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Abstract

This thesis combines three essays in applied microeconomics. The first essay studies hospital

responses to price changes and the introduction of DRG reimbursements; using a large

administrative data set on all inpatient hospital admissions in Germany from 2005 to 2013,

we find that hospitals respond stronger to financial incentives in areas of higher medical

discretion. The second essay studies the effect of two UK compulsory schooling law changes;

deriving an optimal pooled regression outcome and pooling data across 50 surveys, I show

that the two reforms had no measurable impact on a large set of job market outcomes. The

third essay studies the benefit of observing more customer data on optimizations of a large

online retailer; predicting optimal product display ranks based on smaller data sets than the

actually observed data, we estimate the effect of less data on click and order conversion rates.
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Introduction

Recent improvements in computational power have increased the opportunities for exciting

empirical research. All three essays of this thesis deduce empirical results from data sets of

sizes that would have been difficult to analyze ten years ago. The first essay requires the

computation of counterfactual reimbursement prices for 144 million hospital admissions, based

on detaild discharge records. The second essay uses boosted regression trees to optimally

combine detailed survey responses to 50 UK-wide labor force survey waves with 200 outcomes

each. The last essay relies on a regression that uses five billion user-product impressions.

Thus, each essay leverages computational methods that allow for the estimation of highly

granular results. The three papers are briefly summarized below.

G-DRG Side Effects: Hospital Responses to Germany’s Inpatient Reim-

bursement System1

Germany’s 2005 introduction of a universal DRG system coincided with an increase of both

annual admission and cost growth rates, with rates more than doubling to 2.02 and 4.06

percent, respectively. Using 2005 to 2013 administrative data that cover all inpatient hospital

admissions in Germany, we study hospital quantity responses to annual changes in financial

incentives. We estimate an average price elasticity of 0.259 and elasticity differences by

patient age, primary diagnosis CCS, and department specialization. The heterogeneous

elasticity estimates correlate positively with our subjective assessment of medical necessity

as well as the heterogenous annual growth rates in admissions. We derive a simple static

1Co-authored with Matthias Bäuml
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model to explain the empirical correlations. In the model, both a switch from per-diem

to per-admission reimbursement as well as price increases lead to hospitals admitting more

patients; the magnitude of both effects increases with the share of marginal admissions, which

we interpret as discretionary medical treatment.

No Significant Returns to Compulsory Schooling: The UK 1947 and 1972

Law Changes Revisited

Previous studies that instrumented years of schooling with the 1947 and 1972 UK compulsory

schooling law changes likely underestimated standard errors – replicating the Oreopoulos

(2006) analysis with a less biased local linear regression discontinuity design yields a much

wider 95 percent confidence interval that includes both zero and the least squares estimate.

To attain more statistical power, I pool an average of 194 outcomes on earnings, occupation,

family, and health measures into a single score that minimizes the variance of the ratio of

instrumental variable and least squares return estimate. Combining 50 waves of the UK Labor

Force Survey, I estimate that the 1947 and 1972 UK compulsory schooling law changes had

no statistically significant effect on the pooled outcome, with a 95 percent confidence interval

of just [-7.4, 23.2] percent relative to the least squares return estimate. The narrow confidence

interval is biased corrected (Calonico et al., 2014) and exhibits near correct coverage in a

falsification test.

Returns To Scale of Data: Evidence from Online Retail2

For a large online retailer, we estimate the returns to observing the search behavior of

additional consumers when this data is used to optimize the ranking of products displayed to

all consumers, affecting their search and demand. We estimate hypothetical firm beliefs over

product quality on training data sets of different size using a revealed-preference approach,

and analyze the prediction quality of these estimates on hold-out data. Given a large and

heterogeneous product catalog, there is a substantial size-precision gradient, which translates

2Co-authored with Daniel Pollmann
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into quality differences in the predicted optimal ranking that affect consumer search and

purchases beyond the initial visit.

3



Chapter 1

G-DRG Side Effects: Hospital

Responses to Germany’s Inpatient

Reimbursement System1

1.1 Introduction

Compared to cost-plus-based reimbursement, diagnosis related group (DRG) based reimburse-

ment incentivizes hospitals to reduce per-admission costs via yard-stick competition and fewer

marginal treatment incentives. However, a switch to DRG reimbursement may also influence

hospitals to alter admission decisions, which in turn may offset the per-admission cost savings.

Indeed, Germany’s 2005 G-DRG introduction was accompanied by an increase in the annual

hospital admission growth rate to 2.02 percent. Further, shifts in the composition of admission

volumes to more expensive DRGs resulted in annual cost increases of 4.06 percent. To better

understand hospitals’ admission decision responses to G-DRG financial incentives, we also

estimate price elasticities with respect to annual variation in relative DRG prices, inherent

to the G-DRG system. With an average elasticity estimate of .259, we find that elasticity

differences by patient age, primary diagnosis CCS, and department specialization all correlate

1Co-authored with Matthias Bäuml
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positively with differences in the respective annual admission growth rates. E.g., the annual

number of in-hospital births did not increase since 2005 nor correlate with changing DRG

prices, while the number of admissions of 80-year-olds has increased at an annual rate of

5.68 percent and has a relative price elasticity of .361. Contrary to findings on the 1983

introduction of Medicare’s DRG system, Germany’s DRG system appears to have incentivized

immediate increases in discretionary hospital treatments.

Replacing a cost-plus-based system, Germany adopted DRG reimbursements with the

primary goal of “improving the cost-effectiveness of hospital care” (Braun et al., 2007). In the

new system, all inpatient hospital admissions are mapped to one of around 1,100 DRGs based

on diagnoses, demographics and treatment type and intensity information. For each admission,

hospitals receive a DRG-specific, predominantly flat rate payment. With payment rates based

on average cost reports from a large sample of German hospitals, the DRG systems’ inherent

yardstick competition rewards hospitals for being more cost-efficient than other hospitals for

the same type of admission (Shleifer, 1985). Further, the predominantly flat rate payment

eliminates many marginal treatment incentives of the previous cost-plus-based system. Indeed,

the average length of stay of German hospital admissions – one driver of costs – has been

decreasing at an annual rate of 2.01 percent since 2005; controlling for DRG composition

shifts increases the magnitude of this effect to an annual rate of 3.05 percent. Yet, to the

degree that DRG-reimbursed average costs exceed the marginal costs of additional admissions,

the DRG flat rate payments also incentivize positive extensive margin responses.

While the introduction of Medicare’s DRG system did not yield such response (Coulam and

Gaumer, 1992),2 a number of studies identify extensive margin responses to other changing

financial incentives for medical care provision. Duggan (2000) finds that both for-profit and

not-for-profit hospitals aggressively cream-skim profitable Medicaid admissions away from

state-run hospitals in response to a steep increase in the associated reimbursement. Clemens

and Gottlieb (2014) estimate a positive price elasticity of physician services of 1.5 in the years

2Coulam and Gaumer (1992) provide a summary of studies analyzing the first few years of the introduction
of Medicare’s prospective payment system. The literature they survey finds significant drops in Medicare
admissions immediately following the 1983 DRG system introduction.
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following a reimbursement base rate adjustment by Medicare. Yip (1998) on the other hand

estimates a backwards bending supply curve for the provision of CABG surgeries in response

to Medicare fee cuts.

Acemoglu and Finkelstein (2008) study Medicare’s switch from per-diem to DRG-based

reimbursements. Based on a simple neoclassical model, they derive that DRG payments

increase the returns to capital; consistent with this model, they find that hospitals most

affected by the new payment system most strongly increased their technology investments.3

Consistent with Acemoglu and Finkelstein (2008), we find that German hospitals increased the

efficiency of their operating rooms, with the number of coded surgeries per admission increasing

annually by an additional 1.96 percent, beyond the 2.02 percent growth in admissions. Further,

the growth in hospital admissions is concentrated during the Monday to Friday morning hours

while the resulting discharge growth occurs in the afternoon, increasing each admission’s share

of time spent in the hospital during regular business hours. Similarly, the growth in reported

surgical procedures per admission occurs primarily during regular business hours, with annual

increases of 2.57 percent Monday to Friday from 6 am to 3 pm, compared to .78 percent

during off hours.

This growth in increasing surgical treatment may not be socially optimal. Deyo et al.

(2010) show that a complex treatment of spinal stenosis increased 15-fold from 2002 to 2007 for

Medicare patients, in lieu of two less expensive treatment options; concurrently, the associated

rate of major complications, 30-day mortality, and resource use all increased. Jena et al.

(2015) study hospitalizations with acute cardiovascular conditions at teaching hospitals at the

time of the two largest cardiology meetings; they find that treatment intensity falls, while

mortality does not change or decreases for all studied conditions. Cutler (1995) finds that

payment increases due to Medicare’s PPS introduction yielded decreases in in-hospital and

30-day mortality, though one-year mortality did not change. Similarly, Duggan (2000) finds

no improvements in one-year mortality due to a great increase in reimbursement for Medicaid

3McGuire (2000) provides a broader summary of different incentives of DRG-payments, than the focussed
analysis of Acemoglu and Finkelstein (2008).
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patients.

The lack of outcome improvements due to additional spending may not be surprising, as

hospital treatments increasingly appear to be discretionary (Chandra et al., 2012). Cutler

(2014) summarizes that an estimated one third of medical spending in the US may be wasteful,

not yielding any medical benefit. Chandra and Skinner (2012) characterize wasteful spending

on new unproven technologies as a main source of the rapid growth in health care costs; yet,

citing the findings of Schreyögg et al. (2009), they also note that unproven technologies may

turn out highly beneficial after some initial adoption period. This paper contributes to this

larger literature showing that the financial incentives of G-DRG reimbursements appear to be

a driver of growth in discretionary care provision.

To link growth in admissions to the strength of financial incentives, we first estimate

year-over-year price elasticities at different levels of disaggregation. Estimating elasticities

at the level of patient age and gender, primary diagnosis group, and hospital department

specialization yields heterogenous elasticity estimates. Notably, areas associated with greater

shares of elective surgery and treatment – including CCS codes for prostate cancer, cataract,

and hip fracture, and the geriatrics and orthopedics departments – yield some of the highest

price elasticity estimates from .375 to .591. At the other end of the spectrum, the pediatrics

and pediatric surgery departments yield statistically insignificant point estimates of .017

and .036. More generally, based on our subjective assessment of the heterogenous elasticity

estimates, hospitals’ responses to annual price changes are stronger in areas of greater medical

discretion.

The year-over-year price elasticity estimates are unlikely to only measure changes in

hospital admission and treatment decisions, but may also be due to up-coding response as

documented by Dafny (2005) and Silverman and Skinner (2004). Hospital doctors and coding

staff may have discretion in the exact diagnoses they report, as well as the co-morbidities, and

the choice of primary diagnosis for multi-morbid patients. To counteract up-coding incentives,

the German regulator requires hospitals to prove medical reasons for annual increases in their

case mix index – the average DRG payment rate by admission (Braun et al., 2007). Further,

7



Germany’s public insurers have designated ‘medical offices’ that assess around 13 percent of

all submitted hospital claims for correct coding.4 Nonetheless, not all up-coding may be easy

to detect. Coding changes to diagnosis and procedure codes may be especially difficult to

detect in areas of medical uncertainty. Undetected up-coding may similarly be more likely in

areas of medical discretion. Thus, differences in price elasticities due to up-coding may once

more indicate areas of greater medical discretion.

Whether due to up-coding or real treatment changes, the heterogenous elasticity estimates

also correlate positively with the different annual growth rates in admissions. Jointly with the

different price elasticities, we estimate differences in the admission growth rates since 2005.

For distinct regressions by age group, department, and CCS code, as well as a joint regression

model that includes all three differentiators, we find that elasticity and growth rate estimates

correlate positively at each level. We derive a simple model to explain this empirical result.

In the model differences in medical discretion yield differences in price elasticities. Separately,

a switch from per-diem to flat-rate reimbursement yields an increase in admissions that also

increases in magnitude with greater medical discretion. Thus, differences in medical discretion

may explain the observed correlation of the two hospital responses.

The estimated two effects are distinct from early findings on the introduction of Medicare’s

PPS. Medicare’s introduction did not seem to yield increases in Medicare admissions (Coulam

and Gaumer, 1992), nor did it yield a G-DRG level of annual price variation that can be used

to estimate year-over-year price elasticities. The former effect may be explained by differences

in the two payment system’s coverage – unlike Medicare’s PPS, the G-DRG system covers

nearly all in-patient admissions nationwide. The latter result is due to the G-DRG system’s

price setting mechanism and the detailed data collection efforts by the German regulator.

A further analysis of our findings will ideally focus on linking hospital response estimates

to medical outcome measures. That is, while our findings indicate that much of the recent

G-DRG admission increase may have been in areas of elective treatment, such spending may

4The designated ‘medical offices’ examined 2,533,239 hospital services in 2014 (MDK, 2015) compared to
20,026,210 admissions.
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or may not be wasteful. In the conclusion of our paper we suggest one approach to link our

findings to mortality outcomes at the age and regional level.

The rest of the paper is structured as follows. Section 1.2 provides more detail on the

empirical setting, the sources of annual price variation, and the G-DRG data. Section 1.3

analyzes the growth in admissions and procedures since 2005. Section 1.4 introduces the

primary year-over-year price elasticity regression and robustness specifications, while section

1.5 reports more granular elasticity estimates for three differentiating variables. Section 1.6

correlates the elasticity and growth rate estimates. Section 1.7 presents a model to explain

the empirical results. Section 1.8 concludes.

1.2 Empirical Setting and Data

DRG payment systems have been adopted by many countries. Starting with Medicare’s

US-wide prospective payment system (PPS) introduction in 1983, DRG-based systems have

become the primary basis of US hospital compensation, with MS-DRGs being used by

Medicare and the further refined AP-DRGs and APR-DRGs being used by many private

insurers. Following the US, most European countries adopted modified DRG versions to

fit their country’s need (Busse et al., 2011). Germany developed the G-DRG version using

Australia’s AR-DRG system as a basis (Schreyögg et al., 2006).

The G-DRG system replaced a largely per-diem-based hospital reimbursement system in

2005, following government legislation in 2000 (Schreyögg et al., 2006). Since 2005, G-DRG

reimbursement applies to all inpatient admissions in Germany, irrespective of insurance type.5

94 percent of patients in our data have statutory health insurance plans, which feature

no deductible and a per-diem copay of 10 Euro that is waived for children, indigents, and

long-stays; thus, these patients are not directly affected by changes in G-DRG reimbursement

5Only psychiatry and psychosomatic medicine admissions are excluded from the G-DRG system, with a
separate DRG-based reimbursement system being developed. Further, while DRG rates also apply to private
insurance plans, most of these premium plans reimburse additional preferential services with rates being set
independent of the DRG schedule. For related work on Schreyögg et al. (2014), we had access to insurance
information by admission; applying our elasticity estimation methodology only on the subset of non-statutory
health insurance patients yielded near zero elasticity estimates, not statistically different from zero.

9



rates. Patients can be directly admitted to hospitals for emergency care, while needing a

referral by a specialist otherwise; hospitals have some discretion in classifying admissions

as emergencies, though. Within three days of admitting a patient, hospitals must submit

an ‘admission record;’ within three days of discharge they must submit a ‘discharge record;’

subsequently hospitals file a much more detailed ‘invoice record.’6 The final record includes

primary and secondary ICD-10 diagnoses codes, Germany-specific OPS procedure codes

(similar to Medicare’s ICD-9-PCS codes), age, gender, admission and discharge dates and

reason codes by department, birth weight for births, and hours of ventilation. Insurance

companies keep the final records both for documentation and to input them into a G-DRG

‘grouper’ - a logic tree that assigns a unique DRG to each admission.

Based on the assigned DRG insurance companies reimburse hospitals. 84.6 percent7 of

hospital remuneration is due to the DRG-specific flat-rate price component pdrg that gets

multiplied by a hospital-specific “base case value.”8 Another 3.7 and 3.5 percent are due to

per-diem deductions and surcharges to pdrg for short- and long-stayers, respectively. The

remaining 8.2 percent of remuneration are primarily due to additional fees for new services

not covered by DRG payments, and surcharges for teaching hospitals. For our analysis, we

define the reimbursement price ri for admission i at hospital h as

ri = pdrg(i,t) (1 + νi,t) bcvh(i),t + ξi,t

where νi denotes the potential per-diem based adjustments and ξi captures the additional

fees. Subscript t accounts for the year of admission to reflect that DRG price and grouper

logic, base case value and additional adjustments can change every year.

To estimate price elasticities, we compute year-over-year changes in log prices. That is,

6Requirements for these records are specified by paragraph 4 of SGBV 301 (DKG, 2015).

7Percentage calculations are based on data pertaining to the 144,514,504 admissions used in our analysis.
Further deduction and surcharge amounts are considered in absolute terms to compute percentages in terms of
overall reimbursement volume.

8The DRG-specific flat-rate component pdrg is also commonly referred to as DRG cost weight or relative
weight, denoting only a relative price. Since our price elasticity estimates are based on relative variation in
these ‘weights,’ we denote them as pdrg for straightforward comprehension.

10



we approximate changes in log reimbursements with

∆ ln ri,t = ln
(
pdrg(i,t) (1 + νi,t) bcvh(i),t + ξi,t

)
− ln

(
pdrg(i,t−1) (1 + νi,t−1) bcvh(i),t−1 + ξi,t−1

)
≈ ∆ ln pdrg(i,t) + ∆ ln bcvh(i),t + ∆ ln (1 + νi,t) .

Given the myriad of regulations involved in determining the ξi,t error term, and the fact

that these additional fees only account for 8 percent of remuneration, we choose to compute

price elasticities only with respect to the DRG-based compensation.9 From 2005 to 2009,

bcvh(i),t was negotiated at the hospital level to facilitate an ‘alignment’ from hospitals’ previous

per-diem reimbursement levels to common DRG levels at the state level. Including year fixed

effects in all regressions, we treat additional variation in ln bcvh(i),t and ln pdrg(i,t) as orthogonal

– for robustness, we include a specification with hospital-year fixed effects, which does not seem

to affect our coefficient estimates meaningfully. We also treat variation in νi,t and ln pdrg(i,t)

as orthogonal, an assumption we also verify in one regression, by explicitly computing the

year-over-year changes per-diem deduction and surcharge rates. For all other regressions,

we measure elasticity based on variation in ln pdrg(i,t) only, while assuming the other price

components into the error term. Noting the dependency of the grouper classification on t,

we run all regression at the level of price variation, aggregating admission counts either at

the (drg (i, t) , drg (i, t− 1)) level or at the (drg (i, 2005) , . . . , drg (i, 2013)) level depending

on whether we are exploiting the panel structure of the data.10

Relative DRG prices pdrg vary from year to year for a number of reasons. To set relative

prices, the regulator collects 2-year old cost reports for admissions from around 20 percent of

hospitals who participate voluntarily, averaging the reported costs by DRG.11 Thus, changes

9Compared to overall reimbursement elasticities, our estimates will exhibit attenuation bias. Further, by
ignoring the additional, albeit small reimbursement ξi,t, our approximation of ∆ ln pi,t is based on changes
relative to a lower average compensation, upward biasing ∆ ln pi,t and thus downward biasing our elasticity
estimates further.

104.7 percent of admission will be mapped to differing DRG codes in years t and t− 1 due to grouping logic
refinements.

11Cost reports for all admissions are collected based on the discharge year. Calculations of average costs
are performed the following year and the derived DRG weights are applicable to all hospital patients being
admitted yet another year later (InEK, 2007).
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Figure 1.1: Distribution of ∆ ln pdrg by year weighted by number of affected admissions

in the average reported cost between years t− 3 and t− 2 will impact the associated DRG

weights in years t− 1 and t proportionally. Multiple sources cause changes in the average

reported cost. First, the finite sample of costs reports and cost heterogeneity within each

DRG leads to variance in the average cost estimates. Second, cost reporting practices and

the accuracy in cost attribution changed over time (Schreyögg et al., 2006). Third, the set of

hospitals reporting costs changed over time. Fourth, year-to-year adjustments in the grouper

logic will cause admissions to be grouped together with admissions of different costs, leading

to differences in the associated average cost by DRG grouping. And fifth, the actual costs of

treating patients of a given DRG may change. Figure 1.1 shows the distribution of resulting

year-over-year price changes. To the degree that the direction of the change is not persistent

over time, all these changes may be plausible exogenous to changes in hospital costs or patient

demand two years down the road.

Some persistence in the actual changes of costs is not unlikely; e.g., doctors may slowly

gain more experience with a new technology, realizing increasing productivity over time. In

this case, changes in costs from year t− 3 to t− 2 may be predictive of changes in costs from

year t− 1 to t. However, we would expect changes in costs from year t− 2 to t− 1 to be

12



similarly predictive of changes in costs from year t− 1 to t. Thus, we can at least partially

control for this type of endogeneity by adding ∆ ln pdrg(i,t+1) as an additional regressor.12

Similarly, we can also add ∆ ln pdrg(i,t+2) as a regressor to reflect changes in average costs

from year t− 1 to t, as measured by the regulator, and we can add observed changes in cost

proxies as further controls. In both instances we might be over-controlling, though. That is,

reported average costs may also be a function of ∆ ln pdrg(i,t) and our outcome variable, as

hospitals may adjust treatment and admit different marginal patients in response to price

changes. Still, we find that neither control changes our estimates substantially, yielding only

slightly higher point estimates.

Our estimates are based on aggregations of the complete set of G-DRG ‘invoice-records’

for hospital admission between 2005 and 2013.13 These records cover all inpatient hospital

stays and include diagnosis, procedure, treatment date, patient demographic, and hospital

department variables. Records do not include physician or patient identifiers that would allow

tracking beyond a single treatment episode. We restrict our analysis to ‘primary’ hospital

admissions, excluding the 8.3 percent of reported ‘semi-residential’ and occupancy ward

admissions.14 We also exclude another 1.06 percent of admissions that are not reimbursed

based on DRG flat rate payments. Table 1.1 reports basic summary statistics for the remaining

144,514,504 admissions which are linked to up to 1,672 hospitals in a given year.

We map each admission to their respective 2005 to 2014 DRG codes based on regulator

certified DRG grouping software. We also use crosswalk tables from the Germany’s ICD-

10-GM diagnosis codes to Clinical Classifications Software (CCS) codes by the Agency for

Healthcare Research and Quality, assigning each admission to one of 259 clinical indication

12This statement can be formalized, modeling changes in actual costs as an auto-regressive process. Given
that adding ∆ ln pdrg(i,t+1) has no measurable impact on our estimates, we omit this formalization.

13This main data source is made available by the Research Data Centers of Germany’s Federal Statistical
Office. See http://www.forschungsdatenzentren.de/bestand/drg/index.asp for more information. The
data have been checked for consistency by the regulator.

14While hospitals are also compensated via DRG flat rate payments for ‘semi-residential’ and occupancy
ward admissions, compensation and incentives can differ substantially. The english translations “primary,”
“semi-residential,” and “occupancy ward” refer to the German terms “Hauptabteilung,” “teilstationär,” and
“Belegabteilung.”

13
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Table 1.1: Summary statistics for §21 G-DRG data

Admissions Average per admission Distinct

Year Total /1000 Age Female LOS ICD OPS OPS5 CMI DRGs Hs

2005 14,703,449 178.5 53.3 0.534 7.84 4.97 2.55 0.761 1.08 844 1,672
2006 15,029,997 182.7 53.7 0.532 7.66 5.08 2.63 0.784 1.08 912 1,648
2007 15,431,815 187.9 54.0 0.532 7.51 5.20 2.73 0.810 1.09 1,035 1,631
2008 15,842,720 193.4 54.3 0.531 7.32 5.35 2.80 0.821 1.10 1,089 1,613
2009 16,133,547 197.3 54.7 0.530 7.18 5.56 2.95 0.853 1.12 1,146 1,588
2010 16,401,731 202.4 54.9 0.529 7.03 5.76 3.04 0.877 1.12 1,154 1,574
2011 16,707,679 207.7 55.2 0.527 6.87 5.92 3.12 0.889 1.12 1,149 1,550
2012 17,029,945 211.2 55.5 0.526 6.77 6.08 3.16 0.895 1.12 1,148 1,525
2013 17,233,621 212.8 55.6 0.526 6.66 6.30 3.15 0.889 1.12 1,142 1,512

All 144,514,504 197.1 54.6 0.530 7.18 5.60 2.92 0.844 1.11 9,619 †

Notes: Summary statistics are by year of admission date. The “/1000” column reports the number of
admissions per 1000 residents. Abbreviated columns denote: LOS – length of stay, ICD – number of diagnosis
codes, OPS – number of procedure codes, OPS5 – number of surgical procedure codes, CMI – case mix index,
DRGs – DRG codes, Hs – hospitals. †The number of distinct hospitals is calculated based on discharge year,
as hospital identifiers are discharge year-specific and can different between years. Thus, we do not calculate
the total number of distinct hospitals across all years. Data source, description, and restrictions are in the
text.

groups based on their primary diagnosis (HCUP, 2009). We use DRG assignments to compute

the actual and nine counterfactual DRG reimbursement prices, while using the other mapping

to estimate heterogeneous price elasticity.

Previewing results of the next section, table 1.2 summarizes some of the observed year-over-

year changes in log point differences. Notably, the case mix (CM) – the sum of normalized15

DRG prices pdrg(i) – grew at an even greater annual rate than admissions. That is, the average

severity of hospital admissions as proxied for by pdrg(i) increased over time. Concurrently, the

average length of stay decreased at an annual rate of 2.02 log points. This effect is amplified

if we control for the compositional shift of DRG admissions towards DRGs of greater clinical

severity, by holding (drg (i, t) , drg (i, t− 1)) shares to t− 1 levels in our aggregations. We

also note the 10.4 log point standard error of ∆pdrg(i,t); that is the G-DRG price variation is

both sufficient for estimation and makes the elasticity estimates of section 1.4 economically

15Relative DRG prices were initially normalized so that the average hospital admission has a relative price
of 1. For subsequent years, the relative prices are normalized so that the case mix of admission under the new
weights equals the case mix of the previous year, on the basis of the admission composition from two years
prior (InEK, 2007).
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Table 1.2: Summary of year-over-year changes in log points

LOS ICDs OPSs OPS5s s.e. of

Change Adm CM (1) (2) (1) (2) (1) (2) (1) (2) ∆ ln p

2005/2006 2.46 2.70 -2.27 -3.38 2.30 1.38 3.29 1.92 2.89 1.78 13.00
2006/2007 2.61 3.46 -2.07 -3.73 2.44 1.27 3.57 2.06 3.19 1.77 12.52
2007/2008 2.51 3.55 -2.50 -3.62 2.82 2.06 2.62 1.47 1.18 -0.11 12.91
2008/2009 1.78 2.73 -1.97 -3.40 3.86 2.86 4.94 3.57 3.76 2.07 9.73
2009/2010 1.59 2.02 -2.07 -3.22 3.53 2.67 3.32 2.14 2.77 1.62 8.44
2010/2011 1.84 2.16 -2.28 -2.75 2.66 2.12 2.33 1.71 1.29 1.26 7.79
2011/2012 2.01 1.70 -1.52 -1.95 2.62 2.14 1.36 1.04 0.91 1.18 8.67
2012/2013 1.23 1.67 -1.48 -2.38 3.69 2.87 -0.14 -0.57 -0.44 0.16 9.86

Average 2.00 2.50 -2.02 -3.05 2.99 2.17 2.66 1.67 1.94 1.22 10.37
Notes: Changes in Admission (Adm) and case mix (CM) are computed as ∆ ln

∑
i∈St

1 and
∆ ln

∑
i∈St

pdrg(i), where St denotes the set of year t admissions. For admission averages of length of
stay (LOS), and number of diagnosis (ICDs), procedure (OPSs), and surgical codes (OPS5s) we compute
two averages: (1) the year-by-year averages over all admissions, (2) the DRG specific year-by-year
average, averaged by weighting by the admission counts of the first year. The respective columns report
the differences across subsequent years in log points. The final column reports the standard deviation
of DRG weight changes, weighted by the affected revenue in adjacent years.

relevant.

1.3 Growth in Admissions

The introduction of the G-DRG system changed hospitals’ financial incentives. With marginal

costs generally lower than average reimbursed cost and reimbursement changing from per-

diem to per-admission payments, the G-DRG system rewards hospitals for admitting more

patients while decreasing the length of stay for a given medical episode. Indeed, since the

2005 introduction, admission numbers have been growing, while average length of stay has

been decreasing. To account for general trends preceding the G-DRG introduction, figure 1.2

plots trends in four statistics from 1996 to 2014. Contrary to findings on the introduction

of Medicare’s PPS, admission growth rates increased significantly post-G-DRG introduction,

while length of stay already declined at similar rates prior to 2005. At the risk of over-

interpreting simple difference estimates, we note that inpatient hospital costs have been

growing at an annual rate of 4.06 percent since 2005 compared to prior rate of 1.88 percent.

The introduction of the G-DRG system also coincided with a halt in the decline of hospital
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bed capacity, accommodating the increased admission growth rates.

To better document the admission increases since 2005, figure 1.3 shows admission, surgery

and discharge numbers by hour of day, weekday, and year. For each plotted year, admission

numbers increase the strongest during Monday to Friday morning hours between 6 and 8

am; surgery numbers increase the most between 7 am to 3 pm; by comparison, discharge

numbers increase most in the later hours of Monday to Friday, and on the weekend. Thus,

over the years patients tend to spend more of their time in the hospital during regular business

hours. Surgeries also increase most during regular business hours, even in relative terms,

with per admission increases of 2.62 percent during regular business hours compared to a .82

percent increases during off hours. Consistent with the findings of Acemoglu and Finkelstein

(2008), German hospitals seem to have increased their regular business hour efficiency since

the introduction of G-DRG reimbursements.

Some of the admissions growth under G-DRG reimbursements may also be explained by

Germany’s aging population requiring more medical services. While Germany’s population

has not increased since 2005, life expectancy and average age have increased (table 1.1). Thus,

a simple model of increasing medical utilization by age may also predict increases in medical

care. Merging population statistics by year, age, and gender, we estimate the decomposition

E [lnma,g,t − ln popa,g,t] = ρa,g + δa,g (t− t̄) (1.1)

via least squares, where a denotes age in years, g denotes gender, t denotes year, ma,g,t denotes

a medical utilization metric, and popa,g,t denotes the number of residents by grouping. ρa,g

and δa,g estimate averages for base utilization rate and annual increases for each age-gender

group. Figure 1.4 shows ρa,g and δa,g estimates for two utilization metrics as well as similar

estimates for the unnormalized utilization metrics. Indeed, estimated annual increases δa,g are

lower for per resident metrics. Compared to the raw rates of 2.53 percent and 4.78 percent,

the case-mix index and the number of coded procedures increased at annal rates of 1.78 and

4.17 percent after controlling for age and gender specific resident number changes. Thus, the

impact of Germany’s aging population on admission number increases seems limited.
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Figure 1.3: Admission, surgery, and discharge numbers by hour of day, weekday, and year
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Figure 1.4: Hospitalization rates by age and gender
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1.4 Baseline Price Elasticity Regression

We quantify hospital admission responses to financial incentives, positing a reduced form,

constant elasticity model. Specifically, for aggregation level j in year t the expected number

of admissions E [qj,t] is a function of aggregation level fixed effect Aj , year fixed effect Bt,

aggregation level annual growth rate δj and price pj,t, with

E [qj,t] = AjBte
δjtp

εj

j,t, (1.2)

where εj denotes the aggregation level specific constant price elasticity and B1 is normalized

to 1. For our primary regression setup, we aggregate admissions at the level of year-over-year

price changes (∆ ln px,t = ln pdrg(x,t)− ln pdrg(x,t−1)), that is, we let j denote (tj , drgj,1, drgj,0)-

combinations. We compute admissions counts as

qj,t =
∑
i

1 {ti = t∧ drg (i, t) = drgj,1 ∧ drg (i, t− 1) = drgj,0}

qj,t−1 =
∑
i

1 {ti = t− 1∧ drg (i, t) = drgj,1 ∧ drg (i, t− 1) = drgj,0}

for all occurring (tj , drgj,1, drgj,0)-combinations for which ql,tl + ql,tl−1 ≥ 1000.16

To visualize the empirical dependency of qj,t on pj,t non-parametrically, figure 1.5 plots

a binned scatter-plot of changes in log quantities and prices. Specifically, we aggregate the

9,044 (tj , drgj,1, drgj,0)-combinations into 40 bins based on the corresponding ∆ ln pj,t for

|∆ ln pj,t| ≤ .5. For observations in each bin we compute the weighted mean of ∆ ln pj,t and

log difference in the weighted sum of qj,t’s and qj,t−1’s.17 The figure visualizes two primary

16The minimum quantity restriction only excludes .8 percent of admissions, reduces sensitivity to outlier
observations, and reduces computational requirements.

17For the aggregations of figure 1.5 we effectively weight each (tj , drgj,1, drgj,0)-cell by
√
q′j,t + qj,t−1: we

split cells into 40 bins of equal weight along their associated value of associated ∆ ln pj,t. For cells j in any
given bin B, we compute the weighted mean of ∆ ln pj,t and define

∆ ln qB = ln

∑
j∈B

qj,t (qj,t + qj,t−1)
− 1

2

− ln

∑
j∈B

qj,t−1 (qj,t + qj,t−1)
− 1

2

 .
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findings of this paper. It shows a positive price elasticity – the least square fit has a slope of

.23 – and annual growth in overall admissions, with a least square intercept at .026. Notably,

the relationship between ∆ ln pdrg and ∆ ln qdrg does not appear fully linear; price declines of

less than 10 percent seem to yield little to no negative response relative to a 0 percent price

change.18 Nonetheless, overall the binned scatter plot shows a strong positive correlation

between ∆ ln pdrg and ∆ ln qdrg.

To estimate the implied elasticity, we rely on a fixed effect poisson regression. The

maximum likelihood estimator of the poisson regression is equivalent to the GMM estimator

of equation (1.2) using all right hand side variables directly as instruments; Gourieroux et al.

(1984) provide an alternative justification for using a poisson regression to estimate equation

(1.2). We estimate

E [qj,t] = exp (εj ln pj,t + δjt+ lnAj + lnBt)

by conditioning on
∑
t E [qj,t] to partial out the lnAj fixed effects (Hausman et al., 1984).19

For our primary regression we estimate a single constant elasticity estimate ε̂, additionally

controlling for overall year-over-year changes with the time fixed effects (∆ lnBt). Estimates

for ε̂ are presented in table 1.3. For all of our regressions, we compute standard errors

clustered at the base-DRG level.20

To check the robustness of our poisson regression estimates, we also estimate equation

(1.2) via two different linear approximations. For the “deviation” approximation, we use a

18While this finding may allow for interesting behavioral interpretations, such interpretations are outside of
the scope of this paper.

19(Hausman et al., 1984) show that the resulting estimator coincides with McFadden (1973)’s multinomial
logit specification. We use this equivalency to estimate the fixed effect poisson regression model using existing
logit software packages. To add a second set of nuisance fixed effects with many levels while keeping estimation
computationally tractable, we rely on a maximization routine by Turner and Firth (2007) and compute the
clustered variance-covariance matrix using the inverse formula of block matrices.

20The G-DRG groupings are denoted via a ‘letter–two digits–letter’ code. The first three characters denote
the “base-DRG,” while the last letter may differentiate between severity levels where applicable. Due to
year-to-year DRG grouping logic adjustments, 4.7 percent of admissions would receive a different DRG code
if admitted in the previous or subsequent year. Yet, only 1.0 percent of admissions would see a change in
“base-DRG” in our regression specifications, motivating our choice of clustering. Our findings are not sensitive
to excluding this 1.0 percent of admissions.
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Table 1.3: Overall price elasticity estimates for 3× 3× 5 alternative specifications.

Observation Weights

Model Case Mix LOS Adm
√
Adm 1

FE Poisson 0.258*** 0.289*** 0.205*** 0.228*** 0.246***
(0.028) (0.032) (0.023) (0.021) (0.023)

Deviations 0.271*** 0.305*** 0.213*** 0.241*** 0.265***
(0.031) (0.038) (0.025) (0.026) (0.029)

Log-Linear 0.263*** 0.294*** 0.210*** 0.235*** 0.255***
(0.029) (0.033) (0.023) (0.022) (0.024)

Price change restriction: |∆ ln p| ≤ .5, N = 8,679

FE Poisson 0.259*** 0.283*** 0.219*** 0.240*** 0.251***
(0.033) (0.034) (0.027) (0.021) (0.019)

Deviations 0.266*** 0.289*** 0.223*** 0.246*** 0.259***
(0.035) (0.036) (0.028) (0.023) (0.021)

Log-Linear 0.260*** 0.285*** 0.221*** 0.242*** 0.253***
(0.033) (0.034) (0.027) (0.021) (0.019)

Price change restriction: |∆ ln p| ≤ .1, N = 6,695

FE Poisson 0.169*** 0.213*** 0.168*** 0.176*** 0.173***
(0.042) (0.046) (0.037) (0.027) (0.028)

Deviations 0.169*** 0.213*** 0.169*** 0.177*** 0.173***
(0.042) (0.046) (0.037) (0.027) (0.028)

Log-Linear 0.169*** 0.213*** 0.168*** 0.176*** 0.173***
(0.042) (0.046) (0.037) (0.027) (0.028)

Notes: This table reports admission price elasticity estimates with respect to DRG price
changes for three types of regression models, five alternative observation weightings,
and three different data trunctations. The three regression models and five observation
weight definitions are described in the text. All regressions are based on aggregations of
144,514,504 hospital admission at N = 9,044 (t, drgt, drgt−1)-levels. Standard errors
– clustered at level of 663 ‘Base-DRGs’ – are reported in parentheses. *p < 0.05,
**p < 0.01, ***p < 0.001.
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tailor approximation around p̄t = 1
T

∑
t pj,t, and take first differences to obtain

(E [qj,t]−E [qj,t−1]) / E [qj ]|pj,t=p̄j
≈ εj (pj,t − pj,t−1) /p̄j + δj + ∆ lnBt (1.3)

Approximating E [qj ]|pjt=p̄j
with observed mean outcome q̄t = 1

T

∑
t qj,t, we can estimate

equation (1.3) via least squares.21 Alternatively, for the “log-linear” approximation, we further

restrict our regression dataset to all j for which mint qj,t ≥ 50, excluding only .047 percent of

the underlying admissions data. Substituting qj,t for E [qj,t] in equation (1.2) and taking logs

and first differences yields regression equation

∆ ln qj,t ≈ εj∆ ln pj,t + δj + ∆ lnBt + ηj,t

with additional error term ηj,t. Table 1.3 reports elasticity estimates for all three regression

models limited to estimating a single ε̂ and year fixed effect controls. Notably, across all

weighting and censoring specifications, the three models yield very similar estimates with

differences that are much smaller than estimated standard errors; indeed, for the specifications

limited to price changes less than 10 log points coefficient estimates are near identical.22

We estimate each model using five different effective weightings for each (j, t)-aggregate.

We define

wCase-Mix
j = T−2

j

∑
t

qj,t
∑
t

pj,t, wLosj = T−2
j

∑
t

qj,t
∑
t

losj,t
qj,t

,

wAdmj = T−1
j

∑
t

qj,t, w
√
Adm

j =

(
T−1
j

∑
t

qj,t

) 1
2

, w1
j = 1.

Thus, the different wj ’s weight observations by the affected Case-Mix – the number of admission

times the relative reimbursement price, the affected hospital days – the number of admissions

times the average length of stay (los), the number of affected admissions, the square root of

21The latter approximation is upward biased on average by Jensen’s inequality. Similarly, the taylor
approximations for the effect of changes in pj,t yield similar bias, both of which will be small for small changes
in pj,t.

22The two linear approximations offer computational advantages, when using existing software packages.
Further, the deviations approximation also allows for zero qj,t observations, only requiring the ∆ ln pj,t to be
‘small’ to limit bias. Thus, the deviations model may allow a computationally tractable estimation of more
granular specifications than presented in this paper, without additional hardware requirements.
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the number of affected admissions, and equal weight. While the first three definitions are

economically motivated, the fourth definition can be the variance minimizing estimator under

a certain set of assumptions.23 The fifth definition is included for robustness purposes. The

poisson regression effectively weights observations by qj,t, while the two linear approximations

do not. Thus, for the poisson regression, we divide all weights once more by T−1
j

∑
t qj,t.

Differently specified observation weights yield some differences in elasticity estimates. As

the different columns of table 1.3 show, estimates for the case-mix and the hospital days

weighting are slightly higher than estimates for the admissions only weights. To the degree

that admissions with higher price or longer length of stay offer more absolute optimization

reward per admission, a higher overall elasticity estimate is plausible. Further, the square root

admission and equal weight regression also yield slightly higher elasticity estimates than the

admission weighting. Both these weightings assign more weight to observations with larger

price changes,24 which in turn are associated with greater elasticities. The case-mix weighting

best reflects financial relevance to hospitals. To a lesser degree it may also best reflect medical

severity – to the degree that prices reflect average costs which in turn are associated with

medical severity. Thus, we choose to use the case-mix weighting for all subsequent regressions.

As figure 1.5 indicates, elasticity estimates may vary with the size of price changes. We

estimate all our specifications for all 9,044 (tj , drgj,1, drgj,0)-combinations described above,

as well as two truncations based on the magnitude of relative price change ∆ ln pj,t. Indeed,

restricting our main regression to price changes of 10 log points or less yields a lower elasticity

estate of .169. Censoring the 365 potential outlier observations with price changes greater than

50 log points does not seem to affect our estimates. To avoid sensitivity to these observations

in our subsequent, more granular regressions, we continue to use this censoring. Thus, for our

23Without deriving this result for a specific set of assumptions, we note that the square root admission
weight indeed tends to yield the lowest standard errors. Yet, as our single elasticity estimate yields an average
over heterogenous elasticities, we prefer a weighting that may yield a less precisely estimated average elasticity
but is economically motivated.

24Cells with a larger amount of admissions have price changes of smaller magnitude on average. Based on
the sources of price changes described in section 1.2, this result is not surprising given that most price change
sources will have have less of an impact whenever the average cost calculation is based on more admissions.
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Table 1.4: DRG-price elasticity regression estimates with different sets of controls

(1) (2) (3) (4) (5) (6) (7)

∆ ln p 0.259*** 0.251*** 0.270*** 0.284*** 0.288*** 0.261*** 0.245***
(0.033) (0.035) (0.038) (0.035) (0.039) (0.043) (0.037)

∆+1 ln p -0.109*** -0.091* -0.084* -0.097**
(0.030) (0.036) (0.035) (0.036)

∆+2 ln p -0.233*** -0.207*** -0.204***
(0.033) (0.032) (0.034)

∆ ln LOS -0.118 -0.013
(0.092) (0.097)

∆ ln PCCL -0.868*** -1.102***
(0.178) (0.256)

∆ ln #OPS -0.282*** -0.244**
(0.081) (0.082)

Hospital-Year FEs X
Full DRG price X

Effective N 2732 2728 2372 2732 2372 1532803 5381
Notes: All regression estimate the elasticity of year-to-year admission volume at the l = (DRGt,DRGt+1)
level, based on aggregations of 162,138,540 hospital admissions. Regressions are estimated via a two period
poisson fixed effect regression, include year fixed effects and are weighted by the affected average case-mix.
Regression specification (7) estimates the price elasticity with respect to log changes in the total sum of
DRG-related compensation, rather than just the DRG flat-rate. Standard errors – clustered at level of 621
‘Base-DRGs’ – are reported in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001. The effective N statistic

reports the inverse of the sum of squared, normalized weights
(∑

l ω
2
l /
(∑

l ωl
)2
)−1

.

final base line specification regression – the case-mix weighted, fixed-effect poisson regression –

we estimate an average price elasticity of .259.

Starting from this base line regression, table 1.4 presents estimates after adding the

different sets of controls discussed in section 1.2. Adding future price changes – to control for

a persistence in the direction of price changes – does not affect our main point estimate of .259

significantly. Notably, the future price change that reflects changes in current average reported

costs yields a negative coefficient of similar magnitude to the price elasticity coefficient. We

might interpret this correlation as an indication that changes in average costs have a similar

impact on admission numbers as changes in price. Yet, changes in reported average costs are

a direct result of hospitals’s changes in who they admit; thus, simultaneity bias limits any

causal interpretation of the observed correlation.
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Adding three cost proxies to our main regression increases our elasticity point estimate to

.284. The signs of the coefficients of all three proxies are negative, as expected. Interestingly,

the coefficient estimate for changes in average length of stay is not significant. However,

changes in average patient clinical complexity level (PCCL)25 have a very significant negative

impact with a t-statistic of 4.7. Similarly, changes in the average number of reported procedure

codes are associated with a highly significant elasticity estimate of -.282. As in the case of

changes in the average reported cost, the procedure code estimate has the same magnitude as

our main price elasticity estimate. Though once more, due to potential simultaneity, we do

not interpret this correlation as necessarily causal. Additionally including our future price

change controls further increases the price elasticity point estimate to .288. Yet, even this

larger point estimate is still within one standard error of our main elasticity estimate of .259.

Our subsequent robustness tests also yield point estimates within one standard error of .259,

including controlling for changes in ‘base-case-values’ via hospital year fixed effects, for trends

by DRG-path, and explicit calculations of changes in per-diem length of stay discounts and

surcharges. Thus, in subsequent regressions we treat the primary price changes as plausibly

exogenous. That is, we do not add cost controls when estimating more granular year-over-year

elasticities.

1.5 Heterogeneous Price Elasticities

Allowing for heterogeneity in price elasticities, we interact ln pj,t with several indicator variables

to estimate elasticities at different levels. Figure 1.6 plots elasticity coefficient estimates by

year-over-year change and by month of admission. For the former differentiation, we estimate

distinct ε̂t,t−1 coefficients for year changes ’05/’06 to ’12/’13. As indicated by the least squares

fit, the average year-over-year price elasticity appears to be falling over the years, although

the decline is not statistically significant. The ε̂t,t−1 coefficients are less precisely estimated

25PCCL aggregates clinical complexity levels associated with a patients primary and secondary diagnoses,
see appendix C of InEK (2015) for definition. The scaling of this index has no immediate interpretation. PCCL
cutoff values are used by the DRG logit tree.

27



l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
l

l

l

Year Month

0.0

0.2

0.4

0.2

0.3

0.4

2006 2008 2010 2012 January March May July September November
CutId

E
la

st
ic

ity

Figure 1.6: Elasticity estimates by year and by month

Notes: Error bars indicate 95 percent confidence intervals based on clustered standard error estimates at the
base DRG level. The gray shaded areas show the 95 percent confidence interval of the least square fit lines.
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than the overall estimate, as each ε̂t,t−1 is estimated off one ninth of the identifying annual

price variations.

For all further heterogeneous price elasticity estimations, we disaggregate the base re-

gression data at the levels of the corresponding indicator variables. That is, for the month

regression we aggregate observations at the (mj , tj , drgj,1, drgj,0)-level, differentiating our

base aggregation by the calendar month of admission dates. Figure 1.6 shows the 12 elasticity

estimates increasing from an elasticity of .21 in January to .31 in December.26 Here, the

least square fit yields a statistically significant positive slope. New DRG prices and the

associated grouper logic are usually published by the regulator in September of the preceding

year and effective for all admissions from January 1. Thus, we offer two interpretations for

the empirical result of increasing hospital responses over time. Certain adjustments may

be easy to implement right away in January including marginal treatment adjustments and

ex-post up-coding, while more extensive adjustments including changes at the extensive

admission margin may take more time to implement across the hospital. Alternatively, some

hospitals may be faster to realize certain adjustment opportunities and only slowly share

this information via informal networks. In either case, these increasing elasticity estimates

highlight that our year-over-year estimates only measure a short term response. Longer term

hospital responses to changes in financial incentives are likely elicit larger responses similar to

findings by Clemens and Gottlieb (2014) for physicians.

Figure 1.7 shows year-over-year elasticity estimates by age group and gender. The age

groups were chosen to yield 20 bins of equal admission numbers. Elasticity estimates do

not differ significantly by gender. However, hospitals’ price elasticity increases strongly

with patient age, with point estimates of less than .15 for patients age 30 and younger and

elasticities greater than .4 for the oldest age group. With the availability of different treatment

options generally increasing with the age of the patient, the increasing elasticity estimates are

consistent with the overall findings of this paper – hospital responses to financial incentives

26For all disaggregated regressions we also include group specific growth rate controls that estimate δ̂g(j);
we drop our ∆ lnB2006 estimates to not introduce collinearity.
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Figure 1.7: Elasticity estimates by age group and gender

tend to be greater in areas of greater medical discretion.

Table 1.5 reports price elasticity estimates by hospital department specialization. Specifi-

cally, we associate each admission with the hospital department the patient spends most of

her or his time at, aggregating observations at the (deptj , tj , drgj,1, drgj,0)-level. Mirroring

our elasticity by age results, pediatrics yields the lowest elasticity point estimate of .017,

while geriatrics is associated with the highest elasticity point estimate of .591. Of the two

largest departments by admission numbers, internal medicine is more price elastic at .30 than

general surgery at .19. With a price elasticity of .38, orthopedics is the second most elastic

department, primarily providing elective hip and knee replacements and spinal surgery. While

obstetrics is associated with the second lowest elasticity estimate of .028. From first glance,

departments associated with areas of greater medical discretion are also associated with higher

year-over-year price elasticity estimates.

Table 1.6 provides estimates at the more granular CCS level. CCS groups are assigned

via AHRQ’s grouping of patients’ primary diagnosis (HCUP, 2009). We restrict reporting

30



Table 1.5: Year-over-year price elasticity estimates by hospital department

Department specialization Coef. S.e. t-stat Admissions

Pediatrics 0.017 0.041 0.409 7,539,493
Gynecology and obstetrics 0.028 0.079 0.355 15,211,740
Pediatric surgery 0.036 0.098 0.365 920,159
Ophthalmology 0.126 0.057 2.206 2,477,666
Pneumology 0.132 0.077 1.727 1,144,474
Radiotherapy 0.165 0.073 2.267 660,028
Cardiac surgery 0.169 0.098 1.719 845,785
Ear, Nose, Throat 0.176 0.039 4.458 3,807,086
Nephrology 0.180 0.060 2.985 569,027
General surgery 0.187 0.029 6.391 24,308,876
Vascular surgery 0.193 0.047 4.120 1,216,692
Plastic surgery 0.203 0.094 2.154 511,715
Intensive Care 0.203 0.061 3.328 1,146,714
Respiratory medicine 0.205 0.071 2.906 614,492
Hematology and medical oncology 0.221 0.038 5.752 1,482,952
Gastroenterology 0.227 0.029 7.967 2,111,968
Cardiology 0.249 0.046 5.406 5,768,087
Urology 0.251 0.059 4.253 5,460,158
Oral and Maxillofacial Surgery 0.256 0.070 3.639 759,680
Dermatology 0.287 0.051 5.633 1,593,279
Traumatology 0.289 0.066 4.353 5,872,460
Internal medicine 0.300 0.025 11.994 41,559,436
Obstetrics 0.362 0.140 2.590 933,358
Neurosurgery 0.368 0.093 3.961 1,596,816
Orthopedics 0.375 0.119 3.146 5,335,988
Other Department 0.476 0.091 5.211 640,594
Pseudo-Code for Readmissions 0.580 0.095 6.097 851,123
Geriatrics 0.591 0.154 3.848 1,779,707
Notes: This table reports admission price elasticity estimates with respect to DRG price
changes by hospital department specialization, sorted by coefficient estimates of column
1. Column 2 reports standard errors, clustered at level of 663 ‘Base-DRGs.’ Column 3
reports the resulting t-statistic. Column 4 reports the number of 2005-2013 admissions
associated with each department specialization, underlying the regression. Reported
estimates are limited to departments with at least 500,000 associated admissions and
at most a standard error of 0.2.
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to the 76 CCS groups with at least 500,000 associated admissions and standard errors of

less than .2. Notably, elective procedure categories “cancer of prostate,” “cataract,” and

“spondylosis” yield the second, fourth, and sixth most elastic point estimates. While birth

related groups, “appendicitis,” and “fractures of upper limb” have some of the lowest price

elasticity spots. Thus, price elasticity heterogeneity by CCS also seems to positively correlate

with our subjective assessment of medical necessity.

Table 1.6: Year-over-year price elasticity estimates by CCS code

CCS Name Coef. s.e. t-stat Admissions

Short gestation; low birth weight; [...] -0.237 0.138 -1.715 504,810
Anal and rectal conditions -0.182 0.099 -1.831 685,249
Other complications of pregnancy -0.154 0.152 -1.013 913,945
Other perinatal conditions -0.104 0.079 -1.327 662,410
Appendicitis and other appendiceal conditions -0.069 0.081 -0.849 1,119,936
Diverticulosis and diverticulitis 0.008 0.058 0.132 1,067,704
Intestinal infection 0.014 0.130 0.107 2,209,912
Fracture of upper limb 0.043 0.125 0.342 2,090,911
OB-related trauma to perineum and vulva 0.055 0.041 1.334 702,624
Coronary atherosclerosis and other heart disease 0.061 0.089 0.685 4,017,348
Joint disorders and dislocations; trauma-related 0.073 0.063 1.152 1,533,340
Biliary tract disease 0.077 0.039 1.948 2,337,956
Neoplasms of unspecified nature or uncertain behavior 0.078 0.068 1.148 747,094
Other eye disorders 0.087 0.061 1.441 509,817
Other and unspecified benign neoplasm 0.089 0.045 1.959 1,486,796
Non-Hodgkin‘s lymphoma 0.100 0.054 1.844 531,398
Other complications of birth; [...] 0.103 0.030 3.422 1,514,655
Superficial injury; contusion 0.123 0.063 1.932 1,177,146
Other circulatory disease 0.125 0.055 2.265 592,927
Intestinal obstruction without hernia 0.127 0.044 2.852 943,343
Polyhydramnios and other problems of amniotic cavity 0.131 0.165 0.792 544,045
Other non-epithelial cancer of skin 0.131 0.039 3.378 517,070
Cancer of head and neck 0.136 0.081 1.667 630,022
Cancer of rectum and anus 0.136 0.042 3.227 727,740
Cancer of bronchus; lung 0.151 0.046 3.266 1,658,960
Calculus of urinary tract 0.154 0.113 1.359 1,028,380
Abdominal hernia 0.158 0.083 1.894 2,184,678
Intracranial injury 0.164 0.069 2.383 2,059,181
Other gastrointestinal disorders 0.165 0.047 3.467 1,032,978
Other diseases of kidney and ureters 0.166 0.061 2.704 803,722
Varicose veins of lower extremity 0.173 0.142 1.225 757,500
Gastritis and duodenitis 0.181 0.038 4.757 980,580
Cancer of colon 0.186 0.070 2.675 809,344
Esophageal disorders 0.192 0.045 4.243 656,042

Continued on next page
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Table 1.6 – continued from previous page

CCS Name Coef. s.e. t-stat Admissions

Peripheral and visceral atherosclerosis 0.196 0.063 3.109 1,664,390
Pancreatic disorders (not diabetes) 0.197 0.088 2.224 608,167
Complication of device; implant or graft 0.200 0.034 5.811 1,561,093
Alcohol-related mental disorders 0.202 0.048 4.243 1,240,720
Thyroid disorders 0.211 0.035 5.996 1,059,398
Gastrointestinal hemorrhage 0.217 0.055 3.972 819,438
Conditions associated with dizziness or vertigo 0.220 0.087 2.520 919,958
Benign neoplasm of uterus 0.226 0.095 2.364 593,968
Other nervous system disorders 0.234 0.142 1.646 2,274,335
Other fractures 0.240 0.102 2.352 1,438,232
Skin and subcutaneous tissue infections 0.242 0.055 4.412 1,538,222
Hypertension with complications [...] 0.245 0.064 3.834 537,912
Cancer of bladder 0.249 0.069 3.605 765,641
Epilepsy; convulsions 0.255 0.061 4.169 1,406,118
Urinary tract infections 0.255 0.026 9.648 1,384,172
Deficiency and other anemia 0.256 0.079 3.261 626,548
Acute and chronic tonsillitis 0.276 0.071 3.913 919,874
Fracture of lower limb 0.292 0.089 3.259 1,656,832
Syncope 0.295 0.065 4.547 1,339,057
Osteoarthritis 0.305 0.144 2.114 3,080,115
Pneumonia (not caused by [...]) 0.316 0.037 8.533 2,481,927
Complications of surgical procedures or medical care 0.327 0.095 3.443 1,117,326
Congestive heart failure; nonhypertensive 0.348 0.030 11.594 3,163,431
Other connective tissue disease 0.350 0.089 3.918 1,867,563
Essential hypertension 0.352 0.058 6.051 1,746,307
Abdominal pain 0.354 0.089 3.978 1,036,161
Acute myocardial infarction 0.355 0.073 4.835 1,893,564
Septicemia (except in labor) 0.364 0.060 6.082 682,552
Secondary malignancies 0.389 0.074 5.225 978,056
Other bone disease and musculoskeletal deformities 0.396 0.197 2.013 685,586
Cardiac dysrhythmias 0.397 0.099 4.019 3,126,595
Chronic obstructive pulmonary disease [...] 0.412 0.074 5.586 1,822,075
Other upper respiratory disease 0.415 0.131 3.177 1,047,682
Crushing injury or internal injury 0.428 0.120 3.574 686,946
Fracture of neck of femur (hip) 0.442 0.071 6.245 1,235,881
Diabetes mellitus with complications 0.443 0.049 9.057 1,405,756
Spondylosis; intervertebral disc disorders; [...] 0.456 0.138 3.298 4,027,175
Allergic reactions 0.504 0.137 3.687 502,334
Cataract 0.504 0.181 2.792 665,381
Retinal detachments; defects; [...] 0.528 0.174 3.033 573,742
Cancer of prostate 0.534 0.117 4.545 653,112
Transient cerebral ischemia 0.933 0.047 19.968 930,529
Notes: This table reports admission price elasticity estimates with respect to DRG price changes by CCS
code of patients’ primary diagnosis, sorted by coefficient estimates of column 1. Column 2 reports standard
errors, clustered at level of 663 ‘Base-DRGs.’ Column 3 reports the resulting t-statistic. Column 4 reports
the number of 2005-2013 admissions associated with each department, underlying the regression. Reported
estimates are limited to departments with at least 500,000 associated admissions and at most a standard
error of 0.2.
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For all elasticity estimates in this section, we do not identify hospitals’ different adjustment

margins. Hospitals may adjust at the extensive margin by changing inpatient vs outpatient

treatment for certain diagnoses. They may also change their treatment intensity, achieving

higher reimbursed DRG codes via additional procedures. Alternatively, they may simply

upcode patients into more profitable DRGs. Irrespective of the adjustment margin, we find

that heterogenous elasticity estimates correlate positively with our subjective assessment of

areas of greater numbers of elective procedures and alternative treatment options. That is,

hospitals respond stronger to financial incentives in areas of greater medical discretion.

1.6 Growth Rate and Elasticity Correlations

For the heterogeneous elasticity regressions of the last section, we also estimated group

specific admission growth rates δ̂g(i). The left column of figure 1.8 plots these growth rate

estimates by age group, hospital department, and CCS code against the corresponding

elasticity estimates.27 For each of the three differentiation levels, the two sets of estimates

correlate positively. Similarly, regressing the elasticity estimates on growth rate estimates

yields a positive, statistically significant coefficient estimates, as reported in the first row

of table 1.7. Thus, in areas where hospitals respond stronger to the financial incentive of

year-over-year price variation, they also seem to be responding stronger to the general G-DRG

incentive to increase admissions.

For additional robustness, we also estimate growth and elasticity coefficients for all three

differentiation variables jointly. Specifically, we propose to estimate the reduced-form model

E [qj,t] = exp
((
ε0 + εage(j) + εdept(j) + εccs(j)

)
ln pj,t

)
×

exp
((
δ0 + δage(j) + δdept(j) + δccs(j)

)
t+ lnAj + lnBt

)
,

27For figure 1.8 and subsequently reported correlation coefficients, we censor two outlier observations based
on the growth and elasticity point estimates; the two observations would otherwise be the primary driver of
the observed positive correlations. In particular, we drop the “Pseudo-Code for Readmissions” department and
the “Transient cerebral ischemia” CCS-code with elasticity, growth rate estimates of (0.560, 0.197) and (0.933,
0.054) respectively. We also drop the gender differentiation given that elasticity does not vary significantly by
that differentiation. Results are robust to omitting these modifications.

34



Individual Regressions Combined Ridge Regression

l

l

l
l

l

l l
ll

l
l

l
l

l

lll

l

l

l

l

l

l

l

l l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

ll

l

l l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l l
l l

l

l l l

ll
l

l
l

l

l
l

l
l

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

lll
l

l

l

l

l

l

l

l
l

l

l
l

l l

l

l
l

l

l
l

l

l

l

l

l

l l

l

l
l

l

l

l
l

l

l

l

l

l

l
l ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

−0.2

0.0

0.2

0.4

0.00

0.25

0.50

0.75

−0.5

0.0

0.5

A
geG

roup
D

epartm
ent

C
C

S

0.00 0.05 0.10 0.00 0.05 0.10
Annual Increase in Admission Rate Estimate

E
la

st
ic

ity
 E

st
im

at
e

Figure 1.8: Heterogeneous elasticity vs annual growth rate estimates
Notes: Error bars show 95 percent confidence intervals for the coefficient estimates of the single regressions,
while confidence intervals are not defined for the combined regression estimates. Each plot includes a least fit
line with a 95 percent confidence interval shaded-in in grey.
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Table 1.7: Correlates of elasticity estimates

Separate elasticity estimate by Joint elasticity estimate by

Age Dept CCS Age Dept CCS

Growth estimate 2.426** 4.464*** 1.559* 2.386*** 1.582** 1.140
(0.814) (0.819) (0.728) (0.491) (0.566) (0.640)

Growth estimate 0.139 3.595*** 1.201 1.195* 1.610** 1.356*
(0.649) (0.759) (0.688) (0.549) (0.580) (0.632)

Avg. length of stay 0.046*** 0.015** 0.018** 0.026** -0.002 0.011*
(0.008) (0.005) (0.006) (0.008) (0.004) (0.005)

Growth estimate 0.419 3.647*** 1.457* 0.958* 1.921** 1.416*
(0.541) (0.742) (0.696) (0.472) (0.598) (0.658)

Avg. length of stay 0.038*** 0.013** 0.018** 0.023** -0.003 0.011*
(0.007) (0.005) (0.006) (0.007) (0.004) (0.005)

Off-hour admission share -0.572** -0.224 -0.207 -0.510** -0.215 -0.045
(0.189) (0.158) (0.127) (0.182) (0.140) (0.125)

Notes: This table reports esimtates from regressing six sets of heterogenous elasticity estimates on three
sets of variables for the 20 age groups, 27 departments, and 75 CCS groups. Standard errors are reported
in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001.

estimating elasticity and growth rate differences by age group, hospital department special-

ization, and CCS code.28 Given the collinearity introduced when estimating elasticity and

growth rate coefficients jointly for all levels, we add the ridge penalty

λ
(
ε′ageεage + ε′deptεdept + ε′ccsεccs + 10

(
δ′ageδage + δ′deptδdept + δ′ccsδccs

))
to the maximum likelihood estimation. The right column of figure 1.8 shows the coefficient

estimates of the joint regression for the limit as λ→ 0 with the un-penalized average effect

estimates ε0 and δ0 added back in. For non-zero λ the ridge regression also has the Bayesian

interpretation of assuming normal priors for the penalized coefficients and estimating the

maximum posterior. Table 1.8 reports correlations between the estimates of the separate

regressions of section (1.5) and the combined ridge regressions with λ → 0 and deviance

minimizing λ as estimated via 10-fold cross validation (Friedman et al., 2010). As shown

in figure 1.8 and table 1.8, the combined regressions also yield positively correlated price

28For this regression, admissions are aggregated at the levels of the three grouping variables, the level of
DRG price variation, and by year.
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Table 1.8: Correlations of elasticity and annual growth estimates

Correlation of

(ε̂, ε̂R0) (ε̂, ε̂R1)
(
δ̂, δ̂R0

) (
δ̂, δ̂R1

) (
ε̂, δ̂
) (

ε̂R0, δ̂R0
) (

ε̂R1, δ̂R1
)

Age Group 0.977 0.942 0.941 0.968 0.568 0.749 0.698
Department 0.547 0.877 0.678 0.732 0.791 0.564 0.326
CCS 0.892 0.851 0.854 0.887 0.360 0.328 0.487
Notes: Correlations of coefficient estimates of price elasticit and annual growth rates for three
regression models: the basic poisson fixed effect regression run separately for each differentiating
variable with ε̂, δ̂, the combined ridge regression with penalty factor λ → 0 with ε̂R0, δ̂R0 and
cross-validation deviance minimizing λ with ε̂R1, δ̂R1. Correlations are weighted by number of
admission by differntiating variable.

elasticity and admission growth rate estimates with all correlations exceeding .3.

Exploring alternative explanations for the observed elasticity differences, table 1.7 also

reports estimates of two additional regression specifications, iteratively adding the average

length of stay and a medical necessity proxy. The average length of stay variable yields a

statistically significant and positive coefficient in all but one case; similar to findings of section

1.4, hospitals tend to respond stronger to year-over-year price changes for admissions with

higher length of stay. One explanation for this result could be that longer treatment episodes

may offer hospitals more opportunities to adjust treatments to achieve a more lucrative DRG

reimbursement. Further, the coefficient estimate on the share of patients admitted outside of

regular business hours is negative for all three elasticity outcomes; hospitals seem to respond

stronger to prices in areas with regular business hour admissions. In any case, for all regression

specifications the association of elasticity estimates and growth rate estimates is positive and

in most cases significantly different from zero.

1.7 A Model of Two Financial Incentives and Medical Discre-

tion

To offer additional interpretation of the empirical result that price elasticities and growth

rates correlate positively, we propose a simple model on hospitals’ optimization of whom

to admit and for how long. In the model, hospitals will increase admissions in response to
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both a reimbursement increase and a shift from per-diem to per-admission based payments.

We subsequently show that the magnitude of both responses is increasing in our medical

discretion parameter.

In our model, hospitals admit up to a unit mass of patients conditional on per-patient

admission utility uhos exceeding the normalized outside option value of zero. uhos is the sum

of patient utility upat and per-patient payment p minus costs chos. upat in turn is the health

benefit θh minus patient costs cpat. All terms are a function of hospital chosen length of stay

l as follows.

uhos (l, θ) = upat (l, θ) + p (l)− chos (l)

upat (l, θ) = θh (l)− cpat (l)

θ ∼ F , F : R+ → [0, 1]

h (0) = 0, h′ (0) > 0 h′ ≥ 0, lim
x→∞

h′ (x) = 0, h′′ < 0

cpat (0) , cpat′, cpat′′ > 0

p (l) = p0 + p1l

chos (0) , chos′ > 0, chos′′ ≤ 0

That is, patients only differ in their potential maximum health benefit θ, with their realized

health benefit increasing in l at a decreasing rate. Patients incur costs for mere admission to

the hospital that increase furhter at an increasing rate with l.29 Hospitals are reimbursed via

a linear contract in l that thus includes the possibility of both G-DRG per-admission and

prior per-diem payments. We model hospital costs as increasing in l at a decreasing rate, as

expensive procedures and diagnostics generally occur at the start of treatment episodes. To

ensure an interior solution for hospitals’ admission decision, we also assume

chos′′ ≥ −cpat′′, ∀l, p (l) < cpat (l) + chos (l) , (1.4)

that is, marginal costs to the patient grow at a greater rate than decreases in marginal hospital

29We may motivate these assumptions as a patient’s daily costs of not following their regular routine, as
well as nocebo effects of admission and extensive length of stay.
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costs, and admitting patients that realize no medical benefit yields negative utility for any

choice of l.

For each admitted patient, hospitals choose utility maximizing length of stay lθ, which is

defined by the first order condition

0 = θh′ (lθ) + p1 − cpat′ (lθ)− chos′ (lθ) , (1.5)

which has a unique solution as ∂2/∂l2
(
uhos (l, θ)

)
= θh′′ (l)− cpat′′ (l)− chos′′ (l) is negative

for all l. Thus, by the implicit function theorem

∂lθ
∂θ

=
h′ (lθ)

(cpat′′ + chos′′ − θh′′) (lθ)
≥ 0. (1.6)

where the inequality is strict for all θ >
(
cpat′ (0) + chos′ (0)

)
/h′ (0). Further, using the

envelope theorem and assumption (1.4), we can show that

uhos (l0, 0) < 0 ∂

∂θ
uhos (lθ, θ) = h (lθ) > 0,

Thus, there exists a unique cutoff value θ that makes hospitals indifferent between admitting

and not admitting a patient, with

θ = h
(
lθ
)−1

(
cpat + chos − p

) (
lθ
)

determining the share of admitted patients q = 1− F (θ).

To calculate hospitals’ price elasticity with respect to changes in reimbursement schedule

p
(
lθ
)
, we rely on the implicit function theorem and the envelope theorem to get

∂θ

∂p
(
lθ
) = −h

(
lθ
)−1 +

∂θ

∂lθ

∂lθ
∂p
(
lθ
) = −h

(
lθ
)−1

< 0

∴
∂ ln q
∂ ln p =

f (θ)

1− F (θ)
×
p
(
lθ
)

h
(
lθ
) > 0 (1.7)

That is, hospitals’ response to price changes is positive and proportional to the inverse Mills

ratio at admission cutoff value θ.

To derive comparative statics for the switch from per-diem to per-admission based reim-

bursements, we define a price setting mechanism that approximates the “yard-stick competition”
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goal of the G-DRG regulator.30 That is, based on the regulator’s expectation function ER,

we define

p0 = αC

p1 =
(1− α)C
ERθ≥θ [lθ]

C =
(
ERθ≥θ

[
chos (lθ)

]
+ k (1− F (θ))−1

)
= ERθ≥θ [p (lθ)]

where k denotes hospital fixed costs that are independent of admission decisions. That is, the

regulator intends to reimburse average cost. Increasing from zero to one, primitive α maps

out the continuous transition from per-diem to per-admission based payments. To map out

the effect of the transition on admission cutoff value θ, we derive

∂θ

∂α
=

∂θ

∂p0

∂p0
∂α

+
∂θ

∂p1

∂p1
∂α

= −h
(
lθ
)−1

(
1−

lθ

ERθ≥θ [lθ]

)
C (1.8)

+h
(
lθ
)−1

(
(1− α) lθ
ERθ≥θ [lθ]

)( ∂
∂αE

R
θ≥θ [lθ]

ERθ≥θ [lθ]

)
C (1.9)

−h
(
lθ
)−1

(
α+

(1− α) lθ
ERθ≥θ [lθ]

)
∂C

∂α
. (1.10)

Thus, three terms determine the financial incentives for the marginal admission.

Term (1.8) denotes the difference in effective compensation for the marginal admission

compared to the average admission. To derive the sign of this term, we note inequality

(1.6), which is guaranteed to be strict as α → 1 by equation (1.5), and subsequently we

have lθ < Eθ≥θ [lθ]. Thus, if the regulator does not underestimate the average length of stay

substantially, we have that lθ < ERθ≥θ [lθ], yielding a negative sign for term (1.8). That is, as

we transition from per-diem to per-admission reimbursement, reimbursement for the marginal

admission increases, incentivizing hospitals to admit more patients.

Terms (1.9) and (1.10) are both proportional to changes in the regulator’s expectation

30Germany’s switch from cost-plus to DRG reimbursements also introduced effective yard-stick competition.
For analytic tractability, we only model the elimination of “per-diem” marginal incentives here.
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with respect to α. Thus, if the regulator’s expectations are independent of α – e.g., ERθ≥θ [·] is

only based on past observations – both terms will be zero. Alternatively, the regulator may

have correct expectations with ERθ≥θ [·] = Eθ≥θ [·].31 As

∂lθ
∂α

=
∂p1
∂α

(
cpat′′ + chos′′ − θh′′

)
(lθ)

−1 < 0,

we then have

∂

∂α
ERθ≥θ [lθ] = ERθ≥θ

[
∂lθ
∂α

]
︸ ︷︷ ︸

<0

+
f (θ)

(1− F (θ))

(
ERθ≥θ [lθ]− lθ

)
︸ ︷︷ ︸

>0

∂θ

∂α

∂

∂α
ERθ≥θ

[
chos (lθ)

]
= ERθ≥θ

[
chos′ (lθ)

∂lθ
∂α

]
︸ ︷︷ ︸

<0

+
f (θ)

(1− F (θ))

(
ERθ≥θ

[
chos (lθ)

]
− chos

(
lθ
))

︸ ︷︷ ︸
>0

∂θ

∂α
.

Thus, if ∂θ/∂α < 0, term (1.9) amplifies the effect of term (1.8); that is, in anticipation of

hospitals’ negative length of stay response to increases in α, the regulator lowers per-diem

compensation rate p1 more gradually, which in turn increases reimbursement for the marginal

admission further. Term (1.10) on the other hand, has the opposite sign; if the regulator

correctly anticipates hospitals’ per-admission cost savings due to reductions in lθ, he will

lower overall compensation. Subsequently, we cannot sign ∂θ/∂α conclusively without further

assumptions. We nonetheless surmise that the effect of (1.10) may be smaller than the effects

of the former two terms as the expected cost savings are likely to be low in relative terms,

with chos′ (l) < chos (l) /l and hospital fixed costs k increasing per-admission compensation

further.

31To guarantee a unique solution to the price setting mechanism in this case, we also need that
∂
(
C/Eθ≥θ [lθ ]

)
/∂p1 < 1. That is, as hospitals increase lθ in response the higher per-diem payments, average

treatment costs per day grow at a slower rate. This assumption may seem intuitive, given our assumption of
marginal costs being lower than average daily costs. Yet, our weak concavity assumption on chos does not
seem sufficient to yield this result. However, if we assume that for all θ1, θ2

lθ2c
hos′ (lθ1)

∂lθ1
∂p1

+ lθ1c
hos′ (lθ2)

∂lθ2
∂p1

<
∂lθ1
∂p1

chos (lθ2) +
∂lθ2
∂p1

chos (lθ1)

then we can even show that ∂
(
C/Eθ≥θ [lθ ]

)
/∂p1 < 0. This extra result follows trivially if chos′′ = 0 from our

assumptions on chos, as chos′ (l) < chos (l) /l.
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The empirical results of section 1.3 also suggest that the effect of term (1.8) dominates the

effects of terms (1.9) and (1.10). While length of stay has been decreasing in our data, the

annual declines predate the introduction of the G-DRG system. The number of admissions on

the other hand has been growing at a greater rate since 2005. Without increasingly decreasing

length of stay, hospitals achieved the additional growth, halting the previous decline in bed

capacity (figure 1.2). Linking these findings back to our model, the effects due to changes in

length of stay as captured by terms (1.9) and (1.10) are likely to have been small, while the

positive extensive margin response as captured by term (1.8) seems to have been much larger.

Notably, the growth in admissions response has been gradual with high admission growth

rates sustained throughout the period we have data for. To link this second finding to our

static model, we note that hospitals cannot increase their bed capacity without additional

approval by the state.32 Thus, one cause for the lagged response may be hospitals’s short

run capacity constraints as length of stay adjustments take time – two effects outside of our

model.

To use our model to analyze the impact of medical discretion, we note that

∂ ln q
∂α

=
f (θ)

1− F (θ)
× ∂θ

∂α

is also proportional to the inverse Mills ratio, just as the price elasticity derived in equation

(1.7). That is, hospitals respond stronger to both incentives if the number of marginal

admissions f (θ) relative to the total number of admissions (1− F (θ)) is greater. Intuitively,

we may label an increase in this ratio as an increase in medical discretion, with more patients

near the cutoff value θ at which hospitals are indifferent between admitting and not admitting

patients. We can state this notion mathematically, by parameterizing the distribution of θ.

Assuming F to be the exponential distribution with F (x) = 1− exp (−λx), we interpret

inverse mean and shape parameter λ as our measure of medical discretion. In this case, as λ

32Germany’s states restrict the number of beds hospitals may have as mandated by §6 of the “hospital
financing law” (http://www.gesetze-im-internet.de/khg/index.html).
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increases, the average medical benefit to all patients falls while

∂

∂λ

(
f (θ)

1− F (θ)

)
= 1

and the relative number of marginal admissions increases with our medical discretion parame-

ter.

Modeling medical discretion via changes in the distribution F also affects our derivation

of ∂θ/∂α. Ceteris paribus, as the density of marginal admissions increases, ERθ≥θ [lθ] will fall,

which in turn reduces the magnitude term (1.8). Yet, with ∂2lθ/∂θ2 ≤ 0 and assuming that

the effects on the regulator’s expectations C are negligible,33 we can show that

∂

∂λ

(
ln ∂ ln q

∂α

)
≈ ∂

∂λ
ln
(

f (θ)

1− F (θ)

)
+

∂

∂λ
ln
(

1−
lθ

ERθ≥θ [lθ]

)

=
1
λ
+

lθ
∂
∂λE

R
θ≥θ [lθ]

ERθ≥θ [lθ]
(
ERθ≥θ [lθ]− lθ

)
≤ 1

λ
−

lθ

λERθ≥θ [lθ]
< 0.

Thus, the relative effect of increasing medical discretion on term (1.8) is smaller in magnitude

than the resulting increase in the inverse Mills ratio. Subsequently, hospitals respond stronger

to the admission growth incentives of the G-DRG system for higher levels of medical discretion.

This final medical discretion result relies on our exponential distribution assumption for F .

For alternative distributions, the off-setting effects of decreases in term (1.8) may potentially

be larger. Further, our model also does not explain the annual increases in admission prior to

the G-DRG introduction. Albeit at lower average rate, prior admission growth rates may have

33For ∂2lθ/∂θ2 to be less or equal to zero, we need

h′′ (lθ)︸ ︷︷ ︸
<0

(
cpat′′ + chos′′ − θh′′

)
(lθ)︸ ︷︷ ︸

>0

−h′ (lθ)︸ ︷︷ ︸
>0

(
cpat′′′ + chos′′′ − θh′′′

)
(lθ) ≤ 0,

thus requiring additional assumptions on the third derivative of the cost and health benefit functions. Further,
the effect of λ on expected average costs may not be negligible if both fixed costs k are small and chos′ is not
negligible either. In this case, a change in λ has two additional, off-setting effects: (i) an increase in medical
discretion will yield lower average treatment levels for a given θ, lowering C and subsequently p (lθ), which in
turn has a decreasing effect on the magnitudes of results (1.7) and (1.8). However, decreases in p (lθ) yield an
increase in cutoff value θ which once more increases the inverse Mills ration, thereby increasing the magnitude
of the two effects.
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already been growing at different rates by level of medical discretion. Nonetheless, our model

illustrates a distinct incentive for hospitals to increase admission numbers under the new

per-admission payment system and when per-admission payment increases, further it provides

a clear link for the magnitude of these two effects via differences in medical discretion.

1.8 Conclusion

The 2005 introduction of DRG reimbursement in Germany yielded different hospital responses

than Medicare’s 1983 PPS introduction. Unlike Medicare’s introduction, the G-DRG in-

troduction did not seem to yield additional length of stay declines. Further, the G-DRG

introduction coincided with a great increase in inpatient admission and cost growth rates.

To accommodate these increases, German hospitals seem to have halted the prior trend of

declines in bed capacity, with even greater admission growth increases seemingly halted by

state governments’ restrictions on the maximum number of hospital beds.

Concurrently, G-DRG reimbursement also resulted in year-over-year variation in relative

reimbursement rates across DRGs. We use this variation to estimate an average hospital

price elasticity of .259. Thus, German hospitals seem to respond to financial incentives at

one-year rates similar to US physicians as measured by Clemens and Gottlieb (2014). Our

price elasticity estimates differ by patient age, hospital department spcialization, and CCS

code, and seem to correlate with areas of elective medical care. Further, differences in elasticity

also seem to explain differences in admission growth rates across all levels of differentiation

that we analyze. With the aid of a simple model, we deduce that G-DRG reimbursements

seem to have increased admission growth especially in areas of great medical discretion.

The G-DRG system introduced yard-stick competition to the German hospital market,

which incentivizes hospitals to lower their average costs. In part, German hospitals seem

to have responded by admitting more marginal patients with marginal costs below average

costs, and for whom inpatient treatment may not have been the most cost effective option.

As Holmstrom and Milgrom (1991) show, a distortionary result may be unavoidable, given

that medical outcomes are difficult to measure and even more problematic to contract on.
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Falk and Szech (2013) provide another argument that the G-DRG’s increased focus on cost

efficiency may have unintended consequences.

Thus, to better evaluate the effects of G-DRG reimbursement, further research will ideally

focus on linking important medical outcomes to the G-DRG data. One possible direction might

be to apply our heterogeneous elasticity and growth rate estimation approach to Germany’s 402

government regions; one could then correlate differences in elasticity estimates with differences

and changes in mortality trends, as recorded in the official “cause of death statistics,” which

also differentiates mortality by region, age, and gender.34 A different direction for further

research may be to examine the market-wide forces of the G-DRG reimbursements, as the

system and the available data cover all inpatient services at German hospitals.35

34This data is maintained by “Statistisches Bundesamt, Wiesbaden.”

35See Gaynor et al. (2015) for a review of several important market forces in the health case sector from an
industrial organization perspective.
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Chapter 2

No Significant Returns to

Compulsory Schooling: The UK

1947 and 1972 Law Changes

Revisited

2.1 Introduction

Mincer’s least square wage regression estimates (Mincer, 1958, 1974) have been followed by a

large literature of instrumental variable estimates and other identification strategies, with

the goal of determining how much of the least square estimate is due to the causal effect

of schooling and how much of it is driven by unobservable bias. Card (1999) summarizes

that the average causal marginal return does not appear to be much lower than least square

estimates, while several instrumental variable estimates yield local average treatment effects

exceeding least squares estimates by 20 to 40 percent.1 Others have studied to what degree

least square estimates of differences in health by years of schooling are causal (Cutler and

1Imbens and Rosenbaum (2005) show that weak instrumental may have yielded biased point and standard
error estimates in the instrumental variable literature cited by Card (1999).
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Lleras-Muney, 2010, Clark and Roayer, 2013). To the degree that the effects of education on

wage and health outcomes are related and suffer from similar unobservable bias, we may be

able to pool the different outcomes for a joint instrumental variable regression. In this paper,

I derive an optimal pooled outcome for estimating the average causal effect relative to the

least squares estimate. Pooling employment, health, and family outcomes, I apply the derived

framework to estimate the effect of two changes to UK compulsory schooling law (CSL).

A number of papers have used CSL changes as an instrument for years of schooling.

Acemoglu and Angrist (2001) and Oreopoulos (2006, section 3) use multiple state specific

changes across the US.2 This regression design faces three challenges: a common trend

assumption across states,3 serially correlated errors that lead to underestimated standard errors

(Bertrand et al., 2004), and a week first stage (Imbens and Rosenbaum, 2005). Oreopoulos

(2006, section 2) and a number of other studies4 use a fuzzy regression discontinuity (FRD)

design based on two UK CSL changes that had a much stronger first stage impact; the two

laws increased the school leaving age for around 40 and 25 percent of the cohorts at the cutoff,

respectively (see figure 2.1 ).5 Yet, as section 2.2 of this paper shows, Oreopolous’ global FRD

design also severely underestimates standard errors. Similarly, Calonico et al. (2014) show

that the local linear FRD design employed by several more recent studies likely underestimates

standard errors. Correcting the standard error estimates may explain the divergence of results

in the literature – zero return estimates to those that exceed OLS estimates – as sampling

variance and sensitivity to differing regression specifications.

2See also Oreopoulos et al. (2006), Oreopoulos (2007), Oreopoulos and Salvanes (2011), Lance Lochner
(2004). Pischke and von Wachter (2008), Kemptner et al. (2011) use state specific law changes across Western
Germany.

3The strength of the first stage derives from a problematic common time trend assumption in schooling
and wage growth across states, rather than the small impacts of the law changes. Indeed, Oreopoulos (2006)
includes an additional specification in column 4 of his table 4 where he allows for differing controls and time
trends; in this specification his standard error estimates increase by factor 60, rendering his point estimates
insignificant.

4See also Clark and Roayer (2013), Devereux and Hart (2010), Machin et al. (2011)

5Oreopoulos (2006) uses the 1947 CSL change in Britain and a 1957 CSL change in Northern Ireland.
Limiting myself to the more detailed British data, I study the 1972 CSL change from age 15 to 16 in addition
to the 1947 change.
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Figure 2.1: The impact of two UK compulsory schooling increases on school leaving age

To gain greater statistical precision, I develop an alternative returns outcome that pools a

number of outcomes associated with education into a single score. That is, as a number of

outcomes including employment, family planning, and health outcomes are associated with

schooling attainment, a pooled outcome may be more predictive of a person’s human capital

than any measure individually. Section 2.3 shows that, based on a simplified linear model,

the expected schooling attainment conditional on all observed adult outcomes optimally pools

information; that is, this score minimizes the variance when estimating the relative size of

a causal instrumental variable return estimate compared to the least squares estimate that

does not control for unobserved ability. Based on the result from the simplified model, I

propose a non-linear methodology to pool an average of 194 employment, family, and health

outcomes for each of 50 UK labour force surveys (LFS) – described in section 2.4 – into a

joint attainment score that is strongly correlated with educational attainment.

Based on this approach, section 2.5 describes the empirical implementation and the

Calonico et al. (2014) FRD design. Section 2.6 presents returns estimates to the two UK

CSL changes. While precision for any single outcome measure is insufficient to reject either

estimates of zero or the OLS estimates, the 95 percent confidence interval for the pooled
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outcome is just [−7.4, 23.2] percent of the OLS return estimate. With this confidence interval

exhibiting near correct coverage in a falsification test, I conclude that the two law changes

had little to no impact in aggregate on the many outcomes recorded by the UK LFS relative

to what simple OLS regression would predict by not controlling for important unobservables,

such as innate ability or a sustained impact of socio-economic background.

2.2 Estimates Based on Oreopolous (2006) Data

The Oreopoulos (2006) returns estimates are not robust to minor regression specification

changes. After being alerted by colleagues who could not replicate his published results,

Oreopolous posted a corrigendum6 with revised estimates. The results of his preferred

specification are replicated in table 2.1 row 1, predicting wage increases of 11.4 log points for

one additional year of schooling, with a clustered standard error estimate of 3.4 log points,

for the 1947 CSL change. Yet, running the same regression specification on the same data

to predict returns to total household income instead of earnings yields a point estimate of

-8.3 log points with a standard error of 5.0 log points. Similarly, replicating Oreopolous’s

regression design for the 1972 CSL change yields negative return estimates, and Devereux

and Hart (2010) find 3 and 7 log point return, re-running Oreopolous’s regression design

separately for men and women. Thus, the different estimates exceed the 95 percent confidence

interval Oreopoulos (2008) estimated.

To test for potential under-coverage in the confidence interval estimates, I estimate point

estimates β̂i and standard errors σ̂i for all permutations i of a second placebo law change within

the Oreopoulos (2008) regression design. Given the modeling assumption of no additional

common shocks but only a smooth quartic trend across birth cohorts, the z-scores of these

estimates (β̂i/σ̂i) should follow a standard normal distribution. Yet, as figure 2.2 shows, the

actual distribution is much wider for all of the specifications Oreopoulos (2008) reports. Table

2.2 reports estimated standard deviations of 2.3 and 2.0 for the first stage and the reduced

6See Oreopoulos (2008). In this paper I will refer to the corrigendum when referencing the Oreopoulos
(2008) results, and the original paper when referencing the Oreopoulos (2006) regression specification.
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Figure 2.2: Distributions of z-scores of estimated placebo laws in Oreopoulos (2008) FRD design

Table 2.2: Standard error estimates of z-Score of placebo law changes

Outcome Age Left Education Log Earnings
Region Combined Separate Combined Separate

No age controls 1.856 2.374 1.867 2.011
Quartic age control 1.845 2.281 1.683 2.064
Age fixed effects 1.819 2.101 1.593 1.916

Average 1.840 2.252 1.714 1.997

Notes: This table reports
√

1
N

∑(
β̂i/σ̂i

)2 for the estimates of 449 and 60
placebo law changes added to the Oreopolous (2008) regression specifications
for the combined and separate first stage and the reduced form regressions. All
placebo laws are distinct from the two actual law changes and occur at least 9
years away from the data ends.
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form for the region-specific specifications. By this measure, standard error estimates seem to

be downward biased by around 50 percent.7

A number of factors may bias the Devereux and Hart (2010), Oreopoulos (2006) regres-

sion specification. Imbens and Lemieux (2008) advise against the global control regression

discontinuity design, as the design imposes unnecessarily strict identification assumptions. (i)

It requires the law treatment to have an additive effect to any pre-existing trend.8 (ii) Global

methods are sensitive to a correctly specified trend assumption in the forcing variable far

away from the discontinuity. Similarly, the quartic control in the birth year variable function

may not control flexibly enough for endogenous trends, creating serially correlated errors.

Finally, the Oreopoulos (2006) specification estimates standard errors off of only 31 clusters

without a needed standard error bias adjustment (Cameron et al., 2008).

An imbalance in controls may introduce yet another source of bias in the Oreopoulos

(2006) regression design. Figure 2.3 shows the number of observations by birth cohort that

are included in the Oreopoulos (2008) Great Britain regression. Notably, the number of

observations drops below the pre-existing trend right after the 1947 CSL change that affected

the 1934 and later born cohorts. Similarly, the average survey year of observation changes

non-smoothly by birth cohort. This lack of smoothness is largely due to Oreopolous pooling

data across UK general household surveys from different years and an age based truncation.

That is, Oreopolous restricts the GHS data to respondents aged 32 to 65 at the time of

the survey. Thus, data from surveys of a given year will discontinuously start and end as a

function of the year-of-birth forcing variable. And to the degree that responses or questions

differed significantly across different surveys, these discontinuities will violate the necessary

smoothness assumption of regression discontinuity designs.

The majority of the above identified biases can be easily addressed. (i) Rather than

7A complete estimate of standard error bias for the instrumental variable estimates also needs to account
for bias in the covariance estimate of the first stage and reduced form, as well as the delta method that yields
the final estimate. Yet, for the illustrative purposes of this section the more straight forward bias estimates for
first stage and reduced form estimates may suffice.

8As the first column of appendix figure A.1 shows, the slope average “age left education” by birth-cohort
changes distinctly after the second CSL change.
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Figure 2.3: Statistics by birth year for data used by Oreopoulos (2008)

discontinuously truncating each survey’s data by age, I decrease the importance weighting of

‘boundary’ observations smoothly to zero.9 Appendix figure A.1 shows that average survey

year and number of observations vary more smoothly by birth cohort for the re-weighted

Oreopoulos (2008) dataset. (ii) On the re-weighted dataset, I follow Imbens and Lemieux (2008)

to estimate a local linear FRD design that does not rely on the additive effect assumption, nor

information from observations far away from the discontinuity. I estimate the 2SLS returns

jointly for both law changes with a CV-MSE bandwidth of 5 years;10 I also restrict the dataset

to the affected population – respondents who left full time education before age 19.11 The

9When pooling data across surveys, I smoothly decrease the importance weight for boundary observations
as a function of birth cohort via a twice-differentiable function f over a seven-year bandwidth. That is for x =
|(dob - boundary)/7|,

w (x) =


2x2 for x < .5
1− 2 (x− 1)2 for .5 ≤ x < 1
1 for 1 ≤ x

10To estimate the optimal bandwidth for the local linear regression, I estimate the ‘out-of-sample’ mean
squared error (MSE) of local linear regressions that predicts average school leaving age and log earnings for
observations near the CSL cut-offs. That is, for each bandwidth b and each birth year y within 4 years to
the left and right of the cut offs, I predict average school leaving age and log earnings based on a prediction
model that was estimated on birth-cohorts [y− b, y) and (y, y + b], respectively. Following Imbens and Lemieux
(2008), I select the smaller bandwidth of the two MSE minimizing bandwidths.

11I also lowered the treatment indicator for the birth-cohort year that was only partially affected to the
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second part of table 2.1 reports the resulting estimates. Notably, estimated standard errors

for the 5-year bandwidth design are already more than twice as large as the Oreopoulos

(2008) estimates at around 6 log points. These standard error estimates are still likely to be

downward biased, due to a low number of clusters and a too wide bandwidth (Calonico et al.,

2014). Thus, this corrected design does not yield sufficiently precise estimates to distinguish

between the differing return estimates of Devereux and Hart (2010) and Oreopoulos (2006).

2.3 An Alternative Model that Utilizes More Data

To estimate returns to CSL increases, we can look at a larger number of adult outcomes that

are positively correlated with educational attainment. Different studies have tried to estimate

the effect of education on health outcomes, family planning, and crime using compulsory

schooling age changes as an instrument.12 However, as none of these outcomes is much more

correlated with educational attainment than log wages, a robust FRD design on a dataset

similar to that of Oreopoulos (2008) is unlikely to yield smaller standard error estimates

relative to the magnitude of the OLS return. Even for the larger dataset constructed for this

paper, robust FRD estimates to all tested individual outcomes yield 95 confidence intervals

that include both zero and the OLS estimate (see table 2.5). Yet, testing for a pooled effect

can yield more statistical power. This section derives a pooled outcome that maximizes

the statistical power of the IV estimate relative to OLS estimate for a simple linear model.

Further, the optimal pooled outcome can be generalized to utilize observations from different

datasets with differing sets of adult outcomes. Based on this result, I suggest a more general

approach that pools all relevant observed outcomes via a k-fold gradient boosting mechanism

across multiple surveys.

In the simple linear model, individual i has human capital ỹi, which increases with her

innate ability ai and her schooling attainment si, Her schooling in turn is also function of ai

share of the cohort that was affected.

12Health: Albouy and Lequien (2009), Clark and Roayer (2013), Kemptner et al. (2011), Teenage childbearing:
Black et al. (2008), Crime: Machin et al. (2011)
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and CSL zi. While both ỹi and ai are latent, the econometrician observes M labor market

outcomes ymi that are a function of ỹi. The following set of three equations describes the

linear dependencies,

si = α0 + α1ai + α2zi + ε1i

ỹi = β0 + β1ai + β2si + ε2i
y1i
...

yMi

 =


γ01
...

γ0M

+

γ11
...

γ1M

 ỹi +

ξ1i
...

ξMi


where all error terms are iid and independent with respect to the respective RHS variables,

and ai ⊥ zi. We also write the last equation in vector form as yi = γ0 + γ1ỹi + ξi, and denote

Var (ξi) = Σ. Finally, δ denotes the coefficients of the short regression

E [ỹi | si] = δ0 + δ2si

∴ δ2 =
Cov (ỹi, si)
Var (si)

The goal of the econometrician is to estimate the causal effect of schooling on human capital

relative to the short regression estimate (β2/δ2) .

If ỹi was observed, one could estimate (β2/δ2) via 2SLS and OLS, to get the sample

equivalents of

Cov (ỹi, zi) /Cov (si, zi)
Cov (ỹi, si) /Var (si)

=
β2
δ2

.

Alternatively, we can construct the pooled observed outcomes y∗i = c0 + θ′yi, for some constant

c0 and vector θ. Then, as long as θ′γ1 6= 0,

Cov (y∗i , zi) /Cov (si, zi)
Cov (y∗i , si) /Var (si)

=
Cov ((θ′γ1) ỹi, zi) /Cov (si, zi)
Cov ((θ′γ1) ỹi, si) /Var (si)

=
Cov (ỹi, zi) /Cov (si, zi)
Cov (ỹi, si) /Var (si)

,

yielding an alternative consistent estimator. For sample estimators, let

55



β̂ = (Z ′S)
−1
Z ′Y

δ̂ = (S′S)
−1
S′Y

with

Z =


1 z1
...

...

1 zN

 S =


1 s1
...

...

1 sN

 Y = c0 +


y1
′

...

yN
′

 θ.

Appendix A.1 shows the derivations for the covariance matrix of
(
β̂′ δ̂′

)′
and based on the

delta method that

Var
(
β̂2

δ̂2

)
= c1 + c2

θ′
∑
θ

(θ′γ1)
2

where constants c1, c2 are functions of the model primitives, with c2 > 0. Setting the FOC to

zero for θ, yields

θ = Σ−1γ1c3

for any c3 6= 0. That is, any y∗i satisfying the above equation minimizes the variance of the

desired estimate.

Appendix A.1 further shows that for some constants c4, c5

E [si | yi] = c4 + c5Σ−1γ1

Thus, any affine transformation of reverse regression function E [si | yi] minimizes the variance

of
(
β̂2/δ̂2

)
, yielding the optimally pooled outcome for the linear model.

We can extend our model to also allow for optimal pooling of data across multiple surveys

with different outcomes. Suppose that we observe several independent samples drawn from

the same population. However, for each sample l we might observe a different vector of adult

56



outcomes yl,i, for which create the pooled outcome

y∗l,i =
Var (si)

Var (E [si | yl,i])
E [si | yl,i] +

(
1− Var (si)

Var (E [si | yl,i])

)
E [si]

∴

E
[
y∗l,i

]
= E [si]

Cov
(
y∗l,i, si

)
= Var (si)

Thus, for any two subsets k and l and their respective coefficients vectors θk and θl

Cov
(
y∗i,k, si

)
= Cov

(
y∗i,l, si

)
∴ Cov (θk ′yk,i, si) = Cov (θl′yl,i, si)

∴ θk
′γ1k = θl

′γ1l

And for a combined regression on y∗i,l, in the limit as the number of observations
∑
lNl →∞

∑
lNlCov

(
y∗l,i, zi

)
/Cov (si, zi)∑

lNlCov
(
y∗l,i, si

)
/Var (si)

=

∑
l (θl

′γ1l)Cov (ỹi, zi) /Cov (si, zi)∑
l (θl

′γ1l)Cov (ỹi, si) /Var (si)
=
β2
δ2

and similarly to before, for some constants c6, c7l > 0

V ar

(
β̂2

δ̂2

)
= c6 +

∑
lNlc7lθl

′∑ θl∑
lNl (θl

′γ1l)
2

which once again is minimized at the proposed pooled outcome for the linear model.

The actual data generating process may not be linear, nor reducible to a single human

capital scalar. Nonetheless, the results from the linear model motivate a similar approach

for the more complicated case. That is, if additional compulsory schooling significantly

improves an individual’s human capital, which in turn has a positive impact on some job

market outcomes, these outcomes should be predictive of changes in compulsory schooling

requirements. To test this prediction, I estimate g (yi) = E [si | yi] flexibly to also pick up on

non-linear links of compulsory schooling changes and changes in job market outcomes. Just as

in the simple linear model, I subsequently test whether the CSL changes had any significant

impact on the estimation of ĝ (yi), comparing IV and OLS estimates.
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In this more general approach, the interpretation of the IV estimate divided by the OLS

estimates may be ill-defined. In particular, if yi predicts si non-linearly, ĝ (yi) is not guaranteed

to be a linear function of si, either. The least squares regression will still estimate an average

linear association of ĝ (yi) and si over the whole distribution of si. Yet, the IV regression

may only estimate a local average treatment effect, that may be specific to a narrower range

of si. To the degree that the OLS association of ĝ (yi) and si is differs over this range, the

β̂2/δ̂2 estimator suggested above will no longer estimate the relative size of the causal CSL

effect relative to the relevant OLS prediction. This caveat may nonetheless be overcome,

by re-weighting the observations of the OLS regression to estimate the effect for the same

distribution of si as affected by the IV regression.13 Subsequently, we can once more compare

how much of the OLS estimate on the pooled outcome is causal. Alternatively, if we can

graphically verify that ĝ (yi) approximately increases linearly with respect to si, this problem

may not be of first order concern.

2.4 LFS Data

The 1975-2001 UK LFS data fit into the framework derived in the previous section (UK Data

Service, 2004). The LFS was initially conducted biennially, starting in 1975; from 1981 to

1991 it was conducted annually; since, it has been conducted quarterly. The survey asks

a great number of questions about respondents’ employment, occupation, training, family,

and housing situation. Importantly, the survey also asks each respondent of working age at

what age they left full-time education, as well as their birth year and birth month.14 That

is, the LFS provides sufficiently granular date of birth information to be used as the forcing

13In the case of the two UK CSL changes studied here, the re-weighting amounts to a restriction of the data
to individuals that left full time education aged 14 and 15 for the ‘47 CSL change, and 15 and 16 for the ‘72
CSL change.

14Starting with the 2001 surveys, the birth-month information has been removed from the standard End
User License. An on-site special access license can be requested to gain access to this information for later
surveys as well. Further, most of the GHS data used in Oreopolous also has secure access information that
includes granular date of information, unlike in the public use data files that Oreopoulos (2008) uses. Gaining
access to these additional data sources is beyond the scope of this paper.
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variable in the FRD regression discontinuity design, and information on the endogenous

regressor, consistently coded across surveys. While earnings information is only recorded for

a small random subset of respondents, all surveys record a great number of other outcomes

that are strongly associated with education, including occupation codes and socioeconomic

classifications.

To employ the above regression framework, I restrict the LFS data in two ways. First,

I only include responses from women and men, aged 25 to 59/64,15 that were born in the

UK, currently live in Great Britain, and are British nationals – that is, I restrict to the

majority of individuals of working age that are likely to have been affected by the law. I

also top code the “age left full time education” variable at 22 and drop observation with

inconsistent age and date of birth information, bringing the final number of responses to

3,293,434.16 Second, I include all employment, household/family, and health outcome variables

that do not include direct information on the respondents’ age, nor their training, educational

attainment, or qualifications. I further exclude any variable that varies for less than 2.5

percent of observations. Beyond that, I do not alter the coding of any outcome variables,

as the R gbm package implementation of gradient boosted trees allows for the inclusion of

categorical variables and variables with missing data (Ridgeway, 2007). The final dataset is

summarized by survey date in table 2.3. Respondent characteristics do not vary much across

surveys.17 However, the number of potentially relevant outcome variables does vary from

year to year. As the above derived methodology does allow for differing outcome variables by

survey, this is not of concern.

15More than 99 percent of respondents left full-time education before age 25, and until recently, 60 and 65
were the UK retirement age for women and men.

16The quarterly LFS tries to include individuals for five consecutive surveys. Clustered standard errors by
birth cohort account for potentially resulting correlated errors.

17Survey characteristics only vary meaningfully for the 1983 survey. In this year the “age left education”
was coded slightly differently and only asked of respondents aged 50 and younger.
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Table 2.3: Summary statistics for UK Labour Force Surveys

Average Predictors Correlation

Survey Responses Age Male Edu Work (1) (2) (3) (4) (1) (2)

1975 85597 39.423 0.506 15.492 0.721 44 7 11 0 0.655 0.647
1977 90543 40.192 0.507 15.315 0.754 24 19 5 0 0.610 0.571
1979 84118 40.994 0.508 15.279 0.756 36 23 13 0 0.609 0.586
1981 87019 41.207 0.506 15.307 0.735 58 28 72 0 0.645 0.607
1983 58244 36.425 0.503 16.294 0.726 63 41 36 0 0.698 0.688
1984 61586 42.008 0.520 15.910 0.701 96 59 90 4 0.696 0.659
1985 63604 42.085 0.525 15.993 0.703 105 65 56 4 0.698 0.658
1986 63596 42.027 0.522 16.049 0.720 117 65 62 5 0.703 0.666
1987 62829 42.080 0.518 16.108 0.713 118 66 64 5 0.687 0.649
1988 63779 42.106 0.520 16.146 0.734 113 65 70 5 0.691 0.655
1989 64601 41.972 0.520 16.228 0.752 116 67 68 4 0.690 0.654
1990 63902 41.969 0.518 16.329 0.760 117 67 66 3 0.688 0.657
1991 63312 42.019 0.517 16.390 0.752 127 69 60 3 0.676 0.642
1992 Q2 65607 41.944 0.515 16.466 0.737 73 50 19 6 0.670 0.647
1992 Q3 65950 41.857 0.515 16.486 0.736 72 50 19 6 0.675 0.653
1992 Q4 66890 41.861 0.516 16.504 0.734 72 50 20 6 0.681 0.657
1993 Q1 67195 41.816 0.514 16.522 0.730 87 54 20 0 0.673 0.649
1993 Q2 67138 41.844 0.514 16.522 0.735 87 53 26 0 0.676 0.652
1993 Q3 66569 41.868 0.514 16.519 0.737 89 55 19 0 0.677 0.651
1993 Q4 66340 41.866 0.515 16.536 0.738 87 51 20 0 0.676 0.651
1994 Q1 65755 41.814 0.513 16.552 0.737 91 53 20 5 0.674 0.651
1994 Q2 65154 41.891 0.513 16.564 0.740 98 106 27 2 0.675 0.651
1994 Q3 65117 41.884 0.512 16.573 0.742 98 56 21 0 0.675 0.652
1994 Q4 65034 41.953 0.511 16.590 0.743 100 58 19 0 0.673 0.650
1995 Q1 65364 41.999 0.511 16.598 0.741 97 57 22 0 0.673 0.650
1995 Q2 65398 42.093 0.512 16.596 0.745 99 56 29 0 0.675 0.651
1995 Q3 65319 42.090 0.511 16.612 0.745 99 58 29 1 0.673 0.650
1995 Q4 65748 42.151 0.511 16.615 0.749 100 58 28 0 0.676 0.654
1996 Q1 67535 42.137 0.511 16.629 0.745 115 59 34 18 0.679 0.656
1996 Q2 67204 42.165 0.510 16.645 0.747 99 60 33 9 0.681 0.658
1996 Q3 66518 42.212 0.509 16.651 0.748 98 59 34 9 0.677 0.654
1996 Q4 65977 42.194 0.509 16.657 0.754 109 61 33 9 0.673 0.651
1997 Q1 65686 42.187 0.508 16.686 0.754 122 73 37 20 0.671 0.649
1997 Q2 65026 42.201 0.508 16.716 0.757 102 68 33 11 0.676 0.654
1997 Q3 64310 42.292 0.508 16.725 0.758 102 68 32 11 0.675 0.653
1997 Q4 64019 42.375 0.510 16.736 0.760 97 51 32 13 0.674 0.653
1998 Q1 64209 42.443 0.510 16.755 0.760 99 52 32 13 0.674 0.653
1998 Q2 63893 42.449 0.510 16.777 0.763 98 64 32 15 0.671 0.650
1998 Q3 63574 42.429 0.510 16.777 0.764 97 65 32 15 0.671 0.651
1998 Q4 63523 42.479 0.510 16.797 0.769 102 62 32 14 0.671 0.650
1999 Q1 63492 42.542 0.509 16.812 0.768 105 65 32 14 0.675 0.654
1999 Q2 62870 42.577 0.509 16.823 0.771 106 65 32 14 0.672 0.652
1999 Q3 62025 42.630 0.508 16.831 0.770 105 65 32 14 0.671 0.649
1999 Q4 61688 42.688 0.509 16.845 0.774 106 64 32 13 0.673 0.652

Continued on next page
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Table 2.3 – continued from previous page

Average Predictors Correlation

Survey Responses Age Male Edu Work (1) (2) (3) (4) (1) (2)

2000 Q1 61385 42.671 0.509 16.861 0.772 114 59 32 13 0.667 0.647
2000 Q2 60667 42.826 0.510 16.869 0.776 105 60 32 14 0.664 0.644
2000 Q3 59776 42.925 0.510 16.888 0.776 104 59 32 14 0.661 0.639
2000 Q4 58983 43.077 0.508 16.894 0.777 106 61 32 14 0.662 0.642
2001 Q1 59875 42.981 0.506 16.938 0.775 84 49 32 14 0.596 0.568
2001 Q2 59891 42.962 0.506 16.958 0.778 140 64 35 14 0.657 0.634

Average 65868 41.978 0.512 16.487 0.749 96.0 57.2 34.6 7.1 0.671 0.646
Notes: Summary statistics for the UK Labour Force Survey data, restricted to all British nationals, born in
the UK after 1920 and aged 25 to 60 and 65 men and women with data on ‘age left full time education’
(Edu). Number of predictor variables are by section: (1) employment, (2) unemployment, (3) household and
family characteristics, (4) health. Predictors are restricted to variables not pertaining directly to age or
qualifications earned, and that have more than 2.5 percent distinct values. The final two columns report the
correlation of the education variable and the out of sample GBM prediction (1) unconditionally, and (2)
conditional on gender and a quartic polynomial in age.

2.5 E [si | yi] Estimation and FRD Specification

To approximate the optimal pooled outcome of section 2.3, I estimate g (yi) = E [si | yi] via a

k-fold gradient boosted regression tree design. Boosted regression trees have great predictive

properties, leveraging prediction trees’ ability to detect non-linearities without overfitting as

quickly (Friedman, 2001). To further avoid overfitting to individual observations, I split my

final data randomly into K folds; for all observations i in fold k I estimate ĝ−k only based

on observations in the other K − 1 folds, to compute ‘out-of-sample’ predictions ĝ−k (yi).

Finally, since Var (E [si | yi]) and Var (si) do not differ much across the different LFS’s, I omit

estimating the final adjustment in favor of avoiding another source of in-sample error.18

For the final FRD regression, I use a robust local polynomial design following Calonico

et al. (2014). That is, I estimate

y∗i = β2si +
2∑
l=1

1 {lawi = l}

 P∑
p=1

(α1lp (dll − dobi)p 1 {dobi < dll}+ α2lp (dobi − dll)p 1 {dll < dobi}) + Ziγl

+ εi

18At this point, I have not had the time to verify that the k-fold prediction approach is sufficient to not
need any additional error adjustments beyond the Calonico et al. (2014) correction; although, the falsification
test does not indicate any under-coverage problems. Re-running the final robust FRD design on the adjusted
score only produces marginally lower standard errors, and near identical point estimates.
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near the two policy change relevant cutoffs dl1 = 19331
4 and dl2 = 19572

3 . Here y∗i is the

pooled job market outcome score, lawi indicates which policy cutoff is closer, dobi is the

birth year plus the birth month minus one half divided by 12, Zi holds additional controls,

and si is the age individual i left full-time education and will be instrumented with the two

indicators 1 {dobi > dl1} 1 {lawi = 1} and 1 {dobi > dl2} 1 {lawi = 2}. I calculate law-specific

mean squared error minimizing bandwidths using the cross-validation criterion of Imbens and

Lemieux (2008) for a linear specification (P = 1) and a triangular kernel.19 Yet, following

remark 7 of Calonico et al. (2014), I use a quadratic specification (P = 2) for the actual

regression, to avoid bias due to having selected a too wide bandwidth. Following Imbens

and Lemieux (2008), I cluster standard error estimates at birth cohort level. Results for the

two-stage least squares, and least squares estimates for different specifications are presented

in the next section.

2.6 Results

Table 2.4 summarizes the relative influence of different types of outcomes in predicting the age

at which respondents left full time education via gradient boosted trees. Relative influence is

computed as the in-sample variance reduction due to tree splits of a given variable (Friedman,

2001). Notably, over 50 percent of the prediction seems to be driven by an average of 4.76

variables encoding the respondent’s occupation for each survey. The fact that income variables

yield much less ‘influence’ on the boosted tree prediction is due to income information only

being recorded for around 10 percent of observations. Beyond employment related variables,

household structure (e.g., Marital status, and number of children) has an influence score

exceeding 10 percent. Table 2.3 also reports the correlation of the survey specific k-fold

out-of-sample predictions with the original schooling variable. Despite relying on differing

19This is equivalent to running the linear regression specification above, but re-weighting observations by

wi = max
(
0, 1−

∣∣dllawi
− dobi

∣∣ /bw
)

for bandwidth bw. For the actual specification, I also multiply these weights by the age specific observation
re-weighting, described above.
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Table 2.4: Relative influence of education predictors

Variable Section/Subsection Predictors Influence

Employment
Occupation 4.76 0.514
Industry 4.20 0.127
Employment status (last year) 2.62 0.039
Employment status 6.32 0.034
Hours 9.68 0.023
Socio-economic group 1.28 0.018
Current employment 2.76 0.013
Location 0.98 0.007
Income 3.66 0.005

Household
Household structure 14.04 0.104
Housing tenure 4.70 0.030
Household details 1.14 0.001

Unemployment
Occupation in last job 2.18 0.040
Employment status in last job 2.70 0.014

Health
Health problems 2.48 0.006

Notes: For all GBM predictions of ‘age left education’, this table
reports the average number of selected predictor (by variable subsec-
tion and section) and the relative influence on the overall prediction
(measured as the relative reduction of insample squared error due to
tree splits of the respective variables Friedman (2001)). Subsections
with an influence smaller than .5 percent are ommited
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outcome variables, for all surveys this correlation is between 0.596 and 0.703. Finally, this

correlation also remains strong after controlling for gender and a quartic trend in age. As

expected, the pooled outcome – expected educational attainment given adult outcomes – is

much more correlated with schooling than any individual recorded outcome.

Figure 2.4 presents the main graphical result, plotting both actual and predicted education
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Figure 2.4: Graphical result for effect of compulsory schooling increases on average school leaving
age: actual versus the prediction, based on adult outcomes

by birth cohort. The graph also includes fitted local polynomials for both series that are

discontinued at the law change relevant date of birth cutoffs. The direct effect of the two law

changes on attained education is easily discernible, leading to two strong discontinuous increase

in the average observed education. Yet, no discontinuity is apparent in the expected educational

attainment given adult outcomes. Appendix figure A.2 shows the average attainment by

birth cohort for four alternative outcomes, here too, no clear discontinuity is apparent at the

law change cutoffs. Finally, appendix figure A.3 shows that the number of observation by

birth cohort and outcome, as well as the averages for three control variables, all seem to be

balanced at the two cutoffs. Thus, the FRD design fulfills the requirements of a strong first

stage and balance in controls; yet, the law change does not seem to have a discernible effect.

Table 2.5 presents OLS and IV schooling return estimates for a number of specifications.
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Table 2.5: OLS and regression discontinuity results for pooled outcome

OLS 2SLS FS 1 FS 2 RF 1 RF 2 N

Baseline Regression
0.431*** 0.034 0.425*** 0.262*** 0.022 -0.001 835491
(0.003) (0.034) (0.025) (0.025) (0.018) (0.015)

Alternative Controls
None 0.436*** 0.058 0.414*** 0.374*** 0.032 0.019 831895

(0.002) (0.036) (0.062) (0.062) (0.024) (0.019)
Birth Month, Gender 0.430*** 0.035 0.426*** 0.262*** 0.023 -0.002 835491

(0.003) (0.034) (0.025) (0.025) (0.018) (0.015)
Birth Month, Gender, Age 0.418*** 0.029 0.415*** 0.256*** 0.015 -0.006 1083062

(0.002) (0.032) (0.021) (0.025) (0.015) (0.015)
Alternative Bandwidths

1/2 MSE bandwidth 0.429*** 0.012 0.436*** 0.286*** 0.019 -0.023 406253
(0.004) (0.046) (0.036) (0.039) (0.023) (0.023)

2x MSE bandwidth 0.432*** 0.052 0.415*** 0.294*** 0.011 0.026 1764909
(0.002) (0.027) (0.020) (0.025) (0.014) (0.015)

Left Education Age Rstriction
By Age 18 0.410*** 0.041 0.439*** 0.361*** 0.012 0.022* 663096

(0.005) (0.021) (0.011) (0.009) (0.013) (0.011)
Aged 14/15 and 15/16 0.316*** -0.001 0.452*** 0.352*** -0.024 0.027* 533454

(0.010) (0.024) (0.013) (0.016) (0.013) (0.013)
Single Law Change

‘47 law change 0.405*** 0.052 0.425*** 0.022 300117
(0.004) (0.040) (0.025) (0.018)

‘72 law change 0.446*** -0.005 0.262*** -0.001 535374
(0.002) (0.059) (0.025) (0.015)

Alternative Outcomes
Log(Earnings) 0.120*** 0.063 0.211*** 0.013 70346

(0.001) (0.042) (0.055) (0.011)
Working 0.024*** 0.007 0.425*** 0.262*** 0.004 0.001 835491

(0.001) (0.011) (0.025) (0.025) (0.006) (0.005)
Healthy 0.017*** -0.009 0.452*** 0.240*** 0.006 -0.013** 552997

(0.001) (0.016) (0.031) (0.031) (0.009) (0.004)
Single 0.007*** -0.006 0.425*** 0.262*** -0.003 -0.001 835491

(0.001) (0.007) (0.025) (0.025) (0.003) (0.004)
Notes: Each row reports the estimates of a ‘returns to one additional year of schooling’ regression dicontinuity design. The
baseline design estimates the impact on a pooled job market outcome score for all 1975-2001 UK Labour Force Survey
respondants with ages between 25 and 64, who are white, british nationals, and born and living in Great Britain. Estimation is
based on a local linear regression design around two CSL relevant brith-cohort cut-offs with a triangular kernel and 4-year
bandwidth (CV-MSE minimizing for linear controls). Each regression includes both linear and quadratic controls in the forcing
variable left and right of each cutoff to correct for finite sample bias (Calonico et al 2014) and controls for the birth month
unless otherwise specified. The columns report the least square, IV, two first stage, and two second stage estimates with
standard errors clustered at the birth-cohort level in round parentheses. *p < 0.05, **p < 0.01, ***p < 0.001. The final column
reports the number of responses included in the regression design.
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The main specification estimates that one additional year of education is associated with a

pooled outcome score .43. However, the FRD only estimates a causal return of .034. To get

the 95 percent confidence interval for the ratio, we can use the delta method and approximate
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2 ≈ .18 is close to zero. That is, the

FRD estimates a relative return of 7.9 percent with a 95 percent confidence interval of

[−7.4, 23.2] percent relative to the OLS estimate.

The estimated confidence intervals are bias corrected following Calonico et al. (2014).

That is, I estimate CV-MSE minimizing bandwidths of 5.25 years and 3.5 years for the local

linear design, while estimating the final design with quartic controls.20 Further, I estimate

point estimates and standard errors for the first stage and reduced form for the set of all

possible placebo laws, using the average bandwidth of 4.35 years and only data that lies

between the two policy changes. Given that the null hypothesis for these placebo laws should

be true, the estimate z-values should be distributed normally. Appendix figure A.5 plots the

actual distributions against a standard normal distribution, which seems to fit well. Further

the two distributions have root mean squared z-value estimates very close to one (.94 and

1.12). Thus, unlike the regression design in section 2.2, the estimated standard errors do not

seem substantially downward biased here.

To verify that the main result is not driven by a non-linear relationship of si and pooled

outcome ĝ−k (yi), figure 2.5 plots OLS regression for observations used in final regression.

Encouragingly, the increase in the average pooled outcome from school leaving age 14 to 15

for the ‘47 CSL and 15 to 16 for the ‘72 CSL seems to follow the OLS fit over the entire

range, approximately. As a further robustness check, I re-estimated the main OLS and FRD

designs on two restricted subsets: individuals leaving school before the age 18, and individuals

leaving school aged 14 to 15 and 15 to 16 for the two CSL changes. While the OLS point

20Appendix figure A.5 shows the CV criterion for each law, the first stage, the reduced form, and each of
the different control specifications.
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Figure 2.5: Graphical result for OLS regression, based on weighted observations included in main
regression specification

estimate decreases slightly, the overall result does not change, with 95 percent confidence

interval estimates of [−0.1, 20.2] and [−14.9, 14.5] percent of the OLS return, respectively.

Table 2.5 also presents four additional sets of alternative specifications. Changing the

set of controls, adding a female indicator and a quartic control in age, or removing the birth

month control,21 does change the result qualitatively. Similarly, halving or doubling the

bandwidth does not yield significant FRD estimates, nor does estimating returns to a single

law change. I also estimate returns to four individual outcome variables for all surveys that

included them. None of these estimates is significantly different from zero either, though the

estimated standard errors are much larger yielding 95 percent confidence intervals that also

include the OLS return. Yet, for all pooled outcome specifications none of the 95 percent

confidence intervals even include half the OLS estimate.

21As birth month influences the reporting of the age left education variable, I include it in all other
specifications to reduce variance and improve the fit of the first stage.
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2.7 Conclusion

Estimating a zero return to CSL changes is no longer novel. Pischke and von Wachter (2008)

estimated zero earnings returns to CSL changes in Western Germany. Clark and Roayer

(2013) estimate no significant health returns to the UK CSL changes. And, Devereux and

Hart (2010) found near zero returns to two UK CSL changes, while closely following the

regression design of Oreopoulos (2008). Reconciling these conflicting results with the previous

literature that found substantial positive estimates may seem challenging. Yet, as highlighted

in section 2.2, these discrepancies may simply be due to too rigid identification assumptions

and severely downward biased error estimates. To gain more statistical power, I derive a

pooled outcome that aggregates a great number of adult outcomes that are associated with

educational attainment, and allows for pooling data from different surveys. Constructing this

pooled outcome on data from 50 LFS allows me to compute a narrow 95 percent confidence,

bounding the causal returns to the two UK CSL increases to only [−7.6%, 23.4%] of the OLS

return estimate.

While the LFS data does not allow for a precise return estimate on earnings alone, the

low returns estimate to the pooled labor outcome makes a distinct, more substantial effect on

earnings unlikely. I can offer three defenses for nonetheless positive schooling returns. (i) The

regression analysis only identifies a LATE for one additional year of schooling for individuals

for whom the CSL increase is binding. (ii) The returns were attenuated due to an inability

to adequately accommodate the substantial number of students staying an extra year in the

short run. (iii) While the additional schooling had no measurable effect on a pooled measure

of labor market outcomes it improved non-labor market outcomes, not measured by the LFS.

On the other hand, we might also argue for the unlikeliness of an entire third of a British

cohort myopically under-investing in education. In this light, the recent focus in the literature

on quality rather than mere quantity of schooling appears to be more than appropriate.
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Chapter 3

Returns to Scale of Data: Evidence

from Online Retail1

3.1 Introduction

As firms collect growing amounts of data about the markets in which they operate, the

competitiveness of any one firm can be affected by exactly what and how much data it can

draw on for its decision-making. In consumer markets, for instance, a firm with a larger existing

base of consumers will, all else equal, likely have more precise estimates of its decision-relevant

parameters, such as those describing demand. Therefore, due to endogenous information sets,

relative firm competitiveness can be a function of market structure, particularly in settings

with large degrees of private information. Furthermore, when future information sets depend

on current competitiveness – such as when a firm that offers higher quality at present will

attract more consumers in the future – the resulting feedback loop can dynamically reinforce

asymmetries between market participants.

We empirically document the magnitude of these effects – how great are precision gains

from additional data, how do they translate into static competitiveness, and what is medium-

run adoption – in the setting of a large online retailer. This firm sells a large number of

1Co-authored with Daniel Pollmann
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products and needs to decide how to rank these when displaying its product catalog to

consumers arriving at its website. The attractiveness of products is a set of parameters the

retailer estimates based on observed consumer behavior, including how many views and orders

a given product received. We have access to the entire browsing, price, and order data of

the retailer for a long period of time, meaning that we see exactly that part of the firm’s

information set which is derived from privately observable consumer behavior. We know that

in practice, the firm’s decision-making relies heavily on this data, making this an ideal setting

in which to study how a firm’s ability to display and sell attractive products as well as attract

repeat consumer interest depends on the inference on product quality it can draw from its

existing customer data.

To isolate the return on additional consumer data, we ask what estimates of product

quality hypothetical firms of different sizes would have arrived at, how that would have

translated into different decision vectors, and what the resulting changes in static and dynamic

outcomes would have been. We construct these counterfactuals by splitting the available

data into training datasets of different sizes and analyzing outcomes on hold-out data when

solving the firm optimization problem using estimates for the former. More specifically, we

run regressions for whether consumers choose to click on and view products from a menu

displayed to them, where the parameters of interest are product-level fixed effects. This

yields estimates of product quality which approximate those used in practice by the retailer’s

algorithms. Importantly, we interpret the training data quality estimates not as the true

parameter values, but rather the counterfactual beliefs of firms of different sizes, which we use

to have each of them reoptimize. We then present several statistics of the economic value

associated with the resulting decision vectors calculated on our hold-out dataset. Specifically,

we use this data to reestimate the product click regression and obtain statistically independent

estimates for the number of product views implied by the model for each of the hypothetical

firms. We find that the hold-out estimates imply substantial returns to using larger fractions

of the data in identifying the top products, with significantly larger average quality at the top

of the first catalog page as well as for average quality of the entire page. We then present
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estimates showing that consumers who were displayed a higher quality set of products on

their first visit – controlling for granular time trends and other factors – recorded significantly

more clicks and purchases on the same day as well as greater engagement in the period after.

We take our reduced-form counterfactual calculations as evidence that in a realistic setting,

there are large returns to observing additional consumer data. The main limitation of our

approach is that the product rankings present in the data we use to form counterfactual beliefs

are chosen by the firm and affect the rate of learning about the set of quality parameters.

More specifically, the firm faces an optimization problem precisely because many consumers

will only consider the subset of products that is most prominently displayed at the top of the

first page of results. By implication, a firm will learn substantially faster about the quality

of these products. Firms of different hypothetical sizes could optimize their ranking in light

of expected sample sizes; small firms, for instance, may choose to experiment differently or

specialize to reduce the number of relevant parameters. In addition, since the actual ranking

of products in the observed data is based on the retailer’s entire data, it is optimized to

efficiently learn about the most relevant elements of the quality vector potentially more so

than a smaller firm would know to. One avenue of further research is a more structural

analysis of this effect of active learning.

We think that the general mechanism we consider extends beyond the technology and

retail sectors to other parts of the economy, in particular consumer-facing firms. In credit and

insurance markets, firms typically use predictive models for the risk of potential borrowers

or insurees (Bundorf et al., 2012, Einav et al., 2013, 2012). Since rich models will require

large sample sizes for training and validation, larger firms can make acceptance and pricing

decisions that more accurately reflect underlying risk. Examples of other settings in which

firms collect large amounts of consumer data include electronic heath records and the utilities

and communication sectors.

Even more broadly, this paper connects to a growing literature in economics that highlights

new opportunities for research using “big data” and develops appropriate statistical methods

for doing so. Here, we look directly at firms as econometricians and analyze what they
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can learn from growing amounts of data in high-dimensional settings. We believe that the

endogeneity of how much data a given firm observes creates interesting and potentially very

important interactions with market structure.

Section 3.2 describes the empirical setting and available data in more detail. Section 3.3

sets up a stylized model of firm optimization and presents our corresponding statistical model

which we use for both our own estimates and to model firm beliefs. We then present estimates

from this model and the resulting effects on firm optimization in section 3.4 before concluding

with a brief discussion in the final section.

3.2 Empirical Setting and Data

The data were obtained from an online retailer selling consumer durable products across a

variety of categories. The majority of these categories, taken together, constitute one of the

merchandise lines used by the U.S. Census Bureau to subcategorize “Electronic Shopping

and Mail-Order Houses” (Bureau, 2015), which includes e-commerce. The retailer sources

its products from manufacturers or their distributors and sells them directly to consumers,

primarily through one main website, on which it is the only seller. It is among the largest

online retailers in its product segment. The product mix varies by category from well-known

brands to differentiated niche products, and its main competitors are online and offline retailers

selling identical or substitute products.

Within a typical product category, we think of products as substitutes, with each potential

customer having unit demand. However, consumers may purchase from several categories.

Even before revenue weighting, the median product ordered in our sample exceeds the minimum

amount beyond which shipping is free. The percentage of products which is returned by

customers is in the single digits, so that we can generally assume that customers order only

products they intend to purchase. The products are differentiated vertically, ranging from

entry level to more upmarket, as well as horizontally, with taste heterogeneity playing a large

role.

The retailer uses direct marketing, primarily via email to registered customers, but also
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advertises online on search engines or other websites as well as offline, for example through TV

spots. Consumers arrive to the website either directly by entering its URL in their browser,

from a search engine, or by clicking on a link or banner in an email or on another website.

We focus on consumers who arrive to the catalog page for a specific product category,

where a category is sufficiently narrowly defined that all of its products are at least minimally

substitutable. These category pages are the largest channel for orders, and they are the primary

means by which consumers can search the differentiated product assortment. Consumers can

arrive at these pages either through an external search engine, by navigating through from the

homepage, or by entering a search term on the website, which, unless very specific, will refer

them to one of the catalog pages, possibly with filters corresponding to their search query

applied. The set of products displayed on these pages displayed on these pages, in general,

does not condition on any consumer-specific information, so the firm problem studied here

is that of selecting a default list of products intended to cater to the overall population of

consumers.

In the data we use, each of these catalog pages shows a grid of 48 products, and consumers

can click through to see additional pages with the same number of products from this category.

Alternatively, they can filter the set of products displayed by attributes such as price as well

as product characteristics which will vary across categories. For each product, consumers see

a photo, the product and brand name, its price, and average reviews. After clicking on a

product, a new page loads up that provides additional photos and information for the specific

product as well as the option to add this product to the shopping cart and check out to

purchase the product.

In our dataset, we observe all of the navigational choices made by the consumer, that is,

all category and product pages viewed in their exact order, typically referred to as clickstream.

Consumer visits can (sometimes imperfectly) be matched over time to a panel using identifiers

based on browser cookies, IP addresses, or log-ins. In addition to product clicks, we also

observe whether any of the products were ordered. Crucially, we also observe all products with

their position on the catalog page, irrespective of whether they were clicked. Furthermore, we
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know the price of each product at each point in time.

The retailer sets its own prices, subject to minimum advertised prices set by manufacturers

for some of the products. Price variation arises from cost shocks (either to wholesale costs

or estimated total costs), explicit experimentation, business logic, and managerial decisions

affecting the overall price level, which may translate differentially to the product level. In what

follows, we will treat the resulting within-product price variation as conditionally exogenous

after controlling for the product as well as granular time trends. This stands in contrast to

relying on (less common) explicit sales periods; in fact, we discard observations for which the

difference between current and median log product price is larger than .25.

In addition, the retailer controls the order in which products appear on the catalog pages.

Variation in the sort order arises from product stock-outs, explicit experimentation (so-called

A/B tests comparing discrete variations of sort orders as well as giving “exposure” to new or

otherwise promising products), and an optimization algorithm that produces a fair amount of

variation, which, if not explicitly stochastic, is nonetheless useful (and used in practice) to

learn the relative attractiveness of products. Both stock-outs and the optimization algorithm,

which is run at regular time intervals to compute a new sort order, generate variation over

time, while experiments may lead to variation at any one point in time.

In addition to the above criteria, we restrict the sample to consumers browsing on computers

rather than mobile devices, which is true for the majority of visits and an even larger fraction

of orders. We also exclude sort orders that were explicitly personalized for a subset of repeat

visitors based on which products they had clicked on in the past. This represents a small

fraction of traffic, does not apply to new visitors, and is generally less useful for the purposes

of our analysis (and this traffic is hence also excluded by the internal optimization algorithm

responsible for the sort order displayed to the vast majority of consumers). We additionally

exclude visitors flagged as bots by the retailer’s internal logic. The final sample includes tens

of millions of visits in under two years. In our analysis, we collect the product categories

in our sample further into product groups based on an internal taxonomy and estimate the

model separately for these groups.
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For our analysis, we do not rely exclusively on experimental variation. In this paper,

we study what an actual firm learns about consumer demand, and in practice firms often

need to rely on observational data when their optimization and estimation problem is very

high-dimensional, such as sorting a very large number of products by attractiveness or pricing

using product-specific elasticities with a long tail of products. Explicit experimentation is more

commonly used to estimate the treatment effect of discrete variations or different optimization

algorithms, each of which produces one set of prices, sort orders, etc., in line with the purpose

of the experiment (see Dinerstein et al. 2014 for an example). In fact, we specifically aim to

show that even for realistic sizes of observational data seen by a large firm, the estimation and

economic optimization problem can be sufficiently challenging such that there can be large

returns to additional scale, and there simply is not enough traffic on which to run experiments

for these to serve as the basis of estimation alone.

With this dataset in hand, we observe exactly what the firm observes about revealed

consumer preferences, which is crucial given our empirical interest. It is based on the same

underlying data the retailer uses to optimize its sort order and other aspects of its website

and business.

3.3 Empirical Model of Product Quality

For each category, the firm needs to rank its products j = 1, . . . , J into sort positions

r = 1, . . . ,R for any consumer i that visits the page. We assume that the firm uses a simple

separable model to approximate its static optimization problem over the expected profits

from any such ranking:

max
σ

E

[
R∑
r=1

Yi,j(r;σ)bj

]
= max

σ

R∑
r=1

γrµj(r;σ)bj , (3.1)

where Yi,j(r;σ) ∈ {0, 1} is the binary outcome of interest of product j listed in position r given a

ranking (or permutation) σ for consumer i, and bj ∈ R is the associated benefit. The expected value is

assumed to be separable in two dimensions: additively across products, and multiplicatively between
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products and positions, which enter with parameters γr and µj(r;σ), respectively.2

When maximizing the expected number of clicks, Yi,j(r;σ) is an indicator for whether

the product in question is clicked by consumer i, and bj = 1 for j = 1, . . . , J . Under the

assumption that positions effects are decreasing,3 {γr}Rr=1 forms a decreasing sequence, and it

is optimal for the firm to sort products in descending order of product effects {µj}Jj=1.

The central object of interest to the firm is thus the vector of product effects µ, which

translates the question of this paper – how do firms of different size differ in their competi-

tiveness due to the amount of data they observe? – into i) how well firms of different size can

estimate and learn the vector µ, and ii) how this impacts their profits. We operationalize this

task, derived from the stylized yet empirically relevant model above, by estimating product

quality as a fixed effect in a logit regression that also includes a position as well as price effect

alongside a rich set of controls:

Yi,j = 1
{
δj − αpi,j + x′i,jβ + εi,j ≥ 0

}
, (3.2)

where Yi,j is the outcome of product j for consumer i, pi,j is the log price, xi,j is a vector

including controls such as for position and time, δj is the fixed effect for product j, and εi,j is

assumed to follow an iid EV (1) distribution conditional on all the right-hand side variables.

Under this assumption, the estimated coefficients have a causal interpretation as certain

average elasticities with respect to price and position. However, a truly structural model of

the data-generating process should also account for dependence between products in both

search and purchase decisions, which is ignored here. We nonetheless find the estimates on

price and position (presented in section 3.4.1) useful both on their own and as a guide for the

magnitude of effects that should be captured in a structural model.

The main purpose of this regression, however, is to deliver estimates of product quality

2Lahaie and McAfee (2011) use the same model to argue that in constructing an efficient ranking,
some degree of shrinkage should optimally be applied to estimates of advertiser effects when these
are uncertain. See Jeziorski and Segal (2015) and Jeziorski and Moorthy (2015) for empirical models
weakening these separability assumptions in the sponsored-search context.

3See Ursu (2016) for evidence of large effects in a field experiment run by a travel intermediary.
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that are qualitatively similar to those a firm would have arrived at. A Bayesian firm would

use the data to update its prior, leading to posterior beliefs on product qualities, while a

frequentist firm would also likely shrink its estimates if it cares about precision rather than

unbiasedness. Put more practically, for a large number of products, a firm seems unlikely

to favor a product that was successful in its only observation over one that consistently

outperformed for many observations, at least in the static problem analyzed here. For this

reason, we impose a ridge L2 penalty on the fixed-effect coefficients, leading to a penalized

likelihood function which adds to the unpenalized likelihood based on model (3.2) the sum of

squared fixed-effect coefficients weighted by a constant λ. The maximand of this expression

is a maximum a posteriori estimate and equals the mode of the posterior distribution from

using a Normal prior δ ∼ N (0, 2λ).4

In the logit model, for small probabilities,

Pr (Yi,j = 1 | pi,j ,xi,j) =
exp

(
δj − αpi,j + x′i,jβ

)
1 + exp

(
δj − αpi,j + x′i,jβ

)
≈ exp

(
δj − αpi,j + x′i,jβ

)
,

which factors into a product effect and a position effect, yielding an approximate correspondence

to the relevant parameters of the stylized model (3.2) above, for which the optimal policy

is simply assortative. Taking the fixed-effect vector δ to be our empirical analogue to µ, we

thus assume that the firm sorts its products according to its vector of estimates δ̂, which, as

we discuss above, need not be the maximum likelihood estimate. In addition to economic

interpretability, the decision for the logit model is motivated by computational considerations,

which loom large for a dataset of the size considered and will play an even larger role for any

firm that needs to regularly update these estimates.

Finally, we note that for the parameters of the logit model (3.2) to be consistently estimated,

we require the number observations per product to grow large to avoid incidental parameter

4We therefore choose λ based on the variance of fixed-effect estimates in a typical product category.
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bias.5 Here, we are specifically interested in an empirical setting in which fixed effects cannot

all be estimated with arbitrary precision. We find it plausible, however, that the bias in the

estimates of the “common” parameters, chiefly price and position, can vanish sufficiently fast

to be of second order to our empirical question, while at the same time, the gain in precision

in the fixed effect estimates that would result from sampling additional observations of the

respective units would still be economically meaningful. We are unaware of theoretical or

simulation results on incidental parameter bias in a setting such as the present in which

different units of the panel are potentially sampled at very different rates. Bias considerations

may furthermore be of less than usual importance since the estimation problem at hand is

closer to a prediction problem, specifically for which products have the highest quality as

perceived by consumers.

3.4 Results

We now present estimates for how firm competitiveness varies with firm size as a result of

how much data a firm has available to estimate product quality. We consider competitiveness

to be the true quality the firm is able to serve consumers after solving optimization problem

(3.1) when using its own (noisy) estimates. We look at both short-run click outcomes, which

correspond exactly to this measure of competitiveness, and long-run (orders and future visits)

outcomes, which may be directly or indirectly affected as well.

Throughout this section, we will work with different non-overlapping subsamples of the

original dataset, using a hold-out sample to evaluate the prediction quality a firm would

have achieved from a given training sample when running the logit regression (3.2).6 This

5An alternative approach (Chamberlain, 1980), based on a conditional likelihood, does not suffer from this
type of bias but has at least two other deficiencies in our context: i) it does not yield straightforward estimates
of the fixed-effect parameters (which are considered nuisance parameters in many panel data models), ii) the
computation of the conditional likelihood becomes extremely computationally burdensome and numerically
unstable (underflow problems) once the panel dimension is moderate rather than small.

6This relies on numbering browser cookies based on order of arrival and assigning them to groups based on
this number. For instance, to get two groups of the same size, we would divide the sample into one subsample
with all even arrival numbers and another with all odd. Due to the large number of new cookies on any given
day, this yields approximately random, temporally stratified assignments.
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ensures that the quality estimates we assume the firm to use are statistically independent of

our realized competitiveness measure, which is important since true competitiveness (3.1) is

unobserved. Instead, we rely on an empirical analogues obtained by re-running regression

(3.2) on the hold-out data.

By working with subsamples, we are naturally limited to counterfactual experiments in

which the firm is shrunk relative to its actual size. We think that these are nonetheless

interesting since the firm in question is relatively large, and because the effects in question can

be expected to change continuously as a function of firm size, allowing reasonable extrapolation

beyond the actual firm size. A more principled though also more model-dependent alternative

approach would rely on a structural model, which could also allow for active learning through

experimentation on the firm side.

We start this section by providing evidence that in our setting, changes in the sample

size translate into noticeable changes in the precision of a firm’s quality estimates. Then, we

present the core results of this paper: a firm’s quality level can be substantially affected by

the amount of available data, and higher quality translates into more clicks and purchases the

day of, and though measured with less precision, likely in subsequent days and weeks.

3.4.1 Quality Model

The main parameters of interest in our empirical model (3.2) are the product qualities

measured by fixed effects, position effects, and click price elasticities. Across product groups,

the estimated click price elasticity varies from -.68 to -2.29 with a median of -1.56. While

purchase elasticities tend to be a multiple of these numbers, we nonetheless take them as

evidence that consumer search on the catalog pages we consider is directed and meaningfully

reflects underlying preferences. Figure 3.1 shows the estimated position effects on the first

catalog page as an average over all categories, with the shaded intervals around the mean

representing one standard deviation of the effect over product categories in each direction.

The drop from the first position to the bottom of the page is substantial, reducing click

interest by around 70%.
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Figure 3.1: Position effect (first page) relative to first position

Our fixed-effect estimates suggest substantial heterogeneity in product quality, as illustrated

by a histogram of the estimated product fixed effects for an example category in figure 3.2. It

is important to remember, however, that these do not necessarily give the true distribution

of quality parameters. The distribution of the maximum likelihood estimates would be

substantially more dispersed than the distribution of the underlying parameters due to

estimation error. We shrink these estimates to reflect the quality inferences a firm would have

drawn, and the resulting estimates form a distribution that can have greater or lower variance

than the true quality distribution. For interpretation, products to the left of the distribution

are not necessarily of low quality to all consumers; the estimates are particular average levels,

and with heterogeneous preferences, products may appeal to consumer types of different mass.

Also, it is perhaps interesting that estimates in the right tail are shrunk less than those in the

left tail because they are estimated on a greater number of impressions due to the retailer’s

own optimization. This is reflected in the shift of the quality distribution once reweighted by

impressions.
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Figure 3.2: Quality histogram for example category

3.4.2 Effects on Precision

We first present evidence of sample variability as a function of sample size by plotting the

fixed-effect estimates from regression (3.2) run on two non-overlapping subsamples, where

we vary the size of each of the subsamples as a fraction of the original full dataset. This

illustrates the extent to which two identical firms, represented by the two subsamples, would

have agreed in their quality assessment of different products.

We compare sample variability along two dimensions. First, as stated, we vary the fraction

of the original data used. Second, we perform a comparison across product categories, which

vary by how many consumers visited the corresponding catalog pages in the original data as

well as by how product impressions break down over products; an impression is recorded for a

product whenever it appears in a menu on a page visited by a consumer. To this end, we

construct a measure of the extent to which a particular product category is dominated by its

head or tail products as well as of the traffic a particular category saw. Let Nc be the total

number of impressions for a particular product category, and let sj be the fraction of product

impressions that were received by product j. Then, φc = Nc ·
∑
j s

2
j , the Herfindahl index

of product impressions in category c multiplied by the total number of product impressions
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Figure 3.3: Variability in quality estimates for example categories and different fractions of training
data

in that category, is exactly the expected number of impressions we would get if we drew

a product impression at random from its empirical distribution over products and looked

at the total number of impressions the associated product received in our sample. This

measure is proportional to the number of consumers in a particular product category and the

concentration statistic
∑
j s

2
j , meaning that it will be higher for product categories which are

etiher dominated by its head products or see more traffic. We think of the measure as useful

because it indicates how many observations the parameter estimate of the average product

being displayed is based on.

Figure 3.3 provides such an assessment of sample variability in the form of a 2-by-2 plot

with a less concentrated (tail) category on the top contrasted with a highly concentrated

(head) category on the bottom (for roughly equal N), using one sixth of the original data on
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the left and one half on the right. In each of the four displays, a dot represents a products,

and its first and second coordinate are equal to the estimates from two different samples. We

observe in the top left display that for a tail-dominated category, the dispersion in quality

estimates is substantial when using only one sixth of the data, with many of the observations

far off the 45 degree line along which there would be perfect agreement between the two

samples. For the optimization problem (3.1), it is of greatest relevance to identify and properly

order the highest-quality products. While the estimates overall roughly align along the 45

degree line, the signal-to-noise ratio substantially deteriorates when one zooms in on the right

tail of each of the four displays, where the highest-quality products are located. As we triple

the sample size for the tail category to one half of the original data and consider the top right

display, we see a substantial improvement in precision, as evidenced by much lower dispersion

from the 45 degree line. We see a similar improvement as we move from tail to head category

for each of the two data fractions in the bottom half of the plot, though some dispersion still

remains.

Next, we plot the view-weighted correlation between samples as well as average standard

error in product quality estimates for each category against our statistic φc (figure 3.4),

again for the two data sizes of one sixth and one half of the original data. In addition,

we show how the standard error in the estimates compares to the standard deviation in

the quality estimates at the class level. The latter variation pools true underlying product

heterogeneity and estimation error, although the estimates have been shrunk in order to

reduce the effect of the latter. While its variance is increasing in φc, the interpretation is thus

not entirely straightforward. We note, however, that the categories with the highest precision

are actually the ones with the largest variance in the distribution of estimates, which implies

that differences in the latter cannot be driven by estimation error. Rather, it may reflect

either differences in true underlying heterogeneity or the fact that estimates based on more

observations are shrunk less.
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Figure 3.4: Variability in estimates by average number of impressions of products displayed (φc)
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Figure 3.5: Average out-of-sample quality by position for sort order based on different training data
sizes

3.4.3 Effects on Clicks, Purchases, and Repeat Visits

We now analyze how firm competitiveness varies as a function of the available data. To do

so, we compare outcomes in hold-out data for firm decisions taken based on estimates from

training datasets of different size.

We begin by calculating the quality of a counterfactual ranking chosen based on estimates

from samples of different size. To this end, we estimate logit regression (3.2) on training data

consisting of one sixth, one third, and two thirds of the original data as well as on hold-out

data containing one sixth of the original observations. We then construct a ranking of the

top 100 products according to the different training data estimates to model the solution

hypothetical firms of different sizes would have used for optimization problem (3.1); this

corresponds to the first two pages of products for a given category. For each product chosen,

there is now a hold-out quality estimate which we can use to analyze the quality of the ranking.

In figure 3.5, we plot an average across product categories of said quality, weighted by the
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Figure 3.6: Gain in expected number of clicks from larger training data

respective number of consumers, for each of the 100 positions. The values on the y-axis are

our estimates for the fixed effects that enter the logit link function in (3.2) relative to a mean

of zero. It is evident that larger samples are particularly powerful in identifying the top

products. We see that the effect decreases by position, and that the gap between one sixth

and one third of the sample is much larger than that between one third and one sixth, though

it still remains economically significant.

Figure 3.6 shows the average implied loss in the number of expected clicks relative to

using five sixths of the data. Going from just one sixth of the data to one third brings an

improvement of roughly 14 log points, while doubling the data size again to two thirds yields

an additional gain of 8 log points.

Having documented a relationship between the size of training data used and quality

supplied, we now turn to the effect of quality on different outcomes. Figure 3.7 plots changes

in the realized number of clicks in hold-out data against changes in the expected number

of clicks according to model estimates while controlling for granular time and other effects.

The slope is large for both new and existing customers and very close to linear as seen by

how well the averages of 20 equal-sized bins align. At roughly .4, though, it is quite different
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Figure 3.7: Actual number of clicks against page quality/predicted number

from the perfect prediction scenario of a unit slope. Possible reasons include misspecification,

estimation error, and consumers finding other ways to view products. Overall, however,

changes in the predicted quality strongly correlate with the actual number of clicks received.

Finally, we consider the effect of changes in the quality of a catalog page on purchases

and repeat impressions. For 20 equal-sized bins, figure 3.8 shows the effect of this quality

for new and existing customers on the probability of placing an order (top) or looking at an

additional page (both in any product category). We see mostly increasing relationships, with

larger slopes for new customers for whom we only consider the very first catalog page they

saw in our data, which suggests that consumer beliefs are most sensitive to initial experience,

and that continuing customers are either generally more loyal or have already accumulated a

stock of positive experiences, making them less sensitive. The effect appears to persist over

time, even beyond one week, though at that point, admittedly, the corresponding regression

estimates, presented in table 3.1, become relatively noisy.
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Table 3.1: Effect of out-of-sample quality prediction on economic outcomes

Customer Type Same day 1-7 days after >7 days after

Purchase

New 0.210*** 0.079 0.090
(0.050) (0.078) (0.084)

Existing 0.045 0.012 -0.009
(0.042) (0.047) (0.044)

Additional search

New 0.064*** 0.054 0.022
(0.014) (0.031) (0.029)

Existing 0.043** 0.057** 0.042**
(0.014) (0.018) (0.015)

Number of clicked products

New 0.393***
(0.012)

Existing 0.411***
(0.011)

Notes: This table reports coefficient estimates on the effect of an
out-of-sample estimate of the quality/expected number of clicks of a
catalog page by customer type. All regressions control for category and
customer type specific time trends via splines with 5 and 10 degrees of
freedom, respectively. Standard errors – clustered at category-day level
– are reported in parentheses. *p < 0.05, **p < 0.01, ***p < 0.001.
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3.5 Discussion

Our approach to modelling product quality is more closely related to empirical models

describing differentiated product demand in product space (e.g., Hausman, 1994) rather than

characteristic space (e.g., Berry, 1994, Berry et al., 1995), which is perhaps the more common

choice in industrial organization and related fields today. In our setting, however, the primary

objects of interest are measures of product quality, which motivates estimating these explicitly.

In addition, the sort order algorithm used by the firm in practice also treats product quality

levels as individual parameters rather than combinations of preferences over characteristics.

Part of the problem is likely the difficulty of modelling quality as a function of covariates for

millions of products across a wide range of different product categories, but more importantly,

many of the products are very strongly differentiated based on tastes, and these are difficult

to capture on the basis of covariates alone. It would nonetheless be interesting to consider

an approach that shrinks product quality levels towards a function of covariates; while this

should improve precision for any size of dataset, it is not entirely clear whether it would be

more beneficial for firms with more or less data. Furthermore, a covariate-based approach

would run the risk of reducing the variety of top-ranked products in terms of characteristics.

In competitive settings, the importance of data may also depend on whether these data and

the resulting optimization decisions are privately or publicly observable. For instance, in the

setting at hand, firms are able to observe the sort orders chosen by competitors, which allows

for social learning and may reduce informational asymmetries between firms. The usefulness

of this information will then depend on the overlap in product catalogs between retailers as

well as on the extent to which they specialize and cater to different consumer preferences.

Firms may also experiment to learn qualities resulting in statically suboptimal actions, which

complicates social learning for their competitors in this setting because outcomes are privately

observed and inference can only be drawn from actions played. Observability will also be

affected when firms tailor or personalize their sort order by conditioning on covariates or

past behavior (e.g., Fradkin, 2015). Depending on the structure of demand, this will further

increase the importance of having large amounts of data, since quality needs to now be
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estimated conditionally, and individual cells of data can be quite small.

Finally, we note that we have only considered returns to data while keeping the available

technology fixed. Many technology firms in particular have hired economists, computer

scientists, and data scientists to solve complex optimization and estimation problems. In

many cases, these solutions will scale relatively well, so that the associated fixed costs will

ammortize significantly faster for larger firms. As a result, these firms may command better

infrastructure and human capital and therefore be able to use their data resources more

efficiently.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Results in Linear Model

Following the setup of section 2.3, we can write down the covariance matrix for the joint

estimator as

V ar

 β̂
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 V ar (rβi) (Z
′S)−1 Z ′Z (S′Z)−1 Cov (rβi, rδi) (S′S)−1

V ar (rδi) (S
′S)−1


where

rβi = (θ′γ1) (β1ai + ε2i) + θ′ξi

rδi = (θ′γ1)

(
β1

(
ai
σ2
s − α2

1σ
2
a

σ2
s

− α1σ
2
a

σ2
s

(α2zi + ε1i)

)
+ ε2i

)
+ θ′ξi

σ2
x = Var (x)

∴

V ar (rβi) = (θ′γ1)
2
(
β2

1σ
2
a + σ2

ε2

)
+ θ′Σθ

Cov (rβi, rδi) = (θ′γ1)
2
(
β2

1σ
2
a

(
σ2
s − α2

1σ
2
a

σ2
s

)
+ σ2

ε2

)
++θ′Σθ

V ar (rδi) = (θ′γ1)
2

β2
1

σ2
a

(
σ2
s − α2

1σ
2
a

σ2
s

)2

+

(
α1σ

2
a

σ2
s

)2 (
α2

2σ
2
z + σ2

ε1

)+ σ2
ε2

++θ′Σθ

97



and thus using the delta method, we have

V ar

(
β̂2

δ̂2

)
=

 1
δ

β
δ2


′

V ar
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1
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β2

δ4 k2V ar (rδi)

)
= c0 + c1(θ

′γ1)
−2

(θ′Σθ)

where c0, c1 are constants based only on the model primitives and c1 > 0. Thus, solving this

for a zero FOC wrt θ, and exploiting the symmetry of Σ, we have

∂

∂θ
V ar

(
β̂2

δ̂2

)
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2θ′Σ
(θ′γ1)

2 − 2γ1
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3

)
∴

Σθ = γ1

(
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θ′γ1

)
∴

θ = aΣ−1γ1

for any a 6= 0.

Finally, we can solve for the reverse regression E [si | {ymi}m], by noting

E [si | ỹi] = c10 + c11ỹi

E [ỹi | yi] = c20 + c21
(

Σ−1γ1
)′
yi

E [si | yi] = E [E [si | ỹi] | yi]

= c30 + c11c21
(

Σ−1γ1
)′
yi

The result for E [ỹi | yi] is due to a simple application of the “Sherman–Morrison formula” to
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the solve

Var (yi)−1 Cov (yi, ỹi) = (Σ + γ1γ1
′Var (ỹi))−1

(γ1Var (ỹi))

=

(
Σ−1 +

Σ−1γ1γ1
′Σ−1

Var (ỹi)−1 + γ1′Σ−1γ1

)
γ1Var (ỹi)(

Var (ỹi) γ1
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)
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A.2 Additional Figures
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Figure A.1: Graphical summary of re-weighted Oreopolous (2008) data
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Figure A.2: Individual LFS outcomes, averaged by birth cohort.
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Figure A.3: Observations and control variables for LFS data
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Figure A.4: Cross-validated MSE by bandwidth and specification

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2
Z−Score

D
en

si
ty

Age Control

First Stage

Reduced Form

Standard Normal

Figure A.5: Z-score distribution of placebo test
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