D).  
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Figure 3.12: Experimental validation shows that interpretation of Sox2, Snai1, and LIF+BMP is cell state dependent.  (A). Comparison of the effects of Sox2 overexpression 
(x-axis) on Oct4 levels (y-axis) in the naïve ES state C0 (left) and epiblast-like C1 (right) 
state shows negative correlation between Sox2 overexpression and Oct4 levels in the C1 state, but not in C0. Plots showing mCerulean (marker) -only overexpression in C0 or C1 are indistinguishable from Sox2 overexpression in C0 (Figure 3.11C) (B). Fraction of Oct4-
high cells (y-axis; defined as greater than 2σ below the mean log of Oct4 of non-transfected 
control cells) plotted against binned Sox2 overexpression level confirms model prediction 
(Figure 3.10D) that Sox2 overexpression leads to downregulation of Oct4 in C1 but not C0. (C). Comparison of the effects of Snai1 (right) and mCerulean-only (left) overexpression 
on Oct4 levels (x-axis) in the epiblast-like C1 and mesendoderm-like C2 states (y-axis; T-
low and –high, respectively) shows downregulation of Oct4 in response to Snai1 
overexpression in the C1 state but not in C2.   
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(Figure 3.12, continued) (D). Fraction of Oct4-high cells in Snai1 overexpressing cells, 
normalized by this fraction in mCerulean overexpressing control cells (y-axis), plotted 
against binned Snai1 overexpression level (x-axis) confirms the prediction (Figure 3.10G) 
that Snai1 overexpression leads to greater downregulation of Oct4 in C1 compared to C2. (E). Live cell images of Oct4-mCitrine cells at t= 0, 6, 12, 18, 24 hours of LIF+BMP 
exposure. At t= 0, cells are either in state C1 (Oct4-high) or C3 (Oct4-low) (Figure 3.11E). 
(Scale bar = 100μm) Cells were fixed at t=24 hours and immunostained for Msx2. (F). 
Time series (x-axis) traces of single-cell Oct4 expression (y-axis) taken every 15 minutes 
from live cells. Each trace is colored by its relative end-point Msx2 immunofluorescence 
intensity level.  (G). The initial Oct4 reporter (mCitrine) intensity (y-axis) and final Msx2 
immunofluorescence (x-axis) are negatively correlated. Each dot represents a single cell. 
Histogram of Oct4 reporter intensity at t = 0 levels shown in gray. Based on this histogram, 
we defined a range of threshold values for determining Oct4-high and –low (shown in 
overlapping region of orange and green along y-axis). (H). Plot showing fraction of Msx2-
high (y-axis; as defined by greater than 2σ above background) confirms prediction (Figure 
3.10I) that Msx2 is upregulated with greater probability in the C3 state compared to C1 (x-
axis) in response to LIF+BMP exposure. 
 

Finally, we tested whether cells in epiblast-like C1 and bi-potent ectoderm-like C3 
states respond differently to LIF+BMP signaling, as predicted by our model. In order to 
investigate the relationship between a cell’s initial state and its final state in response to 
LIF+BMP exposure, we needed to assess cells’ initial states non-invasively. We found that 
2.5 days into differentiation, we could obtain populations that consist primarily of cells in 
epiblast-like state C1 and bi-potent ectoderm-like state C3 (Figure 3.11E), which have high 
and low expression of Oct4, respectively. We therefore utilized an Oct4-mCitrine mES cell 
line that we had previously engineered (Thomson et al., 2011) to distinguish cells in C1 and 
C3 states after 2.5 days of differentiation. At this point, 1200U/mL LIF and 25ng/mL BMP4 
were added to the media, after which we followed individual cells’ Oct4 expression 
dynamics for approximately 24 hours via live-cell microscopy, followed by fixing and 
immunostaining for Msx2, a unique marker gene for the neural crest-like cell state C6 
(Figure 3.12E and Figure 3.12F). As predicted by the model (Figure 3.10I), only cells that 
had low Oct4 levels (and were therefore in the bi-potent ectoderm-like state C3) prior to 
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LIF+BMP exposure showed upregulation of Msx2 in response to LIF+BMP (Figure 3.12G 
and Figure 3.12H). Together, these results show that the inferred cell states reflect 
phenotypic discreteness in cells’ responses to perturbations, and that the gene expression 
changes that define these responses mirror those predicted by our model gene regulatory 
network.   
 
3.3. Discussion 

In this study, we find that the challenges of clustering single-cell gene expression 
data to determine cell states, inferring the sequence of transitions between these states, and 
discovering the genes whose expression patterns best reflect these states and state 
transitions are intricately linked. However, by simultaneously inferring cell states, state 
transitions and the coordinate system that defines cell states and state transitions, we can 
analyze single-cell data to uncover the gene expression dynamics of differentiation. We 
also demonstrate that building a family of models to fit the data allows us to obtain the 
probability distributions of all the gene interaction parameters, which can be used to make 
experimentally testable predictions. We believe that both our Bayesian framework to infer 
the dynamics of cell state transitions as well as our modeling framework will be broadly 
useful to obtain a quantitative understanding of development from single-cell gene 
expression data.  

Comprehensive interrogation of gene expression through RNA sequencing is 
impossible without the termination of cells, providing only static snapshots of gene 
expression during differentiation. Despite this and the complexity of the underlying 
network, we discover that both cell states and the sequence of cell state transitions can be 
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accurately determined by monitoring the levels of just a few transition or marker genes. 
Monitoring the expression dynamics of these key genes in live cells using microscopy will 
allow us in the future to continuously track the cell-fate decisions of individual cells. The 
inferred gene modules therefore represent the “order parameters” by which cell-state 
transition dynamics can be directly measured. Live cell microscopy experiments will also 
allow us to measure, in conjunction with cell state transition dynamics, changes in 
individual cells’ spatial environment, movement, lineage history, and cell cycle dynamics 
in order to address fundamental biological questions as to how these factors affect cell fate 
decisions.  

Requiring models to have discrete cell states leads to the prediction that each cell 
state has distinct responses to perturbations by signals and changing levels of gene 
expression. Our experimental tests show, as predicted by the model network, that Oct4 is 
either downregulated or unaffected by overexpression of Sox2 or Snai1, depending on the 
cell state. Previous studies have already shown that Sox2 and Oct4, along with Klf4, 
constitute part of a positive feedback loop that stabilizes the pluripotent ground state (Kim 
et al., 2008; Young, 2011). It is also known that in undifferentiated cells, Snai1 
overexpression leads to downregulation of Oct4 expression and, subsequently, to exit of 
pluripotency (Galvagni et al., 2015). However, our results demonstrate that these 
interactions are state-dependent by showing that the effective positive interactions between 
Sox2 and Oct4 become destabilized as Klf4 levels drop and cells transition to a primed, 
epiblast-like pluripotent state. Similarly, the negative interaction exerted by Snai1 on Oct4 
becomes attenuated in the presence of early primitive streak genes such as T. We also 
predict and show that LIF+BMP exposure pushes bi-potent ectoderm-like cells toward an 
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Msx2-positive neural crest-like state, but this effect is not seen in epiblast-like cells. These 
results are further supported by the fact that both LIF and BMP signaling pathways can be 
used to keep cells in the pluripotent cell state (Chambers, 2004; Tam et al., 2006; Ying and 
Smith, 2003), and that BMP signaling plays a significant role in the differentiation of neural 
crest cells (Knecht and Bronner-Fraser, 2002). Together, these findings signify that the 
inferred cell states directly reflect differences in cells’ responses to perturbations and show 
that these cell states can also be defined by their unique responses to perturbations. 

Finally, our results suggest that cell-to-cell heterogeneity within differentiating 
populations arises largely as a consequence of cells’ variability in their timing of cell state 
transitions. Our inferred cell clusters show mixing of cells from different time points, 
suggesting that the observed states themselves do not change over time and that at the 
population level, differentiation occurs as a change in the proportions of cells in various 
cell states rather than through changes in the cell states themselves (Figure 3.7D). Since 
cells interpret perturbations differently even in consecutive states (Figure 3.12), this 
suggests that heterogeneity arising from timing variability is further amplified in response 
to signal addition or fluctuations in gene expression level. These findings emphasize the 
importance of understanding how the timing of cell state transitions is controlled during 
development.  
 
3.4. Methods 
3.4.1. ES-Cell Culture  
v6.5 mouse embryonic cells were maintained and passaged in monolayer (non-embryoid 
body formation) in N2B27 basal media with signaling molecules and/or small molecules 
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added to the basal media. ES cells were maintained in a pluripotent cell state using 
1200U/mL mLIF (murine leukemia inhibitory factor), 1μM PD0325901 (MEK inhibitor), 
and 3μM CHIR99021 (GSK inhibitor) conditions (a.k.a. “LIF+2i”; (Ying et al., 2008), and 
passaged every two days. To passage cells, we added 0.01% trypsin to cells after aspirating 
media and incubated the plate in 37’C for 1 ~ 2 minutes to detach cells. The trypsin was 
then quenched with 0.5mL of fetal bovine serum, and the resulting cell suspension was 
collected, counted, and pelleted at 200xg for 5 minutes at room temperature. The 
supernatant was aspirated and the cells were resuspended and re-seeded onto a gelatinized 
tissue culture dish at a density of 1e6 cells per 10cm diameter plate. All cell lines were 
depleted of feeders and transitioned to serum free medium over several passages prior to 
experiments (Ying and Smith, 2003). N2B27 is prepared as described in (Gaspard et al., 
2008; Ying and Smith, 2003). 
3.4.2. ES Cell differentiation 
Cells were seeded at a density of 106 per 10cm diameter plate, and were not trypsinized 
again until they were harvested for analysis. We either exposed cells to 0.4μM PD0325901 
or 3μM CHIR99021 and 10ng/mL Activin A (human, rat, mouse) for 2 days or 3 days, 
respectively, followed by either 25ng/mL hBmp4 or 1μM LDN193189 (BMP antagonist) 
for up to two days. Media was replenished every 48 hours. Cells exposed to 0.4μM 
PD0325901 gave rise to ectodermal lineages, as characterized by expression of Sox1, Pax6 
(treated with LDN193189), Slug, and Msx2 (treated with hBmp4) after three days of 
differentiation. Cells exposed to CHIR99021 and Activin A gave rise to mesendodermal 
lineages (Sumi et al., 2008), as characterized by expression of T after three days of 
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differentiation, and FoxA2 (treated with LDN193189) and Gata4 (treated with hBmp4) 
after four days of differentiation.  
Table 3.1: Differentiation conditions and duration of single cells sorted into seven 96-
well plates  

  plate M1 plate M2 plate M3 plate M5 plate M6 plate M7 plate M8 

row A Lif2i 
Day 1 
ChAct 

Day 2+2 
PD0+LDN 

Day 1 
ChAct 

Day 3+1 
ChA+LDN 

Day 3+2 
ChA+LDN 

Day 3+2 
ChA+LDN 

row B Lif2i 
Day 1 
ChAct 

Day 2+2 
PD0+LDN 

Day 1 
ChAct 

Day 3+1 
ChA+LDN 

Day 3+2 
ChA+LDN 

Day 3+2 
ChA+LDN 

row C 
Day 1 
PD0 

Day 3 
ChAct 

Day 2+2 
PD0+LDN 

Das 3 
ChAct 

Day 3+1 
ChA+LDN 

Day 3+2 
ChA+LDN 

Day 3+2 
ChA+LDN 

row D 
Day 1 
PD0 

Day 3 
ChAct 

Day 2+2 
PD0+LDN 

Day 3 
ChAct 

Day 3+1 
ChA+LDN 

Day 3+2 
ChA+LDN 

Day 3+2 
ChA+LDN 

row E 
Day 2 
PD0 

Day 2+1 
PD+LDN 

Day 2+2 
PD0+Bmp 

Day 2+1 
PD+LDN 

Day 3+1 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

row F 
Day 2 
PD0 

Day 2+1 
PD+LDN 

Day 2+2 
PD0+Bmp 

Day 2+1 
PD+LDN 

Day 3+1 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

row G 
Day 2 
ChAct 

Day 2+1 
PD+Bmp 

Day 2+2 
PD0+Bmp 

Day 2+1 
PD+Bmp 

Day 3+1 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

row H 
Day 2 
ChAct 

Day 2+1 
PD+Bmp 

Day 2+2 
PD0+Bmp 

Day 2+1 
PD+Bmp 

Day 3+1 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

Day 3+2 
ChA+Bmp 

 
3.4.3. Single-Cell RNA-Seq 
CEL-seq libraries as previously reported (Hashimshony et al., 2012) with a few 
modifications. Single cells were sorted with a FACSAria (BD) into 96 well plates 
containing 1.2 µL 2 × CellsDirect Buffer (Life Technologies) with 0.1 µL of ERCCs 
diluted to 1×10-6 molecules (Life Technologies). Plates were frozen and stored at -80C. 
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For library preparation, mRNA was reverse transcribed using 0.15625 pmol of oligoT 
primer carrying a cell-specific 8 NT barcode and a 5 NT unique molecular identifier (UMI) 
(Islam et al., 2014). Barcode design ensured at least two nucleotide differences from any 
other barcode. Samples were lysed at 70 °C for 5 minutes, then reverse transcribed using 
Superscript III for two hours at 50 °C, then primers digested with 1 µL of ExoSAP-IT 
(Affymetrix). Second strand synthesis was carried out with Second Strand Synthesis Buffer, 
dNTPs, DNA Polymerase, and RNAse H (NEB) at 16 °C for 2 hours. Single cell cDNAs 
were pooled by 24 wells per library, with each library containing a water-only well and 
one ERCC-only well. Pools were purified with an equal volume of RNA Clean Beads 
(Beckman Coulter) and amplified at 37C for 15 h using the HiScribe T7 High Yield RNA 
Synthesis kit (NEB), and treated with DNAse I (Life Technologies). Amplified RNA was 
fragmented using the NEBNext RNA Fragmentation Module (NEB), purified with an equal 
volume of RNA Clean Beads, and visualized using the RNA Pico Kit on the Bioanalyzer 
2100 (Agilent). The RNA fragments were repaired with Antarctic Phosphatase and 
Polynucleotide Kinase (NEB), and purified using an equal volume of RNA Clean Beads. 
cDNA libraries were made using the NEBNext Small Library Prep Kit according to the 
manufacturer’s instructions, except Superscript III was used for the RT step. Index primers 
were used in PCR amplification. Approximately 160-200 nmol of a pool of libraries were 
size selected to exclude species smaller than 180 bp on a 2% Dye Free cassette on the 
Pippin Prep (Sage) and concentrated to approximately 14 µL. Pools were then quantified 
by qRT-PCR using p5 (5’-AATGATACGGCGACCACCGAGA-3’) and p7 (5’-
CAAGCAGAAGACGGCATACGAGAT-3’) primers and by Bioanalyzer (DNA High 
Sensitivity Kit, Agilent), and sequenced on an Illumina HiSeq. The custom sequencing 
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primer: 5’-TCTACACGTTCAGAGTTCTACAGTCCGACGATC-3’ was included with 
Illumina primer HP10 for sequencing. Standard Illumina primers HP12 and HP11 were 
used for the index read and the transcript read, respectively. PE50 kits (Illumina) were used 
for sequencing with read lengths of 25 nt, 6 nt, and 47 nt for read1 (cell barcode, UMI), 
index (library), and read2 (transcript), respectively. Following quantification, we discarded 
the data from wells that yielded below a total of 20,000 UMI (threshold based on empty 
well controls), which left us with 358 cells. Further, as others have recognized (Paul et al., 
2015), we found that some well-to-well mixing was present with CEL-Seq multiplexed 
single-cell RNA-Seq. We used the data only from 288 cells because of this mixing artifact. 
3.4.4.  Immunofluorescence 
Cells were grown on ibidi µ-bottom plates and fixed with 4% paraformaldehyde. Cells 
were permeabilized with ice-cold 100% methanol, blocked with 5% donkey serum, 
incubated with primary antibody, washed, and incubated with DAPI and secondary 
antibody coupled to Alexa488 Alexa568, or Alexa647. Images were acquired with a Zeiss 
40× plan apo objective (NA 1.3) with the appropriate filter sets. Data was analyzed using 
custom written code in MATLAB. Antibodies and dilutions used in this study: Klf4 
(Abcam ab129473, 1:400); Nanog (eBiosciences 14-5761, 1:800); Oct4 (Santa Cruz sc-
8628, 1:800; Cell Signaling 2840, 1:400); Sox2 (eBiosciences 14-9811, 1:800); Otx2 
(Neuromics GT15095, 1:400); T (Brachyury) (Santa Cruz sc-17745, 1:200); FoxA2 (Cell 
Signaling 8186, 1:400); Gata4 (eBiosciences 14-9980, 1:400); Sox1 (Cell Signaling 4194, 
1:200); Pax6 (DSHB Pax6, 1:200); Msx1+2 (DSHB 4G1, 1:200); Slug (Cell Signaling 
9585, 1:200), Snai1 (Cell Signaling 2879, 1:200).  
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3.4.5. Live-Cell Microscopy 
For live-cell time-lapse microscopy, cells were plated into N2B27 without phenol-red (plus 
signaling molecules and small molecules) on ibidi µ-bottom plates. Cells were imaged on 
a Zeiss Axiovision inverted microscope with a Zeiss 40× plan apo objective (NA 1.3) with 
the appropriate filter sets with an Orca-Flash 4.0 camera (Hamamatsu). The microscope 
was enclosed with an environmental chamber in which CO2 and temperature were 
regulated at 5% and 37°C, respectively. Images were acquired every 15 min for 12–48 hrs. 
Image acquisition was controlled by Zen (Zeiss); image analysis was done with ImageJ 
(NIH) and Matlab (MathWorks). 38 HE GFP/43 HE DsRed/46 HE YFP/47 HE CFP/49 
DAPI/50 Cy5 filter sets from Zeiss. Transition duration of Otx2-mCitrine cells was defined 
as the time between the last image at which a cell’s reporter intensity was equal to or below 
its intensity at t = 1 and the first image at which its intensity was equal to or above 2.2 
(mean – ߪ of upper mode of Otx2 reporter intensity) on the normalized scale.  
3.4.6. Plasmid Transfection 
We cloned Sox2 or Snai1 cDNA to one side of a bi-directional Tet-on promoter (pTRE3G-
BI; Clontech), to the other side of which we had cloned in mCerulean cDNA. Mini-prepped 
plasmid was ethanol-precipitated to further concentrate and remove any possible 
endotoxins. For Sox2 overexpression, cells were seeded at 100,000 cells per 35mm 
diameter plate in 2mL of either LIF+2i conditions or differentiation media (0.4μM 
PD0325901 or 3μM CHIR99021) for 1 day. 200μL of FBS was then added to each plate 
and 1.8ug of plasmid was transfected using 5.4μL of JetPrime (Polyplus). Cells were 
incubated for 12 hours, then washed with PBS and replenished with fresh LIF+2i or 
differentiation media. We then added 3μL of Tet-Express mixed with 2.5μL of Intensifier 
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reagent (Clontech). Cells were incubated in induction media for 24 hours, after which they 
were harvested and fixed with 4% paraformaldehyde. Following fixation, they were 
permeabilized with ice-cold 100% methanol and rehydrated with 1% BSA. Cells were then 
stained for Oct4, Otx2 and Sox2 and analyzed using flow cytometry. For Snai1 
overexpression, cells were seeded at 100,000 cells per 35mm diameter plate in 2mL of 
3μM CHIR99021 for 2.5 days. 200μL of FBS was then added to each plate and 1.8μg of 
plasmid was transfected using 5.4uL of JetPrime (Polyplus). Cells were incubated in 
transfection media for 12 hours, then washed with PBS and replenished with fresh N2B27 
basal media. We then added 3μL of Tet-Express mixed with 2.5μL of Intensifier reagent 
(Clontech). Cells were incubated in induction media for 24 hours, after which they were 
harvested and fixed with 4% paraformaldehyde. Following fixation, they were 
permeabilized with ice-cold 100% methanol and rehydrated with 1% BSA. Cells were then 
stained for Oct4 and T and analyzed using flow cytometry.  
3.4.7. Fluorescence-Activated Cell Sorting 
Cells were trypsinized and fixed in suspension with formaldehyde (4% final concentration, 
diluted in PBS), permeabilized with ice cold 100% methanol and blocked with 5% donkey 
serum for 1 hour. Finally, cells are stained with primary antibodies diluted in PBS 
containing 1% BSA, and detected using fluorescent-tagged secondary antibodies. Flow 
cytometry was perfomed on a BD FACSAria flow cytometer equipped with 355nm, 405 
nm, 488 nm, 561 nm, and 637 nm lasers. The data acquired were analyzed using custom 
programs written in MatLab. 
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3.4.8. Generation of mOTX2-Citrine reporter cell line 
G4 mESCs, a 129S6 x B6 F1 hybrid line (Andras Nagy, University of Toronto) were 
maintained on DR4 mouse embryonic fibroblasts (MEFs).  These cells (1×107) were 
electroporated (Transfection Buffer, Millipore; Bio-Rad set at 250V and 500 mF) with 5 
µg each TALEN plasmid (AI-CN301 and AI-CN302 targeting 
TTCCAGGTTTTGTGAAGA and TTTAAAAATCACCCACAA, respectively) and 20 µg 
donor plasmid (AI-CN563).  Following transfection, cells were placed on ice for 5 min, 
then plated onto 3 × 10 cm dishes with MEFs. Beginning 30 h after transfection, cells were 
selected with hygromycin at 150 µg/mL for 3 days, then 100 µg/mL for an additional 4 
days.  Approximately 48 hygromycin-resistant colonies were picked and expanded for 
freezing and DNA preparation and analysis. Five clones were identified with targeted 
integration by junction PCR (5' junction primers: AAGAGCTAAGTGCCGCCAACAGC, 
CATCAGCCCGTAGCCGAAGGTAG; 3' junction primers: 
CACGCTGAACTTGTGGCCGTTTA, CAGCTCACCTCCAGCCCAAGGTA).  
Following expansion and fluorescence-activated cell sorting (FACS), Cerulean+ cells from 
two clones (2.1 and 2.4) were treated with Cre mRNA.  After recovery and expansion, the 
Cerulean- cells were enriched by FACS and single-cell cloned.  The resulting subclones 
were tested for removal of the selection cassette (primers: 
GGTGCCTATTCTGGTCGAACTGGATG, ATCACCTCTGCTTTGAAGGCCATGAC). 
The TALENs were kindly provided by the Joung lab synthesized using the FLASH method 
(Reyon et al., 2012).  
3.4.9. Clustering and lineage inference algorithm 
Our algorithm proceeds according to the following steps (Figure 3.4): 
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0. Find initial seed clustering configuration {ܥ଴} using Seurat (Satija et al., 2015) 
1. For all triplets of clusters, find most likely ܶ and {ߙ௜} and {ߚ௜} given {ܥ଴}: 

a. Compute ݌൫݃௜஺,஻,஼หܶ, ௜ߙ , ௜ߚ , ,ߤ)݌ ൯ by integrating numerically over {଴ܥ}  .(ߪ
(Equations ( 8 ), ( 11 ) and ( 12 ) in Chapter 5. Appendix: Mathematical 
derivation of Bayesian Framework). 

b. Compute ݌൫ܶ, ,{௜ߙ} ,ห൛݃௜஺,஻,஼ൟ{௜ߚ}  ൯ using Equations ( 22 ) and ( 31 ) in {଴ܥ}
Chapter 5. Appendix: Mathematical derivation of Bayesian Framework. 

c. Identify mostly likely topology ܶ and set of {ߙ௜} and {ߚ௜}. 
2. Recluster {݃} using Seurat in the space of all {ߙ௜} and {ߚ௜} for the triplets with 

probability ݌൫ܶห൛݃௜஺,஻,஼ൟ,  ൯>0.6 of being non-null. Determine new clustering {଴ܥ}
configuration {ܥଵ}. 

3. Repeat steps 1 and 2 until convergence of {ܥ}. 
4. Determine most likely tree connecting cell clusters, recapitulating high-probability 

triplet topologies. 

Steps 1 and 2 are described in the Mathematical Appendix in Chapter 5; the other steps 
are described below.  

The probabilities of the triplets in the final clustering configuration are shown in the 
following table.  
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Table 3.2: Triplet probabilities of final tree. 
triplet probabilities for prior odds p(β_i=1)/p(β_i=0) = 1E-5 # non-

null 
topolog
ies with 
prob > 
0.6 

most 
likely 
topol
ogy 

probabil
ity at 
max 

A B C p(A|{g},{C}) p(B|{g},{C}) p(C|{g},{C}) p(0|{g},{C}) 

C0 C1 C3 3.05E-34 1.00E+00 1.01E-89 2.99E-04 1 C1 1.000 
C0 C1 C8 1.44E-15 1.00E+00 6.00E-218 6.32E-07 1 C1 1.000 
C0 C1 C5 5.33E-31 1.00E+00 5.37E-101 4.14E-05 1 C1 1.000 
C0 C1 C6 9.52E-27 1.00E+00 1.89E-103 4.48E-04 1 C1 1.000 
C0 C1 C7 4.14E-05 9.99E-01 1.48E-181 1.27E-03 1 C1 0.999 
C0 C1 C4 3.90E-24 1.00E+00 6.95E-131 1.54E-04 1 C1 1.000 
C0 C1 C2 9.20E-08 9.36E-01 5.13E-13 6.44E-02 1 C1 0.967 
C0 C3 C8 1.16E-179 5.78E-10 1.03E-26 1.00E+00 0 null 1.000 
C0 C3 C5 3.67E-253 5.41E-01 4.59E-01 6.99E-08 1 C3 0.613 
C0 C3 C6 1.53E-181 8.72E-01 1.28E-01 2.99E-07 1 C3 0.976 
C0 C3 C7 1.31E-83 1.40E-07 6.99E-47 1.00E+00 1 C3 0.798 
C0 C3 C4 2.10E-120 1.97E-17 3.87E-47 1.00E+00 0 null 1.000 
C0 C3 C2 2.01E-39 4.21E-57 9.94E-01 5.76E-03 1 C2 0.996 
C0 C8 C5 4.77E-141 5.74E-01 5.99E-29 4.26E-01 1 C8 0.994 
C0 C8 C6 2.98E-122 8.46E-11 5.60E-01 4.40E-01 2 C8 0.703 
C0 C8 C7 2.00E-171 4.47E-01 5.53E-01 9.15E-05 1 C7 0.642 
C0 C8 C4 1.28E-255 5.46E-07 1.00E+00 1.46E-06 1 C4 1.000 
C0 C8 C2 1.02E-133 1.47E-65 1.00E+00 5.12E-05 1 C2 1.000 
C0 C5 C6 1.59E-170 6.60E-01 3.40E-01 1.21E-08 1 C5 0.775 
C0 C5 C7 2.55E-66 5.38E-31 2.84E-58 1.00E+00 0 null 1.000 
C0 C5 C4 2.82E-93 3.36E-37 4.62E-39 1.00E+00 0 null 1.000 
C0 C5 C2 4.30E-21 3.94E-67 9.89E-01 1.09E-02 1 C2 0.997 
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(Table 3.2, continued) 
C0 C6 C7 1.31E-48 1.12E-01 1.35E-24 8.88E-01 1 C6 0.903 
C0 C6 C4 1.64E-82 1.21E-08 3.26E-38 1.00E+00 1 C6 0.708 
C0 C6 C2 8.53E-13 1.57E-41 9.89E-01 1.14E-02 1 C2 0.996 
C0 C7 C4 1.01E-165 5.13E-01 4.87E-01 3.53E-05 0 C7 0.538 
C0 C7 C2 1.03E-93 1.79E-39 9.92E-01 7.56E-03 1 C2 0.997 
C0 C4 C2 6.05E-126 5.07E-03 9.92E-01 2.77E-03 1 C2 0.999 
C1 C3 C8 8.60E-27 8.49E-07 4.52E-41 1.00E+00 0 null 1.000 
C1 C3 C5 2.70E-52 5.52E-01 4.35E-01 1.38E-02 1 C3 0.660 
C1 C3 C6 2.10E-14 9.28E-01 1.86E-02 5.29E-02 1 C3 0.980 
C1 C3 C7 8.89E-04 1.94E-06 2.60E-45 9.99E-01 1 C1 0.800 
C1 C3 C4 2.62E-09 4.21E-14 1.28E-48 1.00E+00 1 C1 0.705 
C1 C3 C2 8.47E-01 4.01E-46 1.61E-04 1.53E-01 1 C1 0.879 
C1 C8 C5 8.88E-29 1.54E-01 7.67E-32 8.46E-01 1 C8 0.820 
C1 C8 C6 4.48E-26 1.51E-17 3.46E-03 9.97E-01 1 C6 0.816 
C1 C8 C7 6.05E-177 6.89E-01 4.28E-16 3.11E-01 1 C8 0.949 
C1 C8 C4 1.26E-215 1.74E-16 9.97E-01 3.17E-03 1 C4 0.998 
C1 C8 C2 1.80E-173 8.61E-53 9.96E-01 3.84E-03 1 C2 0.998 
C1 C5 C6 9.57E-24 7.14E-01 2.77E-01 8.76E-03 1 C5 0.882 
C1 C5 C7 1.12E-05 7.42E-23 9.43E-43 1.00E+00 1 C1 0.874 
C1 C5 C4 8.72E-23 2.47E-40 3.55E-18 1.00E+00 0 null 1.000 
C1 C5 C2 1.52E-07 5.30E-62 9.22E-01 7.84E-02 1 C2 0.945 
C1 C6 C7 1.13E-04 9.71E-04 7.74E-22 9.99E-01 0 C6 0.578 
C1 C6 C4 1.71E-03 1.46E-13 1.58E-19 9.98E-01 1 C1 0.709 
C1 C6 C2 7.99E-01 1.25E-36 1.58E-01 4.23E-02 1 C1 0.897 
C1 C7 C4 1.04E-191 2.38E-09 9.91E-01 9.47E-03 1 C4 0.995 
C1 C7 C2 2.67E-146 3.28E-16 9.50E-01 5.03E-02 1 C2 0.971 
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(Table 3.2, continued) 
C1 C4 C2 3.29E-170 1.19E-01 5.87E-01 2.95E-01 1 C2 0.605 
C3 C8 C5 1.02E-03 5.17E-86 9.89E-01 9.99E-03 1 C5 0.994 
C3 C8 C6 9.91E-01 2.00E-55 5.49E-06 9.00E-03 1 C3 0.993 
C3 C8 C7 6.83E-108 3.16E-02 6.22E-01 3.46E-01 1 C7 0.798 
C3 C8 C4 3.67E-167 2.63E-20 9.88E-01 1.22E-02 1 C4 0.988 
C3 C8 C2 7.72E-147 1.40E-12 5.53E-08 1.00E+00 1 C2 0.890 
C3 C5 C6 3.30E-01 4.90E-01 1.72E-19 1.80E-01 0 C5 0.583 
C3 C5 C7 1.45E-02 9.63E-01 8.46E-56 2.29E-02 1 C5 0.980 
C3 C5 C4 1.92E-04 9.51E-01 2.21E-85 4.90E-02 1 C5 0.955 
C3 C5 C2 2.15E-03 9.90E-01 1.64E-64 7.90E-03 1 C5 0.994 
C3 C6 C7 9.19E-01 2.66E-04 5.57E-32 8.05E-02 1 C3 0.941 
C3 C6 C4 6.98E-01 1.57E-01 6.29E-40 1.45E-01 1 C3 0.824 
C3 C6 C2 7.89E-01 1.33E-01 1.54E-14 7.85E-02 1 C3 0.920 
C3 C7 C4 1.04E-132 9.84E-01 3.90E-09 1.62E-02 1 C7 0.987 
C3 C7 C2 1.86E-112 2.51E-07 9.97E-07 1.00E+00 1 C2 0.792 
C3 C4 C2 3.36E-147 9.38E-01 3.31E-05 6.16E-02 1 C4 0.957 
C8 C4 C2 4.43E-07 9.00E-01 7.45E-05 9.97E-02 1 C4 0.945 
C8 C7 C2 7.78E-01 5.09E-02 3.73E-09 1.71E-01 1 C8 0.790 
C8 C7 C4 1.10E-03 3.14E-12 7.79E-01 2.20E-01 1 C4 0.813 
C8 C6 C2 1.36E-08 1.88E-143 2.08E-11 1.00E+00 1 C8 0.800 
C8 C6 C4 3.15E-22 2.19E-149 9.65E-01 3.53E-02 1 C4 0.970 
C8 C6 C7 2.51E-03 1.76E-123 9.32E-01 6.56E-02 1 C7 0.933 
C8 C5 C2 4.75E-02 1.83E-130 1.17E-13 9.52E-01 1 C8 0.846 
C8 C5 C4 1.99E-08 5.78E-123 8.73E-01 1.27E-01 1 C4 0.877 
C8 C5 C7 5.81E-01 7.20E-113 1.28E-11 4.19E-01 1 C8 0.795 
C8 C5 C6 1.54E-39 9.86E-01 2.38E-15 1.41E-02 1 C5 0.995 
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(Table 3.2, continued) 
C5 C4 C2 5.18E-137 9.82E-01 6.09E-07 1.85E-02 1 C4 0.989 
C5 C7 C2 5.72E-121 3.79E-09 4.53E-07 1.00E+00 1 C2 0.766 
C5 C7 C4 1.82E-139 1.15E-01 1.19E-05 8.85E-01 1 C7 0.922 
C5 C6 C2 9.46E-01 7.30E-08 3.64E-08 5.38E-02 1 C5 0.976 
C5 C6 C4 8.57E-01 2.37E-19 7.55E-13 1.43E-01 1 C5 0.891 
C5 C6 C7 9.28E-01 9.30E-05 4.45E-36 7.17E-02 1 C5 0.950 
C6 C7 C4 1.40E-140 3.62E-01 6.10E-01 2.81E-02 1 C4 0.781 
C6 C7 C2 6.57E-114 2.77E-01 6.61E-01 6.22E-02 1 C2 0.851 
C6 C4 C2 5.76E-143 9.81E-01 1.84E-04 1.85E-02 1 C4 0.990 
C7 C4 C2 4.02E-01 4.25E-01 3.90E-05 1.73E-01 0 C4 0.460 

 
3.4.10. Clustering and re-clustering using Seurat 
 

Clustering was performed using Seurat (Satija et al., 2015). For the initial seed 
clustering, we applied Seurat to the gene expression of all 2,672 transcription factors for 
the 288 single cells. For subsequent re-clustering steps, clustering was performed on a 
reduced set of genes for which ݌൫ߙ௜ = 1 or ߚ௜ = 1ห൛݃௜஺,஻,஼ൟ, ܶ, ൯{ܥ} > 0.5 for at least one 
triplet at the previous iteration (assuming a prior odds of ఉࣩ|்(݅) = 5 × 10ିଶ ). This 
reduced set contained between 800 and 1050 genes at each of the reclustering steps (Figure 
3.6A). 

Seurat performs spectral t-SNE on the statistically significant principal components 
(PCs) of the gene expression dataset, and it determines the significance of each PC score 
using a randomization approach developed by Chung and Storey (Chung and Storey, 2015). 
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Our initial seed clustering was performed using the first 10 PCs; subsequent re-clusterings 
used the first 8 PCs.  

Finally, Seurat performs density-based clustering on the t-SNE map; we used a 
density parameter of G=8. 
3.4.11. Convergence of clustering configurations from different seed 

configurations 
In order to test that our results were robust to the choice of seed clusters, we further 

used k-means clustering, a standard clustering method, which has previously been applied 
to identify different cell types using single cell transcriptomics data (Buettner et al., 2015). 

We start with a seed clustering configuration of 12 clusters  {ܿଵ଴, ܿଶ଴, … , ܿଵଶ଴ } 
obtained using k-means clustering, which is distinct from the seed clustering configuration 
obtained via Seurat (Satija et al., 2015). The number of clusters was determined using the 
gap statistic (Tibshirani et al., 2001). We obtained 164 sets of transitions between clusters 
and identified 981 transcription factors that were high probability (probability > 0.5) 
marker or transition genes for at least one of the identified transitions. We next re-clustered 
the single cells in the gene expression space defined by these 981 marker or transition genes, 
using k-means clustering, to obtain a new cluster set {ܥଵ} = {ܿଵ଴, ܿଶ଴, … , ܿଵ଴଴ }, consisting of 
10 clusters. In the next iteration, the number of clusters went down to 9, and so on. By 
iteratively determining the most likely sets of transitions, the corresponding most likely 
marker and transition genes and re-clustering the cells within the subspace of these genes, 
our algorithm converged upon the most likely set of cell clusters (Figure 3.6B). We found 
that the eventual clustering configurations obtained using k-means clustering and Seurat 
are the same, confirming that the seed clusters do not affect the final outcome. 
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3.4.12. Determination of gene modules 
Classifying genes based on their patterns of expression along the inferred lineage 

tree rather than by gene-gene correlations allowed us to identify gene modules (which 
included the transition and marker genes we inferred as well as signaling genes: BMP, 
WNT, LIF) with similar expression patterns in successive cell-fate decisions.  

We partitioned the 184 transcription factors and signaling genes into a total of 36 
subclasses, each of which is a unique intersection of the different transition and state genes. 
We determined binary gene expression profiles by calculating the mean log2 fold-change 
in expression level for each subclass.  

We grouped subclasses with identical binary expression profiles together, leaving 
us with a total of 23 modules with unique binary gene expression profiles. We denote each 
module by a representative gene; the genes that belong to each module are shown in  
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Table 3.3 and their binary profiles in the 9 clusters in Table 3.4. 
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Table 3.3: Gene modules used for modeling the network. 
Module 
names 

Gene members         

[Klf4] Ash2l Esrrb Eed Kdm3a Klf4 Klf5 Poldip2 Sin3b Tfcp2l1 Zfp42 
 Tsc22d1 Fblim1         Jarid2        
[Hes6] Hes6 Hmgb2 Ncl Zscan10 Pole Cbx1 Prrc2c Mycn Rhox5  
[Churc1] Churc1 Gm13051 Gm13154 Gm13157 Mtf2 Pa2g4 Psmc5 Ptma Supt6 Suz12 
 Tet1 Tomm6 Ttf1 Klf9       
[Apex1] Apex1 Phc1 Drg1 Lin28b Notch2 Phb Plrg1 Zfp207   
[Pax6] Pax6          
[Atf2] Atf2 Lsm14a Polr2e Polr2f Puf60      
[Sox2] Chd4 Dnajc2 Rbpj Set Sox4 Upf1 Sox2    
[Baz1a] Basp1 Baz1a Exoc3 Fbxo18 Foxm1 Med14 Peg10 Zfp326 Tfap2c Smarcc1 
 Wbp5 Rbbp7         
[Msx2] Lrrfip1 Naa15 Tal2 Zfp746 Msx2 Lbr Mtpn Paxbp1   
[Snai1] Cand2 Cited1 Hmga2 Lef1 Pdlim4 Snai1 Tbx6    
[Ciao1] Ciao1 Foxa2 Keap1 Msh3 Tdp2 Tsg101     
[Tead1] Tead1          
[Hes1] Ajuba Basp1 Bbx Cbx5 Fam58b Hes1 Hmgcs1 Hmgn5 Kat7 Nlrp1a 
 Olig1 Phc1 Rab15 Rest Sap18 Sfmbt2 Sptbn1 Sra1 Taf10 Tsc22d4 
 Tsn Wiz Zfp322a Zfp593 Zmat3      
[Oct4] Oct4 Utf1         
[Ets2] Bclaf1 Cand1 Cenpa Fus Glyr1 Gtf2i Kdm5c Kif22 Pbrm1 Phf5a 
 Polb Preb Rad51ap1 Rbms1 Smarca5 Top1 Utp6 Zmat2 Zmynd11  
[Hmga1] Hmga1 Tial1 Sall4 Zfp266 Sod2 Son     
[Sp5] Brd4 Chtf8 Dek Etf1 Foxo4 Med10 Pfdn1 Pml Ppp5c Prkrir 
 Pygo2 Qrich1 Zfp445 Rrn3 Sin3b Ssbp3 Strn3 Ttf1   
[Otx2] Otx2 Dnmt3b Tceb2 Trim28 Crip2 Aplp2 Hnrnpu    
[T] T Hells         
[Etv5]* Etv5 Ctbp2 Ddx3x Aes Foxo1 Rpa2 Pdlim7 Tcea3 Rab25 Rad23a 
 Dnmt3a Tomm6 Sp1 Top2a Taf7      
[Smarce1] Smarce1 Strbp         
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(Table 3.3, continued) 
[LIF] Lif Lifr Il6st Jak2 Jak3 Stat1 Stat3 Stat5a Stat5b  
[FGF]** Cep57 Ctgf Ctnnb1 Dstyk Dusp6 Fam20c Fgf1 Fgf10 Fgf15 Fgf16 
 Fgf17 Fgf18 Fgf2 Fgf20 Fgf21 Fgf22 Fgf23 Fgf3 Fgf4 Fgf5 
 Fgf8 Fgf9 Fgfbp1 Fgfbp3 Fgfr1 Fgfr2 Fgfr3 Fgfr4 Flrt1 Flrt2 
 Flrt3 Frs2 Frs3 Grb2 Hhip Iqgap1 Kif16b Kl Klb Lrit3 
 Ndst1 Nog Pdgfb Prkd2 Rab14 Runx2 Setx Shcbp1 Sos1 Trim71 
 Fgf6 Fgf7         
[BMP]* Bmp10 Bmp15 Bmp2 Bmp2k Bmp3 Bmp4 Bmp5 Bmp6 Bmp7 Bmp8a 
 Bmp8b Bmpr1a Bmpr1b Bmpr2 Acvr1 Acvr1b Acvr1c Acvr2a Acvr2b Acvrl1 
 Actr1a Actr1b Actr2 Actr3 Actr3b Actr5 Actr6 Actr8 Actrt1 Actrt2 
 Actrt3 Tgfbr1 Tgfbr2 Tgfbr3       
[WNT]** Amer1 Ankrd10 Apc Arntl Aspm Bambi Bcl9 Bcl9l Caprin2 Ccar2 
 Cdh3 Cdk14 Cfc1 Col1a1 Csnk1d Csnk1e Ctdnep1 Ctnnd2 Dapk3 Disc1 
 Eda Egf Emd Folr1 Fzd10 Fzd2 Fzd3 Fzd4 Dvl2 Dvl3 
 Fzd9 Gata3 Gprc5b Gsk3b Hoxb9 Ift20 Ilk Ins2 Kdm6a Lgr4 
 Lrrk1 Lrrk2 Med12 Mesp1 Mgat3 Mitf Mks1 Myc Myh6 Ndp 
 Otulin Plpp3 Porcn Prop1 Psen1 Pten Ptk7 Ptpru Rab5a Rnf146 
 Rspo3 Ryr2 Sdc1 Smad3 Sox7 Src Stk11 Sulf2 Tbl1x Tbl1xr1 
 Tmem198 Tnks Tnks2 Trpm4 Ube2b Ubr5 Usp34 Uty Vps35 Wls 
 Wnt2b Wnt3 Wnt3a Wnt7a Wnt7b Wnt9a Wnt9b Xiap Zbed3 Zfp703 
 Ccnd1 Ccny Cdc42 Fzd5 Fzd7 Fzd8 Nfkb1 Nle1 Nrarp Tcf7 
 Dixdc1 Dlx5 Dvl1 Lgr5 Lrp5 Lrp6 Rnf220 Rspo1 Rspo2 Wnt1 
 Tcf7l1 Tdgf1 Wnt10b Wnt2       
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Table 3.4: Binary expression profiles of the gene modules used for modeling the 
network in the 9 cell clusters. 
 

[Module 
name] 

C0 C1 C2 C3 C4 C5 C6 C7 C8 

[Klf4] 1 0 0 0 0 0 0 0 0 
[Hes6] 0 1 0 0 0 0 0 0 0 
[Hmga1] 0 0 1 0 0 0 0 0 0 
[Tead1] 0 0 0 1 0 0 0 0 0 
[Sp5] 0 0 0 0 1 0 0 0 0 
[Baz1a] 0 0 0 0 0 1 0 0 0 
[Msx2] 0 0 0 0 0 0 1 0 0 
[Snai1] 0 0 0 0 0 0 0 1 0 
[Ciao1] 0 0 0 0 0 0 0 0 1 
[Churc1] 1 1 0 0 0 0 0 0 0 
[BMP] 1 1 1 0 1 1 1 1 1 
[LIF] 1 1 0 0 1 1 1 1 1 
[FGF] 1 1 1 1 1 1 1 1 1 
[Pou5f1] 1 1 1 0 1 0 0 0 1 
[Sox2] 1 1 0 1 0 0 0 0 0 
[Atf2] 1 0 1 1 1 0 1 1 1 
[Otx2] 0 1 0 1 0 1 1 0 0 
[Smarce1] 0 0 1 1 1 1 0 1 1 
[Ets2] 1 0 1 1 1 1 1 1 0 
[T] 0 0 1 0 1 0 0 1 1 
[Apex1] 1 0 1 1 1 1 0 1 1 
[Hes1] 0 0 1 1 1 1 1 0 1 
[Pax6] 0 0 0 1 0 1 0 0 0 
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3.4.13. Local-field gene regulatory network model for gene modules 
We considered Hopfield-like gene regulatory networks and sampled parameters 

using a linear-programming approach, using the same framework as described in Section 
2.2.5: Modeling the underlying network (cf ad locum). 
3.4.14. Common features of the sampled networks 

By using many different randomly generated fictitious constraints to sample the 
polytope, we can study the ensemble of model networks that all satisfy the fixed point 
constraints (Table 3.4), and attempt to determine whether they share any common 
regulatory motifs. As discussed in the main text, we sampled 10,000 solutions ܬ௜௝  that 
satisfied the fixed-point constraints defined by the binarized expression patterns of the 
known cell states. We then calculated the mean and coefficient of variation (c.v.) for each 
coupling. We were thus able to discover a core network between the different modules that 
is shared by the majority of solutions (Figure 3.10A). 
3.4.15. Predictions for Sox2 and Snai1 overexpression 

Our model makes predictions for what happens to the level of Oct4 when Sox2 and 
Snai1 are overexpressed in different cell states. Sox2 and Oct4 are both present in the C0 

and C1 clusters. On the other hand, Snai1 is not present in C1 and C2 but Oct4 is present in 
both clusters. We perturb the Sox2 and Snai1 levels by amounts ∆s in the above mentioned 
states, which lead to a change in the field ߶௜ total drive on Oct4 level. Numerically we vary 
∆s in steps of 0.1 and for each step compute the number of models out of the 10000 total 
models, for which the Oct4 level decreases to zero. From this number we obtain the fraction 
of models for which the level of Oct4 goes down. 
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3.4.16. Predictions for BMP and LIF addition  
In order to predict the effect of morphogen signals in different cell states, we 

considered the LIF, BMP, WNT, and FGF signaling pathways, which are known to play a 
significant role in patterning the early embryo. We assumed that no single gene in each 
given pathway is sufficient to evoke a signaling response, but a response rather requires 
the combined presence of the various constituent genes of the pathway. We therefore 
grouped genes by their respective signaling pathways and assigned each group to a module 
based on its average expression pattern across the nine cell states.  

We next modeled the dynamics of BMP and LIF addition. By construction, the 9 
observed cell states (and the null state ሬ݉ሬԦ = 0ሬԦ) are fixed points for all 10,000 sampled 
solutions for ܬ௜௝ . However, each solution ܬ௜௝  may have additional spurious fixed points. 
However, given that we only see 9 cell states, we would expect the spurious states to be 
unstable. In order to overcome this problem, we used the following method. 
Given a particular solution ܬ௜௝, any arbitrary state of the network ሬ݉ሬԦ (not necessarily a fixed 
point) will have dynamics obeying  
 

݉௜(ݐ + 1) = ܪ ቌ෍ ௜௝ܬ ௝݉(ݐ) − ߶଴
௝

ቍ,      

where ݉௜(ݐ) and ݉௜(ݐ + 1) are the levels of module ݅ at successive discretized time points.  
 

For each particular solution ܬ௜௝, cells will get stuck in spurious fixed points; yet 
these spurious fixed points are highly unlikely to exist since they are stable in only a small 
number of the sampled ܬ௜௝. We can capture the average dynamics of different states of the 
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network given the set of sampled solutions ൛ܬ௜௝ൟ by calculating the probability over all 
sampled solutions of moving from one arbitrary state ሬ݉ሬԦ௔ to another arbitrary state ሬ݉ሬԦ௕. 
This allows us defines a 223 x 223 state-to-state transition matrix ࣮: 
 
 ௕࣮←௔ = ൫ሬ݉ሬԦ௔݌ → ሬ݉ሬԦ௕ห൛ܬ௜௝ൟ൯ .     

If we denote as ݌Ԧ(ݐ) the vector of probabilities of being in the 223 different states at time ݐ, 
then 
 
ݐ)Ԧ݌  + 1)  =      .(ݐ)Ԧ݌ ࣮

In order to figure out what happens to cells in different states to BMP and LIF 
addition, we calculated the probability of moving between fixed points ሬ݉ሬԦఈ and ሬ݉ሬԦఉ when 
overexpressing some set of modules {݉௜}. We calculated the dynamics using the transition 
matrix ࣮ and enforced the overexpression of the set of modules (BMP and LIF module 
respectively) at each time point, updating the probabilities ݌Ԧ(ݐ)  accordingly. The 
probabilities shown in Figure 3.10 are after 1,000 time steps.  
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Abstract 

The human brain is a complex organ composed of billions of neurons, representing 
a diverse array of interconnected cell types. The functions of the human brain are 
orchestrated through highly inter- or intra-connected regions that are developmentally 
defined as the forebrain, the midbrain and the hindbrain. Here, we report a human brain 
cell-type lineage tree through single-cell RNAseq analysis of differentiated human 
embryonic stem cells (hESCs). We isolated progenitors and neurons throughout a 
differentiation time-course using DCXCit/Y and SOX2Cit/+ engineered cell lines. Single-cell 
transcriptomic profiling was used to identify cell types, and their regional identities were 
determined by comparison to existing atlases and primary human fetal tissues. A Bayesian 
framework was used to infer a neural lineage tree and putative regulatory transcription 
factors from single-cell transcriptomic profiles. The lineage tree shows a prominent 
bifurcation between cortical and mid/hindbrain cell types, and the inferred lineage 
relationships were confirmed by clonal analysis experiments. In summary, we present an 
experimentally validated lineage tree that encompasses multiple brain regions, and our 
work sheds light on the molecular regulation of region-specific neural lineages during 
human brain development. 
4.1. Introduction 

The human brain is a complex and highly evolved structure. Mouse models do not 
fully recapitulate cell-type diversity or lineage trajectories of the human brain (Konopka et 
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al., 2012; Oberheim et al., 2009; Rakic, 2009; Reilly et al., 2015; Thomsen et al., 2016). 
Furthermore, human neurodevelopmental diseases such as autism spectrum disorders and 
schizophrenia are incompletely modeled in mouse. To better understand and combat these 
disorders, stem cell-based models of human brain development have been pursued (Habela 
et al., 2015; Hook et al., 2014; Ricciardi et al., 2012).  

The molecular networks that drive the fate decisions and development of human 
neurons and glia are not fully understood, and some are likely to be evolutionarily unique 
(Lui et al., 2011; Lui et al., 2014). Until recently there had been technical obstacles to 
understanding the development of this complex tissue: developmental steps cells undergo 
to give rise to these neurons have been characterized using only a few molecular markers 
at a time. Recently, single-cell transcriptomics has been used to characterize cellular 
heterogeneity because it allows multidimensional molecular characterization at an 
increasing scale (Klein et al., 2015; Macosko et al., 2015); single-cell techniques have 
allowed the definition of new transcriptomic cell types from complex organs such as the 
gut (Grun et al., 2015), blood (Paul et al., 2015), and mouse brain (Tasic et al., 2016; Zeisel 
et al., 2015). In parallel, there has been recent progress in modeling early human brain 
development using human embryonic stem cells (hESCs) in neural differentiation 
protocols (Chambers et al., 2009; Espuny-Camacho et al., 2013; Lancaster et al., 2013; Shi 
et al., 2012); these systems promise to supply human neural tissue for analysis at 
developmental stages that are typically unavailable from donors. Although several studies 
have characterized differentiated cells by gene expression (Edri et al., 2015; van de 
Leemput et al., 2014), only one in vitro differentiation study has carried out single-cell 
transcriptomics (Camp et al., 2015). As these cultures presumably contain a mixture of cell 
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types at any given time point, single-cell resolution studies are essential to characterize the 
cell types produced in culture and to determine how well they compare to primary 
developing tissue.  

Here, we study the early development of the human brain through single-cell 
transcriptomics. We computationally identified cell types and predicted the lineage 
relationships between them. To construct these lineage relationships of the cells from our 
in vitro neural differentiation system, we used a novel computational framework that we 
developed to infer cell states and the lineage relationships between them. We previously 
validated this framework on hematopoiesis and early germ layer specification (Jang et. al. 
in preparation, see supporting document). We validated the biological relevance of this 
lineage tree by direct comparison to cortical cells from mid-gestation human fetal embryos 
and experimentally tested the computational predictions using viral barcoding and clonal 
analysis. Our lineage tree captures some of the earliest regional patterning events of the 
brain, including the separation of cortical from posterior brain cell types and the appearance 
of excitatory and inhibitory forebrain neurons. Taken as a whole, these data constitute a 
deep and broad interrogation of hESC neural differentiation and highlight key steps in 
regional patterning, early brain development, and lineage specification. 
4.2. Results 
4.2.1. In vitro model of human brain excitatory cell development. 

We developed and standardized an in vitro model of human brain development 
based on the neuralization of hESCs, adapted from previous protocols (Chambers et al., 
2009; Espuny-Camacho et al., 2013; Shi et al., 2012). The cortical induction (CI) phase 
utilizes SMAD inhibition (Chambers 2009), the progenitor expansion (PE) phase includes 
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EGF and bFGF, and the neural differentiation (ND) phase includes 
neurogenic/neurotrophic factors BDNF, GDNF, NT3, and cAMP (Hu et al., 2010) (Figure 
4.1A). At the end of CI (D12), most cells expressed both PAX6 and FOXG1, and 92 ± 3% 
co-express PAX6 and SOX2, suggesting efficient telencephalic induction (Figure 4.1B). 
By the end of PE (D26), 11 ± 2% of cells expressed the cortical intermediate progenitor 
marker EOMES (TBR2) (Figure 1B,S1D). Following ND (D54), many cells expressed the 
neuronal marker MAP2 and subtype-specific markers TBR1, BCL11B (CTIP2), POU3F2 
(BRN2), and LHX2 (Figure 4.1B). In addition, we observed putative human-specific outer 
radial glial cells marked by HOPX (Figure 4.1B) (Pollen et al., 2015; Thomsen et al., 2016). 
Neuronal activity of D54 cells was confirmed using calcium imaging and pharmacological 
blocking experiments with tetrodotoxin (TTX), an action potential generation inhibitor. 
Out of 1148 recorded cells (3 biological replicates), 17 ± 6% demonstrated calcium activity 
with a frequency of 2.2 ± 0.5 events/min. Calcium activity was blocked in 42.3% of those 
cells by TTX (Figure 4.1C). These observations are comparable to data obtained by similar 
methods in recent reports (Edri et al., 2015; Espuny-Camacho et al., 2013; Gaspard et al., 
2008; Lancaster et al., 2013; Mariani et al., 2012; Shi et al., 2012). 

We profiled the different stages of our in vitro differentiation protocol and 
established its reproducibility (Figure 1D,SB-G) across replicate differentiations and cell 
lines (H1 and H9) by analyzing populations of cells from each time point (>1x106 
cells/sample) using transcriptional analysis, flow cytometry, and immunocytochemistry 
(ICC). Pluripotency markers were rapidly down regulated, and developing cortex markers 
EMX2, PAX6, and LHX2 appeared between days 6-12 (Figure 4.1E). Additionally, markers 
of ganglionic eminences (DLX1, ASCL1, and GAD1) as well as mid/hindbrain (EN2, PAX7, 
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and TFAP2B) were observed (Figure 4.1E). Analysis by flow cytometry showed 7 ± 3% of 
SOX2+ cells lack PAX6 at D26. Since PAX6 is predominantly expressed in developing 
pallial progenitors whereas SOX2 is expressed in progenitors across many brain regions 
based on the Allen Developing Mouse Brain Atlas (Thompson et al., 2014), this suggests 
that these progenitors may have a non-cortical identity. Immunocytochemistry (ICC) 
corroborated the presence of SOX2+PAX6- cells at D26 as well as the expression of 
TFAP2B, TH, GAD67 and PBX3 in cultured neurons at D54 (Figure 4.1B,S1H). The 
diversity of brain cell types present showed that full characterization would require single-
cell resolution techniques. 

Reporter lines were generated by TALEN-mediated genome engineering (Miller et 
al., 2011) to allow isolation of live progenitors and neurons, using citrine fluorescent 
protein gene fused to endogenous SOX2 (marker of progenitors) or DCX (marker of 
immature neurons), respectively (Figure 4.1F). SOX2Cit/+ cells exhibited near-uniform 
reporter expression in 93 ± 1% of hESCs (n = 3), which decreased to 51 ± 3% (n = 3) 
citrine+ cells by D54 of differentiation (Figure 4.1G,S2C). In DCXCit/Y cells, the citrine 
reporter was not detected in hESCs, was detectable in 3.3 ± 0.9% (n = 6) of differentiating 
cells at D12, and increased to 50 ± 8% (n = 6) of the cells at D54 (Figure 4.1G). Importantly, 
both reporters closely mimicked expression of the endogenous protein (Figure S2D), and 
both differentiated lines produced neurons with the same markers as the parental H1 line 
(Figure 4.1H). Additionally, reporter lines were generated for early neurogenesis markers 
OTX2 and PAX6 which closely reflected the temporal dynamics from the gene expression 
data (Figure 4.1E). These lines constitute an important set of tools for dissecting human 
neurogenesis. 
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Figure 4.1: In vitro neural differentiation generates cortical and non-cortical cells. (A) 
Schematic representation of in vitro neural differentiation of hESCs and in vivo early brain 
patterning. (B) Representative images of ICC staining on D12, D26 and D54 of H1 
differentiated cells. Scale bar: 100 ࣆm.  
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(Figure 4.1, continued) (C) Representative traces of calcium activity as imaged with 
FURA2-AM (top traces) and after blockade by TTX (bottom traces). Data quantified from 
three representative experiments (n = 1148 cells at D54, from 3 biological replicates) 
(bottom); RFU = relative fluorescent units. (D) Principal component analysis of population 
RNAseq data demonstrates the reproducibility of differentiation methods across multiple 
experiments from both H1 and H9 stem cell lines. (E) Population RNAseq shows increased 
expression of genes that mark neuroectoderm, developing cortex, ganglionic eminences 
and mid/hindbrain. (F) Schematic of the relevant targeted loci of the SOX2Cit/+ and DCXCit/Y 
reporter cell lines. (G) Quantitation of flow cytometric analysis of percent citrine positive 
cells during differentiation. Mean ± SD is shown from 3 (SOX2Cit/+) and 6 (DCXCit/Y) 
biological replicates. (H) Representative images of ICC staining of D26 SOX2Cit/+ and D54 
DCXCit/+ reporter lines. Arrow marks cells that express SOX2 but not PAX6. Scale bar: 
100 ૄm in B; 100 ૄm in H except for SYN/PSD/CIT/DAPI micrograph where scale bar is 
25 ૄm. 
 
4.2.2. Single-cell profiling and identification of cell types. 

To characterize the heterogeneous cells generated in culture, a method based on 
multiplexed single-cell RNA-seq (Hashimshony et al., 2012) was used at multiple time 
points (D0, D12, D19, D26, D40, and D54) (Figure 4.2A). We isolated both progenitor-
enriched (DCXCit- and SOX2Cit+) and neuron-enriched cells (DCXCit+ and SOX2Cit-) 
resulting in 4368 cells harvested from at least six independent differentiations (Figure 
4.2B). We analyzed only cells with >20,000 transcripts (n = 2,684) and subsampled all 
cells to 20,000 transcripts. PCA and hierarchical clustering separated progenitors and 
neurons by PC1 and further separated differentiation phase by PC2 (Figure 4.2C). Genes 
with variance greater than technical noise (estimated by ERCC spike-in controls) were used 
to drive iterative cell clustering using weighted gene coexpression network analysis 
(WGCNA (Zhang and Horvath, 2005)) (Figure 4.2B). The iterative WGCNA clustering 
resulted in 18 clusters of neuronal cell types and 18 clusters of progenitor cell types across 
all developmental time-points (Figure 4.2D-E).  
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We recognized, as other have (Paul et al., 2015), that some well-to-well mixing was 
present with CelSeq multiplexed single-cell RNA-Seq; thus we validated the presence of 
many transcriptomically identified cell types at D26 and D54 with antibody staining 
(Figure 4.2F) and an orthogonal method of single cell RNA-Seq (SmartSeq2) that has no 
multiplexing. Within progenitor and neuronal cell types found at and after D26, we 
observed frequent co-expression of markers suggestive of telencephalic identity (LHX2, 
FOXG1, and FEZF2, (Hanashima et al., 2004; Hirata et al., 2004; Porter et al., 1997)). At 
D26, a distinct progenitor cell type emerged that expressed markers suggestive of mid-
hindbrain brain identity (IRX2 and POU3F2, Figure 4.2D). At D40 and D54, we observed 
additional progenitor and neuronal cell types expressing mid/hindbrain markers such as 
TFAP2B, PAX3, ROBO3, and PBX3, but not LHX2 (Figure 4.2D, Figure 4.2G). Antibody 
staining confirmed that LHX2 and POU3F2 have mutually exclusive expression patterns 
within neural progenitors at D26 and within neurons at D54 (Figure 4.2F). Surprisingly, 
although EOMES is often used as a marker for intermediate progenitor cells (IPCs), many 
EOMES+ cells were also TBR1+ (Figure 4.2F) and did not express cell cycle markers, 
suggesting these cells may be early-born preplate cells (Bulfone et al., 1999). Together, 
these data corroborate our RNA-seq data and suggest that we generated regionally diverse 
cell types.  
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Figure 4.2: Identification of cell types through single-cell transcriptomics.(A) Single 
cell-profiling strategy from differentiation to single-cell library preparation. (B) 
Methodology of cell type identification from single cell RNA-Seq data. (C) Principal 
component analysis of all single cells used for analysis based on high variance genes (Table 
S1). (D) Normalized expression of marker genes for each cell type identified by single-cell 
transcriptomics.   
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(Figure 4.2, continued) (E) Dendrogram of hierarchical relationships of cell types and 
number of cells in each cell type. Hierarchical clustering by Ward’s method using all 
genes differentially expressed between any two cell types (Table S1). (F) Fluorescence 
micrographs at D26 (top) and D54 (middle) show that POU3F2 and LHX2 mark 
primarily non-overlapping cell types. Bottom, EOMES and TBR1 expression in D54 
cells. Scale in top panel is 100 μm and is the same for all panels. (G) Cell types identified 
at D12, D19, D26, D40, and D54. Cell type name, distinguishing molecular markers, and 
number of cells are indicated. Neuronal cell types (yellow) were defined as cell types 
with strong DCX expression, progenitors with strong SOX2 expression (gray), and mixed 
cell types express both SOX2 and DCX (gray-yellow transition). 
 
4.2.3. Cell types show forebrain and mid/hindbrain regional identities 

To characterize the cell types generated in vitro, we compared the single-cell 
transcriptomes to the BrainSpan Atlas of the Developing Human Brain (Miller et al., 2014) 
and the Developing Mouse Brain Atlas (Thompson et al., 2014). We focused on the 
conserved co-expressed gene modules identified by WGCNA (Langfelder and Horvath, 
2007) that distinguished both the hESC-derived cell types and brain regions. We assessed 
the statistical significance of conserved gene modules based on permutation analysis 
(Langfelder et al., 2011). We estimated the similarity between differentiated D54 neurons 
and brain regions by comparing the Pearson correlation coefficient based on these 
conserved co-expressed gene modules. Neuron clusters D54.N2 and N4 (marked by LHX2 
and TBR1) showed strong correlation to cortex but weak correlation to mid/hindbrain 
regions in both human and mouse at E13.5 (Figure 4.3A-B). In contrast, POU3F2+ neuron 
clusters D54.N5-N8 showed weak correlation to cortex but strong correlation to 
mid/hindbrain, while D54.N3 correlated best to diencephalon (forebrain). Finally, neuron 
cluster D54.N1 (GAD1+) showed high correlation to the ganglionic eminences (Figure 
4.3A-B). Based on this analysis, our data suggests that LHX2 is a good marker for human 
cortical progenitors. To test this hypothesis, we performed antibody staining on human 
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mid-gestational (122-132 days post conception (dpc)) brain tissue and confirmed that 
LHX2 is a marker of human cortical progenitors and is not expressed in hindbrain 
progenitors (Figure 4.3C). Markers associated with the LHX2-expressing neuronal cell 
types, BCL11B+ and NFIA+NeuN+, were also highly expressed in neurons in the cortical 
plate and intermediate zone of the cortex, respectively, but were rare and weakly expressed 
within hindbrain cells (Figure 4.3D). In contrast, markers of the POU3F2-expressing 
neuron clusters, TFAP2B and ROBO3, were present in hindbrain neurons but absent from 
cortex (Figure 4.3D). Thus, the POU3F2-expressing clusters of neurons likely correspond 
to posterior brain neuron types while LHX2-expressing clusters correspond best to 
forebrain cell types. As a whole, these data demonstrate progenitors and neurons belonging 
to multiple human brain regions are generated in vitro. 

To assess the molecular similarity between the in vitro LHX2+ cell types and 
primary cortical cell types at a single-cell level, we compared neurons and progenitors 
prospectively isolated from fixed primary human cortical samples using FRISCR 
(Thomsen et al., 2016). We directly compared 512 single cells from human cortical 
samples (two independent brains aged 108 days post conception (dpc) and 96 dpc) to the 
in vitro differentiated cells. FRISCR allowed targeted sampling of both progenitors 
(SOX2+PAX6+TuJ1-) and neurons (SOX2-PAX6-TuJ1+), which were then each further 
stratified by EOMES expression to reveal EOMES+ intermediate progenitors and EOMES+ 
neurons, respectively (Figure 4.4A). FRISCR data from fetal tissue was compared to 
SmartSeq2 single-cell RNAseq data from LHX2+ cultured cells at D26 and D54, and good 
concordance was found between progenitors and neurons (Figure 4.4B). As cultured 
progenitors aged, they bore a stronger resemblance to primary progenitors. Interestingly, 
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primary IPCs appear distinct from neurons or progenitors, whereas cultured cells that 
express IPC genes (including EOMES) strongly resemble neurons (Figure 4.4B). Indeed, 
among EOMES+ cells, fetal cells have higher expression of the progenitor eigengene (the 
average expression of the genes progenitor module) than hESC-derived cells (P = 3 × 10-

7, t-test), and hESC-derived cells exhibit higher expression of the neuron eigengene than 
fetal cells (P = 3 × 10-20, t-test). Further, several collections of genes were specifically 
expressed in cultured cells or primary cells. Genes that mark oRG cells such as HOPX and 
TNC were largely absent from in vitro progenitors, indicating that although a few HOPX+ 
cells were observed by ICC and gene expression (Figure 4.1, Figure 4.2), the majority of 
hESC-derived progenitors lack oRG characteristics. Indeed, gene ontology analysis 
showed significant enrichment of gliogenesis and oligodendrocyte differentiation genes in 
primary progenitors, while embryonic development, extracellular matrix, and stress 
response gene classes were enriched in hESC-derived progenitors (Figure 4.4C). Lastly, 
the hESC-derived neurons lacked expression of SATB2 (a marker of later-born callosal-
projecting neurons) and express the Cajal-Retzius cell marker RELN. We were surprised 
by the lack of SATB2 expression since it was detected with a commonly used anti-SATB2 
antibody, suggesting the antibody may also detect other species, such as SATB1. These 
data show that at a single-cell level, hESC-derived progenitors and neurons are molecularly 
similar to primary cortical progenitors and are producing some of the earliest cortical 
neurons but are not yet producing more mature SATB2+ neurons. 
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Figure 4.3: Stem cell-derived cell types resemble forebrain and mid/hindbrain cells types. Correlation of D54 neuronal cell types to e13.5 Allen Brain Atlas of the Developing 
Mouse Brain based on genes differentially expressed between cell types and tissue regions. 
Mouse regional gene expression levels derived from in situ hybridization staining intensity. 
(B) Correlation of single D54 neurons with regions of the human brain from the Brainspan 
Atlas of the Developing Human Brain. Correlation based on genes differentially expressed 
between cell types and tissue regions. (C-D) Fluorescence micrographs of 122 dpc cortex 
and 132 dpc hindbrain. (C) LHX2 marks human cortical but not hindbrain progenitors, 
while SOX2 marks progenitors in both regions. Scale is 100 μm.  
  



157 
 

(Figure 4.3, continued) (D) Immunohistochemistry of cortical and hindbrain cell type 
markers. Top: Nissl stain and representation of tissue architecture are shown; below: tissue 
representation based on DAPI staining. VZ ventricular zone, OFL outer fiber layer, oSVZ 
outer subventricular zone, IZ intermediate zone, CP cortical plate, nuc medullary nuclei. 
The entire tissue section was scored and each dot represents a positive cell. Scale is 1 mm. 
Inset: fluorescence micrograph showing a representative image (location indicated by red 
box); scale is 25 μm. 
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 Figure 4.4: Comparison of single stem cell-derived forebrain cells to primary human single cells. (A) Flow cytometry plot showing primary cell populations that were sorted (n 
= 4) and profiled using FRISCR (n = 2). Mean ± SD of population percentage derived from 
four brains.  
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(Figure 4.4, continued) (B) Expression of conserved and divergent gene modules between 
primary human cortical single cells and in vitro-differentiated progenitors and neurons at 
D26 and D54. (C) Results of gene ontology analysis of conserved and divergent gene 
expression modules. The top five most significant biological processes with a Bonferroni 
correction value <10-1 are shown.Correlation of D54 neuronal cell types to e13.5 Allen 
Brain Atlas of the Developing Mouse Brain based on genes differentially expressed 
between cell types and tissue regions. 
 
4.2.4. An inferred lineage tree with forebrain and mid/hindbrain branches. 

The clustering of single cell transcriptomes resulted in identification of different 
“cell types,” which can be linked either as branches in a lineage tree or states along a 
differentiation trajectory. To resolve the hierarchy of these cell types with putative lineal 
relationships, typical techniques use distance metrics calculated from the high-dimensional 
molecular data (Shin et al., 2015; Trapnell et al., 2014); however, the number of master-
like molecules instructing cell fate decisions may be few (Colasante et al., 2015; Takahashi 
and Yamanaka, 2006; Vierbuchen et al., 2010). Furthermore, lineage algorithms based on 
transcriptomic data usually model a progression and not bifurcations (Shin et al., 2015; 
Trapnell et al., 2014). Indeed, a low-dimensional projection of the single-cell data like PCA 
(Figure 4.2C) does not readily suggest a biologically meaningful linkage based on 
spanning-tree methods, which are common in modeling progressions as opposed to 
multiple bifurcations. 

Here, we used a recently developed computational technique that uses a Bayesian 
approach to simultaneously infer cell clusters’ lineage relationships between the clusters 
as well as the key set of markers and transition genes that define these relationships 
(Chapter 2, Chapter 3). This method analyzes the relationships between all the clusters, 
three at a time. To make these inferences, the forward model for the Bayes technique 
assumes that good marker genes are uniquely expressed in a cell cluster, while genes 
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establishing relationships shows shared expression between two of the three clusters. Using 
this forward model, this technique generates a limited number of high-confidence 
hypotheses about cellular relationships and the molecular drivers of patterning. Briefly, we 
determined relative relationships between all possible triplets of cell types at neighboring 
time points, assessed their putative lineage, and identified genes with expression patterns 
reflecting this relationship. In each case, the three types of cells were separated in a subset 
of transcription factor space, and one of the types is the intermediate. It is important to note 
that the existence of an intermediate state in a triplet represents two possibilities: the 
intermediate type is the parent, leading to two daughters, or alternatively, the intermediate 
type is a transition between the other two types. To demonstrate, we show the transcription 
factor expression for two triplets that show strong evidence of having an intermediate state 
(Figure 4.5A). 

After identifying 118 high confidence triplets of cell types that showed evidence of 
a lineage relationship, we assembled these triplets into the most parsimonious putative in 
silico lineage tree (Figure 4.5B). The tree was rooted at D12 and assembled iteratively 
using information from triplets containing successively more mature time points. Cell types 
that could not be linked to other cell types with high confidence (such as D54.N1) we 
omitted from the lineage tree. Overall, our in silico tree suggests a major branch point 
separating the POU3F2-expressing and LHX2-expressing types and also identifies 
potential transcription factor candidates involved at specific branch points.  
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Figure 4.5: A lineage tree from single-cell transcriptomics (A) Examples of two triplets 
of transcriptomic cell types showing strong evidence for an intermediate state (in blue). In 
each triplet, the non-intermediate states (red and green) express genes only along one of 
the two horizontal axes, whereas the intermediate state expresses both sets of genes and 
also expresses a set of marker genes (vertical axis) that are not highly expressed in either 
of the other two states. Axis values represent means of normalized gene expression over 
all the genes on a given axis. Transcriptomic types are named as in Figure 2. (B) In silico 
lineage tree assembled from triplets showing strong evidence of an intermediate state. 
Arrows indicate proposed lineage/progression links, and key asymmetrically regulated 
genes are listed for each putative branch point. The tree segregates into two major branches, 
labeled as the POU3F2+ and LHX2+ branches. Circles around groups of types indicate 
that those types are not distinguishable in terms of lineage or progression using the tree 
building algorithm. Transcriptomic types are named and colored as in Figure 2 (progenitors 
in grey, post-mitotic neurons in yellow). 
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4.2.5. Predicted transcriptional regulators of the lineage tree. 
The transcription factors identified by the Bayesian lineage framework tell a 

compelling narrative, with some inferences corroborated in the literature (Figure 4.5B). 
D12 progenitors give rise to either D12 neurons or D19 progenitors. The transcription 
factors predicted to control the progression to D19 progenitors include FOXG1, which 
suppresses early cortical neuron fates (Hanashima et al., 2004), and HMGA2 and HMGB3, 
known to regulate the balance of self-renewal and differentiation in multiple stem cell 
compartments (Nemeth et al., 2006; Nishino et al., 2008). From D19, the progenitors 
branch into POU3F2+ and LHX2+ progenitors. The transcription factors accompanying 
specification to the LHX2+ branch are involved in cortical patterning: ZIC1 and ZIC2 are 
markers dorsal neural tube (Aruga et al., 1994; Brown et al., 1998), EMX2 is expressed in 
an opposing gradient to PAX6 to specify rostral cortical identity (Bishop et al., 2000; 
Hamasaki et al., 2004), and SIX3 promotes anterior brain identity (Oliver et al., 1995; 
Wallis et al., 1999). At D26, the progenitors give rise to neurons that are likely to eventually 
mature into L5/6 subcortical projection neurons; SOX11 regulates expression of FEZF2 
(Shim et al., 2012), and SIX3 continues to maintain anterior brain identity. The D26 
progenitors also give rise to D40 and D54 progenitors marked by HES1, which is known 
to oscillate to maintain progenitor state prior to selection of lineage (Imayoshi et al., 2013).  

In the POU3F2+ branch, the initial progression from D19 to D26 progenitors 
includes ID3, which presumably causes delayed differentiation. The D40 progenitors 
undergo a lineage branch that divides ZFHX3 and SOX2; ZFHX3 marks the mantle zone 
(where early neurons reside in e13.5 mouse) and is excluded from the SOX2+ VZ 
(Thompson et al., 2014). Of particular note, ZFHX3 is expressed in immature neurons 
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throughout the brain but not the cortex. In summary, the Bayesian framework revealed 
regulators of brain development and thus suggests new testable hypotheses of human brain 
lineage and development. 
4.2.6. Clonal analysis confirms forebrain cell types segregating from 

mid/hindbrain cell types 
The in silico lineage tree predicts that POU3F2-expressing neuronal clusters (D54 clusters 
D54.N5-8) and LHX2-expressing neuronal clusters (D54.N2-4) arise from distinct 
progenitors by D26. To test this hypothesis, we undertook clonal analysis of cell fate from 
D26 progenitors using a viral barcoding strategy. We cloned a 10-bp degenerate barcode 
library in the 3’ UTR of a tdTomato expression cassette and packaged this into VSV-G 
pseudotyped retrovirus, which showed no obvious tropism bias using classic markers of 
neurogenesis. Clones tracked by daily time-lapse microscopy display neuronal and non-
neuronal morphologies, and clones analyzed by ICC demonstrate subtype diversity. In 
addition, strong transcriptomic correlation was observed between infected and uninfected 
cells.  

To perform barcoded lineage tracing, cells infected at D27 (following re-plating at 
D26) were harvested at D54 (Figure 4.6A) and processed by SmartSeq2 to simultaneously 
recover the barcode (clone association) and the transcriptome (cell type). To match D54 
cells profiled by SmartSeq2 to cell types identified by CelSeq, we developed a consensus 
gene set consisting of co-expression gene modules conserved between the two methods. 
From cultures containing ~50 total clones, 176 tdT+ sorted cells were sequenced, with 111 
cells yielding detectable barcodes. Of 29 unique clones (barcodes), 16 contained more than 
one cell, and 11 spanning more than one cell type. All five clones contain cell types from 
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the POU3F2 lineage branch, showing that the indicated cell types are lineally related 
(Figure 4.6C). Further, we did not detect multicellular clones containing cells from both 
POU3F2 and LHX2 branches. Importantly, these data are consistent with the computational 
lineage tree, indicating that distinct progenitors at D27 have region-specific fates. 
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Figure 4.6: Clonal analysis confirms distinct POU3F2 and LHX2 branches of the human brain lineage tree. (A) Schematic of viral barcoding experiment, indicating time 
of infection and collection. (B) Representative fluorescence micrographs captured from 
live differentiating clones, exhibiting non-neuronal (Clone 1) and neuronal morphologies 
(Clone 2). Scale bar = 500 µm. (C) Schematic representation of aggregate barcoding 
analysis. Red indicates cell types with detected lineage relationships.  
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(Figure 4.6, continued) (D) Clonal analysis of cell-autonomous lineage potential was 
performed by re-plating D26 progenitors at clonal density on feeder mouse astrocytes, then 
analyzing outgrown colonies for cell composition at D54 by ICC. (E and G) Example 
colonies are stained with antibodies for HNA + TuJ1 (blue), LHX2 (green), and either 
CTIP2 (E, red) or NFIA (G, red). Colonies were grouped into categories of LHX2-
containing and non-LHX2-containing. In G, arrows mark NFIA+TuJ1+ human neurons, but 
NFIA also marks LHX2+TuJ1- human progenitors as well as HNA- mouse astrocytes. Scale 
bar, 50 µm. (F) Colonies that contain LHX2+ cells are more likely to contain CTIP2+ cells 
as compared to colonies lacking LHX2+ cells. (H) Colonies that contain LHX2+ cells are 
more likely to contain NFIA+ cells as compared to colonies lacking LHX2+ cells. In F and 
H, six independent differentiations were analyzed, and 25-38 colonies per ICC staining 
cocktail per experiment were inspected for the presence of cell types. *** P < .001, * P 
< .05 by unpaired t-test. 

 
To test whether the differences in cell fate of D26 progenitors were due to cell-

autonomous differences in lineage potential and to bypass any possible viral tropism from 
the viral fate mapping analysis, we generated single-cell clones by seeding D26 progenitors 
at clonal density (10 cells/well in a 96-well plate) in differentiation medium for four weeks 
on mouse astrocytes (yielding 2.3 ± 1.4 spatially resolved colonies/ well, Figure 4.6D). 
Colonies varied in size (1-1000 cells), but those with cortical lineage potential (containing 
LHX2+ cells) typically contained more cells than colonies lacking LHX2+ cells. Cell-type-
specific antibodies were used to assess cell-type composition within colonies (814 colonies 
analyzed over n = 6 independent experiments). We used human nuclear antigen (HNA) to 
distinguish human cells from mouse astrocytes, TUBB3 (TuJ1) to locate neurons, and 
LHX2 to identify clones with cortical lineage potential; these three markers were 
multiplexed with other cell-type markers identified from the sequencing dataset. One of 
these cell-type markers is BCL11B, which is a marker of cortical neurons that we observed 
in our D54 LHX2-expressing neuron cluster (Figure 4.2G,3D). Although the prevalence of 
LHX2-containing colonies and BCL11B-containing colonies varied greatly among 
independent experiments (ranging from <20% to >75% of clones with potential to generate 
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each cell type), colonies containing LHX2+ cells much more likely included BCL11B+ 
neurons than those lacking LHX2+ cells (60 ± 20% versus 8 ± 13%, P < .001, unpaired t-
test, Figure 6E-F). Antibody staining for NFIA similarly demonstrated that LHX2-
containing colonies more frequently included NFIA+TuJ1+ cortical neurons (Figure 4.2G, 
Figure 4.3D) than non-LHX2-containing colonies (30 ± 20% versus 3 ± 5%, P < .05, 
unpaired t-test, Figure 4.6G-H). In contrast, when we stained colonies with markers of 
other (posterior brain) cell types that we observed in our sequencing dataset (POU3F2, 
FOXP2, CALB2 (Calretinin), and CRABP1), we detected no significant associations of 
these markers with LHX2 within colonies. Together, these clonal outgrowth results 
corroborate the presence of independent cortical and posterior regional branches of the 
human neural single-cell lineage tree. Moreover, they suggest that region-specific branches 
are caused by differences in cell-autonomous commitment among D26 progenitors rather 
than by stochastic and/or non-cell-autonomous phenomena that occur during neuronal 
differentiation.  
4.3. Discussion 

In this study, we present a comprehensive characterization of human brain cell types 
generated from hESCs using single-cell RNA-seq. We demonstrate the gradual production 
of multiple cortical and posterior brain neuronal and progenitor cell types with molecular 
similarity to primary progenitors and neurons. Furthermore, a unified lineage tree predicts 
that the cell types differentiate along divergent region-specific trajectories, and also 
highlights a series of known and unknown lineage-specific regulators. We confirmed 
portions of this lineage tree through clonal analyses of fate and lineage potential which had 
not been done previously in a hESC differentiation system. Our clonal analyses confirmed 
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a major predicted branch point during differentiation and, moreover, directly demonstrated 
that this branch point is a cell-autonomous property of neural progenitors. In total, this 
study charts human brain region-specific developmental pathways, which is essential to 
understanding the logic and uniqueness of human neurocircuitry.  

Our lineage tree branches mimic established regional differences in neurogenesis. 
Transcription factors driving cortical patterning include FOXG1 (Hanashima et al., 2004), 
LHX2 (Porter et al., 1997), and FEZF2 (Hirata et al., 2004). Other transcription factors 
pattern the mid/hindbrain region such as PAX2/PAX5 (Schwarz et al., 1997) and EN1/EN2 
(Liu and Joyner, 2001). We observed both of these transcription factor classes at D26 and 
beyond, but only cortical markers at D12 (Figure 4.2). Dual SMAD inhibition could cause 
cortical fate-specification but not fate-restriction, permitting regional plasticity during the 
progenitor expansion phase. Similarly, cortical identity was shown to be specified by e10.5 
but not committed until after e13.5 in mice (Olsson et al., 1997). Alternatively, a small 
population of cells could escape dorsal telencephalic specification and disproportionally 
expand during the neural differentiation phase. Regardless the field will require optimized 
techniques to produce more uniform populations of targeted brain region cell types from 
hESCs. 

Our lineage tree shows how early-born human neural progenitors give rise to early 
neurons with different regional identities in an in vitro system. Neural pan-progenitor genes 
like VIM, NES, and SOX2 were expressed in progenitors from D12, but markers of 
maturing radial glia and outer radial glia (oRG) such as SLC1A3 (GLAST), HOPX, and 
TNC (Pollen et al., 2015; Thomsen et al., 2016) only begin to be expressed at the latest 
time point. Since the oRG markers are first expressed throughout the germinal zone before 
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cells stratify into the outer-subventricular zone (oSZ), these cells likely reflect radial glia, 
prior to oSZ formation. This staging is consistent with the fact that cultured progenitors 
best-resemble the earliest progenitor regions of the human developmental atlas. We also 
detected evidence of the production of very early human neurons. The earliest (D12) DCX+ 
neurons express TBR1 and weak levels of EOMES and RELN. Perhaps these D12 DCX+ 
neurons correspond to predecessor cells that express TBR1 and are formed during neural 
tube closing (Bystron et al., 2006). Cells with highest RELN levels (presumptive Cajal-
Retzius cells (Hevner et al., 2003)) were detected at D26 and D40. Many of these cells also 
expressed EOMES.  Although EOMES is a canonical marker of proliferative IPCs in vivo, 
most in vitro EOMES+ cells were not proliferative and instead had a strong neuronal 
signature. We believe these are preplate cells where co-expression of EOMES and TBR1 
has been reported (Bulfone et al., 1999). Comprehensive single-cell profiling of early 
human embryonic neural tissues would be needed to confirm this prediction. 

One hallmark of the developing cortex is sequential creation of cellular layers that 
exhibit unique molecular and morphological properties. Although we detected multiple 
neuronal types, we did not detect many classical (especially upper) layer markers (e.g., 
SATB2, CUX2). There are several possible reasons for this. First, the culture duration may 
be limiting (54 days), and therefore progenitors may still be producing early born neurons. 
Second, classical layer markers may have poor predictive utility at mid-gestation stages:  
they are only weakly expressed in fetal macaque with dramatic regional and temporal 
variation (T. Bakken and E. Lein. in review, NIH Blueprint Non-Human Primate Atlas), 
and furthermore neurons from primary mid-gestational tissues appear relatively 
homogeneous (Figure 4.4B) as was previously reported (Camp et al., 2015; Pollen et al., 
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2014). Together these considerations spotlight single cell RNA-Seq as an unbiased and 
high-value methodology for cultured cell characterization, rather than classical marker 
analysis. 

In summary our observations suggest our culture system models the earliest steps 
of human brain development including regional patterning, which is vital because primary 
samples at these stages are exceedingly rare. This study represents an advance for the field 
in terms of breadth and depth of cell characterization and provides a vital benchmark 
dataset to understand the origins and diseases of the human brain. Future synthetic models 
of human brain will require a similarly atomistic view of brain structure and function to 
understand its emergent properties, and to uncover its fundamental molecular logic. 
4.4. Methods 
4.4.1. Genome engineering and hESC culture. 
Human H1 or H9 ESCs (WiCell) were maintained with mTeSR1 media (Stem Cell 
Technologies) on Matrigel (BD) or hES media (DMEM/F12 with 20% KSR; Life 
Technologies) on CF-1 MEFs (GlobalStem). The TALEN genes targeting SOX2, DCX, 
and OTX2 were made by the Joung lab using the FLASH method (Reyon et al., 2012), and 
those for PAX6 were prepared using the REAL method (Sander et al., 2011). Mutations 
were introduced in HDR donor AI-CN409 to retain protein coding identity and disfavor 
repeated endonuclease activity following HDR. Engineered lines we generated as 
previously described (Martinez et al., 2015). See Supplemental Experimental Procedures 
for more details.  
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4.4.2. hESC neural differentiation.  
hESCs were seeded for a 12-day cortical induction (CI) phase in NIM media with SMAD 
inhibitors (Chambers 2009) and cyclopamine (Stemgent); reseeded for the progenitor 
expansion (PE) phase at D12 and D19 in neural stem cell culture media (NSCM) with EGF 
(Thermo Fisher) and bFGF (Ciccolini and Svendsen, 1998; Tropepe et al., 1999); and 
finally at D26, re-seed for neural differentiation (ND) with neurogenic/neurotrophic factors 
BDNF (R&D Systems), GDNF (R&D Systems), NT3 (R&D Systems), and cAMP (Sigma) 
(Hu et al., 2010) (Figure 1A). For detail, see Supplemental Experimental Procedures. 
Differentiations were validated by ICC at D12, D26 and D54. 
4.4.3. Antibody staining.  
For immunocytochemistry (ICC), cells were fixed in 4% PFA for 15 min, blocked and 
permeabilized in 10% normal goat serum with 0.1% TritonX-100. Primary antibodies were 
incubated overnight at 4°C and secondary antibodies are listed (Table S3). 
Immunohistochemistry experiments were performed on 20 μm frozen sections as above. 
Brain pieces were fixed overnight in 4% PFA/PBS at 4°C, then cryoprotected in 30% 
sucrose in PBS for 24-48 hours, then embedded in OCT. Cryosections were cut on the 
coronal plane at 20 μm thickness, then stained as above. 
4.4.4. Calcium imaging.  
Cells were loaded with 4 µM FURA-2AM (Thermo Fisher) in ND at room temperature for 
30 min. After rinsing cells, Ca2+ activity was recorded using a 40× objective for 5 min 
intervals. Images were captured with 300 ms exposures at both 340 nm and 380 nm. Nikon 
NIS-Elements software was used to analyze events with measurements greater than 0.006 
RFU above baseline.  



172 
 

4.4.5. Fetal brain tissue processing.  
Human fetal tissue was donated with written informed consent and requirements of the 
Uniform Anatomical Gift Act and National Organ Transplant Act were followed. Sample 
age in days post conception was estimated by foot length and dated menstrual cycles. 
Cortical tissue was identified by morphology, physically disrupted, and then enzymatically 
dissociated to single cells. Cells were then washed, filtered, counted, and fixed for storage 
at -80°C until processing by FRISCR.  
4.4.6. Single cell transcriptomics.  
Single cells were sorted on a FACS Aria (BD) into 96-well collection plates and stored at 
-80C. We prepared libraries as previously reported (Hashimshony et al., 2012) with a few 
modifications (See Supplemental Experimental Procedures), FRISCR was carried out as 
previously described (Thomsen et al., 2016), and SmartSeq2 sequencing libraries were 
prepared as previously reported (Picelli et al., 2013). Libraries were the quantified and 
sequenced on a HiSeq (Illumina).  
4.4.7. Lineage inference.  
We used the method described in Chapter 2. and Chapter 3. . Briefly, we selected all 
possible triplets of cell types, then bases on only transcription factor expression data, used 
a Bayesian formulation to identify the highest-probability topology. Triplets that showed 
strong evidence of a hierarchical relationship, were assembled in an interative fashion into 
a tree rooted the tree at D12. For each successive time point, we selected only triplets 
containing any types from that time point, the previous time point, and the following time 
point, and linked these triplets to build the tree. Where conflicting triplets were obtained, 
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the topology with higher probability was selected. We then identified asymmetrically 
expressed transcription factors. 
4.4.8. Viral clonal analysis.  
A barcoded retroviral plasmid library was constructed by transferring the tdT expression 
construct from the Ai9 plasmid (Addgene plasmid 22799) to the pMXs backbone (Addgene 
plasmid 13367), followed by a 10 bp barcode library. The barcoded plasmid library pMXs-
Ai9-BC was packaged into retrovirus particles (pseudotyped with the VSV-G) and 
concentrated and titered on 293T cells. At D27, 4 to 6 x 103 IFU were inoculated per well 
of a 24-well plate (1.5 x 106 cells) and differentiation as normal to D54, to yield 20-50 tdT+ 
colonies. Daily fluorescent images were taking for some clones to monitor expansion. 
Single cells dissociated and processed into SmartSeq2 cDNA libraries and sequenced as 
described above (see Experimental Methods, Single cell transcriptomics). Beyond standard 
data alignment and processing, raw FASTQ data were aligned to a CAG-tdT-WPRE-polyA 
reference index and aligned with Bowtie2 and barcodes were identified. Random forest 
classification was used to identify the cell types that best corresponded to the barcoded 
cells. See Supplemental Experimental Procedures for more details. 
4.4.9. Progenitor potential assay by clonal outgrowth.  
Single cells from D26 were plated onto mouse astryocytes at clonal density (10 cells/well 
of a 96 well plate). Single cell colonies were grown in modified NSCM media for two 
weeks, followed by differentiation for 4 weeks in ND media. Colonies were fixed and 
analyzed by ICC using antibodies against HNA, TUBB3, POU3F2, LHX2, CRABP1, 
Calretinin, FOXP2, GAD67, CTIP2, and NFIA.  
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Chapter 5.  Appendix: Mathematical derivation of Bayesian Framework 
 
Bayesian Framework for inferring cluster identities, state transitions, and marker 
and transition genes simultaneously 
 
5.1. Notation; Bayes’ Rule 
Given gene expression data from single cells  {݃௜}, we built a probabilistic framework to 
simultaneously infer cell cluster identities, {ܥ} ≡ {ܿ஺, ܿ஻, … }, the sequence of transitions ܶ 
between these clusters, the key sets of marker genes {ߙ௜} that define each cell cluster, and 
genes {ߚ௜} that determine the sequence of transitions between clusters. We maximized the 
joint probability distribution of these variables given the gene expression data (Figure 2A), 
,ܶ)݌ {ܿ஺, ܿ஻, … }, ,{௜ߙ}  to determine the maximum likelihood estimates of these  ({௜݃}|{௜ߚ}
parameters.  
 
We first consider how to solve this problem in the case in which there are three cell clusters, 
and we will later build a tree using all possible combinations of three cell clusters. Let the 
set of three cell clusters be cA, cB and cC with gene expression data ൛݃௜஺,஻,஼ൟ for all genes 
(݅ =  and all cells.  The term ݃௜஺,஻,஼ denotes the expression data for just gene ݅ in (ܰ ݋ݐ 1
cells in clusters cA, cB, and cC. The topology ܶ of the relationships between cell clusters cA, 
cB and cC can take on four possible values:  ܶ = ࣛ: cell cluster cA is in the middle (either 
cA is the progenitor of cB and cC, or cA is an intermediate cell type between cB and cC); ܶ =
ℬ: cell cluster cB is in the middle; ܶ = ࣝ: cell cluster cC is in the middle; or ܶ = ∅: we 
cannot determine the topology. Complementarily, for each gene ݅ we define variables ߙ௜ 
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and ߚ௜, where  ߙ௜ = 1 and ߚ௜ = 0 if the gene is a marker gene,  ߙ௜ = 0 and ߚ௜ = 1 if the 
gene is a transition gene, and ߙ௜ = ௜ߚ = 0  otherwise. Our task is to determine the 
probability ݌(ܶ, {ܿ஺, ܿ஻, … }, ,{௜ߙ} ൛|{௜ߚ} ௜݃஺,஻,஼ൟ)  given gene expression data for all genes 
൛݃௜஺,஻,஼ൟ. 
 
According to Bayes’ rule, ݌(ܶ, {ܿ஺, ܿ஻, … }, ,{௜ߙ} (൛݃௜஺,஻,஼ൟ|{௜ߚ}  is proportional to the 
probability of the gene expression data given ܶ, {ܥ},  :{௜ߚ} and {௜ߙ}
 
,ܶ)݌  {ܿ஺, ܿ஻, … }, ,{௜ߙ} (൛݃௜஺,஻,஼ൟ|{௜ߚ}  

= ,൫൛݃௜஺,஻,஼ൟหܶ݌ ,{ܥ} ,{௜ߙ} ,{௜ߙ})݌ ൯{௜ߚ} ,ܶ|{௜ߚ} ({ܥ})݌ ({ܥ}|ܶ)݌ ({ܥ}
൫൛݃௜஺,஻,஼ൟ൯݌  

( 4 ) 

 
The denominator of the right hand side of Equation ( 4 ) is a normalization constant. 
Expressions ,{௜ߙ})݌ ,ܶ|{௜ߚ} ({ܥ} ({ܥ}|ܶ)݌  , , and ({ܥ})݌    are respectively the prior 
probabilities of {ߙ௜} and {ߚ௜} given ܶ and {ܥ}, the prior probability of ܶ given {ܥ}, and the 
prior probability of {ܥ} . We assume that in the absence of any expression data, the 
probability that a gene is a transition or marker gene is independent of that for any other 
gene and of the topology and clustering configuration: 
,{௜ߙ})݌ ,ܶ|{௜ߚ} ({ܥ})݌ ({ܥ}|ܶ)݌ ({ܥ} = (ܶ)݌({ܥ})݌ ∏ ௜ߙ)݌ , ௜)௜ߚ , and ݌(ܶ) = 1/4 . 
 
5.2. Conditional independence 
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In our model, we assume that knowing the clustering configuration {ܥ}, the topology ܶ 
and whether or not a gene is a marker or transition gene is sufficient to determine the 
probability distribution for its expression levels in each of the cell clusters. Therefore, the 
gene expression patterns of different genes are conditionally independent given the 
topology, clustering and gene type: 
 
,൫൛݃௜஺,஻,஼ൟหܶ݌  ,{ܥ} ,{௜ߙ} ൯{௜ߚ} = ෑ ,൫݃௜஺,஻,஼หܶ݌ ,{ܥ} ௜ߙ , ௜൯ߚ

௜
 ( 5 ) 

 
Thus, Equation ( 4 ) becomes 
 
,ܶ)݌  {ܿ஺, ܿ஻, … }, ,{௜ߙ} (൛݃௜஺,஻,஼ൟ|{௜ߚ}  

= (ܶ)݌({ܥ})݌ ∏ ,൫݃௜஺,஻,஼หܶ݌ ,{ܥ} ௜ߙ , ௜ߙ)݌ ௜൯ߚ , ௜)௜ߚ
൫൛݃௜஺,஻,஼ൟ൯݌  

 

( 6 ) 

 
We maximize the evaluated ݌(ܶ, {ܿ஺, ܿ஻, … }, ,{௜ߙ} ܶ ൛݃௜஺,஻,஼ൟ)  with respect to|{௜ߚ}  {ܥ} ,
and each of the ߙ௜ and ߚ௜ to obtain the most likely relationships between cell types cA, cB 
and cC, as well as the genes most likely to be marker and transition genes. 
 
5.3. Expression for ࢖൫࡯,࡮,࡭࢏ࢍหࢀ, ,{࡯} ࢏ࢻ = ૙, ࢏ࢼ = ૚൯ (transition genes) 
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To infer (ܶ, {ܿ஺, ܿ஻, … }, ,{௜ߙ} ൛|{௜ߚ} ௜݃஺,஻,஼ൟ)  , we need a model to compute the probability 
of the gene expression data for each gene, ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ ,  ,௜ߚ ௜ andߙ ,{ܥ} ,ܶ ௜൯, givenߚ
following Equation ( 6 ). Our model for the probability distribution of the expression of a 
single asymmetric gene i  in the three cell types ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 0, ௜ߚ = 1൯  is 
defined solely by the geometry of the arrangement of the cell types in gene expression 
space, as described in the main text. For example, for ܶ = ࣛ and ߚ௜ = 1, our model is that 
the distribution of the expression levels of ݃௜஺,஻,஼ in the three cell types A, B and C has the 
smallest mean value in either B or C but not in A (Figure 2B). If the distribution of the 
expression of gene i  in cell type A is ܦ஺൫݃௜஺หߤ஺௜ , ஺௜ߪ , ({ܥ}  (we assume a log-normal 
distribution) with a mean ߤ஺௜  and standard deviation ߪ஺௜ , with analogous expressions for cell 
types B and C, then our model defining ݌൫݃௜஺,஻,஼หܶ = ࣛ, ௜ߚ = 1, ஻௜ߤ ൯ is that either{ܥ} <
஼௜ߤ   and ߤ஻௜ < ஺௜ߤ   or ߤ஼௜ < ஻௜ߤ   and ߤ஼௜ < ஺௜ߤ  , where  ߤ஺௜ ஻௜ߤ ,  and ߤ஼௜  are the mean values of 
the expression levels of gi  in cell types A, B and C. Thus, 
 
൫݃௜஺,஻,஼หܶ݌  = ࣛ, ௜ߚ = 1, ൯{ܥ} = 1

2 ൝ ஻௜ߤ│൫݃௜஺,஻,஼݌ < ஺௜ߤ  , ஻௜ߤ < ஼௜ߤ  , ൯{ܥ}
஼௜ߤ│൫݃௜஺,஻,஼݌+ < ஺௜ߤ  , ஼௜ߤ < ஻௜ߤ  ,  ൯ൡ ( 7 ){ܥ}

 
The terms in Equation ( 7 ) can be calculated by integrating over the prior probability 
distribution of the means ߤ஺௜ ஻௜ߤ ,  and ߤ஼௜  and standard deviations ߪ஺௜ ஻௜ߪ ,  and ߪ஼௜ , with the 
conditions on the means constraining the domains of integration:  
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൫݃௜஺,஻,஼หܶ݌  = ࣛ, ௜ߚ = 1, ൯{ܥ}

= 1
2 ම ஺௜ߤ஺൫݃௜஺หܦ , ஺௜ߪ ஻௜ߤ஻(݃௜஻หܦ( , ஻௜ߪ ஼௜ߤ஼൫݃௜஼หܦ( , ஼௜ߪ )

ఓಳ೔ ழ ఓಲ೔ ,ఓಳ೔ ழ ఓ಴೔ ,ఙಲ೔ ,ఙಳ೔ ,ఙ಴೔
஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ߪ

+ 1
2 ම ஺௜ߤ஺൫݃௜஺หܦ , ஺௜ߪ ஻௜ߤ஻(݃௜஻หܦ( , ஻௜ߪ ஼௜ߤ஼൫݃௜஼หܦ( , ஼௜ߪ )

ఓ಴೔ ழ ఓಲ೔ ,ఓ಴೔ ழ ఓಳ೔ ,ఙಲ೔ ,ఙಳ೔ ,ఙ಴೔
஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ߪ

 

( 8 ) 

   
Probabilities ݌൫݃௜஺,஻,஼หܶ = ℬ, ௜ߚ = 1, ൯{ܥ}  and ݌൫݃௜஺,஻,஼หܶ = ࣝ, ௜ߚ = 1, ൯{ܥ}  are defined 
similarly.  
 
In addition to topologies ࣛ, ℬ and ࣝ, we consider a null hypothesis ∅ in which asymmetric 
genes have differential expression levels between states, but these levels are not correlated 
with any particular topology of states. This corresponds to having gene expression levels 
from cell-types A, B and C coming from three distributions with no restrictions on the 
relative order of the three means:  
 
 
൫݃௜஺,஻,஼หܶ݌  = ∅, ௜ߚ = 1, ൯{ܥ}

= ම ஺௜ߤ஺൫݃௜஺หܦ , ஺௜ߪ ஻௜ߤ஻(݃௜஻หܦ( , ஻௜ߪ ஼௜ߤ஼൫݃௜஼หܦ( , ஼௜ߪ )
ఓಲ೔ ,ఓಳ೔ ,ఓ಴೔ ,ఙಲ೔ ,ఙಳ೔ ,ఙ಴೔

஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ஺௜ߪ ,

 

( 9 ) 
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Note that the probability of the data given the null hypothesis is the average of the 
probabilities of the data given the non-null hypotheses: 
 
൫݃௜஺,஻,஼หܶ݌  = ∅, ௜ߚ = 1, ൯{ܥ} = 1

3 ෍ ,൫݃௜஺,஻,஼หܶ݌ ௜ߚ = 1, ൯{ܥ}
்ୀࣛ,ℬ,ࣝ

 ( 10 ) 

 
Note that ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 0, ௜ߚ = 1൯ depends on both ܶ and {ܥ}. 
 
5.4.  Expression for ࢖൫࡯,࡮,࡭࢏ࢍหࢀ, ,{࡯} ࢏ࢻ = ૚, ࢏ࢼ = ૙൯ (marker genes) 
 
Our model for marker genes assumes that the probability distribution for the expression 
level of such genes, ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 1, ௜ߚ = 0൯ to be independent of ܶ  and to be 
generated from distributions with two cell-types having a low value and the third a high 
value (for example, ܦ஺஻൫݃௜஺஻หߤ஺஻௜ , ஺஻௜ߪ ) for cell-types A and B and ܦ஼൫݃௜஼หߤ஼௜ , ஼௜ߪ ) for cell-
type C, with the constraint ߤ஺஻௜ < ஼௜ߤ  ): 
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,൫݃௜஺,஻,஼หܶ݌  ,{ܥ} ௜ߙ = 1, ௜ߚ = 0, ൯

= 1
3 ම ஺஻௜ߤ஺஻൫݃௜஺஻หܦ , ஺஻௜ߪ ஼௜ߤ஼൫݃௜஼หܦ( , ஼௜ߪ )

ఓಲಳ೔ ழ ఓ಴೔ ,ఙಲಳ೔ ,ఙ಴೔
஺஻௜ߤ൫݌ , ஼௜ߤ , ஺஻௜ߪ , ஼௜ߪ ൯

+ 1
3 ම ஺஼௜ߤ஺஼൫݃௜஺஼หܦ , ஺஼௜ߪ ஻௜ߤ஻(݃௜஻หܦ( , ஻௜ߪ )

ఓಲ಴೔ ழ ఓಳ೔ ,ఙಲ಴೔ ,ఙಳ೔
஺஼௜ߤ൫݌ , ஻௜ߤ , ஺஼௜ߪ , ஻௜ߪ ൯

+ 1
3 ම ஻஼௜ߤ஻஼൫݃௜஻஼หܦ , ஻஼௜ߪ ஺௜ߤ஺൫݃௜஺หܦ( , ஺௜ߪ )

ఓಳ಴೔ ழ ఓಲ೔ ,ఙಳ಴೔ ,ఙಲ೔
஻஼௜ߤ൫݌ , ஺௜ߤ , ஻஼௜ߪ , ஺௜ߪ ൯ 

 

( 11 ) 

Note that ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 1, ௜ߚ = 0൯ = ,{ܥ}൫݃௜஺,஻,஼ห݌   ௜ߙ = 1, ௜ߚ = 0൯  does not 
depend on ܶ but does depend on {ܥ}. 
 
5.5. Expression for ࢖൫࡯,࡮,࡭࢏ࢍหࢀ, ,{࡯} ࢏ࢻ = ૙, ࢏ࢼ = ૙൯ (irrelevant genes) 
 
Our model for genes that are neither marker nor transition genes is that the expression 
levels of such genes, ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 0, ௜ߚ = 0൯ , is generated from  one single 
distribution ܦ஺஻஼൫݃௜஺,஻,஼หߤ௜ ,   : (௜ߪ
 
,൫݃௜஺,஻,஼หܶ݌  ,{ܥ} ௜ߙ = 0, ௜ߚ = 0൯ = ඵ ௜ߤ஺஻஼൫݃௜஺,஻,஼หܦ , (௜ߪ

ఓ೔,ఙ೔
௜ߤ൫݌ ,  ௜൯ߪ

 
( 12 ) 

Note that ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ = 0, ௜ߚ = 0൯ = ௜ߙ ൫݃௜஺,஻,஼ห݌   = 0, ௜ߚ = 0൯ does not depend 
on ܶ or {ܥ}. 
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5.6.  Numerical Integration 
 
Each of the probabilities on the right hand side of Equation ( 6 ) is evaluated numerically 
as above. We assume the distribution of the expression of gene i  in cluster cA 
஺௜ߤ஺൫݃௜஺หܦ , ஺௜ߪ ) to be log-normal. Given ݉ log2-transformed replicate measurements ݃௜஺ of 
gene expression of gene ݅  in cells belonging to cluster cA, the probability of the data 
assuming mean ߤ஺௜  and standard deviation ߪ஺௜  is: 
 

஺௜ߤ஺൫݃௜஺หܦ , ஺௜ߪ ) =
ۉ
ۇ 1

ට2πߪ஺௜ ଶی
ۊ

௠

ෑ ݁ିቀ௚೔ಲିఓಲ೔ ቁమ

ଶఙಲ೔ మ  .
௠

௚೔ಲ
 

 

( 13 ) 

Distributions ܦ஻ , ஼ܦ , ,஺஻ܦ ஺஼ܦ , ஻஼ܦ  and ܦ஺஻஼  are defined analogously. 
 
We take the a priori probability distribution of ߤ௜  and ߪ௜ ௜ߤ൫݌ , ,  ௜൯ as uniform over aߪ
certain range of means and standard deviations. For the log2-transformed gene expression 
data, we take 0 < ௜ߤ < 6 and 0 < ௜ߪ < 1.  
 
We take the prior probabilities for the distributions in different cell types to be independent: 
஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ஺௜ߪ , ஻௜ߪ , ஼௜ߪ ൯ = ஺௜ߤ൫݌  , ஺௜ߪ ൯ ݌൫ߤ஻௜ , ஻௜ߪ ൯ ݌൫ߤ஼௜ , ஼௜ߪ ൯ . The constraints on the order of 
the means are enforced by the domain of integration, and the prior must be properly 
normalized over this domain. For example, in Equation ( 8 ),  
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 1
2 ම ஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ஺௜ߪ , ஻௜ߪ , ஼௜ߪ ൯

ఓಳ೔ ழ ఓಲ೔ ,ఓಳ೔ ழ ఓ಴೔ ,ఙಲ೔ ,ఙಳ೔ ,ఙ಴೔

+ 1
2 ම ஺௜ߤ൫݌ , ஻௜ߤ , ஼௜ߤ , ஺௜ߪ , ஻௜ߪ , ஼௜ߪ ൯

ఓ಴೔ ழ ఓಲ೔ ,ఓ಴೔ ழ ఓಳ೔ ,ఙಲ೔ ,ఙಳ೔ ,ఙ಴೔
= 1. 

 

( 14 ) 

Integrals are evaluated numerically in MATLAB using trapezoidal integration with step-
sizes 0.05 = ߤߜ and 0.01 = ߪߜ. 
 
5.7.  Probability of topology given gene expression and cluster identities  

,ൟ࡯,࡮,࡭࢏ࢍห൛ࢀ൫࢖  ൯{࡯}
We can derive the probability of the topology given the gene expression data and cluster 
identities ݌൫ܶห൛݃௜஺,஻,஼ൟ,  to find the probability {௜ߚ} and {௜ߙ} ൯ by summing over all the{ܥ}
of the data given topology ݌൫൛݃௜஺,஻,஼ൟ│ܶ,  : ൯{ܥ}
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,ܶ│൫൛݃௜஺,஻,஼ൟ݌  ൯{ܥ}
=  ෍ ,൫൛݃௜஺,஻,஼ൟหܶ݌ ,{௜ߙ} ,{௜ߚ} ,{௜ߙ})݌ ൯{ܥ} ,ܶ | {௜ߚ}  ({ܥ}

{ఈ೔,ఉ೔}
 

= ෍ ෍ … ෍ ෑ ,൫݃௜஺,஻,஼หܶ݌ ௜ߙ , ௜ߚ , ௜ߙ)݌ ൯{ܥ} ,  (௜ߚ
௜ఉಿఉమఉభ

 

= ෑ ቌ෍ ,൫݃௜஺,஻,஼หܶ݌ ௜ߙ , ௜ߚ , ௜ߙ)݌ ൯{ܥ} , (௜ߚ
ఉ೔

ቍ
௜

 

 

( 15 ) 

,ܶ│൫൛݃௜஺,஻,஼ൟ݌  ൯{ܥ} =  ෑ ,൫݃௜஺,஻,஼หܶ݌ ൯{ܥ}
௜

,  ( 16 ) 

where the probability of gene expression data for gene ݅ given topology ݌൫݃௜஺,஻,஼หܶ,  is ({ܥ}
obtained by summing ݌൫݃௜஺,஻,஼หܶ, ,{ܥ} ௜ߙ ,  :௜ߚ ௜ andߙ ௜൯ overߚ
 
,൫݃௜஺,஻,஼หܶ݌  ൯{ܥ}

= ,{ܥ}൫݃௜஺,஻,஼ห݌ ௜ߙ = 1, ௜ߚ = 0൯ ߙ)݌௜ = 1, ௜ߚ = 0)
+ ,൫݃௜஺,஻,஼หܶ݌  ,{ܥ} ௜ߙ = 0, ௜ߚ = 1൯ ߙ)݌௜ = 0, ௜ߚ = 1)
+ ௜ߙ൫݃௜஺,஻,஼ห݌  = 0, ௜ߚ = 0൯ ߙ)݌௜ = 0, ௜ߚ = 0). 

( 17 ) 

 
The probability of topology ܶ given data is proportional to the probability of the data given 
topology ܶ (using Bayes’ rule): 
,൛݃௜஺,஻,஼ൟ| ܶ)݌  ({ܥ} = ,൫൛݃௜஺,஻,஼ൟหܶ݌ (ܶ)݌ ({ܥ}

൯{ܥ} |൫൛݃௜஺,஻,஼ൟ݌ , ( 18 ) 

where 
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൯{ܥ} |൫൛݃௜஺,஻,஼ൟ݌  =  ෍ ,ܶ ൫൛݃௜஺,஻,஼ൟห݌ (ܶ)݌ ({ܥ}
்

. ( 19 ) 

 
Therefore, using equation ( 16 ), we obtain the following expression for 
,൛݃௜஺,஻,஼ൟ | ܶ)݌  :({ܥ}
 
,൫ܶห൛݃௜஺,஻,஼ൟ݌  ൯{ܥ} = (ܶ)݌ ∏ ,൫݃௜஺,஻,஼หܶ݌ ൯௜{ܥ}

∑ (ܶ)݌ ∏ ,൫݃௜஺,஻,஼หܶ݌ ൯௜்{ܥ}
. ( 20 ) 

 
Equation ( 20 ) can be written more explicitly by rewriting equation ( 17 ) as follows: 
 
,൫݃௜஺,஻,஼หܶ݌  ൯{ܥ} = ,൫݃௜஺,஻,஼หܶ݌ ௜ߚ = 0, ௜ߚ)݌ ൯{ܥ}

= 0) + ,൫݃௜஺,஻,஼หܶ݌  ௜ߚ = 1, ௜ߚ)݌ ൯{ܥ} = 1) 
= ௜ߚ൫݃௜஺,஻,஼ห݌ = 0, ௜ߚ)݌ ൯{ܥ}

= 0) ቆ1 + ,൫݃௜஺,஻,஼หܶ݌  ௜ߚ = 1, ௜ߚ)݌ ൯{ܥ} = 1)
௜ߚ൫݃௜஺,஻,஼ห݌ = 0, ௜ߚ)݌ ൯{ܥ} = 0) ቇ. 

( 21 ) 

 
Here we have used the fact noted earlier that in our generating model, 
,൫݃௜஺,஻,஼หܶ݌ ௜ߙ = 1, ௜ߚ  = 0, ൯{ܥ} = ௜ߙ ൫݃௜஺,஻,஼ห݌ = 1, ௜ߚ  = 0, ൯{ܥ}  and 
,൫݃௜஺,஻,஼หܶ݌ ௜ߙ = 0, ௜ߚ  = 0, ൯{ܥ} = ௜ߙ൫݃௜஺,஻,஼ห݌ = 0, ௜ߚ  = 0൯  do not depend on ܶ 
(Equation ( 12 )). The terms ∏ ௜ߚ൫݃௜஺,஻,஼ห݌ = 0, ௜ߚ)݌ ൯{ܥ} = 0)௜  cancel out in the 
numerator and denominator of equation ( 20 ), and we can write equation ( 20 ) in terms of 
ratios of the probabilities of the data given transition-gene and non-transition-gene status: 
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,൫ܶห൛݃௜஺,஻,஼ൟ݌  ൯{ܥ}

=
(ܶ)݌ ∏ ቆ1 ,൫݃௜஺,஻,஼หܶ݌ + ௜ߚ = 1, ௜ߚ)݌ ൯{ܥ} = 1)

൫݃௜஺,஻,஼݌  หߚ௜ = 0, ௜ߚ)݌ ({ܥ} = 0) ቇ௜

∑ ்(ܶ)݌ ∏ ቆ1 + ,൫݃௜஺,஻,஼หܶ݌  ௜ߚ = 1, ௜ߚ)݌ ൯{ܥ} = 1)
൫݃௜஺,஻,஼݌  หߚ௜ = 0, ௜ߚ)݌ ({ܥ} = 0) ቇ௜

. 
( 22 ) 

 
 
We can rewrite equation ( 22 ) as: 
,൫ܶห൛݃௜஺,஻,஼ൟ݌  ൯{ܥ}

=
(ܶ)݌ ∏ ቆ1 + ൫ܶห݃௜஺,஻,஼݌ (݅)ఉࣩ|{஼} (ܶ)݌1 , ௜ߚ = 1, ൯ቇ௜{ܥ}

∑ ்(ܶ)݌ ∏ ቆ1 + ൫ܶห݃௜஺,஻,஼݌ (݅)ఉࣩ|{஼} (ܶ)݌1 , ௜ߚ = 1, ൯ቇ௜{ܥ}
, 

( 23 ) 

 
 
where ఉࣩ|{஼}(݅) is the odds that gene ݅ is a transition gene, given clustering: 
  
 

ఉࣩ|{஼}(݅) = ௜ߚ൫݌ = 1ห݃௜஺,஻,஼ , ൯{ܥ}
௜ߚ൫݌ = 0ห݃௜஺,஻,஼ , ൯{ܥ} = ௜ߚ൫݃௜஺,஻,஼ห݌  = 1, ൯{ܥ}

௜ߚ൫݃௜஺,஻,஼ห݌ = 0, ൯{ܥ}
௜ߚ)݌ = 1)
௜ߚ)݌ = 0) ( 24 ) 

 
and ݌൫ܶห݃௜஺,஻,஼ , ௜ߚ = 1,  ൯ is the probability of ܶ given only gene expression data for{ܥ}
gene ݅, clustering and that gene ݅ is a transition gene: 
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൫ܶห݃௜஺,஻,஼݌   , ௜ߚ = 1, ൯{ܥ} = ௜ߚ൫݃௜஺,஻,஼ห݌ = 1, ܶ, (ܶ)݌ ൯{ܥ}
௜ߚ൫݃௜஺,஻,஼ห݌ = 1, ൯{ܥ} . ( 25 ) 

 
 
Thus each gene’s contribution  ݌൫ܶห݃௜஺,஻,஼ , ௜ߚ = 1,  ൯ to the probability of the topology{ܥ}
given total gene expression ݌൫ܶห൛݃௜஺,஻,஼ൟ, ൯ is weighted by the odds ఉࣩ|{஼}{ܥ}  that it is 
transition gene.  
 
5.8.  Rewriting Equation ( 23 ) in terms of negative votes 
 
Let us denote the probability of gene expression data for gene ݅ given that cell cluster ߦ has 
the distribution with minimum mean expression as ݌൫݃௜஺,஻,஼หߤక௜  is min, {C }൯. For example, 
஻௜ߤ൫݃௜஺,஻,஼ห݌  is min , {C }൯ = ஻௜ߤ│൫݃௜஺,஻,஼݌  < ஺௜ߤ  , ஻௜ߤ < ஼௜ߤ  , (ܶ)݌ ൯. Then, using{ܥ} = 1/
4 and Equations ( 7 ) and ( 10 ), we can write: 
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௜ߚ൫݃௜஺,஻,஼ห݌  = 1, ൯{ܥ} = 1
4 ൥ ෍ ,൫݃௜஺,஻,஼หܶ݌ ௜ߚ = 1, ൯{ܥ}

்ୀࣛ,ℬ,ࣝ,∅
൩ 

= 1
4 

ێۏ
ێێ
ۍ

෍ క௜ߤ൫݃௜஺,஻,஼ห݌  is min, {C }൯
కୀ஺,஻,஼ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ

்ୀࣛ,ℬ,ࣝ

+ 1
3 ෍ క௜ߤ൫݃௜஺,஻,஼ห݌  is min, {C }൯

కୀ஺,஻,஼ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
்ୀ∅ ۑے

ۑۑ
ې
 

= 1
3 ቎ ෍ క௜ߤ൫݃௜஺,஻,஼ห݌  is min, {C }൯

కୀ஺,஻,஼
቏ 

( 26 ) 

 
Therefore, for ܶ = ࣛ, ℬ, ࣝ, we can rewrite Equation ( 7 ) as: 
 
,൫݃௜஺,஻,஼หܶ݌  ௜ߚ = 1, ൯{ܥ}

= 1
2 ௜ߚ൫݃௜஺,஻,஼ห݌ 3ൣ = 1, ൯{ܥ} −  ൫݃௜஺,஻,஼หߤ௜்  is min, {C }൯൧. 

( 27 ) 

 
Combining Equations ( 23 ) and ( 27 ), we derive, for ܶ ≠ ∅: 
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,൫ܶห൛݃௜஺,஻,஼ൟ݌  ൯{ܥ} ∝ (ܶ)݌ ෑ ൭1 + ,ܶ│൫݃௜஺,஻,஼݌ ௜ߚ = 1, ൯{ܥ}
௜ߚ│൫݃௜஺,஻,஼݌ = 1, ൯{ܥ}  ఉࣩ|{஼}(݅)൱

௜
 

∝ (ܶ)݌ ∏ ൭1 +
భ
మ൤ଷ ௣൬݃௜஺,஻,஼ฬߚ௜ = 1, ௜்ߤ൰ି௣ ൬݃௜஺,஻,஼ฬ{ܥ}  is min, {C }൰൨

௣ቀ௚೔ಲ,ಳ,಴│ఉ೔ୀଵ,{஼}ቁ  ఉࣩ|{஼}(݅)൱௜   

∝ (ܶ)݌  ි ൬1 + 3
2 ఉࣩ|{஼}(݅)ൣ1 − ௜்ߤ൫݌ is minห݃௜஺,஻,஼ , ௜ߚ = 1, ൯൧൰{ܥ} ,

௜
 

( 28 ) 

 
where ݌൫ߤ௜் is minห݃௜஺,஻,஼ , ௜ߚ = 1, ൯{ܥ}  is the probability that cell cluster ܶ  (the 
intermediate cluster in topology ܶ) has the distribution with the minimum mean for gene ݅: 
 
௜்ߤ൫݌  is minห݃௜஺,஻,஼ , ௜ߚ = 1, ൯{ܥ}

= ௜்ߤ│൫݃௜஺,஻,஼݌ is min,{C }൯ ݌൫ߤ௜் is min│ߚ௜ = 1,  ൯{ܥ}
௜ߚ│൫݃௜஺,஻,஼݌ = 1൯  

= 1
3

௜்ߤ│൫݃௜஺,஻,஼݌ is min, {C }൯  
௜ߚ│൫݃௜஺,஻,஼݌ = 1, ൯{ܥ} . 

 

( 29 ) 

Every gene can be thought of as casting a vote −݌൫ߤ௜் is minห݃௜஺,஻,஼ , ௜ߚ = 1,  ൯ against{ܥ}
cell type ܶ being the intermediate, and this vote is weighted by the odds ఉࣩ|{஼}(݅) of the 
gene  being a transition gene and having a unique minimum, given the clustering. 
 
5.9.  Expression for ࢖൫ࢀ, ,{࢏ࢻ} ,ൟ࡯,࡮,࡭࢏ࢍห൛{࢏ࢼ}  ൯{࡯}
 

i
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Once ݌൫ܶห൛݃௜஺,஻,஼ൟ,  ൯   is calculated, it is straightforward to find{ܥ}
,൫ܶ݌ ,{௜ߙ} ,ห൛݃௜஺,஻,஼ൟ{௜ߚ}  :൯{ܥ}
 
,൫ܶ݌  ,{௜ߙ} ,ห൛݃௜஺,஻,஼ൟ{௜ߚ} ൯{ܥ}

= ,{௜ߙ}൫݌  ,ห൛݃௜஺,஻,஼ൟ{௜ߚ} ܶ, ,൫ܶห൛݃௜஺,஻,஼ൟ݌ ൯{ܥ}   ,൯{ܥ}
( 30 ) 

 
where ݌൫{ߙ௜}, ,ห൛݃௜஺,஻,஼ൟ{௜ߚ} ܶ,  given the particular {௜ߚ} and {௜ߙ} ൯ is the probability of{ܥ}
topology ܶ , clustering {ܥ}  and gene expression. Because we have assumed that gene 
expression patterns ݌൫݃௜஺,஻,஼│ܶ, ,{ܥ} ௜ߙ ,  ௜ߙ ,{ܥ} ,ܶ ௜൯ are conditionally independent givenߚ
and ߚ௜ (Equation ( 5 )), the probabilities of being marker or transition genes ߙ௜ or ߚ௜ are 
also conditionally independent given gene expression, clustering and the topology: 
,{௜ߙ}൫݌  ,ห൛݃௜஺,஻,஼ൟ{௜ߚ} ܶ, ൯{ܥ}

= ,൫൛݃௜஺,஻,஼ൟหܶ݌  ,{௜ߙ} ,{௜ߚ} , {௜ߙ})݌ ൯{ܥ} ,ܶ|{௜ߚ} ({ܥ}
,ܶ│൫൛݃௜஺,஻,஼ൟ݌ ൯{ܥ}  

= ෑ ,൫݃௜஺,஻,஼หܶ݌  ௜ߙ , ௜ߚ , ௜ߙ)݌ ൯{ܥ} , ,ܶ| ௜ߚ ({ܥ}
,൫݃௜஺,஻,஼หܶ݌ ൯௜{ܥ}

 

= ෑ ௜ߙ൫݌ , ,௜หܶߚ ,{ܥ} ݃௜஺,஻,஼൯
௜

, 

( 31 ) 

where ݌൫ߙ௜ , ,௜หܶߚ ,{ܥ} ݃௜஺,஻,஼൯ is the probability that gene ݅ is a marker or transition gene 
given its gene expression, the clustering, and that the topology is ܶ.  
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5.10. Probability of clustering given gene expression and topology  
,ൟ࡯,࡮,࡭࢏ࢍห൛{࡯}൫࢖  ൯ࢀ

 
We can write an analogous expression to equation ( 20 ) for ݌൫{ܥ}ห൛݃௜஺,஻,஼ൟ, ܶ൯, using 
Bayes’ rule and equation ( 16 ): 
 
 
 

,ห൛݃௜஺,஻,஼ൟ{ܥ}൫݌ ܶ൯ = ({ܥ})݌ ∏ ,൫݃௜஺,஻,஼หܶ݌ ൯௜{ܥ}
∑ ({ܥ})݌ ∏ ,൫݃௜஺,஻,஼หܶ݌ ൯௜{஼}{ܥ}

. ( 32 ) 

 
Equation ( 32 ) can be written more explicitly by rewriting equation ( 17 ) as follows: 
 
,൫݃௜஺,஻,஼หܶ݌  ൯{ܥ} = ௜ߙ൫݃௜஺,஻,஼ห݌ , ௜ߚ = 0൯ ߙ)݌௜ , ௜ߚ

= 0) + ,൫݃௜஺,஻,஼หܶ݌  ௜ߚ ௜ orߙ = 1, ௜ߚ ௜ orߙ)݌ ൯{ܥ} = 1) 
  

= ௜ߙ൫݃௜஺,஻,஼ห݌ , ௜ߚ = 0൯ ߙ)݌௜ , ௜ߚ

= 0) ቆ1 + ,൫݃௜஺,஻,஼หܶ݌  ௜ߚ ௜ orߙ = 1, ௜ߚ ௜ orߙ)݌ ൯{ܥ} = 1)
௜ߙ൫݃௜஺,஻,஼ห݌ , ௜ߚ = 0൯ ߙ)݌௜ , ௜ߚ = 0) ቇ. 

( 33 ) 

 
We can rewrite equation ( 32 )( 22 ) as: 
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,ห൛݃௜஺,஻,஼ൟ{ܥ}൫݌  ܶ൯

∝ ({ܥ})݌ ෑ ൭1
௜

+ 1
ห݃௜஺,஻,஼{ܥ}൫݌ (݅)்|ఈఉࣩ ({ܥ})݌ , ௜ߙ  or ߚ௜ = 1, ܶ൯൱, 

( 34 ) 

 
 
where ࣩఈఉ|்(݅) is the odds that gene ݅ is a transition gene, given clustering: 
  
 ࣩఈఉ|்(݅) = ௜ߙ൫݌  or ߚ௜ = 1ห݃௜஺,஻,஼ , ܶ൯

௜ߙ൫݌ , ௜ߚ = 0ห݃௜஺,஻,஼ , ܶ൯

= ௜ߙ൫݃௜஺,஻,஼ห݌   or ߚ௜ = 1, ܶ൯
௜ߙ൫݃௜஺,஻,஼ห݌ , ௜ߚ = 0, ܶ൯

௜ߚ ௜ orߙ)݌ = 1)
௜ߙ)݌ , ௜ߚ = 0)  

( 35 ) 

 
and ݌൫{ܥ}ห݃௜஺,஻,஼ , ௜ߚ ௜ orߙ = 1, ܶ൯ is the probability of {ܥ} given only gene expression data 
for gene ݅, topology ܶ and that gene ݅ is a marker or transition gene: 
 
ห݃௜஺,஻,஼{ܥ}൫݌   , ௜ߚ ௜ orߙ = 1, ܶ൯ = ,൫݃௜஺,஻,஼หܶ݌ ௜ߙ  or ߚ௜ = 1, ({ܥ})݌ ൯{ܥ}

௜ߙ൫݃௜஺,஻,஼ห݌  or ߚ௜ = 1, ܶ൯ . ( 36 ) 

 
 
Thus each gene’s contribution  ݌൫{ܥ}ห݃௜஺,஻,஼ , ௜ߚ ௜ orߙ = 1, ܶ൯  to the probability of the 
clustering given total gene expression and topology ݌൫{ܥ}ห൛݃௜஺,஻,஼ൟ, ܶ൯ is weighted by the 
odds ࣩఈఉ|்(݅) that it is a marker or transition gene given topology.  
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In practice we do not explicitly calculate ݌൫{ܥ}ห݃௜஺,஻,஼ , ௜ߚ ௜ orߙ = 1, ܶ൯ or ࣩఈఉ|்(݅), but we 
recluster using high-probability marker and transition genes. 

5.11. Determination of lineage tree from triplet topologies 
5.11.1. Selection of triplets 
In order to build lineage trees from the topologies we determine for each cell type, we 
select the triplets for which our determination of the topology is most robust. There is one 
free parameter in our determination of topology: the prior odds for a gene to be a transition 
gene in the absence of gene expression data, ߚ)݌௜ = ௜ߚ)݌/(1 = 0). For each triplet, we 
vary this parameter between 10-10 and 100 and calculate the probability of the topology 
given gene expression data ݌൫ܶห൛݃௜஺,஻,஼ൟ,  .൯ as a function of the prior odds{ܥ}

We want to consider only triplets which showed a single dominant topology. We exclude 
triplets which show a weak probability for a particular topology or ones which depend on 
a particular choice of prior odds. We also do not consider triplets which show a strong 
probability for two different topologies, depending on the choice of prior odds.  

We consider triplets for which only one non-null topology has probability 
 ൫ܶห൛݃௜஺,஻,஼ൟ൯ greater than 0.6. Probabilities of the different topologies for each triplet are݌
shown in Table S3. 

5.11.2. Pruning rule 
We assemble the triplets with known topology into a final undirected graph. Since we 
determined topologies by considering cell types three at a time, we obtain topological 
relationships involving both cell types that are nearest neighbors and cell types that are 



200 
 

more distantly related. In order to reconstruct the tree, we must determine which cell types 
are nearest neighbors and which ones are separated by one or more intermediate cell types.  

The set of inferred topologies allows us to determine which cell types are separated by 
intermediates. For every pair of cell types, we ask whether any of the inferred topologies 
features an intermediate between the two cell types (See Figure 3.4B). If such a topology 
has been inferred, we consider that the two cell types are not nearest neighbors, and that at 
least one other cell type is an intermediate. For example, we can ignore triplet C3 – C1 – 
C4 because triplet C1 – C2 – C4 testifies that there exists an intermediate between C1 and 
C4. Similarly we can ignore triplet C3 – C2 – C4 because triplet C2 – C1 – C3 testifies that 
there exists an intermediate between C2 and C3. 

 


