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Abstract

This dissertation examines the social and economic processes that generate innovation

and distribute its rewards in society, in the context of the United States over the past

twenty years. Chapters 1 and 4 investigate the two-way relationship between innovation and

inequality. Chapters 2 and 3 study two recent and important trends in the US innovation

system: the rise of teamwork and the activities of patent trolls.

Using detailed product-level data in the retail sector in the United States, Chapter

1 shows that product innovations disproportionately benefited high-income households due

to increasing inequality and the endogenous response of supply to market size. From 2004

to 2013, annualized quality-adjusted inflation was 0.65 percentage points lower for high-

income households, relative to low-income households. Using national and local changes

in market size driven by demographic trends plausibly exogenous to supply factors, this

chapter provides causal evidence that a shock to the relative demand for goods (1) affects

the direction of product innovations, and (2) leads to a decrease in the relative price of

the good for which demand became relatively larger (i.e. the long-term supply curve is

downward sloping). A calibration shows that this effect is sufficiently strong to explain most

of the observed difference in quality-adjusted inflation rates across the income distribution.

Chapter 2 demonstrates the importance of team-specific capital in the typical inventor’s

career. Using administrative tax and patent data for the population of US patent inventors
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from 1996 to 2012 and the premature deaths of 4,714 inventors, an inventor’s premature death

is found to cause a large and long-lasting decline in their co-inventor’s earnings and citation-

weighted patents (-4% and - 15% after 8 years, respectively). Firm disruption, network

effects and top-down spillovers are ruled out as primary drivers of this result. Consistent

with the team-specific capital interpretation, the effect is larger for more closely-knit teams

and primarily applies to co-invention activities.

Chapter 3 investigates the patent acquisition behavior of non-practicing entities (NPEs),

also-known as patent trolls. Unlike regular firms, NPEs purchase and assert patents that

were granted by a specific set of examiners at the United States Patent Office (USPTO), who

tend to allow incremental patents with vaguely-worded claims. The methodology introduced

in this chapter leverages the random assignment of patent applications to examiners and pro-

vides a novel way of inferring the nature of a patent from prosecution data. A cost-benefit

calibration suggests that investments in improving the quality of the examination process at

the USPTO would have large social returns.

Using administrative records on the population of individuals who applied for or were

granted a patent between 1996 and 2014, Chapter 4 characterizes the lives of more than

1.2 million inventors in the United States. Children of low-income parents are much less

likely to become inventors than their higher-income counterparts and decompositions indi-

cate that this income-innovation gap can largely be accounted for by differences in human

capital acquisition while children are growing up. The importance of exposure effects during

childhood is established by showing that growing up in an area with a high innovation rate

in a particular technology class is associated with a much higher probability of becoming an

inventor specifically in that technology class. Taken together, these descriptive findings shed

light on which types of policy tools are likely to be most effective in sparking innovation. In

particular, they suggest that “extensive margin” policies drawing more talented individuals

from low-income families into innovation have great potential.
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1. The Unequal Gains from Product

Innovations: Evidence from the

Retail Sector

1.1. Introduction

The rising level of nominal income inequality in the United States over the past thirty years

has been a key topic of interest for academics and policymakers. The effect of skill-biased

technical change in this process has been widely studied: innovations such as the diffusion

of information and communications technologies have affected the relative price of skills and

resulted in higher nominal income inequality. Much less attention has been paid to how

price changes in the product market and the introduction of new products may differentially

affect households at different points of the income distribution. Yet it is well-known that

preferences are non-homothetic. Depending on their income level, households consume very

different goods and services. Due to price changes in the product market over time, as well

as changes in product variety, trends in real inequality may therefore differ from trends in

nominal inequality. Product innovations may play a central role in this process by increasing

the variety and quality of goods available in specific consumer segments, as well as by driving

1



down the price of existing products in these segments due to increased competitive pressure.

This paper shows the relevance of this hypothesis in the US retail sector over the past ten

years, a large sector accounting for over 25% of the US economy.

I investigate this question in two steps. First, in the “measurement” part of the paper,

I show that in the retail sector over the past ten years the quality-adjusted price index

of high-income households rose substantially slower than that of low-income households,

which amplified inequality. I build income-group-specific quality-adjusted price indices using

detailed product-level data, in which I observe consumption patterns across income groups,

price changes for all products available in consecutive years (inflation) and changes in product

variety (product entry and exit). Second, in the “mechanism” part of the paper, I find that

firms’ equilibrium response to changes in demand across the income distribution explains

why the price index of high-income consumers rose slower than that of the low-income.

Specifically, my analysis shows that because demand from the high-income grew faster during

this period, firms strategically introduced more new products catering to these consumers,

which in turn drove down the price of existing products in these segments due to competitive

dynamics.1 The retail sector is ideal to conduct this investigation because it accounts for a

1A particularly good example illustrating this idea is the market for snacks. In recent years, meat snacks
have grown tremendously, especially premium beef jerky - with sustained double-digit growth for over five
years nationwide. Premium beef jerky is a high-protein, low-fat and low-calorie snack - a practical and
healthy snack that particularly appeals to young and high-income households. The branding of premium
beef jerky is fundamentally different from that of traditional jerky - favorite of truckers and staple of gas-
station checkouts - and so is its production process. In particular, many of the varieties of premium beef
jerky are fully organic - for instance, beef jerky made from 100% grass-fed cattle from networks of small
family farms. The so-called “jerky renaissance” is largely driven by demand. It is answering the demand
of high-income consumers concerned with healthy living and eager to support a sustainable, more humane
agriculture. And it is taking place in a broader context of increased demand for snacks - a Nielsen survey
found that one in ten Americans say they eat snacks instead of meals - and for proteins - according to the
NPD group, more than half of Americans say they want more protein in their diet. The competition for the
premium beef jerky market has intensified in recent years, with an ever increasing number of small, local
players but also with the entry of established companies through acquisitions. For instance, Krave, one of the
early players in premium jerky who led the market in the late 2000s, was acquired in 2015 by Hershey’s, the
largest chocolate manufacturer in North America. Accordingly, premium beef jerky prices have fallen and
varieties have increased. Similar - although less spectacular - dynamics are visible in other segments of the
snack industry, like hummus and protein bars, but not so in segments catering to lower-income consumers,
like chips, bars and nuts.
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large share of US GDP, rich data is available, and the notion of product (barcode) is well

defined.

In the first part of the paper, I establish two new facts about inflation and increasing product

variety across the household income distribution in the US retail sector from 2004 to 2013.

I find that higher-income households experienced lower inflation and a faster increase in

product variety than more modest households. The magnitude of these effects is large: over

this period, the average annual inflation rate was 0.65 percentage point lower for households

making more than $100,000 a year, compared with households making less than $30,000.2

These results are very robust and hold before, during and after the Great Recession across

product groups for a wide variety of price indices. They are based on detailed product-level

data from the Nielsen Homescan Consumer Panel and Retail Scanner datasets, which are

representative of the retail sector as a whole (which itself represents 40% of household expen-

ditures on goods and 16% of household total expenditures). Whether similar results hold in

other sectors of the economy is uncertain, but the analysis delivers a general methodological

lesson for the measurement of inflation by statistical agencies: I show that the difference in

inflation rates across the income distribution can be accurately measured only with product-

level data. Indeed, a large share of the inflation difference between income groups occurs

within detailed product categories, which cannot be captured by price series based on data

aggregated at a level similar to what the Bureau of Labor Statistics and other statistical

agencies currently use. These findings challenge the result from the existing literature that

inflation is similar across the income distribution3 and suggest that trends in real inequality

may be diverging from trends in nominal inequality. Collecting product-level data is key to

accurately measure this divergence. This has important potential policy implications given

2As discussed in Section 4, increasing product variety is valuable on its own, but empirically most of the
welfare difference between households across the income distribution are captured by price changes in the
basket of products that are available across years.

3See Section 4 for a detailed discussion of how my results relate to the literature.
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the indexation of many government transfers.

In the second part of the paper, I examine whether the equilibrium response of supply to

faster growth of demand from high-income consumers can explain the new facts on differential

inflation and increase in product variety across the income distribution. It is a natural

hypothesis to investigate because it is well known that in recent decades the share of national

income accruing to high-income consumers has steadily increased (e.g. Song et al. 2016). To

do so, I introduce a micro-founded model featuring monopolistic competition with variable

elasticity of substitution preferences that differ across income groups, which generates a set

of precise predictions that I take to the data and for which I find strong support. Intuitively,

firms respond to changes in relative market size by skewing product introductions toward

market segments that are growing faster. This process leads to a decrease in the price

of existing products in the fast-growing market segments because increased competitive

pressure from new products pushes markups down, and also because firms endogenously

engage in process innovations lowering the marginal cost of these products. In my data,

product groups catering to higher-income households grow faster and have a higher rate

of product introduction, as well as lower inflation on existing products, which provides

suggestive evidence in support of the theory but does not establish causality from demand

to supply. To test the causal claim that increases in demand lead to a fall in inflation and an

increase in product variety, I use shifts in the national age and income distribution between

2004 and 2013 to estimate the causal effect of changes in the number of consumers (market

thickness) in a given part of the product space on inflation and product innovations. This

research design is similar in spirit to Acemoglu and Linn (2004).

Taken together, my results show that in response to growing demand the equilibrium price of

existing products falls and the rate of introduction of new products increases, and that these

effects are sufficiently strong to explain the divergence in price indices across the income

distribution. According to my point estimates, a 1 percentage point increase in demand
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leads to a 10 basis point decline in inflation and a 35 basis point increase in spending on new

products. In line with the model, the magnitude of the effect is similar regardless of whether

the change in demand comes from a change in the number of consumers or in per capita

spending. In simple calibrations, I show that these effects are large enough to explain the

new facts documented in the first part of the paper. In other words, these results suggest

that absent the endogenous response of supply to market size effects, there would not have

been a substantial difference in inflation nor in the rate of increase in product variety across

the income distribution. This analysis has important implications for the endogenous growth

literature, by providing evidence for endogenous product innovations across detailed product

categories. It is also relevant for the trade literature and the debate on the role of markups

in the gains from trade, because I establish empirically that the gains from increased market

size are largely due to a fall in markups (consistent with the model and variable elasticity

of substitution preferences). More broadly, these results are relevant for policy, given that

the effectiveness of any government transfer crucially depends on the equilibrium response

of supply to market size.

Overall, this paper provides new evidence challenging the existing literature primarily in two

respects. First, the literature suggests that households across the income distribution tend

to experience similar inflation rates (e.g. McGranahan and Paulson (2005)), except during

peculiar periods like the Great Recession (Argente and Lee (2015)). Second, theoretical work

has focused on the “product cycle”, the idea that innovation is driven by economies of scale

and allows for a trickle-down process bringing to the mass market the new products that

were initially enjoyed by a select few at the top of the income distribution. In other words,

innovation dynamics should contribute to lower quality-adjusted inflation for lower-income

households. My findings suggest that market size effects may be a more important force,

contributing to lower quality-adjusted inflation for higher-income households because market

size grows faster at the top of the income distribution. More generally, this paper contributes
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to various strands of literature studying income inequality, price indices, technical change

and monopolistic competition dynamics. 4

The remainder of this paper is organized as follows: Section 1.2 describes the data, Section

1.3 presents the first main contribution of the paper, the measurement of quality-adjusted

inflation and increasing product variety across the income distribution, and Section 1.4

makes the second main contribution of the paper, establishing that the endogneous response

of supply to market size effects is very strong. A number of theoretical results, estimation

details and robustness checks are reported in appendices.

1.2. Data Sources

1.2.1. Scanner Data

The analysis is primarily based on the Nielsen Homescan Consumer Panel and Nielsen Retail

Scanner datasets, which have been widely used in the literature (Einav, Leibtag and Nevo,

2008). With this data, I can track consumption from 2004 to 2013 at the product level in

department stores, grocery stores, drug stores, convenience stores and other similar retail

outlets across the US. The data are representative of about 40% of household expenditures on

goods and 16% of total household expenditures. Appendix B presents a detailed description

of the data sources.
4More precisely, this paper relates to at least seven strands of literature, which respectively examine nominal
income inequality (Autor, Katz and Kruger (1998), Autor, Katz and Kearney (2008), Piketty (2013), Song,
Price, Guvenen, Bloom and Till von Wachter (2015), Atkinson (2015)), homothetic price indices (Sato
(1976), Vartia (1976), Feenstra (1992), Pakes (2003), Broda and Weinstein (2006, 2010), Erickson and Pakes
(2011), Comin, Lashkari and Mestieri (2015)), non-homothetic price indices (McGranahan and Paulson
(2005), Broda and Romalis (2009), Moretti (2013), Diamond (2015), Handbury (2015), Faber and Fally
(2015), Argente and Lee (2015)), innovation in labor markets (Acemoglu (1996, 2002, 2007), Acemoglu
and Autor (2011), Autor (2013), Autor and Dorn (2013), Bell, Chetty, Jaravel, Petkova and Van Reenen
(2015)), market size effects and endogenous technical change (Acemoglu and Linn (2004)), innovation and
inequality in product markets (Schumpeter (1942), Vernon (1966), Matsuyama (2002)), and trade models of
monopolistic competition with free entry (Melitz (2003), Melitz and Ottaviano (2008), Zhelobodko, Kokovin,
Parenting and Thisse (2012)).
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Three features of the data are particulalry useful for my analysis. First, product-level data

is available on both prices and quantities. Quantity data is rare at the product level (for

instance, the Bureau of Labor Statistics (BLS) does not collect such data) but it is crucial

for quality adjustment in price indices. Intuitively, observing shifts in quantities allows to

directly measure substitution patterns (and thus address substitution bias, which is a core

concern of the CPI produced by BLS) and to infer the quality of products given their price,

their market share, and the demand system. The quantity and price data is also used to

structurally estimate the relevant parameters of the demand system in Section 1.3. Second,

the Homescan Consumer panel has information on household characteristics such as income,

age, education, size, occupation, marital status and zip code. It is therefore possible to

directly map products to consumer characteristics. Third, the dataset offers a good measure

of product innovations, defined as the introduction of new barcodes. Broda and Weinstein

(2010) provide a detailed explanation regarding why it is reasonable to assume that all

goods with different UPCs differ in some substantial way that might cause consumers to pay

a different price for them and that it is rare for a meaningful quality change to occur that

does not result in a change of UPC.5 In other words, it is safe to assume that if the bar

code changes, it is likely that some noticeable characteristic of the product has changed.6

Similarly, it is possible to track products (barcodes) that are discontinued. Appendix Table

A.8 shows that creation is larger than destruction, i.e. new products tend to steal market

5Broda and Weinstein (2010) make this point as follows: “Although it is difficult to enforce how a company
uses a bar code, most industry experts strongly caution firms not to use the same bar code on more than one
product. Doing so could cause confusion among retailers who would have trouble knowing what they were
selling and for consumers whose receipts would not match their actual purchases. Similarly, firms typically
do not use multiple UPCs for the same product because that makes it very difficult for retailers to reorder
out of stock items. As a result, manufacturers tend to use other bar code systems for internal use and reserve
the UPC for tracking products that are identical to the consumer. For example, changing the slogan on a
Heinz ketchup bottle does not require a new bar code, but changing the size of the bottle does.”

6Note that these measures of product turnover include any change in products, including those driven by
changes in the size of products, their flavor, or other characteristics that can be secondary for the consumer.
Nielsen provides identifiers that allows tracking barcodes that are new just because of a change in size or
flavor: all of the results presented in the paper are similar when excluding these products from the definition
of “new” products.
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shares from existing products. As will become apparent in Section 1.3, this displacement is

indicative of biases in conventional price indexes that ignore the effects of changing quality.

Nielsen provides a detailed product hierarchy, based on where products are sold in stores. In

my sample, about 3 million products (identified by their barcode, or “UPC”) are classified

into 10 broad departments (dry grocery, general merchandise, health and beauty care, alco-

holic beverages, deli, ...), 125 more detailed product groups (grooming aids, soup, beer, pet

care, kitchen gadgets, ...) and 1,075 very detailed product modules (ricotta cheese, pet litter

liners, bathroom scale, tomato puree, women’s hair coloring, ...). When ranking product

modules by mean consumer income, the top five product modules are scotch, natural cheese,

gin, fondue sauce and cookware, while the bottom five are tobacco, canned meat, taco filing,

insecticide and frozen fruit drinks.

Finally, the data can be disaggregated at the level of 76 local markets, described in Appendix

B. According to Nielsen, the dataset is still representative within each of the 76 markets.

The data cannot reliably be disaggregated further (e.g. at the county or zip code level).

1.2.2. Markup Data

I also have access to weekly product-level data between January 2004 and June 2007 in 19

U.S. states, for 250 grocery stores operated by a single retail chain. This dataset contains

information for 125,048 unique products (UPCs), mostly in the food and beverages cate-

gories, housekeeping supplies, books and magazines, and personal care products. Most of

the stores are located in the western and eastern corridors, in the Chicago area, Colorado

and Texas. For every store in every week, data is available on the price, the wholesale cost

and the marginal cost of each product. I infer the markups of the retailer based on the

information on the price and wholesale cost. Note that I do not measure other costs like

labor, rent and utilities. In the analysis carried out in Section 1.4, store-year fixed effects
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are used to absorb these costs. The dataset also reports “adjusted gross profits” per unit for

each product, defined as the net price minus the sum of wholesale costs and transportation

costs plus net rebates from the manufacturer - I use this adjustment in robustness checks.

1.2.3. Manufacturer Data

Finally, I have obtained data from GS1, the company in charge of allocating bar codes in

the US, on the universe of barcodes and manufacturers. I match the bar codes observed

in the Nielsen data to manufacturers using the first few digits of the bar code - the match

rate is close to 95%. Since the cutoff size for a manufacturer to appear in this dataset is to

make a sale rather than an arbitrary number of workers, I can observe the full distribution of

manufacturers in each product group. There are about 500 manufacturers on average in each

product group, with 90 percent of the product groups having more than 200 manufacturers.

The median number of products supplied by a manufacturers is 5 and the average is 14.

Consistent with the findings reported by Hottman et al. (2016), while on average half of

all output in a product group is produced by just five manufacturers, around 98 percent

of manufacturers have market shares below 2 percent. Thus, the typical product group is

characterized by a few large manufacturers and a competitive fringe of manufacturers with

very low market shares. A second important feature of the data is that even the largest

manufacturers are not close to being monopolists: the largest manufacturers in a product

group on average has a market share of 22 percent. The model presented in Section 1.4 is

consistent with these patterns.
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1.3. Measuring Quality-Adjusted Inflation

Across the Income Distribution

In this section, I compute quality-adjusted inflation rates across the income distribution,

taking into account the welfare gains from increasing product variety. I start with a brief

reminder on non-homothetic preferences and price indices. Second, I follow standard results

in the literature to derive the exact price index in my preferred demand system. Third, I

present results and robustness checks for inflation on existing goods across the income dis-

tribution. I show the relevance of these results for statistical agencies like BLS and discuss

differences with the existing literature. Fourth, I document the difference in changes in prod-

uct variety (due to both product creation and destruction) across the income distribution.

Finally, I bring together the findings on inflation on overlapping products and on product

creation and destruction to compute the full quality-adjusted inflation rate.

1.3.1. Nonhomothetic Preferences, Product Variety and Real

Inequality

The nonhomothetic nature of preferences means that the baskets of goods and services

consumed by households across the income distribution systematically differ. Given that

households have a taste for variety, the mapping between nominal income and utility depends

on both the quality-adjusted price of products and the number of available varieties. This

paper studies how the mapping between nominal income and inequality changes over time.

Figure A.2 illustrates this idea. In this example, the “new” mapping is an upward shift of the

“old” mapping (for instance because of productivity gains), but the shift is asymmetric and

benefits higher-income households relatively more. The shift takes into account changes in

the quality-adjusted price of products as well as changes in the variety of available products
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for each nominal income level.

This paper characterizes shifts in the mapping from nominal income to utility at various

points of the income distribution using a money metric, the compensating variation. The

compensating variation gives the amount of nominal income that one would need to take

away from the consumer at the “new” equilibrium to make them indifferent between this

new equilibrium (with the new mapping) and the “old” one (with the initial mapping).

This approach provides a characterization of changes in real inequality. Given the demand

system, it is possible to infer the quality of products based on their price and equilibrium

market share, and to measure the gains from increasing product variety based on the share

of spending on new products. The rest of this section discusses the procedure in detail and

shows that the results are robust across price indices, indicating that structural assumptions

about the demand system do not drive the results.

I use the term “inflation” to describe my findings throughout the paper because it is an

intuitive notion, but my results are invariant to the unit of account. I document changes in

the relative prices of goods that cater to high- and low-income households. These relative

price changes would be unaffected by shifts in the overall level of inflation, therefore nominal

indeterminacy plays no role in my findings.7

7It is also useful to note that given that the set of goods is not fixed, the difference in the rates of quality-
adjusted inflation experienced between high- and low-income households could be permanent. If the set of
goods were fixed, the divergence in inflation rates between goods should be bounded and eventually converge
to 0, otherwise in the long run all consumers, regardless of their income level, would switch to the goods
with slower price increases. But since there is entry and exit, quality-adjusted inflation may be permanently
lower for one income group relative to another (e.g. at any point in time the price of the products catering
to the high income may remain higher than that of the products catering to the low income, but in a
quality-adjusted sense the price of the high-end products may be very low).
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1.3.2. Overview of Methodology and Review of Basic Price

Indices

The goal is to compute the cost of achieving a certain level of utility in one year relative the

previous year. Such price indices are known as “exact price indices.” This requires taking

into account changes in product quality, product variety, as well as the optimizing behavior

of consumers who may substitute from one good to another. By definition, this exercise

requires taking a stance on a utility function. The role of the utility function is twofold:

quantifying the impact on utility of price changes for the goods that exist across periods,

but also translating into a welfare metric the patterns of product creation and destruction.

In order to understand what parts of the result are driven by structural assumptions on the

utility function, it is useful to split this analysis into two parts, first considering price changes

on products that exist across periods and second considering changes in product variety.

First, I consider inflation on the set of products available in two consecutive years. The

quality of a given product is assumed to be constant over time8 and data is available on

market shares of each product, therefore it is straightforward to compute a price index

reflecting product quality and consumers’ substitution behavior. Intuitively, I observe the

price change for each product and I only need to decide how to weight the various products.

The exact price index offers a principled way of doing so. The structural assumption on the

utility function play a minor role for the final result, as can be seen by computing standard

price indices that do not have an interpretation in terms of utility but can serve as bounds

by allowing for an extreme form of substitution (like the Paasche price index, which offers

a lower bound on inflation) or making any substitution impossible (like the Laspeyres price

index, which offers an upper bound on inflation). In addition to the exact price index derived

8This assumption is standard in the literature: see for instance Feenstra (1994) and Broda and Weinstein
(2010). It appears to be reasonable even though advertising or the introduction of complementary goods
may violate it. It can be tested, and I present the results of this test in the robustness test section below.
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in the following subsection, I consider the following price indices :
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Another relevant consideration is whether or not to chain the price index. In a chain index,

each link consists of an index in which each period is compared with the preceding one, the

weight and price reference being moved forward each period. A chain index is therefore path

dependent: it depends on the prices and quantities in all the intervening periods between

the first and last period in the index series. When there is a gradual economic transition

from the first to the last period, chaining is advantageous because it smoothes trends in

relative prices and quantities and tends to reduce the index number spread between the

various price indices listed above. But if there are fluctuations in the prices and quantities

in the intervening periods, chaining may not only increase the index number spread but also

distort the measure of the overall change between the first and last periods.9 Accordingly, I

9For example, suppose all the prices in the last period return to their initial levels in period 0, which implies
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present robustness check with and without chaining the indices.

Second, I follow standard techniques in the literature to provide an adjustment to the price

index depending on the rate of increase in product variety. For new product and discontinued

products, price relatives are not available. Intuitively, given that consumers have a taste

for variety, an increase in the range of available product should lead to a decrease in the

price index. Translating the increase in product variety into welfare gains requires structural

assumptions. The key assumption is that within a product module, varieties are horizontally

differentiated. I use two standard frameworks: nested CES utility (see next subsection)

and nested translog utility (in progress). Importantly, these structural assumptions do not

matter quantitatively because the elasticity of substitution of products within a module is

very high, such that the gains from increasing product variety are already reflected in the

prices of existing products (this is shown formally in the next subsection). The key point

is that the patterns of product creation and destruction matter in general equilibrium, but

their welfare effect is almost entirely taken into account in the price changes of products

existing across periods. I also provide bounds showing that the patterns of product creation

and destruction in the data will lower the price index more for high-income households than

low-income households and, even under some violations of the structural assumptions.

Although the main text focuses on results and robustness checks across income groups (vari-

ous price indices, various subsamples of products and years, etc.), I have also conducted this

analysis across age groups. The results of this analysis are reported in Appendix. If find

that inflation tends to be higher for older individuals, which is in line with the market size

hypothesis examined in Section 1.4.

that they must have flucutated in between. A chain Laspeyres index will not return to 100: it will tend
to be greater than 100. If the cycle is repeated with all the prices periodically returning to their original
levels, a chain Laspeyres index will tend to drift further and further above 100 even though there may be no
long-term upward trend in the prices. Chaining is therefore not advised when the price fluctuates.
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1.3.3. Estimation Framework for Nested CES Exact Price Index

The estimation framework builds on Feenstra (1994) and Broda and Weinstein (2006, 2010).

I split the analysis using three representative agents, one for households making less than

$30,000 a year, one for households making between $30,000 and $100,000 a year, and one

for households making above $100,000. Preference parameters in my estimation framework

are a flexible function of the income level, which allows for nonhomotheticities.

The remainder of this subsection shows how to derive and estimate the price index for any

representative agent. I assume a nested CES utility function, following Feenstra . Product

groups are indexed by g and G is the set of all product groups. The elasticity of susbtitution

across product groups is ρ. The elasticity of susbtitution between product groups is σ =

ρ/(ρ− 1). The upper level utility function is:

U = (∑g∈G(Cgt)ρ)
1
ρ

Composite consumption within a product group is given by:

Cgt = (∑m∈Mg
(cmgt)ρg)

1
ρg

where σg = ρg/(ρg − 1) is the elasticity of substitution between product modules within

product group g.

cmgt = (∑u∈Um(dumgtcumgt)ρm)
1
ρm

where cubgt is the consumption of UPC u in product module m and product group g in

period t. σm = ρm/(ρm − 1) between UPCs within product module m. dumgt is unobserved

and reflects the quality of the UPC. So we want to estimate σ and two high-dimensional

sets of elasticities of substitution, {σg}g and {σm}m. We expect σm>σg since there is more

substitution across UPCs within a module than across modules within a group.

The minumum unit cost function of the subutility function at the product module level is:

Pmgt = (∑u∈Umgt(
pumgt
dumgt

)σm)
1
σm
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The minimum cost function at the product group level is:

Pgt = (∑m∈Mg
(Pmgt)σg)

1
σg

And the overall price index is given by:

Pt = [∑g P
σ
gt]

1
σ

Consumer optimization also yields:

sumgt =
(
pumgt/dumgt

Pmgt

)1−σm

i.e. the quality adjusted price can be backed out as follows:

lnpumgt
dumgt

= ln(sumgt)
1−σm + ln(Pmgt)

The key insight for estimation is that the share of consumption of UPC u depends directly on

the quality-adjusted price. We can write the price index only in terms of prices and market

shares even when goods are constantly being replaced.

If we make the assumption that product quality is constant over time (dumgt = dumgt−1) and

if ignore the introduction of new products, given our assumption of a (nested) CES utility

function and the results in Sato (1976) and Vartia (1976), the exact price index is:

Pmg(pmgt, pmgt−1, xmgt, xmgt−1, Img) = Πu∈Img

(
pumgt
pumgt−1

)wumgt
where Img = Imgt

⋂
Imgt−1 is the set of varieties consumed in both periods t and t − 1.

xmgt and xmgt−1 are the cost-minimizing quantity vectors of products within module m in

each of the two periods. A remarkable feature is that the price index does not depend on

the unknown quality parameters dumgt. We only need to compute the geometric mean of

the individual variety price changes, where the weights are ideal log-change weights. These

weights are computed using cost shares in the two periods and are always bounded between

the shares of spending in the t and t− 1 (in other words the price index is bounded between

the geometric Paasche and Laspeyres indices described in the previous subsection):

sumgt = pumgtxumgt∑
u∈Img

pumgtxumgt
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wumgt = (sumgt−sumgt−1)/(ln(sumgt)−ln(sumgt−1))∑
c∈Img

(sumgt−sumgt−1)/(ln(sumgt)−ln(sumgt−1))

As shown in Broda and Weinstein (2010), with change in varieties across periods the exact

price index (quality-adjusted inflation) for product module m within product group g is then

given by:

πmg(pmgt, pmgt−1, xmgt, xmgt−1, Img) = Pmg(pmgt, pmgt−1, xmgt, xmgt−1, Img) ·
(

λmgt
λmgt−1

) 1
σm−1 (1)

with

λmgt =
∑

u∈Img
pumgtxumgt∑

u∈Imgt
pumgtxumgt

; λumgt−1 =
∑

u∈Img
pumgt−1xumgt−1∑

u∈Imgt−1
pumgt−1xumgt−1

This result states that the exact price index with variety change is equal to the “conventional”

price index multiplied by an additional term, which captures the role of new and disappearing

varieties. The higher the expenditure share of new varieties, the lower is λmgt and the smaller

is the exact price index relative to the conventional price index. An intuitive way to rewrite

this ratio is as follows:

λmgt
λmgt−1

= 1+Growth Rate of Spending on Overlapping Productsgmt
1+Growth Rate of Total Spendinggmt

which clearly shows that a net increase in product variety (weighted by spending) drives

the price index down. The price index also depends on the module-specific elasticity of

substitution between varieties σm. As σm grows, the additional term converges to one and

the bias goes to zero: intuitively, when existing varieties are close substitutes to new or

disappearing varieties, price changes in the set of existing products already take into account

the entry of more varieties.10

10One can better understand the implications of the choice of time horizon by considering an examples of how
the proposition captures the impact of different types of creation and destruction, quoting from Broda and
Weinstein (2010):
“Let’s consider the case of a new type of sunscreen that replaces an earlier type. If the new sunscreen

is just a repackaging of last year’s sunscreen without a noticeably different quality or price, then, ceteris
paribus, the new sunscreen will have a market share equal to that of the old sunscreen. If this is true, then
the share of common goods will be unchanged and our measured quality bias from the replacement of the old
model would be zero. If, instead, the new sunscreen is priced identically but is of a higher quality than the
old model, then, ceteris paribus, its market share will rise. This result comes directly from the optimizing
behavior of the consumer, because the new sunscreen will have a lower price per unit quality than the old
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In principle, we could use the result above to compute price indices adjusted for increasing

product variety over any time horizon. However, two factors make some time horizons more

sensible than others in practice. First, it makes sense to define periods in years to prevent

seasonal factors from driving product turnover. Thus, UPCs will be considered destroyed

only if they were not purchased at any time during a yearlong period. Second, we need

to decide how many years should separate the two periods. While this choice is inherently

arbitrary, I decided to present results based on one-year intervals, considering other intervals

in robustness checks. As mentioned earlier, a key assumption is that the taste or quality

parameters for common goods must remain constant in start and end years of the sample.

In fact, it may vary over short horizons due to anything that might affect demand (e.g.,

marketing or fashion considerations). The reason for why immutable preferences over long

time horizons must be assumed when deriving price indexes is that if the utility function

is changing over time for either exogenous reasons (e.g., fashion) or endogenous reasons

(e.g., marketing) then one cannot make sensible statements about how price changes affect

welfare, nor can one derive exact price indexes because identical price vectors will yield

different utility levels at different times. The choice of the time horizon also matters for the

magnitude of the adjustment term for increasing product variety.

Thus, we need data on quantity and price for new products, discontinued products, and

products existing across periods, which is readily available in the Nielsen data. We also need

to estimate the two high-dimensional sets of elasticities of substitution, {σg}g and {σm}m.

The main challenge for estimation of is that we want to obtain a demand and supply equation

using only information on prices and quantities. The insight of Feenstra (1994) as extended

by Broda and Weinstein (2006) is that although we cannot identify supply and demand, the

data does tell us something about the joint distribution of supply and demand parameters.

sunscreen. If this is the case, the higher share of the new good relative to the old good implies that there is
a “quality bias” in the conventional price index that only considers products existing across periods.”
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Appendix C gives details about how to derive the estimation equations.11

1.3.4. Inflation Across the Income Distribution For Goods

Available in Consecutive Years

1.3.4.1. Results

Figure 1.1.: Inflation Across the Income Distribution (Overlapping Products)
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Figure 1.1 shows the average inflation between 2004 and 2013 on the set of overlapping

products (defined as products that are available in consecutive years) for households across

the income distribution. Inflation is computed using the exact price index for the nested

CES utility function described in the previous subsection (without the adjustment for new

and disappearing products, which is examined later in this section and does not affect the
11I have also estimated a demand system based on the translog expenditure function, following Feenstra and
Weinstein (2015). The results are qualitatively similar to those presented here and are available from the
author upon request.
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results). The inflation rate is about 0.65pp lower for households making more than $100,000

a year, relative to households making less than $30,000.

Figure 1.2.: Robustness of Inflation Difference between High- and Low-Income Households
For Various Price Indices (Overlapping Products)

Panel A: For Various Price Indices
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Panel B: Within Age Groups
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As shown in Panel A of Figure 1.2, similar results are obtained when considering any of
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the price indices introduced in Subsection 1.3.2. In addition, Panel A of Figure 1.2 reports

the inflation difference when re-defining products as UPCs available in the same store, or

as UPCs available in the same local market (see Appendix B for a map of local markets).

The results with this new definition of products are very similar. Overall, across all price

indices and product definitions, the inflation rate is always between 0.56pp and 0.72pp lower

for households making more than $100,000 a year, relative to households making less than

$30,000. Panel B of Figure 1.2 shows that these results are robust when considering other

income groups and when repeating the analysis within age groups. For each age group,

inflation is sytematically lower for the higher-income households.12

Table 1.1 shows the robustness of this result across subsamples. The difference between

the inflation rates of high- and low-income households exists before, during and after the

Great Recession,13 and it is not driven by any single department. Appendix C presents

various additional robustness tables and figures. First, Tables A.1 and A.2 describe the

level of inflation for various cuts of the income distribution, various price indices and various

periods. Figure A.3 summarizes this information and shows that the difference in inflation

rates is very robust: higher-income households consistently experienced a lower inflation

rate. Second, I redefine products to be UPCs available in a given local market (Table A.3)

or UPCs available in a given store (Table A.4) and show that the results continue to hold.

Additional robustness checks are discussed at the end of this section.

12In a companion paper, Jaravel (2016) investigates patterns of inflation and product innovations across the
age distribution.

13The difference inflation rates appears to be larger during the Great Recession. Argente and Lee (2015) argue
that the way in which consumers adjusted their shopping behavior to mitigate the crisis can explain the
difference in the inflation rates across the income distribution during this period.
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Table 1.1.: Robustness of Inflation Difference Across the Income Distribution (Overlapping
Products) For Various Periods and Departments

Excluded Average Annual Inflation Difference
Period Department between High- and Low-Income Households

2004-2013 None 0.654
2004-2006 None 0.472
2011-2013 None 0.529
2004-2013 Health and beauty care 0.689
2004-2013 Dry grocery 0.738
2004-2013 Frozen food 0.690
2004-2013 Dairy 0.649
2004-2013 Deli 0.657
2004-2013 Packaged meat 0.654
2004-2013 Fresh produce 0.655
2004-2013 Non-food grocery 0.534
2004-2013 Alcohol 0.638
2004-2013 General merchandise 0.631

1.3.4.2. Decompositions

It is possible to decompose the inflation difference between households at difference points of

the income distribution. For the purpose of this exercise, I focus on comparing households

making more than $100,00 a year to households making less than $30,000 a year. The in-

flation difference reflects the combined effects of both price and quantity changes, as well as

baseline differences in spending patterns across income groups. For instance, it could be that

high-income households spend more on fresh produce and that inflation tends to be lower

in this broad item category. Alternatively, it could be the case that high-income households

experience different inflation rates compared with low-income households on the same bar

codes, for instance because they shop at different stores or have different propensities to use

coupons. Accordingly, the inflation difference between high income and low-income house-

holds can be decomposed into a “between” component, which corresponds to the inflation

difference that would prevail if households differed only in terms of their expenditure shares
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and experienced the same inflation rate within an item category, and a “within” component,

which corresponds to the inflation difference that would prevail if households differed only in

terms of the inflation rate they experience within an item category and had the same expen-

diture shares across categories. Formally, for any grouping of products G, we can decompose

the inflation difference between high- and low-incomme households as follows:

πR − πP ≡ ∑G s
R
Gπ

R
G −

∑
sPGπ

P
G =

(∑
G

sRGπG −
∑

sPGπG

)
︸ ︷︷ ︸

Between

+
∑
G

sG(πRG − πPG)︸ ︷︷ ︸
Within

with sim the share of spending of income group i on product grouping G andπiG the inflation

experienced by income group i in product grouping G. πG and sG denote the average inflation

rate and the average spending shares for product grouping G.

Table 1.2 reports the results of the decomposition at the following levels of aggregation:

department, product group, product module, UPC, UPC in a given local market, and UPC

in a given store. Inflation is directly observed at the product level for the last three categories,

and the definitions of inflation for categories at levels of aggregation above the UPC are given

in subsection 3.2. Perhaps not surprisingly, less than 10% of the differenced in the inflation

rate experience by high- and low-income households is due to differences in spending across

broad departments. More surprisingly, less than 25% of the inflation difference results from

different spending patterns across the 125 detailed product groups, and less than 45% of

the difference from spending patterns across the 1,025 very disaggregated product modules.

More than 70% of the inflation difference occurs between UPCs. This is a large share of the

overall difference in inflation rates, but a substantial fraction of the difference still occurs

within UPCs. To assess the mechanism at play, I repeat the decomposition at the level of

UPCs in a given local market, which brings the share of the “between” component close to

80%, as well as at the level of UPCs in a given store, which brings the share of the “between”

component to 92%. Taken together, these results show that most of the difference in inflation

rates between high- and low-income households occurs across UPCs, and that some of the
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effect results from differential price dynamics for the same UPC across stores. In Section 1.4,

I examine whether local competition and changes in markups can explain these patterns.

Table 1.2.: Decomposition of the Inflation Difference Between High- and Low-Income
Households

Aggregation Level Decomposition Inflation Difference
(Broad to Narrow) pp % of actual

Department Between 0.06 8.6

Product Group Between 0.14 21.4

Product Module Between 0.28 42.8

UPC Between 0.476 72.2

UPC-Local Market Between 0.520 78.8

UPC-Store Between 0.607 92.1

Table 1.3 delves further into the differences in price dynamics across UPCs, which are of

particular interest because they explain most of the inflation difference across the income

distribution and because the Nielsen data is less reliable to document variation in prices paid

by different income groups for the same UPC. Indeed, Nielsen often automatically enters the

price of the UPC based on the store the panelist reported for their shopping trip.14 Figure

1.3 documents that within product modules inflation is lower for products that belong to

brands in higher price deciles. The price deciles are computed within each module based on

the average (spending-weighted) unit price of the products that belong to a brand, over all

years in the dataset. This approach provides a way to segment the product space even within

product modules, the highest level of disaggregation provided by Nielsen. It is not subject
14Nielsen obtains the price data from that store in that particular week.
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to mean reversion because the deciles are not based on the price of the UPC itself, but

rather on pricing behavior at the brand level over the entire dataset. Table 1.3 shows that

differences in the spending patterns of high- and low-income households across price deciles

within product modules explain more than 85% of the inflation difference between high and

low-income households that exists across UPCs. Taken together, the decomposition exercises

show that the inflation difference between high- and low- income households primarily exists

across UPCs, rather than within, and that it can be accounted for by the fact that inflation

is lower for products belonging to higher-quality brands, which primarily cater to higher-

income consumers.

Figure 1.3.: Inflation across Brand Price Deciles within Modules
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Table 1.3.: Decomposition of the Inflation Difference Between High- and Low-Income
Households Relative to Across-UPC Benchmark

Aggregation Level Decomposition Inflation Difference
(Broad to Narrow) pp % of benchmark

Department Between 0.061 12.8

Product Group Between 0.143 30.0

Product Module Between 0.282 59.2

Product Module*Price Decile Between 0.408 85.7

UPC Between 0.476 100

1.3.4.3. Relevance for the Methodology of Statistical Agencies

Table 1.2 means that product-level data is needed to capture the magnitude of the difference

in inflation rates between households at different points of the income distribution. It is not

sufficient to simply reweight aggregate price series based on income-specific spending shares,

even when the level of aggregation is as detailed as product modules. Yet this is precisely

the approach followed by the BLS and other statistical agencies. More specifically, the BLS

collects prices on 305 different item categories, known as “entry-level items” (ELI). Most of

these item categories are very coarse. 230 of them are actually in the retail sector, where the

level of disaggregation is much higher than in other sectors. Still, this level of aggregation is

too high to capture the bulk of the difference between high and low income consumers. This

explains why the result presented here may appear inconsistent with the existing literature,

which has found small differences between high and low income consumers.

For instance, McGranahan and Paulson (2005) compute income-specific inflation rate based

on between-ELI inflation differences and income-specific CEX spending patterns. Using
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their data, I computed that between 2004 and 2013 the annualized inflation difference for

households in the bottom vs. top income quartiles was 0.18pp, which is similar to what I

obtained in the Nielsen data with the “between product group” methodology (see Appendix

C for details).

Therefore, the conventional wisdom that inflation is similar across the income distribution

may be misplaced: statistical agencies like BLS collect data at a broad level of aggregation,

which biases the estimate of the difference in inflation across income groups towards zero.

Using the Nielsen data, I directly show that the magnitude of this bias is large in the retail

sector. Table 1.3 suggests that a large share of the inflation difference across income groups

could be captured by segmenting each of the detailed item categories by price deciles - the

data collected by statistical agencies like the BLS could be used to replicate this approach.15

1.3.4.4. Related Literature

My results are consistent with Argente and Lee (2015), who study the inflation difference

for high- and low-income households during the Great Recession, find that it is lower for

higher-income households and argue that this effect is driven by substitution patterns. The

inflation dynamics I describe in this paper are more general and of a different nature: I show

that the difference in inflation rates across the income distribution extends well beyond the

crisis and continues to hold even when substitution effects are ignored (indeed, Figure 1.2

shows that the magnitude of the inflation difference is similar across a variety of price indices

that do not allow for substitution, like the Laspeyres index). In Section 1.4, I show that

the magnitude of the inflation difference between high- and low-income households can be

explained by the equilibrium response of supply to market size effects.16

15One would then need to infer the spending shares of various income groups along price deciles, which could
be done for instance by estimating “quality Engel curves” as in Bils and Klenow (2001).

16Note that both my results and the results of Argente and Lee (2015) appear inconsistent with the findings
of Broda and Romalis (2009), who also use Nielsen data and report in an unpublished manuscript that they
find that inflation is lower for lower-income households.
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Two other recent papers are closely related to my findings. Pisano and Stella (2015) docu-

ment that lower-income households pay lower prices than higher-income households for the

same products, primarily because they shop more at discount stores. In contrast, I focus

on changes in income-specific price indices over time and use the demand system to provide

a measure of quality-adjusted inflation. Faber and Fally (2015) explore the implications

of firm heterogeneity for household price indices across the income distribution. They find

that larger, more productive firms endogenously sort into catering to the taste of wealthier

households, and that this gives rise to asymmetric effects on household price indices in their

structural model. I provide direct evidence of differences in inflation rates across the income

distribution and, in Section 1.4, I focus on a completely different explanatory mechanism.

To the best knowledge, my paper is the first to propose decompositions of the inflation

differential between high- and low-income households as in Section 4.3.2. and to relate these

patterns to the dynamics of product creation and endogenous changes in markups, which

are discussed in the remainder of the paper. My analysis shows that collecting product-

level data is key to accurately measure the divergence of inflation rates across the income

distribution - this methodological lesson is likely to apply to other sectors beyond retail. The

sign and magnitude of the inflation difference between high- and low-income households in

other sectors remains an open question.17

1.3.5. Changes in Product Variety Across the Income Distribution

Do welfare effects from increasing/decreasing product varieties also differ across the income

distribution? I find that the rate of increase in product variety is faster in product modules

17See the debate between Moretti (2013) and Diamond (2016) about price changes in the housing sector for
college and high-school graduates. To my knowledge, there have been very few attempts at developing
non-homothetic price indices and McGranahan and Paulson (2005) remains the main reference. Handbury
(2013) developed a non-homothetic price indices across cities but did not have panel data to study inflation
dynamics.
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catering to higher-income households, implying that higher-income households benefit more

from increasing product variety. Figure 1.4 shows this effect by using the share of spending

on new products (barcodes which did not exist in the previous year) as a measure of the

flow of successful product innovations. For every $10,000 increase in the mean income of the

consumers buying from a product module, the share of spending in this product module goes

up by 3 percentage points, about a third of the average share of spending on new products.

Appendix D reports patterns of product destruction across product modules, which are much

more homogeneous.

Figure 1.4.: Product Variety Increases Faster In Product Modules Catering to Higher-
Income Households
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According to the demand system presented in Section 1.3, the share of spending on new

products is the welfare-relevant metric. However, is supply or demand driving the rela-

tionship shown on Figure 1.4? It could be the case that more products are introduced in
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product modules catering to high-income consumers because of supply effects, which may

be exogenous (e.g. it may be inherently easier to introduce new product at the high-end

of the product space) or endogenous (e.g. if innovators and suppliers decide to specifically

target higher-income consumers). Alternatively, it could be the case that higher-income

consumers have a higher taste for novelty and purchase new products wherever they are

introduced in the product space. In other words, the share of spending on new products

may be higher in product modules catering to higher-income households simply because new

products diffuse faster (while the rate of product introduction may be similar across mod-

ules). To isolate the contribution of supply, the ideal regression would compare the same

household moving across the product space. Such a regression can be directly run in the

Nielsen data, at the household H × product module M level with household fixed effects:

ShareSpendingNewProductsHM = α + βProductModuleIncomeRankM + αH + εHM

where αH is a household fixed effect and ProductModuleIncomeRankM is the rank of the

product module by income of the representative consumer in the product module (computed

using 2004-2006 data). The results are reported in Table 1.4, with standard errors clustered

at the household level. As in the previous graphs, I find a strong positive relationship

between the share of spending on new products and the mean income of the consumer

in the product module. This analysis confirms that supply plays a role in this process,

because household fixed effects ensure that the relationship is not driven by a composition

effect across modules (i.e. different propensities of consumers to buy new products wherever

they show up in the product space). I also present specifications with interaction terms for

whether the household is “high-income” (income above $100,000) or “low-income” (income

below $30,000). The magnitude of the interaction effects is small, around 10% of the effect

for middle-income households.
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Table 1.4.: New Products Target Higher-Income Consumers

ShareSpendingNewProductshm

ProductModuleIncomeRankM 2.79*** 2.82***
(1.024) (1.031)

ProductModuleIncomeRankM ×HighIncomeH -0.24***
(0.063)

ProductModuleIncomeRankM × LowIncomeH 0.11*
(0.058)

Household F ixed Effects Yes Yes
Standard errors clustered by product modules.

I have checked that similar results hold for other measures of “new products” - new UPCs

relative to two, three or four years ago, as well as new brands. Appendix D reports additional

results. In particular, Figure A.8 shows that, across product modules, the rate of increase in

the total number of varieties increases by one percentage point with a $10,000 dollar increase

in the income of the representative consumer. I have also investigated patterns of product

destruction, which are much more homogeneous across the product space. Moreover, I

have examined patterns of product creation and destruction within product modules, which

are similar to the patterns observed across modules (i.e. even within a module, higher

income households tend to benefit more from product creation and destruction). Table A.9

shows that the differences in shares of spending on new products between high- and low-

income consumers largely occur within product modules - this pattern is very similar to

the inflation decomposition discussed earlier and provides preliminary evidence that there is

a tight connection between the inflation and product innovation patterns, which is further

examined in Section 1.4.
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1.3.6. Quality-Adjusted Inflation Across the Income Distribution

Using the results from equation (1), I can bring together the previous facts on inflation for

products available in consecutive years and patterns of product creation and destruction. Ta-

ble 1.5 shows the distribution of the estimated elasticities of substitution by income groups.

Two findings stand out. First, the elasticities tend to be slightly smaller for higher-income

households, i.e. higher-income households are less price elastic in equilibrium.18 This pro-

vides direct evidence of non-homotheticities (in addition, Figure A.9 in Appendix C shows

that the elasticites for high- and low-income consumers are not very strongly correlated).

Second, the magnitude of the elasticities is very high. Using the optimal markup formula

derived in Section 2, these magnitudes are consistent with the observed markups in the retail

sector.19 The high values of the elasticities means that the “product variety” adjustment

is very small: since the elasticities of substitution are very high, most of the welfare effects

are captured by the inflation difference on goods that exist across consecutive years (cf.

derivation in subsection 4.2). As a result, the quality-adjusted inflation across the income

distribution (Figure A.10 in Appendix C) looks virtually identical to inflation across the

income distribution for overlapping products (Figure 1.1).

18Note that the equilibrium elasticity of susbtitution depends on consumers’ preference parameters, but also
on the competitive environment if the elasticity of substitution is not constant. See Section 3 for a discussion
of models of monopolistic competition with variable elasticities of substitution. I have estimated a demand
system based on the translog expenditure function, which features decreasing elasticities of substitution, and
have obtained qualitatively similar results.

19In retail (groceries and food) the margin is around 2.71%.
See http://pages.stern.nyu.edu/~adamodar/New_Home_Page/datafile/margin.html
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Table 1.5.: Distribution of Estimated Module-Level Elasticites of Substitution For Three
Income Groups

Income < $30k Income ∈ [$30k-$100k] Income > $100k

Percentile

10th 9.08 9.30 8.56
25th 13.91 13.44 13.47
50th 21.45 19.87 19.78
75th 35.30 32.74 34.25
90th 65.98 56.75 71.27

1.3.7. Further Robustness Checks

Selection effects. A potential concern is that the inflation patterns described above could

result from selection effects, for instance if low-income households overwhelmingly consume

goods whose characteristics are rendered obsolete by the entry of new products. In such

a case, a relatively higher share of the goods consumed by the poor would be exiting the

market in any given year - the price changes for these goods are not observed, but if they

were they would be negative because these products face tougher competition.20 Tables A.6

to A.8 show that such selection effects are in fact not at play in the data.21

Price Convergence Anoter potential concern is that the observed inflation difference be-

tween high- and low-income households could be driven by the fact that high-income house-

holds might initially pay a higher price for the same UPCs as low-income households, and

the price would then converge to the same level for all households in future periods. The

last three rows of Table 1.2 reject the hypothesis by showing that the “within-UPC” share of

the total inflation difference is modest. A more direct way of showing that this mechanism

is not the driving force, without the need for any assumption about the demand system,

is to run a regression of the unit price of the UPC on a UPC fixed effect and an indicator
20See Pakes and Erickson (2011) for a discussion of such selection effects.
21Note that even if selection effects were at play, the nested CES structural demand system with new goods
addresses these concerns by adjusting the price index when new varieties enter.

33



for whether the household is high income (restricting attention to products purchased by

both income groups). Table 1.6 reports the results of such a regression and show that, in

any given year, households making more than $100,000 a year tend to pay about 2.9% more

for the same UPC, compared with households making less than $30,000 a year. This result

is consistent with the findings of Pisano and Stella (2015). The magnitude of this effect is

negligible compared with the 0.65pp difference in inflation rates, which over the course of a

few years leads to a much bigger welfare difference between high- and low-income households

than the difference in price levels in any given year.22 Figure A.4 in Appendix C provides

complementary evidence by showing that the distribution of average unit prices paid by

high- and low-income households is very similar, restricting attention to the set of products

purchased by both income groups.

Table 1.6.: Differences in Price Level Paid for Same UPC by High- and Low-Income House-
holds ($)

Average Unit Price
High-Income Household 0.0664***

(0.00118)
Constant 2.2825***

(0.00061)
UPC*Year Fixed Effect Yes
R2 0.9954

The product cycle. One may worry that the patterns about inflation and new products are

driven by the “product cycle” - namely, products start in the market with a very high price,

and at that point are only purchased by high-income households, and then converge to their

long-run, stable price, at which point they start being purchased by lower-income households.

I address this concern in several ways. First, my results hold across the product space, as
22Note that my focus on inflation allows me to take into account changes in product variety and consumer
substitution across products over time, as well as to characterize how these patterns differ across the income
distribution. The static analysis of the levels of prices paid for the same barcodes by individuals across the
income distribution does not speak to these dynamic consideration, which are first order in the data.
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shown in Figures 1.4 and 1.9. If the product cycle was driving the results, then the measured

differences in inflation and product innovation should only be visible from the point of view

of each individual consumer and not across the product space. Second, I have repeated the

analysis by considering only products in the middle of their lifecycle. Specifically, in any

given year I have resticted the sample to products that had been in the market for at least

two years and that would remain in the market for at least two more years. The inflation

patterns obtained with this approach are similar to those reported above. Third, I have

shown that the product cycle is not an important force in the data as barcodes do not travel

down the income distribution (empirically, barcodes tend to remain in the same price decile

during their entire lifecycle, which is intuitive for the retail sector and stands in contrast

with other products like computers). Fourth, even if the product cycle was an important

force in the data, under the assumption described at the beginning of this section the nested

CES demand system will provide an accurate estimate of the quality-adjusted inflation rate

for each of the various income groups, given the speed of the product cycle. In particular,

in this analysis the “novelty” of a product is determined separately for each income group

based on the basket of goods consumed by this income group in the previous year.

The fashion cycle. A distinct concern is that the inflation patterns may be driven by a

phenomenon analogous to the “fashion cycle” - the fact that products exhibit seasonality

patterns and that the price of older products falls disproportionately. For instance, because

of the fashion cycle measured inflation is negative in the apparel industry - yet productivity

gains for apparel are small and it would be incorrect to infer large welfare gains from the

observed price patterns.23 Conceptually, the fashion cycle means that the assumption that

the “quality” of a barcode is fixed over time fails - if newness is a key feature of the utility

derived from a product, the observed price of this product will fall over time but this may

not reflect any change in the quality-adjusted price. I address the concern that high-income

23The Bureau of Labor Statistics addresses this by making hedonic adjustments and by ignoring sale prices.
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households may be more like to be affected by the fashion cycle in two ways. First, the fashion

cycle is about churn of products and not about a net increase in the number of available

varieties. I show that there is a faster increase in varieties in the parts of the product space

that cater to higher income households, but there is not more churn. Similarly, the price

patterns across product modules are predicted by the net increase in product variety, rather

than by churn. Second, the results hold even with product categories where the fashion cycle

is unlikely to exist, such as food product .

Local market effects and store effects. Using a reweighting procedure, I show that the

differences in spending patterns across stores and local markets cannot explain the inflation

patterns previously documented. The results are reported in Appendix Table A.10.

Alternative measures of household income. I repeated the analysis with three alterna-

tive measures of household income: reported income divided by household size; total retail

expenditures per capita within a household; and whether the head of household is a college

graduate.

Sampling variability. To ensure that the results are not driven by differing degrees of sam-

pling variability across income groups, I built a random subsample of the data with an equal

number of households in each of the income bins. I have also checked that the results across

product modules hold in the Retail Scanner Data (which is based on information recorded

directly at the store, not obtained from households, and contains many more observations

as described in Appendix B).

Base drift. I have repeated this analysis using unchained price indices instead of chained

indices and obtained similar results.

Quarterly data. Table A.5 shows that the results are very similar when repeating the

analysis at a quarterly frequency.
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1.4. The Equilibrium Response of Supply to Changes

in Demand

In this section, I investigate the hypothesis that an important driver of the results presented

in Section 1.3 - namely, the fact that higher-income household experience lower inflation and

a faster increase in product variety from 2004 to 2013 - is differential income growth and

directed product innovations. I first present a theory showing how rising nominal income

inequality may have a causal effect on the direction of product innovations, and in turn

result in a further increase in real income inequality. An increase in market size leads

to more product entry, which puts downward pressure on the prices of existing products

through increased competition. I test the key channels of this theory, first by studying a

series of descriptive patterns on price and markup dynamics and then by tracing out the

causal impact of a demand shock on price and innovation dynamics. I then discuss other

possible mechanisms.

1.4.1. Theory

1.4.1.1. Intuition: Tracing Out the Observed Long-Term Supply Curve

Because of nonhomothetic preferences and the endogenous price changes induced by changes

in relative demand, changes in nominal inequality may overstates or understate changes in

real inequality. Consider Figure 1.5. When relative demand goes up, if the short-run supply

curve is upward sloping as in standard price theory, then the equilibrium price should go

up. However, supply may endogenously shift out due to the response of firms to market size

effects, which will at least mitigate the price increase and, as illustrated in Figure 1.5, could

potentially result in a new equilibrium price that is lower than the initial equilibrium price.

This “price overshooting” case is shown to be the empirically-relevant case in Section 1.4.
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In other words, the observed long-term supply curve is downward sloping.24

Figure 1.5.: Does the Price Fall When Demand Rises?
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To investigate whether changes in nominal inequality overstate or understate changes in real

inequality, the following concepts are useful:

• Weak equilibrium (relative) bias (“directed technical change”): when demand for a

good becomes relatively more abundant, supply (technology, innovation, entrepreneur-

ship, etc.) becomes endogenously biased towards this factor.

• Strong equilibrium (relative) bias: the relative supply curves for goods are down-

ward sloping.

Consider demand H for a high-quality good and demand L for a low-quality good. En-

dogenous technology A is a function of relative demand H
L
. The equilibrium relative price is

pH
pL

= f
(
H
L
, A(H

L
)
)
.

24The observed long-term supply curve is defined as the nexus of equilibrium points traced out by shifts in
the demand curve.

38



There is weak equilibrium bias if:

∂f
∂A

∂A
∂H

< 0

There is strong equilibrium bias if:

∂f
∂H

+ ∂f
∂A

∂A
∂H

< 0

where ∂f
∂H

> 0, as in standard price theory.

The equations above and 1.5 provide an intuitive reduced-form way of thinking about the

effect of shifts in demand on the equilibrium price. In the next subsection, I discuss a specific

microfounded model that is consistent with the evidence, generates additional predictions

and provides a framework for estimation and for welfare calculations.

1.4.1.2. A Microfoundation

I focus on microfounded models of monopolistic competition with free entry of products.

This broad class of models is appealing for three reasons: the assumption of monopolistic

competition is reasonable in retail (the Herfindahl index for most product groups is below

0.20), these models nest the standard model of directed technical change (Acemoglu, 2002),

and they generate rich product-level predictions and counterfactuals. The intuition for the

effect of changes in market size on supply in monopolistic competition models is as follows:

an increase in market size leads to more product entry, which puts downward pressure on

the prices of existing products (pecuinary externality). Therefore, in such models innovation

occurs entirely through product entry - there is no “process innovation” reducing the marginal

cost of the existing products, whose price dynamics are determined by changes in markups.

Within the class of monopolistic competition models with free entry of products, only some

models are consistent with the “price overshooting” case illustrated in Figure 1.5. In partic-

ular, the CES model of Acemoglu (2002) does not allow for the possibility that the price goes
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down when demand goes up (see Appendix A for a detailed derivation). On the other hand,

Melitz and Ottaviano (2008) is consistent with the strong equilibrium bias (see Appendix A

for a derivation). In the rest of this section, I characterize the conditions under which “price

overshooting” is possible using the general monopolistic competition model of Zhelobodko,

Kokovin, Parenting and Thisse (2012). The key insight is that, in general equilibrium, the

curvature of the utility function and variable markups drive the sign and magnitude of the

response of the equilibrium price to changes in market size.

L consumers with additively separable preferences over varieties solve:

maxxi≥0 U =
´ N

0 u(xi)di s.t.
´ N

0 pixidi = E

Consumer maximization yields

pi(xi) = u′(xi)
λ

λ =
´N
0 xiu

′ (xi)di
E

Total quantity demanded is qi = Lxi. The monopolist takes the residual demand curve as

given and solves:

max π(qi) = R(qi)− C(qi) ≡ u′(qi/L)
λ

qi − V (qi)− F

with V (.) is the variable cost function and F the fixed cost. The optimal markup of the

producer is therefore given by:

M∗ = −xi·u′′(xi)
u′(xi)

At the free entry equilibrium, π(q∗i ) = 0 and a mass N∗ of firms satisfies labor market

clearing:25

N∗ = L·E
C(q∗i )

25A similar model can be solved by assuming that the sector is small relative to the total economy, which
allows for ignoring some GE effects. See Mayer, Melitz and Ottaviano (2016).
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Therefore, the model delivers the following comparative statics:

dN∗

dL
> 0 dx∗i

dL
< 0 dM∗i

dL
S 0

Therefore, the optimal markup is given by the inverse of the price elasticity of demand26

(which, given our assumption of separability, is equal to the inverse of the elasticity of

substitution between varieties). This result is very general and holds regardless of the shape

of the cost function V (.). It shows why the equilibrium response of prices to changes in

market size crucially depends on the curvature of the utility function. The intuition for

the comparative statics is as follows. When market size increases, new products enter the

market. As a result, consumers start spreading out their expenditures across more products,

due to taste for variety. Consequently, consumption per capita xi for the existing products

goes down, which induces a responses of the optimal markup M∗. The equilibrium markup

which may increase, decrease or stay unchanged, depending on the properties of demand.

Figure 1.6 shows this effect in log-log space. The blue curve corresponds to CES demand, as

in Acemoglu (2002). Movements along the curve do not matter, the elasticity is constant. On

ther other hand, the red curve shows that when consumption per capita decreases (moving

to the left along the curve), the price elasticity of demand goes up, i.e. the optimal markup

goes down. Melitz and Ottaviano (2008) corresponds to this case. Conversely, as shown with

the green curve, if the price elasticity of demand is increasing the equilibrium price should

go up in response to an increase in market size.

26This term is also equal to the coefficient of relative risk aversion.
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Figure 1.6.: The Equilibrium Response of Price to Changes in Market Size Depends on the
Price Elasticity of Demand

Log(q) 

Log(p) 

Decreasing Elasticity 
               = Price Overshooting 

Constant Elasticity 
          = No Price Change  

Increasing Elasticity 
           = Price Undershooting 

Because preferences are nonhomothetic, the curvature of the utility function may differ

for consumers in different income groups and the equilibrium response of price to market

size may be different in product modules catering to different consumer segments. This

framework allows for rich counterfactuals to answer the question: what would have been

the difference in inflation and rates of product introduction across the income distribution

absent the endogenous response of supply to market size effects? The framework is based

on homothetic utility functions within product modules, but I can separately estimate these

utility functions for different groups of consumers across the income distribution, which

effectively allows for nonhomotheticities by letting the parameters of the utility function

vary freely with the level of income.27

27Section 1.3 shows how to nest the various sub-utility functions for each product module into one aggregate
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In sum, the model makes three predictions: 1. there is a strong negative correlation between

inflation and the share of spending on new products both across and within product modules;

2. the inflation patterns across the income distribution are driven by differences in changes

in markups; 3. growing demand causes more product innovations and lower inflation. I test

and find support for all three predictions in the rest of this section.28

1.4.2. The Relationship Between Inflation and Share of Spending

on New Products

The negative correlation between inflation and the share of spending on new products is a key

feature of the data. Panel A of Figure 1.7 shows this relationship across product modules.

Panel B shows that the relationship persists within product modules when segmenting the

product space by price deciles: product entry is higher in higher price deciles, while inflation

is lower.

utility function.
28Note that these tests speak to an active debate in the trade literature about the source of the gains from
trade and the role of variable markups and variable elasticity of substitution preferences. See in particular
DeLoecker, Goldberg, Pavcnik and Khandelwal (2012), Feenstra and Weinstein (2016), and Mayer, Melitz
and Ottaviano (2016)
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Figure 1.7.: The Negative Relationship Between Inflation and Share of Spending on New
Products

Panel A: Across Product Modules
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A simple decomposition exercise shows that the relationship between inflation and product

innovations across modules can explain a large fraction of the inflation patterns across income

groups documented in Section 1.3.29 As previously mentioned, for any product grouping G,

we can write the inflation difference between income groups as:

29This is similar in spirit to the reweighting technique introduced in DiNardo, Fortin and Lemieux (1996).

44



πR − πP ≡ ∑G s
R
Gπ

R
G −

∑
sPGπ

P
G =

(∑
G

sRGπG −
∑

sPGπG

)
︸ ︷︷ ︸

Between

+
∑
G

sG(πRG − πPG)︸ ︷︷ ︸
Within

with sim the share of spending of income group i on product grouping G,πiG the inflation

experienced by income group i in product grouping G, and with πG and sG denoting the

average inflation rate and the average spending shares for product grouping G. We can

now decompose the “between” component further and examine how much of the inflation

difference across categories is explained by (or predicted by) differences in shares of spending

on new products across categories:(∑
G s

R
GπG −

∑
sPGπG

)
=
(
π̂RG − π̂PG

)
+R

with

π̂RG − π̂PG = ∑
G β̂XG(sRG − sPG)

R = ∑
G ε̂G(sRG − sPG)

πG = βXG + εG

where XG is share of spending on new products in G. β̂ is the OLS estimate of β. This

procedure calibrates the extent to which the difference in inflation rates between high- and

low-income households results from the fact that high-income consumers tend to devote a

higher share of their spending to product categories where the rate of product innovations is

higher (i.e. moving to the right along the x-axis in panel A of Figure 1.7), or from the fact

that high-income households tend to spend more on product categories with a lower share

of inflation, holding the rate of product innovations constant (i.e. moving down the y-axis

in panel B of Figure 1.7). Table 1.7 shows that for the various levels of aggregation, around

half of the inflation difference between high- and low-income households can be explained by

differences in patterns of product innovations.30 These results provide strong support for the

30Note that any measurement error (e.g. UPC relabeling that does not reflect a true product innovation) will
bias this esitmate downward, therefore these estimates can be viewed as a lower bound.
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first prediction of the model and the notion that the joint dynamics of product innovation

and inflation are crucial to understand changes in real inequality.

Table 1.7.: How Much of the the Difference in Inflation Between High and Poor is Explained
by Patterns of Product Innovations?

Aggregation Level Share of Rich-Poor Inflation
(Broad to Narrow) Difference Explained

Department 40.9

Product Group 58.3

Product Module 51.3

The relationships described so far are only correlations and should not be interpreted as

causal, but they provide transparent evidence on the pervasive nature of the relationship

between inflation and product innovations and on its relevance for understanding changes in

real inequality.

1.4.3. The Role of Markups

As mentioned in Section 1.2, I observe retailer price pit and wholesale cost cit from 2004 to

2007 for a subset of the product. A first-order Taylor expansion yields a convenient additive

expression for the log price change:

pit = mit + cit

∆tlog(pit) ≈ ∆tlog(cit) + ∆t mit
cit

I can then run the following regression across product modules, with store-year fixed effects

to absorb rent and labor costs:
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∆tlog(pit) = βI i + λst + εit

∆tlog(cit) = β̃I i + λ̃st + ε̃it

∆t mit
cit

= β̄I i + λ̄st + ε̄it

with I i income rank of module. Note that β ≈ β̃ + β̄. We can use this relationship31

to answer the following question: do prices rise slower for high-income consumers because

retailer margins decline faster or because wholesale costs rise slower?

As shown in Figure 1.8 and Table 1.8, changes in retailer margins account for 57% of the

differential inflation between high- and low-income households. This number can be thought

of as a lower bound on the total share of changes in markups in the overall inflation difference,

because wholesalers’ themselves have a markup. I have checked that this relationship is

robust across years and with using other specifications. These results provide strong support

for the second prediction of the model: variable markups are a key channel.32

Table 1.8.: Changes in Wholesale Costs vs. Changes in Retailer Margins

Log Price Change Log Wholesale Cost Change Retailer Margin Change (pp)

ProductModuleIncomeRankM -0.777*** -0.341*** -0.448***
(0.188) (0.103) (0.212)

Spending Weights Yes Yes Yes
Store-Year Fixed Effects Yes Yes Yes
Number of Observations 6,002,235 6,002,235 6,002,235

Number of Clusters 628 628 628
Standard errors clustered by product modules.

31As can be checked from the regression table, the margins are sufficiently small for the Taylor expansion to be
almost exact, which in turn implies the teh relationship between the regression coefficients is almost exact.

32Variable markups are often studied in the macro literature in the context of short-run business cycle fluc-
tuations. The fact that markups explain a large share of the difference in inflation between high- and
low-income households does not mean that these dynamics are bound to be short lived. Indeed, the set of
available products changes over time. Adjusted for quality, the marginal cost of the new products is lower
than that of existing products, which are forced to reduce their markups. In other words, the price effects
show up largely through changes in markups, but these changes reflect the productivity gains brought about
by new products.
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Figure 1.8.: Changes in Wholesale Costs vs. Changes in Retailer Margins
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1.4.4. The Causal Effect of Growing Demand on Product

Innovations and Inflation

1.4.4.1. Motivating Evidence and Identification Challenge

They key causal channel in the model is that growing demand causes more product entry,

and in turn lower prices on existing products due to a fall in markups. Figure 1.9 shows

that product modules catering to higher-income households indeed have both higher growth

and lower inflation. Moreover, Table 1.4 provided early evidence that supply factors play an

important role in differential product introductions across the product space.

However, these facts alone do not establish that the endogenous response of supply to demand

is a key channel. The equilibrium relationship between price and quantity across product

modules modules does not identify the causal effect of demand, because of reverse causality
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(demand might be following supply) and omitted variable bias (there might be unobserved

heterogeneity in the difficulty of innovating across modules, which could happen to coincide

with spending patterns from non-homothetic preferences). In the remainder of this section,

I build a predictor of (potential) demand that is plausibly orthogonal to supply factors.

Specifically, I consider changes in market size across product modules over time at the

national level driven by changes in the age and income distributions. In robusness checks, I

use variation in market size both over time and across local markets within the US.

Figure 1.9.: Product Modules Catering to Higher Income Households Have Faster Growth
and Lower Inflation

Panel A: Growth Across Product Modules
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1.4.4.2. Research Design

A major difficulty in any investigation of the impact of market size on innovation is the

endogeneity of market size: better products will have larger markets. A strategy to overcome

this problem is to exploit variations in market size driven by US demographic changes,

which should be exogenous to other, for example scientific, determinants of innovation and

entry of new products. To estimate potential market size, I construct age-income profiles

of users for each product module × price decile, and then compute the implied market size

from aggregate demographic changes given these (time invariant) income-age profiles. This

identification strategy is similar to Acemoglu Linn (2004). Using this strategy, Acemoglu

and Linn (2004) showed that large R&D efforts in the pharmaceutical industry endogenously

respond to market size. By focusing on product innovations in retail, I study innovation

dynamics of a very different nature. More importantly, this paper is the first to examine

the causal effect of changes in market size on the price of existing products, as well as on

the aggregate price taking into account the welfare gains from increased product variety. I

find that prices go down when demand goes up, i.e. the observed supply curve is downward

sloping.33

The predictor of market size is built as follows. At the beginning of the sample (2004-2006),

I compute per capita expenditures ET0
MG in product module × price decile M for fifteen

age-income groups G I consider.34 Then, I predict (potential) demand at time t as:

DMt = ∑
GE

T0
MGPGt

Thus, the spending profiles are kept consant and the variation in predicted demand comes

entirely from changes in age-income group size PGt. To implement this design, I compute

33In ongoing work, I use markups as another outcome to test additional predictions of the model presented at
the beginning of this section.

34Specifically, I consider the interaction of three age groups - below 45, between 45 and 65, and above 65 - and
five income groups - annual household income below 25k, 25k to 45k, 45k to 60k, 60k to 100k, and above
100k.
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growth of demand based on the change in the size of each age-income group in 2011-2013

relative to 2004-2006.

The identification assumption is that the direct effect of changes in age-income group size on

the equilibrium price was only through demand. For instance, if the 20-year old were better at

creating new products targeting people in the same age group, the identification assumption

would be violated. As a robustness check, I repeat the analysis for older households, who

are closer to retirement age. I find similar point estimates, which suggests that direct supply

effects are not driving the results.

Figure 1.10.: Changes in Market Size from Changes in the Age Distribution

Panel A: Changes in Age Distribution, 2005 to 2013
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1.4.4.3. Results

I first present the results with a series of binned scatter plots, where each dot represent 10%

of the data. I then show the results in a regression table, with standard errors clustered by

product module. Figures 1.11 and 1.12 below show that the predicted increase in market

size (based on the changes in the age and income distributions) is positively correlated with

the introduction of new products and negatively correlated with inflation. These results lend

strong support to the hypothesis that supply endogenously responds to changes in market

size.

Figure 1.11.: Higher Market Size Leads to Product Entry
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Figure 1.12.: Higher Market Size Leads to Lower Inflation (Overlapping Goods)
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Table 1.9 shows that the relationships between predicted market size growth, product innova-

tions and inflation are significant at the 1% level. The interpretation of the magnitudes is as

follows: a one percentage point increase in the growth of demand35 causes a 0.35 percentage

point increase in the share of spending on new products and a 0.11 percentage point decline

in the inflation rate on goods that are available across years. Figure A.13 in Appendix D

shows the relationship between predicted and actual spending growth, which is also strong.

Column 3 of 1.9 confirms that the relationship between predicted and actual growth of total

spending is significant at the 5% level.36

35where growth of demand is measures as the predicted growth in total spending in a product module - price
decile given changes in the age and income distributions.

36The point estimate is close to 1, i.e. the predictor is unbiased. Unbiased prediction wasn’t necessarily
expected, because the measure of actualy total spending growth takes into account both price and quantity
effects, while the predicted increase in spending is based on the assumption that spending per capita is fixed.
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Table 1.9.: Causal Effects of Changes in Market Size

Share of Spending Overlapping Goods Actual Spending

on New Products (pp) Inflation Rate (pp) Growth (%)

Predicted Increase 0.351*** -0.116*** 1.031**
in Spending (%) (0.0658) (0.0229) (0.492)

Product Module Fixed Effects Yes Yes Yes

Spending Weights Yes Yes Yes

Sample Restricted to Positive Spending Growth Yes Yes Yes

Number of Observations 9,089 9,089 9,089

Number of Clusters 1,006 1,006 1,006

Standard errors clustered by product modules.

The point estimates are precisely estimated and can be used for a calibration. From the

public use micro data from the US Census, I find that between 2004 and 2013 on average

the number of high-income households grew 3.12pp faster than the number of low-income

households. Multiplying this number by the point estimate in the second column of Table 1.9

implies an annual inflation difference of 34.3 basis points, which represents 84% of module-

decile benchmark37 and 52% of the overall inflation difference between high- and low-income

households. In other words, the response of inflation to changes in market size is sufficiently

large to explain most of the difference in inflation rates across the income distribution.

Table 1.10 shows the robustness of these results. Panel A runs a falsification test in the

set of product modules - price deciles that experienced negative spending growth during the

period 2004-2013. The model does not predict a significant relationship between change in

market size and entry of new products or inflation in this subsample, and indeed I do not

find any. Panel B addresses the potential concern that some of the relationship between

predicted demand and innovation and inflation could be spuriously driven by a differential
37The regressions are all at the product module × price decile level, therefore this is the relevant benchmark.
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increase in supply across the product space. It shows that the results are very similar when

considering product module - price deciles that cater to consumers above the age of fifty. In

other words, the result is not driven by young consumers, for whom direct supply effects are

more likely to exist.

Table 1.10.: Robustness of Causal Effects of Changes in Market Size

Panel A: Falsification Test in Product Module - Deciles with Negative Spending Growth

Share of Spending Overlapping Goods
on New Products (pp) Inflation Rate (pp)

Predicted Increase -1.093 0.162
in Spending (%) (1.148) (0.108)

Product Module Fixed Effects Yes Yes
Spending Weights Yes Yes

Sample Restricted to Negative Spending Growth Yes Yes
Number of Observations 632 632

Number of Clusters 305 305
Standard errors clustered by product modules.

Panel B: The Effect Is Not Driven by Young Consumers

Share of Spending Overlapping Goods
on New Products (pp) Inflation Rate (pp)

Predicted Increase 0.306*** -0.113***
in Spending (%) (0.075) (0.021)

Product Module Fixed Effects Yes Yes
Spending Weights Yes Yes

Sample Restricted to Positive Spending Growth Yes Yes
Number of Observations 6,571 6,571

Number of Clusters 926 926
Sample restricted to product modules - price deciles with mean consumer age above 50.

Standard errors clustered by product modules.
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A variety of additional robustness checks are reported in Appendix D. Panel A shows that the

points estimates are very stable when including flexible controls for the initial (2004-2006)

age and income distributions in each product module - price decile. Specifically, I control

linearly for the 10th, 25th, 50th, 75th and 90th percentiles, as well as the mean, of both

the age and income distributions. Panel B also shows stability of the point estimates when

introducing fixed effect for each price decile within a product module and when omitting

product module fixed effects. Panel B of Table A.11 shows that the results are similar

when using truncated weights. Statistical significance at the 1% level is maintained in all

specifications, with standard errors clustered by product modules.

1.4.4.4. Additional Evidence from Variation Across US States and Local

Markets

I provide additional evidence for the relevance of the “market size” hypothesis by exploiting

variation in the rate of inequality growth across US states. Using Census public use micro-

data between 2004-2006 and 2012-2014, I measure the change in the total income accruing

to households who earned more than 100k and less than 30k in each state. Inequality has in-

creased in all 50 states but the rate of increase varied across sates. The increase in inequality

was fastest increase in California, Texas and New York and slowest in West Virginia, New

Mexico and North Dakota.

UPCs can be thought of as are partly non-tradable because of strength of local brand pref-

erences (Bronnenberg, Dube and Gentzkow, 2012). Therefore, the Nielsen data can be

aggregated at the state level to examine how variation in the rate of inequality growth re-

lates to patterns of inflation. In all states, inflation was lower for high-income households

earning above $100,000 a year, relative to low-income households making below $30,000 a

year. But this difference in inflation rates was relatively larger in states with a faster increase

in inequality. Figure 1.13 shows this result.
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Figure 1.13.: The Inflation Difference Between High- and Low-Income Increases as Inequal-
ity Increases Faster
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In Appendix D, as a robustness check I use time variation in the household age and income

distributions in seventy-six local markets tracked by Nielsen within the US between 2004

and 2013. I compare inflation patterns across product module - local market cells with

increasing or decreasing predicted market size. I again find that inflation is lower when

predicted demand increases - the point estimates are very similar to those obtained from the

analysis at the national level and robust to the inclusion of various fixed effects.

1.4.5. Alternative Mechanisms

I have investigated various alternative explanations for the evidence. First, I show that broad

shocks cannot explain the results (shock at the level of MSAs, product groups; recession;

rise of online retail; oil shocks). Second, I examine the hypothesis that the production

function features increasing returns to scale, using retailer marginal cost data for a subset
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of the products in 2004-2007. Third, I study whether dynamic pricing is consistent with the

evidence. Finally, I investigate whether trade patterns can explain the results.

Aggregate shocks. First, the various decompositions reported in Section 1.3 show that

the results are not driven by broad shocks that would be specific to certain areas (Appendix

Table A.10) or to certain departments, product groups or product modules (Tables 1.1 and

1.2).

Online retail. The rise of online retail could have differentially benefited high- and low-

income households. For instance, if higher-income households are more technology savvy,

they might be more likely to use online platforms to search for products, which would

increase their price elasticity and result in lower equilibrium markups. However, the inflation

difference across product categories is not related to heterogeneity in exposure to online retail

- in particular, it persists in categories that were very little affected by online retail during

this period, such as food (Table 1.1).

Innovation dynamics independent of changes in market size. An alternative view

of the innovation patterns is that product innovation may always be skewed towards the

higher-income consumers, regardless of the underlying patterns of growing inequality. In

other words, the patterns documented in Section 1.3 may be a steady state By introducing

flexible controls for the income distribution of consumers and for the quality distribution

(price deciles) within a product module, Panel B of Appendix Table A.11 shows that the

estimated response of product innovations ot market size is not confounded by static patterns

related to income or quality. Moreover, I have not found empirical support for the predictions

of a simple class of models that generate a steady-state difference in the inflation rates

experienced by high- and low-income households - in these models, the equilibrium price

elasticity of higher-income consumers should always be lower.38

38Intuitively, if high-income consumers are less price elastic and if the cost of increasing product variety
is linear, in equilibrium we will observe a high flow of new products targeting higher income consumers.
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Manufacturer competition. Using the manufacturer identifiers provided by GS1, I have

studied patterns of market concentration at the manufacturer level and how they have

changed over time. Concentration (as measured by Herfindahl indices) tends to be lower

in parts of the product space catering to higher-income households, but changes in concen-

tration over time are small. Overall, the data shows that entry of new manufacturers is not

the driving force of the results. This justifies focusing on a model where changes in markups

are induced by changes in the elasticity of market demand, rather than by competition

between oligopolists, e.g. in a Cournot model.

Household search behavior. Another possible channel for the results is that high-income

consumers could have become more price elastic because their search behavior has changed.

Such a channel would manifest itself primarily through within-UPC inflation difference be-

tween high- and low-income households, which Table 1.2 shows is not the case.

Other mechanisms. In ongoing work, I use Nielsen TDLink data to characterize changes

in the competitive environment of retailers and I document how competitive dynamics differ

across areas depending on the density of high- and low- income households. I also examine

whether trade is an important channel by studying heterogeneity in the inflation difference

across product groups with different degrees of import penetration. Finally, I test the pre-

dictions of models featuring dynamic pricing and increasing returns to scale.

1.5. Conclusion

In this paper, I have shown that quality-adjusted inflation substantially varies across the

income distribution in the retail sector. The current methodology of statistical agencies like

BLS cannot capture this variation, which exists primarily at the product level rather than
The equilibrium mechanism is that the high-end products have higher margins (because the high-income
consumers are less price elastic) but have a shorter lifecycle (because they get displaced by other high-end
product innovations).
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across broad item categories. Furthermore, I have established that product introductions and

prices endogenously respond to changes in market size in a way that magnifies the welfare

effects of changes in nominal inequality. As shown in a simple calibration, the endogenous

response of supply to changes in market size over the past decade can explain most of the

observed difference in inflation rates across the income distribution during this period. These

findings open up several directions for future research. Do similar results hold beyond the

retail sector? How should one adjust optimal redistributive taxation formulas (e.g. as in

Mirrlees, 1971) to take into account the endogenous response of supply to changes in market

size? These and other extensions await further research.
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2. Team-Specific Capital and

Innovation1

2.1. Introduction

Teamwork has become an essential feature of modern economies and knowledge production

(Seaborn, 1979, Wuchty et al., 2007, Jones, 2010, Crescenzi et al., 2015, and Jaffe and Jones,

2015). We investigate empirically the importance of team-specific capital for the compensa-

tion and patent production of inventors, using administrative tax and patent data for the

population of US patent inventors from 1996 to 2012. While general human capital augments

productivity at all firms (Becker, 1975), and while firm-specific capital augments productiv-

ity with any existing or future collaborators within the firm (Topel, 1991), team-specific

capital makes an inventor more productive with their existing co-inventors. Team-specific

capital encompasses skills, experiences and knowledge that are useful only in the context

of a specific collaborative relationship: high team-specific capital means that the collabo-

rative dynamics in the team are unique and difficult to rebuild with other collaborators,

which improves each inventor’s ability to produce valuable innovations with these specific

co-inventors.2 If the collaboration between two patent inventors were to exogenously end,
1Co-authored with Neviana Petkova and Alex Bell.
2Team-specific capital can result from a “match” component which is constant over time, for instance if two
inventors are a particularly good fit for each other, or from an “experience” component which increases the
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would this have a significant and long-lasting impact on the career, compensation, and pro-

ductivity of these inventors? Or are co-inventors easily substituted for, beyond short-term

disruption of ongoing work? In other words, is team-specific capital an important ingredient

of the typical inventor’s lifecycle earnings and productivity, much like firm-specific capital is

crucial for the typical worker? This paper establishes the existence and economic relevance

of patent inventors’ team-specific capital.

We provide causal estimates of what the typical inventor would lose, in terms of labor earn-

ings, total earnings and patent production, if a collaboration with one of their co-inventors

were to end exogenously. Using a detailed merged dataset of United States Patent and

Trademark Office (USPTO) patents data and Treasury administrative tax data, we use the

premature deaths of 4,714 inventors, defined as deaths that occur before the age of 60, as a

source of exogenous variation in collaborative networks. The causal effect is identified in a

difference-in-differences research design, using a control group of patent inventors whose co-

inventors did not pass away but who are otherwise similar to the inventors who experienced

the premature death of a co-inventor. We find that ending a collaboration causes a large and

long-lasting decline in an inventor’s labor earnings (- 3.8% after 8 years), total earnings (- 4%

after 8 years) and citation-weighted patents (- 15% after 8 years). This evidence implies that

the continuation of collaborative relationships has substantial specific value for the typical

inventor, approximately equal to half of the returns to one year of schooling (Mincer, 1973).

It rejects the alternative hypothesis that continued collaborations are not a key ingredient in

an inventor’s earnings function and patent production function beyond short-term disruption

of ongoing work.

To establish team-specific capital as the primary explanatory mechanism, we show that the

value of the collaboration over time, for example if two inventors learn how to best collaborate with each
other over the course of several joint projects. Appendix C discusses the extent to which our results can help
distinguish between the “match” and “experience” components of team-specific capital. The evidence can
only be suggestive, because we do not have random variation for the timing of formation of the collaborations.
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gradual decline in earnings and citation-weighted patents following the premature death of

a co-inventor is driven by the fact that the inventor lost a partner with whom they were

collaborating extensively, which made additional co-inventions impossible. We do so in four

steps. First, we rule out alternative explanatory mechanisms that are not specific to the

team. We establish that the effect does not stem from the disruption of the firm or from

network effects by estimating the causal effect of an inventor’s death on their coworkers and

on inventors that are two nodes away from the deceased in the co-inventor network.3 Second,

we show that the effect is not driven by top-down spillovers from unusually high-achieving

deceased inventors (e.g. as in Azoulay et al., 2010, and Oettl, 2012). Third, we demonstrate

that the intensity of the collaboration between an inventor and their deceased co-inventor

prior to death is an important predictor of the magnitude of the effect. Fourth, we document

that the effect of co-inventor death on an inventor’s patents is much smaller when patents

that were co-invented with the deceased are not taken into account in the difference-in-

differences analysis: although the survivor’s own patents suffer as well, the effect primarily

applies to co-invention activities with the deceased. We also show that team-specific capital

matters in all technology categories, at various levels of the distribution of patent quality, and

spans firm and geographic boundaries. In Section IV, we discuss whether other mechanisms

could be consistent with the evidence.

Beyond establishing the first-order importance of team-specific capital, the paper makes

two additional contributions. First, we present new descriptive statistics on collaboration

patterns and the composition of teams. We find that assortative matching is true only up

to a point: there is wide variation in the relative earnings and age of co-inventors. Second,

we introduce a novel specification to estimate the causal effect of an individual’s premature

death, which includes all leads and lags around co-inventor death in both the treatment and

3In addition to ruling out important alternative mechanisms that could explain our finding, this analysis
yields new insights about substitution and complementarity patterns between inventors in the innovation
production function. See Section IV for a complete discussion.
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control groups. This specification is robust to mechanical statistical patterns induced by

the construction of the sample, which have not been addressed in the existing literature and

which we show result in substantial biases of the estimates of interest.4

Our work relates to several strands of literature. The use of premature deaths as a source of

identification is becoming increasingly common (Jones and Olken, 2005, Bennedsen et al.,

2007, Azoulay et al., 2010, Nguyen and Nielsen, 2010, Oettl, 2012, Becker and Hvide, 2013,

Fadlon and Nielsen, 2014, Isen, 2015) and several papers have investigated peer effects in

specific areas of science (Azoulay et al., 2010,5 Borjas and Doran, 2012, 2014, Oettl, 2012,

Waldinger, 2010, 2012). In contrast, our paper studies peer effects among patent inventors in

all technology classes, using both earnings and patent data (Moser et al., 2014, study German

emigres’ effects on US chemical patents). We estimate the differential spillover effect of an

inventor on various peer groups (co-inventors, coworkers, and second-degree connections in

the co-inventor networks) using the same research design, which allows us to establish the

unique importance of co-inventors in an inventor’s career. Other related strands of literature

study the role of teams in innovation (e.g. De Dreu, 2005, Jones, 2009, Agrawal et al., 2013,

4It is not sufficient to control for age, year and individual fixed effects in the difference-in-differences estimator,
because these fixed effects do not fully account for the trends in lifecycle earnings and patents around the
year of co-inventor death. Intuitively, an inventor must necessarily have invented a patent before the year of
death of their co-inventor and is more likely to have been employed at that time, even conditional on a large
set of fixed effects. We show that this results in a substantial bias in the estimate of the causal effect for
several of the outcomes we study in this paper. Including a full set of leads and lags around co-inventor death
for both treated and control inventors addresses this problem. This solution is an application of the standard
difference-in-differences estimator, where treatment occurs at only one point in time, to our setting, where
co-inventor deaths are scattered across years. Similar considerations apply when estimating heterogeneity
in the treatment effect. See Section III and Appendix D for more details and for a comparison with the
existing literature using premature death research designs.

5Our paper is closest to Azoulay et al. (2010), who examine the effect of the premature deaths of 112 eminent
life scientists on their coauthors. We build on their groundbreaking identification strategy and advance the
literature in several respects. First, we characterize peer effects using earnings data in the full population
of patent inventors and we not only examine the effect on co-inventors but also on co-workers and inventors
who are two nodes away from each other in the co-inventor network. Second, our findings are fundamentally
different: whereas Azoulay et al. (2010) show that “star scientists” are irreplaceable in a way that is not
related to team dynamics, we find an effect of the premature death of co-inventors that are not “superstars,”
and this effect is much larger for more closely-knit teams and is driven by co-invention activities (see Section
IV for a complete discussion).
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Alexander and van Knippenberg, 2014), examine the notion of team-specific or network-

specific human capital from a theoretial perspective (e.g. Mailath and Postlewaite, 1990,

Chillemi and Gui, 1997), investigate the effect of co-mobility of colleagues (Hayes et al.,

2006, Groysberg and Lee, 2009, Campbell et al., 2014) and develop theories of knowledge

spillovers across inventors (e.g. Stein, 2008, Lucas and Moll, 2014). As discussed in Section

IV, our results on spillover effects between inventors who are two nodes away from each other

in the co-inventor network provide a unique test of competing models of strategic interactions

in networks (Jackson and Wolinsky, 1996, Bramoulle et al., 2014). Finally, this paper is part

of a nascent literature using administrative data to describe the careers of patent inventors

(Toivanen and Vaananen, 2012, Bell et al., 2015, Dorner et al., 2015, Depalo and Di Addario,

2015).

This paper has important implications for innovation policy. Our findings suggest that

investing in improving the match technology between inventors and encouraging the accu-

mulation of team-specific capital could lead to substantial productivity gains. Furthermore,

our results indicate that research teams are an important vehicle for knowledge transmis-

sion and such team collaborations affect the productivity of team members outside of their

joint projects (even though, as noted earlier, the effect is larger for co-invention activities).

Teamwork improves inventors’ productivity and increases their incomes, which generates

additional tax revenues and creates large fiscal externalities.

The remainder of the paper is organized as follows. In Section II, we present the dataset

and novel descriptive statistics on the composition of teams. In Section III, we describe

the research design and present the estimates of the causal effect of the premature death

of a co-inventor on an inventor’s compensation and patents. In Section IV, we distinguish

between various mechanisms. Section V concludes. Several robustness checks, heterogeneity

results and empirical estimation details are deferred to the Appendices. Appendix A reports

additional summary statistics and tests for balance between treated and control groups.
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Appendix B presents robustness checks on the causal effect of co-inventor death. Appendix

C conducts additional tests for heterogeneity in the effect of co-inventor death. Appendix

D provides additional details on our econometric framework. Appendix E describes the

construction of the dataset and reports additional summary statistics on the composition of

inventor teams.

2.2. Data and Descriptive Statistics

2.2.1. Data Construction

We use a merged dataset of United States Patent and Trademark Office (USPTO) patents

data and Treasury administrative tax files as in Bell et al. (2015). The patent data are

extracted from the weekly text and XML files of patent grant recordations hosted by Google.

The raw files contain the full text of about 5 million patents granted from 1976 to today,

extracted from the USPTO internal databases in weekly increments.

Administrative data on the universe of U.S. taxpayers is sourced from Treasury adminis-

trative tax files. We extract information on inventors’ city and state of residence, wages,

employer ID, adjusted gross income, as well as current citizenship status and gender from

Social Security records. Most data are available starting in 1996, however wages and em-

ployer ID are available only starting in 1999, which marks the beginning of W-2 reporting.

Inventors from the USPTO patent data are matched to individual taxpayers using informa-

tion on name, city and state of residence (Appendix A describes the iterative stages of the

match algorithm). The match rate is over 85% and the matched and unmatched inventors

appear similar on observables, as documented in Bell et al. (2015). Any inventor with a

non-U.S. address in the USPTO patent data is excluded from the matching process and

dropped from the sample. The resulting dataset is a panel of the universe of U.S.-based
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inventors, tracking over 750,000 inventors from 1996 to 2012. The employer ID is based on

the Employer Identification Number (EIN)) reported on W-2 forms. We show in Appendix

Figure E1 that the distribution of EIN size is very similar to the distribution of firm size

in the Census. In the rest of the paper, we refer to business entities with distinct EINs as

distinct firms.6

2.2.2. Identifying Deceased Inventors, Survivor Co-inventors,

Second-Degree Connections and Coworkers

We construct various groups of inventors to carry out the premature death research design.

We start by identifying 4,924 inventors who passed away before the age of 60 and were

granted a patent by USPTO before their death.7 Information on the year of death and

age at death is known from Social Security records. The cause of death is not known.

In order to reduce the likelihood that death results from a lingering health condition, we

consider inventors passing away before 60 and, in robustness checks, we repeat the analysis

by excluding deceased inventors who ever claimed tax deductions for high medical expenses.

We construct a group of “placebo deceased inventors” who appear similar to the prematurely

deceased inventors but did not pass away. Specifically, we use a one-to-one exact matching

procedure on year of birth, cumulative number of patent applications at the time of (real

or placebo) death, and year of (real or placebo) death in order to identify placebo deceased

inventors among the full population of inventors.8 4,714 deceased inventors find an exact

6In some cases, it could be that business entities with different EINs are the subsidiary of the same parent
company. However, treating distinct EINs as distinct firms is standard practice in the literature (Song et
al., 2015).

7As described below, ultimately we analyze only 4,714 premature deaths due to the lack of appropriate
matches for the remaining prematurely deceased inventors. We consider prematurely deceased inventor who
are weakly below 60, i.e. we keep inventors who are 60 in the year of death.

8The match is conducted year by year. For instance, for inventors who passed away in 2000, we look for exact
matches in the full sample of inventors - an exact match is found if the control inventor was born in the same
year and had the same number of cumulative patent applications as the deceased in 2000. The inventors
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match using this procedure.9 Thus, we obtain a control group of placebo deceased inventors

who have exactly the same age, the same number of cumulative patent applications and

exactly the same year of (placebo) death as their associated (real) deceased inventor.

Next, we build the co-inventor networks of the real and placebo deceased inventors. Any

inventor who ever appeared on a patent with a real or placebo deceased inventor before

the time of (real or placebo) death is included in these networks. In the rest of the paper,

we refer to these inventors as real and placebo “survivor inventors.” We exclude survivor

inventors who are linked to more than one real or placebo deceased inventor.10 We thus

obtain 14,150 real survivor inventors and 13,350 placebo survivor inventors. These inventors

constitute the main sample used for the analysis carried out in the rest of the paper. Note

that we perform the matching procedure on the real and placebo deceased inventors rather

than on the survivor inventors - the benefits of this approach are discussed in Section III.

We construct two other groups of inventors, which will be used to differentiate between

mechanisms. First, we build the network of inventors who are two nodes away from the real

and placebo deceased inventors in the co-inventor network. These inventors are direct co-

inventors of the deceased’s direct co-inventors, but they never co-invented a patent with any

of the (real or placebo) deceased inventors. To increase the likelihood that these inventors

were never directly in contact with the deceased, we impose two additional restrictions: of

the inventors who are two nodes away from the deceased in the co-inventor network, we keep

only those who never worked for the same employer and never lived in the same commuting

zone as the deceased inventor. We refer to these inventors as real and placebo “second-

from the full sample that match are then taken out of the sample of potential matches, and the procedure is
repeated for the following year, until the end of the sample. This matching procedure without replacement
thus determines a counterfactual timing of death for the placebo deceased inventors. When there is more
than one exact match, the ties are broken at random.

9The 5% unmatched deceased inventors do not significantly differ on observable characteristics from those who
find a match, except that they tend to have more cumulative applications at the time of death. In robustness
checks presented in Appendix E, we repeat the analysis with a propensity-score reweighting approach which
uses data on all deceased inventors and obtain similar results.

10We lose only 36 survivor inventors by imposing this restriction.
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degree connections” in the remainder of the paper. As before, we exclude inventors in this

group who are linked to more than one real or placebo deceased inventors. This procedure

yields 11,264 real second-degree connections and 12,047 placebo second-degree connections.

Second, we construct the group of “coworkers” of the deceased by identifying all inventors

who worked for the same employer as the deceased in the year before death, as indicated

on W-2 forms. We exclude coworkers that ever co-invented with a prematurely deceased

inventor or who experienced multiple premature death events. Focusing on coworkers in

firms with less then 2,000 employees, the final sample consists of 13,828 real coworkers and

14,364 placebo coworkers.11

2.2.3. Variable Definitions and Summary Statistics

In the analysis carried out in the rest of the paper, we study various outcome variables at the

individual level from 1999 until 2012. First, we consider inventors’ labor earnings, which refer

to annual W-2 earnings. When an inventor does not receive a W-2 form after 1999, we impute

their labor earnings in that year to be zero. Second, we construct a measure of an inventors’

total earnings, defined as an inventors’ adjusted gross income (earnings reported on IRS tax

form 1040 ) minus the W-2 earnings of the inventor’s spouse. Adjusted gross income is a

tax concept offering a comprehensive measure of a household’s income, including royalties,

self-employment income and any other source of income reported on 1040 tax forms.12 We

define non-labor earnings as the difference between total earnings and labor earnings. All
11We focus on smaller firms to increase the chances that we find a negative effect of an inventor’s death on
their coworkers, since we are interested in testing whether the effect we document for co-inventors is driven
by the disruption of the firm. In Appendix E, we carry out the analysis on the full sample of coworkers,
composed of 173,128 real survivor coworkers and 143,646 placebo survivor coworkers, and we find similar
results. The difference in the size of the groups of real and placebo coworkers in the full sample is driven by
a thin tail of deceased inventors working in firms employing thousands of other inventors, as documented in
Appendix Table A5.

12A limitation of our measure of total earnings for inventors filing jointly is that we can only subtract the
inventor’s spouse’s W-2 earnings from the household’s adjusted gross income, not the spouse’s other sources
of income, which are unobserved. But the exact same procedure is applied to all inventors in the various
groups we consider.
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earnings variables are winsorized at the 1% level.13 Third, we use adjusted forward citations,

which are defined for year t as the total number of forward citations received on all patents

the individual applied for in year t, divided by the number of inventors who appear on

each patent. Forward citations include all citations of the patent made as of December

2012 and are a measure of the “quality” of innovative output. We divide forward citations

by the total number of inventors on the patent to reflect the fact that a single inventor’s

contribution is smaller in larger teams.14 Fourth, we use the number of patents granted by

the USPTO as of December 2012, as well as the number of patents in the top 5% of the

citation distribution.15 Lastly, we create indicator variables that turn to one when labor

earnings are greater than 0 or above thresholds for the 25th, 50th and 75th percentiles of

the labor earnings distribution.16 We proceed similarly for total earnings. These indicators

are used as outcome variables to characterize the effect of an inventor’s premature death

on their co-inventors’ compensation at different quantiles of the income distribution. Since

labor earnings are only available from 1999 onwards, for consistency we do not use data prior

to 1999 for any of the variables in the analysis, but the results are qualitatively similar when

pre-1999 data is included for adjsuted gross income, patent applications and citations.

Table 1 presents summary statistics for the variables of interest in the main samples used

in the analysis. Statistics on total earnings and wages are computed based on the entire

panel for the full sample of inventors, and based on years before the death event for the

13We have checked that the results are robust to winsorizing at the 5% level
14This is common practice. We check the robustness of our results with other measures of citations, which
do not adjust for team size, take into account citations only over a fixed rolling window of a couple years
around application or grant (in order to address censoring issues), and distinguish between examiner-added
and applicant-added citations. Section III discusses these various robustness checks.

15We define the count of patents in the top 5% of citations as the number of patents the survivor inventor
applied for in a given year that were in the top 5% of the citation distribution, where the distribution is
computed based on all patents that were cited, applied for in the same year and in the same technology class
(we aggregate USPC classes into six main technology classes, as is common in the literature). Throughout
the paper, we consider only patents that were granted as of December 2012 and we use the year of filing of
the patent application as the year of production of the invention.

16These quantiles are computed before the time of death in the population of real and placebo survivor
inventors.
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deceased and the survivor inventors. Age, cumulative applications and cumulative citations

are computed in the year of death for the deceased and the survivors, and across all years

for the full sample. Appendix Table A3 presents similar statistics for the second-degree

connections and coworkers.

The real deceased inventors are on average seven years older than inventors in the full

sample. By construction, the distribution of age at death for the placebo deceased inventors

exactly matches that of the real deceased inventors. Likewise, the distribution of the number

of applications is the same for real and placebo deceased inventors. The distribution of

labor earnings, total earnings and forward citations is also very similar in these two groups,

although our matching algorithm did not match on these variables.

The real and placebo survivor inventors are also older than inventors in the full sample and

they have much higher labor earnings and total earnings and many more patent applications

and citations. The age difference is due to the fact that there is assortative matching by age

in inventor teams, as documented in Section II.D, and the deceased are older than inventors

in the full sample. The difference in compensation and patents is due to a selection effect:

inventors who have co-invented many patents are more likely to experience the (real or

placebo) death of one of their co-inventors. Therefore, it would not be appropriate to use

the full population of inventors as a control group for the real survivor inventors, as their

lifecycle earnings are likely to be on different trajectories. In contrast, the distributions of

labor earnings, total earnings, age and patent applications and citations are very similar in

the group of placebo survivors and real survivors. Importantly, our matching algorithm did

not impose that any of the characteristics of the placebo survivor inventors should be aligned

with those of the real survivor inventors, since we matched on characteristics of the real and

placebo deceased only. Labor earnings are slightly lower for the real survivors compared

to the placebo survivors, but we will check in Section III that this difference is constant

during years prior to co-inventor death, consistent with the assumptions of the difference-
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in-differences research design. Appendix Tables A1 and A2 show that the real and placebo

survivors are also similar in terms of the year of co-inventor death, their technology class

specialization, the size of their co-inventor networks and the size of their firms.

2.2.4. Descriptive Statistics on Patent Inventor Teams

Most inventors work in teams: 55% of the 1,375,587 patents in our data are produced by

teams, i.e. more than one inventor is listed on the patent. Moreover, team composition shows

a significant degree of persistence. In our sample, considering teams that applied for a patent

in 2002, the probability that another patent applied for by a member of the team between

1997 and 2007 also includes at least one other member of the 2002 team is 30.4%. When

conditioning on patents that were assigned to different assignees17, the percentage falls but

remains high, at 21.6%. This suggests that teams are persistent across firm boundaries.18

There is wide variation in the composition of inventor teams. Taking teams of two inventors

in 2002 as an example, Figure 1 shows the distribution of absolute differences between

team members in total earnings, labor earnings, and age. The mean age difference between

inventors in these teams is 10, with a standard deviation of 15. In one-fourth of these teams,

the age difference is three years or less and the difference in labor earnings is below $25,000.

But in another fourth of these teams, the age difference is larger than 14 years and the

difference in labor earnings is above $120,000. Therefore, it is true that inventors who are

similar in characteristics like age and compensation tend to work together, but only up to a

point. Appendix E reports additional results and the findings are qualitatively similar when

considering other years and larger teams.

17Assignees are the legal patent holders and are typically the employers of the inventors on the patents.
18Similar results are obtained when considering other application years as the year of reference. Appendix
Table E6 documents that many teams span more than one EIN, which means they most likely cross firm
boundaries.
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Table 2.1.: Summary Statistics

Variable Sample Mean SD 10pc 25pc 50pc 75pc 90pc

Full Sample 144,096 316,636 38,000 58,000 110,000 163,000 241,000

Real Deceased 139,857 308,000 35,000 59,000 105,000 160,000 237,000

Total Earnings Placebo Deceased 139,102 320,970 36,000 58,000 104,000 162,000 236,000

Real Survivors 177,020 355,347 48,000 89,000 125,000 173,000 270,000

Placebo Survivors 177,247 360,780 47,000 89,000 125,000 173,000 271,000

Full Sample 117,559 257,466 25,000 46,000 90,000 142,000 202,000

Real Deceased 121,691 258,289 29,000 50,000 99,000 147,000 210,000

Labor Earnings Placebo Deceased 124,149 248,546 33,000 52,000 101,000 148,000 210,000

Real Survivors 152,602 295,832 42,000 78,000 113,000 160,000 239,000

Placebo Survivors 155,098 290,201 44,000 80,000 116,000 162,000 242,000

Full Sample 2.31 2.51 0 1 1 3 7

Real Deceased 2.50 2.43 0 1 1 3 7

Cumulative Applications Placebo Deceased 2.50 2.43 0 1 1 3 7

Real Survivors 12.42 28.31 1 2 5 13 28

Placebo Survivors 11.92 29.52 1 2 5 13 27

Full Sample 6.64 12.2 0 0 1 6.58 23.5

Real Deceased 8.74 13.09 0 0 3 10 29.13

Cumulative Citations Placebo Deceased 8.51 13.20 0 0 2.5 9.95 30

Real Survivors 42.00 171.03 0.25 1.3 7 28.5 89.53

Placebo Survivors 40.20 164.20 0.32 1.5 7 29.5 85.32

Full Sample 43.29 9.65 30 36 44 51 56

Real Deceased 50.85 7.44 40 46 52 57 59

Age Placebo Deceased 50.85 7.44 40 46 52 57 59

Real Survivors 47.53 10.89 35 41 48 55 61

Placebo Survivors 47.289 11.16 34 41 47 55 60

Full Sample 756,118

Real Deceased 4,714

# Inventors Placebo Deceased 4,714

Real Survivors 14,150

Placebo Survivors 13,350
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Figure 2.1.: Team Composition for Two-Inventor Teams in 2002
Panel A: Distribution of Absolute Difference in Total Earnings, Winsorized at $500,000
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Panel C: Distribution of Absolute Age Difference
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2.3. Estimating the Causal Effect of the Premature

Death of a Co-Inventor on an Inventor’s

Compensation and Patents

This section presents our methodology to estimate the average treatment effect of experi-

encing death of a coauthor on labor earnings, total earnings, patents and citation-weighted

patents. It then describes our main results and a series of robustness checks.

2.3.1. Research Design

We want to build the counterfactual of compensation and patent production for (real) sur-

vivor inventors, had they not experienced the premature death of a co-inventor. Two main

challenges arise to identify this causal effect. First, the real survivor inventors are on a

different earnings and patent trajectory than the full population of inventors. To address

this challenge, we use the control group of placebo survivor inventors described in Section

II in a difference-in-differences research design. Second, death may not be exogenous to

collaboration patterns.19 We show that the estimated causal effects of co-inventor death are

significant only after the year of death, which alleviates this concern.

Figure 2 confirms non-parametrically that the real and placebo survivor inventors are on

similar earnings and patent trajectories before the time of co-inventor death and sharply

19We cannot think of very convincing examples of why this could be the case, but perhaps a particularly bad
collaboration may result in an inventor’s death. For a discussion of how pre-trends can be interpreted as
anticipation rather than endogeneity of treatment, see Malani and Reif (2015).
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differ afterwards.20 This bolsters the validity of the research design, especially given that

our match algorithm did not use any information on survivor inventors. Real and placebo

survivors have similar levels of total earnings before death, but placebo survivors have higher

labor earnings than the real survivors before death, indicating that real survivors have a

higher share of their total earnings in the form of non-labor earnings . The difference in

labor earnings appears roughly constant, at around $2,500 (about 2% of labor earnings). In

our regression framework, we use individual fixed effects to absorb this difference.

Figure 2 shows that the earnings profile of survivor inventors flattens out after the time

of death, even for the placebo survivor inventors. This may be due to curvature in the age

profile of earnings, year fixed effects, or mechanical effects induced by the construction of the

sample of survivors. Citations are declining over time, probably primarily due to censoring

(patents applied for and granted near the end of our sample do not have the opportunity of

being cited). Our regression framework takes all of these effects into account.

Figure 2 offers a transparent depiction of the data and is useful in gauging the magnitude of

the causal effect of co-inventor death on total earnings, labor earnings and forward adjusted

citations. However, it is not well suited to a precise estimation of the causal effect - since

covariates like age are not perfectly balanced across treated and control groups - nor to

robust inference. Two types of clusters are important to take into account for inference:

even after controlling for a battery of fixed effects, there may be serial correlation in an

inventor’s outcomes over time and the outcomes of inventors linked to the same deceased

may be correlated. We cluster standard errors at the level of the deceased inventors, which

takes into account both forms of clustering.21

20The figure plots the raw data, without imposing that mean outcomes in the treatment and control groups
should be equal prior to death.

21We are close to observing the population of patent inventors who passed away prematurely between 1996
and 2012. Therefore, we interpret our standard errors with respect to their superpopulation. In Appendix
Table B10, we use the coupled bootstrap procedure of Abadie and Spiess (2015) to estimate standard errors
taking into account the matching step.
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Figure 2.2.: Path of Outcomes around Co-inventor Death
Panel A: Survivor Inventor’s Total Earnings
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Panel B: Survivor Inventor’s Labor Earnings
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2.3.2. Regression Framework

In order to study the dynamics of the effect, while at the same time probing the validity

of the research design by testing whether there appears to be any effect of losing a co-

inventor before the event actually occurs, we use a panel data model based on five elements,

whose relevance has been discussed in the previous subsection. First, we include a full set of

leads and lags around co-inventor death for real survivor inventors (LRealit ). The predictive

effects associated with these leads and lags are denoted {βReal(k)}9
k=−9, where k denotes time

relative to death.22 If the identification assumption described below holds, βReal(k) denotes

the causal effect of co-inventor death on the outcome of interest k years after death. Second,

we use a full set of leads and lags around co-inventor death that is common to both real and

placebo survivors (LAllit ) - the corresponding predictive effects are denoted {βAll(k)}9
k=−9.

Lastly, we introduce three distinct sets of fixed effects: age fixed effects (ait), year fixed

effects (γt) and individual fixed effects (αi).

We assume separability23 and specify the conditional expectation functions as follows:

E[Yit|LRealit , LAllit , ait, t, i] = f(LRealit ) + f(LAllit ) + g(ait) + γ(t) + αi

We then estimate the model with a full set of fixed effects by OLS:24

Yit = ∑9
k=−9 β

Real
k 1{LRealit =k} + ∑9

k=−9 β
All
k 1{LAllit =k} + ∑70

j=25 λj1{ageit=j} + ∑2012
m=1999 γm1{t=m} +

22We drop observations where k is below -9 or above +9 because there are too few observations far away
from death and the coefficients on these leads and lags are therefore imprecisely estimated. Results are
qualitatively similar when all observations are kept.

23The results are qualitatively similar when interacting age and year fixed effects.
24We exclude observations with inventors below the age of 25 or above the age of 70 from the sample to reduce
variance, but the results are similar when these observations are included. When the dependent variable is
citation or patent counts, we use a Poisson estimator, with QMLE standard errors clustered at the deceased-
inventor level. The Poisson estimator with individual fixed effects fails to converge in our sample, therefore
we report results without individual fixed effects and, as a robustness check, we run the same specifications
with a negative binomial estimator with fixed effects.
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αi + εit

The main difference between our specification and the specifications used in the existing

literature relying on premature deaths for identification is that we include a set of leads and

lags around death that is common to both real and placebo survivors (LAllit ), in addition

to the set of leads and lags around co-inventor death for the real survivors (LRealit ). This

application of the standard difference-in-differences estimator25 to our setting addresses the

concern that age, year and individual fixed effects may not fully account for trends in life-

time earnings and patents around co-inventor death. An inventor must necessarily have

invented a patent before the year of (real or placebo) co-inventor death and is more likely to

have been employed at that time, even conditional on a large set of fixed effects. Therefore,

the construction of the sample of survivor inventors might mechanically induce a bias that

the fixed effects do not fully address, and indeed we find that the set of leads and lags LAllit

has substantial predictive power for certain outcomes like employment. Intuitively, the leads

and lags that are common to both real and placebo survivors (LAllit ) capture the mechanical

effects, while the leads and lags that are specific to the real survivors (LRealit ) capture the

causal effect of co-inventor death.

Formally, if E[1{LAllit =k}εit|LRealit , LAllit , ait, t, i] = 0 ∀(t, k), then βReal(k) gives the causal effect

of co-inventor death on the outcome of interest k years after death. Appendix D formally

derives what is identified in this model and how the predictive effects {βReal(k)}9
k=−9 can

be used to probe the validity of the research design and identify causal effects. It also

compares our specification to those commonly used in the literature using premature deaths

for identification.

In the next subsection, we use specification (1) to confirm the validity of the research design

25In the standard difference-in-difference estimator, treatment occurs at only one point in time and the regres-
sion includes an After dummy and a After × Post dummy. In our setting, where co-inventors death are
scattered over time, LAll

it plays a role analogous to the After dummy and LReal
it plays a role analogous to

the After × Post dummy.
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and study the dynamics of the effect. To summarize the results and discuss magnitudes, we

employ a second specification, with a dummy turning to one after the time of co-inventor

death for real survivor inventors (AfterDeathRealit ) and another dummy turning to one after

the time of co-inventor death for both real and placebo survivor inventors (AfterDeathAllit ).

Under our identification assumption, βReal gives the average causal effect of death.26 This

specification is as follows:

Yit = βRealAfterDeathRealit + βAllAfterDeathAllit + ∑70
j=25 λj1{ageit=j} + ∑2012

m=1999 γm1{t=m} +

αi + εit

2.3.3. Results

Figure 3 reports the point estimates and 95% confidence interval for the coefficients βRealk ,

obtained from specification (1). Four outcome variables are considered: total earnings, labor

earnings, non-labor earnings and citations. The point estimate on the lag turning to one in

the year preceding death is normalized to 0 and inference is carried out relative to this lag.27

We observe no pre-trending for any of the outcome variables, which lends credibility to the

research design. The effect of co-inventor death on compensation and patents appears to

manifest itself gradually: total earnings, labor earnings, non-labor earnings and citations all

start to decline gradually after the death of a co-inventor. In line with the event studies in

Figure 2, the nonparametric fixed effects for each lead and lag around death thus indicate

that the nature of the effect is a change in the slope of the outcomes, rather than a level shift,

and that co-inventor death has effects beyond short-term disruption of teamwork. As further

discussed in Section IV, the gradual nature of the effect is consistent with the view that co-
26We have relatively more deaths occurring later in our sample and, as a result, βReal gives more weight to
the causal effects of death in the short-run after death and less weight to long-run effects. All results in the
paper are about the average treatment effect on the treated.

27The full set of leads and lags LReal
it always sum up to one for the survivor inventors and our specification

includes individual fixed effects, therefore one of the leads and lags must be “normalized” to one. Appendix
D discusses this standard normalization more formally.
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inventor death impedes future co-invention activities: innovation is a stochastic process and

the placebo survivors gradually outperform the real survivors.28

The magnitude of the effects is large. Eight years after the time of co-inventor death, the real

survivor inventors’ total earnings are $7,000 lower (4% of mean total earnings in the sample

of survivors), their labor earnings are about $5,800 lower (3.8% of mean labor earnings in

the sample of survivors) and their citation-weighted patent production is 15% lower than it

would have been had they not experienced the premature death of a co-inventor.29 About

80% of the total decline in earnings is due to a decline in labor earnings. We formally test

the hypotheses that the point estimates are all the same before and after co-inventor death

with a F-test, reported in Appendix Table B1 - we can never reject that the point estimates

are all similar before death, but we can after death.

In order to reduce noise, we use specification (2), with a single indicator turning to one after

the year of co-inventor death for real survivor inventors. The results are reported in Table 2.

We use thresholds corresponding to the extensive margin, the 25th, 50th and 75th percentiles

of the total earnings and labor earnings distributions to characterize heterogeneity in the

effect across the income distribution.

28Bell et al. (2015) conduct event studies of inventor labor and non-labor earnings around the time of patent
application and find that inventors’ returns to innovation materialize gradually around the time of patent
application in the form of both labor and non-labor earnings.

29The magnitude of the decline in citation-weighted patents is in line with the literature on peer effects in
science. In life sciences, Azoulay et al. (2010) find that collaborators experience a 8% decline in quality-
adjusted publications after the death of a “star.” Oettl (2012) finds a corresponding decline of 16% in
immunology. Based on the dismissal of Jewish scientists by the Nazi government, Waldinger (2012) shows
that losing a coauthor of average quality reduces the average researcher’s productivity by 13% in physics
and 16.5% in chemistry.
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Figure 2.3.: Dynamic Causal Effects of Co-inventor Death

Panels A and B: Survivor Inventor’s Total Earnings and Labor Earnings
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Panels C and D: Survivor Inventor’s Non-Labor Earnings and Adjusted Forward Citations
Received
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Notes: Panels A to D of this figure shows the estimated βRealk coefficients from specification (1) for four outcome variables.
Standard errors are clustered around the deceased inventors. Under the identification assumption described in Section III.B,
βRealk gives the causal effect of co-inventor death in year k relative to co-inventor death. In panel D, the outcome variable is
the count of forward citations received on patents the survivor applied for in a given year. Therefore, this variable reflects the
timing and quality of patent applications by the survivor, not the timing of citations. Adjusted forward citations are winsorized
at the 0.1% level. Dollar amounts are reported in 2012 dollars. The sample includes all real and placebo survivor inventors in a
9-year window around the year of co-inventor death, i.e. inventor-year observations are dropped when the lead or lag relative to
co-inventor death is above 9 years. The unbalanced nature of this panel is the same for real and placebo inventors. Appendix
Table B2 shows that the results are similar on a balanced panel. For more details on the outcome variables, refer to Section
II.C.
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Table 2.2.: Causal Effects of Co-inventor Death

Panel A: Survivor Inventor’s Total Earnings and Non-Labor Earnings
Total Earnings >p25 >p50 >p75 Non-Labor Earnings

AfterDeathReal -3,873*** -0.01531*** -0.0107** -0.00772** -1,199**

s.e. (910) (0.00434) (0.00457) (0.0039) (498)

AfterDeathAll - 223 0.00036 0.00066 -0.00068 651*

s.e. (537) (0.00285) (0.00314) (0.00297) (378)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes Yes Yes

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS OLS OLS

Panels B and C: Survivor Inventor’s Labor Earnings and Patents
Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -2,715*** -0.00913*** -0.09121*** -0.09024***

s.e. (706) (0.00315) (0.02063) (0.02326)

AfterDeathAll -38 -0.0051** 0.00055 0.04084

s.e. (480) (0.00221) (0.01776) (0.03016)

Age and Year Fixed Effects Yes Yes Yes Yes

Individual Fixed Effects Yes Yes No No

# Observations 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428

Estimator OLS OLS Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2). Column 1 reports the results for
labor earnings. In column 2, the outcome variable is an indicator equal to one when the inventor receives a W-2, i.e. has
positive labor earnings. The outcome variables for columns 3 to 5 are indicator variables equal to one when the inventor’s
labor earnings are above the specified quantile of the labor earnings distribution. The dollar value of these quantiles is reported
in Table 1. Under the identification assumption described in Section III.B, βReal gives the causal effect of co-inventor death
on these various outcomes. Appendix Table B2 shows that the results are similar on a balanced panel. Dollar amounts are
reported in 2012 dollars. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

Table 2 shows large and statistically significant coefficients βReal for all outcome variables,

consistent with the dynamic specifications reported in Figure 3. The effect exists across

the distribution of adjusted gross income, and it seems larger in lower quantiles - a finding
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we will probe further in Section IV. Interestingly, βAll is significant for two outcomes: non-

labor earnings and the extensive margin of labor earnings. The point estimates are large

in magnitude relative to the point estimates for βReal, which shows that controlling for

mechanical patterns is important to avoid bias, even when age, year and individual fixed

effects are included. Panel C of Table 2 shows that co-inventor death has large and significant

effects for both the quantity of quality of patents produced by survivor inventors.30

2.3.4. Robustness Checks

Balanced Panel. We have confirmed that our results are robust to restricting attention

to a balanced panel, focusing on survivors whose associated deceased passed away between

2003 and 2008 and considering a four-year window around death for each of these survivors.

The results are presented in Appendix Table B2 and are similar to the results using the

unbalanced panel.

Dynamics. The finding that co-inventor death has a long-lasting effect is one of the most

striking results of this paper. Appendix Table B3 confirms that the effect becomes larger

over time in a statistically significant way, using a specification with an indicator turning to

one for observations more than four years after death (which reduces the noise reflected by

the standard errors shown on Figure 2). A potential concern when studying the dynamics

of the effect is related to how unbalanced the panel is with respect to years before and after

the death of the co-inventor. For example, recent deaths have many pre-death observations

but few post-death observations while the opposite holds for early deaths in the sample.
30The results for βReal reported in Table 2 are the same when running the following specification, which
replaces AfterDeathAll

it in specification (2) with a full set of leads and lags around death (LAll
it ):

Yit = βRealAfterDeathReal
it +

9∑
k=−9

βAll
k 1{LAll

it
=k} +

70∑
j=25

λj1{ageit=j} +
2012∑

m=1999
γm1{t=m} + αi + εit

We have also checked that the results obtained with the Poisson estimator for count data are qualitatively
similar when using OLS instead.
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The dynamic specification can confound true dynamics due to the changing composition

of the sample.31 To address this issue, Figure 4 shows the path of total earnings for real

and placebo survivor inventors experiencing death of their co-inventor between 2003 and

2005. This allows us to track the same individuals over time and confirms that the effect of

coauthor death is indeed gradual and long-lasting. The regression results are presented in

Appendix Table B4 and are qualitatively similar to the findings reported in Figure 3.

Figure 2.4.: Path of Total Earnings for Survivors with Co-inventor Death in 2003-2005
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Notes: This figure shows the path of mean total earnings for real and placebo survivor inventors around the year of co-inventor
death. The sample is restricted to the 4,812 co-inventors of the 1,764 real and placebo deceased with a year of death between
2003 and 2005. Inventor-year observations are dropped if the lag relative to co-inventor death is greater than seven years or
if the lead relative to death is greater than four years. The panel is balanced: we observe the same inventors over a period of
twelve years. Appendix Table B4 reports the results of the regression analysis in this sample.

31For example, it could be that inventors who experience death of a coauthor earlier in the sample are of
higher ability than inventors who experience death of a coauthor later in the sample, which would manifest
itself as larger long-run than short-run effects of death that are entirely due to changing sample composition
rather than dynamic cumulative impacts. Similarly, one could imagine that earlier deaths in the sample had
a bigger impact than later deaths but the impacts are constant following death: again, this would induce
larger long-run than short-run effects, resulting from changing composition rather than dynamic cumulative
impacts.

85



Anticipation. Another potential concern with our design is that co-inventor death may

result from a lingering health condition. To investigate this hypothesis, we study tax deduc-

tions for high medical expenditures claimed by the deceased on their personal income tax

return.32 As shown in Appendix Figure B1, we find that seventy-five percent of deceased

inventors do not claim any such deduction, but twenty-five percent claim a deduction in the

year preceding death as well as in the year of death, and a small number claim deductions

starting several years before death. As a robustness check, we repeat our analysis by exclud-

ing survivors whose associated deceased had a positive amount of tax deductions for high

medical expenses in any year before death. We find that our results strengthen, as shown in

Appendix Table B5. The point estimates for the various outcomes increase by about 10% (in

absolute value). Intuitively, when the co-inventor is impaired before the time of death, our

estimate of the causal effect on the survivors is biased downward because part of the effect

starts before the time of death. This robustness check confirms that anticipation effects

result in a downward bias and shows that the magnitude of the bias is relatively small.

Matching Strategy. We have investigated an alternative matching strategy, identifying

a control group of placebo survivor inventors using propensity score reweighting, after es-

timating the propensity score on total earnings, labor earnings, year of birth and patent

applications of the deceased inventors in the years preceding death. The results with this

empirical strategy are reported in Appendix Figure B2 and Appendix Table B6 and are

similar to the results using the real and placebo deceased exact match strategy.

Citations. Appendix Table B7 reports the causal effect of co-inventor death on a series

of alternative measures of citations. Specifically, we consider in turns measures of citations

that count only citations received in 3-year or 5-year citation windows after the time of grant

or application (in order to address censoring), and that take into account only applicant-

added or examiner-added citations. We find a large and statistically-significant effects, with
32This information is available on IRS form 1040.
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magnitudes similar to Table 2. Appendix Table B8 shows the robustness of the citation

results using a negative binomial estimator with individual fixed effects instead of a Poisson

estimator.

Technology Classes. We check that our results are consistent across technology classes.

Appendix Table B9 shows that, for the various outcome variables of interest, the effect of

co-inventor death is not significantly different across technology classes. Our results are

therefore not driven by a particular technology class.

Inference Taking into Account the Match Step. Lastly, we implement the coupled

bootstrap procedure presented in Abadie and Spiess (2015) so that our standard errors reflect

the matching step. The results are robust, with slightly smaller standard errors as shown in

Appendix Table B10.

2.4. Distinguishing Between Mechanisms

In this section, we show that the gradual decline in earnings and citations caused by the

premature death of a co-inventor stems from the fact that the survivor lost a co-inventor with

whom they were collaborating extensively. We first rule out alternative mechanisms that are

not specific to the team, establishing that the effect does not result from the disruption of

the firm or from diffuse network effects. Second, we show that the effect is not driven by

asymmetric top-down spillovers from unusually high-achieving deceased inventors. Third, we

demonstrate that the intensity of the collaboration between the deceased and the survivor

inventors prior to death is an important predictor of the magnitude of the effect. Fourth,

we document that the majority of the effect results from the fact that the survivor can

no longer co-invent with the deceased. Indeed, when considering only patents that were

invented by the survivor without the deceased, the effect becomes much smaller. We also

show that team-specific capital spans firm and geographic boundaries. Finally, we discuss
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other possible mechanisms consistent with the evidence.

2.4.1. Firm Disruption and Network Effects Are Not the Primary

Mechanism

To test whether the effect documented in Section III results from the disruption of the firm

or from diffuse network effects, we consider the groups of real and placebo coworkers and

second-degree connections.33 Figure 5 shows that the real and placebo coworkers and the

real and placebo second-degree connections follow similar earnings paths both before and

after the year of death of their associated deceased.34 Appendix Figure C1 shows similar

results for the paths of labor earnings and citations. This stands in sharp contrast with the

diverging paths of real and placebo survivors after co-inventor death, as presented in Figure

3.

Table 3 reports the results obtained from specification (2) and shows that the premature

death of an inventor has no significant negative effect on their coworkers and second-degree

connections. The point estimates for the various outcome variables are generally one or two

orders of magnitude smaller than the point estimates obtained for the direct co-inventors

and are relatively precisely estimated.

For the coworkers, we find small and significant positive effects of an inventor’s death on

their coworkers’ likelihood of being employed as well as on their patent and citation counts.

Therefore, the large negative effect on the direct co-inventors of the deceased documented in

33The coworkers are the inventors who were in the same firm as the deceased in the year prior to death. The
second-degree connection are the co-inventors of the co-inventors of the deceased. Refer to Section II for
more details about the definition of these groups and the construction of the sample.

34The path of earnings for coworkers and second-degree connections - whether real or placebo - exhibits strong
curvature around the time of (real or placebo) death. This curvature is partly captured by year and age
effects. It also results from the fact that we impose that the coworkers should be employed in the year
preceding death and that the second-degree connection should have co-invented with the survivors prior to
death.
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Section III do not result from the disruption of the firm or the R&D lab following an inventor’s

death.35 The positive effect on coworkers may result from substitutability between inventors

at the same firm: an inventor’s earnings and patent production might rise after the death of

a coworker because it increases this inventor’s chance of being promoted and their access to

resources within the firm.36

For the second-degree connections, we find no statistically significant effect on any of the

outcomes. The point estimates are close to zero and we can reject at the 5% confidence

level any effect of a magnitude larger than one half of the effect documented for the direct

co-inventors. This evidence provides a test of competing models of strategic interactions in

networks. If the dominant force is a substitution effect as in Jackson and Wolinsky (1996),

then we should find that the second-degree connections benefit from the death. But if

strategic complementarities dominate as in Bramoulle et al. (2014), then the death should

negatively affect the second-degree connections. Our finding that, on net, the effect on

second-degree connections is negligible means that network effects are not first-order, as

opposed to the direct impact on co-inventors.

Therefore, we can rule out firm disruption and network effects as primary mechanisms ex-

plaining the effect documented in Section III.37 Moreover, the analysis of the effect on cowork-

ers and second-degree connections generated new insights about the innovation production

function: the results suggest that inventors within a firm are substitutable while there is no

strong complementarity or substitutability patterns between inventors who are two nodes
35We provide additional evidence confirming this fact by showing that the effect persists for co-inventors
located in different firms at the time of death (Table 9) and that the magnitude of the effect is not correlated
with firm size (Appendix Table C6).

36Further exploration of the mechanism at play for coworkers is beyond the scope of this paper, but our results
are consistent with those obtained in parallel work by Jaeger (2015), who studies small firms in Germany
rather than the population of inventors, as we do.

37We have also constructed a “citation network” of inventors who cited the deceased before their death but who
were not among their direct co-inventors, second-degree connections or coworkers. We do not find evidence of
statistically significant negative effects. These results are not surprising, given how diffuse citation networks
are, but they establish that the effect is not driven by linkages in idea space. These results are available
from the authors upon request.
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away in the co-invention network.

Figure 2.5.: Path of Outcomes for Coworkers and Second-Degree Connections Around Year
of Death

Panel A: Coworkers’ Total Earnings
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Panel B: Second-degree Connections’ Total Earnings
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Notes: This figure shows the path of mean total earnings for real and placebo coworkers as well as for real and placebo second-
degree connections around the year of death of their associated deceased. The sample includes all real and placebo inventors in
a 9-year window around the year of co-inventor death, i.e. inventor-year observations are dropped when the lead or lag relative
to co-inventor death is above 9 years. The unbalanced nature of this panel is the same for real and placebo inventors. Dollar
amounts are reported in 2012 dollars. Refer to section II.B for more details on the sample and to section II.C for more details
on the outcome variables.
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Table 2.3.: Causal Effects of Inventor Death on Coworkers and Second-degree Connections

Panel A: Effect on Coworkers
Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal 207 236 0.00639** 0.0249* 0.0148**

s.e. (571) (582) (0.00296) (0.0131) (0.00713)

AfterDeathAll -745 -682 -0.00536** -0.0366** -0.00976**

s.e. (818) (853) (0.00215) (0.01664) (0.00416)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 335,708 335,708 335,708 335,708 335,708

# Coworkers 28,192 28,192 28,192 28,192 28,192

# Deceased 3,988 3,988 3,988 3,988 3,988

Estimator OLS OLS OLS Poisson Poisson
Notes: This panel reports the estimated coefficients βReal and βAll from specification (2) in the sample of coworkers. The five
outcome variables are as follows: (1) total earnings; (2) labor earnings; (3) an indicator equal to one when the inventor receives
a W-2, i.e. has positive labor earnings; (4) the number of patents the coworker applied for in a given year; (5) the number of
forward citations received on patents that the coworker applied for in a given year (therefore, this variable reflects the timing
and quality of patent applications by the survivor, not the timing of citations). Under the identification assumption described
in Section III.B, βReal gives the causal effect of coworker death on these various outcomes. Inventor-year observations are
dropped when the lead or lag relative to co-inventor death is above 9 years. The unbalanced nature of this panel is the same
for real and placebo inventors. Appendix Table C1 shows that the results are similar on coworker sample keeping firms of all
sizes. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the deceased inventors. *p < 0.1, **
p < 0.05, *** p < 0.01.

Panel B: Effect on Second-degree Connections
Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -159 -9 0.0027 -0.00258 -0.02346

s.e. (548) (506) (0.00325) (0.02115) (0.0210)

AfterDeathAll -618 -684 -0.00618* -0.08121** -0.0208

s.e. (749) (565) (0.00367) (0.0363) (0.02625)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 265,421 265,421 265,421 265,421 265,421

# Second-degree Connections 23,331 23,331 23,331 23,331 23,331

# Deceased 4,183 4,183 4,183 4,183 4,183
Notes: This panel reports the estimated coefficients βReal and βAll from specification (2) in the sample of second-degree
connections. The five outcome variables are as in Panel A. Inventor-year observations are dropped when the lead or lag relative
to co-inventor death is above 9 years. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the
deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

91



2.4.2. Top-Down Spillovers Are Not the Driving Force

As documented in Section II, some teams are composed of inventors of similar age and

compensation levels, while in others there are large gaps in age and compensation levels

between team members. We study whether these patterns are important predictors of the

heterogeneity in the average effects documented in Section III. In particular, we want to

test whether the effect is driven by the death of “superstar” inventors or, more generally, by

inventors of higher ability level than their associated survivors.

To do so, we repeat the estimation of the coefficient of interest, βReal , by using specification

(2) in different subsamples of the data. We partition the data depending on the quartile

in which the total earnings of the (real and placebo) deceased and the (real and placebo)

survivor inventors fall three years before the year of (real and placebo) death. The sample

sizes in each subsample are given in Appendix Table C2. This way of inferring relative ability

levels can potentially create mean reversion patterns. For instance, it could be that survivor

inventors who are in the first quartile of the earnings distribution three years before co-

inventor death suffered from temporary shocks and that their earnings tend, on average, to

increase afterwards. The use of our control group of placebo survivor inventors is sufficient to

alleviate these concerns if the income processes are similar for the real and placebo survivor

inventors prior to the death of the co-inventor (i.e. both groups are affected by mean reversion

and other such patterns in similar ways). To investigate whether this is true, we examine

the distribution of changes in total earnings for the years before the death of the co-inventor.

The difference in this analysis relative to our earlier analysis in Section III is that we now

want to ensure that the placebo survivor inventors are an appropriate control group for

the distribution of changes in potential outcomes over time, not just for their mean. Table

4 shows that the distribution of earnings changes is very similar for the real and placebo

survivor inventors.38
38We obtain similar results when considering changes of total earnings in levels as well as level or log changes
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Table 2.4.: Distribution of Annual Changes in Log Total Earnings Before Co-inventor Death

Mean SD 10pc 25pc 50pc 75pc 90pc
Total Earnings Real 0.039 0.457 -0.0026 0.0169 0.035 0.0867 0.1436

Placebo 0.040 0.461 -0.0024 0.0188 0.036 0.0844 0.1401
Notes: This table reports the distribution of year-to-year changes in log total earnings for real and placebo survivor inventors
before the year of co-inventor death. The distributions are very similar across the two groups, suggesting that the income
processes are similar for both groups and that the placebo inventors can be used as a control group for the analysis reported
in Table 5. The results are similar when considering annual changes in the level of total earnings, the log of labor earnings and
the level of labor earnings. For more details on the sample, see Section II.B.

Table 5 reports the results of this analysis. Consider for instance panel A on total earnings

(the findings are similar for panel C, on labor earnings). This panel shows three main

findings. First, the effect is significant and large in magnitude when the deceased and the

survivor are in the same earnings quartile, i.e. are of similar seniority levels. This rejects the

hypothesis that the effect documented in Section III is entirely driven by top-down spillovers

from “superstar” inventors, because the effect persists for inventors of similar seniority levels.

Second, holding constant the earnings quartile of the survivor, the effect is increasing in the

earnings quartile of the deceased, showing that co-inventors of a higher seniority level are

more difficult to substitute for. Third, the effect is not significant when the deceased is in

a lower earnings quartile than the survivor. Although the point estimates are imprecisely

estimated, it suggests that co-inventors of a lower seniority level are not a source of specific

value for an inventor. The fact that lower ability team members suffer from the loss of higher

ability team members, while in contrast higher ability team members are largely unaffected

by the loss of a lower ability peer, could indicate that lower ability inventors extract “rents”

from their collaboration with high ability co-inventors. However, this “rent” hypothesis

cannot explain the large effect we find for team members of similar ability levels.

Moreover, panels C and D of Table 5 show that mechanical patterns (due to mean reversion

or other statistical effects) play a very important role. These panels show that there are

for labor earnings.
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strong mean-reversion patterns: survivors in the lowest earnings quartile before (placebo)

co-inventor death tend to perform better after the year of death, while survivors in the

highest earnings quartile before (placebo) co-inventor death tend to perform worse after the

year of death. Therefore, year, age and individual fixed effects are not sufficient to account

for trends in earnings around the time of co-inventor death and it is important to include

the AfterDeathAll dummy introduced in specification (2).

We have conducted a series of robustness checks of these results. First, instead of running

the analysis in different subsamples as in Table 5, we ran regressions with a linear interaction

of the AfterDeath indicator with the quartile difference or the level difference in the labor

earnings levels of the survivor and the deceased, as well as with the age difference between

the survivor and the deceased. Second, we have checked that the results are similar with

other metrics of relative ability levels, namely the relative level of total earnings and the

relative citation levels three years before death.39 We find that the causal effect is larger

when the survivor inventor is of lower ability or seniority than the deceased and the effect is

still significant for inventors of equal ability or seniority levels.

39A limitation of using relative citations before death is that the survivor and the deceased have often co-
invented most of their patents together, therefore relative earnings appear to be a better signal of relative
seniority.
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Table 2.5.: Heterogeneity in Effect by Relative Ability Levels of Co-inventors

Panel A: Heterogeneity in the Causal Effect of Co-Inventor Death on Total Earnings
Deceased / Survivor Earnings Quartile 1 2 3 4

1 -2,652* -1,301 1,298 902
s.e. (1,553) (1,328) (1,680) (1,081)

2 -3,573* -2,798** -810 -1,308
s.e. (2,111) (1,178) (1,675) (1,278)

3 -5,656** -4,151** -3,243** -2,939
s.e. (2,612) (1,968) (1,632) (2,562)

4 -6,566* -5,132** -4,853* -7,037**
s.e. (3,450) (2,530) (2,650) (3,256)

Notes: This panel reports the estimated coefficient βReal from specification (2), with total earnings of the survivors as the
outcome variable, in sixteen subsamples of the data. Each of these subsamples corresponds to a different combination of the
total earnings quartiles of the survivor and the deceased. The earnings quartiles are computed three years before death and
sample sizes for each subsample are given in Appendix Table C2. Under the identification assumption described in Section
III.B, βReal gives the causal effect of co-inventor death on total earnings. For instance, the panel shows that if the survivor and
the deceased were both in the lowest quartile of total earnings three years before death, the causal effect of co-inventor death
on the survivor was a decline of $2,652 in total earnings. Amounts are reported in 2012 dollars. Standard errors are clustered
around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

Panel B: Mean Reversion Patterns in Total Earnings Around Co-inventor Death
Deceased / Survivor Earnings Quartile 1 2 3 4

1 14,763*** 3,373 -1,397 -18,977***
s.e. (2,138) (2,136) (2,844) (3,994)

2 14,493*** 380 1,536 -13,665***
s.e. (2,329) (1,356) (1,845) (2,947)

3 15,237*** 3,410** 1,087 -18,473***
s.e. (2,401) (1,425) (2,200) (3,803)

4 17,183*** -671 3,384 -13,539***
s.e. (4,243) (2,681) (2,599) (3,814)

Notes: This panel reports the estimated coefficient βAll from specification (2), with total earnings of the survivors as the
outcome variable, in sixteen subsamples of the data. Each of these subsamples corresponds to a different combination of the
total earnings quartiles of the survivor and the deceased. The earnings quartiles are computed three years before death and
sample sizes for each subsample are given in Appendix Table C2. βAll gives the predictive effect of placebo co-inventor death on
total earnings, conditional on year, age and individual fixed effects. For instance, the panel shows that if the placebo survivor
and deceased were both in the lowest quartile of total earnings three years before death, then after the placebo death of their
co-inventor, the total earnings of placebo survivor inventors tended to increase by $14,763. Amounts are reported in 2012
dollars. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

2.4.3. The Effect Is Driven by Close-Knit Teams

We consider various measures of collaboration intensity between deceased and survivor in-

ventors, which Table 6 shows vary widely in our sample. Specifically, we use the number and

95



share of patents the survivor inventor co-invented with the deceased, collaboration length

(defined as the number of years between the first and last joint patent application between

the survivor and the deceased), and collaboration recency (defined as the numbers of years

between the death of the co-inventor and the application for the last co-invented patent with

the survivor).

Table 2.6.: Collaboration Patterns Between Deceased and Survivor Inventors Before Death

Variable Sample Mean SD 10pc 25pc 50pc 75pc 90pc
# Patents Real 8.114 17.285 1 1 3 9 18

Placebo 7.41082 12.757 1 1 3 8 18
# Co-patents Real 1.702 1.502 1 1 1 2 3

Placebo 1.6108 1.394 1 1 1 2 3
Co-patent Share Real 54.61 37.75 7.692 18.75 50 100 100

Placebo 54.55 37.81 8.33 18.18 50 100 100
Collaboration Length Real 0.8208 1.7393 0 0 0 1 3

Placebo 0.7593 1.7050 0 0 0 1 3
Collaboration Recency Real 6.1125 3.9756 1 3 6 9 12

Placebo 5.673 4.0078 1 2 5 8 12
# Real Survivors 14,150

# Placebo Survivors 13,350
Notes: This table documents the heterogeneity in the intensity of collaboration between the deceased and survivor inventors
in the years before (real or placebo) death. The variables are defined as follows: (1) # patents is the number of patents of
the survivor before co-inventor death; (2) # co-patents is the number of patents co-invented by the survivor and the deceased
before co-inventor death; (3) co-patent share is the share of the survivor’s patents that were co-invented with the deceased
before death; (4) collaboration length is the number of years that elapsed between the first and last joint patent application
between the survivor and the deceased; (5) collaboration recency is the number of years that elapsed between the application
year for the last patent co-invented by the survivor and the deceased and the year of co-inventor death. For more details on
the sample, refer to Section II.B.

To examine whether heterogeneity in collaboration strength predicts heterogeneity in the

causal effects, we set up the following specification:

Yit =
βRealAfterDeathRealit + ηRealXi · AfterDeathRealit + βAllAfterDeathAllit +

ηAllXi · AfterDeathAllit +∑70
j=25 λj1{ageit=j} +∑2012

m=1999 γm1{t=m} + αi + εit

(2.1)
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where Xi is a vector including all variables listed in Table 6, as well as the age of the survivor

inventor at the time of death. The vector Xi is demeaned so that the point estimates for

βReal and βAll are left unaffected.

Table 7 reports the results for the relevant interaction terms. It shows that the various

proxies for the intensity of the collaboration between the survivor inventor and the deceased

(co-patent share, collaboration length and collaboration recency) are strong predictors of

the magnitude of the causal effect of co-inventor death on the various outcomes. The point

estimates are all negative and statistically significant. Using the standard deviations reported

in Table 6 for the various regressors and the magnitude of the causal effects reported in Table

2, we can gauge the magnitude of the predictive effects. A one standard deviation increase

in the share of copatents explains 75% of the average effect on total earnings, 78% of the

average effect on labor earnings, 70% of the average effect on patent count, and 54% of the

average effect on citation count. Similarly, a one standard deviation increase in collaboration

length explains 47% of the average effect on total earnings, 33% of the average effect on labor

earnings, 46% of the average effect on patents, and 53% of the average effect on citations.

Lastly, a one standard deviation increase in collaboration recency explains 45% of the average

effect on total earnings, 52% of the average effect of labor earnings, 22% of the average effect

on patents, and 21% of the average effect on citations. This indicates that the effect is driven

by the loss of a co-inventor that the survivor was collaborating with extensively.40

40Our results differ markedly from Azoulay et al. (2010), who do not find collaboration intensity to be
predictive of the magnitude of the effect of the death of a superstar on their coauthors. It could be due to
the fact that top-down spillovers, which are not the driving force in our data, do not strongly depend on the
intensity of collaboration. Azoulay et al. (2010) interpret their results as evidence for very diffuse spillovers
in intellectual space for “star scientists.” In contrast, our results provide evidence for very circumscribed
spillovers in collaboration space for the typical inventor.
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Table 2.7.: Heterogeneity in Effect by Intensity of Collaboration Between Deceased and
Survivor Inventors

ηReal Total Earnings Labor Earnings Non-Labor Earnings Patent Count Citation Count

Co-patent Share -75.132*** -56.669*** -17.236** -0.00172** -0.0013*

s.e. (22.552) (17.164) (8.342) (0.00085) (0.00069)

Collaboration Length -1,063.253*** -523.296** -323.296*** -0.0245** -0.02892*

s.e. (405.382) (228.55) (118.516) (0.01072) (0.01537)

Collaboration Recency 447.921*** 360.281*** 110.728** 0.00508** 0.00482*

s.e. (145.592) (139.825) (50.95) (0.00256) (0.00266)

# Co-patents 42.163 64.029 20.231 0.0015 0.00127

s.e. (107.372) (121.255) (431.156) (0.01962) (0.0124)

# Patents -49.129 5.022 -60.001 -0.00642** -0.00442**

s.e. (57.941) (39.44) (40.223) (0.00287) (0.00181)

Survivor’s Age at Death 104.78* 40.961 50.899 - 0.00243** -0.00323**

s.e. (62.774) (49.876) (40.85) (0.001073) (0.00129)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS Poisson Poisson
Notes: This table reports the estimated coefficients in the vectorηReal from specification (3). The outcome variables reported
in the five columns are total earnings, labor earnings, an indicator turning to one if the inventor receives a W2, the number
of patents the survivor inventor applied for in a given year, and the number of forward citations received on patents that the
survivor applied for in a given year (therefore, this variable reflects the timing and quality of patent applications by the survivor,
not the timing of citations). The regressors are defined in the main text as well as in Table 6 and are demeaned so that the point
estimates for the average causal effects are identical to Table 2. Standard errors are clustered around the deceased inventors.
*p < 0.1, ** p < 0.05, *** p < 0.01.

2.4.4. Team-Specific Capital as a Likely Mechanism

Taken together, the evidence suggests that the gradual decline in earnings and citations

following the premature death of a co-inventor results from the fact that the survivor lost

a partner with whom they were collaborating intensely. The heterogeneity in the effect

by intensity of collaboration, as well as the pervasive nature of the effect across various

kinds of teams, makes team-specific capital a likely mechanism. The difficulty of building

a similar relationship with another inventor may result from high search costs or from the
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fact that the quality of the relationship improved endogenously over time, in response to

relationship-specific investments made by each of the co-inventors.

Consistent with the team-specific capital interpretation, we find that the effect of co-inventor

death is much larger in the context of joint production and exists across firm and geographic

boundaries. First, we repeat the analysis of the effect of co-inventor death on the patents of

the survivor, but now we only consider patents that were not co-invented with the deceased.41

Table 8 reports that, for the various measures of patent production and citations, we consis-

tently find a significant and negative effect of co-inventor death. Continued interaction with

a co-inventor therefore benefits an inventor beyond co-inventions, which is consistent with

the view of teams as a vehicle for knowledge transmission. However, the magnitude of the

effect on the survivor’s patents outside of patents with the deceased is much smaller (around

-3%) relative to the effect on the total number of patents of the survivor documented in

Table 2 (around -9%). This suggests that the main value of team-specific capital comes in

the form of co-inventions and that the effect results from the fact that the survivor can no

longer engage in joint projects with the deceased.42

Second, we show that the effect persists for inventors located in different firms and in different

commuting zones. Panel A of Table 9 shows that the effect of co-inventor death on labor

earnings is entirely driven by survivors who were in the same firm as the deceased at the

time of death. In contrast, the second column shows that the effect of co-inventor death

on non-labor earnings is similar regardless of whether or not the survivor and the deceased

were in the same firm.43 Panel B of Table 9 shows a similar pattern based on the location of
41Note that legal requirements impose that all inventors should be listed on a patent, otherwise the patent
could be invalidated in court. We can therefore be confident that the patents that do no list the name of
the deceased were indeed invented without the active collaboration of the deceased.

42Note that our results are very different from Azoulay et al. (2010), who find that the death of a “star”
scientist causes a decline of similar magnitude in scientific publications with and without the deceased. In
our setting, the importance of joint production between the deceased and the survivor is consistent with
the gradual effect documented in Section III: innovation is a stochastic process and the placebo survivors
gradually outperform the real survivors.

43As has been documented in prior work (e.g. Crescenzi et al., 2015), co-inventors may be working in different
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survivor and deceased inventors across commuting zones.44 Therefore, team-specific capital

is not tied to firm or geographic boundaries.

Table 2.8.: The Causal Effect of Co-inventor Death On the Survivor Beyond Joint Produc-
tion

Only Considering Patents that Were Not Co-invented With the Deceased

Patent Count Citation Count Count of Patents Count of Patents

with No Citations in Top 5% of Citations

AfterDeathReal -0.03088** -0.03571** -0.03288** -0.0084*

s.e. (0.01525) (0.01815) (0.01525) (0.00478)

AfterDeathAll 0.1162** 0.08578 0.05763 0.0247

s.e. (0.05319) (0.12013) (0.08136) (0.02271)

Age and Year Fixed Effects Yes Yes Yes Yes

Individual Fixed Effects No No No No

# Observations 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428

Estimator Poisson Poisson Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2). The four outcome variables are
as follows: (1) patent count is the number of patents the survivor inventor applied for in a given year, excluding all patents
co-invented with the deceased; (2) citation count is the number of forward citations received on patents that the survivor
applied for in a given year, excluding all patents co-invented with the deceased; (3) the count of patents with no citations is
the number of patents that the survivor inventor applied for in a given year and that have never been cited as of December
2012, excluding all patents co-invented with the deceased; (4) the count of patents in the top 5% of citations is the number
of patents the survivor inventor applied for in a given year that were in the top 5% of the citation distribution, excluding all
patents co-invented with the deceased. The sample includes all real and placebo survivor inventors in a 9-year window around
the year of co-inventor death, i.e. inventor-year observations are dropped when the lead or lag relative to co-inventor death
is more than 9 years. The unbalanced nature of this panel is the same for real and placebo inventors. Standard errors are
clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

entities in the context of university - private sector partnerships or joint ventures. Cross-firm collaborations
are common in sectors like biotech. Our definition of “firm” is based on EINs, which cover universities and
public sector institutions.

44These findings are consistent with the view that the effect of co-inventor death on earnings primarily comes
from the fact that the survivor is no longer able to work with his co-inventor on joint inventions. Indeed,
inventors who are co-inventors but who work for different firms may be collaborating on joint projects outside
of their work as employees. If they are successful, these projects are likely to result in an increase in non-labor
earnings rather than labor earnings.
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Table 2.9.: The Causal Effect of Co-inventor Death across Firm and Geographic Boundaries

Panel A: Within and Across Firms
Labor Earnings Non-Labor Earnings Patent Count Citation Count

AfterDeathReal -113 -1,225** -0.07071** -0.07892**
s.e. (964) (583) (0.03321) (0.0353)

AfterDeathReal · SameFirm -3,974*** 122 -0.05928 -0.05123
s.e. (1,465) (983) (0.06956) (0.04326)

Age and Year Fixed Effects Yes Yes Yes Yes
Individual Fixed Effects Yes Yes Yes Yes

# Observations 260,807 260,807 260,807 260,807
# Survivors 21,972 21,972 21,972 21,972
# Deceased 7,589 7,589 7,589 7,589
Estimator OLS OLS Poisson Poisson

Panel B: Within and Across Commuting Zones
Labor Earnings Non-Labor Earnings Patent Count Citation Count

AfterDeathReal -182 -1,411** -0.09393*** -0.1229***
s.e. (529) (563) (0.02901) (0.02856)

AfterDeathReal · SameCZ -4,049*** 534 0.00093 0.0209
s.e. (1,350) (610) (0.05512) (0.0212)

Age and Year Fixed Effects Yes Yes Yes Yes
Individual Fixed Effects Yes Yes No No

# Observations 292,752 292,752 292,752 292,752
# Survivors 24,686 24,686 24,686 24,686
# Deceased 8,579 8,579 8,579 8,579
Estimator OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

Yit = βRealAfterDeathRealit + βAllAfterDeathAllit + β̃RealAfterDeathRealit · SameCZ + β̃AllAfterDeathAllit · SameCZ
+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit
using similar notation to Section III.B and where SameCZ is an indicator variable equal to one when the survivor and the
deceased were in the same commuting zone during the three years that preceded death. SameCZ is equal to 0 when the
survivor and the deceased were in different commuting zones during the three years that preceded death. We exclude from the
sample the survivor-deceased pairs that were not always in the same commuting zone or always in a different commuting zone
during the three years prior to death. 10.24% of the survivors are thus excluded. SameCZ is equal to 1 for 55% of survivors in
the sample. See Table 2 for details about the outcome variables. Standard errors are clustered around the deceased inventors.
*p < 0.1, ** p < 0.05, *** p < 0.01.

A number of mechanisms in which team-specific capital plays no role may be able to explain

our results but appear unlikely. First, emotional distress following the loss of a co-inventor

101



may result in a decline in productivity - however, for this mechanism to be consistent with

the patterns we have documented, emotional distress would need to be long-lasting, it should

be larger when losing a high-achieving peer and it should cause labor earnings to fall only for

inventors who work in the same firm. Second, the effect of co-inventor death might be driven

by disruption of current work - however, we find the effect to be long lasting and we also find

an effect on the survivor inventor’s patents beyond co-inventions with the deceased. Third,

the effect could be driven by a change in physical inputs available to survivor inventors. For

example, after the death of a prominent inventor, the R&D lab might close down, or the

start up may fail - however, we find that the effect exists for inventors working in different

firms, as well as for co-inventors of average ability, and we find no negative spillover effect

on coworkers in the same firm as the deceased. Fourth, the effect may be driven by a lower

ability inventor exploiting a rent from their collaboration with a higher ability deceased

- however, the effect persists for co-inventors of equal ability levels and there is an effect

beyond joint production, on the survivor’s patents beyond co-inventions with the deceased.

Thus, our results show that team-specific capital is important in an inventor’s career be-

cause it facilitates co-inventions and - to a lesser extent - knowledge transmission. We have

conducted interviews with patent inventors to confirm that this mechanism is plausible.45

Moreover, it is in line with the notion that playing a repeated game with team members

helps curb moral hazard in joint production and information exchange (e.g. Stein, 2008).

Appendix C documents other heterogeneity patterns in the effect of co-inventor death - by

firm size, survivor’s age, survivor’s co-inventor network size and survivor’s citizenship status

- which are of descriptive interest but are not statistically significant for most outcomes. Ap-

pendix C also shows that co-inventor death does not have a strong impact on the probability

that an inventor starts new collaborations or changes firms, except if the inventor was in a

45We spoke with fourteen inventors in small start-ups as well as large R&D labs in Silicon Valley. They
pointed out the difficulty of building good collaborative relationships and emphasized the long-lasting nature
of successful collaborations, which often continue to exist across firm boundaries.
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small firm before their co-inventor’s death.

2.5. Conclusion

In this paper, we have shown that team-specific capital is an important ingredient of the

typical patent inventor’s lifecycle earnings and productivity, much like firm-specific capital

is crucial for the typical worker (Topel, 1991). Exploiting the premature deaths of 4,714

inventors in a difference-in-differences research design, we find that a co-inventor’s premature

death causes a large and long-lasting decline in an inventor’s labor earnings (- 3.8% after

8 years), total earnings (- 4% after 8 years) and citation-weighted patents (- 15% after 8

years). We find that this effect exists for various kinds of teams and is not limited to top-down

spillovers within the team, although the effect is larger when the survivor inventor is of lower

ability than the deceased inventor. Consistent with the team-specific capital interpretation,

the effect is larger for more closely-knit teams and primarily applies to co-invention activities

with the deceased. The paper also provides estimates of the causal effect of an inventor’s

death on coworkers and second-degree connections. We find that an inventor’s earnings and

patents are not significantly adversely affected by the premature death of a coworker at the

same firm who is not a co-inventor, nor by the premature death of an inventor two nodes

away in the co-inventor network. This evidence indicates that inventors are not difficult

to replace from the perspective of their coworkers and second-degree connections, which

underscores the unique role of teams.

Identifying the magnitude and nature of spillover effects between inventors is central to

innovation and tax policy design, because the impact of any policy may depend greatly

not just on a given inventor’s behavior but on a “multiplier effect” that affects the broader

innovation process. In this paper, we have established empirically the relevance of team-

specific capital, which generates a multiplier effect between co-inventors. This multiplier
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effect may cause a wedge between the private and social returns to the accumulation of

team-specific capital.46 Our evidence suggests that the social returns to improving the match

technology between inventors and encouraging the accumulation of team-specific capital may

be very large. For instance, high-skill immigration policy might have a crucial role to play by

increasing the supply of inventors - thus potentially reducing the fixed cost of finding a good

match and making it easier for an inventor to find substitutes for their close collaborators -

or by offering visa extensions to successful inventors - thus preserving team-specific capital

that was built during the course of successful collaborations. Without further evidence on

the exact mechanism at play, however, the policy implications of our findings can only be

tentative.

The evidence and methodology described in this paper point to several promising directions

for future research. First, the parameters of a structural model of team-specific capital for-

mation could be estimated by using the premature death shock, simulating the model with

respect to such a shock and fitting moments in the data. Second, it would be useful to

examine whether significant spillover effects exist in some subsamples of the more diffuse

networks we have considered, given that these effects are more likely to be genuine external-

ities introducing a wedge between the private and social returns to knowledge production.

Finally, given the prevalence of teamwork in modern economies, investigating the role of

team-specific capital in sectors of the economy beyond innovation and patents would be of

great interest.

46Note that, on its own, our natural experiment cannot be used to conclude whether or not such a wedge
exists. Perhaps the employer internalizes all effects, or perhaps the mobility of inventors across both teams
and firms creates a wedge between private and social returns.
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3. Patent Trolls and the Patent

Examination Process1

3.1. Introduction

This paper sheds new light on the patent acquisition behavior of non-practicing entities

(NPEs). NPEs, also known as patent assertion entities or patent trolls, garner profits exclu-

sively from IP litigation and licensing without producing or selling goods. They have grown

in prominence in the IP system over the past decade, attracting a large amount of scrutiny

and debate along the way. In the words of President Obama, “[NPEs] don’t actually produce

anything themselves. They’re just trying to hijack somebody else’s idea and see if they can

extort some money out of them.”2 The general unpopularity of NPEs within Congress has

led to several attempts to pass legislation to curb their activity, including the Strong Patent

Act3 and the Innovation Act4, but arguments over the definition of NPEs and the nature of

their activities have prevented them from passing. In defense of their business model, NPEs

argue that they serve as intermediaries that improve the efficiency of the market for ideas,

by helping resource-constrained inventors and firms enforce their patents against infringing

1Co-authored with Josh Feng.
2Google Hangout Session, February 14th 2015.
3https://www.congress.gov/bill/114th-congress/senate-bill/632
4https://www.congress.gov/bill/113th-congress/house-bill/3309
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entities.5 By law, all issued patents are supposed to cover only “novel” and “non-obvious”

inventions, but an average application gets less than 20 hours of patent examiner time, and

a large proportion of the few patents later fully evaluated in court are held invalid. A bla-

tantly invalid patent, which clearly would be overturned in court, would never be asserted

and would thus cause no harm. The criticism of patent trolls is based on the concern that

they puchase and assert patents that are not clearly invalid, but are “weak” - they may well

be invalid, but nobody knows for sure without conclusive litigation.6 On average, do NPEs

tend to purchase “weak” patents? We give a positive answer to this question by documenting

that, unlike regular firms, NPEs purchase and assert patents that were granted by a specific

set of examiners, who tend to allow incremental patents with vaguely-worded claims that

are therefore more likely to be “weak.”

In addition to being the first large-scale empirical study of the patent acquisition behavior

of patent trolls, this paper speaks to another important debate about the patent system:

do patent examiners have a significant influence on the eventual outcomes and uses of the

patents they grant, or do existing rules at the United States Patent Office (USPTO) con-

straint them such that they have little ability to reject of modify patent applications7?

Answering this question is key to establish whether policy changes related to examination

practices have an important role to play in reforming the Intellectual Property (IP) system.

Recently, the United States Patent Office began implementing the so-called Enhanced Patent

Quality Initiative (EPQI), which aims at improving patent correctness8 and clarity9 by train-

5As explained on Intellectual Ventures’ website, “We purchase patents from individual inventors, start-ups,
large corporations, research institutions, and everything in between. By acquiring these inventions, we
provide capital to inventors and give their ideas a better chance of getting into the marketplace.”

6As is well-known, most litigation cases involving patent trolls are held at the Eastern District Court of Texas,
which is widely believed to have a pro-plaintiff bias.

7For instance, it may be very difficult for examiners to reject weak patents because the rules of the USPTO
are such that the burden of proof of non-patentability rests on the examiners. This view is articulated in
Lei and Wright (2009), who emphasize that other patent offices like the European Patent Office place much
fewer constraints on the examiners.

8Correctness refers to correctly judging whether an application meets all patentability criteria.
9Clarity refers to whether the granted patent clearly defines the technology covered by it.
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ing examiners and running pilots to detemine which examination practices can best achieve

these two goals. In a recent blog post10, Michelle Lee, Director of the USPTO, suggested

that the renewed focus on clarity in the EPQI was necessary because of “the evolving patent

landscape” and that improving patent clarity could reduce “needless high-cost court pro-

ceedings.” Given the examiner-focused policies included in the EPQI and its intended goals,

whether examiners actually have a significant influence on eventual outcomes and uses of

patents is an important policy question.11 We show empirically that patent examiners at the

United States Patent Office indeed have a large causal impact on how their granted patents

are used within the intellectual property system. Their impact is evident both through the

“extensive margin” of accepting or rejecting patent applications and through the “inten-

sive margin” of forcing modifications to patent applications during the examination process,

which includes a “back-and-forth” between the applicant and the examiner. More broadly,

our evidence shows the importance of the micro-determinants of intellectual property: im-

portant patent outcomes like litigation largely depend on examiner behavior and not simply

on macro-determinants of the IP system such as the statutes in Title 35 of the US code.

Our research design starts from the fact that patent applications are conditionally randomly

assigned to examiners.12 Specifically, within an art unit13, applications that are not con-

tinuation applications are randomly assigned to examiners. Leveraging this fact, we adapt

the methodology used in the teacher value-added literature to estimate the causal impact

examiners have on the probability that their granted patents are litigated or purchased by

10http://www.uspto.gov/blog/director/entry/enhanced_patent_quality_initiative_moving
11This paper is thus related to a growing literature in public economics that studies how to improve the
management and retention of employees in the public sector, in particular in the context of teachers (e.g.
Chetty et al., 2014).

12This fact has been discussed in Lemley and Sampat (2012). We have conducted our own interviews with
patent examiners and the novely of our approach is to exclude continuation applications (including con-
tinuation, continuation-in-part, and divisional applications). This is an important adjustment for NPEs’
portfolios, which have a high share of continuation patents, as documented in Section 3.3.

13Art units are small working groups, typically composed of about twenty examiners processing patent appli-
cations in similar technology classes.
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NPEs. The intuition underpinning this research design is as follows: start from a patent

outcome such as NPE purchase, calculate the share of an examiner’s granted patents that

feature this outcome, and compare this share across examiners working in the same year and

art unit. If there is large (and sustained) heterogeneity in this share across examiners for a

particular outcome, then our methodology will yield a large causal effect of each examiner

for this outcome. We find that there is significant variation in the examiner causal effects

for both litigation and NPE purchase outcomes. The signal standard deviation of the ex-

aminer causal effect distribution for patent assertion by NPEs corresponds to about 62% of

the baseline patent assertion rate. The corresponding number for NPE purchase is 51%. In

contrast, it is much lower for purchases by regular entities, around 14%. This provides initial

evidence that examiners do have a significant influence on important IP market outcomes,

and that the patent acquisition behavior of NPEs differs from that of regular firms.

As a second step, we look for mechanisms that explain the examiner variation in each of

these outcome variables. To do so, we calculate the causal effects of each examiner for

various behaviors observed during prosecution, such as their tendency to edit the text of

the application and to cite various patentability criteria when rejecting a patent application.

Using detailed prosecution data in this way allows us to measure whether a given patent

examiner typically clarifies, narrows or rejects patent applications, which in turn allows us

to infer the whether the patents granted by this examiner tend to be “weak.” Then, we use

leave-one-out versions of these examiner causal effect to predict the actual outcome of a given

patent, such as NPE purchase and assertion in litigation. Another way to view this exercise

is from a patent statistics perspective: we are projecting examiner characteristics onto the

patents that they grant, and then comparing these randomly assigned characteristics across

patents that are or are not purchased by NPEs. We discuss in the main text the selection

effects inherent in this research design (some outcomes are observed only conditional on the

patent application being granted).
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We find that patents purchased by NPEs are, on average, granted by examiners who allow

more incremental patents and patents with vaguer language. This result also holds for the

subset of patents that are asserted by NPEs in litigation. As a comparison, practicing entity

purchasing behavior exhibits very little dependence on the tendencies of examiners. An

interesting point to note is that patents litigated by practicing entities also appear to be

more incremental and vaguer relative to others in their technological cohort, but the effect

sizes are much smaller than those exhibited by NPE litigated patents.

Taken together, our results suggest that NPEs purchase and assert different types of patents

than regular firms, and appear to engage in some degree of rent seeking by purchasing patents

for reasons orthogonal to or even negatively correlated with technological merit and social

value. In ongoing work, we are looking for additional evidence that NPEs tend to buy and

assert “weak” patents by studying whether the examiners that grant NPE patents tend to be

reversed during appeal procedures at the patent office or invalidated in non-NPE lawsuits.

In terms of policy, our results suggest that examiner-focused reforms at the USPTO, such

as examiner training or hiring more examiners, may have high social returns in terms of

limiting the supply of inputs desired by NPEs. The lower-bound cost estimates we obtain

in the paper, albeit in a partial equilibrium framework, suggest that these policies may

represent excellent public investments, with expected returns close to 80%.

There are a few caveats and limitations to our study, but we believe they do not alter the

general interpretation of our results. First, we only analyze observable outcomes in the IP

system such as patent transfer and patent litigation, which do not encompass other important

outcomes such as demand letters and licensing. Second, we may not have found all patents

belonging to NPEs, given their tendencies to obfuscate their portfolios using shell companies,

but this would only weaken our quantitative results. Finally, the nature of our methodology

means that we are unable to make judgments on the behaviors of specific NPEs if they

have small patent portfolios. This means that there may be NPEs that act more like IP
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intermediaries rather than rent seekers. However, given our findings, reforms to the patent

examination process would actually serve as a sharp policy instrument, affecting only NPEs

that rely on vague and obvious patents.14

The remainder of this paper is structured as follows. Section 2 provides background on the

patent examination process, non-practicing entities, and patent and USPTO policies. Section

3 presents summary statistics and preliminary evidence based on the data we collect on NPE

patent purchases and USPTO examiners. Section 4 describes the empirical framework and

presents the baseline results on the size of the examiner causal effects. Section 5 conducts

heterogeneity analysis to distinguish betwen various mechanisms. Section 6 discusses policy

counterfactuals using our computed results. Section 7 concludes and discusses directions for

future research.

3.2. Background

3.2.1. USPTO Examination Process

This paper relies extensively on the data from and the features of the patent examination

system at the USPTO, which we describe briefly here.15 When the USPTO receives a patent

application, it first sends it to a vendor to classify the application based on technological

area. Based on this initial classification, the application is then assigned to one of around 600

art units, which are comprised of groups of examiners with similar technological expertise.

Once assigned to an art unit, the patent is assigned to examiners either based on examiners’

current workload or based on the last digit of the application (Lemley and Sampat (2012)).
14As we will discuss later, such reforms would be beneficial even if NPEs served as efficient screening inter-
mediaries that sift through patents with vaguely worded claims for ones with technological value. Reforms
would deal with the vague claim problem at the source rather than having NPEs fund their screening through
costly litigation.

15See Appendix B of the Sampat and Williams working paper for a more detailed explanation. See Lemley
and Sampat (2012) for a detailed exploration of the assignment system.
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As discussed in greater detail later in the paper, this assignment process is as good as random

within art units.

Once the application has been assigned to an examiner, it is then evaluated by the examiner

to ascertain whether it meets all the criteria for grant. If it does, then the examiner grants

the patent immediately. According to USPTO figures, the percentage of patents granted

right away (“first action”) is around 10% only (Carley et al (2014)). Typically, the examiner

issues either a final or a non-final rejection, also known as blocking actions, citing all of the

eligibility criteria that are not met by the patent application. After rejections of either type,

the applicant can abandon the application or send a response to the patent office, often

editing the text of the application in order to address the criteria that the patent examiner

deemed unmet. This then starts a back-and-forth process between the examiner and the

applicant until the application is either approved or abandoned. In our analysis, we focus on

applications with either of these outcomes, also known as disposed applications. The nature

of the examination process described above shows that there is a possibility for examiners

to differ not only in terms of the rate at which they grant patent application (as has been

extensively discussed in the existing literature using “examiner instruments”), but also in

terms of how they affect the nature of the eventually granted patent (breadth, clarity, etc.).

Examiners can affect the nature of the patents they grant through the aforementioned block-

ing actions. Based on the criteria cited in a rejection, an applicant will accordingly edit the

text of the patent application before sending it back to the examiner. The main patentabil-

ity criteria that examiners cite when blocking an application are the following sections from

Chapter 35 of US Code:

1. Section 101 (Patentability and Utility): The patent needs to satisfy eligibility require-

ments and have the potential to be useful.

2. Section 102 (Novelty): The patent’s claims are not covered in the prior art or in older
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academic literature.

3. Section 103 (Non-obviousness): The difference between the invention and prior art is

significant enough that it would not have been obvious to a “person having ordinary

skill in the art.”

4. Section 112, paragraph one (Sufficient disclosure/“Enablement”): The application

“shall contain a written description of the invention... in such full, clear, concise,

and exact terms as to enable any person skilled in the art ... to make and use [the

invention].”

5. Section 112, paragraph two (Claim clarity/“Definiteness”): “The specification shall

conclude with one or more claims particularly pointing out and distinctly claiming the

subject matter which the inventor or a joint inventor regards as the invention.”

We show later that there is consistent and substantial variation in the usage of these provi-

sions across examiners within the same art unit in any given year. The main focus of this

paper will be on Section 103 and Section 112, paragraph two (also known as 112(b)), because

these two blocking actions rely on the subjective judgement of the examiner, as reflected by

the adjectives used to define them (“obvious” and “clear”), and because they can be used to

test for the rent seeking behavior of NPEs.

One last element relevant for our discussion is the aforementioned claims of a particular

patent. As noted in Section 112(b), claims in an application attempt to summarize and

delimit the boundaries of a particular invention. The interpretation of text in a patent’s

claims is often the main focus of patent litigation. One concern with unclear claims text is

that there will be many interpretations, and therefore a higher likelihood of confusion and

disagreement over whether a product infringes on the patent. Examiners who are more likely

to issue 112(b) blocking actions will on average grant patents with clearer claims text.
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3.2.2. Relationship to Existing Literature

This paper builds on and contributes to several literatures. First, there is a growing eco-

nomic and legal literature on NPEs. Cohen, Gurun, and Kominers (2014) investigate the

characteristics of the defendants in NPE litigation. They find that NPEs tend to target

firms with positive cash flow shocks, even if the cash flow shock hits a subdivision of a

conglomerate that is different from the one accused of infringement. They also document

other characteristics of firms targeted by NPEs such as number of lawyers, which provide

evidence that NPE behavior is unrelated to actual infringement. Our paper complements

their analysis by focusing on the characteristics of the key inputs in the NPE production

function, namely patents. Despite their differences in focus and methodology, in line with

our results they find that the behavior of NPEs is driven by factors unrelated to conventional

use of the IP system, which can be thought of as purchasing patents based on technological

merit and litigating based only on patent infringement.

Another strand of the NPE literature that we rely on is the classification of NPEs, which

has generated widespread disagreement within academia and policy-making circles.16 One

simple approach is to apply an NPE label to any entity that makes all or most of its revenues

from licensing and litigation. However, this broad definition would apply to technology

development companies, some university-based IP entities, and failed start-ups, entities that

many consider to be important to the innovation system. To address this issue, a recent paper

by legal scholars Cotropia, Kesan, and Schwartz (2014) manually classifies all plaintiffs of IP

lawsuits in the years 2010 and 2012, assigning each plaintiff to one of eight categories.17 Their

categories attempt to distinguish between possibly rent-seeking patent holding companies

16Including the recent debate in Congress over how to define the entities which the proposed fee-shifting
provisions in the Innovation Act (H.R. 3309) would apply to.

17University/College, Individual/family trust, Large aggregator, Failed operating company/failed start-up,
Patent holding company, Operating company, IP Holding company of operating company, and Technology
development company.
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and large patent aggregators on the one hand and the aforementioned “benevolent entity

types” on the other hand. We make use of multiple sources in generating our NPE portfolios,

and ascertain that our core results are robust to various portfolio construction methods.

In addition to Cotropia et al. (2014), there are several papers in the legal literature that

provide descriptive evidence of NPE behavior. Fischer and Henkel (2012) show that patents

acquired by NPEs are classified under more technology classes and received more citations,

traditional measures of patent value. An earlier study, Allison, Lemley, and Walker (2009),

considered patents that were litigated multiple times, and also found that they received more

citations and were most likely to be owned by NPEs. These broad patterns also appear in

the data we have collected, but our approach addresses possible endogeneity problems in ci-

tation statistics, such as the “publicity effect” of litigation on citations discussed by Lanjouw

and Schankerman (2001). Our analysis suggests that in our specific setting, citations and

independent claims may not be a valid indicator of social or technological value.

On the USPTO side, there is a literature focusing on the patent examination process. As

mentioned earlier, we use the random assignment of applications for our identification strat-

egy, a feature also exploited by Sampat and Williams (2015) in their investigation of follow-

on innovation in human genome patents. Their and our work build on Lemley and Sampat

(2012), which studies the issue of random assignment in detail by interviewing USPTO ex-

aminers. They found that random assignment within art units is plausible. Our contribution

here is twofold. First, we show the importance of removing continuation applications, other-

wise IV estimators are biased because continuation applications are not randomly assigned.

Second, we show that examiners have an effect beyond the decision of granting the patent:

they affect the nature of the granted patent (breadth, clarity, etc.), which is important to

consider when gauging the validity of the exclusion restriction in any IV framework based

on examiner assignment.

Beyond the issue of random assignment, the USPTO literature also discusses the validity
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of issued patents. There is a growing consensus, reflected in recent legislation, that US

Patent Office examiners issue many patents of dubious validity. There is a debate as to

whether this is primarily due to examiners’ inability to distinguish these from other valid

applications or to institutional constraints that make it very difficult for examiners to reject

patents. Lei and Wright (2009) document that examiners distinguish weak patents from

others that are stronger and, bearing the burden of proof of non-patentability, search more

intensively for prior art that might bolster a case for rejecting weaker patents. They conclude

that USPTO rules and procedures induce informed examiners to grant many of these weak

patents. In contrast, we find that examiners have a large effect on the nature of the patents

they grant and that their behavior does not appear to be significantly constrained by the

existing USPTO rules and procedure.

Previous research has established that although patent examiners are charged with a uniform

mandate, in practice examiners have a fair amount of discretion, and this discretion appears

to translate into substantial variation in the decisions different examiners make on otherwise

similar patent applications (Cockburn et al., 2003; Lichtman, 2004; Lemley and Sampat,

2010, 2012). Our research builds on the basic strategy used in Cockburn et al (2003) - we

compute examiner effects with newer methodology to generate reliable magnitudes, analyze

a different setting (NPEs and patent assertion), and add the extra step of correlating exam-

iner effects with detailed data on the application process that was not available to earlier

researchers.

Our methodological approach is adapted from the teacher value-added literature (Kane and

Staiger (2008), Chetty et al. (2014)). Our paper is the first, to our knowledge, to apply this

methdology in the setting of intellectual property. In addition, we discuss methodological

issues in the case of rare and binary outcomes. Our methodology is also related to the

examiner or judge leniency instrumental variables approach, used for instance by Sampat and

Williams (2015) in the context of patent examination to analyze follow-on innovation. We
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discuss this link in greater detail in Appendix D. An additional methodological contribution

here is to show that the validity of the instrument requires the exclusion of continuation

applications.Our focus is on the “intensive margin”, namely the effect an examiner has

on a patent conditional on grant. But we also show results in the appendix using the

examiner leniency methodology, which encompasses both intensive and extensive margins.

The motivation for focusing on the intensive margin is that it allows us to move beyond just

the effect of approval on outcomes and analyze changes in the nature of the patent.

Finally, our paper indirectly contributes to the vast patent statistics literature. Key papers

in this area include Pakes (1986) and Hall, Jaffe, and Trajtenberg (2001), which look at

patent value in the context of optimal renewal decisions and forward citations, respectively.

Other papers in the literature investigate the role of scope (Lerner (1994)) and the number

of independent claims as markers of patent value. Our methodology introduces a new set

of randomly assigned patent statistics based on the projection of examiner tendencies onto

the patents that they grant, which avoids endogeneity issues in some of the aforementioned

widely-used statistics.

3.3. Data and Descriptive Statistics

3.3.1. Data Construction

We combine several data sources for our analysis. The first is patent data on both granted

and ungranted applications. The American Inventors Protection Act of 1999 stipulated

that patent applications filed on or after November 29, 2000 would be published eighteen

months after the filing date. Prior to the legislation, the USPTO only published application

information for granted patents. We make use of the Patent Examination Research Dataset

compiled by the Chief Economist Office at the USPTO, and discussed in Graham, Marco,
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and Miller (2015). This covers applications in the period from November 2000 through

December 2014. In our data, we see about 12,000 unique examiner names, and 650 unique

art unit codes. We also make use of the patent data collected by Lee Fleming and co-authors
18, which contains organized extracts of the patent information made available by Google,

and process the data using their name matching algorithm to assign inventor and assignee

identifiers to each patent. Finally, we also process the aforementioned organized extracts

from Google to obtain additional information on non-patent citations and IPC/CPC patent

classifications.

In addition to basic patent application and grant information, we also make use of application-

level blocking action data collected by Frakes and Wasserman (2015), which they have gener-

ously shared with us. As discussed earlier, data on blocking actions will give us added insight

into the nature of patents granted by each examiner, and has, to our knowledge, not been

used before Frakes and Wasserman (2015).19 The Frakes and Wasserman data covers all

applications filed after January 2001 and that are disposed by July 2012, which is only part

of the sample available through Patent Examination Research Dataset. The applications

in this set, which will serve as our core analysis sample, covers about 1.9 million disposed

applications and 1.27 million granted patents (versus 2.68 million disposed applications and

1.82 million granted patents in the Patent Examination Research Dataset). We perform

various robustness checks on the unrestricted sample.

Second, we collect data on NPE patent portfolios. The starting point of our exploration

centered around the patent portfolio of Intellectual Ventures, a prominent NPE. Intellectual

Ventures holds an estimated 25-30k US patents, and released a list of around 20k on their

website in November of 2013. As we note later, some of these patents are applied for by

Intellectual Ventures, and we exclude them in our formal analysis. To augment this data,
18The data is from the Patent Database Search Tool available at http://rosencrantz.berkeley.edu/
19This data is also collected by IP service websites such as Juristat, an indication of the important role of
examiners in the patent application process.
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we constructed NPE lists using two data sources on NPE names. Our main source is a

set of entity names shared with us by RPX, a defensive patent aggregator that monitors

NPE activity. The list of entities identified by RPX is similar to the one used in Cohen

et al. (2015), because RPX recently purchased PatentFreedom, the source of their data.

However, an important point to note is that we exclude individuals and universities from the

list used by RPX in their reports.20 A second source for NPE names comes from Cotropia

et al (2014).21 The limitation to this approach is that their paper only classifies plaintiffs

of IP lawsuits in the years 2010 and 2012, so it would miss entities that are only active in

other years. Both lists are then matched to assignee name in the Patent Assignment Dataset

recently constructed by Alan Marco, Amanda Myers, and their colleagues at the USPTO

and discussed in Marco et al. (2015).

Third, we use a combination of sources to look at lawsuits involving patents. This includes

data from LexMachina, Darts IP, and RPX, three organizations that track intellectual prop-

erty lawsuits and NPE activity. Our NPE lawsuit indicator is also derived from RPX clas-

sifications. This follows the approach taken by Cohen et al. (2015). Each of these sources

tracks intellectual property lawsuits since 2000, which is ideal for our analysis because we

start observing abandoned applications in November of 2000. In addition, LexMachina tracks

patents that are eventually appealed through inter partes review, which was instituted as

part of the America Invents Act.

Fourth, we collect additional characteristics on each published application and granted

patent. This includes the text in the claims section of both applications and granted patents,

backwards citations by who added it 22, assignment information by type of event, and mainte-

nance fee payment information. For performing robustness checks, we also collect additional

20We additionally exclude Wisconsin Alumni Research Corporation and Children’s Medical Center Corpora-
tion, which RPX classify as companies.

21Publicly available at npedata.com
22Either the examiner or the applicant. This data is available back to 2001.
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patent-level indicators for special types of patents, including ones purchased by regular firms,

assigned to universities, and listed in the FDA Orange Book.

3.3.2. Summary Statistics

In this subsection, we provide some summary statistics based on the data sources described

above, in order to offer a clearer picture of the patent examination process at the USPTO

and the types of patents litigated and purchased by NPEs. Throughout the section, we will

exclude continuation applications from our summary stats, as our core analysis will do the

same in order to maintain random assignment. We include summary statistics based on all

applications in the Appendix.

3.3.2.1. Art Units and Examiners

We start by describing various patterns in our USPTO examination data. We present the

basic structure of art units at the USPTO and document the amount of variation across

art units and examiners for various variables, particularly NPE purchases and indicators for

various types of examiner behavior.

Overall, there are 670 art units in our dataset. 559 of these art units have at least one

granted patent ending up in an NPE portfolio (around 83%). Art units exhibit significant

variation in attributes. There is a long right tail for most statistics, and with the level of

NPE activity having the highest spread. The top art units in terms of NPE Patent Rate are

in the areas of Data Processing (3621, 3622, 3685, 3688) and Communications (2631, 2637).

Detailed summary statistics at the art unit level are shown in Appendix A. In this section,

we will focus on statistics at the art unit by application filing year level, which is the level

at which there is random assignment, and patent examiners, who create the variation used

in our study.
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First, we look at the statistics at the art unit by year level, which is the level at which

applications are randomly assigned to examiners. There are NPE purchased patents in

about 50% of the 7,156 art unit by year data points. The results are displayed in Table

3.1. We also look at blocking actions on patent applications within each art unit and year,

including appeals to requirements listed in Section 101 (patentability and utility), Section

102(a) (novelty), Section 103(a) (non-obvious), and Section 112(b) (clarity in claims text).

The use of 103(a) and 112(b) appear to be somewhat frequent, although 112(b) has a higher

degree of variation across art units.

Table 3.1.: Art unit by year level statistics

Art unit by year level statistics Median Mean Standard Deviation Max
Examiners 15 15.5 15.0 155
Cases Processed 142 331 461 4510
Patents Granted 69 221 328 2538
NPE Patents 0 2.26 6.64 129
Grant Rate 0.64 0.62 0.20 1
NPE Patent Rate 0.001 0.011 0.020 0.333
Use of Section 101 0.029 0.097 0.132 0.667
Use of Section 102(a) 0.014 0.020 0.022 0.2
Use of Section 103(a) 0.47 0.45 0.20 0.96
Use of Section 112(b) 0.20 0.21 0.13 0.77

Notes: This table summarizes the statistics computed at the art unit by application year level,
weighting each art unit by year equally. NPE patents are identified using the RPX list of entities,
using the routine discussed in Section 3.3.1. Grant rate refers to the fraction of disposed applications
(as of December 2014) that are granted in a given art unit by year. The NPE Patent rate refers
to the fraction of granted patents in an art unit by year that have been purchased by NPEs (as
of December 2014). “Use of Section” variables refer to the sections in Chapter 35 of US Code
(discussed in Section 3.2.1) that are cited in examiner blocking actions.

Next, we show the statistics associated with patent examiners in Table 3.2. This gives us a

basic idea of the amount of variation across examiners. There are 12,032 unique examiners,

and 98.7% of the examiners are at one point assigned to an art unit with some NPE activity.

There is significant variation amongst examiners in all of the computed statistics, with the
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NPE rate having the highest spread relative to the mean. A major part of this variation

comes from across art unit differences, as discussed above. In addition, there is also noise in

the sets of applications that examiners receive. In the remained of the paper, we use various

approaches to eliminate the noise and identify the signal variance coming from examiners:

we find that it is still substantial.

Table 3.2.: Examiner level summary statistics

Examiner Level Statistics Median Mean Standard Deviation Max
Cases Processed 119 190 215 1600
Art Units 2 1.80 0.96 7
Years in Data 7 6.35 3.19 12
Patent Grant Rate 0.59 0.57 0.23 1
NPE Patent Rate 0 0.011 0.023 0.5
Use of Section 101 0.029 0.092 0.129 0.738
Use of Section 102(a) 0.010 0.019 0.025 0.240
Use of Section 103(a) 0.49 0.47 0.17 0.95
Use of Section 112(b) 0.19 0.21 0.13 0.76

Notes: This table summarizes the statistics at the examiner level, weighting each examiner equally.
Rate computations are restricted to examiners with more than 20 cases in the data. The variables
here are computed in the same way as the ones shown in Table 3.1.

3.3.2.2. NPE Purchased Patents

In this part, we explore these characteristics of patents purchased by NPEs, in order to

understand NPE purchasing tendencies and the technological areas and industries in which

they are the most active. Once again, we exclude continuation applications from our main

analysis, and report overall numbers in the Appendix. The main findings here are that NPE-

purchased patents are predominantly concentrated in computer hardware and software, and

NPE patents have very different pre- and post- examination features relative to the average

patent.

We start by looking at the patent classes in which NPEs are the most active. In Table 3.3,
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we display aggregate counts of all patents held by NPEs, at the NBER category and sub-

category level (Hall et al (2001)). This confirms the general view that many of the patents

are concentrated in IT, although there are a small number of patents in other fields. As a

comparison, we have also computed similar statistics for non-NPE asserted patents in Table

C.3, and found a very different composition of categories. Of course, this evidence alone

does not help differentiate between the two theories on NPE behavior, as it could be that

the most resource-constrained firms are in IT.
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Table 3.3.: NPE Patent Holdings by NBER Technology Category

Panel A: Primary Technology Categories
NBER ID Category Name Patents

2 Computers & Communications 7,587
4 Electrical & Electronic 3,050
5 Mechanical 684
- New Classes (since 2001) 629
6 Chemical 415
1 Others 392
3 Drugs & Medical 198

Panel B: Secondary Technology Categories
NBER ID Subcategory Name Patents

21 Communications 3,368
22 Computer Hardware & Software 2,868
46 Semiconductor Devices 1,147
24 Information Storage 900
- New Classes (since 2001) 629
41 Electrical Devices 496
23 Computer Peripherials 451
49 Miscellaneous-Elec 411
45 Power Systems 359
42 Electrical Lighting 352
54 Optics 294
19 Miscellaneous-chemical 282
69 Miscellaneous-Others 231
59 Miscellaneous-Mechanical 211
43 Measuring & Testing 159

Notes: the NPE patents are identified based on RPX classifications (see Section 3.3.1). We take
the primary USPTO technology class for each patent, and then aggregate up to subcategory and
category levels, using the NBER patent crosswalk provided by Hall et al. (2001).

Next, we look at the sources of patents owned by NPEs. To do this, we look up the original

assignee on each NPE patent in our list. The results of this exercise are shown in Table

3.4. The plurality of the roughly 35k NPE owned non-continuation patents are initially

unassigned. In addition, some patents are initially assigned to entities associated with In-

tellectual Ventures, such as The Invention Science Fund and Searete. Since the focus of
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our paper is on patent acquisition, we will not count these patents as NPE-purchased for

our formal analysis.23 Another interesting point to note is that while some of these patents

were originally assigned to companies that have gone through bankruptcy (Eastman Kodak

and Polaroid Corporation), others were initially owned by firms that have not, such as GE,

Lucent, and Micron. As we discover later in our analysis with initial-assignee fixed effects,

firms with many granted patents also appear to selectively sell their vaguer and more obvious

patents to NPEs, so our effect is only partly driven by cross-firm differences and individual

inventors.

Table 3.4.: Aggregate NPE portfolio patent counts by initial assignee

Initial Assignee # Patents Initial Assignee # Patents

(Unassigned) 1,434 Harris Corporation 104
Eastman Kodak Company 806 MIPS Technologies, Inc. 93
Micron Technology, Inc. 381 NEC Corporation 84
Telefonaktiebolaget L M Ericsson 334 MOSAID Technologies 83
Nokia Corporation 322 DaimlerChrysler AG 79
Koninklijke Philips Electronics 302 NEC LCD Technologies 76
Matsushita Electric Industrial Co, Ltd. 256 Empire Technology Development 71
NXP B.V. 230 Lucent Technologies Inc. 70
Panasonic Corporation 195 Raytheon Company 69
American Express Travel Related 167 University of California 68
Global OLED Technology LLC 146 DPHI Acquisitions, Inc. 67
Hynix Semiconductor Inc. 127 Lite-On Technology Corp. 66
Industrial Technology Research Institute 125 Cypress Semiconductor Corporation 65
Virginia Tech Intellectual Properties 120 Searete LLC 64
The Invention Science Fund I, LLC 111 LG Electronics Inc. 60

Notes: We use assignee names from the Lee Fleming database. Italics indicate entities associated
with Intellectual Ventures (patents granted directly to them). For entities other than Intellectual
Ventures, we include only patents that are assigned to them, but not as part of an “employer
assignment,” as classified in the USPTO assignment dataset.

Finally, we compare basic statistics of NPE-purchased patents with other patents in their
23As detailed in the appendix, the rest of the portfolio is constructed excluding patents that are initially
assigned to NPEs on our lists. On a different but related note, we verify that Intellectual Ventures patent
applications appear to be randomly assigned to patent examiners, which is consistent with our identification
assumption.
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technological cohort. The main takeaway from this exercise is that patents purchased by

NPEs have different initial and post-examination characteristics relative to other patents in

the same cohort.

To construct a crude control group, we take all granted patents that had the same application

year and art unit assignment as an NPE patent, and re-weight the control patents based

on the number of NPE patents in their cohort. The statistics we compute include ex-

ante characteristics, such as the number of independent claims in the initial application,

examination characteristics, such as the frequency of blocking actions and changes in words

in the primary claim, and ex-post outcomes. such as forward citations and re-assignment

events.The results are shown in Table 3.5. The statistics presented here are robust to the

NPE list we use.24

24Including removing all Intellectual Ventures patents to look at the portfolio of the rest of the NPEs and
looking at the Kesan list of patent holding companies and large aggregators.
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Table 3.5.: Summary Statistics: NPE vs. Non-NPE Patents

Statistic NPE Patents Control Patents Difference

Initial Application Characteristics
Independent claims at Application 5.00 4.07 0.92***

Examination Outcomes
Examiner leave-one-out allowance rate 0.766 0.759 0.006***

Number of Examiner Rejections 1.93 1.87 0.06***
Change in # Independent Claims -1.58 -0.83 -0.75***

Use of Section 101 - Lack of utility or eligibility 0.085 0.090 -0.005**
Use of Section 102 - Prior art exists 0.021 0.019 0.002

Use of Section 103 - Obvious invention 0.48 0.47 0.01
Use of Section 112(a) - Improper Disclosure 0.059 0.051 0.008***

Use of Section 112(b) - Vague Claims 0.18 0.17 0.012***
Post-grant Outcomes

Citations 8.86 6.71279 2.14***
Number of re-assignments 1.67 0.36 1.31***

Date of latest re-assignment relative to grant (days) 1245 881 364***
Involved in IP Litigation 0.035 0.005 0.030***

Inter Partes Review Instituted 0.0042 0.0002 0.0040***

Notes: For each NPE patents, identified using the RPX list as discussed in Section 3.3.1,
we take the set of non-NPE patents in the same art unit and application year cohort, and
re-weight them so that there is the equivalent of one control for each NPE patent. Then,
we compute average characteristics and outcome values for each group and also compute
the difference in means. Examiner leave-one-out allowance rate for each patent is computed
based on Equation 3.1. * p-value < 0.1, ** p-value < 0.05, *** p-value < 0.01

The results show that there are significant differences between NPE-purchased patents and

others in the same year and technological cohort. In terms of characteristics at the start of

application, the set of NPE-purchased patents have a higher number of independent claims

at application. This suggests that the applications aim to claim a broad scope, but as we see

in the average number of changes in independent claims, many of these are removed before

final grant.

Next, the examination indicators provide a mixed message. NPE-purchased patents come

from examiners with a slightly higher leave-one-out grant rate, although this is a noisy
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measure of true examiner approval rates. In addition, these patents tend to have more

examiner rejections (“final” and “non-final”) and more independent claims removed. There

is also significantly more 112(b) usage on the NPE-purchased patents, although this could

suggest either a vaguer application to begin with or examination by more stringent examiners.

Finally, in terms of eventual outcomes, NPE-purchased patents are more likely to be cited.

Citations have been the primary measure of patent value in the literature, but as pointed out

earlier, part of the difference here could be from an exposure effect.25 NPE-purchased patents

are also more frequently re-assigned, although this is partly mechanical, as we construct

this group based on re-assignment data. Furthermore, conditional on re-assignment, NPE

patents are more likely to be purchased later in a patent term than other purchased patents,

a result similar in nature to Love (2013), which finds that NPEs assert patents late in their

term. These patents are also more than seven times more likely to end up in litigation,

and twenty times more likely to be instituted under the new Inter Partes Review system.26

These post-grant outcomes are where the two groups of patents differ most, but some of this

is unsurprising given that the groups are defined based on a post-grant outcome, namely

purchase by an NPE.

In general, the simple comparisons are hard to interpret, as they reflect both the nature

of the original application and the changes made by the patent examiner, which sometimes

create offsetting differences. Of course, we could look to improve the matching criteria to

create a better control group, but this is not always feasible because of the limited number

of patents within each art unit cross year cohort and hard-to-measure quantities such as

vagueness of the initial claims language. Instead, as we explain in our methodology, we
25One particular way this could work is through the threat of “inequitable conduct” rulings. A patent holder
can have his patent ruled unenforceable if he can be shown to have deliberately not cited prior art in his
patent application. An applicant can avoid this risk by citing all widely known patents that are involved in
lawsuits or are in the news.

26Instituted cases represent appeals where the petitioner has a “reasonable likelihood” of prevailing. We use
this outcome as there have been very few cases with final verdicts under this new system put in place after
the America Invents Act.
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indirectly control for differences across applications by looking for consistency of examiner

differences over time, leveraging random allocation.

3.3.3. Examiner Variation

Next, we present evidence on random assignment of patent application to examiners and we

show preliminary evidence on the heterogeneous effects examiners have on patent outcomes.

To show preliminary evidence on the heterogeneous effects examiners have on patent out-

comes, we rank examiners by their allowance rate and blocking action usage, and look

for variation in the fraction of litigated and NPE purchased patents across the quartiles.

Specifically, for each granted patent, we compute an examiner leave-one-out allowance rate,

excluding that particular case from the calculation.

Leave− one− out Allowance Ratei =
∑
k 6=i,k∈J(i) GrantDecisionk

NJ(i) − 1 (3.1)

where i is the granted patent of interest, J(i) is the set of (granted and ungranted) patent

applications processed by the examiner who granted patent i, and NJ(i) is the number of

applications in J(i). A high value for this variable indicates that patent i was granted by an

examiner who grants a high share of the patent applications they process. We use a similar

approach to compute leave-one-out blocking action usage.

Figure 3.1 shows the relationship between examiner leave-one-out means over their whole ca-

reer and subsequent granted patent outcomes, such as NPE purchase and non-NPE purchase.

The NPE purchase outcome shows a strong positive association with examiner leave-one-out

grant rate, a relationship that is much weaker for the non-NPE purchase outcome. In addi-

tion, NPE purchase is negatively associated with examiner usage of 103(a) blocking actions,

whereas non-NPE purchase is uncorrelated.

One main problem with pooling data from an examiner’s entire career is that we could be
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capturing secular technological variation over time. To check for this, we have also compute

leave-one-out means at the art unit by year level, which is the approach taken by Sampat and

Williams (2014). The results are reported in Figure C.1, and provide further evidence that

patents granted by examiners with a higher allowance rate are more likely to be purchased

by NPEs. In fact, the weak positive relationship between non-NPE purchase and grant rate

disappears under this specification. Of course, neither piece of preliminary evidence addresses

noise in the grant rate calculations and the consistency of examiner rankings across years,

which we will address through our formal methodology in Section 3.4.

Figure 3.1.: Preliminary Evidence on the Relationship Between Examiner Tendencies and
Patent Outcomes
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Notes: Results are computed on the baseline sample (non-continuation granted patents covered by
Frakes and Wasserman). Examiner effects are computed as a leave-one-out mean on their entire
history. Outcome data is at the granted patent level (fraction conditional on grant). Results are
computed absorbing art unit fixed effects, and restricting to examiners who review at least 50
applications.

In order to test the validity of the random assignment of examiner, we conduct placebo tests
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by regressing a number of outcomes that were determined before the time of patent applica-

tion on the leniency of the examiner in charge of this patent application. The outcomes we

consider are either defined at the inventor level or the patent level. Specifically, we consider

three outcomes that are related to the “value” of a patent: the number of patents granted to

an inventor in previous years (as a proxy for inventor quality), the number of independent

claims at the time of publication of the application (a widely-used proxy for the quality of

a patent) and the number of words in the first independent claim (another commonly used

proxy for patent quality). In addition, we consider two outcomes that speak directly to the

exclusion restriction: the number of patents of the inventor that were purchased by or issue

to NPEs in previous years, and the number of patents of the inventor that were litgiated

in previous years. We find no statistically significant relationship between these outcomes

and the leave-one-out examiner allowance rate in our preferred sample, which excludes con-

tinuation application and repeated inventor-examiner pairs and adjusts the leave-one-out

allowance rate for docketing time patterns.27 However, if we keep the full sample of applica-

tions (which to the best of our knowledge is the current practice in the literature using patent

examiner instruments), the placebo tests fails. Restricting the sample as we do is therefore

key to preserve random assignment. These various results are reported in Appendix B.

Another key element of the research design is that our specifications are carried out condi-

tional on the patent being granted: if an application is not granted, by definition we could

not observe NPE purchase, litigation, etc... Therefore, the variation in the rate of NPE

patents observed across examiners could be due to variation in the underlying quality of

the pool of granted patents across examiners. If NPEs tend to purchase patents from a set

of examiners with a pool of granted patents of high quality, then the interpretation that

27Continuation applications are not randomly assigned and should therefore be excluded. The rational for also
excluding repeated inventor-examiner pairs (within the same artunit-year-class) is that some continuation
applications may not be properly recorded. Applications that were submitted at the same time are likely to
be assigned to the same examiner in a batch, therefore we compute the leave-one-out allowance rate only
based on applications that were docketed in different months.
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NPEs target “weak patents” would be misplaced. The underlying quality of a patent is not

observed, but we find that the examiners who have a high rate of NPE purchases or litiga-

tion also have high allowance rates (as documented above) and do no narrow or clarify the

claims of the patents as much as other examiners (as documented in Section3.5). In other

words, average patent quality should be lower in the pool of patent granted by examiners

with a high NPE rate. We test this hypothesis in Appendix B and indeed find support for

it: inventors who get granted patents by examiner with high allowance rates tend to be less

accomplished (i.e. they have been granted fewer patents in previous years). Therefore, our

results across examiners are not driven by a selection effect on quality. Appendix B provides

a more in-depth discussion of selection effects in our setting.

In the remainder of the paper, we first use a shrinkage methodology to estimate the causal

effect of examiners on the probability that a granted patent becomes part of a NPE portfolio.

We find very large effects, suggesting that the rate of patents in NPE portfolios could be

reduced by over 50% by re-designing the patent examination process. Second, we systemat-

ically investigate the characteristics of examiners with a high NPE effect, studying all types

of rejection during prosecution, changes to the claims and propensity to cite prior art. The

results confirm the suggestive findings presented in this section: a large share of the patents

that are part of NPEs’ portfolio are “weak” patents, which were granted by lenient examiners

and appear to be vaguely worded. The formal shrinkage and regression frameworks we use

allow us to establish the statistical robustness of the preliminary findings here.

3.4. Estimating Examiner Causal Effects

In this section, we describe our overall research design, discuss threats to identification, and

then show formal methodology and results on computing examiner causal effects.
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3.4.1. Research Design Overview

Our research design starts from the fact that patent application are conditionally randomly

assigned to examiners. Indeed, within an art unit, applications that are not continuation

applications are randomly assigned to examiners.28 The intuition of our research design is

to look at the share of NPE patent (patents that are eventually purchased or asserted by

NPEs) in the portfolio of granted patents of an examiner, compared with the share of NPE

patents of other examiners working in the same year and art unit. If there is substantial

heterogeneity across examiners, then we can conclude that the patent examination process

plays an important role in the activities of NPEs and we can look at the characteristics of

examiners who have a high share of NPE patents to learn about the important features of

the patent examination process and infer the patent acquisition strategy of NPEs.

The first step of our analysis is to test for “excess variance” from examiners, i.e. do NPE

shares differ significantly and consistently across examiners in the same art unit? To do

so, we employ a shrinkage methodology filtering out the noise in the data. Intuitively, if

an examiner granted only two or three patents, his estimated share of NPE patents will

be extremely noisy. We address this in various ways, following the teacher value-added

methodology in Kane and Staiger (2008) and then using a novel non-parametric Empirical

Bayes methodology we introduce as a robustness check. This analysis is reported in the

remainder of this section.

The second step, the focus of Section , is to estimate the correlation between the NPE

examiner effect estimated in the first step and other examiner effects we estimate following

a similar methodology (examiner allowance effect, examiner propensity to cite prior art,

examiner propensity to use certain kinds of blocking actions, etc.) in order to learn about
28This fact has been discussed in Lemley and Sampat (2012). We have conducted our own interviews with
patent examiners and the novelty of our approach is to exclude continuation applications. This is a very
important adjustment for NPEs’ portfolio, which have a high share of continuation patents, as documented
in Section 3.3.
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the mechanism at play.

The analogy between our setting and the teacher valued-added framework of Kane and

Staiger (2008) is as follows: we treat examiners as teachers, applications within a given

year by art unit as the student cohort, and we measure patent-level outcomes both at the

time of grant, such as claims attributes, and eventual outcomes, such as ending up in an

NPE portfolio and being asserted in IP litigation. This is analogous to the approach taken in

various papers in the teacher effects literature, such as Chetty, Friedman, and Rockoff (2012),

which uses test scores as the short-term indicator of teacher quality and wages at age 28 as

the long-term outcome of interest. In their paper, the nature of the test scores is uncertain

and higher wages are indicative of better outcomes. Here, we take the reverse approach:

we use the short-term indicators such as 103(a) and 112(b) usage to better understand the

nature of the long-term outcome, namely NPE acquisition.

3.4.2. Computing Examiner Causal Effects

The first step in our methodology is to compute an examiner causal effect. For our core

results, we adapt methodology from the teacher value-added literature. This framework

allows us to estimate an unbiased predictor of the effect that a given examiner has on a

particular outcome for a given patent. This is done by taking the examiner fixed effect in a

given year and shrinking it by a factor equal to the correlation of effects across years divided

by the level of idiosyncratic noise in the outcomes, in order to extract the signal component

in the data. These compute effects can then be treated as causal examiner effects, because

of the random assignment structure detailed above.

More precisely, our empirical framework is as follows:

Tijt = Xijtβ + aut + vijt

vijt = µj + θjt + εijt
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where i indexes the patent, j the examiner, u the art unit and t the year. Xijt represents

controls for patent application characteristics, aut represents art unit by year fixed effects,

to control for differences at the level of random assignment. µj is the examiner causal effect

of interest (assumed to be constant over time), θjt represents an idiosyncratic examiner by

cohort effect,29 and εijt is an idiosyncratic patent effect. We run Equation ?? using OLS to

obtain the residuals. We then take a series of steps to compute examiner effect estimates

using these residuals.

First, we compute the within examiner-year variance in vijt to obtain an estimate of the

variance of the idiosyncratic component:

σ̂2
ε = V ar(vijt − v̄jt)

wherev̄jt = 1
njt

∑njt
i=1 vijt, an average of residuals within a year. This step serves as an impor-

tant for later adjustments for background noise. In our context, this idiosyncratic component

has significant variance, as there are many features of patent applications that we are unable

to observe or measure.

Second, we use the covariance between the average residual in an examiner’s portfolio in

year t and year t+ 1 as an estimate of the variance in the examiner component:

σ̂2
µ = cov(v̄jt, v̄j(t+1))

where the covariance calculation is weighted by the number of patents granted by each

examiner (njt). This variance component - which we refer to as the “signal variance” of the

examiners - is a measure of the variation in examiner effects across examiners. Intuitively, if

all the true examiner µj’s are close to zero relative to the size of the outcome, we may still get

variation in the calculated annual average residuals v̄jt from the idiosyncratic error draws,

but our methodology will then pick up a very low signal covariance across years, because the
29This could result from the examiner being more familiar with certain technology cohorts or just random
fluctuations in examiner behavior over time. The key to using this framework is that θshould not be serially
correlated, which would alter the interpretation of the calculated signal variance computed in Equation ??.
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idiosyncratic components are uncorrelated.

Third, the variance of the examiner-cohort idiosyncratic component is estimated as the

remainder:

σ̂2
θ = V ar(vijt)− σ̂2

µ − σ̂2
ε

Next, we form a weighted average of the average residuals for each examiner in each year

(v̄jt) that is a minimum variance unbiased estimate of µj for each examiner. Data from each

year is weighted by its precision, with years in which the examiner granted more patents

received more weight:

v̄j = ∑
twjtv̄jt

where

wjt = hjt∑
t
hjt

hjt = 1
σ̂2
θ
+ σ̂2

ε
njt

The last step is to construct the “empirical Bayes estimate” of each examiner’s effect by

multiplying the weighted average of examiner-year residuals by a shrinkage factor:

ExaminerEffectj = v̄j
σ̂2
µ

V ar(v̄j)

where V ar(v̄j) = σ̂2
µ + (∑t hjt)−1.

The shrinkage factor is the ratio of signal variance to total variance, and is different across

examiners based on cases examined. This final quantity, the examiner effect, has two de-

sirable properties (see Appendix C for formal demonstrations of these properties). First, it

has an empirical Bayes interpretation as the Bayesian estimate of the examiner effect, with

a normal prior distribution centered around zero with variance equal to the signal variance

calculated in the second step above.

Second, it also has a frequentist interpretation: the shrinkage factor represents the coeffi-

cient of a hypothetical regression of µj on v̄j. The regression coefficient is a ratio of the
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covariance of the two expressions, in this case σ̂2
µ because the other parts of v̄j are uncorre-

lated noise, divided by the variance of the independent variable. Therefore, the estimated

ExaminerEffectj, although biased, has the same scale as the true examiner effect µj in

this model, causing it to have a lower mean-squared forecast error relative to v̄j. We believe

that the distribution of ExaminerEffectj better captures the scale of true examiner effect

distribution relative to using v̄j, and therefore report results using the former in our main

findings.30 We later verify using a split sample approach that our examiner effect has this

desired property.

One shortcoming of using this approach in our setting is that, as explained in Kane and

Staiger (2008), a Bayesian interpretation of the results requires the assumption that the

residuals of the regression are normally distributed, which may not be appropriate in our

setting given that the outcome variable is binary. Nonetheless, we include controls, in par-

ticular art unit and year fixed effects, therefore the normality assumption is not necessarily

violated. In addition, to address this this concern we also estimate the distribution of exam-

iner effects using a binomial model, in the spirit of Ellison and Swanson (2010). The results

are consistent across models, as detailed in Section 3.4 below.

3.4.3. Results

Here, we report the main results, computed using the Kane and Staiger framework. We

report the distribution of causal examiner effects for our main outcomes of interest, and also

report results on the signal variance parameter estimated as part of the methodology.

First, we plot the distribution of examiner effects on NPE purchase in Figure 3.2, keeping

all examiners and weighting by the number of cases processed.31 The baseline rate of NPE

30Using the distribution of v̄j would leave to a higher variance.
31The results without weighting are very similar.
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purchase is around 0.01, so the spread in the distribution accounts for a sizable fraction of

this baseline rate.

To be more specific, we display in Table 3.6 provides various measures of the magnitude of

these effects, expressed as a percentage of the share of NPE patents in the patent population.

For each of these results, we also compute 95% confidence intervals using a bootstrap proce-

dure, and report it in brackets in the line below the computed number. The first row reports

the signal standard deviation, estimated as explained in section 3.4.2, which amounts to a

staggering 52.95% of the NPE share. Under the Bayesian interpretation, this is the empiri-

cal Bayes estimate of the standard deviation of the distribution of true examiner effects σ̂µ.

Next, the standard deviation of the computed shrunk examiner effects distribution is around

24.33% of the baseline rate. This number is distinct from the signal standard deviation, as

it reflects the distribution of posterior means from updating the prior for each examiner.

The interquartile range of the shrunk examiner effect distribution is less than the standard

deviation, still a sizable 7.25% of the NPE share. This suggests that the shrunk examiner

effects distribution has excess density in the tails relative to a normal distribution. Finally, if

all examiners above the 75th percentile of the distribution (i.e. examiners with an unusually

high share of NPE patents in their granted patents) were replaced with examiners located

exactly at the 75th percentile of the distribution, then the share of granted patents would

decrease by 6.15%. Overall, these results indicate that patent examiners have a large causal

effect on the probability that a granted patent becomes part of an NPE portfolio.
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Figure 3.2.: NPE Examiner Effect Distribution

0
10

0
20

0
30

0
40

0
D

en
si

ty

-.01 -.005 0 .005 .01
Shrunk Examiner Effect

kernel = epanechnikov, bandwidth = 0.0002

Notes: We run a kernel density plot of the distribution of shrunk examiner effects across all exam-
iners, weighted by the number of granted patents for each examiner. The shrunk examiner effects
are calculated using the methodology described in Section 3.4.2.

Table 3.6.: NPE Examiner Effect Distribution Characteristics

Measure of Examiner NPE Effect Percentage of Sample NPE share
Signal standard deviation (σ̂µ) 50.97%

[33.7%,60.7%]

Standard deviation of 24.02%
Shrunk Examiner Effects [12.26%,30.90%]

Difference between examiners 6.86%
at p25 and p75 [3.25%,8.51%]

Difference in distribution mean 6.00%
replacing examiners above p75 [3.02%,7.30%]

with examiners at p75

Notes: Bootstrapped 95% confidence intervals are displayed below the corresponding parameter
estimate. The size of the parameters are normalized by the baseline rate of NPE-purchased patents
in the sample (0.9%). The “difference in distribution mean” value is calculated by replacing shrunk
examiner effects above the 75th percentile with the value at the 75th percentile, and then re-
computing the average of the new distribution.
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As a comparison, we also compute similar results for patents asserted by companies not on

our NPE list. The baseline rate of these patents is 13.81%, and we display the results in

Table 3.7. The major difference here is that the signal standard deviation is much lower,

suggesting less heterogeneity across examiners in whether their granted patents end up being

transferred on the IP market.

Table 3.7.: Non-NPE Purchased Examiner Effects Distribution Characteristics

Measure of Examiner non-NPE Effect Percentage of Sample NPE share
Signal standard deviation (σ̂µ) 12.01%

[10.70%,14.47%]

Standard deviation of 6.32%
Shrunk Examiner Effects [5.05%,7.32%]

Difference between examiners 5.67%
at p25 and p75 [4.47%,6.97%]

Difference in distribution mean 1.15%
replacing examiners above p75 [0.95%,1.35%]

with examiners at p75

Notes: Comparable to Table 3.6. Bootstrapped 95% confidence intervals are displayed below the
corresponding parameter estimate. The size of the parameters are normalized by the baseline rate
of non-NPE purchased patents in the sample (13.81%).

We also apply the same methodology on other patent outcomes and examination character-

istics, such as the patent being purchased and litigated by NPEs, the patent being litigated

by a practicing entity, or the use of various blocking actions during prosecution, which we

will make use of in the discussion on mechanisms. Examiner effect distribution graphs for

some variables are included in Appendix D. In particular, we find that examiner effects are
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quite large for 103(a) and 112(b) blocking actions (24.0% and 46.5%, respectively), which

are known to rely more on the subjective judgment of the examiner. They are also large for

the practicing entity litigation outcome (signal standard deviation of 62.1%), which we will

explore further in the mechanism section.

3.4.4. Robustness Checks

3.4.4.1. Robustness of Basic Methodology

In this part, we report a series of robustness checks of the basic results presented in Section

3.4.3. Half are related to the analysis sample, and half are related to NPE classifications and

specification. We find that the results are quite similar across these different settings. The

results for the sample that includes continuation applications exhibit larger spread in NPE

effects, as continuations are often assigned to the same examiner, and patents in the same

family are likely to be purchased together. The Cortropia results may be a little weaker

because of its lack of coverage, so we would be including actual NPEs that litigated in years

other than 2010 and 2012 in the control group.
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Table 3.8.: Robustness checks for the NPE examiner effect distribution.

Specification Signal SD Shrunk Effect SD
Baseline 62.8% 25.3%

Expanded Sample (PERD) 52.9% 24.3%
Include Continuations (PERD) 77.2% 48.1%
Expanded Sample (1976-2015) 70.6% 24.8%

Excluding Intellectual Ventures Patents 71.2% 33.5%
Cortropia et al. NPE Patents 43.1% 15.5%
Additional Patent Controls 54.9% 24.8%

Assignee Fixed Effects 33.9% 13.2%

Notes: Expanded Sample (PERD) refers to the sample of all non-continuation applications in the
Patent Examination Research Dataset, which covers applications filed between 2001 and 2014.
Expanded Sample (1976-2015) refers to the sample of all non-continuation granted patents in that
time period in the data available from Google. Excluding Intellectual Ventures Patents refers
to excluding them from the analysis, and looking at patents owned by other NPEs. Additional
patent controls refers to adding the number of independent claims at application and first inventor
experience as controls in the basic estimating equation (Equation ??). All effects are normalized
to the baseline NPE rate, which is different for the various specifications.

3.4.4.2. Empirical Bayes Count Model

To address the concern that the assumptions behind the Kane-Staiger (2008) methodology

may not be satisfied, we use an alternative methodology. Specifically, we rely on an Empirical

Bayes Beta-Binomial model, in the spirit of Ellison and Swanson (2010). This methodology

allows us to set a more flexible prior on the distribution of examiner effects, and also allows

us to more directly model the data generating process.

First, we aggregate data for each examiner j in year t and art unit a into the form (njat, rjat),

where n denotes the total number of granted patents for a given examiner and r the total

number of NPE patents (or some other outcome) for this examiner. We then model the data

generating process directly with a binomial likelihood on each data point: each examiner

has some true probability p of having an NPE purchase a granted patent.

Next, we set up an empirical Bayes estimation of the prior of p. For each art unit in each
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year, we start with a flexible prior distribution:
p ∼ Beta(α, β)

We can then form an integrated likelihood in order to estimate the hyperparameters α and

β of the prior distribution:

L(r|n, α, β) =
ˆ 1

p=0

 n

r

 pr(1− p) Γ(α + β)
Γ(α)Γ(β)p

α−1(1− p)β−1dp

=

 n

r

 Γ(α + β)
Γ(α)Γ(β)

ˆ 1

p=0
pr(1− p)pα−1(1− p)β−1dp

=

 n

r

 Γ(α + β)
Γ(α)Γ(β)

Γ(r + α)Γ(n− r + β)
Γ(n+ α + β)

where the second step just conjugates the inside to integrate to one based on the probability

density function of the Beta distribution. We then pool the data points of examiners in the

same year and art unit, and estimate the hyperparameters via maximum likelihood. These

parameters allow us to calculate the equivalent of the signal standard deviation in the basic

framework.

To compute the posterior mean for each examiner, we take the estimated parameters (α̂, β̂)

and updated them using the data: the posterior distribution is given by Beta(α̂ + r, β̂ +

n− r). The mean of this distribution, α̂+r
α̂+β̂+n , gives us the posterior mean for the examiner.

Intuitively, this procedure shrinks an examiner’s NPE share towards the mean NPE share

in the art unit, more so when the examiner has granted few patents.

Finally, we compute deviations from art unit prior mean for each examiner in a given year.

We average these shrunk examiner effects across years, in order to make them comparable

to the Kane Staiger shrunk examiner effects. The distribution of shrunk examiner effects

computed using this procedure are shown on Figure 3.3. This distribution looks very similar
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to Figure 3.2, with a standard deviation around 44.4% of the baseline and an inter-quartile

range of 8.8%, as opposed to the 24.0% and 6.9% reported in Table 3.6. The main difference

is that the distribution computed using the Empirical Bayes Count Model has thicker tails.

The fact that the two distributions have similar characteristics is a re-assuring fact, since the

Empirical Bayes Beta-Binomial count model imposes much weaker parametric restrictions on

the prior distribution.32 This suggests that we can treat the results from the more tractable

Kane-Staiger methodology as an approximation to a more flexible model of examiner effects.

Figure 3.3.: Distribution of NPE Examiner Effects (Empirical Bayes Count Model)
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Notes: A kernel density plot of shrunk examiner effects computed using the Empirical Bayes Count
Model described in Section 3.4.4.2. The figure is re-scaled to match Figure 3.2, and examiner effects
above 0.01 and below -0.01 are moved to 0.01 and -0.01, respectively. The examiner effects are
weighted by cases examined.

The results presented in Figure 3.3 still rely on an untestable parametric assumption about

the prior, which we have assumed to be a Beta distribution. A more flexible prior would
32In fact, we can compare the consistency of the examiner rankings across the two approaches. We show
evidence of this in Appendix D.
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involve a mixture of Beta distributions, but the downside of such an approach is having to

estimate additional hyperparameters with only twenty or so data points on examiners in a

given art unit and year.

3.5. Distinguishing Between Mechanisms

In this section, we present a series of results suggesting that the large spread in examiner

NPE effects, which we documented in Section 3, can be linked to certain examiner tendencies

observable in our data. We will investigate whether causal examiner effects (tendencies)

based on examination actions are predictive of NPE purchase and litigation. We generally

find that examiner tendency to use 103(a) and 112(b) blocking actions is negatively predictive

of NPE outcomes. In addition, we find evidence that this operates through changes to patent

claims language between initial application and final grant. We also run a series of predictions

for other important patent market outcomes, and draw comparisons to the NPE findings.

3.5.1. Predictive Regressions Methodology

Our core methodology in this section is to predict outcomes such as NPE purchase using

causal examiner effects, which are computed using the methodology from the previous sec-

tion. One way of viewing our approach is that we want to predict outcomes using variation

in randomly assigned co-producer characteristics.

Formally, we compute causal examiner effects leaving out data from the application we are

trying to predict. This purges the regression of any mechanical correlations based on the

nature of the patent itself affecting examiner behavior measures. We then set up the following

regression at the patent level:

NPEij = βÊj + εij
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where i indexes the patent and j indexes the examiner. Ê represents some vector of computed

leave-one-out examiner effects, such as propensity to use 103(a) blocking actions or to force

changes to claims text. This is a simple way of documenting which examiner behaviors

correlate with NPE purchase.

We first run predictive regression with single examiner effects. The advantage of this regres-

sion is that it allows us to analyze each effect in isolation. Next, we also run some “horse

race” regressions, including multiple examiner effect measures. Once put in a horse-race

with other variables such as allowance rates and changes in patent claims text, the blocking

action variables tend to lose importance. Our interpretation of this is that various blocking

actions force different types of changes to the patent text, but our text-based measures are

too crude to distinguish between these types of changes. Therefore, it makes more sense to

trace the changes back to the source, and focus on the blocking actions for interpretability.

We also run horse-race regressions using only blocking action examiner effects.

From a methodological perspective, the leave-one-out examiner effect should ideally be un-

correlated with the error term εij, which captures unobserved characteristics of the patent.

Note that selection effects might introduce a bias - the pool of granted patents allowed by

each examiner varies by examiner characteristics. For example, if examiners with a high rate

of 103(a) blocking actions have higher quality patents on average, and NPEs purchase lower

quality patents, then ε will be negatively correlated with Ê103a, and our estimated β would

overstating the intensive margin effect of the blocking action. We check for this by including

additional controls based on inventor experience and application characteristics (similar to

the “Additional Patent Control” specification in Table 3.3), which has negligible impact on

the estimated coefficients, and changes in coefficients move both ways.

An obvious alternative method would be to take the set of tendencies for each examiner,

and correlate the tendencies at the examiner level (e.g. correlate examiner NPE effect with

examiner 103(a) effect). We do run this exercise by splitting the sample to avoid picking up
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mechanical correlations, and find similar qualitative results.

3.5.2. Results

We run pairwise regressions predicting NPE purchase using various causal examiner effects,

including propensity to change the number of words per claim, propensity to remove inde-

pendent claims, and propensity to use various blocking actions discussed in Section 3.2.1.

In the results reported in the main body, we use blocking actions on eventually granted

patents, to better capture intensive margin effects, but we also report results for blocking

action usage at the application level in the Appendix.

We compute how much a one-standard-deviation change in the examiner causal effect would

change the outcome in question (e.g. NPE purchase), as a fraction of the baseline outcome

rate. These results are reported in the tables in this section. In addition, we present summary

graphs showing the pairwise predictive power of various examiner effects. In the graphs, we

normalize the computed effects by the “own variable” predictive effect. This own variable

effect (e.g. the examiner NPE effect) will generally have the strongest predictive power, since

it’s constructed to be predictive of the outcome, but this result is not mechanical and does

not have to hold. Finally, we color the bars blue for variables that are positively predictive

of the outcome and red for the variables that are negatively predictive. The p-value for the

coefficients are displayed in white.

3.5.2.1. Purchased Patents

As we see in Table 3.9 and Figure 3.4, the correlation between NPE outcome and examiner

NPE effect is positive and the strongest predictor, with a one standard deviation change

in examiner effect translating to a 42.5% change relative to the NPE purchasing baseline.

For the other examiner effects, allowance rate is also positively predictive, with a magnitude

146



around a quarter of the baseline effect size. Beyond that, there are several examiner effects

that are negatively predictive of NPE purchase. These include examiner tendencies to add

more words to claims, issue blocking actions based on failure to satisfy non-obviousness

(103(a)) and claim clarity (112(b)). Each of these have a sizable amount of predictive

power relative to the NPE examiner effect, ranging from 5-15% of the baseline rate. This is

more easily seen in Figure 3.4, which reports the same results, but ordered by the relative

magnitude of the effect.

Based on the results, NPEs appear to purchase patents that have fewer words added during

examination than the average patent, which is a sign of less specificity or clarity. The

examiner usage of blocking actions allows us to further interpret the nature of these word

changes. Examiners who use more 112(b) blocking actions are less likely to have their patents

purchased by NPEs (a 5-8% effect per examiner effect standard deviation), although this

result is not as strong in terms of magnitude and statistical significance as some of the

other effects we analyze. In combination with the evidence on word counts, this provides

indirect evidence that examiners who use more 112(b) actions force more clarifications to

patent claims during the examination process. In addition, examiners who use fewer 103(a)

blocking actions are also more likely to have their patents purchased by NPEs (a 10% effect

per examiner effect distribution), suggesting that they do not force applicants to specify

the non-obvious aspects of the invention in question.33 Finally, there is also a borderline

significant effect on the change in the number of independent claims during examination,

which suggests that NPEs prefer patents that have more independent claims. This property

has been discussed in the legal and economic literature as a proxy for the strength of the

patent, as patents with more independent claims are less likely to be completely invalidated.

The extra claims may also represent broader patent scope, essentially covering more of

33Various legal guides suggest that one way to respond to a 103(a) blocking action is to add enough specifics
so that the invention is no longer implied or suggested by any prior art.
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intellectual property space, and allowing NPEs to find more possible infringing products.

As a comparison, we run the same routine, except for patents purchased by firms not on

our NPE list. This exercise yields additional insights into NPE behavior, as it is possible

that they behave just like regular firms in the markets for technology. The results are

reported in columns 3 and 4 of Table 3.9, and suggest that regular firms purchase different

types of patents relative to NPEs. In general, the estimated importance of various examiner

tendencies is much smaller in magnitude for non-NPE purchases relative to NPE purchases.

On the specific effects, 103(a) and 112(b) usage are much smaller in magnitude (1.3% and

0%, respectively).34 Later in the section, we formally confirm that there are significant

differences by running conditional regressions.

34As an aside, the 112(a) examiner effect appears to be unrelated to non-NPE purchase, suggesting that
addition clarity in technological disclosure does not facilitate more transfer through purchases. It would be
interesting to see if this holds in the pool of licensed patents.
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Table 3.9.: Pairwise Examiner Effects Results - Purchase

Panel A: General Examiner Effects
NPE Purchase NPE Purchase Non-NPE Purchase Non-NPE Purchase

NPE Purchase 0.425*** 0.447*** 0.015** 0.014*

(0.066) (0.076) (0.005) (0.005)

Non-NPE Purchase 0.057** 0.044+ 0.112*** 0.110***

(0.022) (0.025) (0.005) (0.006)

Words Per Claim Change -0.142*** -0.148*** -0.018*** -0.019***

(0.021) (0.021) (0.004) (0.004)

Independent Claims Change 0.056+ 0.078** -0.000 0.005

(0.029) (0.030) (0.006) (0.006)

Patent-Level Controls x x

N 1,269,623 1,269,623 1,269,623 1,269,623

Panel B: Examiner Blocking Action Effects
NPE Purchase NPE Purchase Non-NPE Purchase Non-NPE Purchase

101 -0.052* -0.064** 0.003 0.002
(0.022) (0.024) (0.003) (0.003)

102(a) 0.018 0.012 0.005 0.006
(0.024) (0.025) (0.005) (0.005)

103(a) -0.091*** -0.099*** -0.013* -0.013*
(0.023) (0.023) (0.005) (0.005)

112(a) -0.020 -0.021 0.003 0.003
(0.017) (0.018) (0.004) (0.004)

112(b) -0.043+ -0.047* -0.000 0.001
(0.022) (0.023) (0.004) (0.004)

Patent-Level Controls x x
N 1,269,623 1,269,623 1,269,623 1,269,623

Notes: All results are produced using the restricted Frakes and Wasserman data. All co-
efficients are normalized to represent the impact of a one standard deviation in examiner
effect relative to the baseline rate of the outcome in question (1.0% for NPE patents, 19.7%
for non-NPE purchased patents). Words per claim variable refers to the percentage change
in word count between application and grant. Patent-Level Controls include the history of
the first inventor and the log of the number of independent claims at application. Standard
errors are clustered at the examiner level. + p-value <0.10, * p-value < 0.05, ** p-value <
0.01, *** p-value < 0.001
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Figure 3.4.: Graphical representation of the mechanism results for pairwise prediction of
patent purchases
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Notes: Results presented are based on the pairwise predictive regressions reported in Table
3.9. Effect sizes are again calculated in terms of fraction relative to the baseline rate of NPE
purchase per one standard deviation change in the examiner effect, and then normalized
to the size of the examiner effect calculated from the outcome variable in question (NPE
purchase, non-NPE purchase). Blue bars indicate a positive predictive coefficient and red
bars indicated a negative predictive coefficient.

3.5.2.2. Litigated Patents

Next, we move onto the issue of litigation behavior. We can essentially repeat the same

exercise as before, except with NPE and non-NPE litigated as the outcomes. We report

the corresponding results in Table 3.10. One challenge here is that the baseline rate of non-

continuation, NPE-litigated patents is around 0.033% of the patent population (about one-

tenth the rate of non-NPE litigated patents).35 Our methodology for computing examiner

effects not work well with very rare outcomes, as it relies on consistency to extract the

underlying signal. Therefore, while we do compute an examiner “NPE Litigated” effect, it

is quite noisy and not a reliable predictor of outcomes.
35One important issue to note here is that NPEs often use the same set of patents against many plaintiffs,
much more so than regular firms. Therefore, despite having about a tenth of the number of asserted patents,
NPEs are still a major presence in terms of the number of firms they sue for infringement. In the Cotropia
et al classifications of 2010 and 2012 IP lawsuits, around 35% of plaintiffs are NPEs. These numbers may
also be a little misleading, as pre-AIA joinder rules meant NPEs could target multiple defendants in the
same case, which we observe in the litigation data provided by RPX.
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The results suggest that NPEs litigate patents that have some similarity to patents liti-

gated by regular firms, based on the strong relationship between NPE litigated patents and

non-NPE litigated examiner effect. However, NPEs once again appear to have a stronger

sensitivity to other examiner effects, such as 103(a) and 112(b), although non-NPE litigated

patents do show sensitivity to the same two examiner effects. These results could also be

interpreted through the lens of standard litigation models, which suggest that plaintiffs and

defendants only go to court if there is disagreement over the chances of winning. Vague claims

language and uncertainty over obviousness may create such disagreements. Both types of

litigated patents also contain more independent claims than they would have if examined by

the average examiner. Finally, the results also exhibit strong 112(a) effects, which did not

show up for NPE purchasing and is harder to interpret.
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Table 3.10.: Pairwise Examiner Effects Results - Litigation

Panel A: General Examiner Effects
NPE Litigated NPE Litigated Non-NPE Litigated Non-NPE Litigated

NPE Litigated -0.120 -0.119 -0.070** -0.055*

(0.140) (0.132) (0.025) (0.023)

Non-NPE Litigated 0.238** 0.157* 0.392*** 0.267***

(0.088) (0.061) (0.082) (0.040)

Words Per Claim Change -0.350*** -0.346*** -0.070*** -0.061***

(0.057) (0.046) (0.016) (0.016)

Independent Claims Change 0.117* 0.130* 0.050** 0.049**

(0.052) (0.054) (0.019) (0.019)

Patent-Level Controls x x

N 1,269,623 1,269,623 1,269,623 1,269,623

Panel B: Examiner Blocking Action Effects
NPE Litigated NPE Litigated Non-NPE Litigated Non-NPE Litigated

101 -0.135* -0.123+ -0.043* -0.032*
(0.063) (0.066) (0.018) (0.015)

102(a) 0.004 0.011 -0.013 -0.011
(0.050) (0.054) (0.017) (0.016)

103(a) -0.236*** -0.240*** -0.062** -0.039*
(0.062) (0.066) (0.020) (0.017)

112(a) -0.139** -0.140** -0.046+ -0.036*
(0.043) (0.044) (0.027) (0.017)

112(b) -0.117* -0.139* -0.038+ -0.040*
(0.055) (0.055) (0.020) (0.018)

Patent-Level Controls x x
N 1,269,623 1,269,623 1,269,623 1,269,623

Notes: Results are run on the restricted Frakes and Wasserman sample. All coefficients are
normalized to represent the impact of a one standard deviation in examiner effect relative
to the baseline rate of the outcome in question (0.5% for non-NPE litigated and 0.033% for
NPE litigated).

3.5.2.3. Testing for Differences

Finally, we look for examiner effects that distinguish between NPE purchase vs. non-NPE

purchase, NPE litigated vs. NPE purchase, and NPE vs. non-NPE litigated. As an ad-
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ditional exercise, we test for a distinction between Intellectual Ventures and other NPEs.

So far, we have compared groups of patents with interesting outcomes to the rest of the

patent pool. Here, we restrict the analysis sample to patents with at least one of a pair of

outcomes, and then looking for examiner effects that are conditionally predictive of the first

effect in each pair mentioned. This gives us a more rigorous way to compare types of patent

outcomes.

The results are shown in Table 3.11. NPEs purchase patents from examiners who use 103(a)

and 112(b) blocking actions less often than their peers, and strongly prefer patents with

fewer added words during examination. NPEs selectively litigate more obvious patents, but

there is no significant additional 112(b) effect. One other interesting point to note is that

the patents purchased by Intellectual Ventures do not exhibit significant differences relative

to other NPE purchased patents, as shown by the several precisely estimated zero results

in column 4. This provides some evidence that the purchasing activities of Intellectual

Ventures, which ignores their in-house inventions, are not particularly different from other

NPEs, contrary to narratives that distinguish types of NPEs.
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Table 3.11.: Pairwise Differential Outcome Regressions

NPE vs. non-NPE Litigated vs. Purchased Int. Vent. vs. Other
Purchase Litigated NPE Purchase

101 -0.042** -0.073 -0.046 -0.012
(0.015) (0.050) (0.033) (0.010)

102(a) 0.011 0.018 -0.012 -0.005
(0.020) (0.056) (0.044) (0.016)

103(a) -0.071*** -0.190** -0.123* -0.004
(0.020) (0.067) (0.049) (0.013)

112(a) -0.019 -0.074+ -0.133** 0.026*
(0.014) (0.042) (0.045) (0.012)

112(b) -0.039* -0.074 -0.066 -0.000
(0.019) (0.053) (0.046) (0.014)

Words Per Claim Change -0.114*** -0.298*** -0.178*** -0.016
(0.017) (0.060) (0.043) (0.012)

Independent Claims Change 0.066* 0.080 0.056 -0.003
(0.028) (0.065) (0.055) (0.028)

N 262,511 7,156 12,953 12,953

Notes: The results are is run on the restricted Frakes and Wasserman data. Int. Vent. refers to
Intellectual Ventures. All coefficients are normalized to represent the impact of a one standard
deviation in examiner effect relative to the baseline rate of the outcome in question. + p-value
<0.10, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001

3.5.2.4. Discussion

Overall. the general pattern in the mechanism results show that patents with fewer words

added during examination and fewer independent claims removed are more likely to show

up in all of the patent groups we have analyzed. Digging further down, NPE purchased and

NPE litigated patents have much more in common with non-NPE litigated patents than

with non-NPE purchased patents. NPEs tend to purchase and litigate patents granted by

examiners who are less likely to judge a patent application to have vague claims and to be

obvious. This holds up in comparisons to both the general patent pool and to corresponding

non-NPE purchased and litigated patents.

Our results are inconsistent with the theory that NPEs serve as effective intermediaries in
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identifying valuable technologies in the pile of vaguely worded patents.36 If this were the

case, then NPEs would be playing an efficient screening role, dealing with the problems

introduced into the IP system through an inconsistent examination process. There are two

issues with this critique. First, even if NPEs play a role in screening vague patents, the

current setup involving high legal fees seems like a very costly way to deal with the problem.

Our policy calculations in Section 3.6 suggest that it would be much more cost-effective

to solve the vague patents problem at its source, namely the patent examination process.

Second, the activity of NPEs appear to be at best unrelated if not negatively related to

technological attributes of the patents. NPEs purchase patents from examiners who issue

more obvious patents, which suggests that these patents are technologically less innovative

relative to others in their cohort. Finally, NPE purchased patents are unassociated with

112(a), the technological disclosure requirement. This suggests that NPEs are better at

uncovering legally useful patents rather than technologically useful patents.

3.5.3. Robustness Checks

The main focus in this section will be on testing robustness to NPE classification, adding

extra controls to the basic specification, and testing for the significance of examiner career

effects. We report the most important results in Tables 3.12 and 3.13 and leave the rest for

the appendix.

3.5.3.1. Alternative Specifications

First, we verify that our results are robust to changes in NPE classification. For this, we

construct a portfolio from the Cortropia et al. classifications, focusing on entities they classify

as large aggregators and small patent holding companies. As mentioned earlier, their list
36The idea of digging up valuable patents is discussed in the book “Rembrandts in the Attic” by Kevin Rivette
and David Kline.
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only identifies entities that are plaintiffs in litigation in 2010 and 2012, and therefore may

leave some true NPEs in the control group. The results using their list of NPEs are consistent

with our core findings.

We also run alternative specifications to compute the residuals in our examination effects

methodology, which corresponds to changing the X in Equation ??. The baseline just

contains art unit by year fixed effects as controls, to reflect the level of random assignment.

One major addition we try here is to add assignee fixed effects, based on the initial assignee

on a given patent.

The limitation of this specification is that it eliminates many unassigned patents, which make

up a sizable part of NPE portfolios, as shown in Table 3.4. However, this approach allows

us to compare the patents sold by a firm to NPEs versus the ones they keep or sell to other

entities. The results suggest that firms tend to sell the vaguer and more obvious patents

within their own portfolios.37 An additional interpretation of these results is that it rules

out the story that our results are driven solely through a bankruptcy channel, namely the

possibility that NPEs mostly purchase intellectual property assets during firm liquidation

and firms that own the types of patents shown in our results are more likely to go bankrupt.

Our results, as shown in Table 3.12, are generally very similar to the baseline results, but

the additional noise from a reduced sample pushes the 112(b) result to become statistically

insignificant.

We also run specifications adding in only observable patent application characteristics as

controls. These controls include the number of independent claims at application, the appli-

cant entity size (regular or small), and the patenting history of the firm and the inventors

at the time of the application. The results are also robust to these additions.

37This result may be related to the concept of “patent privateering.” Practicing companies face the threat
of countersuit if they assert their patents directly against a competitor. Instead, they can choose to go
after competitors by selling their patents to NPEs with some sort of protection provision included in the
transaction.

156



Table 3.12.: Robustness checks for key predictors NPE purchase.

Specification 103(a) 112(b)
Baseline -0.091*** -0.043+

(0.023) (0.022)
Kesan et al NPEs -0.090*** -0.051*

(0.027) (0.023)
Non-IV NPEs -0.088*** -0.042+

(0.027) (0.026)
IV -0.095** -0.044+

(0.030) (0.026)
Assignee Fixed Effects -0.096*** -0.037

(0.025) (0.023)
Additional Patent Controls -0.088*** -0.042+

(0.026) (0.025)
Five Year Lag -0.092*** -0.044+

(0.025) (0.023)

Notes: Non-IV NPEs refers to patents purchased by NPEs other than Intellectual Ventures and IV
refers to patents purchased by Intellectual Ventures. Additional Patent Controls refers to adding the
same inventor and application characteristics to the basic estimating equation as the specification
in Table 3.8. Five Year Lag refers to computing signal covariances using data five years apart
instead of one, and is the same methodology used to compute the results in Table 3.13. + p-value
<0.10, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001

3.5.3.2. Examiner Career Effects

One possible concern is that examiner effects are not “fixed” as in our preferred framework

but rather vary substantially over the course of an examiner’s career at the patent office.

For instance, Frakes and Wasserman (2014) find that time constraints vary a lot over the

course of an examiner’s career. Our baseline methodology does not account for this, as we

assume a fixed examiner effect µj, along with an idiosyncratic examiner by cohort effect θjt.

We show that time-varying examiner effects are not quantitatively important in a number

of ways. First, we re-compute results by computing signal covariances using different lags

σ̂2
µ = cov(v̄jt, v̄j(t+k)), for values of k beyond 1, which we use to generate our baseline results.

As shown in Table 3.13, our core results are robust to these changes. We compute NPE
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effect distribution parameters for k = 3, 5, and compare it to the parameters estimated by

using k = 1, but restricting the samples to examiners with at least 4 or 6 years of experience,

respectively. Here, we use the non-continuation PERD sample, in order to increase the years

of coverage, which is not very large relative to the lags we are using. The results suggest that

our high signal covariance is not driven by examiner career effects, as we are now correlating

residuals for examiners at very different points in their respective careers. The decrease in

estimated signal correlations might not be driven by career effects alone, as time variation

in NPE purchase rates could cause problems in our thirteen-year sample.

As a methodological aside, relative to the non-continuation PERD sample results reported

in Table 3.8, the modified baselines we compute here have almost identical distribution

parameters, suggesting that our methodology shrinks examiners with less data in an effective

manner.

Table 3.13.: Robustness checks for the effect of Examiner Career Effects on computed NPE
effect distribution.

Specification Signal SD Shrunk Effect SD Shrunk Effect IQR
Three Year Lag 44.3% 19.4% 4.8%

Baseline 53.2% 26.7% 6.4%
Five Year Lag 35.8% 14.5% 3.5%

Baseline 52.8% 27.8% 6.1%

Notes: Three Year Lag and Five Year Lag Refer to computing the signal covariance σ̂2
µ =

cov(v̄jt, v̄j(t+k)) using k = 3, 5 respectively. The baseline in each case is re-calculated to only
include examiners that have careers of at least 4 and 6 years, respectively. The results reported
here are computed using the full PERD sample.

Second, we follow the methodology in Frakes and Wasserman (2015), and look for significant

changes in examiner NPE grant rates over their careers, particularly before and after pro-

motions. With minor exceptions, we generally do not find significant NPE effect differences

over an examiner’s career. These results are available from the authors upon request.
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3.5.3.3. Results Breakdown

First, we break down the results by Intellectual Ventures versus other NPEs in our list.

A downside to our methodology, as discussed in the context of computing NPE Litigated

examiner effects, is that it has difficulty extracting signals that occur with very low frequency.

Therefore, we cannot use it to describe the behavior of NPEs that hold a handful of patents.

However, we are still able to check the behavior of Intellectual Ventures, which has by far

the largest patent portfolio, versus the combined portfolio of other NPEs.

In addition, we also break down our resultsby technological areas. We do this by analyzing

patents from each of the eight technology centers at the USPTO separately.38 Results are

reported in Table C.13. Our results suggest that the non-obviousness result holds mainly for

the four IT-related technology centers - 21 (Computer Architecture, Software, and Informa-

tion Security), 24 (Computer Networks, Multiplex communication, Video Distribution, and

Security), 26 (Communications), and 28 (Semiconductors, Electrical and Optical Systems

and Components) - and the vague claims text results hold for art unit 26 and 28. Our

core results do not hold for technology centers 16 (Biotechnology and Organic Chemistry),

17 (Chemical and Materials Engineering), and 36 (Transportation,Construction, Electronic

Commerce, Agriculture, National Security and License & Review), suggesting that the IP

market operates differently in those areas. The results for the non-NPE litigated patents

generally follow the same patterns.

3.5.3.4. Horse Race Between Effects

Finally, we also run a “horse race” regression between the examiner effects to predict various

outcomes. The results are shown in Table 3.14. The 103(a) examiner effect tends to show

through in all of the specifications. One issue to note is that some pairs of examiner effects

38There are a few dozen art units within each technology center.
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have low correlation, and therefore each separate effect has some predictive power, partic-

ularly the 101 effect. However, as shown in Table C.1, 103(a) and 112(b) tend to be used

together on applications, making it harder to identify the contribution of the 112(b) effect.

Table 3.14.: Horse Race Regressions Predicting Each Outcome

Panel A: Horse Race for Outcomes
NPE Purchase Non-NPE Purchased NPE Litigated Non-NPE Litigated

101 -0.0425+ 0.0041 -0.0977 -0.0314
(0.0225) (0.0042) (0.0636) (0.0185)

102(a) 0.0313 0.0053 0.0472 0.0000
(0.0241) (0.0051) (0.0518) (0.0184)

103(a) -0.0829*** -0.0166** -0.202** -0.0472*
(0.0249) (0.0058) (0.0635) (0.0201)

112(b) -0.0104 0.0014 0.0241 0.00428
(0.0241) (0.0054) (0.0593) (0.0249)

N 1,269,623 1,269,623 1,269,623 1,269,623

Panel B: Differential Horse Race Regressions
NPE vs. non-NPE Litigated vs. Purchased
Purchase Litigated NPE

101 -0.0327* -0.0427 -0.0226
(0.0163) (0.0521) (0.0340)

102(a) 0.0223 0.0406 0.00962
(0.0198) (0.0567) (0.0439)

103(a) -0.0607** -0.170* -0.0989+
(0.0212) (0.0715) (0.0508)

112(b) -0.0124 0.0152 0.0449
(0.0209) (0.0583) (0.0549)

N 262,511 7,156 12,953

Notes: The regressions in Panel A are run on the baseline sample. The regressions in Panel B are
run on the same restricted samples as in Table 3.11. + p-value <0.10, * p-value < 0.05, ** p-value
< 0.01, *** p-value < 0.001

3.5.3.5. Direct Evidence on Weak Patents

In ongoing work, we relate the patent acquisition behavior of NPEs more directly to the

validity of the patents by studying whether the examiners who produce NPE patents tend
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to be invalidated in court (in the case of litigation by regular entities) or to be reversed

during appeal procedures at the Patent Trial and Appeal Board (in the case of an appeal

by a regular entity during the course of prosecution). Preliminary results suggest that the

examiners with a high NPE effect are more likely to behave in a way that is not in accordance

with the law. Figure C.7, reported in Appendix B, shows that examiner with a high NPE

effect tend to be reversed at the Patent Trial and Appeal Board when there is an appeal

during the course of prosecution.39

3.6. Policy Implications

3.6.1. Calibrations

In this section, we use our computed examiner effects in order to estimate the possible returns

to investment in the patent examination process. We focus here on the possible litigation fees

saved from a reduction in the types of patents currently used by NPEs, and consider this to be

a lowerbound on the social costs of issuing such patents. Our computation does not include

other possible inefficiencies generated by NPEs, such as implicit taxes imposed on products

challenged by NPEs (Tucker (2015)) and other possible distortions in the intellectual property

system.

First, we discuss here some estimates for litigation and USPTO costs that we will use to

interpret our calculations. In terms of annual litigation fees associated with NPE lawsuits,

there are a variety of estimates in the legal literature, each using a different methodology. The

main sources for this data comes from the American Intellectual Property Law Association

(AIPLA) annual reports, which surveys its members for estimates of how much they are paid

39More than 50% of examiners have one of the patent applications reviewed by the Patent Trial and Appeal
Board during the course of their career, which mitigated concerns about the selection effects inherent in our
strategy.
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for cases of different sizes, and the surveys conducted by RPX and Bessen and Meurer (2014),

which surveys defendants to estimate spending on legal defense and other costs. A major

difference in the figures reported by the two sources stems from the fact that the AIPLA

reports median figures for each case size category, whereas Bessen and Meurer use means,

which are much higher because of a long right tail. The figure arrived at by Bessen and

Meurer is $29 billion in “direct costs,” of which around 17% come from defensive litigation

costs.40 Therefore, this comes out to over $5 billion used in defense. Although this number

may be on the high side, it also does not include resources used by NPEs, so we use this

number for our calculations. In terms of USPTO spending, the patent portion of the annual

USPTO budget is $3.13 billion for FY 2016.41 Of this, around $800 million is paid out in

examiner salary.42

The cost of policy initiatives about examiners is typically modest in comparison to the po-

tential benefits mentioned above. For instance, the aforementioned Enhanced Patent Quality

Initiative (EPQI) at USPTO will cost around $11 million for FY 2016, ramping up to about

$31 million by FY 2020.43. Another quality initiative implemented by the USPTO was the

“second pair of eyes” review,44 which was first piloted on the set of business method patents

(USPTO class 705), then partially expanded in 2003 to several other technology centers and

eventually discontinued in the late 2000s.45 The initiative introduced one hour of review per

provisionally granted patent, in order to flag obvious issues. Given that examiners spend on

40The remainder is licensing fees, which we interpret in a static way as just a transfer, and therefore not an
inefficiency.

41http://www.uspto.gov/sites/default/files/documents/fy16pbr.pdf
42Based on examiner grade-level data from Frakes and Wasserman plus data on salary by examiner grade
available in the USPTO annual budget report.

43Based on P55 of the 2016 USPTO Budget Report, available at
http://www.uspto.gov/sites/default/files/documents/fy16pbr.pdf

44Discussed on P28 of the 2006 USPTO Budget Report, available at
http://www.uspto.gov/sites/default/files/web/offices/ac/comp/budg/fy07pbr.pdf

45Based on discussions with USPTO policy directors, the discontinuation resulted from examiners being un-
comfortable with this review process, and possibly granting fewer patents in response, as only granted patents
were scrutinized.
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average 19 hours reviewing each application, this suggests that such a policy, if implemented

across all technology centers, would cost at most $40 million.46

As mentioned above, the estimated NPE litigated examiner effects are quite noisy, due to

the sparsity of the outcome combined with the nature of our methodology. Instead, we can

use a series of alternative approaches to come up with an estimate of the partial equilibrium

cost savings from the two aforementioned policies. The results will be partly based on

results reported in Table 3.9. We can approximate the effect of policies like the EPQI,

which aim at establishing best examination practices, as moving examiners above the 75th

percentile in NPE purchase effect to the 75th percentile, or moving examiners from below

the 25th percentile in 103(a) and 112(b) usage to the 25th percentile. Then, we can compute

the impact of such a change as a fraction of the standard deviation of the examiner effect

distribution, and then scale it by the coefficient in our mechanism result.

The calculations are reported in Table 3.15. The first row shows the returns if EPQI can

directly target the NPE purchase examiner effects. The $297.5 million estimate suggests a

very high social return on the $11 million investment. The remaining rows show the effects

of EPQI if it were to target examiner usage of blocking actions. Both calculations also yield

significant social returns.

46Taking the $800 million as a base number and dividing it by the hours ratio. This will be an overestimate,
as the there are more applications than granted patents.
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Table 3.15.: Simulating the Benefits of the Enhanced Patent Quality Initiative

∆NPE Litigation per SD Move tail (SDs) Total ($ millions)
NPE Purchase 0.238 6%/24% =0.25 297.5

103(a) 0.091 2.8%/19.1%=0.146 66.7
112(b) 0.043 7.7%/38.6%=0.199 42.8

Notes: Results are calculated by taking the baseline number of $5 billion per year in NPE litigation
fees, multiplying it by the effect per SD, and then multiplying by the effect of the policy (represented
in standard deviation units). The second column is based on results reported in Table 3.9. The
third column, “Move tail,” reflects the change by moving examiners with NPE Purchase effects
above the 75th percentile to the 75th percentile and by moving examiners with 103(a) and 112(b)
usage below the 25th percentile to the 25th percentile, similar to the numbers reported in Table 3.6,
but then re-scaled to be a fraction of the standard deviation of the examiner effects distribution
for that variable.

Next, we can evaluate the second-pair-of-eyes policy using a slightly more involved simula-

tion. Here, we once again rely on translating other examiner effects into a change in NPE

litigation. We simulate such a policy using our estimated primitives by randomly assigning

each application i, which was assigned to examiner j, to another examiner k, and taking the

minimum of the examiner NPE effects or the maximum of the blocking action effects. We

winsorize examiner effects at the 1st and 99th percentile before performing the calculations:

∆NPE = 1
N

N∑
i=1

min(vj, vk) (3.2)

∆103(a) = 1
N

N∑
i=1

max(vj, vk) (3.3)

In addition, we also simulate a scenario in which the second examiner has a much small

effect, which is captured in Equation 3.4:

∆NPE = 1
N

N∑
i=1

min(vj,
2
3vj + 1

3vk) (3.4)

∆103(a) = 1
N

N∑
i=1

max(vj,
2
3vj + 1

3vk) (3.5)
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Table 3.16.: Simulating the Benefits of the “Second-pair-of-eyes” Policy

Effect per SD Major Second (SDs) Total ($ millions) Minor Second (SDs) Total ($ millions)

NPE Purchase 0.238 13.3%/24%=0.554 659.4 4.23%/24%=0.176 209.7

103(a) 0.091 12.5%/19.1%=0.654 297.8 4.40%/19.1%=0.230 104.8

112(b) 0.043 22.9%/38.6%=0.593 127.6 7.90%/38.6%=0.205 44.0

Notes: Results are calculated by taking the baseline number of $5 billion per year in NPE litigation
fees, multiplying it by the effect per SD, and then rescaling by the impact of the policy, measured
in standard deviation units. The second column is based on results reported in Table 3.9. “Major
Second” refers to the scenario in which the second examiner has a major impact on the examination
process (see Equation 3.2), whereas “Minor Second” refers to the scenario in which the second
examiner has a minor impact (see Equation 3.4).

3.6.2. Discussion

In general, our calibration results suggest large social returns to relatively the inexpensive

USPTO investments. Of course, our calculations do not take into account the reactions of

NPEs to a policy change. In addition, our calculations also equally weigh litigated patents,

when in reality, some patents are involved in a disproportionate number of cases. The nature

of our methodology somewhat limits our ability to accurately account for these weighting

issues. Finally, our calculations have several moving pieces, particularly the modeling of

the two policy initiatives. However, we have tended to err on the cautious side in all of

our assumptions, in order to provide a lowerbound for the returns to public investment.

More broadly, our evidence suggests that policy reforms about patent examiners have great

potential and would be a welcome addition to the current policy debate, where the discussion

has focused on reforms of the statutes in Title 3 of the US code or on reforms of the court

system.

Various limitations of this paper could be addressed in future work and would help refine

the policy implications. First, we abstract away from the market for patents in our current

analysis. A key issue when thinking about the patent market and NPEs is to determine why
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practicing companies do not outbid NPEs for these patents, or at least drive up the price.

One simple explanation is that NPEs have greater expertise in identifying patents useful for

their business model. The patent market is not particularly liquid, and some NPEs have

built up extensive patent agent networks (Hagiu 2011). Another explanation is that regular

companies cannot use patents in the same way as NPEs, because they are limited by the

threat of a countersuit and possibly damages to firm brand, and therefore NPEs have much

higher valuations for offensive patents than regular firms. Finally, practicing firms suffer

from a free riding problem, because their purchasing of a patent for defensive purposes also

helps their rivals in the same market. A recent trend in the market is the emergence of

defensive aggregators, such as RPX and Allied Security Trust. These defensive aggregators

are funded by industry groups, and may offer a partial, market-based solution to the NPE

problem by buying up problematic patents and guaranteeing that they will not assert them.

In addition, NPEs may still be somewhat active even if the pool of patents possessed fewer

of the attributes they currently appear to desire.

Second, we have not delved into the details of the court system. An important caveat here

is that the effectiveness of patents in litigation depends not only on the claims text, but also

on how judges interpret the claims. A patent with conspicuously broad or obvious claims

would therefore be less useful to NPEs looking to maximize litigation revenue or the threat

of litigation. An obvious channel for leveraging these patents, as frequently discussed in

NPE debates, is the Eastern District of Texas, which has had a reputation for favorable

treatment of plaintiffs. Another problem in the analysis is that we do not observe legal fees

and settlements, and therefore miss out on heterogeneity across lawsuits.

Finally, we did not attempt to fully evaluate the welfare effects of the activities of NPEs.

Our results only address issues of static efficiency, and it may be that NPEs bolster exit

value in a way that encourage entry of small firms or individual inventors, pushing against

under-investment in innovation activities. However, our results suggest that NPEs would be
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encouraging the creation of vague and obvious patents, which seems like a blunt instrument

for increasing the expected value of entry. Policies such as expanded R&D tax credits to

small firms may be much more efficient socially to achieve such goals.

3.7. Conclusion

In this paper, we have exploited the random assignment of patent applications to examiners

to show that examiners have a significant influence on a variety of patent outcomes, and

to shed light on the characteristics of patents purchased and litigated by non-practicing

entities. The evidence suggests that NPEs purchase more patents that are more obvious

and contain vaguer claims text, attributes unrelated to or negatively associated with social

value and invention quality. This research offers both evidence on the rent seeking behavior

of NPEs and a natural policy lever to mitigate the impact of NPE activities. In fact, given

the differing results on NPEs and practicing entities, policies that deal with vague patent

language may be able to achieve their goals without disrupting the wider IP system.

In terms of policy, our quantitative estimates suggest that improving the patent examination

process, in particular by ensuring consistency in the narrowing and clarification of claims

across examiners, has potentially very large returns. Indeed, a lower bound based on the esti-

mates presented in Sections 4 and 5 is that the share of NPE patents among granted patents

could be reduced by 20% by implementing a “second pair of eyes” policy. As mentioned

earlier, this calculation is based on litigation costs only, which are likely to underestimate

the total social costs of NPEs’ activities.

Future research could build on our methodology in various ways. Viewed at a high level,

our methodology allows us to indirectly infer rent-seeking asset purchase behavior of certain

agents in a system. This is done by exploiting random assignment of the co-producer of an

asset, in our case the examiner. The conditions here are to our advantage in that we have
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two clear measures of co-producer tendencies that are orthogonal or negatively correlated

with technological value, which we exploit to show that these co-producers are more likely

to have their assets purchased by certain agents, in this case NPEs. We hope to see future

work in this spirit, using asset production structure to test for rent-seeking behavior in

other asset markets. Another possibly fruitful area of research is to test existing patent

and innovation theory by leveraging our methodology to infer characteristics of patents.

This could include looking at other ways patents are used in the IP system at large (such

as licensing and commercialization of patent-protected products), and testing theories that

predict the effects of patent breadth on real outcomes such as follow-on innovation.
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4. The Lifecycle of Inventors1

4.1. Introduction

Innovation is at the center of growth theory and advanced economies use a broad range of

policies intended to spur innovation, ranging from subsidies for research and development

(R&D) to investments in technical education. However, relatively little is known about the

characteristics and life trajectories of inventors. Indeed, information on even the most basic

demographic characteristics - such as the age distribution and income composition of patent

holders - is scarce because existing databases do not record such information.

In this paper, we present the first comprehensive portrait of inventors in the United States

by linking data on all patents granted between 1996 and 2014 to federal income tax returns.

Our linked dataset contains information on over 1.2 million patent applicants or holders.

We use this linked data to document a set of stylized facts about the lives of “inventors”2

that inform current theoretical debates and identify new patterns to be explained by the

next generation of models of innovation and growth. We structure our analysis around the

chronology of an inventor’s life, starting with her family background and neighborhood at

birth, then turning to her education and finally to her labor market career.
1Co-authored with Alex Bell, Raj Chetty, Neviana Petkova and John Van Reenen.
2Patents have well-known pros and cons as indicators of invention. Not all innovations are patented and not
all patents correspond to meaningful innovations. But we use the rich information on the patent documents
to deal with these drawbacks, for example, using future citations received by a patent as a proxy for its
quality.
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While our focus is primarily on descriptive facts rather than identification of causal mecha-

nisms, the facts we document help discriminate between alternative theories in the literature

and shed light on the types of policies that are likely to be most effective in sparking in-

novation. Most economic research on innovation policies focuses on what could be termed

the “intensive margin” of innovation , namely getting more innovation out of the existing

stock of inventors. For example, the US Research and Experimentation Tax credit reduces

research costs relative to other forms of investment. Similarly, a leading argument for low

top income tax rates is that they increase incentives for innovation and therefore boost

growth (e.g. Mankiw (2013)). One potential problem with such policies is that they rely on

those with the current potential to innovate to do more of it.3 In light of these limitations,

Romer (2000) recommends studying policies that focus on increasing the “extensive margin”

of innovation - increasing the underlying supply of inventors. Our analysis of the lives of

inventors yields a better understanding of what makes and constrains a potential innovator,

which is an essential ingredient for developing such policies.

We begin by studying the birth and origin of potential inventors. The children of high-

income parents are much more likely to be inventors: children born to parents in the top

1% of the income distribution are more than ten times as likely to become an inventor

as children born to families with below-median income. Part of the relationship between

parent income and children’s patent rates could stem from children of the rich being born

with higher ability than those of the poor and therefore being naturally more likely to make

technological breakthroughs. Alternatively, part of the inventor-income relationship could

be that even when children begin with identical traits, having low-income parents may hold

children back from becoming innovators because of a lower quality education, neighborhoods,

mentors, or jobs opportunities. If such barriers are important, this is very policy-relevant.

3In fact, there is a risk that with an inelastic supply of innovators, subsidies to research will simply increase
the equilibrium wage of R&D scientists, rather than stimulate a greater volume of innovation (e.g. Goolsbee
(1998)).
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It would mean a lack of opportunity for those who would have had a comparative advantage

in innovation but for their financial position. It would mean a loss of innovation and output

due to a misallocation of talent. How many “lost Einsteins” could there be due to inequality

of opportunity (e.g. Celik (2014))?

We shed light on these alternative mechanisms by using data from all individuals who went

through the New York City (NYC) public school system between 1989 and 2009, from which

we have standardized data on test score results in grades 3 through 8. We show that only

around 30% of the invention gap between rich and poor can be accounted for by third grade

math test scores. We conduct a similar analysis to study the gap in innovation by gender

and by race. Unlike the gap in innovation by parents’ socio-economic status, only 3% of the

gender gap in innovation can be explained by differences in math test scores. Comparing

Blacks and Hispanics to Whites, we also find a large invention gap - only a small fraction

of it is due to initial ability, similar to the gender gap. A much more substantial fraction is

due to income differences.

Existing talent misallocation models such as Hsieh et al. (2013) are based on Roy models

of occupational choice according to comparative advantage but with frictions that create

additional costs to all those from disadvantaged groups. These “rational sorting” models

imply that individuals from disadvantaged groups who do become inventors should have

higher levels of human capital than their more advantaged counterparts. In fact, our data

shows the opposite - inventors from disadvantaged groups do not appear more talented. The

quality of their patents (as measured by citations) and their initial test scores are similar or

worse than other inventors.

What alternative model could account for these findings? We emphasize two related phe-

nomena at play as a child grows up prior to choosing a career. First, using the NYC data on

test scores from grades 3 to 8 we show that a substantial difference in educational outcomes

between rich and poor families opens up as children progress through school. Using a wider
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sample we show that by the time we know the identity of the college attended, there is

relatively little difference in whether a rich or poor child becomes an innovator. Second, we

show that “exposure” to innovation in childhood has a strong association with the chances of

growing up to be an inventor. Our measures of exposure include (i) whether the parent was

an inventor; (ii) how innovative was the industry where a child’s parents worked and (iii)

neighborhood characteristics such as innovation in the childhood Commuting Zone (CZ).

Being exposed to innovation when a child is growing up is strongly associated with later

becoming an inventor. On all of these measures we show that it is not only the amount

of innovation, but exposure to type of innovation that matters by using detailed technology

class information. It is not simply that children who grow up in the Bay Area are more likely

to be inventors (even when they live elsewhere) - they are more likely to specialize in the

technologies that are relatively successful in the Bay Area (like computer software relative

to medical devices). This evidence suggests that mentoring effects or exposure to careers

in science and innovation at young ages may play a key role in children’s later outcomes.

Since children from low-income backgrounds are less likely to benefit from such exposure,

this evidence reinforces the view that the innovation gap between the rich and the poor is

driven by differences in environment and human capital accumulation, not intrinsic traits.

In the last part of the descriptive life-cycle analysis we look at the labor market and show

that the returns to innovation appear highly skewed and uncertain, especially at the time

of career choice. Returns often come later in life and are earned not just after the patent

event, but during a broader period of several years leading up to patenting.

Motivated by these findings, we present a simple inventor lifecycle model that has barriers

to human capital acquisition as rational sorting models of misallocation, but extends such

models to allow for imperfect information over inventor careers. In particular, we argue

that many individuals from disadvantaged groups may under-estimate the net benefits of

an inventor career if they are not exposed to innovation during childhood. The model’s
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predictions broadly match the findings of our dataset in a way that existing models cannot.

Simple calculations suggest that the returns of supply-side policies that would realistically

reduce the innovation rate gap between privileged and disadvantaged groups would be ex-

tremely large, with the potential of increasing the population of inventors by over 30%. We

also present a quantitative analysis of the effect of changing the top marginal tax rates on

inventors’ incomes.4 We show that the effect of top tax rates on the key individuals in the

innovation process - the inventors themselves - is likely to be small due to the skewness and

randomness of the payoffs. Our contribution is to calibrate this response using the skewness

of the empirical earnings distribution of inventors. We show that even large cuts in top

income tax rates on inventors will only induce a small change in the population of inventors.

We emphasize from a positive perspective that “extensive margin” innovation policies draw-

ing talented individuals into the innovation sector may be very effective at increasing inno-

vation, given that many talented low-income individuals currently do not make the choice

of becoming inventors, in part due to the lack of exposure to this occupation as they grow

up. The question of the optimal allocation of talent across sectors extends beyond the scope

of this paper. Although we discuss how our results relate to common mechanisms in the

“misallocation” literature, we do not draw normative conclusions about the observed dis-

tribution of talent across sectors (in particular, whether or not it is optimal to find so few

talented low-income individuals among inventors). Rather, our results show from a positive

perspective that exposure to innovation is an important driver of occupational choice or, in

other words, that it has an important “allocation” effect. We view this finding as an impor-

tant lesson for innovation policy, which is currently overwhelmingly focused on “intensive

4Note that we only consider increasing top tax rates on inventors, while holding the tax schedule fixed for
other agents in the economy. Our evidence does not shed light on broader effects of changes in tax rates on
innovation dynamics. Indeed, beyond inventors, many other agents are involved in the innovation process,
for instance firms and financiers, for whom the returns to innovation may not be analogous to a random
draw (e.g. because they hold large and diversified portfolios of innovations). Moreover, our analysis doesn’t
take general equilibrium effects into account.
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margin” incentives targeting individuals who are already part of the innovation sector. Nat-

urally, exposure effects may be a key driver of occupational choice in other contexts as well

(for example for doctors, lawyers, financiers, etc.). In this paper, we focus on the decision

of becoming an inventor for two reasons. First, inventors play a key role for growth and

determining which policies have the potential to allocate more individuals to this occupation

is therefore potentially very important for social welfare. Second, studying inventors has var-

ious methodological advantages: we can precisely characterize exposure effects by exploiting

variation across detailed technology classes, and the discrete nature of patent applications

allows us to conduct events studies to measure inventors’ financial returns to innovation.

Our findings contribute to several vast literatures. The theoretical literature on the individual

incentives to innovate are summarized by Scotchmer (2004). For example, there is extensive

work on how different types of employment contracts will alter innovation incentives (e.g.

Pakes & Nitzan (1983); Franco & Mitchell (2008)). Second, there is a growing literature

on how misallocation can be a first order constraint on economic performance (e.g. Hsieh

& Klenow (2009)). Specifically, Hsieh et al. (2013) argue that 15-20% of US GDP per

worker growth 1960-2008 can be explained by the improved allocation of talent by race

and gender. We find evidence that innovation (and growth) are held back because highly

talented children from low income families are not becoming innovators as quickly as their

richer, but less talented, peers. Although the link between inter-generational inequality

and misallocation has been frequently discussed, it has not to our knowledge ever been

examined in a systematic statistical manner. We bridge the gap between the endogenous

growth literature (?) and the reallocation literature (Hsieh et al. (2013)) by showing that

allocation of talent affects the rate of innovation and therefore long-run growth. In contrast,

the existing reallocation literature has focused on higher productivity levels as misallocation

is reduced. Third, there is a literature on academic scientists (e.g. Azoulay et al. (2010a),

Azoulay et al. (2010b)) where biographies can be more easily built up. There is related work
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looking at sub-sets of patentors, especially star scientists in bio- and nano-technology (e.g.

Zucker et al. (1998)). In parallel work using the same patent- tax data merge, Jaravel et

al. (2015) show that teamwork is critical in the typical inventor’s career, with large spillover

effects from peers across the skill distribution.

Finally, there is a literature on looking at the characteristics of patentors (see Jung & Ejermo

(2014) for a survey). The classic study is Schmookler (1957) who examined 87 US patentors

and the most comprehensive recent work is the PatVal-EU data (e.g. Giuri et al. (2007))

which covers 9,107 inventors filing at the European Patent Office. An issue with these

studies is that sample responses are low and possibly non-random. In response to this

issue researchers have recently started matching patent data to near population employer-

employee administrative datasets.Toivanen & Vaananen (2012) match administrative wage

data to 1,800 Finnish inventors at the US Patent Office (as do Depalo & Di Addario (2015)

on matched Italian administrative data). Using this Finnish data combined with a distance

to college instrument, Toivanen & Vaananen (2015) argue that access to schools offering

post-graduate engineering training have a causal impact on becoming an inventor. Jung

& Ejermo (2014) use Swedish patents to examine the issue of gender and age differences

for just under 20,000 inventors and Dorner et al. (2014) match the IEB employer-employee

data (see Card et al. (2013)) to a cross section of German patents in 2002. The advantage

of our data over these complementary papers is that (i) it is far larger than these other

studies being at least one order of magnitude larger; (ii) we focus on the US as the country

that is at the technology frontier in most industries and (iii) the US also has a relatively

competitive labor market and so is less likely to depend on institutional idiosyncrasies.

Finally, in terms of substantive questions, none of these earlier papers has systematically

investigated the relationship between parental income and children’s subsequent innovation.

To our knowledge the only other paper to do this is the excellent (and complementary) paper

by Aghion et al. (2015b) which looks at a similar set of issues extending the rich Finnish

175



data (which also has IQ data on the male population).

The structure of the paper is as follows. The next section describes the data, Section III

presents initial characteristics in early childhood; Section IV looks at schooling and exposure

during later childhood and section V examines inventors in the labor market. Section VI

discusses the model, its relationship to our stylized facts and its policy implications. Section

VII concludes.

4.2. Data

4.2.1. Patent Data

We combine two sources of raw patent data. First, we use the several thousand weekly text

and XML files of patent grant records hosted by Google. The files on this page contain the

full text of about 5 million patents granted from 1976 to today, extracted from the USPTO’s

internal databases in weekly increments. We focus on the 1.7m patents that were granted

between 1996 and 2014 to US residents. Second, we use data on 1.6m patent applications

between 2001 and 2012 (Strumsky, 2014).5We use the names of all individuals denoted as

inventors in the patent documents, not just those who are also assigned the intellectual

property rights (i.e. the “self-assigned” holders of the patent rights). For example, if an

individual is working for a firm, it is usually the company who will be the assignee rather

than the employee who will still be named as the inventor. We define an individual as an

inventor if he or she is named as such on the patent application or grant, have a US address

and applied for the patent in the 1996-2012 period (to match the IRS data).6

5In 2001 the US moved into line with other patent offices and published patent applications 18 months after
filing. Prior to this only successful applicants who were granted patents had their details published. For a
fee, applicants can choose to have their filing kept secret and 15% of applicants choose to do so. The analysis
in Graham & Hegde (2015) suggests that these (non-granted) applicants were of very low value. We show
below the robustness of the results to considering only granted patents.

6So if a patent applied for in 2012 (or earlier) is granted by 2014, the individual is classified as an inventor.
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4.2.2. IRS Data

From Treasury administrative tax files, we collect information on inventors’ city/state, em-

ployer ID and adjusted gross income, as well as their current citizenship status and gender

sourced from Social Security records. Most data are available starting in 1996 (and currently

ends in 2012). Wages and employer ID are available only starting in 1999.

4.2.3. Matching

We match inventors to taxpayers using inventors’ name, city, and state. Any inventor whose

given address is outside of the United States is excluded from the matching process and

dropped. We find equivalent information for taxpayers on 1040’s, W2’s, and other informa-

tion return forms. The iterative stages of the match algorithm are described in more detail

in Appendix A. We match approximately 88% of inventors of patents applied for in the last

decade (the period in which information returns are most available) and slightly above 80%

in the late 1990s.

We conduct various exercises to assess the quality of the match using additional data sources

(e.g. data on inventor age from Jones (2010)).7 We also explore selection on observables

and find no strong selection effects (see Appendix). Because the taxpayer data is a source

of linked observations of variants of a person’s name and cities of residence lived in over

time, the matching process provides a simple way to link different patents filed by the same

inventor even if the inventor’s name differs across patents or he has moved cities. 8

7Jones (2010) determines the ages of 55,000 inventors using name, zip code information, and a public Web site
(http://www.AnyBirthday.com). Comparing the birth dates obtained from this website and from Treasury
tax files for the inventors that are in both Jones’ database and ours, we find close to an exact match.

8While the panel nature of the linked dataset allows us to see full income and patenting profiles for our
sample, a drawback is that we cannot classify individuals as inventors who were active only prior to 1996.
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4.2.4. Inter-Generational Analysis

For the analysis in which we study parental income, we can only look at a sub-sample of the

IRS data for adults who are born after 1980, the earliest cohort for which we have sufficient

records to match them to parents through 1040 forms that record dependents. For years

when parents file tax returns, we calculate parents’ income as the pre-tax household income;

we gather parent income from W2 and other information returns in years when a parent

does not file. Further details on the process of matching children to parents are outlined

in Chetty et al. (2014b). Looking at the sample of individuals born 1980-84 who would be

aged 28-32 in 2012 we still have a substantial sample of 45,083 inventors. This focus on

“young” inventors may seem a disadvantage, but 13% of patents in our data are invented

by those aged 32 or under. We also show our results are robust to using older cohorts from

the Statistics of Income, which is a 0.1% sample of the IRS data available for years prior to

1996.

4.2.5. Test Score Analysis

When looking at the test scores of elementary school children, we further condition on a

sub-sample in which we know whether children attended a New York City public elementary

school between 1989 and 2009. We observe standardized test scores in grades 3 through

8 for these children, and limit our analysis to the approximately 250,000 of these students

born between 1979 and 1985. Further details of the process by which these students were

matched to taxpayers can be found in Chetty et al. (2014a).
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4.2.6. Initial Data Description

Table A1 contains descriptive statistics. In the whole sample there are a total of 1.2m

inventors in our matched data (Panel A). The innovation data is highly skewed - the average

inventor has 3.3 patents with 28.5 citations. But the standard deviation is enormous: 9.1

for patents and 154.6 for citations. The annual wage of an inventor is just over $112,000 at

the mean and $81,000 at the median, with incomes of over $178,000 (mean) and $109,000

(median). These are higher than for US workers as a whole. Consistent with Hunt (2009),

only 11.6% are women. The average age of an inventor is 45.9 Comparable data for the

inter-generational analysis sub-sample and test score sub-sample are in Table A1 Panels B

and C respectively.10

4.3. Birth and Early Experience

4.3.1. Parental income

Figure 1 shows (solid blue circles) the number of inventors per 10,000 individuals (left hand

vertical axis) ordered by the parents’ percentile position in the national income distribution

(x-axis).11 We measure the latter as average household income 1996-2000, which Chetty

et al. (2014b) have shown to be a good proxy for permanent income. A sharp, quite convex

upward slope is apparent. Children born to the richest 1% of parents had invention rates of

8.3 in every 10,000, which is an order of magnitude higher than the proportion of inventors

born in the bottom half of the income distribution (0.85). One hypothesis is that kids from

richer parents are more likely to produce more low-value patents, but the distribution of more
91.

10The low levels of income and wages are because these are younger people who will usually be earning no
income while at school.

11We use the 1980-82 birth cohort, but similar results are apparent using the 1980-84 or cohorts from individual
years.
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prolific inventors is not dependent on parent income. To test this hypothesis, we repeated

the analysis using as an outcome whether an inventor was in the top 5% of her age group’s

lifetime citation count. The green triangles corresponding to the right-hand vertical axis

show that the positive relationship between parental income and invention is just as strong

for high-quality patents as it was for all patents.12 As noted above, we test for whether the

results are specific to looking at young inventors by using the Statistics of Income 0.1% IRS

sample. We take a cohort born in 1970-72 (ten years younger than those in Figure 1) and

examine the fraction of inventors aged 30-40 (instead of aged 30-32). Figure A1 show that

the strong gradient between parental income and inventor status is clearly visible in this

older sample (although it is noisier due to smaller sample size).

Figure 4.1.: Probability of Patenting by Age 30 vs Parent Income Percentile
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Figure 1: Probability of Patenting by Age 30 vs. Parent Income Percentile
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This inventor-parent income relationship has never been comprehensively documented before
12Similarly, Figure A2 shows that if we use alternative definitions of inventor status such as just patent grantees
or just the post 2001 applicants data we again obtain a ratio of top 1% inventor rates to bottom 50% rates
of about 10 to 1.
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to our knowledge. But one could regard the relationship in Figure 1 as deeply unsurprising.

We would expect that parental income was positively associated with many other indicators

of “elite” success such as becoming a successful lawyer, physician, hedge fund manager or

economist, for example. 9.7% of children born to the richest 1% of parents stayed in the top

1%, compared to only 0.3% of children in the bottom 50% getting into the top 1% (see Figure

A3). We focus on inventors because there is ample evidence that there are positive spillovers

from innovation and therefore the social returns are greater than the private returns.13 Hence,

understanding barriers to the creation of more inventors is more important for public policy

than the supply of hedge fund managers or lawyers. Furthermore, the focus on inventors

also enables us to implement empirical strategies, such as the use of detailed technology class

information in patent documents, to shed light on whether the relationship in Figure 1 is

related to the childhood experience of potential innovators. Such strategies would be harder

to implement with other professions.

There could be many reasons for the relationship in Figure 1. For example, since income is

related to ability and this human capital is partly genetic, the relationship could be due to

inherited ability. Alternatively, it may be that a poorer child begins life equally gifted as a

richer one, but faces barriers to becoming an inventor. To investigate these issues we turn to

the New York City (NYC) schools data where we know standardized statewide test scores

of children in grades 3 to 8 in math and English. Figure A4 shows that the inventor-income

gradient holds in this sub-sample (cohorts born in 1979-84). We use a parental income split

at the 80th percentile and label the “rich” those above this and the “poor” those below. This

is somewhat arbitrary, but other parental income splits produce similar qualitative results

to everything we will show below.14

Figure 2 shows the kernel density of third grade math test scores for rich and poor kids.15

13For example, Bloom et al. (2013),Jones & Williams (1999) andGriliches (1992))
14All results available upon request.
15We are certainly not claiming that all third grade math scores are genetic. Rather we are using this as
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The rich kids’ distribution is strongly shifted to the right as we would expect. Only 7%

of poor kids are in the top decile of the math score distribution compared to 23% of rich

kids. Panel A of Figure 3 shows the proportion of children who grow up to be inventors as

a function of their math test scores in third grade. The pattern is striking. Children in the

top 5% of the math distribution have a future innovation rate of over 5 in a 1,000 people

whereas those in the next 5% have innovation rates of just over 2.5. Those in the bottom

90% have innovation rates of around 0.5.

Figure 4.2.: Distribution of Math Test Scores in 3rd Grade for Children of Low vs. High
Income Parents
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Figure 2: Distribution of Math Test Scores in 3rd Grade 

for Children of Low vs. High Income Parents

Parent Income Below

80th Percentile

Parent Income 

Above 80th Percentile

an indicator of early childhood environment and initial ability, which we want to distinguish from later
childhood environment as children grow up.
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Figure 4.3.: Probability of Patenting by Age 30 vs 3rd Grade Math Test Scores
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Figure 3 Panel A: 
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These results can be shown in a regression setting (Table A2) where the dependent variable
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is whether the child grows up to be an inventor (scaled by 1,000). Column (1) shows that

third grade math scores are highly predictive of becoming an inventor - a standard deviation

increase in math test score is associated with a (highly significant) increase of 0.85 in 1,000

chance of becoming an inventor. Column (2) substitutes standardized grade 3 English test

scores which enters with only a slightly lower coefficient of 0.68. Column (3) includes both

math and English together and shows, interestingly, that conditional on math test scores

(which remain highly significant) English test scores are insignificant. Column (4) has a

less parametric version of column (3) which uses dummies for each vingtile of the English

score and vice versa in column (5). Whereas math scores remain positive and significant in

column (4) English scores are completely insignificant in column (6). This implies that early

math ability is very informative for future inventor status whereas English performance is

not. Note that this is not the case when re-estimating these equations but using a dummy

for whether a child ended up in the top 1% of the income distribution as an outcome. The

final three columns use this as the dependent variable and show that both English and math

are significant in such a regression.16

Panel B of Figure 3 shows that there is a positive relationship between early math test

scores and the chances of becoming an inventor for both rich and poor children and again,

the relationship is noisy until we get to the top decile of the math test score distribution.

It is striking, however, that for children in this top decile, rich kids have a much higher

invention rate than poor kids. About 7 in every 1000 rich kids in the top 5% of math test

scores become inventors whereas the rate is less than half this for poor kids. This strongly

suggests that the innovation-income gradient cannot solely be attributed to early test scores.

We can quantify the role of early test scores in accounting for the innovation-income relation-

ship in different ways. Table 1 (Panel A) provides a calculation based on the full distribution

16These results are also robust if we instrument one test score with another to address the issue of noise in the
test scores. See Kahneman & Ghiselli (1962) for a discussion.
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decomposition methodology of DiNardo et al. (1996) (“DFL”). We give the children below

the 80th percentile of parent income the same math test scores as those from richer families

(specifically, we divide the distributions into 5% vingtiles bins to do this). It is important

to do this across the whole distribution rather than just at the mean (as in a conventional

Oaxaca-Blinder decomposition) because most of the increase in innovation probability is in

the right tail of the ability distribution as already shown in Figure 3. We calculate that the

test score difference in third grade accounts for just over 30% of the difference in innovation

propensities in later life. So this is a sizable proportion, but obviously there are other factors

that must account for the majority of the difference. 17

Table 4.1.: Fraction of Gap in Patenting by Parental Income Accounted for by Differences
in Math Test Scores

Panel A: Decomposition Using 3rd Grade Math Score

Patent Rate

(per 1000 Individuals)

Gap Relative to Above p80 

Group

Above 80th Percentile of parent income 1.93

Below 80th Percentile 0.52 1.41

Below 80th Percentile.(Reweighting Scores) 0.95 0.97

% of gap accounted for by 3rd grade scores
30.9%

(s.e. = 8.5%)

Panel B: Decomposition using later grades

% of gap accounted for by 4th grade scores 36%

% of gap accounted for by 5th grade scores 39%

% of gap accounted for by 6th grade scores 45%

% of gap accounted for by 7th grade scores 51%

% of gap accounted for by 8th grade scores 53%

Average percentage point change per grade 4.6

Table 1: Fraction of Gap in Patenting by Parental Income accounted for by 

differences in Math Test Scores

Notes: This is a DiNardo, Fortin and Lemieux (1996) decomposition of the difference in innovation rates among children of the “rich” (top quintile of income) and 

all others (see text) using the NYC test score data combined with our IRS-USPTO match. We divide the math distribution into vingtiles and give the low-income

Children the test score distribution of the rich and re-calculate the implied innovation rates (re-weighting scores).

17In Table A3 we show several alternative ways of quantifying the contribution of test scores to the inventor-
income gradient which reach broadly similar conclusions. Looking across the first row for third grade test
scores using the balanced panel leads to a contribution of 35.5% (a bit higher than our baseline contribution
of 30.1%). Using a split at median parental income (instead of the 80th percentile) leads to a smaller, 27.8%
contribution. The last three columns use a method of introducing 20 dummy variables for each vingtile
of the test score distribution and observing by how much the coefficient falls on the “rich” income dummy
variable. This produces somewhat larger estimates of 49.4% in the baseline, 41.5% for the balanced panel
and 43% for splitting at median income.
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4.3.2. Gender

Our data shows that only a small proportion of inventors are female. In Figure 4 we show

the fraction of female inventors by birth cohort. Clearly more women are becoming inventors

over time: only 3% of inventors born in 1940 were female, whereas this had risen to 15%

for the 1980s birth cohort. This is a very slow rate of convergence, however. Extrapolating

this line forward suggests it will take 140 years before women reach parity with their male

counterparts. There has been much recent discussion about the causes of this difference and

its persistence.18

Figure 4.4.: Percentage of Female Patent Holders by Birth Cohort
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Figure 4: Percentage of Female Patent Holders by Birth Cohort

Slope = 0.25% per year
 Convergence to 50% share will take 140 years at current rate

18See Hunt (2009), Thursby & Thursby (2005), or Ding et al. (2006). There has been
much controversy over this reported in the media. For example, the Nobel Laureate Tim
Hunt argued in 2015 that women did not work well in the high-pressure culture of aca-
demic R&D labs (http://www.dailymail.co.uk/news/article-3117648/Ban-women-male-labs-distracting-cry-
criticised-says-Nobel-prize-winner-Sir-Tim-Hunt.html). Larry Summers speculated that the lower propor-
tion of female elite scientists could be because there was a greater variance in men’s intrinsic ability than
in women’s (e.g. http://blogs.scientificamerican.com/the-curious-wavefunction/why-prejudice-alone-doesnt-
explain-the-gender-gap-in-science/).
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Table 4.2.: Fraction of Gap in Patenting by Gender Accounted for by Differences in Math
Test Scores

Table 2: Fraction of Gap in Patenting by Gender accounted for by differences in 

Math Test Scores

Panel A: Decomposition Using 3rd Grade Math Score

Patent Rate

(per 1000 Individuals)

Gap Relative to Above p80 

Group

Men 1.36

Women 0.47 0.89

Women (Reweighting Scores) 0.50 0.86

% of gap accounted for by 3rd grade scores 3.7%

Panel B: Decomposition using later grades

% of gap accounted for by 4th grade scores 2%

% of gap accounted for by 5th grade scores 2.9%

% of gap accounted for by 6th grade scores 4.5%

% of gap accounted for by 7th grade scores 6.4%

% of gap accounted for by 8th grade scores 8.7%

Average percentage point change per grade 1.7%

Notes: This is a DiNardo, Fortin and Lemieux (1996) decomposition of the difference in innovation rates among boys and girls (see text) using the NYC test

score data combined with our IRS-USPTO match. We divide the math distribution into vingtiles and give the girls the test score distribution of the boys and re-

calculate the implied innovation rates (re-weighting scores).

Figure 5 illustrates the relative similarity of the distribution of math test scores across both

genders. Boys have a slightly higher score at the mean and are slightly thicker in both tails.
19 We conducted an analogous decomposition exercise for women as we did for parental

income in Table 2. This shows that we can account for very little of the gender-innovation

gap using math test scores. We account for nothing at all using third grade test scores and

only about 3% using eighth grade scores. So, in stark contrast to income, the gender gap in

innovation does not appear to be ability related.

19This is consistent with Machin & Pekkarinen (2008), who show that boys’ test scores had significantly higher
variance than girls’ scores. They examine the OECD’s standardized PISA math and reading tests taken by
15 year olds. In 37 of the 41 countries examined the boy-girl variance was significantly different for math.
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Figure 4.5.: Distribution of Math Test Scores in 3rd Grade for Males vs. Females
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Figure 5: Distribution of Math Test Scores in 3rd Grade for Males vs. Females
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4.3.3. Race

There is a small literature documenting racial differences in invention rates by race (e.g.

Cook & Kongcharoen (2010)). Figure 6 uses the NYC data (where we can observe race) to

show that there are wide disparities in patenting races by minority status.20 The first blue

bar shows that white children have an inventor rate of 1.6 in 1,000, which is more than three

times the rate for black kids (0.5) and eight times the rate for Hispanics (0.2). By contrast,

Asian children are twice as likely to grow up to be inventors than whites (an inventor rate of

3.3). We can implement the DFL decompositions to see how much of these differences can

be accounted for by third grade math test scores. The second red bar in Figure 6 does this

for each racial group where we take white kids as the base and normalized to 1.6. We can

see that the bars are not changed very much by this reweighting, with each gap shrinking by
20The share of students by race is: Asian 7.46%, Hispanic 32.81%, black 38.95%, white 20.78%.
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only 0.1. For example, the Black-White gap shrinks from 1.1 to 1.0, a change of under 10%.

By contrast, re-weighting by income (the third green bar) makes a much bigger difference

with the Black-White gap falling by almost half from 1.1 to 0.6. This suggests income is

much more important than ability in accounting for the inventor difference between blacks

and whites. Income makes less difference for the white-Hispanic gap, however, falling from

1.4 to 1.3. The White-Asian gap actually widens from 1.5 to 2.6 when we reweight by income

as Asian parents in NYC public schools are on average poorer than white parents. Figure 7

shows the race results in another way. If we plot the inventor-test score gradient by racial

group there are hardly any differences except in the top 15% of the ability range. It is

amongst the most gifted at math that the differential invention rates by race become clearly

visible. For third graders in the 10% of the math test score distribution, future inventor

rates are over 8 for Asians, about 4 for Whites and about 1 for Blacks and Hispanics.

Figure 4.6.: Patent Rates by Race and Ethnicity in New York City Public Schools

Raw Mean Reweighted on 3rd Grade Scores Reweighted on Income

Figure 6: Patent Rates by Race and Ethnicity in New York City Public Schools
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Figure 4.7.: Patent Rates vs. Test Scores by Race
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Figure 7: Patent Rates vs. Test Scores by Race in NYC Public Schools
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4.3.4. Implications for Models of Talent Allocation

One interpretation of these differences in invention rates by income, race and gender is

that they reflect barriers to becoming an inventor over and above the intrinsic ability and

preferences of individuals. In a recent contribution, Hsieh et al. (2013) develop a Roy model

of heterogeneous occupations which have barriers to entry that differ by group (e.g. race

and gender). These barriers or frictions are a combination of direct discrimination, in which

individuals are paid less than their marginal product, and barriers to the acquisition of the

type of skills that are useful to enter the occupation (e.g. a legal training to become a lawyer).

This causes a misallocation in which a talented individual may not sort to the occupation

that best fits her comparative advantage. The frictions cause misallocation and a loss of

welfare. Calibrations in Hsieh et al. (2013) suggest that improvements in the allocation of

talent (primarily from less barriers to women) were responsible for 15% to 20% of the growth

190



in US output per worker between 1960 and 2008.

One might, however, be skeptical over whether these type of rational sorting models will

generate first-order welfare losses. Consider such a model applied to our context of inventor

careers. Suppose that children from poorer families have difficulties in accessing high-quality

schools to improve their math ability, increasing the cost for them to become successful

inventors. To the extent that such barriers exist, rational sorting models imply that they

will dissuade only marginal inventors. The most talented individuals will still be prepared to

make the effort to acquire skills necessary to become an inventor. It is not “Einsteins” who

are lost to the R&D sector, but rather those of more mediocre ability. By contrast, we discuss

below a model where disadvantaged groups are relatively less informed and underestimate the

net benefits of an inventor career. In this case, even some very talented potential inventors

will not pursue a career in innovation because they miscalculate the true expected cost-benefit

ratio. There could be more first-order welfare losses in such a model as the breakthroughs

of possible Einsteins may be lost.

To investigate whether the rational sorting model is the most plausible explanation of the

patterns we observe, we implement a simple non-parametric test. This class of models has a

clear prediction that conditional on becoming an inventor, individuals from the discriminated

group should be, on average, of higher talent than the non-discriminated group. We investi-

gate this in two ways in Figure 8. First, we use our third grade math test scores as a measure

of ability. In Panel A we show the mean math grades for inventors split into (a) whether

their parents were rich or poor, (b) whether they were white or from a minority group (black

or Hispanic) and (c) whether they were male or female. The results are striking - in no

case are the mean test scores higher for the “discriminated group” as rational sorting models

would suggest. If anything, it is the opposite with rich kids and whites having significantly

higher scores conditional on being an inventor (the male-female gap is insignificant).
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Figure 4.8.: Math Test Scores Conditional on Inventing
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Figure 8 Panel A:

Math Test Scores in 3rd Grade by Demographic Group, Conditional on Inventing

Notes: 95% confidence intervals shown
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Figure 8 Panel B:

Fraction of Highly-Cited Patents by Demographic Group, Conditional on Inventing
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The second empirical way we implement our test of rational sorting is to use patent citations
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as a measure of inventor ability.21 We define a highly cited patent as one which is in the

top 5% of future citations for its cohort (as in Figure 1). Again, we find no evidence for the

basic rational sorting model, which predicts that the quality of innovation should be higher

for the disadvantaged group. Conditional on patenting, mean citation rates are similar (or

higher) for men, whites and those from high-income backgrounds.22

The upshot of this discussion is that the rational sorting models may be underestimating

the loss from misallocation in our context. To consider some alternative explanations of how

the allocation of individuals across sectors can occur, we next turn to the conditions under

which inventors grew up.

4.4. Inventors Pre- Labor Market

We look at two aspects of the period of time between early school and joining the labor

market for potential inventors: direct measures of later schooling (sub-section IV.A) and

then “exposure” to innovation (sub-section IV.B).

4.4.1. Schooling

To investigate the importance of human capital acquisition we repeated the DFL decompo-

sitions in Table 1 but exploit information from later grades (NYC data goes through grade

8). Panel B shows the DFL results. As children get older, test scores account for more of

the inventor-income gap. By 8th grade 53% of the gap is accounted for, compared to 30%

21A disadvantage of this first test is that it might be privately optimal for high-ability disadvantaged groups
to go into other high-skilled occupations such as investment banking (we do not have an early measure of
inventor-specific ability). The second test does not suffer from this drawback.

22Note the smaller confidence bands on gender is because in Panel B we can use the entire matched IRS-patents
database whereas in Panel A we just use the NYC data as we are restricted to using test scores. The large
confidence bands for minorities is because there are very few highly cited patents in these cells and because
minority status is only available for the NYC sample.
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in grade 3. On average an extra 4.4 percentage points of the gap is accounted for each year

by test scores and the null hypothesis that there is no additional explanatory power of the

later grades is rejected (p-value = 0.025).23 Low-income kids fall further behind richer ones

as they progress through school. In in Panel B of Table 2 we present decompositions for

gender. Although test scores do become more important as children pass through school,

the additional explanatory power of schooling is very low in explaining the gender gap for

innovation. By 8th grade, test scores still only account for under 9% of the advantage of

boys over girls. This suggests that explanations for gender differences in invention are not

ability-related, at least as measured by test scores.

For the individuals who attended a US college between 1999 and 2012 (200,000 inventors)

we can determine which college they attended. One striking fact is that a few select colleges

produce an enormous fraction of US inventors. For example, the top 10 most innovative

colleges (defined as the colleges whose graduates will be granted the most patents) account

for only 3.7% of enrollments, but 15% of (citation-weighted) patents (Figure A5). In these

top 10 colleges, 5.6% of students have a patent by age 30 (about 28 times the average for the

population as a whole by this age). In the 10 most innovative colleges, the invention-parental

income relationship is severely attenuated. Figure 9 shows that in this sample children whose

parents were in the (nation-wide) top 1% of the income distribution produced 63 patents

per 1,000 (compared to 0.1 per 1,000 in Figure 1), compared to 43 per 1,000 in the bottom

half of the income distribution. This ratio of about 1.5 to 1 compares to 10 to 1 in Figure

1. Hence, by the time students graduate from a school like MIT or Stanford, the income of

the student’s parents makes relatively little difference. The main role of higher income is

increasing the chance of a child going to one of these colleges - Table A7 shows the sharp

positive gradient between being born into a wealthy family and attending an innovative

23The lower rows of Table A3 show this is equally true using other decomposition methods (up to 61% by
grade 8 in the median split specification of column (6)).
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college.

Figure 4.9.: Probability of Patenting by Age 30 vs Parent Income Percentile in 10 Most
Innovative Colleges

Figure 9: Patent Rates vs. Parent Income Percentile in 10 Most Innovative Colleges
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4.4.2. Exposure to Innovation

We next explore the role of being exposed to innovation in childhood and growing up to

be an inventor. We examine exposure along three dimensions: (a) whether an individual’s

parent was an inventor (sub-section IV.B.1), (b) for children of non-inventors, what was

the innovation in the industry of one’s father (sub-section IV.B.2) and (c) innovation in the

area where the child grew up (sub-section IV.B.3). For all three dimensions we examine not

just the overall level of innovation, but the type of innovation by exploiting the information

on patent technology class. Patents can be classified into seven broad categories,24 thirty

24The classes are Chemicals; Computers; Communications; Drugs and Medical; Electrical and Electronic;
Mechanical and “Others”.
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seven sub-categories and four hundred and forty five classes. Looking at whether exposure

to specific technological fields (rather the innovation in general) is correlated with becoming

an inventor in that specific field is a sharper test of whether becoming an inventor is affected

by the environment rather than just being an innate trait.

4.4.2.1. Parental Innovation Status

We analyze innovation rates for 16 million children born between 1980 and 1984 for whom

we know whether their parents themselves filed a patent since 1996. Amongst those whose

parents were inventors, the patent rate was 11.1 per 1,000. By contrast, if a child’s parent

was not an inventor then the patent rate was only 1.2 per 1,000. A fraction of these were

children-parent teams on the same patent. However, even if we remove these observations,

then it is still the case that the inventor rate is 8.5 for the children of inventors.

Of course, this relationship within the family could reflect a genetic predisposition to be

an inventor. To address this we examine the patent class in which the parent invented: it

is very unlikely that there is a gene that codes specifically for a type of technology class

such as “modulators” (technology class 332) vs. “demodulators” (technology class 329) or

synthetic resins (class 520) vs. natural resins (class 530). Conditional on inventing any

technology, children of inventors are nine times more likely to invent in the same sub-class

as their inventing fathers than they would be by random chance.25

We also develop a closeness measure based on looking at whether a patenter in class A also

patented in class B. This exploits the fact we have individual identifiers due to the IRS

match and can examine cross-class patenting by individuals over time.26 Table A4 gives

an example. Starting with technology class 375 (“pulse or digital communications”) it has
250.9% of children invent in the same class as their fathers compared to an expected 0.1% by random chance
(see Table A9).

26Other distance metrics in the literature include classes within the same sub-category and cross class citations
(see Bloom et al. (2013).
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a distance of zero with itself by definition. For inventors who had a patent in pulse or

digital communications, the next most popular class to patent in was demodulators so we

give this a distance of 1. After this comes modulators (distance = 2) and so on. Using this

information, Figure 10 shows the proportion of children of inventors patenting in the same

technology class and then in other “close-by” classes. We calculate the proportion for each

technology class and then average across all technology classes with weights proportional to

the number of patents in each technology class. There is a clear spike in the probability

of children of inventors inventing in the same technology class as their parent. On average,

if an individual’s parent invented in a particular technology class, the child had over a 0.9

in a 1,000 chance of inventing in exactly the same class. The chance of inventing in the

next “closest” technology class (at distance = 1) was under 0.2, about a fifth as high. As

the class becomes more distant, the child’s probability of investing in that class diminishes

(graphically, the downward slope going from left to right of Figure 10). This evidence is

consistent with the view that being brought up in a family where there is some very specific

knowledge about a technology helps the younger member of that family to go and become

inventors in that technology.
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Figure 4.10.: Technology Class-Level Patent Rates by Distance from Father’s Technology
Class for Children of Inventors
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4.4.2.2. “Mentors”: Innovation in father’s industry

The direct relationship between parent’s and children’s inventor class is striking, but of

course this is focused on a narrow slice of the data: those with parents who have invented.

Our second measure of exposure looks at characteristics in the (six-digit) industry where

a child’s father worked. The idea is that the network of people in the firm and industry

could influence what careers young people are interested in studying and pursuing in later

life. Table 3 puts this results in a regression framework, where the data is constructed

solely from all children whose parents were not inventors (in order to rule out the direct

channels examined in the previous sub-section). Column (1) is run at the six-digit industry

level. For each individual we calculate the proportion of workers in their father’s industry

who were inventors (right hand side variable). The dependent variable is the proportion of

children who became inventors (within a father’s industry). There is a strong positive and
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significant relationship between these two variables.27 A one standard deviation increase in

the fraction of inventors in the father’s industry (0.0023) is associated with an increase of

0.0006 inventors, or 25.3% at the mean of the dependent variable (0.0023).

Table 4.3.: Children’s Patent Rates vs. Patent Rates in Father’s Industry

Dependent variable:

(1)

Fraction

Inventors

(2) 

Fraction Inventing 

in Category

(3) 

Fraction Inventing 

in Sub-Category

(4) 

Fraction Inventing 

in Class

(5) 

Fraction Inventing 

in Class

Fraction Inventors in 

Father’s Industry

0.250***

(0.0276)  

Fraction in Category in 

Father’s Industry

0.162***

(0.0166)  

Fraction in Sub-Category in 

Father’s Industry

0.154***

(0.0168)  

Fraction in Class in Father’s 

Industry

0.0780***

(0.0136) 

0.0601***

(0.0129) 

Fraction in same Sub-

Category but other Class

0.00438***

(0.00083)  

Fraction in same Category 

but other Sub-Cat.

0.00006

(0.00040) 

Fraction in other Category
0.00021***

(0.00005) 

Cells Father’s industry
Father’s 

industry*category

Father’s 

industry*sub-

category

Father’s 

industry*technology 

class

Father’s 

industry*technology 

class

Observations 345 2,415 12,765 153,525 153,525

Table 3: Children’s Patent Rates vs. Patent Rates in Father’s Industry

Notes: Standard errors are clustered by 345 industries. Column (2) includes 7 category fixed effects; column (3) includes 37 sub-category fixed 

effects; columns (4) and (5) include 450 technology class fixed effects. The sample is children whose parents are not inventors.

In column (2) of Table 3 the unit of observation is an industry (345) by patent category

(7) cell. We construct the data in the same way as before but calculate the proportion

of inventors within an industry-category cell and then include category fixed effects in the

regressions. Column (3) goes one step further and constructs cells defined by industry and

sub-category (including 37 sub-category fixed effects in the regression) and column (4) is the

most disaggregated using industry by technology class cells (with 450 technology class fixed

effects). The same pattern emerges in columns (2)-(4) as in column (1). Children are much
27Figure A10 has a the scatterplot of this relationship.
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more likely to innovate within a narrowly defined technology area if their father has worked

in an industry that has more inventors in this same area. Column (5) replicates column

(4) but includes (i) the fraction of inventors in the same sub-category but in a different

industry class and (ii) the fraction in the same sub-category but a different class and (iii)

other categories. All coefficients in these variables are positive and two are significant (the

own class coefficient drops slightly but remains significant).28

4.4.2.3. Innovation in childhood neighborhoods

Our third measure of exposure looks at the geography of innovation. The existing literature

examines the effects of place on economic outcomes in general and the effects on innova-

tion in particular. Marshall’s theory of industrial districts suggested that one advantage of

geographical clusters was that there were “ideas in the air” and accounts of the success of Sil-

icon Valley have also stressed the benefits of geographically localized innovation spillovers.29

From our data we know where all individuals were grew up and in Figure 11 we present the

invention rates by childhood Commuting Zone (CZ). Note that the figure does not present

the patenting rates based on where inventors are currently residing (this is generally used

in the literature because location at time of invention is available in the USPTO data), but

rather the future patenting rates in commuting zones where inventors grew up. Figure 11

shows an interesting spatial pattern: innovation hotspots are in the Bay Area, Northeast

and Great Lakes, which is expected as there are strong universities located there. But there

are also many other innovation pockets around the country - in the North-West, Utah and

Colorado, which may be less obvious hotspots. Very low innovation areas are found in the

Deep South.30

28Figure A11 shows a bar chart of these industry regression coefficients grouped by distances. The falloff from
innovating in the exact same class to the next closest class is very striking.

29There is a large literature on inventor mobility and agglomeration effects from localized knowledge spillovers,
e.g. Kim & Marschke (2005).

30The list of the top 10 and bottom 10 most innovative CZs are in Table A5.
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Figure 4.11.: The Geographic Origin of Inventors
Figure 11: The Origins of Inventors

Patent Rates per 1000 Children by CZ where Child Grew Up

Notes: “Insufficient data” is CZ with under 500,000 children

These relationships cannot be read as causal place-based effects as there are many other

unobservable factors associated with place of birth and future outcomes. We probe this

relationship more in Table 4 which is analogous to Table 3 and again focus on children

whose parents were not inventors. Column (1) is the baseline regression where the dependent

variable is the fraction of kids who lived in a commuting zone that grow up to be inventors and

the key right-hand-side variable is the invention rate in the childhood commuting zone (as in

Figure 11). There is a strong and significant relationship between the two (as also illustrated

in the scatterplot in Figure 12 for the largest 100 commuting zones) showing that children

who grow up in innovation-intensive neighborhoods are more likely to become innovators

themselves. According to column (1) of Table 4, increasing the fraction of inventors in the

childhood commuting zone by a standard deviation (0.0002) is associated with a 30% increase

in invention rates.31
31The mean of the dependent variable is 0.002, so using the coefficient estimate (0.0002*2.9006)/0.002 = 0.30.
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Table 4.4.: Children’s Patent Rates vs. Patent Rates in Neighborhood

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent Variable: 

Fraction Children 

inventing 

Fraction 

inventing

in CZ

Dummy if 

individual 

invented

Fraction

Inventing in 

in cell

Fraction

Inventing in cell

Fraction

Inventing in in 

cell

Fraction

Inventing in 

cell

Fraction

Inventing in 

cell

Fraction

Inventing in cell

Parent’s CZ patent rate
2.906***

(0.435) 

3.098***

(0.572)

Parent’s CZ patent rate

in Category

1.724***

(0.409) 

1.378***

(0.396)

1.955***

(0.448)

Parent’s CZ patent rate 

in Sub-Category
1.509***

(0.386) 

Parent’s CZ patent rate 

in Technology Class

1.136***

(0.194) 
1.050***

(0.173)  

Parent’s CZ patent rate 

in same Sub-Category, 

other class
-0.0005

(0.0064) 

Parent’s CZ patent rate 

in same category but

other Sub-Category
-0.0018

(0.0027) 

Parent’s CZ patent rate 

in other category
0.0053***

(0.0007) 

Fixed effects
None Child CZ Category

Child CZ & 

Category

Parent NAIC & 

Category

Sub-

Category

Technology 

Class
Technology 

Class

Cells

Parent CZ Individual

Parent 

CZ*category

Child 

CZ*Parent 

CZ*Category

Parent 

CZ*Parent 

NAIC*Cat.

Parent 

CZ*Sub-

category

Parent 

CZ*technolo

gy class

Parent 

CZ*technology 

class

Observations 390 5,452,642 2,730 1,554,973 1,642,193 14,430 173,550 173,550

Table 4: Children’s Patent Rates vs. Patent Rates in Neighborhood

Notes: Standard errors clustered by 390 Commuting Zones (CZ) where children grew up (“parent’s CZ”). Columns (2) and (4) include current CZ as of 2012 (“child’s CZ)

fixed effects. Sample is children whose parents were not inventors. 

Figure 4.12.: Patent Rates of Children Growing Up in a Commuting Zone vs. Patent Rates
of Adults in that Commuting Zone

Figure 12: Patent Rates of Children who Grow up in a Commuting Zone vs. Patent 

Rates of Adults in that Commuting Zone (100 Largest Commuting Zones)
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Column (2) of Table 4 reports estimates at the individual level and includes 390 dummy

variables for the commuting zone where the individual was living in 2012. The coefficient
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is essentially identical to column (1). This is effectively exploiting the origin-destination CZ

matrix of where a child grew up and where they currently live (almost 390*390 cells). The

coefficient indicates that, for example, for two adults currently living in Chicago, the fact

that one grew up in high-innovation Cambridge makes it more likely she will be an inventor

than another who grew up in lower-innovation Little Rock. In column (3) we use CZ by

patent category level (analogously to Table 4 column (2)) and include seven category fixed

effects. Column (4) disaggregates this further by the CZ where the child grew up (so a cell

is the current child’s CZ by childhood parent CZ by category). Like column (2), this shows

that there is a positive association with exposure even after controlling for the CZ where the

child is currently living. Column (5) disaggregates the current child CZ by patent category

and by father’s industry. We can control for industry dummies here to show that the CZ

exposure is picking up more than simply the parent industry exposure that we analyzed in

Table 3. Column (6) is like column (3) but at the CZ by sub-category level (and includes

sub-category fixed effects) and columns (7) and (8) are at the CZ by technology class level

(regressions include class fixed effects). This table illustrates that not only are kids who

grow up near inventors more likely to be inventors themselves, but these children also have

an increased propensity to innovate in the same types of fine-level technologies as they were

exposed to during childhood.32

4.4.2.4. Exposure to female inventors

We can also use our empirical strategy of exposure to innovation in general to look more

specifically at female inventors. We can calculate the proportion of female inventors in the

state where children grew up and we present the map of this in Figure 13.33 The Northeast

appears to have the most female inventors and the North and mid-West the least. The top
32Figure A12 shows a bar chart of these CZ regression coefficients grouped by distance. The fall off from
innovating in the exact same class to the next closest class is very striking

33Unfortunately, there are not sufficient numbers of female inventors to do this reliably at the CZ level
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and bottom 10 CZ for female inventors are in Table A6. These female invention rates are

correlated with the Pope & Sydnor (2010) Gender Stereotype Adherence Index on 8th Grade

Tests (see Figure A13). It seems plausible that areas where these cultural attitudes about

women are stronger are less likely to generate female inventors.

Figure 4.13.: Percent of Inventors who are Female by State where Child Grew Up
Figure 13: Percent of Inventors who are Female by State where Child Grew Up

4.4.2.5. Summary of Findings on Exposure

A clear pattern emerges from this section that across all three measures of exposure - par-

ents, parents’ colleagues and neighborhoods - growing up surrounded by more innovation

is associated with an increased probability of becoming an inventor, even within a detailed

technology class.
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4.5. Inventors in the Labor Market

4.5.1. Wages and Income

The distribution of inventor income is given in Figure 14. It is heavily skewed with a median

of $114,000, a mean of $192,000 and $1.6m at the 99th percentile. It is far more skewed

than occupations such as doctors, architects or lawyers. Only the financial sector has similar

degrees of skewness (Lockwood et al., 2014). Examining the composition of income for

inventors, we observe that it is dominated by salaries - like for most workers. Focusing on

the top 1% of inventors by income, non-wage income is more important than wage income.

However, even here patent royalty income is not so important: other forms of non-wage

income dominate (Figure A14).

Figure 4.14.: Distribution of Inventors’ Mean Individual Income Between Ages 40 and 50
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Figure 14: Distribution of Inventors’ Mean Individual Income Between Ages 40-50

p50 = $114K p95 = $491K p99 = $1.6m

Mean income: $192K

Top 1% income share: 23%

Top 0.1% income share: 9.2%

Next, we examine income dynamics around the time of invention in Figure 15. Panel A shows

median income in the 10 years before and 10 years after the patent event. Interestingly, we

do not see an increase in income after applying for a patent. In fact, there is a much stronger

205



increase in income prior to patenting: afterwards income flattens off and falls a bit. Panel B

shows the pattern for mean wages and Panel C for the 99th percentile to check if the median

is missing out on higher quantiles. But the picture looks similar with the main returns

occurring prior to the patent event (although the flattening out now happens about three

years after the patent is applied for). Panel D examines the proportion of income that is

non-wage. Here we do see a clear break in trend with the fraction rising afterwards much

faster than it was before. Panel E looks at alternative measures of the quality of patents.

The patterns look similar, although ungranted appear less valuable than granted and highly

cited patents (i.e. those in the top 5% of the future citation distribution by cohort have

faster growth of income in the pre-patent period and the fall off of income in the post-patent

period is less severe).34

34Note that mean income is higher in general for inventors with more citations (see Figure A15). This is a
new external corroboration of the value of citations as indicators of quality.
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Figure 4.15.: Dynamics of Income Around Patent Application
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Figure 15 Panel A: Dynamics of Median Income Around Patent Application

Individuals who Apply for a Patent Between Ages 35-50

Figure 15 Panel B: Event Study of Mean Income 
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Figure 15 Panel C: Event Study of 99th Percentile of Income Distribution

Individuals who Apply for a Patent Between Ages 35-50
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Figure 15 Panel D: Event Study of Share of Non-Wage Income

Individuals who Apply for a Patent Between Ages 35-50
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The patterns in Figure 15 are for prime-aged workers (35-50 years old) to abstract away

from the fast growth of earnings that occurs for younger workers. Figure 16 shows the same

median income “event studies” for patents applied for at exactly the ages of 30, 40 and 50.

The pattern of a fast growth prior to patenting followed by a leveling off/fall is apparent

in these graphs as well, suggesting the dynamic patterns are occurring at all ages. It is not

some conflation of lifecycle age-earning profiles with patent events.

Figure 4.16.: Distribution of Inventors’ Mean Individual Income Between Ages 40 and 50

Figure 15 Panel E: Median Earnings Around Patent Application by Patent Quality
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Our interpretation of the data is that there are some individuals who are on a successful

innovation streak, culminating in applying for a patent. But the patent event is not news

to the firm or labor market. The eventual patenter is obtaining rewards prior to patenting

rather than afterwards. This is consistent with the evidence from matched patents-income

administrative data from Italy in Depalo and Di Addario (2014) who also found big increases

in income prior to patenting, but not afterwards.
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These patterns suggest a model of career choice with an uncertain chance of a major inno-

vation, rather than a choice about how and when to patent per se. The model in Section 6

builds on this insight.

4.5.2. Inventor Age

The most common age of patent applicants is approximately 39-40 (Figure A16 Panel A).

However, this should be compared to the overall age distribution of US workers in the whole

IRS population (Panel B). It is clear that most inventions tend to come from inventors who

are older than the working population as a whole. Innovation still peaks around 40, but

trails off more gradually than in Panel A (there is a 32% decline from 2.5 per 1,000 wage

earners at age 40 to 1.71 at age 60). Does this over-estimate the abilities of the middle-

aged? For example, could the patents of older workers be of lower quality and the most

important work still be done when researchers are young? Panel C uses only highly cited

patents and finds a similar pattern except with a sharper decline in innovation at older age

(from 0.14 at age 40 to 0.06 at age 60: a decline of 57%).35 Therefore, consistent with the

“young and restless” hypothesis of Acemoglu et al. (2014) and the evidence in academia of

“great” discoveries (e.g. Jones et al. (2014)) raw patents do under-estimate the importance

of youthful innovation. However, there does seem to be a lot of innovation done at older ages

too. Thus, the returns to innovation accrue to inventors relatively late during their career,

which speaks to the importance of occupational choice early in life (extensive margin), as

opposed to a choice “at the margin” to adjust one’s innovative effort during one’s career

(intensive margin).

35Figure A16 shows that overall patent citation rates are correlated with individual income which is another
corroboration of the idea that citations are a useful measure of patent value.
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4.5.3. Firms

We know what firms inventors work in from the EIN number attached to their W2s. Corpo-

rate structures are complex, however - for example, a US parent company may have multiple

affiliates, the ultimate headquarters may be in another country and there are partnership

structures as well as firms. We simply work with the EIN numbers and discuss some of the

data issues in Appendix A.36 Figure A17 has the CDF of the size distribution for inventors.

10% of inventors do not receive a W2, presumably because they are self-employed. But the

bulk of inventors work and mostly they work for larger firms. 70% of inventors work in firms

with more than 100 employees. Hence, it is unlikely that the pattern in Figure A17 could

be due to individuals simply being unable to afford the fees associated with applying for a

patent. It is the companies that inventors work for who are applying and paying for these

fees. And although in a small firm the inventor himself may have to contribute, this is highly

unlikely to be the case in a larger firm.

4.5.4. Summary

In summary, the key findings from our labor market analysis are (i) there are substantial

returns before the patenting itself; (ii) patenting returns appear very skewed: there is a small

chance of a very high payoff (cf. Hall and Woodward, 2010, on entrepreneurs) and (iii) many

returns are late in an inventor’s career (cf. Jones, 2009, 2010) . Hence pay-offs are highly

uncertain when individuals are making initial career choices.

36The distribution of employment by firm size class in the IRS dataset, where each firm is assumed to be
represented by a unique EIN, is almost identical to the size distribution across the US economy from the
Economic Census. Despite many reasons why the Census Bureau concept of an “enterprise” could be quite
different from the tax-based EIN, the match with the firm size distribution is very good. There appears to
be a slight under-representation of firms with under 100 employees in the IRS data compared to the Census,
and a slight over-representation in the 100-1000 employee range, but almost identical proportions in other
size bins compared to the Census. And even the discrepancies are small. Narrowing the IRS sample to be
closer to the Census in terms of industry composition does not fundamentally change this picture.
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4.6. A Simple Model of Inventors’ Careers

4.6.1. Basic Model

Motivated by the stylized facts from our analysis we develop an inventor lifecycle model

that is detailed in Appendix B. The model has similarities to a two-sector version of Hsieh

et al. (2013). In period 1 human capital (H) is determined, which will depend on initial

talent (which is heterogeneous across individuals and groups) and schooling.37 At the end

of schooling, agents make occupational choices over whether to enter the R&D sector or

non-R&D sector on the basis of their expected utility. The R&D sector is different from

the non-R&D sector in three respects: (i) Income is stochastic: there is a base wage (as in

the non-R&D sector) but there is also a chance (π) of making a successful innovation; (ii)

those with high human capital have a comparative advantage in the R&D sector - formally,

we model this as allowing the probability of innovating to be higher when human capital

is higher (π(H), π′(H) > 0); (iii) individuals have idiosyncratic preferences over the two

sectors (hence, there will typically be some mass of agents who go into the R&D sector

even if their expected monetary returns are lower). There is a two-part tax regime with a

standard marginal tax rate up to a threshold and then a high “top” tax rate.

We consider that there are several disadvantaged groups, g, in the population. The canonical

example we focus on are children born to low income families (so the groups are rich vs. poor),

but the framework is equally applicable to considering men vs. women or whites vs. blacks.

We allow for these groups to face additional costs in the acquisition of human capital (which

reduces their likelihood of entering the R&D sector).38

37In the baseline model we keep the human capital acquisition process exogenous (e.g. high income families
“buy” more educational quality for their children). But we extend the model to allow for endogenous
educational choice. This reinforces the misallocation results as disadvantaged groups choose to invest less in
human capital as they are less likely to want an inventor career.

38Hsieh et al. (2013) model this as a “tax friction” on spending goods in obtaining human capital. Another
friction is direct discrimination in the labor market by paying disadvantaged groups a lower wage than their
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We depart from the standard rational sorting models by adding imperfect information. We

assume that individuals with probability λ are correctly informed about the net returns to an

inventor career, but others (with probability 1−λ) under-estimate the true returns from the

R&D sector. The idea is that many children do not often come into contact with inventors

via their parents, family networks or neighborhoods. Hence these less “exposed” groups

underestimate the net benefits of choosing an inventor career (e.g. Hoxby and Turner, 2014).

The precise way we formalize this notion is that these less-informed agents underestimate

the degree of complementarity between human capital and innovation. We show a number

of intuitive results using this model.

First, agents with higher human capital are more likely to enter the R&D sector (this follows

directly from their comparative advantage). Second, individuals who are more exposed to

inventors (our proxy for a higher value of λ) are more likely to enter the R&D sector. Third,

disadvantaged groups are less likely to enter the R&D sector. This is because (i) they face

barriers to human capital acquisition and (ii) they may begin with a lower ability level (for

example, we saw the 3rd grade math scores of low income groups were lower), and (iii) they

have worse information about the net benefits of an inventor career.

A fourth result is that conditional on being in the R&D sector, agents from disadvantaged

groups are likely to have lower levels of initial ability. This is the opposite prediction from the

standard rational sorting models which predict higher levels of average ability for disadvan-

taged groups in the R&D sector, because only the most talented will overcome the barriers

to entry. By contrast, in this model agents from disadvantaged groups are imperfectly in-

formed about the complementarity between human capital and innovation. Therefore, the

high ability agents in these groups do not always go into the R&D sector, whereas for priv-

ileged groups the high ability agents do.

marginal product (in the R&D sector compared to the non-R&D sector). This is less likely for low income
groups, but could be the case for women or minorities. In the context of their model these are observationally
equivalent.
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The empirical evidence lines up well with these predictions. We find that people with higher

human capital (test scores and elite college attendance) are more likely to be inventors, and

that disadvantaged groups are less likely to become inventors. Section 4 presented much

evidence that early exposure mattered a lot for future innovation. Finally, Figure 8 showed

that conditional on being an inventor, disadvantaged groups did not appear more talented

than other groups. This is consistent with our imperfect information model but not with

the basic rational sorting model

The normative implications of our model is that there is the potential for considerable wel-

fare loss. First, there is a “level effect” - too few individuals from disadvantaged backgrounds

enter the R&D sector. This effect is similar to Hsieh et al. (2013). Second, and in contrast

with standard rational sorting models, there is also a “composition” effect: the “wrong” in-

dividuals from disadvantaged groups may enter the R&D sector due to information frictions

(i.e. not the individuals with the highest comparative advantage for the R&D sector). And

these effects are compounded because the disadvantaged groups will likely face other barri-

ers. There is a loss both from fewer (externality generating) inventors and from an inferior

allocation of talent compared to the first best.

4.6.2. Alternative Interpretations of Exposure Measures

We have interpreted our empirical measures in terms of exposure influencing λ. But one

alternative is that the exposure measures actually improve inventor-specific human capital

as the young person grows up. This would be an environmental effect, but the welfare effects

are somewhat different from the model of the previous section. At the time of occupational

choice, those exposed in childhood would have higher human capital rather than more in-

formation (λ). Hence, there would not be obviously greater talent losses in this model than

in the rational sorting model.
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As a way to investigate this we examine the income effects of exposure. If exposure generates

inventor-specific human capital then we would expect productivity (and therefore wages) to

be higher for those choosing an inventor career if they are more exposed at an earlier age

to science, even conditional on early test scores. However, we could find no evidence of

substantially higher wages for these groups more exposed to innovation. In our model the

effects of exposure on inventor income are ambiguous. Although agents are better sorted to

their area of comparative advantage as information improves, they may earn a lower wage

in the R&D sector as there are compensating differentials to the non-pecuniary advantages

of the R&D sector (w̃ ). 39

Another interpretation of the exposure “effect” is that it could cause a change in preferences

rather than in information. The wage effects of this are also ambiguous, so it is difficult

to empirically distinguish this from our information story. In terms of policy, if there are

externalities from innovation then increasing exposure to inventors might still be highly

valuable even if it is only about changing preferences. Note that the pure preference shift

story would not predict that exposure should be more important for high-ability children in

their likelihood of growing up to be an inventor. It is hard to check this directly in our data

because there is insufficient variation in exposure in the NYC data to include interactions

between exposure and early test scores in the “inventor equation”40, but this would be a

good avenue for future work.

There are, of course, other ways of interpreting our results but overall, the simple lifecycle

model we sketch seems reasonably consistent with the data.

39For example, Stern (2004) shows that life science post-graduates take about a 20% loss in income by taking
a job in academic science compared to industry.

40A positive coefficient on the interaction would be consistent with our model, but not with the pure preference
model.
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4.6.3. Policies to improve entry into innovation

If policy interventions could improve the position of potentially high-ability kids from poor

backgrounds (as well as women and minorities) this would bring a whole new margin of indi-

viduals into the inventor pool. Card et al. (2013) report evidence from “gifted and talented”

randomized control trials that suggest that although these programs do not work well for the

typical student, those from poorer backgrounds do appear to particularly benefit. Changing

to such policies has a near-zero financial cost.41 This suggests that such interventions could

have very large benefits in terms of growth as well as equity.

Our estimates can be used to assess the potential gains from such supply-side educational

policies. These policies can have a level effect on innovation by increasing the rate of entry

into innovation of children from low-income families, up to a level closer to that of children

from high-income families. In addition, the policies may have a composition effect by affecting

which children decide to enter the R&D sector within each income group - our results suggest

that talented children from low-income families are less likely to enter the R&D sector, which

could potentially be affected by policy). Appendix B4 discusses these calibrations in more

detail, but we sketch the findings briefly here.

Regarding the level effect, we have shown that children born to families in the top 10%

of income are ten times more likely to become inventors than children born to families of

below-median income (Figure 1). We have documented that innate ability differences (which

by definition cannot be affected by policy) are unlikely to explain more than a third of this

difference (Table 1). Moreover, we have found that the differential innovation rates across

technology classes is also a ten-to-one ratio (Figure 10), which suggest that exposure effects

play a key role.

We consider a benchmark scenario assuming that supply-side policies providing such expo-

41Personal communication with David Card.
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sure effects could close a fifth of the total innovation gap between children with parents

below the 90th percentile of income (1.6 inventors per 1,000) and children with parents in

the top 10% (6.7 inventors per 1,000). Under these assumptions and using our data on the

propensity of children to become inventors across the income distribution, the increase in the

number of inventors induced by the policy is a staggering 30% of the current inventor popu-

lation. The details of the calculation are reported in Appendix B5, where we also report the

calibrated effect of the policy under other assumptions about the share of the innovation gap

across the income distribution that can be closed by policy. The sensitivity analysis shows

that the effect is large under a very wide set of parameter values. We have also considered

a scenario based on the distribution of innovation-income gaps across US states.42 If the

mean innovation-income gap (similar to Michigan) could be lowered to the level of the fifth

percentile of the distribution (similar to states like New Hampshire), then the increase in

the number of inventors would be equal to 38% of the current inventor population. Similar

calibrations suggest the composition effect also matters, but by less than the levels effect

(under 6%).

By contrast to these “extensive margin” policies, policies on the intensive margin may be

much less effective. For example, although existing estimates of R&D tax credits do suggest

increases in innovative activity, they reach only a small fraction of the population. We

examine the effects of income tax on innovation next.

4.6.4. How much do tax policies on inventor’s income affect

innovation?

A much-discussed alternative set of policies to stimulate innovation are levels of top income

tax rates (Akcigit et al. (2015)). We shed light on this issue using a quantitative theoretical

42All calculations are based on state of birth, not on state of residence.
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exercise based on our data and the lifecycle model introduced in sub-section VI.A (more

details are in Appendix B.3). In short, we find that changing marginal tax rates on high

incomes would not substantially affect the occupational choice to become an inventor. The

small effect of top income marginal tax rates on inventors’ behavior is driven by three con-

siderations. First, marginal utility decreases with income, due to risk aversion. Second,

inventors’ earnings are highly skewed - as documented in Section V. Third, the rank of

an inventor in the earnings distribution has a large random element, especially within the

top tail. We find that income is difficult to predict for inventors, especially in the upper

tail, therefore we model it as a random draw from the empirical income distribution for all

inventors.43

Put another way, the intuition for the results is that entering the innovation sector is like

buying a lottery ticket. With concave utility and expected utility maximization, whether an

agent has a small chance of winning $20 million (e.g. in an economy with no extra taxation

of top incomes) or an equally small chance of winning $10 million (e.g. in an economy with a

higher marginal tax rate of top incomes) makes little difference to buying the lottery ticket.

In other words, occupational choice over whether to become an inventor should not respond

much to top tax rates. Our contribution is to calibrate this response using the skewness of

the empirical earnings distribution of inventors. It is important to note that our approach

does not say anything about the broader effect of top tax rates on the rate of innovation in

43This is a strong assumption, but various features of the data support its validity to a first approximation.
First, we have shown in Section V that the returns to patenting are very skewed and that they often occur
late in an inventor’s career, suggesting that the returns to innovation are very uncertain at the time of
occupational choice. Second, the distribution of income for inventors is very skewed even conditional on
having a very highly cited patent: the 99th percentile of income for people in the top 5% in the citation
distribution is $10 million, while the median is about $200,000. In other words, even in the subgroup of
inventors who produced high-quality innovations, the mean return is coming almost entirely from the upper
tail. Third, we have checked that an inventor’s earnings in mid-career, between ages 40 and 45, are very
difficult to predict based on this inventor’s earnings and patenting record (number of patents and citations)
in his early career, between ages 27 and 32. Specifically, regressing mean earnings between ages 40 and 45
on a flexible polynomial of mean earnings, patent count and citation-weighted patent count between ages 27
and 32 yields a R2 below 0.03.
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the economy.44

For the calibration, we consider a variety of tax regimes. We use a stylized version of the US

Federal tax schedule where the top marginal tax rate is 40% above $439,000 and the marginal

tax rate below this threshold is 28.5% (“standard rate”). We then consider the impact on

innovation of increasing the top rate by a percentage point to 41%, but keeping the standard

rate the same at 28.5%. Since the benefit of the policy is to raise revenue for public goods,

we have to benchmark this in some way. So we consider a “benchmark” policy of raising

the standard rate by a percentage point (to 29.5%) but keeping the top rate the same. We

then calculate the fall in the fraction of the population of workers becoming inventors per

dollar of tax revenue in both cases.45 This is equivalent to a (marginal) deadweight cost

per tax dollar. We denote the loss of inventors per tax dollar due to the higher top rate

policy as γ(τ 1) and the corresponding deadweight for the benchmark policy of raising the

standard rate as γ(τB) . We then repeat these calibrations under various assumptions about

the utility function.46

As is standard in public finance, the deadweight cost crucially depends on a behavioral

elasticity, which in our context captures the extent to which number of people choosing an

inventor career responds to the change in the certainty equivalent wage induced by changes in

the tax system. However, this elasticity cancels out when we express the relative innovation

loss of any policy change relative to the benchmark policy change described above. In other

words, we focus on a summary statistic γ = γ(τ1)
γ(τB) , which we can calibrate based only on the

empirical income distribution of inventors, without knowledge of the behavioral elasticity,
44Indeed, beyond inventors, many other agents are involved in the innovation process, for instance firms and
financiers, for whom the returns to innovation may not be analogous to a random draw (e.g. because they
hold large and diversified portfolios of innovations). Moreover, our analysis does not take general equilibrium
effects into account.

45We compute the fall in the fraction of the population of workers becoming inventors based on the change
in the certainty equivalent implied by changes in the tax system. Appendix B describes this and all other
steps of the calibration in detail.

46Specifically, we consider CRRA utility functions with coefficients of relative risk aversion equal to 0 (i.e linear
utility), 0.5, 1 (i.e. log utility), 1.5 and 2, respectively.
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and which captures the relative efficiency loss from increasing the top marginal tax rate

compared to our policy benchmark of the change in the standard tax rate (Appendix B.3.1

provides a full derivation of these results).

We present the value of γ in Figure 17 for different levels of the coefficient of relative risk

aversion in the utility function. The first bar is 100% for a CRRA parameter equal to 0

(linear utility): when people are risk neutral, there is no difference in changes in top and

standard tax rates. As we move to the right in Figure 17, we consider increasing levels of

risk aversion. The height of the bars falls indicating the welfare loss from raising top taxes

is diminishing as risk aversion increases. It is about a quarter of the innovation loss of the

benchmark policy when CRRA = 0.5 and only 2% of the benchmark policy when CRRA =

1.5.47

Figure 4.17.: Distribution of Inventors’ Mean Individual Income Between Ages 40 and 50
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Notes: These are the losses in the fraction of inventors from changing the rate of top income taxes by 1% compared to a benchmark policy of 

increasing the standard rate of tax by 1%. The x-axis compares three different levels of risk-aversion (parameter δ in the Constant Relative Risk

Aversion (CRRA) utility function, u(c) = c1-δ/(1- δ) where c = consumption). The graphs show that for plausible levels of risk aversion, changes

in fraction of inventors is small The details of the model and simulation are in Appendix B.

47Appendix B shows some other illustrations of this effect when looking at larger changes in top taxes and
additional thresholds. We show that the skewness of the earnings distribution drives our quantitative results:
in the presence of concave utility and stochastic payoffs, taxes have a lower efficiency cost for very skewed
payoff distributions compared with less skewed ones.

219



The intuition behind the result is clear. The innovation loss from high top tax rates is to

discourage entry into the riskier R&D sector - if an inventor is lucky and wins a very valuable

innovation, she will be penalized more by high tax rates. But since the returns to innovation

are so skewed, most inventors obtain only low returns. There can be considerable differences

in income in the tails, but the utility difference will be much less due to the concavity of the

utility function.

The generality of this result should not be overstated. It is a theoretical result based on

calibrated parameters in a standard expected utility set-up, which crucially depends on the

assumption that the income process for inventors is as good as random. If inventors are not

fully rational expected utility maximizers, they may well behave differently. Furthermore,

even in the context of the model it may be that potential inventors are better at predicting

their expected income than we assume. If there was no uncertainty about the returns to

innovation, then the results would no longer hold.48Finally, our evidence does not shed light

on broader effects of changes in tax rates on innovation dynamics.49

While these caveats must be kept in mind, our point is still an important one: we show that

the effect of top tax rates on the key individuals in the innovation process - the inventors

themselves - is likely to be small due to the skewness and randomness of the payoffs.

48There is a recent empirical literature on the impact of top tax rates on inventor mobility. Akcigit et al.
(2015) find that differences in top marginal tax rates across countries effect mobility decisions of inventors.
However, whilst statistically significant the magnitude of the effect is quantitatively small in line with our
calibrations. Moretti and Wilson (2015) find larger effects when looking at inventor mobility across states in
response to changes in top income tax rates. This within US analysis is interesting but it does not speak to
the issue of whether people are more likely to choose an inventor career, as the empirics work from mobility
once people have already chosen to become inventors.

49In particular, it could be the case that the returns to innovation are much less skewed for a number of agents
who play a crucial role in the innovation process and hold a large and diversified portfolio of innovations, for
instance investors (venture capital firms, etc.) and R&D lab managers or CEOs. In other words, it could
be that an increase in top tax rates would lead these agents to exert less effort at the margin, because there
is a tight link between their effort level and their financial rewards (in contrast with what the data suggests
for inventors themselves). For example, Aghion et al. (2015a) suggest that the returns to innovation are
broadly shared, much beyond inventors, and that innovation has contributed to the increase in top income
inequality in recent decades.
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4.7. Conclusion

In this paper we describe the lifecycle of inventors using a match between 1.2m patentors

during 1996-2014 with administrative tax data from the IRS. We are able to follow potential

inventors from their conditions at birth (parental income, gender and race), while growing

up (neighborhood, school text scores, college attended) and finally in the labor market (their

income profiles). We show that parental characteristics matter a lot: the rich, white and male

are much more likely to grow up to be inventors than the poor, female and black. Early math

test scores account for a third of the inventor gap for income, a tenth for the black-white

difference and almost nothing for gender. Focusing on the differences by parental income,

two elements prove to be key. First, the innovation-relevant human capital gap between

rich and poor opens up as they go through school, and by the time they reach college

parental income makes relatively little difference. Second, children who are most exposed to

innovation through their parents, mentors or neighborhoods are much more likely to become

inventors.

These findings suggest there are environmental barriers to disadvantaged groups in acquiring

the human capital that is complementary with innovation. The predictions of standard

“rational sorting” models that inventors from disadvantaged groups should be of higher

quality (in terms of patent citations and early ability) is not born out by the data. We

discuss an extension to the sorting model of inventor careers in which some individuals

underestimate the benefits of a career as an inventor through less exposure and show that its

predictions are broadly consistent with the data. Policies that reduce the income-related test

score divergence (particularly for children in the top decile of early math achievement) are

beneficial from an equity stance, but might also be beneficial from an efficiency perspective as

they have the potential to increase the degree of innovation and growth in the US economy.

Through a series of calibrations, we have shown that such “extensive margin” innovation
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policies drawing talented low-income individuals into innovation may be very effective at

stimulating innovation, probably more than top income tax policies.

There are many more aspects of the data we have discussed here that could be used to inform

the next generation of innovation models. How important is entrepreneurship in enabling

innovators to successfully monetize high-quality inventions? Can we bring more structural

models to bear on the inventor career model in order to consider counter-factual policies?

How important are firm policies in better attracting and incentivizing inventors? And could

the same forces which influence whether a person becomes an inventor hold true for other

elite occupations? These are some of the fascinating questions our research agenda opens up

for the next generation of innovation theories and policies.
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A. Appendix to Chapter 1

A.1. More on Theory

A. The Strong Equilibrium Bias in a Model Following Acemoglu

(2002)

Consumers

Individual Demands

Preferences are different for the two groups:

Upoor = a+ u(xL) = a+ 1
1−αLx

1−αL
L

Urich = a+ v(xR) = a+ 1
1−αRx

1−αR
R

where a is the numeraire. The FOC for the composite high-quality and low-quality goods

are:

u′(xL) = x−αLR = pL

v′(xR) = x−αRR = pR

Nominal inequality is measured by wrich/wpoor, while real inequality is measured by wrich
pH

/wpoor
pL

.
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Aggregate Demands

Normalize the total mass of consumers to 1, with share λ of rich types (if desired, we can

introduce another scaling factor to study market size effect due to the total number of

consumers). Aggregate demands are given by:

DL = (1− λ)p
− 1
αL

L

DH = λp
− 1
αH

H

Producers

Final Producer

Final producer just uses capital and combines “varieties x(v, i)” to produce two types of

goods, H or L (profits are thrown away). With i = L/H, we can write the problem as:

max|x(v,i)|∈N(i)
p(i)
1−εi

(´ N(i)
0 x(v, i)1−εidv

)
−
´ N(i)

0 px(v, i)x(v, i)dv

Note that the returns to scale are decreasing. The optimal choice is:

x(v, i) =
(

p(i)
px(v,i)

) 1
εi

We denote by σi = 1
εi
the elasticity of substitution between machines.

Intermediate Producers

Intermediate monopolist has a patent and chooses optimal price (we consider one period only

here, but easy to extend since problem is separable). The cost of production of a machine

is ψi units of the final good. The value of a patent (of a variety) for intermediate good in

sector i (lasting one period) is:

V (v, i) = (px(v, i)− ψi)x(v, t)
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where the optimal price chosen by the monopolist maximizes (taking demand as given):

maxpx(v,i) (px(v, i)− ψi)
(

p(i)
px(v,i)

) 1
εi

Hence the optimal choice:

px(v, i) = ψi
1−εi

The value function at the optimum is:

V (v, i) = p(i)
1
εi (1−εi

ψi
)

1−εi
εi εi

Aggregate Supply

Total quantity supplied in equilibrium is given by

:S∗i = 1
1−εi

(´ N(i)
0 x(v, i)1−εidv

)
= 1

1−ε

(´ N(i)
0

(
p(i)

px(v,i)

) 1−εi
εi dv

)
=
(

1
1−εi

) 1
εi

(
p(i)
ψi

) 1−εi
εi N(i)

Solving for the equilibrium

With exogenous varieties

pH =
[(

λ
NH

)
(1− εH)

1
εH (ψH)

1−εH
εH

] 1
1−εH
εH

+ 1
αH

pL =
[(

1−λ
NL

)
(1− εL)

1
εL (ψL)

1−εL
εL

] 1
1−εL
εL

+ 1
αL

Relative market size increases the relative price, because supply is fixed. So real inequality

when prices are endogenous is “lower” than real inequality when prices are exogenous.

With endogenous varieties

Interior solution

At an interior solution (there is research on both kinds of goods), the no arbitrage condition

between two types of inventions requires:
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ηV (v,H) = ηV (v, L)

The equilibrium ratio of varieties and the equilibrium prices are given by:

(NH)
1
εH

(NL)
1
εL

= (λ)
1
εH

(1−λ)
1
εL

(
κH
κL

)ζ (ψH)
1−εH
ε2
H

(ψL)
1−εL
ε2
L

(1−εH)( 1
εH

)2

(1−εL)( 1
εL

)2

pH = ( ψH
1−εH )1−εH

(
1
εH

)εH
pL = ( ψL

1−εL )1−εL
(

1
εL

)εL
V ∗ = 1

Corner solutions and the strong equilibrium bias

V (v,H) > V (v, L)

NH = N + N̄H & NL = N̄L

pL =
[(

1−λ
N̄L

)
(1− εL)

1
εL (ψL)

1−εL
εL

] 1
1−εL
εL

+ 1
αL

Consider a relative demand shock (compared with previous periods, where the steady state

relative demand is embodied in the steady state relative number of varieties).

Assume that all research is allocated to the high quality good:

V (v,H) > V (v, L) (Profitability Condition)⇐⇒

(
λ

N+N̄H

)
(

1−λ
N̄L

) >

 ( 1−εL
ψL

)
1−εL
εL εL

( 1−εH
ψH

)
1−εH
εH εH

ζ (1−εL)
1
εL (ψL)

1−εL
εL

(1−εH )
1
εH (ψH )

1−εH
εH

There is “overshooting” of the relative price (strong equilibrium bias) if the new relative

price is smaller than the old one:

pH
pL

< ¯pH
p̄L

(Price Overshooting Condition)⇐⇒
λ

N+N̄H
1−λ
N̄L

<

[
(ψH )

1−εH
εH

(ψL)
1−εL
εL

· (1−εL)
1−εL
εL

(1−εH )
1−εH
εH

· εL
εH

]ζ
(1−εL)

1
εL (ψL)

1−εL
εL

(1−εH )
1
εH (ψH )

1−εH
εH

which cannot be satisfied at the same time as the profitability condition.
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B. The Strong Equilibrium Bias in a Model Following Melitz and

Ottaviano (2008)

• Preferences for λ high-income consumers and 1− λ low-income consumers

Ui = qc0i + α
´
ω∈Ωi q

c
ωidω − 1

2γ
´
ω∈Ωi(q

c
ωi)2dω − 1

2η(
´
ω∈Ωi q

c
ωidω)2

=⇒ pωi = α− γqcωi − ηQc
i ; Qi =

´
ω∈Ωi q

c
ωidω

• To enter the differentiated sector, a firm must incur a sunk entry cost of fE units of

labor

– Then the firm’s unit labor requirement of cost c is drawn from a cumulative

distribution function G(c) with support on [0, cM ]

– The zero-profit cost cutoff (cDi) is a sufficient statistic that determines firm out-

comes as a function of their cost draw:

pi(c) = 1
2(cDi + c) (prices)

µi = pi(c)− c = 1
2(cDi − c) (markups)

ri(c) = Li
4γ [(cDi)2 − c2] (revenues)

πi(c) = Li
4γ [cDi − c2] (profits)

• Under the assumption that productivity 1
c
is Pareto distributed with lower bound 1

cM

and shape parameter k, the (closed economy) cost cutoff is given by cDi = (γφ
Li

)
1
k+2

– So the cost cutoff falls (meaning the average productivity is higher) when varieties

are closer substitutes (lower γ ), when there is a better distribution of cost draws

(lower cM), when sunk costs fall (lower fE) and in bigger markets (higher Li).

These comparative statics induce an increase in the “toughness of competition”
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in the form of a larger number of varieties consumed (higher Ni) and lower average

prices (lower p̄i).

• This implies that the relative price decreases with (relative) market size

– Intuition: firms are “locked in” and the long-run supply curve is downward sloping

because of entry

– Note that even in the short run relative prices will never mitigate the increase in

inequality

∗ Intuition: the marginal cost of production is constant: p = γ
L
q + ψ

∗ Can generate price effects mitigating increases in inequality by introducing

specialized labor

A.2. More on Data

Description of Homescan Consumer Panel Data: I primarily rely on the Home Scanner

Database collected by AC Nielsen and made available through the Kilts Center at The

University of Chicago Booth School of Business. AC Nielsen collects these data using hand-

held scanner devices that households use at home after their shopping in order to scan each

individual transaction they have made. Faber and Fally (2015) report that on average each

semester covers $105 million worth of retail sales across 58,000 individual, across more than

500,000 barcodes belonging to 180,000 brands.

Description of Retail Scanner Data: The Retail Scanner Data consist of weekly price

and quantity information for more than one hundred retail chains across all US markets

between January 2006 and December 2013. The database includes about 45,000 individual

stores. The stores in the database vary in terms of the channel they represent: e.g. food,
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drug, mass merchandising, liquor, or convenience stores. Faber and Fally (2015) report that

on average each semester covers $110 billion worth of retail sales across 25,000 individual

stores, across more than 700,000 barcodes belonging to 170,000 brands.

The strength of the home scanner database is the detailed level of budget share information

that it provides alongside household characteristics. Its relative weakness in the comparison

to the store-level retail scanner data is that the home scanner samples households and,

therefore, has higher sampling error at the product level. Relative to the home scanner

data, the store-level retail scanner data records more than one thousand times the retail

sales in each semester. I primarily rely on the home scanner data in the paper, but I present

robustness checks based on the retail scanner data.

Local Markets: Both the home scanner and retail scanner data can be disaggregated into

76 local markets, which are shown on the map below.

Figure A.1.: Map of the 76 Local Markets Tracked in the Nielsen Datasets
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A.3. Estimation of Quality-Adjusted Inflation and

Further Robustnes Checks

Nominal and Real Inequality

Figure A.2.: The Mapping Between Nominal Income and Utility

Wage W (Nominal Dollars) 

Utility U 
New U(W/P) 

Old U(W/P) 

Estimation Equations

Estimating the elasticities: given the formula reported in the main text, we only need to

estimate the group-specific and module-specific elasticities. We do this by first modeling the

supply and demand conditions for each good within a module.

The demand equation comes from the following transformation, which exploits the panel

nature of the data:
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ln(sumgt)− ln(sumg(t−1)) = ∆ln(sumgt)

= (1− σm)
[
ln(pumgt)− ln(pumg(t−1))

]
+ ln(Pmgt)− ln(Pmg(t−1))

= (1− σm)
[
ln(pumgt)− ln(pumg(t−1))

]
+ λmt

where the second line uses (1) and the fact that quality/taste is assumed to be constant

over time. The fixed effect corresponds to the change in the price index of the module. In

practice, there will be an estimation error, which for instance could come from yearly change

in taste (which would affect thed parameters). So we can write the demand curve as:

∆ln(sumgt) = (1− σm)∆ln(pumgt) + λmt + εumgt

Then, we assume an isoelastic supply curve (with α > 0 assumed to be the same for all

UPCs within a module):

ln(cumgt) = αln(pumgt) + χmg

ln(cumgt)− ln(Emgt) = αln(pumgt)− ln(Emgt) + χmg

ln(sumgt) = αln(pumgt)− ln(Emgt) + χmg

Differencing over time:

ln(sumgt)− ln(sumg(t−1)) = ∆ln(sumgt)

= α
[
ln(pumgt)− ln(pumg(t−1))

]
+ ln(Emgt)− ln(Emg(t−1))
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so

∆ln(pumgt) = 1
α

∆ln(sumgt)−
1
α

∆ln(Emgt)

= 1
α

∆ln(sumgt) + ψmgt

The fixed effect corresponds to the change in total expenditures in the module (which is

observed). In practice there will be estimation error, e.g. due to assembly line shocks, so we

write:

∆ln(pumgt) = 1
α

∆ln(sumgt) + ψmgt + δumgt

We now want to eliminate the fixed effects in the demand and supply equations. We take a

difference relative to the UPC k with the largest market share:

∆kln(sumgt) = (1− σm)∆kln(pumgt) + εkumgt

∆kln(pumgt) = 1
α

∆kln(sumgt) + δkumgt

with ∆kX = ∆Xumgt −∆Xkmgt, εkumgt = εumgt − εkmgt and δkumgt = δumgt − δkmgt.

Now we can set up the moment condition, based on the assumption that the upc-specific

demand and supply shocks are uncorrelated over time, i.e Et[εkumgtδkumgt] = 0.

vumgt = εkumgt × δkumgt

G(βm) = Et(vumgt(βm)) = 0 ∀u,m and g

This can be written as:

vumgt(βm) = εkumgt × δkumgt

=
(
∆kln(sumgt)− (1− σm)∆kln(pumgt)

)
×
(

∆kln(pumgt)−
1
α

∆kln(sumgt)
)

= ∆kln(sumgt)∆kln(pumgt)− (1− σm)
(
∆kln(pumgt)

)2
−

1
α

(
∆kln(sumgt)

)2
+

(1− σm)
α

∆kln(sumgt)∆kln(pumgt)

= (σm − 1)
(
∆kln(pumgt)

)2
−

1
α

(
∆kln(sumgt)

)2
+
α+ (1− σm)

α
∆kln(sumgt)∆kln(pumgt)
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The moment condition Et[vumgt(βm)] = 0 means:

Et

[(
∆kln(pumgt)

)2]
= 1

α(σm−1)Et

[(
∆kln(sumgt)

)2]
− α+(1−σm)

α(σm−1) Et
[
∆kln(sumgt)∆kln(pumgt)

]
∀u,m and g

Rewriting α = 1+ωm
ωm

to match the notation in Broda and Weinstein (2006), this yields:

Et

[(
∆kln(pumgt)

)2]
= ωm

(1+ωm)(σm−1)Et

[(
∆kln(sumgt)

)2]
− (1+ωm)+(1−σm)ωm

(1+ωm)(σm−1) Et
[
∆kln(sumgt)∆kln(pumgt)

]
Et

[(
∆kln(pumgt)

)2]
= ωm

(1+ωm)(σm−1)Et

[(
∆kln(sumgt)

)2]
− 1−ωm(σm−2)

(1+ωm)(σm−1)Et
[
∆kln(sumgt)∆kln(pumgt)

]
Et

[(
∆kln(pumgt)

)2]
= θ1Et

[(
∆kln(sumgt)

)2]
− θ2Et

[
∆kln(sumgt)∆kln(pumgt)

]

We then estimate the parameters ωm and σm, under the restriction that ωm > 0 and σm > 1.

To do this, we first just estimate θ1 and θ2 by weighted least squares, as in Feenstra (1994).

Then we go back to the primitive parameters. If this produces imaginary estimates or

estimates of the wrong sign, we perform grid search for the objective function for values of

σg ∈ [1.05, 131.5] at intervals that are 5 percent apart.
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Average Inflation Rate of Various Income Groups According to

Various Price Indices

Table A.1.: Average Annual Inflation Rates Across Three Income Groups

Panel A: Full Sample (Percentage Points)

Income < $30k Income ∈ [$30k-$100k] Income > $100k

Arith. Avg. Geom. Avg. Arith. Avg. Geom. Avg. Arith. Avg. Geom. Avg.

Geometric Laspeyres 1.212 1.204 0.912 0.951 0.561 0.639

Truncated Geometric Laspeyres 1.544 1.536 1.137 1.157 0.862 0.909

Paasche 1.580 1.571 0.985 1.010 0.965 0.979

Truncated Paasche 1.719 1.710 1.182 1.194 1.117 1.126

Tornqvist 1.938 1.929 1.426 1.418 1.296 1.290

Fisher 1.983 1.974 1.425 1.418 1.327 1.320

Marshall-Edgeworth 1.992 1.984 1.440 1.433 1.330 1.323

CES Ideal 2.041 2.032 1.529 1.522 1.387 1.380

Truncated CES Ideal 2.063 2.054 1.541 1.534 1.413 1.406

Walsh 2.076 2.067 1.571 1.563 1.423 1.416

Truncated Laspeyres 2.257 2.502 1.724 1.910 1.554 1.721

Laspeyres 2.387 2.379 1.867 1.860 1.689 1.682

Truncated Geometric Paasche 2.433 2.424 1.742 1.734 1.822 1.815

Geometric Paasche 2.669 2.660 1.942 1.934 2.037 2.031

Panel B: All Years but Great Recession (Percentage Points, Arithmetic Average)

Income < $30k Income ∈ [$30k-$100k] Income > $100k

Geometric Laspeyres 0.870 0.642 0.318
Truncated Geometric Laspeyres 1.179 0.876 0.627
Paasche 1.246 0.732 0.768
Truncated Paasche 1.380 0.928 0.919
Tornqvist 1.586 1.144 1.085
Fisher 1.625 1.161 1.111
Marshall-Edgeworth 1.633 1.176 1.116
CES Ideal 1.674 1.254 1.169
Truncated CES Ideal 1.695 1.268 1.192
Walsh 1.707 1.297 1.204
Truncated Laspeyres 1.891 1.448 1.316
Laspeyres 2.006 1.592 1.455
Truncated Geometric Paasche 2.071 1.467 1.623
Geometric Paasche 2.308 1.648 1.858
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Table A.2.: Average Annual Inflation Rates Across Four Income Groups

Panel A: Full Sample (Percentage Points)

Income < $25k Income ∈ [$25k-$50k] Income ∈ [$50k-$100k] Income > $100k

Geometric Laspeyres 1.236 1.029 0.785 0.561

Truncated Geometric Laspeyres 1.561 1.293 1.025 0.862

Paasche 1.647 1.249 0.962 0.965

Truncated Paasche 1.766 1.414 1.132 1.117

Tornqvist 2.000 1.668 1.365 1.296

Fisher 2.045 1.687 1.377 1.327

Marshall-Edgeworth 2.052 1.698 1.396 1.330

CES Ideal 2.086 1.763 1.462 1.387

Truncated CES Ideal 2.106 1.778 1.474 1.413

Walsh 2.116 1.800 1.501 1.423

Truncated Laspeyres 2.293 1.984 1.657 1.554

Laspeyres 2.445 2.126 1.795 1.689

Truncated Geometric Paasche 2.527 2.090 1.738 1.822

Geometric Paasche 2.769 2.311 1.949 2.037

Panel B: All Years but Great Recession (Percentage Points, Arithmetic Average)

Income < $25k Income ∈ [$25k-$50k] Income ∈ [$50k-$100k] Income > $100k

Geometric Laspeyres 0.843 0.729 0.529 0.318

Truncated Geometric Laspeyres 1.164 1.007 0.769 0.627

Paasche 1.289 0.964 0.723 0.768

Truncated Paasche 1.405 1.148 0.885 0.919

Tornqvist 1.613 1.374 1.097 1.085

Fisher 1.660 1.392 1.127 1.111

Marshall-Edgeworth 1.666 1.403 1.148 1.116

CES Ideal 1.692 1.469 1.201 1.169

Truncated CES Ideal 1.713 1.489 1.211 1.192

Walsh 1.722 1.504 1.241 1.204

Truncated Laspeyres 1.895 1.683 1.394 1.316

Laspeyres 2.033 1.823 1.533 1.455

Truncated Geometric Paasche 2.143 1.805 1.474 1.623

Geometric Paasche 2.388 2.024 1.669 1.858
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Table A.3.: Average Annual Inflation Rates across the Income Distribution at
UPC*Geography Level

Income < $30k Income ∈ [$30k-$100k] Income > $100k
Paasche 2.065 1.401 1.341
CES Ideal 2.434 1.902 1.722
Laspeyres 2.789 2.365 2.08

Table A.4.: Average Annual Inflation Rates across the Income Distribution at UPC*Store
Level

Income < $30k Income ∈ [$30k-$100k] Income > $100k
Paasche 2.239 2.002 1.692
CES Ideal 2.471 2.248 1.901
Laspeyres 2.710 2.471 2.072

Table A.5.: Average Annual Inflation Rates across the Income Distribution at Quarterly
Level

Income < $30k Income ∈ [$30k-$100k] Income > $100k
Paasche -1.161 -2.268 -2.124
CES Ideal 1.911 1.107 1.066
Laspeyres 5.429 5.042 4.956
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Figure A.3.: Inflation Difference Between Various Income Groups For Various Price Indices
(Fixed Basket)
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Is Differential Inflation (Fixed Basket) Across the Income

Distribution Driven by a Selection Effect?

Table A.6.: Products that are about to exit have a lower inflation rate

Subsample Laspeyres Inflation Rate Median Laspeyres Inflation Rate
Continued 2.03% 2.06%

About to Exit -1.33% -0.52%
Justed Entered 0.03% 1.3%
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Table A.7.: Products that are about to exit have a higher price level

Subsample Average Price Level Median Price Level
Continued 3.67 2.75

About to Exit 3.95 2.68
Justed Entered 4.91 3.05

Table A.8.: Share of spending on new and discontinued products across the income distri-
bution

Share of Spending on Products...
Household Income About to Exit Just Entered

> $100, 000 3.04% 10.94%
$30, 000− $100, 000 2.71% 10.01%

< $30, 000 2.59% 9.26%

Differences in Prices Paid for Same Products for Rich and Poor

Figure A.4.: The Distribution of Average Unit Prices Paid is the Same Across the Income
Distribution (Reweighting by Spending Shares)
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Further Robustness Checks on Increase in Product Variety Across

the Income Distribution

Figure A.5.: The Positive Relationship Between Share of Spending on New Products and
Mean Consumer Income

Panel A: Across Product Modules
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Figure A.6.: The Relationship Between Share of Spending on New Products and Mean
Income Depends on the Quality Engel Curves Elasticity
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Figure A.7.: The Relationship Between Share of Spending on New Products and Repre-
sentative Consumer Mean Income, Controlling for Household Fixed Effects

Panel A: Relationship in the Full Sample
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Figure A.8.: Robustness Checks on Increase in Product Variety across the Income Distri-
bution

Panel A: Feenstra Ratio across the Product Space

Panel B: Annual Growth in Total UPC Count across the Product Space
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Table A.9.: Decomposing the Difference in Sahares of Spending between High- and Low-
Income Households

Aggregation Level Decomposition Difference
(Broad to Narrow) (% of actual)

Department Between 1.8

Product Group Between 29.0

Product Module Between 39.2

Quality-Adjusted Inflation

Figure A.9.: Elasticities of Substitution Differ Across the Income Distribution
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Figure A.10.: Quality-Adjusted Inflation Across the Income Distribution
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Table A.10.: Isolating the Contribution of Stores and Local Market to the Overall Inflation
Difference

Price Change Local Market Store UPC Inflation Difference
Shares Shares Shares (% of Benchmark)

Counterfactual Actual Actual Actual 100

Counterfactual Counterfactual Actual Counterfactual 43.2

Counterfactual Actual Counterfactual Counterfactual 3.1
Notes: This table is based on a reweighting methodology that expresses the spending share
of a product as a combination of the spending shares of the local market, of the store within
that market, and of the barcode within that store. The counterfactal share explained by
store effects is an upper bound because for some stores, only high-income or only low-income
consumers are observed. PL ≡

∑n
i=1

pti
p0
i
slocal marlet · sstore · supc

A.4. Robustness Checks on the Relationship between

Changes in Market Size and Quality-Adjusted

Inflation

Additional Motivating Evidence

Figure A.11.: The Share of Rich Households is Primarily Correlated with High Price Quan-
tiles of New Products
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Figure A.12.: The Share of Rich Households is Correlated with High Price Quantiles of
New Products only in Product Modules with Steep Quality Engel Curves

Panel A: Location of p90 of New Products in Overall Price Distribution for Product
Modules with Steep Quality Engel Curves
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Additional Results on National Research Design

Figure A.13.: Predicted and Actual Increase in Market Size
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Table A.11.: Further Robustness Checks on Causal Effects of Changes in Market Size

Panel A: Controlling for 2004-2006 Age and Income Distributions and Price Decile Fixed
Effects

Share of Spending Overlapping Goods
on New Products (pp) Inflation Rate (pp)

Predicted Increase 0.527*** 0.380*** 0.419*** -0.159*** -0.137*** -0.125***
in Spending (%) (0.072) (0.144) (0.179) (0.022) (0.037) (0.038)

Age Distribution Controls Yes Yes Yes Yes Yes Yes
Income Distribution Controls No Yes Yes No Yes Yes
Price Decile Fixed Effects No No Yes No No Yes

Product Module Fixed Effects No No No No No No
Spending Weights Yes Yes Yes Yes Yes Yes

Sample Restricted to Positive Spending Growth Yes Yes Yes Yes Yes Yes
Number of Observations 9,089 9,089 9,089 9,089 9,089 9,089

Number of Clusters 1,006 1,006 1,006 1,006 1,006 1,006
Standard errors clustered by product modules.

Panel B: Robustness to Other Weights

Share of Spending Overlapping Goods
on New Products (pp) Inflation Rate (pp)

Predicted Increase 0.296*** -0.086***
in Spending (%) (0.0585) (0.0155)

Product Module Fixed Effects Yes Yes
Spending Weights Yes Yes

Sample Restricted to Positive Spending Growth Yes Yes
Number of Observations 8,545 8,545

Number of Clusters 1,000 1,000
Sample restricted to product modules below 95th percentile of total spending.

Standard errors clustered by product modules.
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Results from Geography Research Design

As a robustness check, I use time variation in the age and income distribution of households

in 76 local markets tracked by Nielsen within the US (see Appendix B for details). A local

market is a county group defined by Nielsen, which I match to local covariates from the Amer-

ican Community Survey. For each product module in each local market, I predict change

in market size based on local change in age and income distributions. Some cities like San

Francisco have experienced an increasing share of high-income and young households, while

in other cities like New Orleans have become poorer, with a decline in overall population.

I then compare the change in fixed basket inflation across product module× local market

cells with increasing or decreasing predicted market size. To control for supply factors, I

include fixed effects: local market fixed effects control for local scale effects, while product

group fixed effect control for national trends in inflation. In this setting, the identification

assumption is that, conditional on the fixed effects, the direct effect of local changes in the

age and income distributions on the equilibrium is only through demand.

I use 18 covariates Xit (all expressed in logs): total number of households, total population,

total female population, total male population, total number of households in age × income

groups (considering four age groups - below 25, 25 to 44, 45 to 64, above 65 -, and divid-

ing each group into 3 income groups - below $30k, $30k to $100k, above $100k), median

household income and mean household income.

Formally, I consider two periods, 2004-2006 and 2011-2013, and I predict (log) local total

expenditures QMIT with local market covariates and fixed effects:

QMIT = βM · 1M ·XIT + γIT + δGT + εIMT

where M denotes the product module, G the product group, I the local market, and T the

period. Note that the βM coefficients are allowed to freely vary across modules (i.e. some
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modules will be very responsive to the number of low-income households, others more re-

sponsive to the number of high-income and old households, etc.). I estimate this specification

in 2004 − 2006 and predict market size out-of-sample in 2011 − 2013 (the R2 is very high:

see Appendix D).

The predictor of residual market size growth between two periods is therefore βm ·1M ·(XIT2−

XIT1). Finally, I run specifications of the form:

YMI = α [βm · 1M(XIT2 −XIT1)] + γ̃I + δ̃G + ε̃IM

Figure A.14 and the table below show that the relationship is very stable and very similar

to the results found from the variation at the national level.

Table A.12.: Causal Effects of Changes in Market Size (Local Level)

Difference in Fixed Basket Inflation Rate (pp)
Predicted Increase -0.1471*** -0.1276*** -0.1271*** -0.1276***
in Spending (%) (0.0162) (0.0172) (0.0188) (0.0259)

F.E. Department Product Group Product Group Product Group
Weights Yes Yes No Yes
Cluster Local Market Local Market Local Market Product Module
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Figure A.14.: Causal Effects of Changes in Market Size (Local Level)

A. Predicted and Actual Increase in Market Size
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B. Higher Market Size Leads to Lower Inflation (Fixed Basket)
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Figure A.15.: Geography Design: Predicting Market Size
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Figure A.16.: Geography Design: Predicted Market Size Growth and Fixed-Basket Infla-
tion
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Additional Evidence on Mechanism

Figure A.17.: Do Product Innovations Follow Market Size or Change in Market Size?
Share of Spending on New Products

Lagged Change in Market Size 3.107*** 1.901**
(1.139) (0.926)

Lagged Market Size 1.399 0.577
(1.439) (1.269)

Product Group Fixed Effects No Yes
Weights Yes Yes
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B. Appendix to Chapter 2

B.1. Additional Summary Satistics on Matched

Inventors

Figure B.1.: Number of Deceased Inventors Per Year

0

100

200

300

400

500

600

N
um

be
r 

of
 (

R
ea

l o
r 

P
la

ce
bo

) 
D

ec
ea

se
d

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Year of Death

Notes: This figure shows, in each year between 1999 and 2012, the number of inventors who passed away before the age of 60
and who had at least one co-inventor. The reason why the number of deceased inventors per year is increasing over time is that,
for a deceased inventor to become part of our analysis, they need to have applied for at least one co-invented patent between
1996 and the year of their death (otherwise they have no associated survivor inventor). More and more inventors have applied
for co-invented patents as we get closer to 2012, the end of our sample, therefore the number of deceased inventors per year is
increasing over time.
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Table B.1.: Balance in Technology Classes For Survivor Co-inventors

Share of Patents at Co-inventor Death
Technology Class Real Placebo
1. Chemical 14.37 14.82
2. Computers & Communications 28.60 27.49
3. Drugs & Medical 15.05 14.50
4. Electrical & Electronic 14.99 15.39
5. Mechanical 13.20 13.82
6. Others 13.58 13.61

Notes: This table shows the breakdown by technology class of all patents the real and placebo survivor inventors had invented
at the time of their co-inventor death. The table shows very good balance across the two groups, although we did not use this
information for the match described in Section II.B.
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Table B.2.: Additional Balance Tests

Variable Sample Mean SD 10pc 25pc 50pc 75pc 90pc

Real Survivors 9.726 10.85 2 3 6 12 21
Number of Co-inventors Placebo Survivors 9.583 10.61 2 3 6 12 21

Real Deceased 3.002 3.873 1 1 2 5 10
Placebo Deceased 2.83199 3.423 1 1 2 5 9

Real Survivors 35,191 124,097 44 300 4,400 29,200 69,500
Firm Size Placebo Survivors 34,942 123,514 43 300 4,300 29,400 69,200

Real Deceased 37,449 126,254 44 300 4,600 29,900 99,500
Placebo Deceased 37,691 125,537 43 300 4,500 30,000 98,900

Year of Real Survivors 2006.629 3.42 2002 2004 2006 2009 2011
Co-inventor Death Placebo Survivors 2006.723 3.44 2002 2004 2006 2009 2011

Real Deceased 4,714
# Inventors Placebo Deceased 4,714

Real Survivors 14,150
Placebo Survivors 13,350

Notes: This table presents summary statistics computed for the real and placebo deceased and survivor inventors. The statistics
on number of co-inventors and firm size are computed in the year of death. The distribution of firm size is based on all inventors
who receive a W2. For both real and placebo survivor inventors, about 10% of inventor-year observations are missing a W2,
i.e. the inventors have no labor earnings (either because they are unemployed, self-employed or retired). Firm size is rounded
to the nearest one hundred to preserve taxpayer confidentiality.
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Table B.3.: Summary Statistics for Real and Placebo Coworkers and Second-Degree Con-
nections

Variable Sample Mean SD 10pc 25pc 50pc 75pc 90pc

Real Second-degree Connections 175,247 358,347 46,000 81,000 116,000 170,000 267,00

Total Earnings Placebo Second-degree Connections 174,900 350,102 45,000 82,000 115,000 173,000 266,000

Real Coworkers 149,861 312,721 39,000 64,000 115,000 169,000 251,000

Placebo Coworkers 154,627 316,266 40,000 65,000 118,000 174,000 254,000

Real Second-degree Connections 144,449 291,697 39,000 70,000 108,000 156,00 239,000

Labor Earnings Placebo Second-degree Connections 146,674 297,697 40,000 72,000 110,000 159,000 241,000

Real Coworkers 114,559 257,233 22,000 56,000 91,000 142,000 200,000

Placebo Coworkers 117,691 258,908 25,000 57,000 94,000 146,000 204,000

Real Second-degree Connections 10.42 42.78 1 2 5 11 25

Cumulative Applications Placebo Second-degree Connections 9.92 25.21 1 2 5 11 25

Real Coworkers 2.31 2.51 0 1 1 3 7

Placebo Coworkers 2.50 2.43 0 1 1 3 7

Real Second-degree Connections 37.76 170.11 0.35 1.2 7 26.5 80.34

Cumulative Citations Placebo Second-degree Connections 39.40 173.23 0.22 1.1 7.5 29.5 83

Real Coworkers 6.64 12.2 0 0 1 6.58 23.5

Placebo Coworkers 8.74 13.09 0 0 3 10 29.13

Real Second-degree Connections 47.72 19.08 34 40 47 55 63

Age Placebo Second-degree Connections 47.93 19.96 35 39 47 55 64

Real Coworkers 44.28 12.94 30 36 44 52 59

Placebo Coworkers 44.49 16.13 30 36 44 52 59

Real Second-degree Connections 11,264

# Inventors Placebo Second-degree Connections 12,047

Real Coworkers 13,828

Placebo Coworkers 14,364

Notes: This table reports summary statistics for the various groups of inventors defined in Section II.B, using data between
1999 and 2012 before the year of death. The table shows that the real and placebo second-degree connections and the real and
placebo coworkers are very similar prior to co-inventor death, although our matching strategy did not use any information on
these inventors. Note that the real and placebo second-degree connections are very similar to the survivor inventors, while the
distribution of outcomes for real and placebo coworkers is very similar to that of the full sample. Dollar amounts are reported in
2012 dollars and are rounded to the nearest $1,000 to preserve taxpayer confidentiality. The balance between real and placebo
coworkers and second-degree connections is qualitatively similar when considering the exact percentile values. For a detailed
description of the data sources and sample construction, see Sections II.A and II.B.
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Table B.4.: Balance for Number of Real and Placebo Survivor Coworkers per Deceased
(Full Sample)

Variable Sample Mean SD 10pc 25pc 50pc 75pc 90pc
Number of Inventor Coworkers Real 52.38 100.61 1 4 19 63 143

In The Year of Death Placebo 46.75 93.85 1 4 19 65 141

# Real Coworkers 143,646
# Placebo Coworkers 173,128

Notes: This table reports the number of real and placebo coworkers per real and placebo deceased inventor. There is good
balance except in the tail, which creates an imbalance in the total number of real and placebo survivor coworkers.

B.2. Robustness Checks on the Causal Effect of

Co-inventor’s Premature Death

F-Test for Pretrending

We can formally test the hypotheses that the point estimates obtained by running spec-

ification (1) and shown in Figure 3 are all the same before and after co-inventor death,

considering an equal number of periods before and after co-inventor death:

HBefore Death
0 : βReal−9 = βReal−8 = ... = βReal−2

HAfter Death
0 : βReal0 = βReal2 = ... = βReal7

The results of the F-tests, shown in Table 2, confirm that there is no pretrending while there

is an effect after death. We can reject at the 10% confidence level that all coefficients are

similar after death for adjusted gross income and labor earnings, but we cannot do so for non-

labor earnings and citations, which are more noisily estimated (although the point estimates

reported in Figure 2 appear very stable). We can never reject that the point estimates are
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all similar before death. Appendix Table B3 tests for dynamic effects by pulling together

several lags after death, which reduces noise.

Table B.5.: Testing For Dynamic Effects, P-Values of F-Tests

Total Earnings Labor Earnings Non-Labor Earnings Citation Count

For HBefore Death
0 0.671 0.875 0.690 0.764

For HAfter Death
0 0.079 0.084 0.268 0.382

Notes: This panel reports the p-values of F-tests for equality of the βRealk coefficients from specification (1) before and after
death, as specified by the hypotheses HBefore Death

0 and HAfter Death
0 described in the text above the table. For more details

on the outcome variables and the sample, see Table 2 and the main text. P-values are adjusted for the clustering of standard
errors around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

Balanced Panel

Table B.6.: Balanced Panel of Survivors Experiencing Co-inventor Death between 2003 and
2008

Total Earnings Labor Earnings Labor Earnings >0 Patents Count Citation Count

AfterDeathReal -2905.73** -1907.36** -0.0049* -0.08090*** -0.0945***

s.e. 1345.88 806.25 0.00289 0.02957 0.0299

AfterDeathAll 199.025 -168.25 -0.00306** -0.00622 -0.0293

s.e. 854.76 526.32 0.0021 0.02154 0.032

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 99,108 99,108 99,108 99,108 99,108

# Survivors 11,012 11,012 11,012 11,012 11,012

# Deceased 4,148 4,148 4,148 4,148 4,148

Estimator OLS OLS OLS Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2) on a balanced panel, keeping four
years before and after death for each inventor in the sample. Specifically, we restrict the sample to survivor inventors whose
associated deceased co-inventors passed away between 2003 and 2008 and we drop inventor-year observations when the lead or
lag relative to co-inventor death is more than 4 years. Patent count is the number of patents the survivor inventor applied for
in a given year, and citation count is the number of adjusted forward citations received on patents that the survivor applied
for in a given year. Under the identification assumption described in Section III.B, βReal gives the causal effect of co-inventor
death on the various outcomes. The table shows that, for all outcome variables, we find a large and statistically significant
effect. This indicates that the effect documented in Table 2 is not driven by the changing composition of the panel. The
point estimates reported in this table are smaller than those reported in Table 2, because the balanced panel includes fewer
inventor-year observations many years after death and Figure 3 shows that the negative effect on the survivors amplifies over
time. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Dynamics

Table B.7.: Dynamic Causal Effect of Co-inventor Death, Full Sample

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -2,081** -1,735** -0.00658** -0.0743*** -0.0939**

s.e. (853) (683) (0.002712) (0.0258) (0.0375)

AfterDeathReal · LongRun -2,949** -1,990** -0.00576** -0.0504 -0.0507**

s.e. (1,253) (903) (0.0026166) 0.0321 (0.0231)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

Yit=
βRealAfterDeathRealit + βAllAfterDeathAllit + β̃RealAfterDeathRealit · LongRun+ β̃AllAfterDeathAllit · LongRun

+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit
using similar notation to Section III.B and where LongRun is an indicator equal to one for observations more than four years
after death. The columns report the results for total earnings, labor earnings, employment, the count of patents and the count
of citations. For all outcome variables, we find that the effect in the long run is significantly larger than in the short run
following death events. For more details on the sample see Table 2 and the main text. Standard errors are clustered around
the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B.8.: Dynamic Causal Effect of Co-inventor Death, Sample Restricted to Deaths
from 2003 to 2005

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -1,980** -1,635** -0.00558* -0.0843*** -0.0839**

s.e. (990) (823) (0.003112) (0.0311) (0.0412)

AfterDeathReal · LongRun -2,743** -2,001* -0.00549** -0.0404* -0.0443*

s.e. (1,365) (1,103) (0.002724) (0.02421) (0.02634)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 67,368 67,368 67,368 67,368 67,368

# Survivors 4,812 4,812 4,812 4,812 4,812

# Deceased 1,764 1,764 1,764 1,764 1,764

Estimator OLS OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

Yit=
βRealAfterDeathRealit + βAllAfterDeathAllit + β̃RealAfterDeathRealit · LongRun+ β̃AllAfterDeathAllit · LongRun

+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit
using similar notation to Section III.B and where LongRun is an indicator equal to one for observations more than four years
after death. The sample is restricted to the 4,812 co-inventors of the 1,764 real and placebo deceased with a year of death
between 2003 and 2005. Inventor-year observations are dropped if the lag relative to co-inventor death is above seven years
or if the lead relative to death is below four years. The various columns of the panel report the results for labor earnings,
non-labor earnings, the count of patents and the count of citations. For all outcome variables, we find that the effect in the
long run is significantly larger than in the short run following death events. The magnitude of the effects is similar to Figure 3
and Appendix Table B3, indicating that the dynamics of the effect are not driven by changes in the composition of the sample.
Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01
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Anticipation

Figure B.2.: Tax Deductions for High Medical Expenditures Claimed by the Deceased
Panel A: 75th percentile
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Panel B: 95th percentile
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Notes: This figure shows the path of tax exemptions for medical expenditures claimed by the real and placebo deceased around
the time of (real or placebo) death. For details on the sample, refer to Section II.B. Panel A shows that 75 percent of the real
deceased inventors never claim any tax exemption for medical expenditures, except in the years just before death as well as
during the year of death, suggesting that death is unanticipated for most survivors. Panel B shows that the 95th percentile of
the distribution of tax deductions claimed for medical expenditures is very similar for real and placebo deceased until a few
years before death, showing that some deaths result from lingering conditions and may therefore be anticipated.
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Table B.9.: Results for Main Outcomes, Excluding Deceased who Claimed Any Tax De-
duction for High Medical Expenditures

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -4301.1562*** -3022.1*** -0.01047** -0.1258*** -0.1017**

s.e. 1217.367 925.37 0.00417 0.0361 0.0442

AfterDeathAll - 141.17 53.06 -0.00634** -0.0020 0.0089

s.e. 576.10 595.30 0.0028 0.0231 0.00668

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 250,809 250,809 250,809 250,809 250,809

# Survivors 21,147 21,147 21,147 21,147 21,147

# Deceased 7,062 7,062 7,062 7,062 7,062

Estimator OLS OLS OLS Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2) in a sample that excludes all survivors
whose associated deceased ever claimed tax deductions for medical expenditures. The table shows that the estimated causal
effect of co-inventor death on the various outcomes is negative, statistically significant and large in magnitude. The point
estimates are not very different but slightly larger than in Table 2. This result is not surprising, because our difference-in-
differences estimator is biased downward if the causal effect of co-inventor impairement manifests itself before death. It bolsters
the validity of the research design by showing that, if anything, we might be slightly underestimating the effect of co-inventor
death due to lingering health conditions affecting some deceased inventors. Standard errors are clustered around the deceased
inventors. *p < 0.1, ** p < 0.05, *** p < 0.01
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Alternative Matching Strategy

Figure B.3.: Path of Outcomes for Real and Placebo Survivor, Propensity Score Reweight-
ing

Panel A: Survivor Inventors’ Total Earnings
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Panel B: Survivor Inventors’ Labor Earnings
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Panel C: Survivor Inventor’s Adjusted Forward Citations Received
for Patents Applied in Year
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Table B.10.: The Causal Effect of Co-Inventor Death, Reweighting on the Propensity Score

Total Earnings Labor Earnings Non-Labor Earnings Patent Count Citation Count

AfterDeathReal -3,624*** -2,621*** -1,032** -0.0989*** -0.1103***

s.e. (890) (687) (472) (0.0236) (0.0266)

AfterDeathAll - 322 -51 552 -0.00081 0.07213

s.e. (437) (390) (378) (0.01452) (0.12341)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 734,742 734,742 734,742 734,742 734,742

# Deceased 24,929 24,929 24,929 24,929 24,929

Estimator OLS OLS OLS Poisson Poisson
Notes: This panel reports the estimated coefficients βReal and βAll from specification (2) in a sample of real and placebo
survivors constructed following an alternative matching strategy, different from the one presented in the main text. Specifically,
the matching strategy is as follows: (1) we identify all inventors who passed away before the age of 60 in our sample and we
keep a random sample of 20,000 inventors who did not pass away during our sample ; (2) for each of the 20,000 inventors who
did not pass away, we keep at random only one year of the sample, which will serve as our counterfactual year of death for
these inventors in the following steps ; (3) we estimate the propensity score (which gives the probability of “treatment”, i.e.
the probability of passing away before the age of 60 between 1999 and 2012) by regressing an indicator for real deceased on
age fixed effects, year of (real or placebo) death fixed effects, a fifth-order polynomial of wages in 1999, a fifth-order polynomial
of total earnings in 1999, a fifth-order polynomial for cumulative patent applications at the time of death and a fifth-order
polynomial for cumulative adjusted forward citations at the time of (real or placebo) death ; (4) we construct the co-inventor
networks of all 24,929 real and placebo deceased in our sample for whom we have overlap in the propensity score ; (5) we run
specification (2), which is described in the main text, in the sample of real and survivor inventor built in step (5) and using the
propensity score estimated in step (2) as regression weight. The results reported in this table are very similar to the results
reported in Table 2, showing that our results are robust to the choice of matching strategy. Note that the propensity-score
reweighting strategy we employ here does not use any variable on the survivors, yet we find no pre-trending effects in Appendix
Figure B2. Therefore, the details of the matching strategy do not matter for the substance of the results. It is important to
use a matching strategy, however, because the real survivor inventors are in general older and of a higher level of achievement
than the full sample of inventors, due to a selection effect (having a larger network of co-inventors increases the probability of
experiencing the premature death of a co-inventor). For details about the outcome variables, refer to Table 2. Dollar amounts
are reported in 2012 dollars. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Citations

Table B.11.: Other Citation Metrics

3-Year 5-Year 5-Year Examiner-Added

Citation Count Citation Count Citation Count

Around Grant Year Around Grant Year Around Grant Year

AfterDeathReal -0.095*** -0.1242*** -0.0943***

s.e. (0.0245) (0.0256) (0.0342)

AfterDeathAll 0.135 -0.0739 0.086

s.e. (0.1304) (0.1345) (0.1023)

Age and Year Fixed Effects Yes Yes Yes

Individual Fixed Effects No No No

# Observations 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428

Estimator Poisson Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2), except that it does not include
individual fixed effects because the Poisson estimator with individual fixed effects did not converge for several outcome variables.
Appendix Table B8 shows that the results are similar with individual fixed effects, using a negative binomial estimator. The
four outcome variables are as follows: (1) “3-year citation count around grant year” is the number of patents the survivor
inventor applied for in a given year, weighted by the number of citations these patents received within three years of their
respective year of grant; (2) “5-year citation count around grant year” is the number of patents the survivor inventor applied
for in a given year, weighted by the number of citations these patents received within five years of their respective years of
grant; (3) “5-year examiner-added citation count around grant year” is similar to the outcome variable in the second column,
but taking into account only citations from patent examiners; (4) “5-year examiner-added citation count around grant year” is
similar to the outcome variable in the second column, but taking into account only citations from applicants. For all outcome
variables, we find a large and statistically significant effect. The magnitudes of these effects are similar to the effects reported
in Table 2, Panel C, which shows the robustness of our result to the choice of the citation measure. For more details on the
sample, see Table 2. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.12.: Citation Results with Negative Binomial Estimator and Individual Fixed
Effects

3-Year 5-Year 5-Year Examiner-Added 5-Year Applicant-Added

Citation Count Citation Count Citation Count Citation Count

Around Grant Year Around Grant Year Around Grant Year Around Grant Year

AfterDeathReal -0.09508*** -0.1291*** -0.1122*** -0.09636***

s.e. 0.0215 0.0312 0.03172 0.0297

AfterDeathAll -0.1489*** -0.1691*** -0.161*** -0.1594***

s.e. 0.04621 0.04221 0.05231 0.04267

Age and Year Fixed Effects Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes Yes

# Observations 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428

Estimator Negative Binomial Negative Binomial Negative Binomial Negative Binomial

Notes: This table reports the estimated coefficients βReal and βAll from specification (2), using a negative binomial estimator.
The five outcome variables are as follows: (1) “3-year citation count around grant year” is the number of patents the survivor
inventor applied for in a given year, weighted by the number of citations these patents received within three years of their
respective year of grant; (2) “5-year citation count around grant year” is the number of patents the survivor inventor applied for
in a given year, weighted by the number of citations these patents received within five years of their respective years of grant;
(3) “5-year examiner-added citation count around grant year” is similar to the outcome variable in the second column, but
taking into account only citations added by patent examiners; (4) “5-year examiner-added citation count around grant year” is
similar to the outcome variable in the second column, but taking into account only citations added by applicants; (5) citation
count is the number of forward citations received on patents that the survivor applied for in a given year. For all outcome
variables, we find a large and statistically significant effect. The magnitudes of these effects are similar to the effects reported
in Table 2, Panel C, which shows the robustness of our results to the choice of estimator and the inclusion of individual fixed
effects. For more details on the sample, see Table 2. Standard errors are clustered around the deceased inventors and computed
by bootstrap with 100 draws. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Technology Classes

Table B.13.: Testing For Differences Across Technology Classes

Total Earnings Labor Earnings Labor Earnings >0 Patents Citations

AfterDeathRealit · Tech1 -3,883* -2,200* -0.0075* -0.0701** -0.1065**

s.e. (2,273) (1,135) (0.0044) (0.0305) (0.04875)

AfterDeathRealit · Tech2 -4,208** -2,710** -0.0096* -0.1406 *** -0.1234***

s.e. (2,054) (1,319) (0.0049) (0.0440) (0.0395)

AfterDeathRealit · Tech3 -4,505* -3,462*** -0.0063* -0.092*** -0.1180***

s.e. (2,364) (1,333) (0.0038) (0.0341) (0.0413)

AfterDeathRealit · Tech4 -3,498** -2,507* -0.0117** -0.1021* -0.0954*

s.e. (1,613) (1,331) (0.00518) (0.0556) (0.05096)

AfterDeathRealit · Tech5 -3,080* -2,075* -0.0086* -0.0692** -0.0743*

s.e. (1,740) (1,102) (0.0047) (0.0343) (0.0389)

AfterDeathRealit · Tech6 -4,402* -3,233** -0.0048* -0.064** -0.072**

s.e. (2,476) (1,314) (0.0028) (0.0292) (0.0312)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

F-Test on Equality of All βRealTechT 0.62 0.45 0.42 0.38 0.51

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS Poisson Poisson
Notes: This panel reports the estimated coefficients βRealTech T from the following specification:

Yit =
βRealAfterDeathRealit + βAllAfterDeathAllit

+
∑6

T=1
˜βReal
TechT

AfterDeathRealit · TechT +
∑6

T=1
˜βAll
TechT

AfterDeathAllit · TechT
+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit

using similar notation to Section III.B and where TechT is an indicator equal to one when a survivor inventor has invented most
of his patent prior to the year of co-inventor death in technology class T (we aggregate USPC classes into six main technology
classes, as in Hall et al., 2001). The distribution of real and placebo survivor inventors across the six main technology classes
we consider is presented in Appendix Table A1. Technology class #1 is Chemical, #2 is Computers and Communications, #3
is Drugs and Medical, #4 is Electrical & Electronic, #5 is Mechanical and #6 is Others. The point estimates show significant
effects for all outcomes in all technology classes, indicating that our results are not driven by a particular technology class.
Formally, for each outcome we report the p-value of a F-test for the hypothesis:

H0 : βRealTech1 = βRealTech2 = ... = βRealTech6

We fail to reject that the effect is the same across all technology classes. We have investigated the robustness of these results
by running regressions in subsamples, considering in turns populations of survivor inventors specializing in each of the six
technology classes before the year of co-inventor death. The results are qualitatively similar. For details on the sample, see
Table 2. Standard errors are clustered around the deceased inventors and the p-values of F tests are adjusted accordingly.
*p < 0.1, ** p < 0.05, *** p < 0.01.
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Inference Accounting for the Matching Step

Table B.14.: Inference on The Causal Effect of Co-Inventor Death Accounting For the
Matching Step

Total Earnings Labor Earnings Labor Earnings >0 Non-Labor Earnings Patents Citations

AfterDeathReal -3,875*** -2,720*** -0.00914*** -1,199** -0.0916*** -0.092***

s.e. (839) (659) (0.00288) (473) (0.0178) (0.0214)

AfterDeathAll -215 -38 -0.0049** 652* 0.0006 0.0508

s.e. (529) (451) (0.0021) (357) 0.0182 0.1161

Age and Year Fixed Effects Yes Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes Yes Yes No

# Observations 325,726 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500 27,500

# Matched Pairs 4,714 4,714 4,714 4,714 4,714 4,714

Estimator OLS OLS OLS OLS Poisson Poisson
Notes: This table reports the estimated coefficients βReal and βAll from specification (2). For details about the outcome
variables and the sample, refer to Table 2. The difference between this table and Table 2 is that, here, standard errors are
computed using the “coupled bootstrap” procedure presented in Abadie and Spiess (2015). We use one hundred bootstrap
replications for each of the six outcome variables and we have checked that the results are similar when bootstrapping one
thousand times for total earnings. The coupled bootstrap method applied to our setting works as follows: one redraws with
replacement pairs of matched real-placebo deceased and all of their associated survivors (i.e. the full panel of observations for all
of these survivors). The coupled bootstrap is effectively just a block bootstrap, but we re-sample together treated and matched
control units, which reflects the dependency between treated and matched control units through the matched covariates (in
our setting, the treated and matched control units are the real and placebo deceased). In contrast, in the standard bootstrap,
treated and control units are treated as independent and are not resampled togethed. Note that the validity of the coupled
bootstrap follows from a general result that applies to smooth functionals of the marginal outcome distributions, therefore it
should be valid for inference on the difference-in-differences specification we run in our sample of real and placebo survivor
inventors. The standard errors we obtain through this procedure are slightly smaller than the clustered standard errors reported
in Table 2, which shows the robustness of our results. These smaller standard errors may result from a high positive correlation
between the potential outcomes conditional on covariates, which is reasonable in our setting. Refer to Abadie and Spiess (2015)
for more details.
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B.3. Additional Results on Mechanism

What Does the Reduced-form Effect of an Inventor’s Death Imply about

Complementarity and Substitutability Patterns between Inventors?

Consider a survivor inventor and a prematurely deceased inventor who used to be co-

inventors, coworkers, or part of an extended co-inventor network. As mentioned in the

main text of the paper, our quasi-experiment does not deliver insights about general substi-

tution and complementarity patterns between these inventors. The reduced-form effects we

identify correspond to the idiosyncratic effect of an inventor on their co-inventors, coworkers

and second-degree connections. Formally, the sign of our reduced-form coefficients iden-

tifies substitutability and complementarity patterns between two inventors conditional on

irreplaceability. A non-zero point estimate rejects the null that all of the tasks performed

by the prematurely deceased inventor were perfectly replaceable (i.e. it is not possible for

the surviving inventor to find another inventor playing the exact same role as the deceased

inventor). However, we cannot reject that at least some of the tasks performed by the de-

ceased were replaceable. The sign of the point estimate for the effect of inventor death on

the various outcomes of interest reflects complementarity and substitutability patterns for

the tasks performed by the prematurely deceased inventors that were not replaceable, and

only for those tasks. Specifically, a positive (negative) point estimate tells use that those

tasks were on average substitutable for (complementary with) the tasks performed by the

survivor inventor. In contrast, we do not learn about complementarity and substitutability

patterns for the tasks performed by the deceased that were replaceable.
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The Nature of Team-Specific Capital: Match vs. Experience

Team-specific capital can result from a “match” component which is constant over time or

from an “experience” component which increases the value of the collaboration over time.

The idiosyncratic value of a collaborative relationship may also vary over the lifecycle of an

inventor, e.g. if it is more difficult to substitute for co-inventors later in life. From the point

of view of inventor i, one could thus conceptualize the idiosyncratic value of a collaborative

relationship with inventor j at time t (denoted Vijt) as resulting from a match component

θij0 , an experience component θ1 and lifecycle covariates Xit:

Vijt = θij0 + θ1(t− Tij) + γXit + εijt

where Tij denotes the time of the first collaboration between i and j.

To separately identify θij0 and θ1 in this simple empirical model, the ideal experiment would

follow three steps: randomly assign inventors to work in teams; separate the teams after t

years of collaboration, where t varies randomly across teams; test whether the loss in output

if larger for teams that were separated later, controlling for inventor age at separation. This

ideal empirical design can be approximated in our setting, using the difference between

the year of co-inventor death and the year of first collaboration as a measure of “potential

length of collaboration”, which could serve as an instrument for the actual length of the

collaboration between the two inventors. Note that

PotentialCollaborationLengthij ≡ Y earCoinventorDeathij − Y earF irstCollaborationij =

AgeAtCoinventorDeathi − AgeAtF irstCollaborationi

In our non-experimental setting, the formation of teams is endogenous and, therefore, the age

at first collaboration could be correlated with match quality θij0 (e.g. if inventors who think

alike and were trained in the same schools are more likely to meet earlier in life). Because of

the collinearity between potential collaboration length and age effects shown in the equation

above, we cannot control for both age at first collaboration and age at co-inventor death.
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Given this limitation, we leave an in-depth study of the match and experience components

of team-specific capital to future research.

However, our setting can be used to provide suggestive evidence on the relative importance

of the match and experience components of team-specific capital. First, we document het-

erogeneity in the treatment effect depending on the potential length of collaboration between

the two inventors while controlling for the survivor’s age at death. We find that the potential

length of collaboration is positively correlated with the magnitude of the treatment effect,

which provides suggestive evidence for the importance of the experience component.1 Sec-

ond, we show in Table C6 that firm size is not an important predictor of treatment effect

heterogeneity. Since it is likely that it is easier for an inventor to find new collaborators in a

larger firm, this result provides suggestive evidence that the match component may not be

the primary determinant of the idiosyncratic value of a collaboration.

Our results have established that team-specific capital has a first-order impact in an in-

ventor’s career, therefore it would be worthwhile to distinguish between the match and

experience components in future research. A promising direction would be to develop a

suitable experimental design. Another promising direction would be to estimate a structural

model using observational data on repeated collaborations between patent inventors and

test the key prediction of the “experience” view, namely that the quality of a collaboration

should increase over time (conditional on inventor fixed effects, lifecycle controls and other

covariates).

1Of course, heterogeneity in the treatment effect by actual length of collaboration, as reported in Table 7,
doesn’t allow us to distinguish between the match and experience components because teams with a high
match quality will endogenously collaborate for a longer period of time. The results for heterogeneity by
potential length of collaboration are available from the authors upon request.
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Figure B.4.: Path of Outcomes for Coworkers and Second-Degree Connections around Year
of Death

Panel A: Coworkers’ Labor Earnings
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Panel B: Coworker’s Adjusted Forward Citations Received for Patents Applied in Year
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Panel C: Second-degree Connections’ Adjusted Forward Citations Received
for Patents Applied in Year
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Causal Effect of Coworker Death in the Full Sample

Table B.15.: Causal Effect of Coworker Death, Including Coworkers in Firms of Any Size

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

βReal 105.21 336.05 0.0034 0.0149 0.0048

s.e. (461.22) (312.59) (0.0048) (0.0110) (0.0041)

βAll -521 -702.5 -0.004357* -0.0366** -0.00623*

s.e. (518) (653) (0.00241) (0.01462) (0.00355)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 3,642,901 3,642,901 3,642,901 3,642,901 3,642,901

# Coworkers 316,774 316,774 316,774 316,774 316,774

# Deceased 6,289 6,289 6,289 6,289 6,289

Estimator OLS OLS OLS Poisson Poisson
Notes: This panel reports the estimated coefficients βReal and βAll from specification (2) for the sample of coworkers, considering
deceased inventors in firms of any size. The five outcome variables are as follows: (1) total earnings; (2) labor earnings; (3) an
indicator equal to one when the inventor receives a W-2, i.e. is employed; (4) the number of patents the coworker applied for in
a given year; (5) the number of forward citations received on patents that the coworker applied for in a given year (therefore,
this variable reflects the timing and quality of patent applications by the survivor, not the timing of citations). Under the
identification assumption described in Section III.B, βReal gives the causal effect of coworker death on these various outcomes.
We do not find any significant effect for any of the outcomes, and the point estimates are positive. These results are qualitatively
similar to those presented in Table 3: the absence of a negative effect on coworkers rules out the theory that the large effects
documented in Section III are driven by the disruption of the firm. In contrast with Table 3, we no longer find positive and
significant effects on the extensive margin of labor earnings, patents and citations, which could be because the firms we consider
here are too large for any substitutability pattern to operate between inventor coworkers on average. Inventor-year observations
are dropped when the lead or lag relative to coworker death is above 9 years. The unbalanced nature of this panel is the same
for real and placebo coworkers. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the deceased
inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

Sample Sizes for Results by Relative Ability Levels

Table B.16.: Sample Sizes for Analysis by Relative Ability Levels

Deceased / Survivor Earnings Quartile 1 2 3 4

1 42,431 / 4,040 / 2,706 22,300 / 1,884 / 1,132 1,9619 / 1,706 / 1,062 17,251 / 1,456 / 887

2 20,968 / 1,747 / 1,150 37,390 / 3,382 / 1,625 28,158 / 2,485 / 1,349 17,476 / 1,506 / 975

3 20,085 / 1,685 / 989 15,899 / 1,366 / 617 20,465 / 1,686 / 711 11,696 / 1,071 / 549

4 9,132 / 825 / 354 11,090 / 981 / 379 11,540 / 1053 / 477 14,354 / 1,313 / 535

Notes: This panel reports the sample sizes for each of the sixteen subsamples studied in the various panels of Table 5. Each
of these subsamples corresponds to a different combination for the total earnings quartiles of the survivor and the deceased.
The earnings quartiles are computed three years before death. Within each cell, the sample sizes are reported according to
the following format: Number of observations / Number of survivors / Number of deceased. For instance, in the subsample of
survivor inventors who were in the lowest earnings quartile three years before death and whose associated deceased was also in
the lowest earnings quartile at that time, we have 2,706 real and placebo deceased, 4,040 real and placebo survivors, and 42,432
inventor-year observations.
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Probability of Changing Firms

Table B.17.: Causal Effect of Co-Inventor Death on the Probability of Changing Firm

Changing Firm

AfterDeathReal
it -0.00124

s.e. (0.00192)
AfterDeathAll

it · SmallF irm 0.00798**
s.e. (0.004016)

Age and Year Fixed Effects Yes
Individual Fixed Effects Yes

# Observations 266,087
# Survivors 22,740
# Deceased 8,382
Estimator OLS

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

ChangingF irmit =
βRealAfterDeathRealit + βAllAfterDeathAllit

+β̃RealAfterDeathRealit · SmallF irm+ β̃AllAfterDeathAllit · SmallF irm
+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit

where (1) ChangingF irmit is an indicator variable equal to 1 if the deceased is employed in a different firm in year t compared
with the year prior to co-inventor death; (2) SmallF irm is an indicator equal to one if the survivor was in a firm with less
than one hundred employee in the year prior to coinventor death; (3) the rest of the specification is similar to specification
(2) in the main text. The table shows that in general co-inventor death does not have a statistically significant impact on an
inventor’s probability of changing firms. However, survivor inventors who are in a small firm are more likely to change firms
after co-inventor death. This finding is consistent with the view that the survivor inventor may be looking for new co-inventors
and may change firms to do so. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the deceased
inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Probability of Getting a New Co-inventor

Table B.18.: Causal Effect of Co-Inventor Death on the Probability of Getting a New
Co-inventor

New Co-Inventor In Year

βReal 0.05899
s.e. (0.067409)
βAll -0.107534*
s.e. (0.060466)

Age and Year Fixed Effects Yes
Individual Fixed Effects Yes

# Observations 325,726
# Survivors 27,500
# Deceased 9,428
Estimator OLS

Notes: This panel reports the estimated coefficients βReal and βAll for specification (2), using as an outcome variable the
number of new coinventors of the survivor in a given year. This variable is built using data on patent applications and counts
the number of new co-inventors of the survivor in a given year, i.e. the number of inventors who apply for a patent with
the survivor in this year and who had never applied for a patent with the survivor in any of the previous years. We find no
statistically significant effect, and the point estimate is small in magnitude. This suggests that the survivor inventor is not able
to find substitutes for the deceased co-inventor, which may explain the strength of the effect on the survivor’s earnings and
patents documented in Table 2. Note that the outcome variable in this table is not a perfect measure of changes in collaboration
patterns, since it is based on patent applications, i.e. we can observe the new co-inventor only when a patent application is
filed. This creates a censoring problem, which however is similar for treated and control inventors. The sample includes all
real and placebo survivor inventors in a 9-year window around the year of co-inventor death, i.e. inventor-year observations are
dropped when the lead or lag relative to co-inventor death is above 9 years. The unbalanced nature of this panel is the same
for real and placebo inventors. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the deceased
inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Heterogeneity by Survivor’s Age

Table B.19.: Heterogeneity in Causal Effect of Co-Inventor Death by Age Quartile

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -3,484*** -2,526*** - 0.00476 -0.09781*** -0.10962***

s.e. (1,102) (724) (0.00312) (0.02915) (0.03451)

AfterDeathReal ·AgeQ2 33 -218 0.00014 -0.00385 0.02808

s.e. (549) (412) (0.00088) (0.0046) (0.03602)

AfterDeathReal ·AgeQ3 -990 -149 -0.00451** 0.001311 -0.00129

(950) (567) (0.00208) (0.04823) (0.00314)

AfterDeathReal ·AgeQ4 -1,533 -1,011 -0.00964*** -0.0498* -0.00535

(1,288) (738) (0.00352) (0.02959) (0.00371)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real
Qk

from the following specification:

Yit =
βRealAfterDeathRealit + βAllAfterDeathAllit +

∑4
k=2 β̃

Real
Qk

AfterDeathRealit ·AgeQk +
∑4

k=2 β̃
AllAfterDeathAllit ·AgeQk

+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit

using similar notation to Section III.B and where AgeQk is an indicator equal to one when the survivor is in the k-th quartile
of age at co-inventor death. The specification with the Poisson estimator for columns 4 and 5 of the table is similar. The
table shows that there is no significant heterogeneity in the causal effect of co-inventor death on the various outcomes by age
quartile, except on the extensive margin of labor earnings, where the effect is driven by survivors who were older at the time of
co-inventor death. For younger survivor inventors, the point estimate for the effect on the extensive margin of labor earnings is
an imprecisely estimated zero. The sample includes all real and placebo survivor inventors in a 9-year window around the year
of co-inventor death, i.e. inventor-year observations are dropped when the lead or lag relative to co-inventor death is above 9
years. The unbalanced nature of this panel is the same for real and placebo inventors. Dollar amounts are reported in 2012
dollars. Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Heterogeneity by Firm Size

Table B.20.: Heterogeneity in Causal Effect of Co-Inventor Death by Firm Size Quartile

Total Earnings Labor Earnings Labor Earnings >0 Patent Count Citation Count

AfterDeathReal -3,506*** -2,537*** -0.0094** -0.0989*** -0.1020 ***

s.e. (878) (690) (0.0041) (0.0245) (0.0234)

AfterDeathReal · FirmQ2 -422 169 0.0008 0.0012 0.0023

s.e. (633) (587) (0.0013) (0.0093) (0.0036)

AfterDeathReal · FirmQ3 -395 -365 -0.0003 -0.0123 0.0032

(533) (453) (0.0021) (0.0187) (0.0092)

AfterDeathReal · FirmQ4 198 -204 -0.0023 0.0021 0.0182

(643) (346) (0.0017) (0.0163) (0.015)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 284,707 284,707 284,707 284,707 284,707

# Survivors 23,925 23,925 23,925 23,925 23,925

# Deceased 8,768 8,768 8,768 8,768 8,768

Estimator OLS OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real
Qk

from the following specification:

Yit =
βRealAfterDeathRealit + βAllAfterDeathAllit +

∑4
k=2 β̃

Real
Qk

AfterDeathRealit · FirmQk +
∑4

k=2 β̃
AllAfterDeathAllit · FirmQk

+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit

using similar notation to Section III.B and where FirmQk is an indicator equal to one when the survivor is in the k-th quartile
of firm size in the year of co-inventor death. The specification with the Poisson estimator for columns 4 and 5 of the table
is similar. The table shows that there is no significant heterogeneity in the causal effect of co-inventor death on the various
outcomes by firm quartile. The sample includes all real and placebo survivor inventors who received a W2 at the time of
co-inventor death. Inventor-year observations are dropped when the lead or lag relative to co-inventor death is above 9 years.
The unbalanced nature of this panel is the same for real and placebo inventors. Dollar amounts are reported in 2012 dollars.
Standard errors are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.
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Heterogeneity by Citizenship Status

Table B.21.: Heterogeneity in Causal Effect of Co-Inventor Death by Survivor’s Citizenship
Status

Total Earnings Labor Earnings Labor Earnings>0 Patent Count Citation Count

AfterDeathReal -3,675*** -2,604*** -0.0982*** -0.079*** -0.1056***

s.e. (918) (683) (0.0328) (0.0243) (0.0271)

AfterDeathReal · Foreigner -727 -506 0.0083 -0.0463 ** 0.0263

s.e. (663) (421) (0.0098) (0.0214) (0.0209)

Age and Year Fixed Effects Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No

# Observations 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS Poisson Poisson

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

Yit = βRealAfterDeathRealit + βAllAfterDeathAllit + β̃RealAfterDeathRealit · Foreigner + β̃AllAfterDeathAllit · Foreigner
+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit
using similar notation to Section III.B and where Foreigner is an indicator turning to one when the survivor inventor is not
a US citizen. The table shows that there is no significant heterogeneity in the causal effect of co-inventor death by citizenship
status, except for patent count. This result is consistent with the notion that it may be more difficult for foreign inventors to
find new co-inventors, hence a stronger decline in citations, but at the same time they may not be rewarded for performance
on the same basis as US inventors, explaining the absence of differential effect on earnings. The sample includes all real and
placebo survivor inventors in a 9-year window around the year of co-inventor death, i.e. inventor-year observations are dropped
when the lead or lag relative to co-inventor death is above 9 years. The unbalanced nature of this panel is the same for real and
placebo inventors. Dollar amounts are reported in 2012 dollars. Standard errors are clustered around the deceased inventors.
*p < 0.1, ** p < 0.05, *** p < 0.01.
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Heterogeneity by Network Size

Table B.22.: Heterogeneity in Causal Effect of Co-Inventor Death by Survivor’s Network
Size

Total Earnings Labor Earnings Labor Earnings> >0) Patents Citations New Co-inventor

βReal -3,573*** -2,615*** -0.0095*** -0.0891*** -0.0952*** 0.0239

s.e. (857) (706) (0.0034) (0.0237) (0.0232) (0.0632)

βReal × Small Network -534 -283 0.0012 -0.0057 0.0067 0.0884

s.e. (614) (450) (0.0023) 0.0102 (0.0192) (0.059)

Age and Year Fixed Effects Yes Yes Yes Yes Yes Yes

Individual Fixed Effects Yes Yes Yes No No Yes

# Observations 325,726 325,726 325,726 325,726 325,726 325,726

# Survivors 27,500 27,500 27,500 27,500 27,500 27,500

# Deceased 9,428 9,428 9,428 9,428 9,428 9,428

Estimator OLS OLS OLS OLS Poisson OLS

Notes: This panel reports the estimated coefficients βReal and β̃Real from the following specification:

Yit =
βRealAfterDeathRealit + βAllAfterDeathAllit

+β̃RealAfterDeathRealit · SmallNetwork + β̃AllAfterDeathAllit · SmallNetwork
+
∑70

j=25 λj1{ageit=j} +
∑2012

m=1999 γm1{t=m} + αi + εit

using similar notation to Section III.B and where SmallNetwork is an indicator turning to one when the size of the co-inventor
network of the survivor inventor is below median at the time of death. The table shows that there is no significant heterogeneity
in the causal effect of co-inventor death by network size. This result is qualitatively similar when considering other interaction
terms (linear, quartile) based on survivor’s network size at the time of death. An explanation for this finding is that the observed
network of co-inventors at the time of death may be a noisy proxy for the survivor’s actual network, given that collaborations
are ongoing before patent applications are filed. Overall, the network size variable appears to be a less reliable indicator of the
difficulty for the survivor to recover from the death of his co-inventor than the measures of collaboration intensity presented in
Table 6. The sample includes all real and placebo survivor inventors in a 9-year window around the year of co-inventor death,
i.e. inventor-year observations are dropped when the lead or lag relative to co-inventor death is above 9 years. The unbalanced
nature of this panel is the same for real and placebo inventors. Dollar amounts are reported in 2012 dollars. Standard errors
are clustered around the deceased inventors. *p < 0.1, ** p < 0.05, *** p < 0.01.

B.4. Econometric Considerations

What is Identified In Specification (1)?

This appendix considers specification (1) introduced in Section III and asks what is identified
about the coefficients {βReal(k)} and {βAll(k)}. k denotes the year relative to co-inventor
death, which can be expressed as the difference between the time of co-inventor death (CDTi)
and time τ (so k = τ − CDTi). We delay imposing any “normalization” on the model and
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we note that ∀µ ∈ R:

βAll(τ − CDTi) + γ(τ) + α(i) = [βAll(τ − CDTi)− µ(τ − CDTi)] + [γ(τ) + µ · τ ] + [α(i)− µ · CDTi]

= β̃All(τ − CDTi) + γ̃(τ) + α̃(i)

Therefore, any function of the full vector coefficients, G(βAll(.)), is not identified unless

G(βAll(.) + h(.)) = G(βAll(.)) for any linear function h(k) = α1 + α2k. This observation

helps understand which predictive effects are identified.2 If G(βAll, γ, α) is identified, then

we can evaluate it and we will get a well-defined predicted value. In specification (1), any

solution to the least-squares fit gives the same value for G(βAll, γ, α). Although the solution

of the least-square fit in specification (1) is not unique because the regressor matrix does not

have full column rank, there is a unique predicted value.

The intuition for this result is that the set of leads and lags associated with βAll(k) applies

to all individuals in the sample. As a result, when we first-difference the data to eliminate

the individual fixed effects, we lose information about a linear trend that could affect all

individuals either through the βAll(k) coefficients or through the year or age fixed effects. So

βAll(k), the age fixed effects and the year fixed effects are identified only up to a linear time

trend. In practice, when estimating specification (1), we can drop any two dummies within

the set of age or year with fixed effects or within the set of leads and lags βAll(k). This will

serve as our “normalization” for the linear trend.

In contrast, βReal(k) is associated with a set of leads and lags that can turn to one only for the

real survivors. As a result, βReal(k) is identified up to a level shift affecting all coefficients.

Due to the individual fixed effects, one of the βReal(k) must be normalized to zero, as is

usually the case in estimators with a full set of leads and lags around an event.

2The point of a “normalization” is that imposing it will not affect the value of a predictive effect that is
identified: to be identified means identified without any normalization.
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Empirical Relevance

Our specifications (1) and (2) are an application of the standard difference-in-differences

estimator to our setting. The current practice in the literature with a setting similar to

ours, for instance Azoulay et al. (2010) and Oettl (2012), is to use specifications including

age, year and individual fixed effects only, without including LAllit (as in specification (1))

or AfterDeathAllit (as in specification (2)). Becker and Hvide (2013) present a specification

similar to our specification (2), but appropriately testing for pre-trending requires using

specification (1), as we do.

The point that age, year and individual fixed effects may not fully account for trends in

life-time earnings and patents around co-inventor death is a simple but crucial one. Had

we not included AfterDeathAllit in specification (2), we would have over-estimated the effect

of co-inventor death on the probability of being employed by 50% (Table 2, Panel B), we

would have spuriously concluded that an inventor death causes a decline in the patents

and in the probability of being employed of this inventor’s coworkers and second-degree

connections (Table 3, Panels A and B), and we would have mistaken mean-reversion patterns

for heterogeneity in the causal effect of co-inventor death by relative ability level of the

survivor and the deceased (Table 5, Panels B and C).

B.5. Data Appendix

This section documents the most important steps for the construction of the matched

inventor-taxpayer database from Bell et al. (2015), provides a comparison of the distri-

bution of Census firm size and EIN size, and gives summary statistics on the composition of

patent inventor teams.

A. Data Construction
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A.1 Data Preparation

• Suffix Standardization. Suffixes may appear at the end of taxpayers’ first, middle,

or last name fields. Any time any of these fields ends with a space followed by “JR”,

“SR”, or a numeral I-IV, the suffix is stripped out and stored separately from the

name3.

• First name to imputed first/middle name. The USPTO separates inventor names

into “first” and “last,” but the Treasury administrative tax files often separate names

into first, middle, and last. In practice, many inventors do include a middle initial or

name in the first name field. Whenever there is a single space in the inventor’s first

name field, for the purposes of matching, we allow the first string to be an imputed

first name, and the second string to be an imputed middle name or initial. The use of

these imputed names is outlined below.

A.2 Pseudo code for Match on Name and Location

The exact matching stages are as follows. We conduct seven progressive rounds of matching.

Inventors enter a match round only if they have not already been matched to a taxpayer

in an earlier round. Each round consists of a name criterion and a location criterion. The

share of data matched in each round is noted, with an impressive 49% being exact matches

on the first stage.

• The matching algorithm takes as input a relation of inventor data and five relations of

Treasury administrative tax files:

– Input relations:

∗ Inventors(inv_id, first, last, imputed_first, imputed_middle, suffix) - di-

rectly from USPTO
3Numerals I and V are only permissive suffixes at the end of a last name field, as these may be middle initials
in a middle name field.
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∗ NamesW2(irs_id, first, middle, last, suffix) - all names used by individual on

W2 information returns; name field is recorded as first, middle, and last

∗ Names1040(irs_id, first, middle, last) - all self-reported names from 1040

forms4

∗ Nameln1W2(irs_id, fullname) - all names from W2, but a separate variable

not recorded as first, middle, last that was more frequently present

∗ CitiesW2(irs_id, city, state) - all cities reported on W2

∗ Zips1040(irs_id, name) - all zip codes reported on 1040

– Output relation:

∗ Unique-Matches (inv_id, irs_id)

• Stage 1: Exact match on name and location.

– Name match: The inventor’s last name exactly matches the taxpayer’s last name.

Either the inventor’s first name field exactly matches the concatenation of the

Treasury administrative tax files first and middle name fields or the Treasury

administrative tax files middle name field is missing, but the first name fields

match. If an imputed middle name is available for the inventor, candidate matches

are removed if they have ever appeared in Treasury administrative tax files with

a middle name or initial that conflicts with the inventor’s.

– Location match: The inventor’s city and state must match some city and state

reported by that taxpayer exactly.

– 49% of patents are uniquely matched in this stage.

• Stage 2: Exact match on imputed name data and location.
4We only take names off of 1040s for those who file singly because it proved difficult to parse names of those
list them jointly
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– Name match: The inventor’s last name exactly matches the taxpayer’s last name

and the taxpayer’s last name is the same as the inventor’s imputed first name.

Either the inventor’s imputed middle name/initial matches one of the taxpayer’s

middle/initial name fields, or one of the two is missing. For inventors with non-

missing imputed middle names, priority is given to matches to correct taxpayer

middle names rather than to taxpayers with missing middle names. As above,

candidate matches are removed if they have ever appeared in Treasury adminis-

trative tax files with a conflicting middle name or initial.

– Location match: As above, the inventor’s city and state must match some city

and state reported by that taxpayer exactly.

– 12% of patents are uniquely matched in this stage.

• Stage 3: Exact match on actual or imputed name data and 1040 zip cross-walked.

– Name match: The inventor’s last name exactly matches the taxpayer’s last name.

The inventor’s first name matches the taxpayer’s first name in one of the following

situations, in order of priority:

1. Inventor’s firstname is the same as the taxpayer’s combined first and middle name.

2. Inventor’s imputed firstname matches taxpayer’s and middle names match on

initials.

3. The inventor has no middlename data, but inventor’s firstname is the same as the

taxpayer’s middle name.

– As always, taxpayers are removed if they are ever observed filing with middle

names in conflict with the inventor’s.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.
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– 3% of patents are uniquely matched in this stage.

• Stage 4: Same as previous stage, but using 1040 names instead of names from W2’s.

– Name match: The inventor’s name matches the name of a 1040 (or matches

without inventor’s middle initial/name, and no taxpayer middle initials/names

conflict with inventor’s).

– Location match: The inventor’s city and state must match some city and state

reported by that taxpayer exactly.

– 6% of patents are uniquely matched in this stage.

• Stage 5: Match using W2 full name field.

– Name match: The inventor’s FULL name exactly matches the FULL name of a

taxpayer on a W2.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.

– 8% of patents are uniquely matched in this stage.

• Stage 6: Relaxed match using W2 full name field.

– Name match: The inventor’s full name (minus the imputed middle name) exactly

matches the full name of a taxpayer on a W2.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.

– 1% of patents are uniquely matched in this stage.

• Stage 7: Match to all information returns.

– Name match: The inventor’s full name exactly matches the full name of a taxpayer

on any type of information return form.
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– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s information return forms.

– 6% of patents are uniquely matched in this stage.
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B. A Comparison of the Firm Size Distribution in Census Data and EIN Size
Distribution in Treasury Administrative Tax Files

Figure B.5.: Comparison of Census Firm Size and Treasury EIN Size Distributions, 2002
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Notes: This figure shows the distribution of firm size in the Census distribution and EIN size in Treasury tax files, based on
2002 data. The distributions are very similar.
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C. More Summary Statistics on Patent Inventor Teams

Table B.23.: Distribution of Outcomes for Two-Inventor Teams in 2002 (N=23,210)

Oldest Team Member
1 2 3 4 5

1 56 13 11 11 9
Age Quantile 2 16 31 30 21

of Youngest Team Member 3 21 43 34
4 40 60
5 100

Richest Team Member
1 2 3 4 5

1 24 26 24 12 14
Labor Earnings Quantile 2 26 44 16 14
of Poorest Team Member 3 36 35 28

4 37 63
5 100

Richest Team Member
1 2 3 4 5

1 17 33 23 9 17
Adjusted Gross Income Quantile 2 20 45 14 19

of Poorest Team Member 3 34 28 38
4 26 73
5 100

Notes: The numbers indicate the percentage of teams in each quantile bin, expressed as a share of all teams with their
poorest/youngest team member in the same quantile. See Figure 1 in Section II of the paper for more details about the sample.
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Figure B.6.: Frequency of Collaborations Across EINs

Team Size N Share w/ 1 EINs Share w/ 2 EINs Share w/ 3 EINs

2 262,198 0.73 0.27 -
3 148,100 0.65 0.26 0.08
4 73,636 0.59 0.27 0.10
5 33,496 0.53 0.28 0.12

Notes: This table shows the percentage of teams of various sizes collaborating across one or more EINs. For instance, the table
reports that in 27% of two-inventor teams, the inventors are in two EINs, and that in 5% of five-inventor teams, the inventors
are scattered across five EINs. Therefore, collabroations across EINs are quite frequent.
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C. Appendix to Chapter 3

C.1. More Descriptive Statistics

Table C.1.: Correlation of Blocking Actions

101 102(a) 103(a) 112(b)
101 1.000 0.047 0.199 0.187

102(a) - 1.000 0.104 0.086
103(a) - - 1.000 0.420
112(b) - - - 1.000

Notes: Results are computed on the baseline sample (non-continuation granted patents covered by
Frakes and Wasserman).
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Figure C.1.: Preliminary Evidence of Examiner Impact
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(b) Non-NPE Purchase
Notes: Similar to Figure 3.1, but with examiner rates computed at the year by art unit level, and
with art unit by year fixed effects.
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Table C.2.: Art unit level statistics on the 670 art units in the PAIR data. Rates are
unweighted, and are computed for units with more than 50 total cases in the period

Art unit level statistics Median Mean Standard Deviation Max
Examiners 13 17.9 19.7 201
Cases Processed 2552 3961 4190 23,164
Patents Granted 1536 2669 3100 17,252
NPE Patents 7 22.2 45.9 445
Grant Rate 0.67 0.65 0.16 1
NPE Patent Rate 0.006 0.009 0.010 0.057
Use of Section 101 0.040 0.093 0.108 0.450
Use of Section 102(a) 0.015 0.018 0.013 0.093
Use of Section 103(a) 0.42 0.42 0.11 0.78
Use of Section 112(b) 0.19 0.19 0.09 0.47
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Table C.3.: Patents Asserted in Litigation (non-NPE)

Panel A: Primary Technology Categories
NBER ID Category Name Patents

6 Others 4,611
2 Computers & Communications 4,175
5 Mechanical 2,859
3 Drugs & Medical 2,609
4 Electrical & Electronic 2,497
1 Chemical 1,626
- New Classes (since 2001) 708

Panel B: Secondary Technology Categories
NBER ID Subcategory Name Patents

22 Computer Hardware & Software 2,046
69 Miscellaneous-Others 1,729
21 Communications 1,614
31 Drugs 1,009
59 Miscellaneous-Mechanical 979
19 Miscellaneous-chemical 932
32 Surgery & Med Inst. 806
- New Classes (since 2001) 708
51 Mat. Proc & Handling 620
33 Biotechnology 574
65 Furniture, House Fixtures 542
61 Agriculture, Husbandry, Food 504
55 Transportation 489
62 Amusement Devices 487
68 Receptacles 471
42 Electrical Lighting 451
49 Miscellaneous-Elec 442
41 Electrical Devices 409
45 Power Systems 394
46 Semiconductor Devices 364
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Table C.4.: NPE Patent Holdings by NBER Technology Category (RPX data)

Panel A: Primary Technology Categories
NBER ID Category Name Patents

2 Computers & Communications 27,156
4 Electrical & Electronic 10,660
5 Mechanical 2,709
- New Classes (since 2001) 2,324
1 Chemical 1,669
6 Others 1,453
3 Drugs & Medical 1,312

Panel B: Secondary Technology Categories
NBER ID Subcategory Name Patents

22 Computer Hardware & Software 11,459
21 Communications 11,020
46 Semiconductor Devices 4,667
24 Information Storage 3,298
- New Classes (since 2001) 2,324
49 Miscellaneous-Elec 1,626
41 Electrical Devices 1,539
23 Computer Peripherials 1,379
19 Miscellaneous-chemical 1,159
45 Power Systems 1,121
54 Optics 906
59 Miscellaneous-Mechanical 816
42 Electrical Lighting 751
69 Miscellaneous-Others 745
32 Surgery & Med Inst. 716
43 Measuring & Testing 522
44 Nuclear & X-rays 434
39 Miscellaneous-Drgs&Med 370
51 Mat. Proc & Handling 360
55 Transportation 287
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C.2. Random Assignment and Selection Effects

Random Assignment Falsification Tests

Table C.5.: Random Assignment Tests in Preferred Sample

Panel A: Patent’s Predetermined Outcomes
Patent’s Number of Number of Words in Patent’s
Independent Claims First Independent Claim

Leave-one-out 0.0020177 0.0079458
Examiner Allowance Rate (0.0012327) (0.0065522)

Class-artunit-year Yes Yes
Fixed Effects

Panel B: Inventor’s Predetermined Outcomes
Inventor’s Number of Patents Inventor’s Number of Patents Inventor’s Number of NPE

Granted in Previous Years Litigated in Previous Years Patents in Previous Years

Leave-one-out 0.0001682 1.50 ∗ 10−6 0.0002451

Examiner Allowance Rate (0.0001975) (1.19 ∗ 10−6) 0.0002188

Class-artunit-year Yes Yes Yes

Fixed Effects
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Table C.6.: Random Assignment Tests in Full Sample

Panel A: Patent’s Predetermined Outcomes
Patent’s Number of Number of Words in Patent’s
Independent Claims First Independent Claim

Leave-one-out 0.0064115*** 0.0057961
Examiner Allowance Rate (0.0012471) (0.0066375)

Class-artunit-year Yes Yes
Fixed Effects

Panel B: Inventor’s Predetermined Outcomes
Inventor’s Number of Patents Inventor’s Number of Patents Inventor’s Number of NPE

Granted in Previous Years Litigated in Previous Years Patents in Previous Years

Leave-one-out 0.0034767*** 0.0000307*** 0.0008802***

Examiner Allowance Rate (0.001084) (6.15 ∗ 10−6) (0.0003454)

Class-artunit-year Yes Yes Yes

Fixed Effects
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Figure C.2.: Random Assignment Tests in Preferred Sample
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Notes: Sample excluding continuations and repeated inventor-examiner pairs. Leave-one-out
examiner allowance rate adjusted for docket timing. Regressions include class-artunit-year
fixed effects.
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Figure C.3.: Random Assignment Tests in Full Sample
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Notes: Regressions include class-artunit-year fixed effects.

Discussion of Selection Effects

Figure C.4.: Testing for Selection Effects
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Regression includes class-artunit-year fixed effects.
Sample excludes continuations and repeated inventor-examiner pairs, and keeps accepted applications only.
The allowance rate is adjusted for docket timing.
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To understand the nature of selection effects in our setting and how we address them, consider

the following framework. Within each artunit-year, each patent is defined by an examiner

characteristic vector e (which includes examiner leniency, the propensity of the examiner

to clarify the claims, etc...) and a patent “ex-ante” characteristic vector p (which can be

thought of as the underlying technological quality of the patent). The nature of the intel-

lectual property is the equilibrium outcome of the interaction between the examiner and the

applicant and can therefore be thought of as a flexible function of e and p. We can therefore

think of e and p as the primitives that span the intellectual property space (which makes

explicit the notion that the examiner effectivel co-produces the intellectual property with

the applicant).

We observe the following outcomes: whether a patent is granted (G), whether a patent is

purchased by a regular entity (P ), whether a patent is litigated by a regular entity (L),

whether a patent is purchased by an NPE (PNPE), whether a patent is litigated by an NPE

(LNPE), and whether a patent is invalidated in court I. In a partial equilibrium framework,

these outcomes can all be thought of as a (possibly stochastic) function of the primitives

e and p. Most of the outcomes of interest are subject to selection effects, which can be

summarized as follows:

G =


1 if g(e, p) > 0

0 else

P =


1 if p(e, p) > 0 & G = 1

0 else

L =


1 if l(e, p) > 0 & G = 1

0 else
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PNPE =


1 if pNPE(e, p) > 0 & G = 1

0 else

LNPE =


1 if lNPE(e, p) > 0 & G = 1

0 else

I =


1 if i(e, p) > 0 & L = 1

0 else

The definition above relate the osberved outcomes to unobserved latent variables of the form

f(e, p), which define mapping from the intellectual property space (spanned by e and p) to

the outcomes of interest. For instance, an invalid patent is a patent for which i(e, p) > 0

- a well-defined mapping which can in theory be evaluated at any point of the intellectual

property system. In practice, two challenges arise: first, we observe invalidation I only if the

patent goes to litigation, which is itself an equilibrium outcome which depends on e and p;

second, our empirical measures of e (examiner behavior) and p (underlying patent quality)

are noisy.

Nonetheless, these definitions are useful to understand what we can learn from the data

about the patent acquisition behavior of NPEs and, in particular, whether they tend to

purchase “weak patents.” Formally, we would like to test the following:

H0 : Cov(i(e, p), pNPE(e, p)) > 0

where the covariance is computed over the intellectual property space. Testing whether

NPEs purchase weak patents means testing whether they are active in parts of the intellectual

property space that typically result in invalidations. The selection effects means that we only

observe I and PNPE, not the underlying mappings, and we need to find suitable measures of

e and p in the data. In ongoing work, we relate our empirical findings with the theoretical

covariance described above and clarify the assumptions under which the data allows us to
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conclude that NPEs tend to purchase weak patents.

C.3. Bayesian and Frequentist Interpretations of

Shrinkage Methodology

Setup

Consider a setting with J examiners who are observed for T years. Assume that each

examiner works in only one art unit and that each art unit has N students. The outcome of

the granted patent is given by the following random effects model:

Aijt = µj + θjt + εit.

where i denotes a patent, j an examiner and t a year. Aijt is the granted patent outcome

(standardized by art unit-year), µj is an examiner effect (constant over time), θjt is an

examiner-year shock, and εit is an idiosyncratic patent shock. We assume the following

distributions: µj ∼ N(0, σ2
µ), θjt ∼ N(0, σ2

θ) and εit ∼ N(0, σ2
ε). We are interested in

estimating the vector of examiners’ causal effects µj and using this vector for personnel

policy.

Frequentist Approach

We want to forecast outcomes for patents granted by teacher j in year t using information

on patent outcomes in all years prior to year t. Since all variables are demeaned, we don’t

need to include a constant in the set of predictors. Since there is no drift, we can use the

average patent outcomes in all years prior to t, defined as Āj,t−1 = 1
(t−1)N

∑t−1
k=1

∑N
i=1 Aijk, to

predict patent outcome in year t. The optimal forecast minimizes the mean-squared error,

so we must estimate α, defined in the population as:
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α = argminbE[(Aijt − aĀj,t−1)2]

In the random effect model above, providing an estimate α̂ of α amounts to providing

estimates of examiner effects µ̂j = α̂Āj,t−1.

The first-order condition of the forecasting problem is:

E[2(AijtĀj,t−1 − αĀj,t−1)Āj,t−1] = 0

α = E[AijtĀj,t−1]
E[(Āj,t−1)2] = E[(µj+θjt+εit)·(µj+ 1

t−1
∑t−1

k=1 θjk+ 1
(t−1)N

∑t−1
k=1

∑N

i=1 εik)]

E[(µj+ 1
t−1
∑t−1

k=1 θjk+ 1
(t−1)N

∑t−1
k=1

∑N

i=1 εik)2]

Using independence of examiner shocks across time and patent shocks across all patents

within the same art unit - year,

α = E[µ2
j ]

E[µ2
j ]+

1
t−1E[θ2

jk
]+ 1

(t−1)NE[ε2
ik

] = σ2
µ

σ2
µ+ 1

t−1

(
σ2
θ
+σ2

ε
N

)
In the sample, we can estimate α by estimating the variances σ2

µ, σ2
θ and σ2

ε using the analogy

principle, as described in the main text. This gives us α̂. So our estimator for µj is:

µ̂j = σ̂2
µ

σ̂2
µ+ 1

t−1

(
σ̂2
θ
+ σ̂2

ε
N

)Āj,t−1

Bayesian Approach

We now derive an estimator of examiner effect in period t that is the posterior expectation

of an examiner’s effect given the history of patent outcomes up to period t− 1.

Since there is no drift, we can use the average patent outcome in all years prior to t, Āj,t−1

(defined above), as a sufficient statistic to form the posterior distribution of examiner effects.

Using Bayes’s rule, it is given by:

π(µj|Āj,t−1) =
f(Āj,t−1|µj)φ(

µj
σµ

)
h(Āj,t−1)

where f(Āj,t−1|µj) is the conditional probability density function (pdf) of Āj,t−1 given µj,

φ(.) is the pdf of the standard normal distribution (which we use given our prior forµj) and

h(Āj,t−1) is the unconditional pdf of Āj,t−1. Since Āj,t−1 = µj+ 1
t−1

∑t−1
k=1 θjk+ 1

(t−1)N
∑t−1
k=1

∑N
i=1 εik

and the shock are independent and normally distributed, we can write:
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f(Āj,t−1|µj) = φ

 Āj,t−1−µj√
1
t−1

(
σ2
θ
+σ2

ε
N

)


So we pick the vector of teacher effects in order to maximizes the posterior probability ofµ

given the data:

max{µj}Jj=1
ΠJ
j=1π(µj|Āj,t−1) ∝ Πj

φ
 Āj,t−1−µj√

1
t−1

(
σ2
θ
+σ2

ε
N

)
φ( µj

σµ
)


∝ Πjexp(− (Āj,t−1−µj)2

1
t−1

(
σ2
θ
+σ2

ε
N

) − µ2
j

σ2
µ
)

For each j, the first-order conditions with respect to µj give:

Āj,t−1−µj
1
t−1

(
σ2
θ
+σ2

ε
N

) − µj
σ2
µ

= 0

Āj,t−1
1
t−1

(
σ2
θ
+σ2

ε
N

) = (
1
t−1

(
σ2
θ+σ2

ε
N

)
+σ2

µ

σ2
µ

1
t−1

(
σ2
θ
+σ2

ε
N

) )µj

µj = σ2
µ

1
t−1

(
σ2
θ
+σ2

ε
N

)Āj,t−1

We can estimate the variances σ2
µ, σ2

θ and σ2
ε using the analogy principle, as described in the

main text, which yields an estimator that is identical to the frequentist estimator derived

earlier:

µ̂j = σ̂2
µ

σ̂2
µ+ 1

t−1

(
σ̂2
θ
+ σ̂2

ε
N

)Āj,t−1

Intuitively, the Bayesian estimator is a precision-weighted average of the mean patent out-

come for the patents granted by examiner j and the prior mean for µj, which is equal to

0. In other words, the mean test score observed in the data is shrunk towards 0 (empirical

Bayes). As σ2
θ → 0 and N →∞, µ̂j → Āj,t−1.
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C.4. Additional Results on the Causal Effect of Patent

Examiners

Causal Effect of Patent Examiners on Other Outcomes

Figure C.5.: Distributions of examiner effects and tendencies by various outcomes observed
in our dataset.
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Notes: Distribution of examiner effects for other variables, computed in an analogous manner
to Figure 3.2.
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Comparison Between Kane-Staiger and Beta-Binomial

Approaches

Figure C.6.: Comparison of Examiner Ranks
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Notes: Comparison of examiner ranks, based on deviations computed through the Kane-Staiger
methodology and through the Beta-Binomial methodology.

Blocking Action Robustness Check

In this section, we present additional robustness checks to the results shown in Section 3.5.2,

by computing examiner blocking action causal effects using data from all applications they

examine. This contrasts with our baseline specification, which only looks at blocking actions

used on eventually granted patents. As shown in Table C.7, the results are generally very
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similar to the ones reported in Table 3.9.

Table C.7.: Pairwise Examiner Alternate Blocking Action Effects Results

NPE Purchase Non-NPE Purchase NPE Litigated non-NPE Litigated

101 -0.051* 0.003 -0.126* -0.052**

(0.022) (0.004) (0.064) (0.018)

102(a) 0.013 0.003 -0.002 -0.011

(0.023) (0.005) (0.051) (0.018)

103(a) -0.098*** -0.016** -0.255*** -0.065**

(0.024) (0.005) (0.064) (0.020)

112(a) -0.015 0.002 -0.128** -0.054*

(0.018) (0.004) (0.046) (0.025)

112(b) -0.047* -0.003 -0.130* -0.043*

(0.021) (0.005) (0.057) (0.019)

N 1,269,623 1,269,623 1,269,623 1,269,623

Notes: Similar to Tables 3.9 and 3.10, but computing examiner blocking action causal effects
using their blocking actions on all applications. + p-value <0.10, * p-value < 0.05, ** p-
value < 0.01, *** p-value < 0.001

Signal Correlations

In this section, we present pairwise results using the signal correlation framework used in

Chetty and Hendren (2015). The idea here is to split the sample of applications into two, and

then compute the correlation of examiner effects across the samples. The signal correlation

between examiner effects for variables X and Y is computed as follows:

ρXY = cov(EX1,EY 2)√
cov(EX1,EX2)·cov(EY 1,EY 2)

The idea here is to look for correlation of examiner effects on different variables across sam-

ples, normalized by the consistency of the same-variable examiner effects across the samples.

The method is similar to our previous pairwise predictive regressions, but incorporates re-

weighting of data points.
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We report the results in Table C.8, performing a bootstrap routine at the examiner level to

construct confidence intervals.

Table C.8.: Pairwise Examiner Alternate Blocking Action Effects Results

NPE Purchase Non-NPE Purchase non-NPE Litigated

Word Count -0.095* 0.011 -0.067*
[-0.173,-0.041] [-0.021,0.045] [-0.151,-0.016]

101 -0.055* 0.043* -0.054*
[-0.121,-0.004] [0.009, 0.076] [-0.124,-0.011]

102(a) 0.028 0.027 -0.011
[-0.017,0.082] [-0.011,0.065] [-0.063,0.040]

103(a) -0.049* 0.037* -0.028
[-0.104,-0.008] [0.008,0.067] [-0.086,0.014]

112(a) -0.002 0.047* -0.054
[-0.038, 0.032] [0.013,0.083] [-0.086,0.014]

112(b) -0.027 0.026 -0.024
[-0.073,0.011] [-0.004, 0.060] [-0.080,0.019]

N 1,269,623 1,269,623 1,269,623

Notes: 95 percent confidence intervals are shown in the brackets. * p-value < 0.05

Additional Legal Outcomes

In this section, we present results by predicting additional legal outcomes using examiner

causal effects. The data is constructed from raw data provided by LexMachina.
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Table C.9.: Pairwise Examiner Effect Results for Other Legal Outcomes

Panel A: District Court Litigation Outcomes
Completed Litigation Trial | Completed Lit. Infringe | Trial Invalid | Trial

NPE Purchase 0.050+ 0.015 -0.122** 0.103

(0.026) (0.036) (0.045) (0.088)

Words Per Claim Change -0.195*** -0.010 0.057 0.044

(0.018) (0.040) (0.054) (0.076)

101 -0.068*** -0.009 -0.070 0.040

(0.017) (0.037) (0.046) (0.074)

102(a) -0.001 0.033 -0.035 -0.134+

(0.019) (0.045) (0.058) (0.081)

103(a) -0.151*** -0.020 -0.010 0.036

(0.021) (0.040) (0.057) (0.080)

112(a) -0.080*** 0.088* 0.026 -0.009

(0.017) (0.04) (0.049) (0.071)

112(b) -0.083*** -0.011 -0.059 -0.043

(0.020) (0.040) (0.054) (0.078)

N 1,867,760 5,319 595 595

Panel B: Inter-Partes Review Outcomes
IPR Filed Final Decision | Instituted All Claims Invalid | Final Decision

NPE Purchase 0.116* 0.113* 0.015

(0.055) (0.054) (0.042)

Words Per Claim Change -0.246*** -0.014 -0.019

(0.037) (0.056) (0.043)

101 -0.112** -0.071 -0.036

(0.040) (0.054) (0.034)

102(a) 0.015 0.032 -0.070

(0.041) (0.066) (0.053)

103(a) -0.167*** -0.022 -0.011

(0.043) (0.065) (0.042)

112(a) -0.103** -0.058 0.012

(0.034) (0.052) (0.031)

112(b) -0.094* -0.061 -0.019

(0.039) (0.057) (0.041)

N 1,867,760 467 176

Notes: Similar to Table 3.9, but expanding the outcome dataset to incorporate all data from
the PERD dataset, by assigning shrunk examiner effects to applications outside of the Frakes
and Wasserman sample, while still using leave-one-out shrunk effects for applications within
the Frakes and Wasserman sample. + p-value <0.10, * p-value < 0.05, ** p-value < 0.01,
*** p-value < 0.001
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Application-Level Analysis

We present analogous results to the ones in Sections 3.4 and 3.5, but counting outcomes for

rejected applications as zero. The results here capture both the intensive and extensive mar-

gin effects of an examiner. As we see in Table C.10, the extensive margin effects push many

of the pairwise coefficients upwards in magnitude relative relative to the results reported in

Table 3.9.

Table C.10.: Pairwise Examiner Blocking Action Effects Results (Application Level)

NPE Purchase Non-NPE Purchase NPE Litigated non-NPE Litigated
101 -0.071** -0.018*** -0.143* -0.071***

(0.022) (0.005) (0.062) (0.017)
102(a) 0.005 -0.005 -0.009 -0.018

(0.024) (0.006) (0.052) (0.017)
103(a) -0.194*** -0.110* -0.358*** -0.160***

(0.026) (0.006) (0.068) (0.020)
112(a) -0.064*** -0.047*** -0.176*** -0.103***

(0.019) (0.006) (0.046) (0.025)
112(b) -0.095*** -0.052*** -0.179** -0.092***

(0.023) (0.006) (0.057) (0.019)
N 1,269,623 1,269,623 1,269,623 1,269,623

Notes: Similar to Tables 3.9 and 3.10, but computing examiner blocking action causal effects
using their blocking actions on all applications. + p-value <0.10, * p-value < 0.05, ** p-
value < 0.01, *** p-value < 0.001

Instrumental Variable Analysis

As discussed earlier, the most commonly-used methodology in the examiner literature has

been an instrumental variables approach, using the leave-one-out examiner grant rate as an

instrument for allowance. This framework does not address the question we are interested

in here, which is the effect of an examiner of the nature of the patent granted. Instrumental

variables analysis is akin to performing the analysis in Section 3.4, without the extra analysis
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that we do in Section 3.5. In this section, we discuss the strong connection between the

approaches, and also calculate the results using an instrumental variables approach.

Framework

The basic approach here is a standard instrumental variables analysis at the application

level, instrumenting for approval using the leave-out-mean of examiner leniency. Formally,

the first and second stage regressions are:

Tijat = β0 + β1Patentedijat + Controls+ εijat

Patentedijat = γ0 + γ1Zijat + Controls+ ηijat

where i denotes application, j denotes examiner, a denotes art unit, t denotes year of appli-

cation. The reduced form regression looks like:

Tijat = α0 + α1Zijat + Controls+ ζijat (C.1)

The examiner leave-out-mean computed at the year-art unit level, akin to accounting for

cohort effects, which in the teacher effects framework is captured by the θjt error term.

Zijat =
ngrantjat − Patentedijat

nappljat − 1

where ngrantjat represents the number of granted patents for examiner j in art unit a in year

t, and nappljat represents the corresponding number for applications. More generally, we can

instrument for examiner tendencies in a similar manner, replacing the Patented variable

with an indicator for the usage of a given provision such as 103(a) and 112(b), and then

instrumenting for the actual usage with a leave-one-out measure of average examiner usage

of the given provision.
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Comparison of Instrumental Variables to Kane-Staiger Framework

The instrumental variables (IV) framework has many similarities to the Kane-Staiger frame-

work we applied in Sections 3.4 and 3.5.

The analysis in Section 3.5 is very similar in spirit to the reduced form IV specification

(Equation C.1), as we leave out the current data point in computing examiner effects (a

measure of examiner leniency in the IV setup), and then use it to predict an outcome T ,

such as NPE purchase. In the context of the IV-2SLS approach, the resulting coefficient α1

is then scaled to by 1
γ1

in order to normalize the effect size, although in the case of the patent

examiner instrument, γ1 is often pretty close to 1. In addition, the motivation for computing

Z at the year level rather than just at the examiner level is driven by the possibility of

examiner by cohort effects. This is accounted for in our methodology through the θjt term.

There are a couple of major differences between the frameworks. First, the IV analysis

is performed at the application level rather than the granted patent level. Therefore the

reduced form coefficient α1 will capture both the extensive margin (stricter examiners reject

more applications, which then cannot be bought buy an NPE) and the intensive margin

(stricter examiners also appear to force more edits to patent applications). Second, our

mechanism analysis in Section 3.5 uses examiner effect measures computed across all years,

rather than within a single year, reducing some of the noise in the measurement.

Results using IV Methodology

Our preferred specification is to include patent applications that were examined by examiners

with 10 or more cases in a given year and art unit, which covers over 91% of the applications

in our sample. We also run robustness checks with 5, 15 and 25 as the cutoff. Panel A

of Table C.11 contains the first stage estimates. Consistent with the results reported in

Sampat and Williams (2015), there is a very strong first stage relationship between the
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examiner leave-one-out grant rate and the decision on a given patent application. Some of

the relationship is driven by year and art unit effects, but even after controlling for these,

there is a precisely estimated coefficient of around 0.75.

Next, in Panel B of Table C.11, we report the coefficients from the two-stage least squares

instrumental variables estimation. Here, we report the coefficients in a similar manner to

the teacher effects results, by normalizing the coefficients to represent the effects of a one

standard deviation change in examiner grant rate on NPE outcomes, normalized to the

baseline NPE rate. Note that ex-ante, the reduced form relationship between NPE purchase

and approval will be at least weakly monotonically increasing, because the NPE purchase

vector is component-wise weakly less than the “Decision” variable. Due to the re-scaling, the

OLS coefficient essentially captures the standard deviation in examiner grant rate, because

the raw coefficient absent the scaling would just be the baseline rate of NPE purchasing,

as rejected applications have a zero NPE purchase rate. The 2SLS coefficients capture the

reduced form relationship between NPE purchase rates and examiner leave-one-out grant

rate, scaled by the first stage coefficient. The fact that the 2SLS coefficient is higher than

the OLS coefficient can be interpreted as evidence that the pool of NPE purchased patents

are more “marginal,” in the sense that they are more sensitive to examiner tendencies. A

final point to note is that the coefficients are of similar magnitude to the ones found in the

examiner effect distribution analysis. A one standard deviation change in examiner grant

rate leads to an NPE effect of around 30% of the baseline effect.
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Table C.11.: Instrumental Variables Results

Panel A: First Stage Results
Decision (1) (2) (3)

Examiner Grant Rate 0.885*** 0.752*** 0.726***
(0.00158) (0.00185) (0.00190)

Art Unit by Year FE x x
Class FE x

N 2,478,697 2,478,697 2,478,697
R2 0.180 0.186 0.189

Panel B: Examiner Impact on NPE Purchase
NPE Purchase (1) OLS (2) OLS (3) 2SLS (4) 2SLS

Decision 0.284*** 0.267*** 0.387*** 0.348***
(0.00575) (0.00549) (0.0163) (0.0184)

Art Unit by Year FE x x
N 2,478,697 2,478,697 2,478,697 2,478,697
R2 0.003 0.018 0.003 0.002

Notes: Decision refers to the final disposal outcome of a given patent application. Examiner
Grant Rate refers to the leave-one-out grant rate of an examiner in a given art uni and
year. Analysis is restricted to examiners with more than 10 cases processed in a given year.
Analysis is run on the entire Patent Examination Research Dataset. All standard errors are
clustered at the examiner level. *p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

We also run similar analyses with the Frakes and Wasserman blocking action variables. The

results are reported in Table C.12. The results are consistent with our earlier reported results.

The usage of a given provision is strongly associated with usage of the provision on other

applications (First Stage column). In addition, we see major discrepancies between the OLS

and 2SLS results. This should not be entirely surprising, given our earlier summary statistics

results (Table 3.5) and mechanism results. NPE purchased patents are almost equally like

to receive 103(a) rejections and are more likely to receive 112(b) rejections (OLS results).

However. the causal examiner contribution to this has the opposite sign, consistent with

the result that examiners that tend to use more 112(b) blocking actions have fewer NPE

purchased patents. As discussed earlier, the 2SLS coefficient also incorporates the direct
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effect of blocking actions on abandonments, so some applications mechanically cannot end

up as NPE purchases.

This methodology could be useful for inferring the causal effects of specific blocking ac-

tion types on outcomes, especially in cases where we can associated outcomes to ungranted

patents, as in Sampat and Williams (2015) in relation to gene-based patent applications and

subsequent research. However, the limitation is that if there is some correlation between us-

age of these provisions for a given examiner, and the instrumental variables results may pick

up mechanisms associated with other provisions (it violates of the exclusion restriction). One

could then think about using a more general instrumental variables framework with multiple

predictors and multiple instruments, which would solve some of these problems as long as

one assumes additive effects.

Table C.12.: Blocking Action Instrumental Variables Results

NPE Purchase First Stage OLS 2SLS
101 0.482*** -0.000547 -0.188***

(0.00282) (0.00498) (0.0486)
102(a) 0.434*** 0.00171 0.00137

(0.00337) (0.00222) (0.0322)
103(a) 0.710*** -0.00919* -0.217***

(0.00248) (0.00456) (0.0297)
112(b) 0.690*** 0.0103** -0.130***

(0.00252) (0.00377) (0.0247)
Art Unit by Year FE x x x

N 1,752,641 1,752,641 1,752,641
Notes: Decision refers to the final disposal outcome of a given patent application. Examiner
Grant Rate refers to the leave-one-out grant rate of an examiner in a given art uni and
year. Analysis is restricted to examiners with more than 10 cases processed in a given
year. Analysis is run on the Frakes and Wasserman coverage range. All standard errors are
clustered at the examiner level. *p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.
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C.5. Additional Results on Mechanisms

Table C.13.: Results across technology centers for key predictors of NPE purchase and
non-NPE litigation.

NPE Purchase Non-NPE Litigation

Specification 103(a) 112(b) 103(a) 112(b)

1600 - Biotechnology and Organic Chemistry -0.173 0.078 -0.036 0.002

(0.120) (0.077) (0.068) (0.067)

1700 - Chemical and Materials Engineering 0.072 0.187 0.025 0.052

(0.130) (0.173) (0.037) (0.035)

2100 - Computer Architecture, Software, and Information Security -0.064** -0.036 -0.124** -0.121**

(0.023) (0.026) (0.005) (0.038)

2400 - Computer Networks, Multiplex communication, Video Distribution, and Security -0.016 0.024 -0.119+ 0.003

(0.029) (0.030) (0.062) (0.050)

2600 - Communications -0.098*** -0.061** -0.010 -0.070*

(0.025) (0.023) (0.030) (0.031)

2800 - Semiconductors, Electrical and Optical Systems and Components -0.062** -0.036+ -0.071** -0.013

(0.022) (0.021) (0.024) (0.024)

3600 - Transportation,Construction, Electronic Commerce, Agriculture, National Security... -0.049 -0.062 -0.070* -0.069*

(0.039) (0.039) (0.029) (0.027)

3700 - Mechanical Engineering, Manufacturing, Products 0.034 -0.046 -0.001 -0.002

(0.040) (0.043) (0.029) (0.028)

Notes: Same specifications as Tables 3.9 and 3.10, but restricting the sample to each technology
center. Baseline NPE purchase and non-NPE litigation rates are re-computed for each technology
center. + p-value <0.10, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001
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Figure C.7.: NPEs Tend to Purchase Patents from Examiners Who Are Reversed at PTAB
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C.6. Data Appendix

Name Matching

In this part, we discuss our procedure for creating NPE portfolios. The algorithm proceeds

as follows:

1. We start off with a list of NPE names, either from RPX or from Cotropia et al.

2. We normalize entity names from both the NPE list and the USPTO Assignment

Database. This is done by capitalizing all names, removing punctuation, and remov-

ing standard entity terms: INC, CO, COMPANY, COMPANIES, CORP, CORPO-

RATIONS, DIV, GMBH, LLC, LC, INCORPORATED, KG, LIMITED, LIMITED

PARTNERSHIP, LP, LTD, NV, PLC, SA, SARL, SNC, SPA, SRL, TRUST USA,

CENTER, BV, AG, AB, GROUP, FOUNDATION, INSTITUTE, and TECHNOLO-

GIES.

3. We then collect Reel/Frame IDs of patent transactions in the USPTO Assignment

Database that have a normalized entity name matching the normalized name of an

NPE

324



4. Each Reel/Frame ID is classified in the USPTO data based on the type of transaction

and whether the assignment was to an employer (essentially the first assignment).

We keep transactions that are non-employer assignments. This then gives us a set of

patents involved in patent purchasing, and excludes other types of transactions such

as securitization, mergers, and name changes.

5. Finally, we collect the list of patents associated with each of these transactions to

create our portfolios.
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D. Appendix to Chapter 4

D.1. Appendix Figures and Tables

Table D.1.: Additional Summary Statistics

Mean Median
Standard 

Deviation

Patent Grants 3.30 1 9.07

Lifetime Citations 28.54 2 154.57

Age at Patent 44.72 43 28.36

Wage Income ($) 112,117 81,000 252,276

Total Income ($) 178,710 109,000 475,458

Female 11.6% 0

Number of Inventors: 1,200,620

Table A1 Panel A: 

Summary Statistics for Inventors Matched to Parents - all

Mean Median
Standard 

Deviation

Patent Grants 1.37 1 3.21

Patent Applications 2.04 1 3.94

Lifetime Citations 1.16 0 15.04

Age at Patent 27.45 27 2.43

Wage Income ($) 27,296 8,000 48,000

Total Income ($) 37,270 10,000 131,298

Table A1 Panel B: 

Summary Statistics - 1980-84 Birth Cohorts

Number of Inventors: 45,083
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Table D.2.: Regression Estimates for Relationship between Math and Verbal Test Scores

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent 

Variable: Number of inventors (per 1,000) Number in top 1% of Adult income

3rd Grade Math

Score

0.85***

(0.06)

0.84***

(0.10)

0.91***

(0.10)

8.5***

(0.26)

6.6***

(0.35)

3rd grade English

Score

0.68***

(0.06)

0.05

(0.10)

0.08

(0.09)

7.7***

(0.26)

2.8***

(0.32)

Math Vingtile FE X

English Vingtile FE X

Observations 223,100 214,900 210,328 210,328 210,328
247,537 238,077 232,874

Table A2 : Patent Rates vs. Math and Verbal Test Scores: Regression Estimates

Notes: *** significant at 1% level, **5% level, *10% level. OLS estimates with standard errors in parentheses below coefficients. NYC data. 

Test scores measures are standardized to have mean 0 and standard deviation 1. “Math (English) vingtile FE” are 20 dummy variables/fixed 

Effects  for each Math (English) test score vingtile. Dependent variable in columns (1) to (5) is whether child becomes inventor by age 32. 

Dependent variable in Columns (6)-(8) is whether child ends up in the top 1% of the income distribution for her cohort by age 32.
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Table D.3.: Percent of Innovation Gap Accounted for by Test Scores - Alternative Estima-
tors

(1) (2) (3) (4) (5) (6)

Baseline DFL
Balanced Panel 

DFL

Median Split 

DFL
Baseline FE

Balanced Panel    

FE

Median Split 

FE

Grade 3 30.9% 35.5% 27.8% 39.4% 41.5% 43.0%

Grade 4 36.4% 42.9% 32.7% 42.0% 44.7% 48.3%

Grade 5 39.2% 45.8% 42.5% 47.4% 48.2% 57.7%

Grade 6 44.8% 46.3% 42.4% 48.8% 47.8% 52.8%

Grade 7 50.5% 55.1% 49.9% 55.1% 52.2% 59.0%

Grade 8 52.0% 50.1% 49.3% 56.5% 51.5% 61.0%

Table A3: Percent of Gap Accounted for by Test Scores - Alternative Estimators

Notes: These are experiments to assess the fraction of the relationship between parental income and whether a child grows up to be an inventor.

The data is the same as underlying Table 1 and column (1) reproduces the results in column (2) of that Table. Column (2) uses the sub-sample 

Of individuals for whom we observe all years of test score data grades 3-8. Column (3) uses a split at the median of parent income instead of

At the 80th percentile. Columns (4)-(6) reproduce the specifications of the first three columns except that instead of using a DiNardo et al (1996)

Approach we simply add in 20 vingtile fixed effects and a dummy for being above the 80th percentile of the income distribution (or median in

Final column).
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Table D.4.: Illustration of Technology Class and Distance

Table A4: Illustration of Technology Classes and Distance

Category: Computers + Communications

Sub-category: Communications

Technology Class (= 375) Distance Rank

Pulse or digital communications 0

Demodulators 1

Modulators 2

Coded data generation or conversion 3

Electrical computers: arithmetic 

processing and calculating
4

Oscillators 5

Multiplex communications 6

Telecommunications 7

Amplifiers 8

Motion video signal processing for 

recording or reproducing
9

Directive radio wave systems and 

devices (e.g., radar, radio navigation)
10
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Table D.5.: Patent Rates by Commuting Zone Where Child Grew Up

Top 10 CZs Bottom 10 CZs

Rank CZ
Inventors per 

Thousand
Rank CZ

Inventors per 

Thousand

1 San Jose, CA 5.41 91 Birmingham, AL 1.03

2 Madison, WI 4.87 92 Virginia Beach, VA 1.01

3 Minneapolis, MN 4.29 93 El Paso, TX 0.92

4 San Francisco, CA 3.83 94 Fresno, CA 0.88

5 Detroit, MI 3.78 95 Little Rock, AR 0.83

6 Boston, MA 3.75 96 Modesto, CA 0.82

7 Allentown, PA 3.65 97 Fayetteville, NC 0.82

8 Milwaukee, WI 3.54 98 Lakeland, FL 0.79

9 Manchester, NH 3.50 99 Mobile, AL 0.69

10 Albany, NY 3.27 100 Brownsville, TX 0.60

Table A5 Patent Rates by Commuting Zone (CZ) Where Child Grew Up

Top 10 and Bottom 10 CZs Among 100 Largest CZs
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Table D.6.: Percent of Female Inventors Across CZs

Top 10 CZs Bottom 10 CZs

Rank CZ
Percent

Female
Rank CZ

Percent 

Female

1 Toms River, NJ 28.4 91 Eau Claire, WI 12.7

2 Jacksonville, FL 26.3 92 Salt Lake City, UT 12.4

3 Dayton, OH 23.9 93 Rochester, MN 12.0

4 Charlotte, NC 23.8 94 Erie, PA 11.9

5 Louisville, KY 23.7 95 Peoria, IL 10.9

6 Atlanta, GA 23.7 96 Fort Wayne, IN 10.8

7 Portland, ME 23.2 97 Fort Collins, CO 10.1

8 Miami, FL 23.2 98 Fresno, CA 9.7

9 Raleigh, NC 22.8 99 Oklahoma City, OK 9.5

10 Poughkeepsie, NY 22.7 100 Santa Rosa, CA 8.9

Table A6 Percent of Inventors who are Female: Top 10 and Bottom 10 CZs

Among the 100 CZs with the Largest Number of Inventors
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Figure D.1.: Patent Rates between Ages 30-40 vs. Parent Income Percentile
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Figure D.2.: Patent Rates vs. Parent Income Percentile
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A2 Patent Rates vs. Parent Income Percentile

Inventors Applicants Grantees
Parent Household Income Percentile

Patent rates for top 1% parent income:

Inventor: 8.3 per 1,000

Applicant: 7.4 per 1,000

Grantee: 5.4 per 1,000

Patent rates for below median parent income:

Inventor: 0.85 per 1,000

Applicant: 0.72 per 1,000

Grantee: 0.52 per 1,000
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Figure D.3.: Percentage of Children in Top 1% of Cohort’s Income Distribution vs. Parent
Income Percentile
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Figure A3 Percentage of Children in Top 1% of Cohort’s Income Distribution

vs. Parent Income Percentile

9.7% of children born in 

the top 1% stay there

0.3% of children with 

below median parent 

income reach the top 1%
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Figure D.4.: Patent Rates vs. Parent Income in NYC Public Schools
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Figure A4: Patent Rates vs. Parent Income in NYC Public Schools
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Figure D.5.: Concentration of Innovation Among Graduates of Selected Colleges

Figure A5: Concentration of Innovation Among Graduates of Selected Colleges
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Figure D.6.: Innovation at Age 30 Rates by College

Figure A6: Innovation Rates by College that Child Attends
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Figure D.7.: Innovativeness of College vs. Parent Income Percentile
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Figure A7: Innovativeness of College vs. Parent Income Percentile

338



Figure D.8.: Patent Rate vs. Parent Income Percentile and Inventor Status

Figure A8: Patent Rate vs. Parent Income Percentile and Inventor Status
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D.2. Data Appendix

A.1 Data Preparation

• Suffix Standardization. Suffixes may appear at the end of taxpayers’ first, middle,

or last name fields. Any time any of these fields ends with a space followed by “JR”,

“SR”, or a numeral I-IV, the suffix is stripped out and stored separately from the

name1.

• First name to imputed first/middle name. The USPTO separates inventor names

into “first” and “last,” but the IRS often separates names into first, middle, and last.

In practice, many inventors do include a middle initial or name in the first name field.

Whenever there is a single space in the inventor’s first name field, for the purposes of

matching, we allow the first string to be an imputed first name, and the second string

to be an imputed middle name or initial. The use of these imputed names is outlined

below.

A.2 Pseudocode for Match on Name and Location

The exact matching stages are as follows. We conduct seven progressive rounds of matching.

Inventors enter a match round only if they have not already been matched to a taxpayer

in an earlier round. Each round consists of a name criterion and a location criterion. The

share of data matched in each round is noted, with an impressive 49% being exact matches

on the first stage.

• The matching algorithm takes as input a relation of inventor data and five relations of

IRS data:

– Input relations:

1Numerals I and V are only permissive suffixes at the end of a last name field, as these may be middle initials
in a middle name field.
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∗ Inventors(inv_id, first, last, imputed_first, imputed_middle, suffix) - di-

rectly from USPTO

∗ NamesW2(irs_id, first, middle, last, suffix) - all names used by individual on

W2 information returns; name field is recorded as first, middle, and last

∗ Names1040(irs_id, first, middle, last) - all self-reported names from 1040

forms2

∗ Nameln1W2(irs_id, fullname) - all names from W2, but a separate variable

not recorded as first, middle, last that was more frequently present

∗ CitiesW2(irs_id, city, state) - all cities reported on W2

∗ Zips1040(irs_id, name) - all zip codes reported on 1040

– Output relation:

∗ Unique-Matches (inv_id, irs_id)

• Stage 1: Exact match on name and location.

– Name match: The inventor’s last name exactly matches the taxpayer’s last name.

Either the inventor’s first name field exactly matches the concatenation of the

IRS first and middle name fields or the IRS middle name field is missing, but the

first name fields match. If an imputed middle name is available for the inventor,

candidate matches are removed if they have ever filed at the IRS with a middle

name or initial that conflicts with the inventor’s.

– Location match: The inventor’s city and state must match some city and state

reported by that taxpayer exactly.

– 49% of patents are uniquely matched in this stage.
2We only take names off of 1040s for those who file singly because it proved difficult to parse names of those
list them jointly
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• Stage 2: Exact match on imputed name data and location.

– Name match: The inventor’s last name exactly matches the taxpayer’s last name

and the taxpayer’s last name is the same as the inventor’s imputed first name.

Either the inventor’s imputed middle name/initial matches one of the taxpayer’s

middle/initial name fields, or one of the two is missing. For inventors with non-

missing imputed middle names, priority is given to matches to correct taxpayer

middle names rather than to taxpayers with missing middle names. As above,

candidate matches are removed if they have ever filed at the IRS with a conflicting

middle name or initial.

– Location match: As above, the inventor’s city and state must match some city

and state reported by that taxpayer exactly.

– 12% of patents are uniquely matched in this stage.

• Stage 3: Exact match on actual or imputed name data and 1040 zip crosswalked.

– Name match: The inventor’s last name exactly matches the taxpayer’s last name.

The inventor’s first name matches the taxpayer’s first name in one of the following

situations, in order of priority:

1. Inventor’s firstname is the same as the taxpayer’s combined first and middle name.

2. Inventor’s imputed firstname matches taxpayer’s and middle names match on

initials.

3. The inventor has no middlename data, but inventor’s firstname is the same as the

taxpayer’s middle name.

– As always, taxpayers are removed if they are ever observed filing with middle

names in conflict with the inventor’s.Location match: The inventor’s city and
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state match one of the city/state fields associated with one of the taxpayer’s 1040

zip codes.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.

– 3% of patents are uniquely matched in this stage.

• Stage 4: Same as previous stage, but using 1040 names instead of names from W2’s.

– Name match: The inventor’s name matches the name of a 1040 (or matches

without inventor’s middle initial/name, and no taxpayer middle initials/names

conflict with inventor’s).

– Location match: The inventor’s city and state must match some city and state

reported by that taxpayer exactly.

– 6% of patents are uniquely matched in this stage.

• Stage 5: Match using W2 full name field.

– Name match: The inventor’s FULL name exactly matches the FULL name of a

taxpayer on a W2.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.

– 8% of patents are uniquely matched in this stage.

• Stage 6: Relaxed match using W2 full name field.

– Name match: The inventor’s full name (minus the imputed middle name) exactly

matches the full name of a taxpayer on a W2.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s 1040 zip codes.
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– 1% of patents are uniquely matched in this stage.

• Stage 7: Match to all information returns.

– Name match: The inventor’s full name exactly matches the full name of a taxpayer

on any type of information return form.

– Location match: The inventor’s city and state match one of the city/state fields

associated with one of the taxpayer’s information return forms.

– 6% of patents are uniquely matched in this stage.

A.3 Final matched sample

As noted in the text we matched 88% of inventors in the 200s and 80% in the 1990s. The

match seemed balanced by characteristics of the patents such as citation rates, number of

claims, technology class, zip code, etc. The match rate is slightly lower among self-assigned

patents.

D.3. Lifecycle Model of Innovation

B.1 Basic Set up
B.1.1 Model

We sketch a simple inventor lifecycle model. Consider a two period model. In period 1,

individual i begins with an endowment of human capital we call “ability” (ai). Their human

capital then evolves over the course of their schooling increasing by si which is determined by

family, school and neighborhood quality. Initial ability is complementary with future learning

and parental income is positively associated with both initial ability and subsequent inputs.

We initially assume these are exogenous, but later allow si to be endogenous. After acquiring

human capital, Hi = H(ai, si), individuals enter the labor market in period 2 and choose
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an occupation. For now we consider just two possible occupations: the R&D sector and the

Non-R&D sector.

Wages in the non-R&D sector are w̃ + ρHi .3 The expected utility (V N) for working in

the non-R&D sector will depend on idiosyncratic tastes for working in this sector which we

denote in utility terms as vNi . There is also a tax schedule T(.) which we will allow to be non-

linear with a higher marginal rate above an upper threshold. So V N
i = u[T (w̃ + ρHi)] + vNi

where u[.] is a utility function over consumption.

In the R&D sector workers also receive a deterministic base wage ρHi but also have a

chance of receiving an additional stochastic reward from innovation. We assume that those

with more human capital have a higher chance of successfully innovating, so the additional

(potential) innovation reward is π(Hi), with π′(Hi) > 0. For simplicity we parameterize

this as π(Hi) = πHi, We allow a taste term for the R&D sector vRi which implies that the

expected value of choosing to work in the R&D sector is:

V R
i = Eπ(u[T (ρHi + πHi)]) + vRi

where Eπ(.) is the expectations operator taken over the stochastic innovation variable π.

We now introduce the idea that some individuals who are less exposed to inventors under-

estimate the real returns to invention. The perceived value of a career in the R&D sector

is:

V PR
i = λiV

R
i + (1− λi)Eπ(u[T (ρHi + η)]) + vRi

where 0 ≤ λ ≤ 1 and η < πHi. With probability λ an individual has the correct (full

information) on the true value of being in the R&D sector,V R
i . But with probability 1 − λ

the individual believes that the chances of innovation are lower than they actually are.4

3This w̃ could in principle be negative but the evidence in Stern (2004) suggests that it is positive when looking
at multiple job offers for post-doctoral biologists. Scientists “pay” about 15-20% of their entry salaries to be
scientists.

4Formally, the agent underestimates the extent of the complementarity between innovation and human capital.
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The idea is that greater exposure to innovation will increase the chance that an individual

believes λ = 1. If this exposure is greater for some groups than others (such as rich vs.

poor), this will be a cause of there being fewer poor (but equally able) inventors.

Define the difference between the perceived value of the R&D sector vs. the non-R&D sector

as:

ϕi = V PR
i −V N

i = λiEπ(u[T (ρHi+πHi)])+(1−λi)Eπ(u[T (ρHi+ηπHi)])−u[T (w̃+ρHi)]+ ṽi

with ṽi = vRi − vNi .

Whether an individual chooses the R&D sector will depend on the sign of ϕi. If we define

I(ϕi) an indicator function equal to one if ϕi > 0 and zero otherwise, then to calculate

the number of inventors we simply have to integrate I(ϕi) across individuals. To calculate

the fraction of a group (low income kids, minorities or women) who become inventors we

integrate over the individuals in the relevant group.

The comparative statics of the model are straightforward.

1. Inventor probability increases with the correct information/exposure to the R&D sector

∂ϕi
∂λi

= Eπ(u[T (ρHi + πHi)])− Eπ(u[T (ρHi + η)]) > 0

2. The probability of being an inventor increases with human capital (since ∂ϕi
∂Hi

> 0 and

λ ≥ 0)

This is because of the complementarity between human capital and the probability of inno-

vation (i.e. π > 0). A corollary is that inventor probability also increase with initial ability

so long as ∂Hi
∂ai

> 0

3. Inventor probability increases with the relative preference for the R&D sector

If the formulation was ηHi with η < π this would be like a “tax” on groups who receive less than their
productivity in an occupation. There would still be rational sorting for less informed agents in this world
(although less of it) because the very talented would still be prepared to go into the R&D sector as their
wage would be sufficiently high to compensate them for the tax.

346



∂ϕi
∂ṽi

> 0

4. On the margin, high human capital agents will be more likely to enter the R&D sector as

their information improves than low human capital agents

∂2ϕi
∂Hi∂λi

> 0

Corollary A. Groups with higher average values of information, initial ability, human capital

and/or a preference for the R&D sector will have a higher fraction of inventors.

Corollary B. A group which is badly informed is less positively selected (in terms of human

capital) into the R&D sector

Notice that are two types of welfare gains in the model from increasing λ. First, if there are

simply too few inventors from the Social Planner’s perspective (e.g. because of knowledge

externalities) then a higher λ will help address this. Second, a higher λ should improve the

composition of inventors as the new inventors will come disproportionately from the high

human capital agents. This is the essence of Corollary B which gives a different result from

the basic rational sorting model.

To take an example, say that there are two groups, rich and poor. The rich have λ = 1

and the poor have λ = 0. Human capital and preferences for working across the sectors are

heterogeneous across individuals but identically distributed in the two groups. Since some

of the poor will have a strong preference for the R&D sector some will become inventors, but

they will be on average of lower human capital compared to inventors from rich families. As

we increase λ for the poor, the individuals who choose to enter the R&D sector will be the

most talented of the poor. At some point the average human capital of inventors will be the

same for the two groups. So an increase in λ not only increases the number of inventors it

also increases the average quality, which will have a stronger effect on successful innovation

than simply adding another inventor of the same average incumbent ability.

B.1.2 Empirical Implications
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We find support for several of the predictions of the model. First, the evidence of the strong

correlation between early math test scores and inventor status is consistent with result 2, as is

the college-innovation relationship. Second, we find that people more exposed to innovation

(even by class of technology) are more likely to become inventors which is consistent with

result 1.

A criticism of this result is that the exposure measure may reflect other mechanisms. For

example, rather than increasing λ, exposure might work through increasing ṽi, the preference

for an R&D career. In terms of welfare, if the main concern is insufficient numbers of people

(of all ability) choosing to be inventors then it does not matter too much whether a policy of

exposure works through information or preferences. However, it is unclear that just shifting

preferences will have any implications for talent misallocation.

B.2 Extensions

There are many extensions that can be made to the basic model which we now consider.

B.2.1. Endogenous acquisition of Human Capital

In stage 1 we can allow agents to invest in their own human capital. Following Hsieh et al.

(2013) we can model this as a “goods tax” (τg) on human capital investment that is higher

for some groups than others.5 This is a reduced form way of capturing things like poorer

schools in poor neighborhoods. Those who have a low value of λ will rationally choose

to invest less in their human capital all else equal. So this will compound the degree of

misallocation. Disadvantaged young people perceive a lower return from their talents, invest

less and so make their miss-perceptions self-fulfilling. There is evidence that experiments to

improve the information of disadvantaged kids can make them more likely to attend college

(e.g. Hoxby & Turner (2015); McNally (2013)). In the context of our model this mean they
5They also allow for direct discrimination in the labor market whereby some disadvantaged groups obtain a
lower wage for their marginal product than others. This is unlikely to be an issue in our context for children
from low income families, but it might be for women and minorities. In any case, this turns out to be
observationally equivalent to (τg).
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have a greater chance of becoming an inventor.

B.2.2. Multiple Occupational Sectors

We have simplified our model into having two sectors, but there is no difficulty in allowing

multiple sectors. One complication arises between general and occupational specific human

capital in such a model, however. In our set-up general human capital gives agents a com-

parative advantage in the innovation sector. In a multi-occupational Roy model it makes

more sense to distinguish between different talents in different sectors. Agents can be born

with an initial draw of such talent and will allocate themselves (possibly with endogenous

skill acquisition) across these sectors.

B.3 Top Rates of Income Tax: A Simple Calibration

In this sub-section we use the model developed above to consider a quantification of the

impact of changing top tax rates on the incentives to become an inventor. We simulate this

using our empirical data. Increasing the top tax rate has a benefit that it brings in more

revenue to spend on public goods, so when considering such a tax policy change we have to

benchmark this in some way to make it revenue neutral. We benchmark against increasing

the standard rate of tax so that we consider how raising a dollar through increasing the top

tax rate compares with raising a dollar through increasing the standard rate. Our calculations

are equivalently to thinking of how cost effective it would be to incentive innovation by

reducing the top rate of tax.

B.3.1 Calibration Framework

Step 1. We start with a nonparametric estimate of the pre-tax empirical earnings distri-

bution in the innovation sector. Our proxy for the “permanent income” of an inventor is

the average “adjusted gross income” (reported on 1040 Forms) of an inventor between age

40 and 45, minus their spouse’s wage income (reported on the spouse’s W2 Forms). This

measure include the inventor’s wage and non-wage income, such as royalties. Our estimate
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of the empirical earnings distribution is thus simply the percentiles of the observed income

distribution. For the rest of the calibration, we work with these 100 cells.

Step 2. Next, we compute expected utility in the innovation sector under various assump-

tions about the utility function and about the tax regime. Specifically, we consider various

CRRA utility functions, u(c) = c1−δ

1−δ where c = consumption and the relative risk aversion

parameter is δ. We examine δ of 0 (i.e linear utility), 0.5, 1 (i.e. log utility), 1.5 and 2 respec-

tively. We also consider various tax regimes. The status-quo tax regime τ̄ approximates the

US tax system, with a tax rate of 28.5% below $439,000 and of 40% above. We then consider

a tax regime which keeps the same top tax rate (40%) but increases the standard tax rate

by one percentage point to to 29.5% - we will refer to this scenario as the “benchmark policy

change” (τB) relative to the status quo. We then consider tax regime τ 1 with the same

standard tax rate (28.5%) but increasing the top tax by one percentage point to 41%. We

will make comparisons between the various tax regimes in terms of “fall in innovation per

dollar of revenue raised”, so that any increase in top taxes is revenue neutral compared to

the alternative policy of simply increasing the standard rate. In other tax policy experiments

we consider tax regimes similar to the status-quo tax regime but introducing an additional

top tax threshold with a tax rate of 60% beyond this threshold.

We use the estimated empirical earnings distribution (the 100 cells from Step 1) and apply

the tax regime to obtain post-tax earnings at each point of the income distribution. We then

apply the utility function (assuming that consumption is equal to earnings, i.e. there are

no savings) to obtain utility in each of the 100 cells, and finally we average over all cells to

obtain expected utility. Likewise, we obtain expected tax revenue under each tax regime.

Step 3. For each tax regime and degree of risk aversion, we compute the “certainty equiv-

alent” (post-tax) wage. The certainty equivalent wage governs the inventor’s decision of

whether to enter the (risky) R&D sector, as opposed to joining the (safe) non-innovation

sector. We assume that there is uncertainty over earnings only in the innovation sector and
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that each inventor has a “safe” outside option, in the form of a fixed (post-tax) wage in the

non-innovation sector. The certainty equivalent is the fixed wage level such that the agent is

indifferent between getting this wage for certain (in the non-innovation sector) and drawing

from the empirical earnings distribution in the innovation sector. The assumption that tax

policy changes do not affect wages in the non-R&D sector is make for analytical simplicity6

and show in sub-section B.3.3 that this can be relaxed and does not drive our quantitative

results (in sub-section B.3.3. we adopt a more parametric approach and specify an earnings

distribution for inventors both inside and outside of the R&D sector).

In Step 3, the certainty equivalent is obtained very simply by starting from the expected util-

ity computed in Step 2 and inverting the utility function to recover the certainty equivalent

(post-tax) wage.

Step 4. Given the results from step 3, we compute the change in certainty wage equivalent
dW
dτ

for each tax regime τ , relative to the status quo tax regime.

Step 5. Finally, we compute the change in the fraction of people becoming inventors in

response to a change in taxation. Formally, this is equivalent to the (marginal) deadweight

cost of taxation per dollar of tax revenue raised by the government (denoted γ(τ)) when

switching from the status quo policy τ̄ to the new tax regime τ . We normalize the total

labor force to 1 and denote by φ the fraction of the labor force choosing to work in the R&D

sector. We also compute the expected tax revenue from inventors under each tax regime.

We want to estimate the following quantity:

γ(τ) =
dφ
dτ

φE[Rτ−Rτ̄ ] = ε
dW
dτ

W τ̄
1

E[Rτ−Rτ̄ ]

where dφ
dτ

is the change in the fraction of the labor force in the R&D sector as a result of the
6In other words, the certainty equivalent responds to tax policy changes only to the extent that they affect
expected utility in the innovation sector. This is in line with our general focus on the effect of taxes on
inventors and it greatly simplifies the calibration because we do not need to estimate the (counterfactual)
earnings distribution the inventors would have obtained had they worked outside of the innovation sector.
One way to motivate this assumption is that the changes in tax policy we consider are in a range that is
well above the certainty equivalent wage for inventors.
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policy change, and Rτand Rτ̄ are the amount of revenue raised under the new and status quo

tax regimes, respectively. The expectation is taken with respect to the empirical earnings

distribution.
dW
dτ

W τ̄ is the percentage change in the certainty equivalent wage (W ) between

the new tax regime and the status quo, and ε is the elasticity of occupational choice with

respect to the change in the certainty equivalent. By definition, ε =
(
dφ
dτ

φ

)
/
(
dW
dτ

W τ̄

)
, i.e. if the

certainty equivalent wage decreases by 1% in the new tax regime, the fraction of the labor

force going into innovation decreases by ε%.

As is standard in public finance, the deadweight cost (innovation impact in our application)

of tax crucially depends on a behavioral elasticity, here denoted ε. To make the point that

γ(τ) is small for increases in top tax rates, we do not need to estimate the value of ε. Instead,

we express everything relative to the benchmark policy change, denoted τB (increasing the

tax rate below $439,000 from 28.5% to 29.5%). Under the assumption of a constant elasticity,

we obtain:

γ(τ)
γ(τB) =

dW
dτ
dW

dτB

E[RτB−Rτ̄ ]
E[Rτ−Rτ̄ ]

We know
dW
dτ
dW

dτB

from Step 3 and E[RτB−Rτ̄ ]
E[Rτ−Rτ̄ ] from Step 2. Hence, we can summarize the impact

of a top tax change on the amount of inventors, by examining how the tax change effects

the utility (certainty equivalent) of going into the innovation sector.

To summarize, the calibration is based on the following steps:

1. Get the 100 percentiles of the distribution of earnings for inventors between age 40 and

45 from 1040 Forms.

2. Calculate expected utility and expected tax revenue in the innovation sector under the

various tax regimes and utility functions.

3. Calculate the certainty equivalent (post-tax) wage under the various tax regimes and

utility functions.
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4. Compute the change in the certainty equivalent (post-tax) wage relative to the status

quo, for each tax regime and utility function.

5. Using the previous estimates, compute the fall in innovation per dollar of tax revenue

raised for each tax policy change, relative to the benchmark policy change. Repeat for

the various utility functions.

Sub-section B.3.2 below reports these results and discusses the role of risk aversion. Section

B.3.3 moves to a more parametric framework to illustrate the role of skewness of the earnings

distribution in generating these results.

B.3.2 Magnitude of the Innovation effect and The Role of Risk Aversion

Figure 17 reports the value of the ratio γ(τ1)
γ(τB) , defined as above, where τ 1 is the tax policy

regime increasing the top tax rate, but keeping the standard rate fixed (i.e. tax rate of

28.5% below $439,000 and a 41% tax rate above this threshold). Under risk neutrality

(linear utility), by definition the two policies have the same deadweight cost because the

behavioral response is the same (the inventor values an additional dollar the same at any

point of the earnings distribution). The figure shows that the relative efficiency cost steeply

declines with the coefficient of relative risk aversion. For standard values of the coefficient

of relative risk aversion above 1, the efficiency cost of the increase in top tax rates is one

order of magnitude smaller than the efficiency cost of the benchmark policy change. For a

coefficient of relative risk aversion of 2, there is essentially no effect on innovation.

Figure A18 illustrates the innovation loss relative to the benchmark for a number of other

policy changes, increasing the top tax rate above $439,000 to 41%, 45%, 50%, 60%, etc. up

to 95%. The innovation loss is of course increasing in the tax rate, but the figure shows that

the magnitude of the efficiency loss always remains very small (below 12% of the loss in the

benchmark policy change) for reasonable values of the coefficient of relative risk aversion,

above 1.
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Figure A19 takes this point one step further by showing the effect of introducing a new top tax

bracket with a 60% top tax rate above a variety of thresholds ($439,000, $800,000, $1.6m,

$4m, $10m, $20m, and $30m). The figure shows that “millionaire taxes” have extremely

small innovation losses, equal to at most a couple of percents of the innovation loss of the

benchmark policy change. The intuition behind this result is that changing the probability

of extremely high payoffs does not affect the certainty equivalent wage by much, due to the

concavity of the utility function.

All of this results are quantitatively equivalent when winsorizing the inventors’ empirical

earnings distribution to $100,000. In other words, the results are not driven by the fact that

the benchmark policy would have a comparatively large effect because it increases the tax

rates on much lower income levels (which are very rare levels of income in the population of

inventors).

B.3.3 The Role of Skewness of income returns to being an inventor

To investigate the role of skewness in more detail we adopt a more parametric approach,

specifying an earnings distribution for inventors outside of the R&D sectors, in order to

show that for very skewed pay-off function, taxes matter less than for less skewed ones in the

presence of concave utility. Consider lowering marginal tax rates on high income earners.

Assume that the CDF of the returns to innovation is F (π) and the CDF of the taste for the

two sectors is G(v). Since the baseline wage is common in both sectors except for a shift

factor that is common across individuals (above denoted w̃),we abstract away from this. The

benefit of working in the R&D sector is:

ϕ = F0(π, v) = F (π(1− τ))−G(v)

Consider the effect of changing tax on the probability of going into the R&D sector:

∂φ
∂(1−τ) = f0E[u′(π(1− t))π]

= f0
E[u′π]
Eπ

Eπ = f0ū
′I
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where f0 is the PDF of F0 and ū′ is the profit weighted mean of marginal utility (u’). When

F (π(1 − τ)) gets more skewed ū′ will get small, so the marginal effects of tax on entering

the R&D sector will also become small holding innovation revenue (I ) fixed.

The key aspect of the result is that for very skewed pay-off functions, taxes will matter

less than for less skewed ones in the presence of concave utility. To examine this further we

calibrate the model to some empirical distributions. To do this we put some more structure on

the model. We assume that innovation returns are Pareto distributed, tastes are log normally

distributed and utility takes the CRRA form (as above).We draw a million individuals from

these distributions for different levels of the Pareto tail parameter, α between 1.1 and 2.

This determines the skewness of the distribution ( α
α−1), with lower levels denoting a more

skewed (“thick tailed”) distribution. We then consider the effects of a one percentage point

change in the top marginal tax rate from its current level US level (as discussed above). The

mean effect of lowering marginal taxation for different levels of skewness of the innovation

returns is shown in Figure A20 (where we have used a risk aversion parameter to be δ =1.5).

Lowering taxes always has a positive effect on innovation which is why all the values on the

y-axis are above zero. R&D falls by about 1% when skewness is 3 (α = 1.5) , for example.

However, as skewness increases, the marginal effect of taxation falls. When skewness is 5

(α = 1.25) the marginal effect of innovation is about -0.20% and effectively zero for very

high levels of skewness. Our analysis of inventor careers showed heavy levels of skewness

is consistent with other papers on the distribution of patent values using other methods of

valuing patents such as future citations, patent renewal fees, licensing revenues or surveys of

inventors.

B.4 Gifted and Talented Programs for the Disadvantaged

A supply side policy would be to increase human capital so that there are more highly skilled

people who could become inventors. We have seen that children born to poor parents appear
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to be at a particular disadvantage in growing up to become inventors in later life and have

argued that this is, in large part due to their slower acquisition of human capital during

school years rather than “initial ability”. Test scores at grade 3 only accounted for 30% of

the lower probability of children from poorer families growing up to be inventors, whereas

education by 22 years of age could account for virtually all of the income-invention gap.

Card & Giulano (2014) finds evidence that a Gifted and Talented program particularly

benefited high ability children from lower income families. Tracking such children and putting

them in separate classrooms within public schools raised math and reading by 0.3 of a

standard deviation. Looking at the evidence from Figure 3, this implies that such a program

would roughly double the future invention rate among the treated group. Since the cost of

this program was effectively zero, such policies would seem very desirable on grounds of both

equity and growth.7 By contrast, reducing top marginal tax rates is likely to have some cost

in terms of lost revenue to the government.

The pay-off in terms of innovation for such educational programs are long-term. The impact

of cutting marginal tax rates is somewhat speedier, although note that our model assumes

that this would effect the flow of new graduates into the R&D sector, rather than immediately

affecting the stock of inventors (it is different than an R&D tax credit in this respect).

B.5 A Simple Calibration of the Effect of Educational Supply-Side Policies

As discussed in Section VI.C, our estimates can be used to assess the potential gains from

supply-side (“extensive margin”) policies. Three sets of policy parameters are needed to

compute the effect of such policies on innovation. First, we must determine a “reference

income group” for which the rate of innovation is policy invariant. Both intuitively and

on the basis of the evidence presented in Card & Giulano (2014), supply-side policies will

mostly affect disadvantaged students. Accordingly, we consider three policy scenarios with
7Another set of supply side policies would be the spreading of high performance school practices as detailed
by Fryer (2014) and many others. These seem to have particular benefits for disadvantaged children.
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various reference income groups: the policy will reduce a certain fraction of the innovation

gap between these (high-income) groups and the rest of the population. Supply-side policies

affect only students in families below the 90th percentile of the income distribution in the

first scenario we consider, below the 80th percentile in the second scenario, and below the

median in the third scenario. Second, we must determine the fraction of the innovation

gap between the reference group and the rest of the population that is due to ability. We

consider a scenario in which ability accounts for 30% of the gap (in line with our empirical

estimates of Table 1) and another scenario in which it accounts for half of the gap (which

we view as an upper bound). Finally, we must determine the fraction of the innovation gap

- after adjusting for ability - that can be closed by supply side policies. We consider a series

of scenarios in which the innovation gap between the reference group and the rest of the

population can be closed by between 5% and 50%, respectively.

Figure D.9.: A Calibration of the Potential Gains from Supply-Side Policies (% Increase
in Inventor Population)

Reference Group: Richest 10% Richest 20% Richest 50%

Share of Innovation Gap From Ability: 30% 50% 30% 50% 30% 50%

5% 7.5% 5.4% 5.2% 3.7% 2.1% 1.5%

10% 15.1% 10.8% 10.5% 7.5% 4.2% 3.0%

Fraction of the Ability-Adjusted 20% 30.2% 21.6% 21.1% 15.1% 8.5% 6.1%

Innovation Gap Closed by Policy: 30% 45.4% 32.4% 31.6% 22.6% 12.7% 9.1%

40% 60.5% 43.2% 42.2% 30.1% 16.9% 12.1%

50% 75.6% 54.0% 52.7% 37.7% 21.2% 15.1%

Appendix Table B1 reports the percentage increase in the population of inventors under

these various scenarios - the gains are in general very large. For each percentile of the
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income distribution, we compute the implied increase in the percentage of inventors and then

average over the relevant range of the income distribution. Alternatively, for each scenario the

calculation can be carried out in one step as follows:%∆Inventors = s×(1−a)×(RI−RĪ)×(1−P I)
RI×P I+RĪ×(1−P I) ×

100

where s is the share of the (ability-adjusted) innovation gap closed by the policy, a is the

share of the initial innovation gap accounted for by ability (which by definition cannot be

closed by policy), RI is the average rate of inventors in reference income group I, RĪ is the

average rate of inventors in the rest of the population, and P I is the share of the reference

income group in the total population.

The benchmark scenario discussed in Section VI.C uses the top 10% as the reference group,

assumes that ability accounts for 30% of the innovation gap, and that policy can close 20%

of the ability-adjusted innovation gap. The increase in the number of inventors induced by

the policy is equal to over 30% of the inventor population.

Another useful benchmark to consider is based on the distribution of the innovation-income

gaps across states (where we consider state of birth). On average, the rate of inventors among

children in the top 20% of the family income distribution is 177% higher than for children

in the bottom 80%, but there is a lot of variation across states. The 5th percentile of the

distribution of innovation gaps across states is 132% (e.g. New Hampshire) while the 95th

percentile is 222% (e.g. Georgia). The 5th percentile of the distribution can be considered to

be a “feasible benchmark” that other states could potentially converge to.8 In other words,

the innovation-income gap could be reduced by 177−132
177 = 25.4%. Using a calculation similar

to above9, this corresponds to a 38.4% increase in the overall inventor population.
8We have checked that, when expressed in percentages, the state income-innovation gap is not correlated with
either the state population or with the number of patents per resident. These results are available from the
authors upon request.

9The formula is

0.254× (RI −RĪ)× (1− P I)
RI × P I +RĪ × (1− P I)

× 100
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Regarding the composition effect, the data underlying Figure 2 shows that there is a 44%

gap between the 3rd grade test scores (expressed in standard deviations relative to the mean)

of inventors from high income families and those of inventors from families below the 80th

percentile in the income distribution. In Section VI.A, we have discussed that this difference

can result from the fact that high-ability children from low-income families are less likely

to enter the R&D sector than their high-income counterparts because they have had less

exposure to innovation. One way of calibrating the magnitude of the composition effect is

to consider hypothetical policies that would keep constant the total number of inventors

from low-income families going into the R&D sector but that would bring into this sector a

higher share of high-ability low-income children and a lower share of low-ability low-income,

compared to the current equilibrium. The composition can have an effect on the overall rate

of innovation (and growth) since higher ability individuals will produce better innovations.

The details of the calculation are reported below. We estimate the relevant parameters and

find that the composition effect is smaller than the level effect. The reason for this is that the

level effect is very large: intuitively, we found that innovation rates are very different across

groups (a tenfold difference), while test scores conditional on innovation (innate ability of

individuals going into innovation) are much more similar.

The magnitude of the composition effect can be calibrated as follows:

%∆Innovation = s̃×(QI−QĪ)
QĪ

· QĪ×(1−P I)
QI×P I+QĪ×(1−P I) × 100

where QI is the expected amount of (quality-adjusted) innovations over the course of the

career of an inventor in the reference income group I (QĪ is the same in the rest of the

population) and s̃ is the share of the “quality-adjusted innovation gap” (QI − QĪ) between

the two income groups that can be closed by policy. Thus, the first term in the formula

is the share of the quality-adjusted innovation gap that can be closed by policy and the

second term is the share of total quality-adjusted innovations that is accounted for by the

where I is the top 20% and Ī the bottom 80%.
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low-income group. Consider an example where the reference group I is children from families

in the top 10% of the income distribution. In the data, I represents 34% of quality-adjusted

innovation (as measured by citation-weighted patents). We also observe that these inventors

have third-grade test scores that are 44% higher than inventors in the rest of the distribution.

Under the assumptions (i) that a percent increase in third-grade test score corresponds to

a one percent increase in expected quality-adjusted innovations during an inventor’s career,

and (ii) that supply-side policies can close 20% of the gap in third-grade test scores, then

such policies would increase innovation by just under 6% (0.20×0.44× (1−0.34) = 5.81%).
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