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Abstract

In this dissertation, we consider semi-parametric estimation problems under semi-

supervised (SS) settings, wherein the available data consists of a small or moderate sized

labeled data (L), and a much larger unlabeled data (U). Such data arises naturally from

settings where the outcome, unlike the covariates, is expensive to obtain, a frequent scenario

in modern studies involving large electronic databases. It is often of interest in SS settings

to investigate if and when U can be exploited to improve estimation efficiency, compared to

supervised estimators based on L only.

In Chapter 1, we propose a class of Efficient and Adaptive Semi-Supervised Estimators

(EASE) for linear regression. These are semi-non-parametric imputation based two-step

estimators adaptive to model mis-specification, leading to improved efficiency under model

mis-specification, and equal (optimal) efficiency when the linear model holds. This adaptive

property is crucial for advocating safe use of U. We provide asymptotic results establishing

our claims, followed by simulations and application to real data.

In Chapter 2, we provide a unified framework for SS M-estimation problems based on

general estimating equations, and propose a family of EASE estimators that are always as

efficient as the supervised estimator and more efficient whenever U is actually informative

for the parameter of interest. For a subclass of problems, we also provide a flexible semi-

non-parametric imputation strategy for constructing EASE. We provide asymptotic results

establishing our claims, followed by simulations and application to real data.

In Chapter 3, we consider regressing a binary outcome (Y) on some covariates (X) based
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on a large unlabeled data with observations only for X, and additionally, a surrogate (S)

which can predict Y with high accuracy when it assumes extreme values. Assuming Y and S

both follow single index models versus X, we show that under sparsity assumptions, we can

recover the regression parameter of Y versus X through a least squares LASSO estimator

based on the subset of the data restricted to the extreme sets of S with Y imputed using the

surrogacy of S. We provide sharp finite sample performance guarantees for our estimator,

followed by simulations and application to real data.
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1.1 Summary

We consider the linear regression problem under semi-supervised settings wherein the avail-

able data typically consists of: (i) a small or moderate sized ‘labeled’ data, and (ii) a much

larger sized ‘unlabeled’ data. Such data arises naturally from settings where the outcome,

unlike the covariates, is expensive to obtain, a frequent scenario in modern studies involving

large databases like electronic medical records (EMR). Supervised estimators like the ordi-

nary least squares (OLS) estimator utilize only the labeled data. It is often of interest to

investigate if and when the unlabeled data can be exploited to improve estimation of the

regression parameter in the adopted linear model.

In this paper, we propose a class of ‘Efficient and Adaptive Semi-Supervised Estimators’

(EASE) to improve estimation efficiency over OLS. The proposed estimators are two-step

estimators adaptive to model mis-specification, thus leading to improved efficiency under

model mis-specification, and equal (optimal) efficiency when the linear model holds. This

adaptive property, often unaddressed in the existing literature, is quite crucial for advocating

‘safe’ use of the unlabeled data. The construction of EASE primarily involves: a flexible

‘semi-non-parametric’ imputation step for imputing the outcomes in the unlabeled data,

followed by simply fitting a linear model to the imputed unlabeled data. The imputation step

involves: a smoothing step that works well even when the number of covariates is not small

(through use of dimension reduction techniques, if needed), and a follow up ‘refitting’ step

along with a cross-validation (CV) strategy that are employed to address under-smoothing

and over-fitting, two issues often encountered in two-step estimators involving a first-step

smoothing. We establish asymptotic results including consistency, asymptotic normality

and the adaptive properties of EASE. We also provide influence function expansions and a

‘double’ CV strategy for consistent variance estimation. The results are further validated

through extensive finite sample simulations followed by application to a real dataset from

an EMR study of autoimmune diseases.
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1.2 Introduction

In recent years, semi-supervised learning (SSL) has emerged as an exciting new area of re-

search in statistics and machine learning. A detailed discussion on SSL including its practical

relevance, the primary question of interest in SSL, and the existing relevant literature can

be found in Chapelle et al. (2006) and Zhu (2008). A typical semi-supervised (SS) setting,

as represented in Figure 1.1, is characterized by two types of available data: (i) a small or

moderate sized ‘labeled’ data, L, containing observations for both an outcome Y and a set

of covariates X of interest, and (ii) an ‘unlabeled’ data, U , of much larger size but having

observations only for the covariates X. By virtue of its large size, U essentially gives us the

distribution of X, denoted henceforth by PX. Such a setting arises naturally whenever the

covariates are easily available so that unlabeled data is plentiful, but the outcome is costly

or difficult to obtain, thereby limiting the size of L. This scenario is directly relevant to a

variety of practical problems, especially in the modern ‘big data’ era, with massive unlabeled

datasets (often electronically recorded) becoming increasingly available and tractable. A few

familiar examples include machine learning problems like text mining, web page classifica-

tion, speech recognition, natural language processing etc.

Figure 1.1: Schematic representation of a typical semi-supervised setting.
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Among biomedical applications, a particularly interesting problem where SSL can be of

great use is the statistical analysis of electronic medical records (EMR) data. Endowed with

a wealth of de-identified clinical and phenotype data for large patient cohorts, EMR linked

with bio-repositories are increasingly gaining popularity as rich resources of data for discov-

ery research (Kohane, 2011). Such large scale datasets obtained in a cost-effective and timely

manner are of great importance in modern medical research for addressing important ques-

tions such as the biological role of genetic variants in disease susceptibility and progression

(Kohane, 2011). However, one major bottleneck impeding EMR driven research is the diffi-

culty in obtaining validated phenotype information (Liao et al., 2010) since they are labor

intensive or expensive to obtain. Thus, gold standard labels and genomic measurements are

typically available only for a small subset nested within a large cohort. In contrast, digitally

recorded data on the clinical variables are often available on all subjects, highlighting the

necessity and utility of developing robust SSL methods that can leverage such rich source of

auxiliary information to improve phenotype definition and estimation precision.

SSL primarily distinguishes from standard supervised methods by making use of U , an

information that is ignored by the latter. The ultimate question of interest in SSL is to in-

vestigate if and when this information can be exploited to improve the efficiency over a given

supervised approach. It is important to note that while the SS set-up can be viewed as a

missing data problem, it is quite different from a standard missing data setting as the proba-

bility of missingness tends to 1 in SSL (so that the ‘positivity assumption’ typically assumed

in the classical missing data literature is violated here). Interestingly, characterization of the

missingness mechanism, although quite crucial, has often stayed implicit in the SSL litera-

ture (Lafferty and Wasserman, 2007). Nevertheless, it has mostly been assumed as ‘missing

completely at random’ which is typically the case, with the labeled data being obtained

from labeling a random subset, selected by design, from a large unlabeled data. It is also

worth noting that the analysis of SS settings under more general missingness mechanisms is

considerably more complicated due to the violation of the positivity assumption.
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The theoretical underpinnings of SSL including its scope and the consequences of using

the unlabeled data have been studied to some extent by Castelli and Cover (1995, 1996) for

classification problems and later, more generally by Lafferty and Wasserman (2007), where it

has been noted that SSL can improve efficiency only if PX and the conditional distribution of

Y given X, denoted henceforth by PY |X, are somehow related. In recent years, several graph

based non-parametric SSL approaches have been proposed (Zhu, 2005; Belkin et al., 2006)

relying, implicitly or explicitly, on assumptions relating PX to PY |X. These assumptions have

been characterized more formally in Lafferty and Wasserman (2007).

Simple parametric modeling, often appealing due to its interpretability, however has

been a little less studied in SSL. Perhaps the most well-known method in the literature

is the ‘generative model’ approach for classification problems (Nigam et al., 2000; Nigam,

2001) which is based on modeling the joint distribution of (Y,X) as an identifiable mixture

of parametric models, thereby implicitly relating PY |X and PX. However, these approaches

depend strongly on the validity of the assumed mixture model, violation of which can actually

degrade their performance compared to the supervised approach (Cozman and Cohen, 2001;

Cozman et al., 2003). Recently, Culp (2013) proposed SS methods for regularized linear

regression. However, no theoretical properties were provided for their method that could

desirably guarantee that it is always at least as efficient as the supervised counterpart.

In general, if the assumed working model for PY |X is correct and the parameter of interest

is not related to PX, then one cannot possibly gain through SSL by using the knowledge of PX

(Zhang and Oles, 2000; Seeger, 2002). On the other hand, under model mis-specification, the

target parameter may inherently depend on PX, and thus imply the potential utility of U in

improving the estimation. However, inappropriate usage of U may lead to degradation of the

estimation precision. This therefore signifies the need for robust and efficient SS estimators

that are adaptive to model mis-specification, so that they are as efficient as the supervised

estimator under the correct model and more efficient under model mis-specification. To the

best of our knowledge, work done along these lines is relatively scarce in the SSL literature,
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one notable exception being the recent paper by Kawakita and Kanamori (2013) where they

propose such adaptive SS estimators using density ratio methods that rely on basis function

expansions. However, no data adaptive procedure was provided for selecting the bases,

which could greatly impact the amount of the efficiency gain. Lastly, most existing methods

rely on asymptotic results without accounting for the finite sample over-fitting bias, which

can significantly affect the finite sample performance of the estimators, as well as also pose

challenges in interval estimation and inference based on these estimators.

To address these questions, we propose here a class of Efficient and Adaptive Semi-

Supervised Estimators (EASE) in the context of linear regression problems. We essentially

adopt a semi-parametric perspective wherein the adopted linear ‘working’ model can be po-

tentially mis-specified, and the goal is to obtain efficient and adaptive SS estimators of the

regression parameter through robust usage of U . The EASE estimators are two-step estima-

tors with a simple and scalable construction based on a first step of ‘semi-non-parametric’

(SNP) imputation which includes a smoothing step and a follow-up ‘refitting’ step. In the

second step, we regress the imputed outcomes against the covariates using the unlabeled data

to obtain our SNP imputation based SS estimator, and then further combine it optimally

with the supervised estimator to obtain the final EASE estimator. Dimension reduction

methods are also employed in the smoothing step to accommodate higher dimensional X,

if necessary. Further, we extensively adopt cross-validation (CV) techniques in the impu-

tation, leading to some interesting and useful theoretical properties typically not observed

for smoothing based two-step estimators. We demonstrate that EASE is guaranteed to be

efficient and adaptive in the sense discussed above, and further achieves semi-parametric

optimality whenever the SNP imputation is ‘sufficient’ or the linear model holds. We also

provide data adaptive methods to optimally select the directions for smoothing when dimen-

sion reduction is needed.

The rest of this paper is organized as follows. In section 1.3, we formally introduce and

formulate the SS linear regression problem. In section 1.4, we construct a family of SS

6



estimators based on SNP imputation and establish all their properties, and further propose

the EASE as a refinement of these estimators. For all our proposed estimators, we also

address their associated inference procedures based on ‘double’ CV methods. In section 1.5,

we discuss a kernel smoothing based implementation of the SNP imputation and establish

all its properties. In section 1.6, we discuss SS dimension reduction techniques, useful for

implementing the SNP imputation. Simulation results and an application to an EMR study

are shown in section 1.7, followed by a concluding discussion in section 1.8. Proofs of all the

theoretical results are given in Appendix A.

1.3 Problem Set-up

1.3.1 Preliminaries

Data Representation: Let Y ∈ R denote the outcome variable and X ∈ Rp denote the

covariate vector, where p is fixed, and let Z = (Y,X′)′. Then the entire data available for

analysis can be represented as S = (L∪U), where L = {Zi ≡ (Yi,X
′
i)
′ : i = 1, ..., n} consists

of n independent and identically distributed (i.i.d.) observations from the joint distribution

PZ of Z, U = {Xj : j = 1, ..., N} consists of N i.i.d. realizations of X, and L ⊥⊥ U .

Basic Assumptions: (a) We assume that N � n and hence as n → ∞, the proportion

of observed outcomes, n/N , tends to 0, which makes SSL different from a classical missing

data problem where this proportion is typically assumed to be bounded away from zero. (b)

The underlying Y for subjects in U are assumed to be ‘missing completely at random’, so

that Z ∼ PZ for all subjects in S. (c) We assume throughout that Z has finite 2nd moments,

Var(X) is positive definite and X has a compact support X ⊆ Rp. Let L2(PX) denote

the space of all R-valued measurable functions of X having finite L2 norm with respect to

(w.r.t.) PX. (d) Since the moments of X are essentially known due to the large (potentially

infinite) size of U , we also assume without loss of generality (w.l.o.g.) that E(X) = 0 and

Var(X) = Ip, where Ip denotes the (p× p) identity matrix.

7



1.3.2 The Target Parameter and Its Supervised Estimator

We consider the linear regression working model given by:

Y =
−→
X ′θ + ε, with E(ε | X) = 0, (1.1)

where, for any vector x, −→x = (1,x′)′ ∈ R(p+1) and θ ∈ R(p+1) is an unknown regression

parameter. Accounting for the potential mis-specification of the working model (1.1), we

define the target parameter of interest as a model free parameter, as follows:

Definition 1.1. The target parameter θ0 = (α0,β
′
0)′ for linear regression may be defined as

the solution to the normal equations: E{
−→
X(Y −

−→
X ′θ)} = 0 in θ ∈ R(p+1), or equivalently,

θ0 may be defined as: θ0 = arg min
θ∈R(p+1)

E(Y −
−→
X ′θ)2.

Existence and uniqueness of θ0 in 1.1 is clear. Further,
−→
X ′θ0 is the L2 projection of E(Y |X)

∈ L2(PX) onto the subspace of all linear functions of X and hence, is the best linear predictor

of Y given X. The linear model (1.1) is correct (else, mis-specified) if and only if E(Y |X)

lies in this space (in which case E(Y |X) =
−→
X ′θ0). When the model is correct, θ0 depends

only on PY |X, not on PX. Hence, improved estimation of θ0 through SSL is impossible in

this case unless further assumptions relating θ0 to PX are made. On the other hand, under

model mis-specification, the normal equations defining θ0 inherently depend on PX, thereby

implying the potential utility of SSL in improving the estimation of θ0 in this case.

The usual supervised estimator of θ0 is the OLS estimator θ̂, the solution in θ to the

equation: n−1
∑n

i=1

−→
X i(Yi−

−→
X ′iθ) = 0, the normal equations based on L. Under assumptions

(c)-(d), it is well known that as n→∞,

n
1
2 (θ̂ − θ0) = n−

1
2

n∑
i=1

ψ0(Zi) +Op

(
n−

1
2

)
d→ N(p+1)[0,Σ(gθ0)], (1.2)

where ψ0(Z) =
−→
X(Y −

−→
X ′θ0), Σ(g) = E[

−→
X
−→
X ′{Y − g(X)}2] for any g(.) ∈ L2(PX), gθ(X) =

−→
X ′θ ∀ θ ∈ R(p+1), and for any a, Na[0,Σ] denotes the a-variate Gaussian distribution with

8



mean 0 and covariance matrix Σ.

Our primary goal is to obtain an efficient SS estimator of θ0 using the entire training data

S and compare its efficiency to that of θ̂. It is worth noting that the estimation efficiency of

θ0 also relates to the predictive performance of the fitted linear model since its out-of-sample

prediction error is directly related to the mean squared error of the parameter estimate.

1.4 A Family of Imputation Based SS Estimators

If Y in U were actually observed, then one would simply fit the working model to the entire

data in S for estimating θ0. Our general approach is precisely motivated by this intuition.

We first attempt to impute the missing Y in U based on suitable training of L in step (I).

Then in step (II), we fit the linear model (1.1) to U with the imputed outcomes. Clearly,

the imputation is critical. Inaccurate imputation would lead to biased estimate of θ0, while

inadequate imputation would result in loss of efficiency. We next consider SS estimators

constructed under two imputation strategies for step (I) including a fully non-parametric

imputation based on kernel smoothing (KS), and a semi-non-parametric (SNP) imputation

that involves a smoothing step and a follow up ‘refitting’ step. Although the construction

of the final EASE estimator is based on the SNP imputation strategy, it is helpful to begin

with a discussion of the first strategy in order to appropriately motivate and elucidate the

discussion on EASE and the SNP imputation strategy.

1.4.1 A Simple SS Estimator via Fully Non-Parametric Imputa-
tion

We present here an estimator based on a fully non-parametric imputation involving KS when

p is small. For simplicity, we shall assume here that X is continuous with a density f(.).

Let m(x) = E(Y |X = x) and l(x) = m(x)f(x). Consider the local constant KS estimator

of m(x),

m̂(x) =
1
nhp

∑n
i=1{Kh(Xi,x)}Yi

1
nhp

∑n
i=1 Kh(Xi,x)

=
l̂(x)

f̂(x)
, (1.3)
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where Kh(u,v) = K{(u− v)/h} with K : Rp → R being some suitable kernel function and

h = h(n) > 0 being the bandwidth. With m̂(.) as defined in (1.3), we now fit (1.1) to the

imputed unlabeled data: [{m̂(Xj),X
′
j}′ : j = 1, ..., N ] and obtain a SS estimator θ̂np of θ0

as the solution in θ to:

1

N

N∑
j=1

−→
Xj{m̂(Xj)−

−→
X ′jθ} = 0. (1.4)

In order to study the properties of θ̂np, we would require uniform (L∞) convergence of m̂(.) to

m(.), a problem that has been extensively studied in the non-parametric statistics literature

(Newey, 1994; Andrews, 1995; Masry, 1996; Hansen, 2008) under fairly general settings and

assumptions. In particular, we would assume the following regularity conditions to hold:

Assumption 1.1. (i) K(.) is a symmetric qth order kernel for some integer q ≥ 2. (ii) K(.)

is bounded, Lipschitz continuous and has a bounded support K ⊆ Rp. (iii) E(|Y |s) < ∞

for some s > 2. E(|Y |s|X = x)f(x) and f(x) are bounded on X . (iv) f(x) is bounded

away from 0 on X . (v) m(.) and f(.) are q times continuously differentiable with bounded

qth derivatives on some open set X0 ⊇ X . (vi) For any δ > 0, let Aδ ⊆ Rp denote the set

{(x−X)/δ : x ∈ X}. Then, for small enough δ, Aδ ⊇ K almost surely (a.s.).

Conditions (i)-(v) are fairly standard in the literature. In (v), the set X0 is needed mostly to

make the notion of differentiability well-defined, with both m(.) and f(.) understood to have

been analytically extended over (X0\X ). Condition (vi) implicitly controls the tail behaviour

of X, requiring that perturbations of X in the form of (X + δφ) with φ ∈ K (bounded) and

δ small enough, belong to X a.s. [PX]. We now present our result on θ̂np.

Theorem 1.1. Suppose n
1
2hq → 0 and (log n)/(n

1
2hp) → 0 as n → ∞. Then, under

Assumption 1.1,

n
1
2

(
θ̂np − θ0

)
= n−

1
2

n∑
i=1

ψeff(Zi) +Op(rn)
d→ N(p+1)[0,Σ(m)], (1.5)

where ψeff(Z) =
−→
X{Y −m(X)} and rn = n

1
2hq + (log n)/(n

1
2hp) + (n/N)

1
2 .

10



Remark 1.1. Theorem 1.1 establishes the efficient and adaptive nature of θ̂np. The asymp-

totic variance Σ(m) of θ̂np satisfies Σ(g) − Σ(m) = 0 ∀ g(.) ∈ L2(X) and the inequality

is strict unless g(.) = m(.) a.s. [PX]. Hence, θ̂np is asymptotically optimal among the

class of all regular and asymptotically linear (RAL) estimators of θ0 with influence func-

tion (IF) of the form:
−→
X{Y − g(X)} with g(.) ∈ L2(PX). In particular, θ̂np is more

efficient than θ̂ whenever (1.1) is mis-specified, and equally efficient when (1.1) is cor-

rect i.e. m(.) = gθ0(.). Further, for the semi-parametric model MX = {(PY |X,PX) :

PX is known, PY |X is unrestricted upto assumptions (a)-(d)}, it can be shown that the ‘effi-

cient’ IF for estimating θ0 is given by ψeff(Z). Thus, θ̂np also achieves the semi-parametric

efficiency bound under MX. Lastly, note that at any parametric sub-model in MX that

corresponds to (1.1) being correct, θ̂ also achieves optimality, thus showing that underMX,

it is not possible to improve upon θ̂ if the linear model is correct.

Remark 1.2. The asymptotic results in Theorem 1.1 require a kernel of order q > p

and h smaller in order than the ‘optimal’ bandwidth order hopt = O(n−1/(2q+p)). This

under-smoothing requirement, often encountered in two-step estimators involving a first-

step smoothing (Newey et al., 1998), generally results in sub-optimal performance of m̂(.).

The optimal under-smoothed bandwidth order for Theorem 1.1 is given by: O(n−1/(q+p)).

1.4.2 SS Estimators Based on Semi-Non-Parametric (SNP) Im-
putation

The simple and intuitive imputation strategy in section 1.4.1 based on a fully non-parametric

p-dimensional KS is however often undesirable in practice owing to the curse of dimension-

ality. In order to accommodate larger p, we now propose a more flexible SNP imputation

method involving a dimension reduction, if needed, followed by a non-parametric calibration.

An additional ‘refitting’ step is proposed to reduce the impact of bias from non-parametric

estimation and possibly inadequate imputation due to dimension reduction. We also intro-

duce some flexibility in terms of the smoothing methods, apart from KS, that can be used
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for the non-parametric calibration.

Let r ≤ p be a fixed positive integer and let Pr = [p1, ..,pr]p×r be any rank r trans-

formation matrix. Let XPr = P′rX. Given (r,Pr), we may now consider approximating

the regression function E(Y |X) by smoothing Y over the r dimensional XPr instead of the

original X ∈ Rp. In general, Pr can be user-defined and data dependent. A few reasonable

choices of Pr are discussed in section 1.6. If Pr depends only on the distribution of X, it

may be assumed to be known given the SS setting considered. If Pr also depends on the

distribution of Y , then it needs to be estimated from L and the smoothing needs to be

performed using the estimated Pr.

For approximating E(Y |X), we may consider any reasonable smoothing technique T .

Some examples of T include KS, kernel machine regression and smoothing splines. Let

m(x; Pr) denote the ‘target function’ for smoothing Y over XPr using T . For notational

simplicity, the dependence of m(x; Pr) and other quantities on T is suppressed throughout.

For T := KS, the appropriate target function is given by: m(x; Pr) = mPr(P
′
rx), where

mPr(z) ≡ E(Y |XPr = z). For basis function expansion based methods, m(x; Pr) will typi-

cally correspond to the L2 projection of m(x) ≡ E(Y |X = x) ∈ L2(PX) onto the functional

space spanned by the basis functions associated with T . The results in this section apply

to any choice of T that satisfies the required conditions. In section 1.5, we provide more

specific results for the implementation of our methods using T := KS. Note that we do not

assume m(x; Pr) = m(x) anywhere and hence the name ‘semi-non-parametric’ imputation.

Obviously, the case with Pr = Ip and T := KS reduces to a fully non-parametric approach.

We next describe the two sub-steps involved in step (I) of the SNP imputation: (Ia)

smoothing, and (Ib) refitting.

(Ia) Smoothing Step: With Pr and m(x; Pr) as defined above, let P̂r and m̂(x; P̂r)

respectively denote their estimators based on L. In order to address potential overfitting

issues in the subsequent steps, we further consider generalized versions of these estimators

12



based on K-fold CV for a given fixed integer K ≥ 1. For any K ≥ 2, let {Lk}Kk=1 denote

a random partition of L into K disjoint subsets of equal sizes, nK = n/K, with index sets

{Ik}Kk=1. Let L−k denote the set excluding Lk with size n−K = n−nK and respective index set

I−k . Let P̂r,k and m̂k(x; P̂r,k) denote the corresponding estimators based on L−k . Further, for

notational consistency, we define for K = 1, Lk = L−k = L; Ik = I−k = {1, ..., n}; nK = n−K =

n; P̂r,k = P̂r and m̂k(x; P̂r,k) = m̂(x; P̂r).

(Ib) Refitting Step: In this step, we fit the linear model to L using X as predictors and

the estimated m(X; Pr) as an offset. To motivate this, we recall that the fully non-parametric

imputation given in section 1.4.1 consistently estimates E(Y |X), the L2 projection onto a

space that always contains the working model space, i.e. the linear span of
−→
X. This need

not be true for the SNP imputation, as is shown below in Figure 1.2, since we do not assume

m(X,Pr) = m(X) necessarily.

Figure 1.2: Geometric motivation behind the refitting step for an insufficient smoothing.

The refitting step essentially ‘adjusts’ for this so that the final imputation, combining

the predictions from these two steps, targets a space that contains the working model space.

In particular, for T := KS with r < p, this step is critical to remove potential bias due to

inadequate imputation. Interestingly, it turns out that the refitting step should always be
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performed, even when m(X; Pr) = m(X). It plays a crucial role in reducing the bias of the

resulting SS estimator due to the inherent bias from non-parametric curve estimation. In

particular, for T := KS with any r ≤ p, it ensures that a bandwidth of the optimal order

can be used, thereby eliminating the under-smoothing issue as encountered in section 1.4.1.

The target parameter for the refitting step is simply the regression coefficient obtained from

regressing the residual Y − m(X; Pr) on X and may be defined as: ηPr
, the solution in

η ∈ R(p+1) to the equation: E[
−→
X{Y −m(X; Pr)−

−→
X ′η}] = 0. For any K ≥ 1, we estimate

ηPr
as η̂(Pr,K), the solution in η to the equation:

n−1

K∑
k=1

∑
i∈Ik

−→
X i{Yi − m̂k(Xi; P̂r,k)−

−→
X ′iη} = 0. (1.6)

For Xi ∈ Lk, the estimate of m(Xi,Pr) to be used as an offset is obtained from m̂k(., P̂r,k)

that is based on data in L−k . For K ≥ 2, with L−k ⊥⊥ Lk, the residuals are thus estimated

in a cross-validated manner. For K = 1 however, m̂(., P̂r) is estimated using the entire L

which can lead to considerable underestimation of the true residuals owing to over-fitting

and consequently, substantial finite sample bias in the resulting SS estimator of θ0. This

bias can be effectively reduced by using the CV approach with K ≥ 2. We next estimate the

target function for the SNP imputation given by:

µ(x; Pr) = m(x; Pr) +−→x ′ηPr
as: (1.7)

µ̂(x; P̂r,K) = K−1

K∑
k=1

m̂k(x, P̂r,k) +−→x ′η̂(Pr,K), (1.8)

where P̂r,K = {P̂r,k}Kk=1. Using µ̂(.; P̂r,K), we now construct our final SS estimator as follows.

SS Estimator from SNP Imputation: In step (II), we fit the linear model to the SNP

imputed unlabeled data: [{µ̂(Xj; P̂r,K),X′j}′, j = 1, ..., N ] and obtain a SS estimator θ̂(Pr,K)
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of θ0 given by:

θ̂(Pr,K) is the solution in θ to
1

N

N∑
j=1

−→
Xj{µ̂(Xj; P̂r,K)−

−→
X ′jθ} = 0. (1.9)

For convenience of further discussion, let us define: ∀ k ∈ {1, . . . ,K},

∆̂k(x; Pr, P̂r,k) = m̂k(x; P̂r,k)−m(x; Pr) ∀ x ∈ X , and (1.10)

Ĝk(x) = −→x ∆̂k(x; Pr, P̂r,k)− EX{
−→
X∆̂k(X; Pr, P̂r,k)} ∀ x ∈ X , (1.11)

where EX(.) denotes expectation w.r.t. X ∈ U . The dependence of Ĝk(.) on (Pr, P̂r,k) and

PX is suppressed here for notational simplicity. We now present our main result summarizing

the properties of θ̂(Pr,K).

Theorem 1.2. Suppose that T satisfies: (i) supx∈X |m(x; Pr)| < ∞ and (ii)

supx∈X |m̂(x; P̂r)−m(x; Pr)| = Op(cn) for some cn = o(1). With Ĝk(.) as in (1.11), define

Gn,K = n−
1
2

∑K
k=1

∑
i∈Ik Ĝk(Xi). Then, for any K ≥ 1,

n
1
2

(
θ̂(Pr,K) − θ0

)
= n−

1
2

n∑
i=1

ψ(Zi; Pr)−Gn,K +Op(c
∗
n,K), (1.12)

where ψ(Z; Pr) =
−→
X{Y − µ(X; Pr)}, c∗n,K = cn−K

+ n−
1
2 + (n/N)

1
2 = o(1). Further, for any

fixed K ≥ 2, Gn,K = Op(cn−K
), so that

n
1
2

(
θ̂(Pr,K) − θ0

)
= n−

1
2

n∑
i=1

ψ(Zi; Pr) +Op(cn−K
+ c∗n,K), (1.13)

which converges in distribution to N(p+1)[0,Σ{µ(. ; Pr)}].

Remark 1.3. If the imputation is ‘sufficient’ so that µ(x; Pr) = m(x), then θ̂(Pr,K), for

any K ≥ 2, enjoys the same set of optimality properties as those noted in Remark 1.1

for θ̂np (while requiring less stringent assumptions about K(.) and h, if KS is used). If
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µ(x; Pr) 6= m(x), then it is however unclear whether θ̂(Pr,K) is always more efficient than θ̂.

This will be addressed in section 1.4.3 where we develop the final EASE estimators.

Remark 1.4. Apart from the fairly mild condition (i), Theorem 1.2 only requires uniform

consistency of m̂(. ; P̂r) w.r.t. m(. ; Pr) for establishing the n
1
2 -consistency and asymptotic

normality (CAN) of θ̂(Pr,K) for any K ≥ 2. The uniform consistency typically holds for a wide

range of smoothing methods T under fairly general conditions. For T := KS in particular,

we provide explicit results in section 1.5 under mild regularity conditions that allow the use

of any kernel order and the associated optimal bandwidth order. This is a notable relaxation

from the stringent requirements for Theorem 1.1 that necessitate undersmoothing and the

use of higher order kernels.

Remark 1.5. The CAN property of θ̂(Pr,1) has not yet been established. The term Gn,K in

(1.12) behaves quite differently when K = 1 compared to K ≥ 2. We derive the properties

of θ̂(Pr,1) in section 1.5 for T := KS.

1.4.3 Efficient and Adaptive Semi-Supervised Estimators (EASE)

To ensure adaptivity even when µ(x; Pr) 6= m(x), we now define the final EASE estimator

as an optimal linear combination of θ̂ and θ̂(Pr,K). Specifically, for any fixed (p+ 1)× (p+ 1)

matrix ∆, θ̂(Pr,K)(∆) = θ̂ + ∆(θ̂(Pr,K) − θ̂) is a CAN estimator of θ0 whenever θ̂ and

θ̂(Pr,K) are, and an optimal ∆ can be selected easily to minimize the asymptotic variance of

the combined estimator. For simplicity, we focus here on ∆ being a diagonal matrix with

∆ = diag(δ1, ..., δp+1). Then the EASE is defined as θ̂
E

(Pr,K) ≡ θ̂(Pr,K)(∆̂) with ∆̂ being any

consistent estimator (see section 1.4.4 for details) of the minimizer ∆ = diag(δ1, ..., δp+1),

where ∀ 1 ≤ l ≤ (p+ 1),

δl = − lim
ε↓0

Cov
{
ψ0[l](Z), ψ[l](Z; Pr)−ψ0[l](Z)

}
Var

{
ψ[l](Z; Pr)−ψ0[l](Z)

}
+ ε

, (1.14)
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and for any vector a, a[l] denotes its lth component. Note that in (1.14), the ε and the limit

outside are included to formally account for the case: ψ0[l](Z) = ψ[l](Z,Pr) a.s. [PZ], when

we define δl = 0 for identifiability.

It is straightforward to show that θ̂
E

(Pr,K) and θ̂(Pr,K)(∆) are asymptotically equivalent,

so that θ̂
E

(Pr,K) is a RAL estimator of θ0 satisfying:

n
1
2

(
θ̂
E

(Pr,K) − θ0

)
= n−

1
2

n∑
i=1

ψ(Zi; Pr,∆) + op(1)
d→ N(p+1)[0,ΣPr(∆)],

as n → ∞, where ψ(Z; Pr,∆) = ψ0(Z) + ∆{ψ(Z; Pr) − ψ0(Z)} and ΣPr(∆) =

Var{ψ(Z; Pr,∆)}. Note that when either the linear model holds or the SNP imputation

is sufficient, then ψ(Z; Pr,∆) = ψeff(Z), so that θ̂
E

(Pr,K) is asymptotically optimal (in the

sense of Remark 1.1). Further, when neither cases hold, θ̂
E

(Pr,K) is no longer optimal, but is

still efficient and adaptive compared to θ̂. Lastly, if the imputation is certain to be sufficient

(e.g. if r = p and T := KS), we may simply define θ̂
E

(Pr,K) = θ̂(Pr,K).

1.4.4 Inference for the EASE and the SNP Imputation Based SS
Estimators

We now provide procedures for making inference about θ0 based on θ̂(Pr,K) and θ̂
E

(Pr,K) ob-

tained using K ≥ 2. We also employ a ‘double’ CV to overcome bias in variance estimation

due to over-fitting. A key step involved in the variance estimation is to obtain reasonable

estimates of {µ(Xi; Pr)}ni=1. Although η̂(Pr,K) in (1.6) was constructed via CV, the corre-

sponding estimate, µ̂(x; P̂r,K) in (1.8), of µ(x; Pr) is likely to be over-fitted for Xi ∈ L.

To construct bias corrected estimates of µ(Xi; Pr), we first obtain K separate doubly cross-

validated estimates of ηPr
, {η̂k(Pr,K) : k = 1, ...,K}, with η̂k(Pr,K), for each k, being the solution

in η to
∑

k′ 6=k Sk′(η) = 0, where

Sk′(η) =
∑

i∈Ik′
−→
X i{Yi − m̂k′(Xi; P̂r,k′)−

−→
X ′iη} ∀ k′ ∈ {1, . . . ,K}.
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For each k and k′ 6= k, Sk′(η) is constructed such that {Zi : i ∈ Ik′} used for obtaining

η̂k(Pr,K) is independent of m̂k′(.; P̂r,k′) that is based on L−k′ ⊥⊥ Lk′ . Then, for each Xi ∈ Lk

and k ∈ {1, . . . ,K}, we may estimate µ(Xi; Pr) as:

µ̂k(Xi; P̂r,K) = m̂k(Xi; P̂r,k) +
−→
X ′iη̂

k
(Pr,K).

We exclude Sk(η) in the construction of η̂k(Pr,K) to reduce over-fitting bias in the residuals

{Yi − µ̂k(Xi; P̂r,K)} which we now use for estimating the IFs.

For each Zi ∈ Lk and k ∈ {1, ..,K}, we estimate ψ0(Zi) and ψ(Zi; Pr), the corresponding

IFs of θ̂ and θ̂(Pr,K), respectively as:

ψ̂0(Zi) =
−→
X i(Yi −

−→
X ′iθ̂), and ψ̂k(Zi; Pr) =

−→
X i{Yi − µ̂k(Xi; P̂r,K)}.

Then, Σ{µ(.; Pr)} in (1.13) may be consistently estimated as:

Σ̂{µ(.; Pr)} = n−1

K∑
k=1

∑
i∈Ik

ψ̂k(Zi; Pr)ψ̂
′
k(Zi; Pr).

To estimate the combination matrix ∆ in (1.14) and the asymptotic variance, ΣPr(∆), of

EASE consistently, let us define, ∀ 1 ≤ l ≤ (p+ 1),

σ̂l,12 = − n−1
∑K

k=1

∑
i∈Ikψ̂0[l](Zi){ψ̂k[l](Zi; Pr)− ψ̂0[l](Zi)},

σ̂l,22 = n−1
∑K

k=1

∑
i∈Ik{ψ̂k[l](Zi; Pr)− ψ̂0[l](Zi)}2,

and δ̂l = σ̂l,12/(σ̂l,22 + εn) for some sequence εn → 0 with n
1
2 εn →∞. Then, we estimate ∆

and ΣPr(∆) respectively as: ∆̂ = diag(δ̂1, ..., δ̂p+1) and

Σ̂Pr(∆̂) = n−1

K∑
k=1

∑
i∈Ik

ψ̂k(Zi; Pr, ∆̂)ψ̂
′
k(Zi; Pr, ∆̂),
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where ψ̂k(Z; Pr, ∆̂) = ψ̂0(Z)+∆̂{ψ̂k(Z; Pr)− ψ̂0(Z)} ∀ k ∈ {1, . . . ,K}. Normal confidence

intervals (CIs) for the parameters of interest can also be constructed accordingly based on

these variance estimates.

1.5 Implementation Based on Kernel Smoothing (KS)

We next detail the specific implementation of the SNP imputation based on KS estimators.

With T := KS, the target function for the smoothing is given by: m(x; Pr) = mPr(P
′
rx) ≡

E(Y |XPr = P′rx). For simplicity, we assume that XPr is continuous with a density fPr(.)

and support XPr ≡ {P′rx : x ∈ X} ⊆ Rr. Let us now consider the following class of local

constant KS estimators for m(x; Pr):

m̂k(x; P̂r,k) =

1
n−K h

r

∑
i∈I−k
{Kh(P̂

′
r,kXi, P̂

′
r,kx)}Yi

1
n−K h

r

∑
i∈I−k

Kh(P̂′r,kXi, P̂′r,kx)
∀ 1 ≤ k ≤ K, (1.15)

where Kh(.) and h are as in section 1.4.1 with K(.) now being a suitable kernel on Rr. In the

light of Theorem 1.2, we focus primarily on establishing the uniform consistency of m̂(x; P̂r)

≡ m̂1(x; P̂r,1) in (1.15) with K = 1, accounting for the additional estimation error from P̂r.

For establishing the desired result, we shall assume the following regularity conditions.

Assumption 1.2. (i) K(.) is a symmetric kernel of order q ≥ 2 with finite qth moments.

(ii) K(.) is bounded, integrable and is either Lipschitz continuous with a compact support

or, has a bounded derivative ∇K(.) which satisfies: ‖∇K(z)‖ ≤ Λ‖z‖−ρ ∀ z ∈ Rr with

‖z‖ > L, where Λ > 0, L > 0 and ρ > 1 are some fixed constants, and ‖.‖ denotes

the standard L2 vector norm. (iii) XPr ⊆ Rr is compact. E(|Y |s) < ∞ for some s > 2.

E(|Y |s|XPr = z)fPr(z) and fPr(z) are bounded on XPr . (iv) fPr(z) is bounded away from 0

on XPr . (v) mPr(z) and fPr(z) are both q times continuously differentiable with bounded qth

derivatives on some open set X0,Pr ⊇ XPr . Additional Conditions (required only if Pr needs

to be estimated): (vi) K(.) has a bounded and integrable derivative ∇K(.). (vii) ∇K(.)

satisfies: ‖∇K(z1) −∇K(z2)‖ ≤ ‖z1 − z2‖ φ(z1) ∀ z1, z2 ∈ Rr such that ‖z1 − z2‖ ≤ L∗,
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for some fixed constant L∗ > 0, and some bounded and integrable function φ : Rr → R+.

(viii) ∇K(.) is Lipschitz continuous on Rr. (ix) E(X|XPr = z) and E(XY |XPr = z) are

both continuously differentiable with bounded first derivatives on X0,Pr ⊇ XPr .

Assumption 1.2, mostly adopted from Hansen (2008), imposes some mild smoothness

and moment conditions most of which are fairly standard, except perhaps the conditions on

K(.) in (vi)-(viii) all of which are however satisfied by the Gaussian kernel among others.

We now propose the following result.

Theorem 1.3. Suppose (P̂r −Pr) = Op(αn) for some αn = o(1) with αn = 0 identically if

Pr is known. Let q be the order of the kernel K(.) in (1.15) for some integer q ≥ 2. Define:

an,1 = αn

(
log n

nhr+2

) 1
2

+ α2
nh
−(r+2) + αn, an,2 =

(
log n

nhr

) 1
2

+ hq

and assume that each of the terms involved in an,1 = o(1) and an,2 = o(1). Then, under

Assumption 1.2, m̂(x; P̂r), based on (1.15), satisfies:

supx∈X |m̂(x; P̂r)−m(x; Pr)| = Op(an,1 + an,2). (1.16)

Remark 1.6. Theorem 1.3 establishes the L∞ error rate of m̂(x; P̂r) under mild regularity

conditions and restrictions on h. Among its various implications, the rate also ensures

uniform consistency of m̂(x; P̂r) at the optimal bandwidth order: hopt = O(n−1/(2q+r)) for

any kernel order q ≥ 2 and any r ≤ p, as long as αn = o(n−(r+2)/(4q+2r)) which always

includes: αn = O(n−
1
2 ) and αn = 0. These two cases are particularly relevant in practice as

Pr being finite dimensional, n
1
2 -consistent estimators of Pr should typically exist. For both

cases, using hopt results in an,1 to be of lower order (for q > 2) or the same order (for q = 2)

compared to that of the main term an,2, so that the usual optimal rate prevails as the overall

error rate.
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Properties of θ̂(Pr,K) for K = 1

We now address the CAN property of θ̂(Pr,K) for K = 1 under the KS framework. Based on

(1.12) and Remark 1.5, the only step required for this is to effectively control the term Gn,K

in (1.12). We propose the following result in this regard.

Theorem 1.4. Let K = 1, T := KS, Gn,K be as in (1.12), and m̂(x; P̂r) be the KS estimator

based on (1.15). Let αn, an,1 and an,2 be as in Theorem 1.3 with (P̂r−Pr) = Op(αn). Assume

that a∗n,1 and a∗n,2 are o(1), where

a∗n,1 = αn +
αn

n
1
2h(r+1)

+ n
1
2α2

nh
−2 + n

1
2a2

n,1 + n
1
2an,1an,2 and a∗n,2 = n

1
2a2

n,2.

Then, under Assumption 1.2, Gn,K = Op(a
∗
n,1 + a∗n,2) = op(1). Further, let c∗n,K be as in

Theorem 1.2 with cn = (an,1 + an,2). Then, using (1.12),

n
1
2

(
θ̂(Pr,K) − θ0

)
= n−

1
2

n∑
i=1

ψ(Zi,Pr) +Op(c
∗
n,K + dn), (1.17)

where dn = a∗n,1 + a∗n,2. Hence, n
1
2 (θ̂(Pr,K) − θ0)

d→ N(p+1)[0,Σ{µ(. ; Pr)}].

Remark 1.7. Note that the term a∗n,2 always requires q > r/2 in order to converge to 0,

thus showing the contrasting behavior of the case K = 1 compared to K ≥ 2 where no such

higher order kernel restriction is required. Nevertheless, when αn = O(n−
1
2 ) or αn = 0, the

optimal bandwidth order: hopt = O(n−1/(2q+r)) can indeed be still used as long as q > r/2

is satisfied. Despite these facts and all the theoretical guarantee in Theorem 1.4, empirical

evidence however seems to suggest that θ̂(Pr,1) can be substantially biased in finite samples,

in part due to over-fitting. This will be demonstrated via our simulation studies in section

1.7.1.

Remark 1.8. Technical benefits of refitting and CV: Suppose that Pr = Ip, so that the

SNP imputation with T := KS is indeed sufficient. Further, assume that all of Theorems

1.1-1.4 hold, so that the estimators θ̂np, θ̂(Pr,1), and θ̂(Pr,K) (K ≥ 2) are comparable and all
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asymptotically optimal. However, their constructions are quite different which can signifi-

cantly affect their finite sample performances. θ̂np is based on KS only, and requires stringent

under-smoothing and a kernel of order q > p (Remark 1.2); θ̂(Pr,1) is based on KS and re-

fitting (although the KS itself is certain to be sufficient), and requires no under-smoothing

but needs a (weaker) kernel order condition (q > p/2) (Remark 1.7); while θ̂(Pr,K) (K ≥ 2)

additionally involves CV, and requires no under-smoothing or higher order kernel conditions

(Remark 1.4). This highlights the critical role played by refitting and CV, apart from their

primary roles in the SNP imputation, in removing any under-smoothing and/or higher order

kernel restrictions when T := KS, and this continues to hold for any other (r,Pr) as well. In

particular, it shows, rather surprisingly, that refitting should be performed in order to avoid

under-smoothing even if the smoothing is known to be sufficient.

1.6 Dimension Reduction Techniques

We next discuss choosing and estimating the matrix Pr (r < p) to be used for dimension

reduction, if required, in the SNP imputation, and which can play an important role in the

sufficiency of the imputation. Simple choices of Pr include r leading principal component

directions of X or any r canonical directions of X. Note that under the SS setting, Pr

is effectively known if it only involves the distribution of X. We now focus primarily on

the case where Pr also depends on the distribution of Y and hence, is unknown. Such a

choice of Pr is often desirable to ensure that the imputation is as ‘sufficient’ as possible for

predicting Y . Several reasonable choices of such Pr and their estimation are possible based

on non-parametric dimension reduction methods like Sliced Inverse Regression (SIR) (Li,

1991), Principal Hessian Directions (PHD) (Li, 1992; Cook, 1998), Sliced Average Variance

Estimation (SAVE) (Cook and Weisberg, 1991; Cook and Lee, 1999) etc. In particular, we

focus here on SIR where the choice of Pr is P0
r, the eigenvectors corresponding to the r largest

eigenvalues of M = Var{E(X|Y )}, which leads to an optimal (in some sense) r-dimensional

linear transform of X that can be predicted by Y (Li, 1991).
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For estimating P0
r, we consider the SIR algorithm of Li (1991) and further propose a

SS modification to it. With K and {L−k , I
−
k , P̂r,k}Kk=1 as before, the original SIR algorithm,

under our setting, estimates P0
r based on L−k as follows: (i) divide the range of {Yi}i∈I−k

into H slices: {I1, .., IH}, where H may depend on n−K. For 1 ≤ h ≤ H, let p̂h,k denote

the proportion of {Yi}i∈I−k in slice Ih; (ii) for each Ih, let M̂h,k denote the sample average

of the set: {Xi ∈ L−k : Yi ∈ Ih}; (iii) estimate M as: M̂k =
∑H

h=1 p̂h,kM̂h,kM̂′h,k and P0
r

as: P̂0
r,k → the eigenvectors corresponding to the r largest eigenvalues of M̂k. However,

the SIR algorithm often tends to give unstable estimates of P0
r, especially for the directions

corresponding to the smaller eigenvalues of M. To improve the efficiency in estimating P0
r,

we now propose a semi-supervised SIR (SS-SIR) algorithm as follows.

The SS-SIR Algorithm

Step (i) stays the same as in SIR, and in step (ii), for each k, and j ∈ IU = {1, ..., N}, we

impute Yj as Y ∗j,k = Yîj,k , where îj,k = argmini∈I−k
‖Xi −Xj‖2. For each Ih, let M̂∗h,k be the

sample average of the set: {Xi ∈ L−k : Yi ∈ Ih}
⋃
{Xj ∈ U : Y ∗j,k ∈ Ih}. Then in step (iii),

we estimate M as: M̂∗k =
∑H

h=1 p̂h,kM̂∗h,kM̂∗
′

h,k and accordingly, P0
r as P̂0∗

r,k, the eigenvectors

corresponding to the r largest eigenvalues of M̂∗k.

The SS-SIR algorithm aims to improve the estimation of P0
r by making use of U in

step (ii) through a nearest neighbour approximation for the unobserved Y in U using L−k .

With n−K large enough and m(.) smooth enough, the imputed and the true underlying Y

should belong to the same slice with a high probability. Thus, the set of X’s belonging

to a particular slice is now ‘enriched’ and consequently, improved estimation of M and

P0
r is expected. The proposed method based on a nearest neighbor approximation is also

highly scalable and while other smoothing based approximations may be used, they can

be computationally intensive. The SS-SIR algorithm is fairly robust to the choice of H,

and H = O(n
1
2 log n) seems to give fairly satisfactory performance. The slices may be

chosen to have equal width or equal number of observations. For SIR, n
1
2 -consistency of the
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estimates are well established (Li, 1991; Duan and Li, 1991; Zhu and Ng, 1995) for various

formulations under fairly general settings (without any model based assumptions). The

theoretical properties of SS-SIR, although not derived here, are expected to follow similarly.

Our simulation results (not shown here) further suggest that SS-SIR significantly outperforms

SIR, leading to substantially improved estimation of θ0 from the proposed methods.

1.7 Numerical Studies

1.7.1 Simulation Studies

We conducted extensive simulation studies to examine the finite sample performance of our

proposed point and interval estimation procedures. Throughout, we let n = 500, N = 10000,

K = 5 and r = 2. We considered p = 10, 20 as well as p = 2 for which no dimension

reduction was used. We generated X ∼ Np[0, Ip] and restricted X to [−5, 5]p to ensure its

boundedness. Given X = x, we generated Y ∼ N1[m(x), 1] for different choices of m(x) to

be discussed below. The dimension reduction step for p = 10 and 20 was performed using

the SS-SIR algorithm with H = 100 slices of equal width. The estimators {m̂(x, P̂r,k)}Kk=1

were obtained using an r-dimensional local constant KS based on a Gaussian kernel with

h estimated through least squares CV. The true values of the target parameter θ0 were

estimated via monte carlo with a large sample size of 50, 000. For each configuration, the

results are summarized based on 500 replications.

Choices of m(x): We first considered the case with p = 10 and 20, and investigated four

different functional forms of m(x) as follows:

(i) Linear (L): m(x) = x′bp;

(ii) Non-linear one component (NL1C): m(x) = (x′bp) + (x′bp)
2;

(iii) Non-linear two component (NL2C): m(x) = (x′bp)(1 + x′δp); and

(iv) Non-linear three component (NL3C): m(x) = (x′bp)(1 + x′δp) + (x′ωp)
2.
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For each setting, we used two sets of bp: b
(1)
p ≡ (1′p/2,0

′
p/2)′ reflecting weaker signals, and

b
(2)
p ≡ 1p reflecting stronger signals; δp = (0′p/2,1

′
p/2)′; ωp = (1, 0, 1, 0, . . . , 1, 0)′p×1; and for

any a, 1a = (1, . . . , 1)′a×1 and 0a = (0, . . . , 0)′a×1. For the non-linear models (ii)-(iv), note that

the corresponding m(x) depends on x through 1, 2 and 3 dimensional linear transformations

of x respectively. Through appropriate choices of bp, δp and ωp, as applicable, these models

can incorporate commonly encountered quadratic and interaction effects. Lastly, with X

normally distributed and Pr being chosen based on SIR, results from (Li, 1991) further

imply that the SNP imputation with r = 2 is sufficient for models (i)-(iii), and insufficient

for model (iv).

We summarize in Figure 1.3 the overall relative efficiency of the proposed estimators,
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Figure 1.3: Efficiencies of θ̂
E

(Pr,K) (EASE) (dark grey bars) and θ̂(Pr,K) (SNP) (light grey

bars) relative to θ̂ (OLS) (red line) with respect to the empirical MSE under models (i), (ii),
(iii) and (iv) with weaker signals in the left panels and stronger signals in the right panels
of each figure.

θ̂(Pr,K) and θ̂
E

(Pr,K), compared to the OLS w.r.t. the empirical mean squared error (MSE),

where for any estimator θ̂
∗

of θ0, the empirical MSE is summarized as the average of
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‖θ̂
∗
− θ0‖2 over the 500 replications. As expected, both θ̂(Pr,K) and θ̂

E

(Pr,K) are substan-

tially more efficient than the OLS under model mis-specification with higher gains observed

in the settings with stronger signals. Under the NL1C and NL2C models, the SS-SIR based

SNP imputation is expected to be sufficient and thus both θ̂(Pr,K) and θ̂
E

(Pr,K) should be

achieving the maximal efficiency gain. Although θ̂(Pr,K) and θ̂
E

(Pr,K) tend to have similar effi-

ciencies under the non-linear models, their performances differ significantly under the linear

setting. The EASE estimator θ̂
E

(Pr,K) achieves nearly identical efficiency as the optimal OLS

estimator under this setting while θ̂(Pr,K) could be much less efficient than the OLS, partic-

ularly with p = 20. This, in part attributable to over-fitting and the finite sample variation

induced by estimating the SIR directions, highlights the advantage of the EASE estimator.

Although the error due to estimation of Pr is negligible asymptotically, the variation in P̂r

does have an impact on the efficiency of the proposed estimators in finite samples. When

the standard SIR is employed for dimension reduction, the resulting estimators θ̂(Pr,K) and

θ̂
E

(Pr,K) are substantially less efficient (results not shown) compared to those based on SS-SIR.

Results on p = 2 are summarized in Figure 1.4. Only θ̂(Pr,K) is considered in this case since

the imputation is sufficient and hence θ̂(Pr,K) is expected to achieve full efficiency gain. The

efficiency results show a similar pattern to those for the cases p = 10 and 20 when m(.) is

non-linear, and the efficiency loss in the linear case is less severe compared to the settings

with larger p.

To examine the performance of the proposed double CV based inference procedures, we

also obtained standard error (SE) estimates and CIs for θ̂(Pr,K) and θ̂
E

(Pr,K). In Tables 1.1-

1.2, we present the bias, empirical SE (ESE), the average of the estimated SE (ASE) and

the coverage probability (CovP) of the 95% CIs for each component of θ̂(Pr,K) and θ̂
E

(Pr,K)

when p = 10 under the linear and NL2C models. In general, we find that both θ̂(Pr,K) and

θ̂
E

(Pr,K) have negligible biases. The ASEs are close to the ESEs and the CovPs are close to

the nominal level of 95%, suggesting that the proposed variance estimation procedure works

well in practice with K = 5.

26



Table 1.1: Bias, ESE, ASE and CovP of θ̂(Pr,K) and θ̂
E

(Pr,K) for estimating θ0 with p = 10 and

bp = b
(1)
p under the linear model. Shown also are the bias and ESE of the OLS estimator for

comparison. The true parameter value under this model is given by: θ0 = (α0, β01, ..., β010)′ =
(0,1′5,0

′
5)′, as tabulated below.

OLS (θ̂) SNP (θ̂(Pr,K)) EASE (θ̂
E

(Pr,K))Parameter
Bias ESE Bias ESE ASE CovP Bias ESE ASE CovP

α0 = 0 0.003 0.043 0.003 0.045 0.048 0.96 0.003 0.044 0.044 0.96
β01 = 1 0.000 0.045 0.012 0.047 0.049 0.95 -0.004 0.046 0.043 0.93
β02 = 1 -0.002 0.045 0.009 0.046 0.049 0.94 -0.006 0.045 0.043 0.93
β03 = 1 -0.002 0.048 0.008 0.050 0.049 0.94 -0.006 0.048 0.043 0.94
β04 = 1 -0.002 0.045 0.010 0.047 0.049 0.95 -0.006 0.046 0.043 0.93
β05 = 1 -0.004 0.044 0.007 0.046 0.049 0.97 -0.008 0.045 0.043 0.93
β06 = 0 0.002 0.046 0.003 0.048 0.049 0.95 0.002 0.046 0.043 0.93
β07 = 0 0.003 0.046 0.003 0.048 0.049 0.94 0.002 0.046 0.043 0.93
β08 = 0 -0.001 0.046 0.000 0.047 0.049 0.96 -0.001 0.046 0.044 0.95
β09 = 0 0.000 0.045 0.000 0.047 0.049 0.95 0.000 0.045 0.043 0.93
β010 = 0 0.000 0.045 0.001 0.047 0.049 0.97 0.000 0.045 0.044 0.95

Table 1.2: Bias, ESE, ASE and CovP of θ̂(Pr,K) and θ̂
E

(Pr,K) for estimating θ0 with p = 10

and bp = b
(1)
p under the NL2C model. Shown also are the bias and ESE of the OLS

estimator for comparison. The true parameter value under this model is given by: θ0 =
(α0, β01, ..., β010)′ = (0,1′5,0

′
5)′, as tabulated below.

OLS (θ̂) SNP (θ̂(Pr,K)) EASE (θ̂
E

(Pr,K))Parameter
Bias ESE Bias ESE ASE CovP Bias ESE ASE CovP

α0 = 0 -0.017 0.238 -0.017 0.144 0.138 0.93 -0.016 0.144 0.137 0.94
β01 = 1 -0.002 0.274 0.012 0.165 0.163 0.96 0.014 0.163 0.160 0.95
β02 = 1 0.008 0.263 0.011 0.171 0.161 0.92 0.013 0.170 0.158 0.92
β03 = 1 0.008 0.276 0.023 0.174 0.162 0.92 0.026 0.175 0.159 0.92
β04 = 1 -0.001 0.282 0.011 0.167 0.162 0.94 0.014 0.168 0.159 0.94
β05 = 1 -0.009 0.266 0.008 0.167 0.164 0.96 0.012 0.167 0.161 0.94
β06 = 0 -0.008 0.277 -0.013 0.170 0.160 0.94 -0.015 0.170 0.156 0.94
β07 = 0 -0.002 0.264 0.000 0.165 0.159 0.94 -0.002 0.164 0.155 0.95
β08 = 0 0.003 0.264 0.006 0.161 0.160 0.95 0.008 0.157 0.157 0.95
β09 = 0 0.000 0.283 -0.001 0.170 0.160 0.95 -0.001 0.168 0.156 0.94
β010 = 0 -0.003 0.270 -0.002 0.156 0.160 0.95 -0.002 0.153 0.156 0.94

Under the linear model, both θ̂(Pr,K) and θ̂
E

(Pr,K) have similar magnitudes of biases and

standard errors as the OLS, as we expect. Under the NL2C model, compared to OLS, both

θ̂(Pr,K) and θ̂
E

(Pr,K) are overwhelmingly more efficient at the cost of only negligibly larger
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biases across all components of θ0.

To gain further insights into the potential overfitting bias, we also obtained results for

θ̂(Pr,1) when no CV was used. The empirical absolute bias for θ̂(Pr,1) ranged from 0 to

0.011 under the linear model, and from 0.002 to 0.08 under the NL2C model. The biases,

especially for the NL2C model, are often substantially larger than that of θ̂(Pr,K) and θ̂
E

(Pr,K),

highlighting the importance of CV in reducing over-fitting bias.

Simulation Results for Two-Dimensional Covariates: For p = 2, we investigated

three functional forms of m(x) as follows: (a) Linear (Lin.): m(x) = x1 + x2; (b) Non-

Linear Quadratic (NL-Quad.): m(x) = x1 +x2 +γ(x2
1 +x2

2); and (c) Non-Linear Interaction

(NL-Int.): m(x) = x1 + x2 + λx1x2; where x = (x1, x2)′. For each of γ and λ, we chose two

values: γ = γ(1) = 0.3 and λ = λ(1) = 0.5 reflecting weaker signals, and γ = γ(2) = 1 and

λ = λ(2) = 1 reflecting stronger signals.
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Figure 1.4: Efficiencies of θ̂
E

(Pr,K) (EASE) ≡ θ̂(Pr,K) (SNP) (grey bars) relative to θ̂ (OLS)
(red line) with respect to the empirical mean squared error under models (a), (b) and (c) for
p = 2 with weaker signals for the non-linear models in the left panel and stronger signals in
the right panel.
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1.7.2 Application to EMR Data

We applied our proposed procedures to an EMR genetic study of rheumatoid arthritis (RA),

a systemic autoimmune disease (AD), conducted at the Partners HealthCare. The study

cohort consists of 4453 patients previously identified as having RA based on a highly accu-

rate algorithm as described in Liao et al. (2010). Multiple ADs are known to be strongly

associated with each other through shared genetic risk factors, so that a RA patient may be

genetically predisposed towards other ADs like systemic lupus erythematosus (SLE) that can

be fatal. Our primary goal here was to understand this genetically shared auto-immunity

based on the available data.

The outcome of interest is a SLE genetic risk score (GRS) constructed as a weighted sum

of indicators of previously identified SLE risk alleles with weights being the corresponding

published log odds ratios as described in Liao et al. (2013). We relate the SLE GRS to a

set of 14 clinical variables X related to ADs. The covariates include gender, race, presence

of radiological evidence of bone erosion (erosion), and two lab tests including antibodies

to cyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) that are routinely

checked for RA patients to assess the disease progression. The two lab tests are not always

ordered for all patients and hence we coded them as 4 binary variables: (i) ccp indicating anti-

CCP positivity, (ii) ccp.miss indicating whether anti-CCP was checked, (iii) rf indicating RF

positivity, and (iv) rf.miss indicating if RF was checked. We additionally included 3 binary

variables representing ever mentions of anti-tumor necrosis factor (anti-TNF), methotrexate

and seropositive, as well as total number of mentions of 4 ADs namely RA, SLE, psoriatic

arthritis (PsA) and juvenile rheumatoid arthritis (JRA) in each patient’s clinical notes, all

extracted via natural language processing (NLP). The count variables were transformed as:

x → log(1 + x) to increase stability of the model fitting. Since obtaining the GRS for a

patient would require expensive genotyping, the outcomes were available only for a random

subset of n = 1160 patients, thereby leading to a SS set-up.

We obtained both the OLS and the EASE estimators based on the observed data. To
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implement EASE, we used K = 5, r = 2 and Pr estimated based on SS-SIR using H = 150

slices of equal width. In Table 1.3, we present coordinate-wise estimates of the regression

parameters along with their estimated SE and the corresponding p-values based on them.

Table 1.3: Estimates (Est.) of the regression coefficients based on the OLS (θ̂) and the EASE

(θ̂
E

(Pr,K)) estimators along with their estimated standard errors (SE) and the corresponding
p-values (Pval.) associated with testing the null effect for each of the predictors. Shown also
are the coordinate-wise relative efficiencies (RE) of the EASE compared to the OLS.

OLS (θ̂) EASE (θ̂
E

(Pr,K))Predictors
Est. SE Pval. Est. SE Pval.

RE

gender 0.002 0.004 0.524 0.003 0.004 0.401 1.104
race -0.015 0.003 0.000 -0.014 0.003 0.000 1.138
ccp 0.008 0.007 0.288 0.008 0.007 0.235 1.103
rf -0.010 0.005 0.065 -0.010 0.005 0.043 1.105
ccp.miss 0.003 0.006 0.639 0.003 0.005 0.585 1.081
rf.miss -0.006 0.005 0.216 -0.007 0.005 0.160 1.079
erosion -0.002 0.003 0.504 -0.002 0.003 0.463 1.099
anti-TNF 0.001 0.003 0.829 0.001 0.003 0.802 1.088
methotrexate -0.006 0.003 0.058 -0.005 0.003 0.052 1.434
seropositive 0.002 0.004 0.682 0.002 0.004 0.652 1.125
RA 0.001 0.002 0.339 0.001 0.001 0.353 1.096
SLE 0.004 0.005 0.448 0.003 0.005 0.487 1.149
PsA 0.002 0.006 0.746 0.002 0.005 0.652 1.163
JRA 0.007 0.006 0.282 0.007 0.004 0.100 2.193

The point estimates of θ0 based on θ̂ and θ̂
E

(Pr,K) in Table 1.3 are all quite close which

is desirable and reassuring as it establishes, in a real data, the consistency and stability

of EASE. Further, the estimated relative efficiencies are all greater than 1 indicating the

improved efficiency of θ̂
E

(Pr,K) over θ̂. The efficiency gains for the NLP variables JRA and

methotrexate are as high as 120% and 43%. The positive associations between all 4 counts of

AD mentions and the SLE GRS, although not statistically significant, suggest that patients

with these ADs are also more likely to be genetically predisposed towards SLE. This is

consistent with the theory of shared auto-immunity in the literature (Alarcón-Segovia, 2005;

Cotsapas et al., 2011). For example, the PTPN22 polymorphism is known to be associated
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with multiple ADs including RA, SLE and type 1 diabetes (Chung and Criswell, 2007).

1.8 Discussion

We have developed in this paper an efficient and adaptive estimation strategy for the SS

linear regression problem. The adaptive property possessed by the proposed EASE is crucial

for advocating ‘safe’ use of the unlabeled data and is often unaddressed in the existing liter-

ature. In general, the magnitude of the efficiency gain with EASE depends on the inherent

degree of non-linearity in E(Y |X) and the extent of sufficiency of the underlying SNP impu-

tation. In particular, if the imputation is sufficient or the working linear model is correct,

θ̂
E

(Pr,K) is further optimal among a wide class of estimators. We have obtained theoretical

results along with influence function expansions for θ̂(Pr,K) and θ̂
E

(Pr,K) substantiating all our

claims and also validated them based on numerical studies. The double CV method further

facilitates accurate inference, overcoming potential over-fitting issues in finite samples due

to smoothing.

The proposed SNP imputation, the key component of EASE, apart from being flexible

and scalable, enjoys several useful properties. The refitting step and CV play a crucial role in

reducing the bias of θ̂(Pr,K), and for T := KS in particular, eradicate any under-smoothing or

higher order kernel requirements: two undesirable, yet often inevitable, conditions required

for n
1
2 -consistency of two-step estimators based on a first step of smoothing. Theorem 1.4,

apart from showing the distinct behaviour of θ̂(Pr,1) compared to θ̂(Pr,K) for K ≥ 2, also

highlights the key role of CV in completely removing kernel order restrictions, apart from

addressing over-fitting issues. The error rates in the results of Theorems 1.3-1.4 are quite

sharp and account for any estimation error from P̂r. The regularity conditions required are

also fairly mild and standard in the literature. The continuity assumption on X in sections

1.4.1 and 1.5 is mostly for the convenience of proofs, and the results continue to hold for

more general X. Lastly, while we have focussed here on linear regression for simplicity, our

methods can indeed be easily adapted to other regression problems such as logistic regression
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for binary outcomes.

We end with a comment on the choice of K ≥ 2 in θ̂(Pr,K). While (1.13) holds for any

K ≥ 2, the error term in (1.13) depends on K through cn−K
and more precisely, through c̃n−K

= K 1
2 cn−K

. Since K is fixed, cn−K
and c̃n−K

are asymptotically equivalent. But for a given n,

cn−K
is expected to decrease with K, while c̃n−K

is likely to increase. It is however desirable

that both are small since cn−K
inherently controls the efficiency of the SNP imputation, while

c̃n−K
directly controls the bias of θ̂(Pr,K). Hence, a reasonable choice of K ≥ 2 may be based

on minimizing: (c2
n−K

+λc̃2
n−K

) for some λ ≥ 0. Since the (first order) asymptotic variance of

θ̂(Pr,K) is independent of K, this is equivalent to a penalized minimization of the asymptotic

MSE of θ̂(Pr,K) with λ denoting the weightage of the (lower order) bias relative to the (first

order) variance. In general, the optimal K should be inversely related to λ. Conversely, choice

of any K may be viewed to have an associated regularization effect (through λ) resulting in

a ‘variance-bias trade-off’ with smaller K leading to lower bias at the cost of some efficiency,

and higher K leading to improved efficiency in lieu of some bias. In practice, we find that K

= 5 works well, and K = 10 tends to give slightly smaller MSE at the cost of increased bias.
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2.1 Summary

We consider a variety of estimation problems under semi-supervised (SS) settings, wherein

the available data typically consists of: (i) a small or moderate sized ‘labeled’ data, and (ii)

a much larger sized ‘unlabeled’ data. Such data arises naturally from settings where the

outcome, unlike the covariates, is expensive to obtain, a frequent scenario in modern studies

involving large databases like electronic medical records (EMR). For such SS estimation

problems, it is often of interest to investigate if and when the unlabeled data can be exploited

to improve estimation of the parameter of interest, compared to supervised approaches that

are based on only the labeled data.

In this paper, adopting a semi-parametric perspective, we provide a unified framework

for SS M/Z-estimation problems based on general estimating equations (EEs), and propose

a family of ‘Efficient and Adaptive Semi-Supervised Estimators’ (EASE) that are always at

least as efficient as the supervised estimator, and more efficient whenever the information

from the unlabeled data is actually related to the parameter of interest. This adaptive prop-

erty, often unaddressed in the existing literature, is quite crucial for advocating ‘safe’ use of

the unlabeled data. The construction of EASE essentially corresponds to a (non-parametric)

imputation based approach. For a simpler subclass of EEs, including those corresponding

to estimation problems for most standard generalized linear (working) models, we provide

a more flexible imputation strategy involving use of dimension reduction techniques, if de-

sired, to avoid high dimensional smoothing. As a special case of our proposed framework,

we also address the SS version of the ‘sliced inverse regression’ (SIR) problem, useful for

sufficient dimension reduction. We provide explicit theoretical results including influence

function expansions, as well as techniques for inference based on EASE, establishing all our

claims (including semi-parametric optimality of EASE under some scenarios), followed by

extensive simulation studies for logistic regression as well as SIR, and application to a real

EMR dataset using logistic regression.
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2.2 Introduction

In recent years, semi-supervised learning (SSL) has emerged as an exciting new area of

research in statistics and machine learning (Chapelle et al., 2006; Zhu, 2008). A typical

semi-supervised (SS) setting is characterized by two types of available data: (i) a small or

moderate sized ‘labeled’ data, L, containing observations for both an outcome Y and a set

of covariates X of interest, and (ii) an ‘unlabeled’ data, U , of much larger size but having

observations only for the covariates X. By virtue of its large size, U essentially gives us the

distribution of X, denoted henceforth by PX. Such a setting arises naturally whenever the

covariates are easily available so that unlabeled data is plentiful, but the outcome is costly or

difficult to obtain, thereby limiting the size of L. This scenario is directly relevant to a variety

of practical problems, especially in the modern ‘big data’ era, with massive unlabeled datasets

(often electronically recorded) becoming increasingly available and tractable. A few familiar

examples include machine learning problems like text mining, web page classification, speech

recognition, natural language processing, and among biomedical applications, the analysis

of electronic medical records (EMR) data, where SSL can be particularly of great use. We

refer the interested reader to Chakrabortty and Cai (2015) for further discussions.

SSL primarily distinguishes from standard supervised methods by making use of U , an

information that is ignored by the latter. The ultimate question of interest in SSL is to in-

vestigate if and when this information can be exploited to improve the efficiency over a given

supervised approach. It is important to note that while the SS set-up can be viewed as a

missing data problem, it is quite different from a standard missing data setting as the proba-

bility of missingness tends to 1 in SSL (so that the ‘positivity assumption’ typically assumed

in the classical missing data literature is violated here). Interestingly, characterization of the

missingness mechanism, although quite crucial, has often stayed implicit in the SSL litera-

ture (Lafferty and Wasserman, 2007). Nevertheless, it has mostly been assumed as ‘missing

completely at random’ which is typically the case, with the labeled data being obtained

from labeling a random subset, selected by design, from a large unlabeled dataset. It is also
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worth noting that the analysis of SS settings under more general missingness mechanisms is

much more complicated owing to the violation of the positivity assumption. The theoretical

nuances of SSL including its scope and the consequences of using the unlabeled data have

been studied to some extent by Castelli and Cover (1995, 1996) and later, more generally by

Lafferty and Wasserman (2007). In recent years, several graph based non-parametric SSL

approaches for prediction have also been proposed (Zhu, 2005; Belkin et al., 2006) relying,

implicitly or explicitly, on assumptions relating PX to PY |X, the conditional distribution of

Y |X, that have been characterized more formally in Lafferty and Wasserman (2007).

However, SS estimation problems, especially from a semi-parametric perspective, without

making unnecessary assumptions regarding the underlying data generating mechanism, has

been somewhat less studied. Among existing parametric methods, perhaps the most well-

known is the ‘generative model’ approach for classification (Nigam et al., 2000; Nigam, 2001),

based on modeling the joint distribution of (Y,X) as a mixture of parametric models, thereby

implicitly relating PY |X to PX. However, these approaches depend strongly on the validity

of the assumed mixture model, violation of which can actually degrade their performance

compared to supervised approaches (Cozman and Cohen, 2001; Cozman et al., 2003).

In general, it has been noted (Zhang and Oles, 2000; Seeger, 2002) that for SS estimation

problems involving parametric regression and/or likelihood based working models for PY |X,

one cannot possibly gain through SSL by using the knowledge of PX if the assumed working

model is correct and the parameter of interest is not related to PX. On the other hand, under

model mis-specification, the target parameter may inherently depend on PX, and thus imply

the potential utility of U in improving the estimation. This notion can be further generalized

for any SS estimation problem as follows: if we are interested in estimating a parameter

θ0 ≡ θ0(P), a functional of the underlying data generating distribution P ≡ (PY |X,PX),

then SS approaches based on the use of U can lead to improved estimation of θ0 only if θ0

and PX are somehow related. However, inappropriate usage of U may lead to degradation of

the estimation precision. This therefore signifies the need for developing robust and efficient
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SS estimators that are adaptive to the knowledge of PX being actually helpful for estimating

θ0. To the best of our knowledge, work done along these lines is scarce in the SSL literature,

and we hope our results in this paper contributes to some extent towards filling this gap.

In this paper, we make a modest attempt towards a general characterization of SS M/Z-

estimation problems from a semi-parametric perspective, and providing a unified framework

for construction of corresponding efficient and adaptive estimation strategies, in the sense

discussed above. In particular, we consider SS estimation problems based on general estimat-

ing equations (EEs) that are routinely encountered in various statistical applications. For

such problems, we propose a family of ‘Efficient and Adaptive Semi-Supervised Estimators’

(EASE) that are always at least as efficient as the supervised estimator, and more efficient

whenever the information on PX, available through U , is actually helpful for the purpose

of estimating the parameter of interest. This adaptive property, often unaddressed in the

existing literature, is quite crucial for advocating ‘safe’ use of the unlabeled data. The con-

struction of EASE essentially corresponds to a (non-parametric) imputation based approach.

For a simpler subclass of EEs, including those corresponding to estimation problems for most

standard generalized linear (working) models, we provide a more flexible imputation strat-

egy involving use of dimension reduction techniques, if desired, to avoid high dimensional

smoothing. As a special case of our proposed framework, we also address the SS version of

the ‘sliced inverse regression’ (SIR) problem, useful for sufficient dimension reduction. We

provide explicit theoretical results including influence function expansions, as well as tech-

niques for inference based on EASE, establishing all our claims (including semi-parametric

optimality of EASE under some scenarios), followed by extensive simulation studies for lo-

gistic regression as well as SIR, and application to a real EMR dataset.

The rest of this paper is organized as follows. In section 2.3, we formally introduce and

formulate SS M/Z-estimation problems, followed by the general construction of EASE, as

well as more flexible constructions, along with necessary modifications, for a simpler subclass

of EEs. Techniques based on cross-validation (CV) for inference using EASE are also briefly
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discussed, followed by extensive simulation studies and application to a real EMR dataset

for logistic regression. In section 2.4, we discuss efficient SS estimators for the SIR problem,

as a special case of the framework developed in section 2.3, followed by simulation results.

For all the theoretical results obtained in this paper, the proofs are not too difficult, and

should be especially straightforward upon use of standard results from M-estimation theory,

available in Van der Vaart (2000) for instance, as well as the results obtained and techniques

used in Chakrabortty and Cai (2015). The proofs are therefore skipped here for brevity.

2.3 Semi-Supervised M-Estimation

Data Representation: Let Y ∈ R denote the outcome random variable with a support

Y ⊆ R of arbitrary nature (continuous and/or discrete), and X ∈ Rp denote the vector of

covariates, where p is fixed, and let Z = (Y,X′)′. Then, the entire data available for analysis

in SS settings can be represented as: S = (L ∪ U), where L = {Zi ≡ (Yi,X
′
i)
′ : i = 1, ..., n}

consisting of n independent and identically distributed (i.i.d.) observations from the joint

distribution P ≡ (PY |X,PX) of Z denotes the labeled data, U = {Xj : j = 1, ..., N} consisting

of N i.i.d. realizations of X denotes the unlabeled data, and further, L ⊥⊥ U .

Basic Assumptions: (a) We assume that N � n and hence as n → ∞, the proportion

of observed outcomes, n/N , tends to 0, which makes SSL different from a classical missing

data problem where this proportion is typically assumed to be bounded away from zero. (b)

The underlying Y for subjects in U are assumed to be ‘missing completely at random’, so

that Z ∼ P for all subjects in S. (c) We assume throughout that Z has finite 2nd moments,

Var(X) is positive definite and X has a compact support X ⊆ Rp. Let L2(P) denote the space

of all R-valued measurable functions of Z having finite L2 norm with respect to (w.r.t.) P,

and let E(.) denote expectation w.r.t. P. (d) Since the moments of X are essentially known

due to the large (potentially infinite) size of U , we also assume without loss of generality

(w.l.o.g.) that E(X) = 0 and Var(X) = Ip, where Ip denotes the (p× p) identity matrix.
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Notational Conventions: (a) Throughout, ‖.‖ will denote the standard L2 vector norm

in Rd for any d ≥ 1. For any u ∈ Rd, u[j] will denote its jth coordinate ∀ 1 ≤ j ≤ d,

−→u will denote (1,u′)′ ∈ Rd+1, and for any matrix Md×d, M[i,j] will denote its (i, j)th entry

∀ 1 ≤ i, j ≤ d. Further, for any ε ≥ 0, and any u ∈ Rd, we let B(u; ε) = {v : ‖u − v‖ ≤ ε}

⊆ Rd denote the L2 ball of radius ε around u. (b) For any d ≥ 1, we denote by Nd(µ,Σ)

the d−variate normal distribution with mean µ ∈ Rd and dispersion matrix Σd×d. For any

measurable (possibly vector-valued) function f(Z) ∈ Rd of Z, for any d ≥ 1, such that

E(‖f(Z)‖2) < ∞, we denote by Σ{f(.)} the d × d matrix Var{f(Z)}. (c) Let Pn(.) denote

the empirical probability measure based on L. Further, let f(Z) ∈ Rd, for any d ≥ 1, be any

measurable function of Z, where f(.) itself can be a random data driven function based on L.

Then we define: Pn{f(Z)} = n−1
∑n

i=1 f(Zi), and Gn{f(Z)} = n
1
2 [Pn{f(Z)} − EZ{f(Z)}],

the n
1
2 -scaled empirical process indexed by f(.), where EZ{f(Z)} ≡

∫
f(z) dP(z) denotes

expectation of f(Z) w.r.t. Z ∼ P with f(.) treated as fixed (even though it may be random).

The M-Estimation Problem: Let ψ(Y,X,θ) ∈ Rd, for any fixed d ≥ 1, be an estimating

function of interest, where θ ∈ Θ, for some appropriate parameter space Θ ⊆ Rd, and assume

E{‖ψ(Y,X,θ)‖2} < ∞ ∀ θ ∈ Θ. Let ψ0(θ) = E{ψ(Y,X,θ)} ∀ θ ∈ Θ. Suppose, we are

interested in estimating the unknown parameter/functional θ0 ≡ θ0(P) given by:

θ0 is the solution in θ ∈ Θ to the estimating equation: ψ0(θ) ≡ E{ψ(Y,X,θ)} = 0. (2.1)

Given the generality of the framework considered here, the existence and uniqueness of such

a θ0 will be implicitly assumed. For most commonly encountered M -estimation problems,

ψ0(.) typically arises as the derivative of some convex loss, or concave log-likelihood function,

in which case, as long as those functions are smooth enough, the existence and uniqueness of

θ0 can typically be guaranteed quite easily, and moreover can be done so with θ0 allowed to

vary over the whole of Rd (in which case the parameter space Θ in (2.1) can be chosen to be

any B(θ0, ε) for an arbitrary ε > 0). We are interested in efficient and adaptive SS estimation
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of θ0 based on the entire available data S, compared to the supervised M-estimator based on

L only, which is given by: θ̂, the solution in θ ∈ Θ to: ψn(θ) ≡ n−1
∑n

i=1ψ(Yi,Xi,θ) = 0.

It might be also helpful to explicitly define the underlying semi-parametric (almost non-

parametric) model that effectively characterizes our SS set-up, which is given by:

MX = {P : PX is known, and PY |X unrestricted (upto our basic assumptions)}. (2.2)

Noting that the knowledge of PX is indeed (almost) available to us through U , the modelMX

therefore essentially represents the most unrestricted (upto our basic assumptions) class of

distributions P we can have under the SS set-up. We wish to clarify that MX would be the

underlying model (apart from some mild smoothness restrictions to be imposed later on, as

required) we consider for the estimation of the functional θ0, and the goal would be to obtain

efficient SS estimators of θ0 for every sub-model in MX. We next introduce an important

definition regarding the notion of PX being actually related/helpful for the estimation of θ0.

Definition 2.1. Let φ(X,θ) = E{ψ(Y,X,θ) |X} ∀ θ ∈ Θ, so that ψ0(θ) = EX{φ(X,θ)},

where EX(.) denotes expectation w.r.t. PX. Then, with θ0 as in (2.1), we define PX to be

informative for estimating θ0 underMX, if for some measurable set A ⊆ X with PX(A) > 0,

φ(x,θ0) 6= 0 ∀ x ∈ A, and non-informative if φ(X,θ0) = 0 almost surely (a.s.) [PX].

With θ0 in (2.1) being the unique solution to ψ0(θ) ≡ EX{φ(X,θ)} = 0 over θ ∈ Θ, note

that when φ(X,θ0) = 0 a.s. [PX], then indeed PX no longer plays any role in the definition

of θ0, as even without the outside EX(.) in the representation of ψ0(θ) above, the expression

is 0 a.s. [PX] at θ = θ0, and this expression essentially depends only on PY |X which is not

necessarily related to PX, certainly not underMX, unless further assumptions are made. On

the other hand, if PX{φ(x,θ0) 6= 0} > 0, then PX indeed plays a role in defining θ0 as the

outside EX(.) in the representation of ψ0(θ) above is now required to ensure that ψ0(θ) = 0

at θ = θ0. For most common parametric regression (working) models imposing a restriction

on PY |X, through the conditional mean m(X) ≡ E(Y |X), given by: m(X) = g(X,θ) for

40



some g(.), and θ ∈ Rd, the underlying EEs used for estimating the unknown regression

parameter typically corresponds to: ψ(Y,X,θ) = h(X,θ){Y − g(X,θ)}, for some h(.). In

these cases, the notion of PX being related or unrelated to θ0, and therefore being helpful

or not for efficient SS estimation of θ0, essentially boils down to the more familiar notion of

the underlying working model for m(.) being correct or mis-specified. The definition in 2.1 is

largely inspired from, and is a generalization of, this familiar (but more restrictive) notion.

We next present the general construction of our EASE estimators, and their properties.

Efficient and Adaptive Semi-Supervised Estimators (EASE): Let φ̂(x,θ) denote

any reasonable estimator, based on L, of φ(x,θ) ∀ x ∈ X ,θ ∈ Θ. We then define a modified

EE, ψ∗n,N(θ), and then the EASE estimator θ̂
∗

as the solution to that EE, as follows.

Let ψ∗n,N(θ) =
1

N

N∑
j=1

φ̂(Xj,θ)− 1

n

n∑
i=1

{
φ̂(Xi,θ)−ψ(Yi,Xi,θ)

}
∀ θ ∈ Θ, and

define the EASE estimator θ̂
∗

as the solution in θ ∈ Θ to: ψ∗n,N(θ) = 0. (2.3)

The construction of the modified EE ψ∗n,N(θ) in (2.3) is fairly intuitive, especially for the

first term, where we simply try to mimic the definition of ψ0(θ) = EX{φ(X,θ)} by plugging

in the estimator φ̂(.) of φ(.) inside, and then (near-perfectly) estimating the outside EX(.)

through Monte-Carlo based on U . The second term in the definition of ψ∗n,N(θ) is essentially

a ‘de-biasing’ term that turns out to be a natural estimator of the bias of φ̂(.) as an estimator

of φ(.). With the construction of φ̂(.), to be discussed shortly, allowed to be possibly based

on non-parametric smoothing techniques, wherein the convergence rate of φ̂(.) is expected

to be slower than O(n−
1
2 ), this de-biasing term can be quite useful to ensure n

1
2 -consistency

of the EASE estimator θ̂
∗

under fairly reasonable conditions. In particular, if φ̂(.) is based

on kernel smoothing (KS), the de-biasing term plays a crucial role in avoiding any under-

smoothing requirement, so that a bandwidth of the standard ‘optimal’ order, instead of a

smaller order, can be used for the smoothing. The under-smoothing requirement, although
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not desirable (as it results in sub-optimal performance of the smoother), is often unavoidable

in two-step semi-parametric estimation involving KS in the first step. We refer the interested

reader to Newey et al. (1998) for further discussions. Next, we also note that for both ψn(θ)

and ψ∗n,N(θ), the corresponding solutions θ̂ and θ̂
∗

do not need to be exact solutions. In

fact, they only need to solve: ψn(θ) = op(1) and ψ∗n,N(θ) = op(1) respectively (see Van der

Vaart (2000) for more details). However, for the sake of simplicity, we prefer to stick to our

formulations above, wherein they are the exact solutions to the respective EEs. Finally, we

provide some clarifications regarding the construction of the estimator φ̂(x,θ). In general, it

can be based on any reasonable non-parametric smoothing based approach, including KS for

instance. They can also be based on more flexible semi-parametric or semi-non-parametric

methods, under more restrictions on the underlying data generating mechanism. For the

sake of illustration, we provide one particular choice of φ̂(x,θ) based on KS as follows.

φ̂(x,θ) ≡ φ̂KS(x,θ) =
1
nhp

∑n
i=1ψ(Yi,x,θ) K{(x−Xi)/h}
1
nhp

∑n
i=1 K{(x−Xi)/h}

∀ x ∈ X , θ ∈ Θ, (2.4)

where K(.) : Rp → R is some appropriate kernel function (e.g. the Gaussian kernel) of order

q ≥ 2 and h = h(n) > 0 denotes the bandwidth sequence. For the subclass of problems based

on estimating functions that take the form: ψ(Y,X,θ) = h(X,θ){Y − g(X,θ)}, for some

g(.) in R and h(.) in Rd, φ̂(x,θ) based on KS takes a particularly simple form as follows:

φ̂(x,θ) = h(x,θ){m̂(x)− g(x,θ)} ∀ x ∈ X , θ ∈ Θ, with ψ(Y,X,θ) as above,

where m̂(x) ≡ m̂KS(x) =
1
nhp

∑n
i=1 YiK{(x−Xi)/h}

1
nhp

∑n
i=1 K{(x−Xi)/h}

∀ x ∈ X (2.5)

denotes the corresponding KS estimator of the conditional mean m(x) ≡ E(Y |X = x). We

now formally characterize the theoretical properties of the EASE estimator θ̂
∗

as well as its

comparison to those of θ̂. We first state the necessary assumptions, followed by the results.

Assumption 2.1. Smoothness of ψ0(.). We assume that at least in a neighbourhood B(θ0; ε)

of θ0 for some ε > 0, ψ0(.) is differentiable with a non-singular derivative {J (θ)}d×d, and
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further satisfies a Taylor series expansion of the form: ψ0(θ) = ψ0(θ0) + {J (θ0)}(θ− θ0) +

r(θ,θ0) ∀ θ ∈ B(θ0; ε), for some r(θ,θ0) satisfying ‖r(θ,θ0)‖ ≤ O(‖θ − θ0‖2) as θ → θ0.

Assumption 2.2. Complexity of the class of estimating functions. We assume that the class

of functions: G0 ≡ {ψ(Y,X,θ) : θ ∈ Θ} lies in a P-Glivenko-Cantelli (P-GC) class, and for

some ε > 0, the class D0,ε ≡ {ψ(Y,X,θ) : θ ∈ B(θ0; ε) ⊆ Θ} lies in a P-Donsker class. More

generally, we actually assume that the following conditions hold:

sup
θ∈Θ
‖Pn{ψ(Y,X,θ)} −ψ0(θ)‖ P→ 0, and (2.6)

Gn{ψ(Y,X, θ̃)−ψ(Y,X,θ0)} P→ 0, for any (random) sequence θ̃
P→ θ0. (2.7)

Assumption 2.3. Behavior of φ̂(.) as an estimator of φ(.). We assume first of all that:

sup
x∈X , θ∈Θ

∥∥∥φ̂(x,θ)− φ(x,θ)
∥∥∥ P→ 0. (2.8)

Further, we assume that for some ε, δ > 0, the (random) sequence of function classes given

by: Dn,ε,δ ≡ {φ̂(X,θ) : θ ∈ B(θ0; ε), supx∈X‖φ̂(x,θ)− φ(x,θ)‖ ≤ δ ∀ θ ∈ B(θ0; ε)} lies in

a P-Donsker class with probability converging to 1. More generally, we assume that:

sup
θ∈B(θ0;ε)

∥∥∥∥∥ 1

N

N∑
j=1

φ̂(Xj,θ)− EX

{
φ̂(X,θ)

}∥∥∥∥∥ = Op

(
N−

1
2

)
and (2.9)

Gn

{
φ̂(X, θ̃)− φ(X,θ0)

}
P→ 0, for any (random) sequence θ̃

P→ θ0. (2.10)

Theorem 2.1. Under assumptions 2.1-2.3, and letting G∗n,1 = Gn{ψ(Y,X, θ̂
∗
) −

ψ(Y,X,θ0)} and G∗n,2 = Gn{φ̂(X, θ̂
∗
) − φ(X,θ0)}, the EASE estimator θ̂

∗
satisfies the

expansion:

n
1
2

(
θ̂
∗
− θ0

)
= n−

1
2

n∑
i=1

ξeff(Zi) +Op

(
G∗n,1 + G∗n,2

)
+Op

( n
N

) 1
2

+ op(1), (2.11)

where ξeff(Z) = −{J (θ0)}−1Ψeff(Z) ≡ −{J (θ0)}−1 {ψ(Y,X,θ0)− φ(X,θ0)} .

43



Hence, n
1
2 (θ̂

∗
−θ0)

d→ Nd[0,Σ{ξeff(.)}], and θ̂
∗

is a regular and asymptotically linear (RAL)

estimator of θ0 with influence function (IF) given by: ξeff(Z). Further, under assumptions

2.1-2.2, and letting Gn = Gn{ψ(Y,X, θ̂) − ψ(Y,X,θ0)}, the supervised M-estimator θ̂

satisfies:

n
1
2

(
θ̂ − θ0

)
= n−

1
2

n∑
i=1

ξ0(Zi) +Op

(
Gn

)
+ +op(1), (2.12)

where ξ0(Z) = −{J (θ0)}−1Ψ0(Z) ≡ −{J (θ0)}−1 {ψ(Y,X,θ0)} .

Hence, n
1
2 (θ̂ − θ0)

d→ Nd[0,Σ{ξ0(.)}], and θ̂ is a RAL estimator of θ0 with IF: ξ0(Z).

Moreover, when ψ(Y,X,θ) takes the particular form: ψ(Y,X,θ) = h(X,θ){Y −g(X,θ)}

for some h(.) in Rd and some g(.) in R, and φ̂(X,θ) = h(X,θ){m̂(X) − g(X,θ} for any

estimator m̂(.) of m(.), the results in (2.11)-(2.12) continue to hold under assumptions 2.1-

2.2, and some slightly simpler conditions, instead of assumption 2.3, as follows.

sup
x∈X ,θ∈Θ

‖h(x,θ)‖ <∞, sup
x∈X ,θ∈Θ

|g(x,θ)| <∞, and for some ε, ε̃ > 0,

‖h(x,θ)− h(x,θ0)‖ ≤ h(x)‖θ − θ0‖ ∀ θ ∈ B(θ0; ε) for some h(.) ∈ L2(PX),

|g(x,θ)− g(x,θ0)| ≤ g(x)‖θ − θ0‖ ∀ θ ∈ B(θ0; ε̃) for some g(.) ∈ L2(PX), and

sup
x∈X
|m̂(x)−m(x)| P→ 0, and Gn[h(X,θ0){m̂(X)−m(X)}] P→ 0. (2.13)

Apart from establishing n
1
2 -consistency and asymptotic normality (CAN) as well as RAL

properties for θ̂
∗

and θ̂, under every model inMX, theorem 2.1 also establishes the efficient

and adaptive nature of θ̂
∗
, as desired. In particular, the asymptotic variances Σ{ξeff(.)}

and Σ{ξ0(.)} of θ̂
∗

and θ̂ respectively satisfy: Σ{ξeff(.)} � Σ{ξ0(.)} for every model in

MX, and further, the inequality is strict whenever PX is informative for estimating θ0 under

MX, in the sense of definition 2.1. Moreover, it is not difficult to show that the IF: ξeff(.),

achieved by θ̂
∗
, is also the so-called ‘efficient’ IF for estimating θ0 under MX, so that θ̂

∗

achieves the semi-parametric efficiency bound globally under MX (i.e. for every model in
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MX), and is therefore asymptotically optimal among all RAL estimators of θ0 under MX

(i.e. for any RAL estimator of θ0 with IF: ξ(Z), Var{ξeff(Z)} � Var{ξ(Z)} under every

model in MX).

Regarding the assumptions required for theorem 2.1, assumptions 2.1-2.2 are both fairly

mild and standard in the M -estimation literature, and similar (or equivalent) conditions can

be found in Van der Vaart (2000) for instance. Assumption 2.3 essentially imposes some

desirable convergence properties for φ̂(.) as an estimator of φ(.), and should be expected

to hold for most reasonable (and smooth enough) choices of φ̂(.) and φ(.). Note also that

the conditions in assumptions 2.2-2.3 involving P-GC or P-Donsker classes from empirical

process theory are mostly to ensure the validity of (2.6)-(2.10), which are really all that is

needed for theorem 2.1 to hold. Hence, more general and/or different sufficient conditions

can also be used as long as (2.6)-(2.10) are satisfied. However, GC and Donsker classes are

typically known to be some of the most general and mild enough requirements ensuring these

type of conditions, and they include a wide variety of function classes as examples. We refer

the interested reader to Van der Vaart (2000) and Van Der Vaart and Wellner (1996) for

more discussions regarding the various properties and examples of GC and Donsker classes.

Lastly, for the slightly simpler subclass of EEs introduced in the final part of theorem 2.1,

the conditions required are still quite mild, and yet relatively easier to verify. In particular,

for smoothing based on KS, the last condition in (2.13) has been verified in details, under

fairly mild regularity conditions and without using empirical process theory, in Theorem 4.1

and Lemma A.2 of Chakrabortty and Cai (2015), where it has been shown that the required

convergence results can be achieved without any under-smoothing requirement, so that a

bandwidth of the ‘optimal’ order: O(n−1/(2q+p)) can be used as long as the kernel order q

satisfies: q > p/2. These kind of requirements are also known to be encountered elsewhere

in other forms, especially in empirical process theory where it is well known (Van der Vaart,

2000) that standard classes of smooth functions are Donsker only if they have a smoothness of

order greater than half the ambient dimension. For a simpler subclass of problems, including
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those based on generalized linear (working) models (GLwMs) with canonical link functions

(e.g. linear, logistic or poisson regression), this requirement can be avoided using a sample-

splitting or cross-validation (CV) based technique that was demonstrated in Chakrabortty

and Cai (2015) for the special case of linear regression. However, given the generality of

the framework considered herein, we prefer not to delve any further into this aspect, as the

analysis for such approaches can be somewhat involved and is beyond the scope of this paper.

2.3.1 ‘Separable’ Estimating Equations: Flexible SS Estimators

In this section, we consider a subclass of M -estimation problems, based on what we call

‘separable’ EEs, where the underlying estimating function ψ(Y,X,θ) takes the simple form:

ψ(Y,X,θ) = h(X){Y − g(X,θ)} ∈ Rd, ∀ θ ∈ Θ ⊆ Rd. (2.14)

In particular, with d = (p+ 1) and h(X) =
−→
X, these EEs include, as special cases, the ones

encountered in estimation problems for standard GLwMs based on the so-called ‘canonical’

link functions (e.g. linear, logistic or poisson regression), with g(X,θ) = g0(
−→
X ′θ), where

g0(.) denotes the appropriate link function. We aim to provide more flexible SS estimation

strategies for these subclass of problems, wherein, unlike the previous approach, it won’t be

necessary to use a non-parametric estimator of the conditional mean m(.) which, if we are

using KS for instance, could be quite undesirable in practice if p is even moderately large,

owing to slow convergence rates due to the curse of dimensionality, and moreover, substantial

finite sample over-fitting bias. We first make a fundamental definition in this regard.

Definition 2.2. Let µ(X) ∈ R be any measurable function of X with µ(.) ∈ L2(PX). With

the ‘separable’ estimating function ψ(.) as in (2.14), and the parameter of interest being still

θ0 as defined generally in (2.1), we then define µ(.) to be an admissible imputation function

(AIF) w.r.t. ψ(.) for estimating θ0 under MX, if EX[ψ{µ(X),X,θ0}] = 0, so that

EX[h(X){µ(X)− g(X,θ0)}] = 0, and hence, E[h(X){Y − µ(X)}] = 0. (2.15)
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The name ‘imputation function’ for µ(.) is purely inspired from the fact that we are

aiming to replace the Y in the definition of ψ(.) by µ(X), and still trying to ensure that θ0

satisfies the EE determined by this ‘imputed’ version of the underlying estimating function.

Of course, one choice of µ(.) is the conditional mean m(.) itself, but we would be interested

in more diverse choices of such µ(.), and their estimators, that would lead to a corresponding

family of flexible SS estimators, indexed by the respective choice of µ(.). For the case of

SS logistic regression, a particular construction of (a family of) µ(.), as well as its estimator

would also be provided, involving effective use of dimension reduction techniques (if desired),

which can be quite helpful, especially if smoothing based methods like KS are involved in the

estimation, that do not scale well with the underlying smoothing dimension. A corresponding

version of such constructions were also provided in Chakrabortty and Cai (2015) for the linear

regression problem, which also included, as a special case, the optimal estimator (for that

problem) that we have developed here in section 2.3 under a much more general framework.

We next present the general construction and properties of a family of SS estimators of θ0,

under the setting introduced above, indexed by the choice of the AIF µ(.).

A Flexible Family of SS Estimators for ‘Separable’ Estimating Equations: With

µ(.) as defined in 2.2, let µ̂(.) denote any reasonable estimator, based on L, of µ(.), and

define φ̂µ(x,θ) = h(x){µ̂(x) − g(x,θ)} ∀ x ∈ X ,θ ∈ Θ. Using µ̂(.), we now define a µ-

modified EE, ψ
(µ)
n,N(θ), and then a corresponding SS estimator θ̂µ as the solution to that EE,

as follows.

Let ψ
(µ)
n,N(θ) =

1

N

N∑
j=1

φ̂µ(Xj,θ)− 1

n

n∑
i=1

{
φ̂µ(Xi,θ)−ψ(Yi,Xi,θ)

}
∀ θ ∈ Θ,

=
1

N

N∑
j=1

h(Xj){µ̂(Xj)− g(Xj,θ)} − 1

n

n∑
i=1

h(Xi){µ̂(Xi)− Yi}, and (2.16)

define the SS estimator θ̂µ as the solution in θ ∈ Θ to: ψ
(µ)
n,N(θ) = 0. (2.17)

47



The construction of the µ-modified EE ψ
(µ)
n,N(θ) in (2.17) is more or less based on the same

ideas and intuitions underlying the construction of the modified EE in (2.3) for the general

EASE. The first term tries to mimic the definition of ψ0(θ) ≡ E[h(X){Y − g(X,θ)}] which

equals EX[h(X){µ(X) − g(X,θ) ∀ θ ∈ Θ, owing to (2.15), wherein we simply plug in the

estimator µ̂(.) of µ(.) inside, and then (near-perfectly) estimate the outside EX(.) through

Monte-Carlo based on U . The second term, similar to (2.3), corresponds to a ‘de-biasing’

term that turns out to be a natural estimator of the bias of µ̂(.) as an estimator of µ(.), and

in particular, helps avoiding any under-smoothing requirement if KS is used for constructing

µ̂(.). We next characterize the theoretical properties of θ̂µ through the following result.

Theorem 2.2. Let ψ(.), θ0, µ(.), µ̂(.) and θ̂µ be as introduced through (2.14)-(2.17), and

suppose assumptions 2.1-2.2 hold. Assume further that for some ε > 0, the function class:

Fε = {h(X)g(X,θ) : θ ∈ B(θ0; ε)} lies in a P-Donsker class, or more generally, assume that

sup
θ∈B(θ0,ε)

∥∥∥∥∥ 1

N

N∑
j=1

h(Xj)g(Xj,θ)− EX{h(X)g(X,θ)}

∥∥∥∥∥ = Op

(
N−

1
2

)
, for some ε > 0.

(2.18)

Further, assume the following convergence properties of µ̂(.) as an estimator of µ(.):

sup
x∈X
‖h(x){µ̂(x)− µ(x)}‖ P→ 0, and G(µ)

n ≡ Gn [h(X) {µ̂(X)− µ(X)}] P→ 0. (2.19)

Then, the SS estimator θ̂µ in (2.17), satisfies the following expansion:

n
1
2

(
θ̂µ − θ0

)
= n−

1
2

n∑
i=1

ξµ(Zi) +Op

(
G(µ)
n

)
+Op

( n
N

) 1
2

+ op(1), (2.20)

where ξµ(Z) = −{J (θ0)}−1Ψµ(Z) ≡ −{J (θ0)}−1 [h(X) {Y − µ(X)}] . (2.21)

Hence, n
1
2 (θ̂µ − θ0)

d→ Nd[0,Σ{ξµ(.)}], and θ̂µ is a RAL (and CAN) estimator of θ0 with

IF: ξµ(Z), while the supervised M-estimator θ̂, using theorem 2.1, is a RAL (and CAN)

estimator of θ0 with IF: ξ0(Z) = −{J (θ0)}−1Ψ0(Z) ≡ −{J (θ0)}−1[h(X){Y − g(X,θ0)}].
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Theorem 2.2 therefore equips us a with a family of RAL and CAN estimators θ̂µ of

θ0, indexed by the choice of the AIF µ(.). If somehow the AIF is ‘sufficient’ in the sense

that µ(.) = m(.), then ξµ(.) = ξeff(.), so that θ̂µ and the general EASE estimator θ̂
∗

obtained earlier are indeed asymptotically equivalent, and therefore θ̂µ enjoys the same set

of optimality properties as those discussed for θ̂
∗

at the end of theorem 2.1. However, if the

AIF is not sufficient i.e. µ(.) 6= m(.), then the efficient and adaptive property (or any of the

other optimality properties) of θ̂µ w.r.t. θ̂ is no longer guaranteed. We address this next.

Construction of Flexible EASE Estimators Based on θ̂µ: To ensure adaptivity even

when µ(.) 6= m(.), we now define the final EASE estimator, based on θ̂µ, as an optimal linear

combination of θ̂ and θ̂µ. Specifically, for any fixed d×d matrix ∆, θ̂µ(∆) = θ̂+∆(θ̂µ− θ̂)

is a CAN and RAL estimator of θ0 whenever θ̂ and θ̂µ are, and an optimal ∆ can be selected

easily to minimize the asymptotic variance of the combined estimator. For simplicity, we

focus here on ∆ being a diagonal matrix with ∆ = diag(δ1, ..., δd). Then, the EASE based

on θ̂µ is defined as θ̂
E

µ ≡ θ̂µ(∆̂) with ∆̂ being any consistent estimator (see next section for

further details) of the minimizer ∆ = diag(δ1, ..., δd), where ∀ 1 ≤ l ≤ d,

δl = − lim
ε↓0

Cov
{
ξ0[l](Z), ξµ[l](Z)− ξ0[l](Z)

}
Var

{
ξµ[l](Z)− ξ0[l](Z)

}
+ ε

. (2.22)

Note that in (2.22), the ε and the limit outside are included to formally account for the case:

ξ0[l](Z) = ξµ[l](Z) a.s. [P], when we define δl = 0 for identifiability.

It is straightforward to show that θ̂
E

µ and θ̂µ(∆) are asymptotically equivalent, so that

θ̂
E

µ is a RAL estimator of θ0 satisfying:

n
1
2

(
θ̂
E

µ − θ0

)
= n−

1
2

n∑
i=1

ξµ(Zi,∆) + op(1)
d→ Nd[0,Σµ(∆)] as n→∞, (2.23)

where ξµ(Z,∆) = ξ0(Z) + ∆{ξµ(Z)− ξ0(Z)}, and Σµ(∆) = Var{ξµ(Z,∆)}.

Note that whenever the AIF is sufficient so that µ(.) = m(.), then ξµ(Z,∆) = ξeff(Z), so that
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θ̂
E

µ is asymptotically equivalent (and therefore optimal) to θ̂
∗
. Further, when µ(.) 6= m(.),

then θ̂
E

µ is no longer optimal, but is still efficient and adaptive compared to θ̂ (as well as to

θ̂µ). Lastly, if the AIF is certain to be sufficient, we may simply define θ̂
E

µ = θ̂µ.

Inference Based on θ̂µ and the EASE Estimator θ̂
E

µ : We now provide procedures

for making inference about θ0 based on θ̂µ and θ̂
E

µ , through estimation of their asymptotic

variances, as well obtaining the estimate ∆̂ of ∆ involved in the definition of θ̂
E

µ that is

required for its implementation in practice. In order to avoid potential over-fitting bias in

the inference procedures, since µ̂(.) can be possibly obtained using non-parametric smoothing

based techniques, we further adopt a K-fold cross-validation (CV) based approach, for any

fixed K ≥ 2, for constructing the inference procedures. We first introduce a few notations

for this purpose. For any fixed K ≥ 2, let {Lk}Kk=1 denote a random partition of L into K

disjoint subsets of equal sizes, nK = n/K, with index sets {Ik}Kk=1. Let L−k denote the set

excluding Lk with size n−K = n− nK and respective index set I−k . Let {µ̂k(.)}Kk=1 denote the

corresponding estimators of µ(.) based on {L−k }Kk=1. Further, for the supervised estimator θ̂,

let {θ̂k}Kk=1 denote its corresponding versions obtained from {L−k }Kk=1. A key step involved

in the construction of the inference procedures, as well as in obtaining ∆̂, is to obtain

reasonable (non-over-fitted) estimates of the IFs of θ̂ and θ̂µ: ξ0(Z) ≡ −{J (θ0)}−1Ψ0(Z)

and ξµ(Z) ≡ −{J (θ0)}−1Ψµ(Z) respectively, for Z ∈ {Zi}ni=1 ≡ {Zi : i ∈ Ik, k = 1, . . . ,K}.

First of all, in order to estimate J (θ0), we will assume here, for simplicity, that g(x,θ)

is continuously differentiable w.r.t. θ at least in a neighbourhood of θ0, with a derivative

∇g(x,θ) ∈ Rd, for every x ∈ X , and that h(X)g(X,θ) is further regular and/or smooth

enough to allow interchange of derivatives (w.r.t. θ) and expectations (w.r.t. X), so that

we have: J (θ0) = −EX{h(X)∇g′(X,θ0)}. Using θ̂ based on L ⊥⊥ U , followed by a Monte-

Carlo on U , we can then consistently estimate J (θ0) and {J (θ0)}−1 respectively as:

Ĵ (θ0) = − 1

N

N∑
j=1

h(Xj)∇′(Xj, θ̂), and {Ĵ (θ0)}−1 =

{
− 1

N

N∑
j=1

h(Xj)∇′(Xj, θ̂)

}−1

,
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where we have implicitly assumed that Ĵ (θ0) is indeed invertible. Next, for each Zi ∈ Lk

and k ∈ {1, ..,K}, we estimate {Ψ0(Zi), ξ0(Zi)} and {Ψµ(Zi), ξµ(Zi)} as:

Ψ̂0,k(Zi) = h(Xi){Yi − g(Xi, θ̂k)}, ξ̂0,k(Zi) = −{Ĵ (θ0)}−1Ψ̂0,k(Zi), and

Ψ̂µ,k(Zi) = h(Xi){Yi − µ̂k(Xi)}, ξ̂µ,k(Zi) = −{Ĵ (θ0)}−1Ψ̂µ,k(Zi).

Then, Σ{ξµ(.)}, the asymptotic variance of θ̂µ can be consistently estimated as:

Σ̂{ξµ(.)} = n−1

K∑
k=1

∑
i∈Ik

ξ̂µ,k(Zi)ξ̂
′
µ,k(Zi).

To estimate the combination matrix ∆ in (2.22) and the asymptotic variance Σµ(∆) in

(2.23) of the EASE estimator θ̂
E

µ consistently, let us define, ∀ 1 ≤ l ≤ d,

σ̂l,12 = − n−1
∑K

k=1

∑
i∈Ik ξ̂0,k[l](Zi){ξ̂µ,k[l](Zi)− ξ̂0[l](Zi)},

σ̂l,22 = n−1
∑K

k=1

∑
i∈Ik{ξ̂µ,k[l](Zi)− ξ̂0,k[l](Zi)}2,

and δ̂l = σ̂l,12/(σ̂l,22 + εn) for some sequence εn → 0 with n
1
2 εn →∞. Then, we estimate ∆

and Σµ(∆) respectively as: ∆̂ = diag(δ̂1, ..., δ̂d) and

Σ̂µ(∆̂) = n−1

K∑
k=1

∑
i∈Ik

ξ̂µ,k(Zi, ∆̂)ξ̂
′
µ,k(Zi, ∆̂),

where ξ̂µ,k(Z, ∆̂) = ξ̂0,k(Z) + ∆̂{ξ̂µ,k(Z) − ξ̂0,k(Z)} ∀ k ∈ {1, . . . ,K}. Normal confidence

intervals (CIs) for the parameters of interest can also be constructed accordingly based on

these variance estimates, and the asymptotically normal distribution of the estimators.

2.3.2 Construction of a Family of AIFs for SS Logistic Regression

Estimation problems for logistic regression (working) models are typically based on a maxi-

mum log-likelihood approach, so that the problem essentially corresponds to an M -estimation
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problem, with the estimating equation being obtained as the derivative of the log-likelihood

function defined by the working model. The underlying estimating function characterizing

this EE is given by: ψ(Y,X,θ) ≡ h(X){Y − g(X,θ)} =
−→
X{Y − g0(

−→
X ′θ0)} ∈ Rd, where

d = (p + 1),
−→
X = (1,X′)′, θ = (α,β′)′, Y is (typically) a binary outcome ∈ {0, 1}, and

g0(u) = exp(u)/{1 + exp(u)} ∈ [0, 1] ∀ u ∈ R denotes the appropriate ‘expit’ link function.

Let g0(a) = log{a/(1− a)} ∈ R ∀ a ∈ (0, 1) denote the ‘logit’ function, the inverse of g0(.).

With ψ(.) satisfying the desired form (2.14) characterizing separable EEs, we use this

setting to provide an illustration of the framework we have developed in section 2.3.1 for con-

structing flexible SS estimators θ̂µ, and corresponding EASE estimators θ̂
E

µ , based on an AIF

µ(.) and its estimator µ̂(.). We demonstrate here a family of choices of such a µ(.), and µ̂(.),

for the SS logistic regression problem. These choices are primarily motivated by the idea of

performing a lower dimensional smoothing, if desired, through appropriate use of dimension

reduction techniques. For smoothing methods like KS, that can be quite inefficient in finite

samples if p is even moderately large, such approaches are often desirable. In particular,

they can be quite useful for the practical implementation of all our proposed SS estimators,

the constructions for most of whom are based on the possible use of non-parametric (or

semi-non-parametric) smoothing methods like KS. We begin with a few notations.

Let r ≤ p be a fixed positive integer and Pr = [p1, ..,pr]p×r be any rank r transformation

matrix. Let XPr = P′rX. Given (r,Pr), we may now consider approximating the regression

function E(Y |X) by smoothing Y over the r dimensional XPr instead of the original X ∈ Rp.

In general, Pr can be user-defined and data dependent. A few reasonable choices of Pr would

be discussed shortly. If Pr depends only on PX, it may be assumed to be known given the SS

setting considered. If Pr also depends on the distribution of Y , then it needs to be estimated

from L and the smoothing needs to be performed using the estimated Pr.

For approximating E(Y |X), we may consider any reasonable smoothing technique T

including, for instance, KS, kernel machine regression, smoothing splines etc. Let m(x; Pr)

denote the ‘target function’ for smoothing Y over XPr using T . For notational simplicity,
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the dependence of m(x; Pr) and other quantities on T is suppressed throughout. For KS,

the appropriate target is given by: m(x; Pr) = mPr(P
′
rx), where mPr(z) ≡ E(Y |XPr = z).

For basis function expansion based methods, m(x; Pr) will typically correspond to the L2

projection of m(x) ≡ E(Y |X = x) ∈ L2(PX) onto the functional space spanned by the

basis functions associated with T . Note that we do not assume m(x; Pr) = m(x) and

hence, this is essentially a ‘semi-non-parametric’ (SNP) approach. Obviously, the case with

Pr = Ip and T := KS reduces to a fully non-parametric approach. With Pr and m(x; Pr) as

defined above, let P̂r and m̂(x; P̂r) respectively denote their estimators based on L. With

m(X,Pr) = mPr(P
′
rx), one choice of m̂(x; P̂r) based on KS is given by:

m̂(x; P̂r) ≡ m̂KS(x; P̂r) =
1
nhr

∑n
i=1 K{(P̂′rXi − P̂′rx)/h}Yi

1
nhr

∑n
i=1 K{(P̂′rXi − P̂′rx)/h}

, ∀ x ∈ X ,

where K(.) : Rr → R is some appropriate kernel function of order q ≥ 2 and h = h(n) > 0

denotes the bandwidth sequence. With (r,Pr, P̂r) and {m(x; Pr), m̂(x; P̂r)} well-defined,

we now formally define the AIF µ(.) and its estimator µ̂(.) as follows.

µ(x) ≡ µ(x; Pr) = g0

[−→x ′ηPr
+ g0 {m(x; Pr)}

]
, ∀ x ∈ X , and (2.24)

µ̂(x) ≡ µ̂(x; P̂r) = g0

[−→x ′η̂Pr + g0

{
m̂(x; P̂r)

}]
, where (2.25)

ηPr
denotes the solution in η to: E

{−→
X
(
Y − g0

[−→
X ′η + g0 {m(X; Pr)}

])}
= 0, and

η̂Pr denotes the solution in η to: Pn
{−→

X
(
Y − g0

[−→
X ′η + g0

{
m̂(X; P̂r)

}])}
= 0.

Note first of all that owing to the definition of µ(.) in (2.24) and that of ηPr
, µ(.) naturally

satisfies: E[
−→
X{Y − µ(X)}] = 0 and hence, EX[ψ{µ(X),X,θ0}] = 0, so that µ(.) is indeed

an AIF in the sense of definition 2.2. Next, note that as long as g0{m(X; Pr)} is well-defined

a.s. [PX], the existence and uniqueness of ηPr
is clear as it essentially solves the expected EE

corresponding to a (population based) logistic regression of Y w.r.t. X using g0{m(X; Pr)}

as an offset. Similarly, as long as g0{m̂(X; P̂r)} is well defined a.s. [P], the existence and
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uniqueness of η̂Pr is also clear, as it essentially solves the empirical EE corresponding to a

logistic regression of Y w.r.t. X based on L using {g0{m̂(Xi; P̂r} : i = 1, . . . , n} as a vector

of offsets. In fact, this also reveals a simple imputation based algorithm for implementing

the construction of the estimator θ̂µ based on the above choices of µ(.) and µ̂(.) as follows.

Step (i) Smoothing: Choose (r,Pr, T ), and use L to obtain P̂r (if required) and m̂(x; P̂r)

based on T applied to {Yi, (P̂′rXi)}ni=1.

Step (ii) Refitting: Fit a logistic regression, based on L, of {Yi}ni=1 w.r.t. {Xi}ni=1 using

[g0{m̂(Xi, P̂r)}]ni=1 as a vector of offsets, to obtain the estimator η̂Pr .

Step (iii) Imputation: Define the SNP imputation function: µ̂(x) ≡ µ̂(x; P̂r), as in (2.25),

by combining, in the appropriate scale, the predictions from the smoothing and

the refitting steps. Use µ̂(.) to impute the missing Y in U as {µ̂(Xj)}Nj=1.

Step (iv) Final Step: Fit a logistic regression, based on the imputed U , of {µ̂(Xj)}Nj=1 w.r.t.

{Xj}Nj=1 to obtain the SS estimator θ̂µ for the chosen µ(.) and µ̂(.).

It is straightforward to show that for the logistic regression problem, with the AIF µ(.) and

its estimator µ̂(.) chosen to be as in (2.24)-(2.25), the SS estimator θ̂µ obtained from the

above algorithm is, in fact, identical to the one obtained from the general construction in

(2.17), and therefore satisfies all the consequences of theorem 2.2 as long as the required

assumptions hold. Further, all the rest of the developments in section 2.3.1, including the

construction of the EASE estimator θ̂
E

µ , as well as the associated inference procedures, also

apply to the estimator θ̂µ obtained from the above algorithm. Note further that in this case,

the EASE estimator θ̂
E

µ is efficient and adaptive to the mis-specification of the underlying

logistic regression (working) model given by: E(Y |X) = g0(
−→
X ′θ) for some θ ∈ Rp, so that

when either the model holds or the SNP imputation is sufficient, then the IF ξµ(Z,∆) of θ̂
E

µ

equals the ‘efficient’ IF ξeff(Z), so that θ̂
E

µ is indeed asymptotically optimal among all RAL

estimators of θ0 underMX. Further, when neither cases hold, then θ̂
E

µ is no longer optimal,
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but is still efficient and adaptive compared to θ̂ which, in this case, denotes the maximum

likelihood estimator (MLE) for logistic regression. Lastly, if the SNP imputation above is

certain to be sufficient (e.g. if r = p and T := KS), we may also simply define θ̂
E

µ = θ̂µ.

It is also worth noting that a similar family of constructions and associated algorithms

was studied in detail in Chakrabortty and Cai (2015) for the case of linear regression, where

some interesting geometric intuitions and perspectives were also provided in order to motivate

their corresponding refitting step. The version of the refitting step used here can be viewed as

a natural generalization of their approach to the case of non-linear monotone link functions.

The use of the inverse link g0(.) in the construction of the offsets here is essentially inspired

from the same geometric intuitions, and aims to ensure that the refitting step is performed

in an appropriate scale. Moreover, while we have focussed here on logistic regression, the

construction provided essentially applies to any canonical GLwM based on monotone link

functions, including poisson regression (the exponential link) for instance. With appropriate

modifications, we believe it can also be extended to even more general classes of GLwMs.

Finally, as far as the validity of the assumptions in theorem 2.2 for this case is concerned,

assumptions 2.1-2.2, as well as condition (2.18) can be indeed verified to be true in this case.

As for (2.19), if X is compact, and m(X; Pr) and m̂(X; P̂r) are bounded away from 0/1 a.s.

[P], then with g0(.) and g0(.) both sufficiently smooth over their respective domains, (2.19)

can be shown to hold as long as: supx∈X |m̂(x; P̂r)−m(x; Pr)|
P→ 0, and Gn[

−→
X{m̂(x; P̂r)−

m(x; Pr)}]
P→ 0. For T := KS, the validity of these conditions have been studied in detail

in Theorem 4.1 and Lemmas A.2-A.3 of Chakrabortty and Cai (2015) under fairly mild

conditions. In particular, they have shown that if (P̂r−Pr) = Op(n
− 1

2 ), the result will indeed

hold at the optimal bandwidth order of O(n−1/(2q+r)) provided q > r/2. (This condition can

be further removed using a CV based technique that is not pursued here for simplicity).

Choices of Pr: We end this section with a brief discussion regarding the choice and

estimation, if required, of the matrix Pr (r < p) that may be used for dimension reduction,
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if desired, while constructing the AIF µ(.) and its estimator µ̂(.). As noted earlier, the choice

of (r,Pr) is essentially user-defined. While r would be typically chosen based on practical

considerations including the size of n, as well as the choice of T , Pr is allowed to be an

unknown functional of P. Simple choices of Pr include the r leading principal component

directions of X or any r canonical directions of X. Note that under the SS setting, Pr is

effectively known if it only involves PX. We now focus primarily on the case where Pr also

depends on the distribution of Y and hence, is unknown in practice. Such a choice of Pr

is often desirable to ensure that the smoothing is as ‘sufficient’ as possible for predicting

Y . Several reasonable choices of such Pr and their estimation are possible based on non-

parametric sufficient dimension reduction methods like Sliced Inverse Regression (SIR) (Li,

1991; Duan and Li, 1991), Principal Hessian Directions (PHD) (Li, 1992; Cook, 1998), Sliced

Average Variance Estimation (SAVE) (Cook and Weisberg, 1991; Cook and Lee, 1999) etc.

Perhaps the most popular among these methods is the SIR approach, where the choice

of Pr is given by: P0
r, the r leading eigenvectors of M0 = Var{E(X|Y )}, which leads to an

optimal (in some sense) r-dimensional linear transform of X that can be predicted by Y .

We refer the interested reader to Li (1991) and Duan and Li (1991) for more details on SIR

and its properties, and to Chakrabortty and Cai (2015) for further discussions on the use of

SIR in SS estimation problems, including a heuristic SS modification of the SIR algorithm.

While SIR, in general, is a reasonable approach for dimension reduction, especially for

a continuous Y , it is unfortunately not quite suited for binary outcomes (which is what we

consider here at least) since for such outcomes, SIR can provide only one non-trivial direction

(see Cook and Lee (1999) for more details). A related approach that is more suited to handle

binary outcomes is the SAVE approach of Cook and Lee (1999). For binary outcomes, an

appropriate choice of Pr based on SAVE is given by: Pr, the r leading eigenvectors of M =

{ρ(Ip−Σ1)2 +(1−ρ)(Ip−Σ0)2}, where ρ = P(Y = 1), and Σy = Var(X|Y = y) ∀ y ∈ {0, 1}.
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2.3.3 Simulation Studies for SS Logistic Regression

We conducted extensive simulation studies to examine the finite sample performances of

our general point and interval estimation procedures proposed in section 2.3.1 indexed by

flexible choices of µ(.) and µ̂(.), for the case of SS logistic regression, wherein the µ(.) and

µ̂(.) are chosen based on the SNP imputation strategy discussed in section 2.3.2. In all our

results, we will denote the supervised estimator θ̂, the standard MLE for logistic regression,

as MLE, and the corresponding SS estimators θ̂µ and θ̂
E

µ as SNP and EASE resepctively.

Throughout, we let n = 500, N = 10000, and considered two choices of p given by: p = 10

and p = 20. We generated X as: X ∼ Np(0, Ip) and restricted X to [−5, 5]p to ensure its

boundedness. Given X, we generated Y as: Y | X = x ∼ Ber{m(x)} for different choices

of m(.) to be discussed below. The SNP imputation was implemented using a dimension

reduction step, wherein we used r = 2, and Pr was chosen and estimated based on the

SAVE approach of Cook and Lee (1999). The estimator m̂(x, P̂r) was obtained using an

r-dimensional local constant KS based on a 2nd order Gaussian kernel with h estimated

through maximum likelihood CV. The standard error estimates for all the estimators, as

well the estimate ∆̂ of ∆ in the definition of θ̂
E

µ , were obtained based on K-fold CV with

K = 5. The true values of the target parameter θ0 ≡ (α0,β
′
0)′ were estimated via monte

carlo with a large sample size of 50, 000. For each configuration, the results are summarized

based on 500 replications.

Choices of m(x): For both choices of p, and with g0(u) ≡ exp(u)/{1 + exp(u)} ∀ u ∈ R

denoting the link function, we investigated three different functional forms of m(x) as follows:

(i) Linear (Lin.): m(x) = g0 (x′bp);

(ii) Non-linear two component (NL2C): m(x) = g0 {(x′bp)(1 + x′δp)}; and

(iii) Non-linear three component (NL3C): m(x) = g0 {(x′bp)(1 + x′δp) + (x′ωp)
2};
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where, we used bp ≡ (1′p/2,0
′
p/2)′ for all models, δp = (0′p/2, 2 ∗ 1′p/2)′ for models (ii)-(iii),

and ωp = (1, 0, 1, 0, . . . , 1, 0)′p×1; and for any a, 1a = (1, . . . , 1)′a×1 and 0a = (0, . . . , 0)′a×1.

Note that the terms ‘linear’ and ‘non-linear’ appearing in the names of model (i) and models

(ii)-(iii) respectively are inspired from the nature of the functional forms appearing inside

the link g0(.), and they respectively correspond to the cases of the underlying logistic re-

gression working model being correct or mis-specified. Moreover, for the non-linear models

(ii)-(iii), note that the corresponding m(x) depends on x through 2 and 3 dimensional lin-

ear transformations of x respectively. Through appropriate choices of bp, δp and ωp, as

applicable, these models can incorporate commonly encountered quadratic and interaction

effects. Lastly, with X normally distributed and Pr being chosen based on SAVE, results

from (Cook and Lee, 1999) further imply that the SNP imputation with r = 2 is sufficient

for models (i)-(ii), and insufficient for model (iii).

We summarize in tables 2.1-2.2 the overall relative efficiency (RE) of the proposed SNP

(θ̂µ) and EASE (θ̂
E

µ ) estimators, compared to the MLE (θ̂) w.r.t. the empirical mean

squared error (Emp. MSE), where for any estimator θ̃ of θ0, the Emp. MSE is summarized

as the average of ‖θ̃ − θ0‖2 over the 500 replications. As expected, both θ̂µ and θ̂
E

µ are

substantially more efficient than the MLE under model mis-specification, as is the case for

the NL2C and NL3C models, while they are equally efficient as the MLE when the working

model holds, as is the case for the linear model. Under the NL2C model, the SAVE based

SNP imputation is expected to be sufficient and thus both θ̂µ and θ̂
E

µ should be achieving

the maximal efficiency gain, while under the NL3C model, with the the SNP imputation

being insufficient, the corresponding efficiency gains for θ̂µ and θ̂
E

µ are slightly less than

those under the NL2C model. Lastly, it is also interesting to note that for most of the cases,

the EASE and the SNP estimators achieve nearly identical efficiencies. However in practice,

the final combination step involved in the construction of EASE should still be performed in

order to ensure theoretically the efficient and adaptive property of EASE, a property that is

possessed by θ̂
E

µ , but not in general by θ̂µ unless the AIF µ(.) turns out to be equal to m(.).
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Table 2.1: Comparison of the MLE, SNP and EASE estimators based on Emp. MSE under
models (i), (ii) and (iii) for p = 10. Shown also are the relative efficiencies (RE) of all the
estimators w.r.t. the corresponding MLE for each of the three models considered.

Lin. Model NL2C Model NL3C ModelCriteria ↓
MLE SNP EASE MLE SNP EASE MLE SNP EASE

Emp. MSE 0.210 0.208 0.209 0.097 0.040 0.040 0.108 0.046 0.046
RE w.r.t. MLE 1.000 1.012 1.004 1.000 2.421 2.416 1.000 2.357 2.345

Table 2.2: Comparison of the MLE, SNP and EASE estimators based on Emp. MSE under
models (i), (ii) and (iii) for p = 20. Shown also are the relative efficiencies (RE) of all the
estimators w.r.t. the corresponding MLE for each of the three models considered.

Lin. Model NL2C Model NL3C ModelCriteria ↓
MLE SNP EASE MLE SNP EASE MLE SNP EASE

Emp. MSE 0.644 0.608 0.616 0.192 0.104 0.105 0.216 0.133 0.134
RE w.r.t. MLE 1.000 1.058 1.045 1.000 1.841 1.831 1.000 1.631 1.619

To examine the performance of the CV based inference procedures proposed in section

2.3.1, we also obtained the standard error (SE) estimates and the corresponding CIs for the

SNP and EASE estimators θ̂µ and θ̂
E

µ . In tables 2.3-2.4, we present the bias, empirical SE

(ESE), the average of the estimated SE (ASE) and the coverage probability (CovP) of the

95% CIs for each component of θ̂µ and θ̂
E

µ under the linear and NL2C models with p = 10.

In general, we find that both θ̂µ and θ̂
E

µ have negligible biases and further, they are similar,

if not smaller, in magnitudes to the corresponding biases of the MLE under both models.

The ASEs are close to the corresponding ESEs, and the CovPs are close to the nominal level

of 95% for both θ̂µ and θ̂
E

µ under each of the models, suggesting that the proposed variance

estimation procedure works well in practice with K = 5. Under the linear model, both θ̂µ

and θ̂
E

µ have similar magnitudes of standard errors as the MLE, as we would expect. Under

the NL2C model, compared to the MLE, both θ̂µ and θ̂
E

µ are substantially more efficient, at

the cost of virtually no additional biases, across all components of θ0.
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Table 2.3: Bias, ESE, ASE and CovP of θ̂µ and θ̂
E

µ for estimating θ0 under the linear model
with p = 10 . Shown also are the bias and ESE of the MLE for comparison. The true
parameter value under this model is given by: θ0 = (α0, β01, ..., β010)′, as tabulated below.

MLE (θ̂) SNP (θ̂µ) EASE (θ̂
E

µ )Parameter
Bias ESE Bias ESE ASE CovP Bias ESE ASE CovP

α0 = 0 0.005 0.126 0.005 0.128 0.126 0.95 0.005 0.127 0.125 0.95
β01 = 1 0.031 0.156 0.021 0.156 0.147 0.95 0.027 0.156 0.146 0.94
β02 = 1 0.041 0.142 0.031 0.141 0.148 0.96 0.037 0.142 0.147 0.96
β03 = 1 0.046 0.139 0.038 0.139 0.148 0.98 0.042 0.139 0.147 0.98
β04 = 1 0.041 0.143 0.030 0.142 0.148 0.97 0.036 0.143 0.147 0.96
β05 = 1 0.053 0.150 0.042 0.150 0.149 0.95 0.049 0.150 0.148 0.94
β06 = 0 0.000 0.136 0.000 0.136 0.126 0.92 0.001 0.136 0.125 0.92
β07 = 0 0.008 0.123 0.008 0.125 0.126 0.94 0.007 0.124 0.125 0.95
β08 = 0 0.000 0.119 0.001 0.121 0.127 0.98 0.000 0.120 0.126 0.98
β09 = 0 0.002 0.126 0.001 0.126 0.126 0.96 0.002 0.126 0.125 0.96
β010 = 0 -0.006 0.125 -0.006 0.125 0.126 0.95 -0.006 0.124 0.125 0.95

Table 2.4: Bias, ESE, ASE and CovP of θ̂µ and θ̂
E

µ for estimating θ0 under the NL2C model
with p = 10 . Shown also are the bias and ESE of the MLE for comparison. The true
parameter value under this model is given by: θ0 = (α0, β01, ..., β010)′, as tabulated below.

OLS (θ̂) SNP (θ̂µ) EASE (θ̂
E

µ )Parameter
Bias ESE Bias ESE ASE CovP Bias ESE ASE CovP

α0 = 0 0.001 0.093 0.000 0.067 0.064 0.93 0.000 0.067 0.064 0.93
β01 = 0.125 -0.003 0.097 -0.001 0.060 0.062 0.96 -0.001 0.060 0.062 0.97
β02 = 0.125 0.003 0.095 0.004 0.059 0.062 0.96 0.004 0.060 0.062 0.96
β03 = 0.125 -0.000 0.091 0.005 0.058 0.062 0.95 0.005 0.058 0.062 0.95
β04 = 0.125 0.003 0.091 0.005 0.061 0.062 0.95 0.005 0.061 0.062 0.95
β05 = 0.125 0.001 0.090 0.004 0.059 0.062 0.95 0.004 0.060 0.062 0.95
β06 = 0 0.005 0.098 0.001 0.059 0.062 0.96 0.001 0.059 0.062 0.96
β07 = 0 -0.012 0.092 -0.004 0.061 0.062 0.95 -0.005 0.061 0.062 0.96
β08 = 0 -0.002 0.099 0.001 0.060 0.062 0.96 0.001 0.059 0.062 0.96
β09 = 0 -0.000 0.093 -0.003 0.060 0.062 0.95 -0.003 0.060 0.062 0.95
β010 = 0 0.001 0.094 0.004 0.061 0.062 0.94 0.004 0.061 0.062 0.94

2.3.4 Application of SS Logistic Regression to EMR Data

We applied our proposed SS estimation procedure for logistic regression, based on the SNP

imputation strategy discussed in section 2.3.2, to an EMR study of rheumatoid arthritis

(RA), a systemic autoimmune (AI) disease, conducted at the Partners HealthCare. Further
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details on this study can be found in Liao et al. (2010, 2013). The study cohort consists of

44014 patients, and the binary outcome of interest in this case was a disease phenotype de-

fined as clinically confirmed diagnosis of RA. The primary goal was to understand and model

the disease risk of RA based on several relevant clinical variables, including RA biomarkers,

standard medications for RA, as well other relevant AI diseases and/or clinical conditions

known to be closely related to RA, rich information for all of which were available through

the data for a large number of patients. However, the availability of gold standard outcomes

was limited as it required logistically prohibitive manual chart review by the physician. A la-

beled training data was therefore only available for a random subset of 500 patients, wherein

observations for the gold standard outcome were obtained through manual chart review by

two expert rheumatologists, thereby leading to a SS set-up. The empirical estimate, based

on the labeled data, of the population prevalence of RA was found to be 99/500.

In order to model the disease risk of RA, we related it to a set of 27 covariates alto-

gether available through the dataset, which included: (i) age, gender, (ii) counts of ICD9

diagnostic codes for RA, (iii) counts of mentions, extracted from the physicians’ notes via

natural language processing (NLP), of other related AI diseases like psoriatic arthritis (PsA)

and juvenile rheumatoid arthritis (JRA), (iv) codified test results and/or NLP extracted

mentions of positivity for standard RA biomarkers including rheumatoid factor (RF), anti-

cyclic citrullinated polypeptide (anti-CCP) and anti-tumor necrosis factors (anti-TNF) that

are routinely checked for RA patients to assess the disease progression, (vi) counts of cod-

ified and/or NLP extracted mentions of methotrexate and azathioprine (frequently used

medications for RA and other AI diseases), seropositivity, as well as several other standard

medications and/or relevant clinical conditions that are known to be related to RA, including

Anak, Arava, Enb, Gld, Hum, Neo, Pen, Plaq, PMR, Rem, Rit, Sulf and other medications

(other meds). A detailed glossary of the abbreviations used above, as well as further ex-

planations regarding the clinical significance of these variables can be found in Liao et al.

(2010, 2013). In our tabulated results, all variables representing codified mentions will be
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denoted with a suffix ‘-r’, while those corresponding to NLP extracted mentions will be de-

noted with a suffix ‘-nlp’. All the count/binary variables were further log-transformed as:

x→ log(1 +x), to increase stability of the model fitting. In order to ensure comparability of

the point estimates for the regression coefficients across all the predictors, all the covariates

were further standardized to have unit variance w.r.t. the full data, and all our results are

reported in this standardized scale for the covariates.

Based on these 27 covariates, we implemented the EASE estimator θ̂
E

µ for logistic regres-

sion, using the SNP imputation strategy in section 2.3.2 for constructing the AIF µ(.) and

its estimator µ̂(.) in section 2.3.1. The SNP imputation was implemented using a dimension

reduction step with r = 2, and Pr was chosen and estimated based on SAVE (Cook and

Lee, 1999). The estimator m̂(x, P̂r) was obtained using an r-dimensional local constant KS

based on a 2nd order Gaussian kernel with h estimated through maximum likelihood CV. For

comparison, we also implemented the corresponding supervised estimator θ̂, the MLE for

logistic regression, based on the labeled data. In addition, for both θ̂ and θ̂
E

µ , we obtained

their respective standard error (SE) estimates based on our inference procedure in section

2.3.1, wherein we used a K-fold CV with K = 5. In table 2.5, we present the coordinate-wise

estimates (Est.) of the regression parameters based on θ̂ and θ̂
E

µ , along with their respective

estimated SEs and the corresponding p-values (Pval.) based on these estimates. Shown also

are the coordinate-wise estimated relative efficiencies (REs) of θ̂
E

µ w.r.t. θ̂.

The point estimates of θ0 based on θ̂ and θ̂
E

µ in table 2.5 are all quite close in general,

which is desirable and reassuring as it establishes, in a real data, the consistency and stability

of EASE. Further, the estimated REs of θ̂
E

µ w.r.t. θ̂ are all greater than 1 indicating the

improved efficiency of EASE over the MLE. The efficiency gains for most of the variables are

notably quite substantial. Apart from a few cases, where the gains range between 10-30%,

for most of the other variables, the gains typically range between 50% to 200%, and in some

cases, reach exceptionally high values as well.
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Table 2.5: Comparison of the SS and supervised logistic regression estimators applied to the
EMR dataset. Shown are the estimates (Est.) of the standardized regression coefficients
based on the MLE and the EASE, along with their estimated standard errors (SE) and the
p-values (Pval.) associated with testing the null effect for each of the predictors. Shown also
are the coordinate-wise relative efficiencies (RE) of the EASE compared to the MLE.

MLE (θ̂) EASE (θ̂
E

µ )
Predictors

Est. SE Pval. Est. SE Pval.
RE of EASE

Age 0.516 0.273 0.059 0.698 0.253 0.006 1.159
Gender -0.081 0.193 0.675 -0.067 0.172 0.699 1.260
RA-r 1.506 0.375 0.000 1.337 0.339 0.000 1.217
JRA-nlp -0.664 0.466 0.154 -0.485 0.285 0.089 2.667
PsA-nlp -0.773 0.243 0.002 -0.804 0.181 0.000 1.796
Anti-CCP-r -0.032 0.190 0.865 -0.027 0.182 0.882 1.082
Anti-CCP-nlp 0.320 0.222 0.148 0.385 0.168 0.022 1.731
RF-nlp 0.018 0.219 0.936 -0.011 0.177 0.952 1.517
Seropositive-nlp 0.661 0.301 0.028 0.510 0.250 0.041 1.447
Anti-TNF-r 0.190 0.307 0.536 0.185 0.225 0.410 1.866
Anti-TNF-nlp -0.056 0.452 0.902 0.024 0.241 0.920 3.524
Methotrexate-nlp 0.606 0.259 0.019 0.659 0.216 0.002 1.436
Anak-nlp 0.030 0.302 0.920 0.098 0.236 0.679 1.644
Arava-r -0.653 0.369 0.077 -0.681 0.281 0.016 1.724
Arava-nlp 0.588 0.361 0.103 0.438 0.280 0.119 1.658
Azathioprine-nlp -0.609 0.322 0.059 -0.700 0.196 0.000 2.693
Enb-nlp 0.148 0.392 0.706 0.316 0.203 0.119 3.752
Gld-r 0.127 0.284 0.655 0.134 0.279 0.632 1.034
Hum-nlp 0.148 0.287 0.606 -0.114 0.183 0.535 2.471
Neo-nlp -0.133 0.379 0.726 -0.060 0.228 0.793 2.765
Pen-nlp -0.179 0.220 0.414 0.066 0.081 0.416 7.292
Plaq-r -0.716 0.356 0.045 -0.604 0.285 0.034 1.561
Rem-r 0.151 0.355 0.671 0.178 0.162 0.272 4.809
Rit-nlp 0.170 0.236 0.472 0.168 0.134 0.210 3.127
Sulf-r -0.104 0.301 0.731 -0.214 0.231 0.354 1.701
Other Meds-r 0.697 0.387 0.072 0.665 0.327 0.042 1.401
PMR -0.184 0.130 0.157 -0.186 0.117 0.111 1.238
(Intercept) -6.263 1.056 0.000 -6.578 0.966 0.000 1.195

As a consequence of this improved efficiency of θ̂
E

µ , we also note that apart from all the

variables that are deemed significant (at the 5% level) by both θ̂ and θ̂
E

µ , based on their

respective estimated p-values, θ̂
E

µ also additionally found several other variables including
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Age, Anti-CCP-nlp, Arava-r, Azathioprine-r, and Other Meds-R to be significant at the 5%

level. Most of the variables found significant by both θ̂ and θ̂
E

µ are indeed known to be

related directly or indirectly to RA, so that their associations detected based on the data

are perhaps reasonable and not unexpected. However, some of the additional associations

detected by θ̂
E

µ , and not by θ̂, are particularly interesting, especially as they include CCP, a

standard RA biomarker, as well as Arava and Azathioprine which are both frequently used

medications for RA and other AI diseases. Hence, these variables are indeed of substantial

clinical relevance to RA and therefore, their associations detected by EASE based on the

available data are perhaps worth investigating further using other datasets to examine the

reproducibility of the detected associations.

2.4 SS Sliced Inverse Regression (SS-SIR)

In this section, we consider a SS modification of the well-known Sliced Inverse Regression

(SIR) approach (Li, 1991; Duan and Li, 1991) for sufficient dimension reduction (SDR). The

SDR problem has received considerable interest in recent years, and several approaches for

SDR have been proposed over the last two decades, including SIR which is one of the earliest

and perhaps the most popular one, as well as other related approaches like Principal Hessian

Directions (PHD) (Li, 1992; Cook, 1998), Sliced Average Variance Estimation (SAVE) (Cook

and Weisberg, 1991; Cook and Lee, 1999) etc. that are also commonly used.

SDR methods provide useful techniques for data visualization as well as understanding

lower dimensional structures that are often implicit in otherwise high dimensional data, and

may contain all the relevant information (and hence are ‘sufficient’) for characterizing the

relationship between the outcome Y and a set of covariates X ∈ Rp, with p possibly high.

Consequently, SDR also provides a reasonable gateway to bypass the curse of dimensionality

that one inevitably encounters in non-parametric regression based on smoothing methods

like KS that do not scale well with the dimension of X, with convergence rates slowing down

exponentially with p, thereby often resulting in poor finite sample performance and over-
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fitting bias. We refer the interested reader to Cook (2009) for a detailed discussion on SDR

and associated methods, as well as a comprehensive overview of the relevant literature. The

underlying lower dimensional model, characterizing the relationship between Y and X, that

typically motivates the construction of most SDR approaches can be represented as follows.

Y = f(β′1X, . . . ,β
′
rX; ε) for some r ≤ p, and some {β1, . . . ,βr} ∈ Rp, where (2.26)

f(.) : Rr+1 → Y is some unknown ‘link’ function and ε ⊥⊥ X denotes a random noise.

Equivalently, (2.26) can also be represented as: (Y ⊥⊥ X) | {β′1X, . . . ,β′rX}.

The collection {β1, . . . ,βr} in (2.26) is assumed to be linearly independent w.l.o.g. Note

that since the link function f(.) in (2.26) is allowed to be completely unknown (upto basic

measurability and moment based restrictions to comply with our starting assumptions), the

directions {β1, . . . ,βr} are only identifiable upto scalar multiples. In other words, only

the r-dimensional span Br ≡ span{β1, . . . ,βr} ⊆ Rp of {β1, . . . ,βr}, and Pr, the rank r

orthogonal projection matrix onto Br, are identifiable under (2.26). The essential goal of

most SDR approaches, including SIR, is to efficiently estimate Br (or Pr).

The central quantity of interest in SIR is the matrix: M0 = VarY {E(X | Y )}. Under the

model (2.26), and with E(X) = 0 and Var(X) = Ip as assumed w.l.o.g., Duan and Li (1991)

and Li (1991) have shown that if a ‘design linearity condition’ (DLC) holds regarding the

underlying design distribution of X, wherein E(v′X | β′1X, . . . ,β′rX) is a linear function of

{β′1X, . . . ,β′rX} for each v ∈ Rp, a condition that holds for all elliptically symmetric distri-

butions including the multivariate normal distribution, then the span of Pr ≡ {p1, . . . ,pr},

the r leading eigenvectors of M0, indeed equals the span Br of {β1, . . . ,βr}. Further discus-

sions on these properties of M0 and Pr, as well as the validity and applicability of the DLC

condition, can be found in Duan and Li (1991), Li (1991) and Hall and Li (1993).

Further, regardless of whether a model of the form (2.26) actually holds or not, the direc-

tions {p1, . . . ,pr} always have the strong interpretability of being the r most ‘predictable’
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directions of X given Y . Specifically, they correspond to the solutions of a sequence of max-

imization problems as follows: pj = arg maxv∈Aj
Var{E(v′X | Y )}/Var(v′X) ∀ 1 ≤ j ≤ r,

where A1 = Rp and Aj = {v ∈ Rp : v ⊥ (β1, . . . ,βj−1} ∀ 2 ≤ j ≤ r. Further discussions on

these optimality properties of Pr and their interpretations can be found in Li (1991).

The SIR Approach: Under our assumed setting, with E(X) = 0 and Var(X) = Ip

w.l.o.g., the original (supervised) SIR algorithm of Li (1991) essentially proceeds as follows:

(i) Partition the range of Y into L mutually disjoint slices: {I1, . . . , IL} ≡ IL (say), for

some given choices of L and IL.

(ii) For 1 ≤ l ≤ L, let θ̂l denote the proportion of {Yi}ni=1 in slice Il i.e.

θ̂l =
1

n

n∑
i=1

1(Yi ∈ Il),

and for each Il, let m̂l denote the sample average of the set: {Xi : Yi ∈ Il} i.e.

m̂l =
1

nθ̂l

n∑
i=1

Xi{1(Yi ∈ Il)} =
µ̂l

θ̂l
, where µ̂l =

1

n

n∑
i=1

Xi{1(Yi ∈ Il)}.

(iii) Then, the SIR method essentially considers the matrix:

M̂L ≡ M̂(IL) =
L∑
l=1

θ̂l(m̂lm̂
′
l) ≡

L∑
l=1

µ̂lµ̂
′
l

θ̂l
,

and estimates the r most ‘predictable’ directions of X given Y as: P̂r ≡ {p̂1, . . . , p̂r},

the r leading eigenvectors of M̂L for any r ≤ p, regardless of the validity of a model of

the form (2.26). Moreover, if (2.26) actually does hold, and so does the DLC condition,

then the span of P̂r also n
1
2 -consistently estimates the span Br of {β1, . . . ,βr}.

The theoretical properties of SIR, including the n
1
2 -consistency of the SIR estimates, are

well established (Li, 1991; Duan and Li, 1991; Hsing and Carroll, 1992; Zhu and Ng, 1995)
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under a variety of settings with or without requiring a model of the form (2.26) to hold. In

particular, Li (1991) and Duan and Li (1991), in their original papers on SIR, establish the

n
1
2 -consistency of (the span of) P̂r, as an estimator of Br, assuming (2.26) and the DLC

condition, and under an asymptotic regime where (L, IL) are considered fixed. It needs

to be noted that even under such a regime, the SIR based estimators M̂L and P̂r above

target a matrix ML (to be made more precise shortly) and the corresponding collection Pr, L

of the r leading eigenvectors of ML respectively, so that the span of Pr, L still equals Br

as long as (2.26) and the DLC condition holds. Later, Hsing and Carroll (1992) and Zhu

and Ng (1995) established the n
1
2 -consistency of the SIR estimates under a more general

setting, wherein (2.26) or the DLC condition are not required to hold, and (L, IL) follows

an asymptotic regime where L is allowed to diverge (slowly enough) with n and each slice

contains an equal number of observations, and the results were established by simply treating

M̂L as an estimator of M0, and P̂r as an estimator of Pr. However, it has also been noted

in Zhu and Ng (1995) that even though L can be allowed to diverge, too many slices with

too few observations tends to degrade the performance of SIR both in terms of asymptotic

theory, as well as in finite samples. Further, as noted in Li (1991), the performance of the

SIR estimates tends to be fairly robust to the choice of the number of slices (and the slicing

pattern as well), as long as they are chosen reasonably enough (i.e. not too large or not

too small). Hence for all practical purposes, and regardless of the validity of (2.26) and the

DLC condition, it is perhaps not unreasonable to assume the asymptotic regime of Li (1991)

and Duan and Li (1991), so that (L, IL) is considered fixed. In fact, this is the underlying

regime we shall assume here for proposing and analyzing our semi-supervised SIR (SS-SIR)

algorithm.

The Semi-Supervised Sliced Inverse Regression (SS-SIR) Approach: Throughout

the rest of this section, we shall adopt the entire set-up introduced in section 2.3, including all

notations and basic assumptions regarding the SS setting. The SS-SIR algorithm we propose
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here is based on a methodology that is largely borrowed from, and is essentially a special case

of, the general framework we have developed in section 2.3 for SS M -estimation problems.

In particular, it is a direct consequence of multiple uses of the general EASE estimator θ̂
∗

constructed in (2.3) for some appropriate choices of the corresponding estimating functions.

The main property that the SS-SIR provably (under appropriate assumptions) possesses is

that it is always at least as efficient as the SIR, and in most cases, which would be more

clear once we state the results, it would be more efficient than the SIR approach.

In order to formalize the details of SS-SIR, we first introduce some notations as follows.

For any slicing pattern (L, IL), with a given fixed choice of the number of slices L and the

collection IL ≡ {I1, . . . , IL}, a disjoint partition of the support Y of Y , let us define:

Zl = 1(Y ∈ Il), and Xl = XZl ≡ X{1(Y ∈ Il)} ∀ 1 ≤ l ≤ L.

So, if we assume an asymptotic regime where (L, IL) is fixed and given, then the original

supervised SIR approach essentially targets the following matrix:

ML ≡ M(IL) =
L∑
l=1

µlµ
′
l

θl
≡ Var[E{X | (Z1, . . . ,ZL)}], where, ∀ 1 ≤ l ≤ L,

θl = E(Zl) ≡ E{1(Y ∈ Il)}, and µl = E(Xl) ≡ E[X{1(Y ∈ Il)}].

The parameter θl ≡ P(Y ∈ Il), for each l, is implicitly assumed to be strictly positive w.l.o.g.

Our goal would be to obtain efficient SS estimators of the matrix ML above, and compare

it to the (supervised) estimator M̂L given by the SIR. Note that the parameters {θl}Ll=1 and

{µl}Ll=1, and consequently ML, inherently depend on PX, so that improved SS estimation of

ML, compared to the supervised SIR estimator M̂L, is indeed possible. Further, note that

the efficient estimation of ML essentially boils down to the efficient estimation of the (finite)

collections of parameters given by: {θl}Ll=1 and {µl}Ll=1, all of which are expectations of some
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random variable/vector. For each 1 ≤ l ≤ L, the SIR approach estimates them as follows:

θl = E(Zl) as θ̂l =
1

n

n∑
i=1

Zl,i , where Zl,i = 1(Yi ∈ Il) ∀ 1 ≤ i ≤ n,

µl = E(Xl) as µ̂l =
1

n

n∑
i=1

Xl,i , where Xl,i = XiZl,i ∀ 1 ≤ i ≤ n,

and hence, ML ≡
L∑
l=1

µlµ
′
l

θl
as M̂L ≡

L∑
l=1

µ̂lµ̂
′
l

θ̂l
.

A key observation regarding the original SIR approach is that it depends on the observed

outcomes {Yi}ni=1 only through their corresponding slice indicators {(Zl,i)Ll=1}ni=1. Hence, if

the dependence of these slice indicator variables {Zl}Ll=1 on X, in terms of their respective

conditional means for instance, is smooth enough, then this smoothness can be exploited

to create a reasonable prediction rule based on L, preferably using some non-parametric

methods applied to the observed {(Zl,i)Ll=1}ni=1 and {Xi}ni=1 in L, for predicting {Zl}Ll=1

given X. This can then be used to predict the unobserved slice indicator variables in U , and

subsequently the imputed U can now be incorporated into a standard SIR type approach to

develop a SS version of SIR. Motivated by these intuitions, a heuristic SS-SIR approach, with

promising empirical performance, was proposed in Chakrabortty and Cai (2015) based on a

nearest neighbour approximation. The SS-SIR algorithm proposed here is also motivated by

similar intuitions, but is based on a more formal and rigorous approach, wherein we directly

focus on efficient SS estimation of the parameters {θl}Ll=1 and {µl}Ll=1, and consequently ML,

using the general framework developed in section 2.3 for constructing EASE estimators. To

this end, we next define the conditional means of Zl and Xl given X, given by:

θl(x) = E(Zl |X = x) and µl(x) = E(Xl |X = x) = xθl(x) ∀ 1 ≤ l ≤ L; ∀ x ∈ X .

Further, let θ̂l(x) denote any reasonable estimator of θl(x), and let µ̂l(x) = xθ̂l(x) denote

the corresponding estimator of µl(x), ∀ 1 ≤ l ≤ L, ∀ x ∈ X . More discussions regarding the
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choice of θ̂l(.) would be provided later. We now define the EASE estimators for θl and µl as:

θ̂∗l =
1

N

N∑
j=1

θ̂l(Xj)−
1

n

n∑
i=1

{
θ̂l(Xi)− Zl,i

}
∀ 1 ≤ l ≤ L, and (2.27)

µ̂∗l =
1

N

N∑
j=1

µ̂l(Xj)−
1

n

n∑
i=1

{µ̂l(Xi)− Xl,i} ∀ 1 ≤ l ≤ L. (2.28)

Based on these EASE estimators and the pre-defined choices of the slicing pattern (L, IL),

we then propose to estimate ML through the SS-SIR algorithm, based on:

M̂∗L =
L∑
l=1

µ̂∗l µ̂
∗′
l

θ̂∗l
,

and accordingly estimate the r most predictable directions of X given Y through P̂∗r ≡

{p̂∗r, . . . , p̂∗r}, the r leading eigenvectors of M̂∗L for any r ≤ p. We next summarize the prop-

erties of the estimators used to construct M̂∗L, and their comparison with the corresponding

estimators used to construct the supervised SIR estimator M̂L, through the following result.

Theorem 2.3. For any RAL estimator θ̃, let As.Var (θ̃) denote the asymptotic variance of

θ̃ i.e. the variance of the IF of θ̃. Now, assume that the following conditions hold:

sup
x∈X

∣∣∣θ̂l(x)− θl(x)
∣∣∣ P→ 0, Gn,l ≡ Gn

{
θ̂l(X)− θl(X)

}
P→ 0 ∀ 1 ≤ l ≤ L, and

sup
x∈X

∥∥∥x{θ̂l(x)− θl(x)}
∥∥∥ P→ 0, Gn,l ≡ Gn

[
X{θ̂l(X)− θl(X)}

]
P→ 0 ∀ 1 ≤ l ≤ L.

Then, the estimators involved in the SS-SIR algorithm satisfy: ∀ 1 ≤ l ≤ L,

n
1
2

(
θ̂∗l − θl

)
= n−

1
2

n∑
i=1

{Zl,i − E(Zl |Xi)}+Op

(
Gn,l

)
+Op

( n
N

) 1
2

+ op(1).

n
1
2 (µ̂∗l − µl) = n−

1
2

n∑
i=1

{Xl,i − E(Xl |Xi)}+Op

(
Gn,l

)
+Op

( n
N

) 1
2

+ op(1).
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On the other hand, the estimators involved in the SIR algorithm satisfy: ∀ 1 ≤ l ≤ L,

n
1
2

(
θ̂l − θl

)
= n−

1
2

n∑
i=1

{Zl,i − E(Zl)}+ op(1).

n
1
2 (µ̂l − µl) = n−

1
2

n∑
i=1

{Xl,i − E(Xl)}+ op(1).

Hence, the following comparisons hold: ∀ 1 ≤ l ≤ L,

As.Var (θ̂∗l ) ≤ As.Var (θ̂l), with strict inequality unless θl(X) = θl a.s. [PX].

As.Var (µ̂∗l ) � As.Var (µ̂l), with strict inequality unless µl(X) = µl a.s. [PX].

Further, with m̂∗l =
µ̂∗l

θ̂∗l
and m̂l =

µ̂l

θ̂l
, As.Var (m̂∗l ) � As.Var (m̂l) ∀ l.

Lastly, ∀ v ∈ Rp, As.Var
(
M̂∗Lv

)
� As.Var

(
M̂Lv

)
. Similar inequalities, although somewhat

difficult to show, also continue to hold for the corresponding eigenvectors of M̂∗L and M̂L.

Theorem 2.3 therefore clearly establishes the efficient and adaptive nature of the SS-SIR

algorithm compared to the supervised SIR approach, in terms of every component estimator

involved in the two approaches, as well as the main matrix estimators themselves. Finally,

regarding the choice of the (possibly) non-parametric smoothing based estimator θ̂l(.) of

θl(.), one choice could be based on KS, and this could be based on smoothing over the whole

of X ∈ Rp, or if an r-dimensional model, as in (2.26), with r < p is actually assumed to hold,

then the smoothing can be based on a lower dimensional transformation P̂′rX ∈ Rr where P̂r

is obtained from the supervised SIR as an initial n
1
2 -consistent estimator of Br (so that the

r-dimensional smoothing based on the estimated covariates will indeed be sufficient). As far

as the conditions for theorem 2.3 are concerned, as long as X is compact and the smoothing

is based on KS, the requirements can be satisfied under fairly mild regularity conditions. We

refer the interested reader to Theorem 4.1 and Lemmas A.1-A.2 in Chakrabortty and Cai

(2015) for further details regarding these results. In particular, with r-dimensional KS for any

r ≤ p, under reasonable conditions, the requirements of theorem 2.3 will hold without any
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under-smoothing, so that the optimal bandwidth order O(n−1/(2q+r)) can be used. However,

a kernel order of q > r/2 will be needed. As noted earlier in a different context, this condition

can indeed be avoided using a CV based technique that is not pursued in this paper.

2.4.1 Simulation Studies for SS-SIR

We conducted extensive simulation studies to compare the performance of our proposed SS-

SIR algorithm to that of the SIR approach, under a variety of scenarios involving continuous

as well as binary Y , generated based on SDR models, as in (2.26), with choices of r given by:

r = 1 and r = 2 for continuous Y , and r = 1 for binary Y , a case where the SIR is known

(Cook and Lee, 1999) to be able to recover only one non-trivial direction. Throughout, we

set n = 500, N = 10000, and used two choices of p given by: p = 10 and p = 30. X

was generated as: X ∼ Np(0, Ip). For continuous Y , we used three choices of L given by:

L = 10, 20 and 50, and the slices {Il : l = 1, . . . , L} were chosen to each have an equal

number of observations from L, as is typical in the standard SIR literature. For binary

Y , the choice of L is trivially 2 and the two slices correspond to the two distinct values of

Y . For all the settings considered above, and for each choice of (L, IL), we implemented

both the SIR and the SS-SIR approaches. For SS-SIR, the estimators {θ̂l(.) : l = 1, . . . , L}

were obtained from L based on r-dimensional local constant KS of Y on the transformed

covariates P̂′rX, where P̂r denotes the corresponding SIR estimator. (Note that under the

SDR model assumption, and with X normally distributed, such a smoothing would indeed

be sufficient). All the KS steps were performed using a 2nd order Gaussian kernel with the

bandwidth chosen based on maximum likelihood CV. Additionally, for the SDR models with

r = 1 (i.e. single index models), we also implemented the OLS estimator for continuous Y ,

and the MLE based on logistic regression for binary Y . With X normally distributed, so

that the DLC condition holds, results from Li and Duan (1989) imply that Br, the span of

the parameter β1 of interest, can also be validly estimated by the (span of) these estimators.
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SDR models for Y : We next enumerate the various SDR models used for the generation

of Y , depending on its nature (continuous or binary), as well as the choice of r.

(i) With r = 1 and Y continuous, we used the following SDR models:

(a) Model M(1)
1 : Y = β′0X + ε, with ε ⊥⊥ X and ε ∼ N1(0, 1).

(b) Model M(1)
2 : Y = β′0X + 1

4
(β′0X)2 + 1

6
(β′0X)3 + ε, with ε ⊥⊥ X and ε ∼ N1(0, 1).

(c) Model M(1)
3 : Y = (β′0X + ε)3, with ε ⊥⊥ X and ε ∼ N1(0, 1).

(ii) For the case r = 2, with Y continuous, we generated Y using the following SDR models:

(a) Model M(2)
1 : Y = β′0X + (γ ′0X)3 + ε, with ε ⊥⊥ X and ε ∼ N1(0, 1).

(b) Model M(2)
2 : Y = β′0X + {exp(β′0X)}(γ ′0X) + ε, with ε ⊥⊥ X and ε ∼ N1(0, 1).

(iii) Lastly, for binary Y , with r = 1, we used the following SDR models for generating Y :

(a) Model M(b)
1 : Y = 1{(β′0X + ε) > 0}, with ε ⊥⊥ X and ε ∼ Logistic (0, 1).

(b) ModelM(b)
2 : Y = 1[{β′0X+ 1

3
(β′0X)3 +ε} > 0], with ε ⊥⊥ X and ε ∼ Logistic (0, 1).

(c) Model M(b)
3 : Y = 1[{(β′0X)3 + ε} > 0], with ε ⊥⊥ X and ε ∼ N1(0, 1).

For all the models, the parameter β0 was chosen to be: (1′p/2,0
′
p/2)′, and γ0, wherever needed,

was chosen to be: (0′p/2,1
′
p/2)′. For all the settings, we replicated the simulations over 500

iterations. For convenience of further discussion, let us define Pr to be the orthogonal

projection matrix onto: the span Br of β0 for the case r = 1, or the span Br of {β0,γ0} for

the case r = 2. The error measures we used for comparing the performances of the SS-SIR

and SIR estimators, as well as those of the OLS or MLE, wherever applicable, are as follows:

(i) For r = 1, and for any generic estimator β̃ of the β0 direction, that is further sign nor-

malized w.r.t. β0 as β̃
′
β0 ≥ 0 w.l.o.g., we used two error measures: (a) the empirical

mean squared error (Emp. MSE) of the normalized version of β̃ w.r.t. the correspond-

ing normalized version of β0, defined as: the average of ‖β̃/‖β̃‖ − β0/‖β0‖‖2 over the
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500 iterations, and (b) the average of (1 − R2
0) ≡ {1 − (β̃

′
Prβ̃)/(β̃

′
β̃)} over the 500

iterations. We denote the corresponding averaged measure of (1 −R2
0) as: (1− R̄2

0).

(ii) For r = 2, and for any generic estimators {β̃, γ̃} of the span of {β0,γ0}, characterizing

the underlying SDR model, we used the error measures: (a) the average of (1−R2
1) ≡

{1 − (β̃
′
1Prβ̃1)/(β̃

′
1β̃1)} over the 500 iterations, for the first direction, and (b) the

average of (1 − R2
2) ≡ {1 − (β̃

′
2Prβ̃2)/(β̃

′
2β̃2)} over the 500 iterations, for the second

direction. We denote the respective averaged measures as (1 − R̄2
1) and (1− R̄2

2).

The error measures (1−R̄2
0) in (i), and (1−R̄2

1) and (1−R̄2
2) in (ii) above, are all scale invariant

measures, and are fairly standard choices as performance criteria in the SIR literature. We

refer the interested reader to Duan and Li (1991) and Li (1991) for further discussions on

them. For all the error measures considered above, and for each choice of the slicing pattern

(L, IL), we also report the corresponding relative efficiencies (RE) of the SS-SIR estimator

w.r.t. all other supervised estimators considered, defined as the inverse ratio of the error

measure, based on the respective criteria, for the SS-SIR estimator to those for the supervised

estimators. The simulation results for all the settings are summarized next in tables 2.6-2.17.

Table 2.6: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
1 with r = 1 and p = 10.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.005 0.022 0.004 0.004 0.023 0.004 0.005 0.026 0.004
RE of SS-SIR 1.000 4.652 0.768 1.000 5.196 0.805 1.000 5.433 0.762

(1− R̄2
0) 0.005 0.022 0.004 0.004 0.023 0.004 0.005 0.026 0.004

RE of SS-SIR 1.000 4.628 0.768 1.000 5.166 0.806 1.000 5.397 0.762
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Table 2.7: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
2 with r = 1 and p = 10.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.002 0.020 0.007 0.002 0.020 0.007 0.002 0.022 0.008
RE of SS-SIR 1.000 9.886 3.487 1.000 12.390 4.455 1.000 13.643 4.620

(1− R̄2
0) 0.002 0.020 0.007 0.002 0.020 0.007 0.002 0.022 0.008

RE of SS-SIR 1.000 9.832 3.482 1.000 12.322 4.446 1.000 13.558 4.611

Table 2.8: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
3 with r = 1 and p = 10.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.005 0.022 0.017 0.005 0.022 0.017 0.005 0.026 0.017
RE of SS-SIR 1.000 4.563 3.608 1.000 4.841 3.749 1.000 5.292 3.464

(1− R̄2
0) 0.005 0.022 0.017 0.005 0.022 0.017 0.005 0.026 0.017

RE of SS-SIR 1.000 4.540 3.594 1.000 4.815 3.734 1.000 5.257 3.451

Table 2.9: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
1 with r = 1 and p = 30.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.010 0.062 0.004 0.009 0.063 0.004 0.009 0.069 0.004
RE of SS-SIR 1.000 6.459 0.443 1.000 7.093 0.462 1.000 7.332 0.436

(1− R̄2
0) 0.010 0.061 0.004 0.009 0.062 0.004 0.009 0.068 0.004

RE of SS-SIR 1.000 6.370 0.444 1.000 6.990 0.463 1.000 7.215 0.437
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Table 2.10: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
2 with r = 1 and p = 30.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.006 0.059 0.031 0.005 0.060 0.032 0.006 0.067 0.032
RE of SS-SIR 1.000 10.459 5.524 1.000 11.866 6.274 1.000 11.624 5.623

(1− R̄2
0) 0.006 0.058 0.031 0.005 0.060 0.032 0.006 0.066 0.032

RE of SS-SIR 1.000 10.311 5.485 1.000 11.691 6.226 1.000 11.434 5.581

Table 2.11: Comparison of the SS-SIR, SIR and OLS estimators based on Emp. MSE and
(1− R̄2

0) under various choices of (L, IL), for model M(1)
3 with r = 1 and p = 30.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR OLS SS-SIR SIR OLS SS-SIR SIR OLS

Emp. MSE 0.009 0.061 0.045 0.008 0.061 0.044 0.010 0.070 0.045
RE of SS-SIR 1.000 6.510 4.825 1.000 7.217 5.207 1.000 7.417 4.765

(1− R̄2
0) 0.009 0.060 0.044 0.008 0.060 0.044 0.009 0.069 0.045

RE of SS-SIR 1.000 6.422 4.776 1.000 7.116 5.155 1.000 7.298 4.718

Table 2.12: Comparison of the SS-SIR and SIR estimators based on (1 − R̄2
1) and (1 − R̄2

2)

under various choices of (L, IL), for model M(2)
1 with r = 2 and p = 10.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR SS-SIR SIR SS-SIR SIR

First Direction

(1− R̄2
1) 0.001 0.017 0.001 0.018 0.001 0.019

RE of SS-SIR 1.000 14.185 1.000 17.019 1.000 17.059

Second Direction

(1− R̄2
2) 0.053 0.122 0.065 0.130 0.121 0.199

RE of SS-SIR 1.000 2.310 1.000 2.005 1.000 1.642
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Table 2.13: Comparison of the SS-SIR and SIR estimators based on (1 − R̄2
1) and (1 − R̄2

2)

under various choices of (L, IL), for model M(2)
2 with r = 2 and p = 10.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR SS-SIR SIR SS-SIR SIR

First Direction

(1− R̄2
1) 0.005 0.023 0.005 0.025 0.006 0.028

RE of SS-SIR 1.000 4.335 1.000 4.829 1.000 4.575

Second Direction

(1− R̄2
2) 0.018 0.053 0.020 0.055 0.030 0.065

RE of SS-SIR 1.000 2.866 1.000 2.750 1.000 2.200

Table 2.14: Comparison of the SS-SIR and SIR estimators based on (1 − R̄2
1) and (1 − R̄2

2)

under various choices of (L, IL), for model M(2)
1 with r = 2 and p = 30.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR SS-SIR SIR SS-SIR SIR

First Direction

(1− R̄2
1) 0.006 0.056 0.005 0.058 0.006 0.065

RE of SS-SIR 1.000 9.565 1.000 11.349 1.000 11.139

Second Direction

(1− R̄2
2) 0.321 0.410 0.416 0.464 0.693 0.643

RE of SS-SIR 1.000 1.278 1.000 1.116 1.000 0.928

Table 2.15: Comparison of the SS-SIR and SIR estimators based on (1 − R̄2
1) and (1 − R̄2

2)

under various choices of (L, IL), for model M(2)
2 with r = 2 and p = 30.

Slices = 10 Slices = 20 Slices = 50Criteria ↓
SS-SIR SIR SS-SIR SIR SS-SIR SIR

First Direction

(1− R̄2
1) 0.020 0.075 0.016 0.071 0.019 0.081

RE of SS-SIR 1.000 3.658 1.000 4.336 1.000 4.308

Second Direction

(1− R̄2
2) 0.074 0.149 0.078 0.153 0.115 0.190

RE of SS-SIR 1.000 2.016 1.000 1.968 1.000 1.658
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Table 2.16: Comparison of the SS-SIR, SIR and MLE estimators based on Emp. MSE and
(1− R̄2

0) under all modelsM(b)
1 ,M(b)

2 ,M(b)
3 for the binary outcomes with r = 1 and p = 10.

Model = M(b)
1 Model = M(b)

3 Model = M(b)
3Criteria ↓

SS-SIR SIR MLE SS-SIR SIR MLE SS-SIR SIR MLE

Emp. MSE 0.026 0.043 0.026 0.016 0.035 0.015 0.013 0.032 0.012
RE of SS-SIR 1.000 1.645 0.970 1.000 2.246 0.950 1.000 2.434 0.945

(1− R̄2
0) 0.026 0.043 0.025 0.016 0.035 0.015 0.013 0.032 0.012

RE of SS-SIR 1.000 1.636 0.970 1.000 2.233 0.950 1.000 2.420 0.945

Table 2.17: Comparison of the SS-SIR, SIR and MLE estimators based on Emp. MSE and
(1− R̄2

0) under all models M(b)
1 , M(b)

2 , M(b)
3 for binary outcomes with r = 1 and p = 30.

Model = M(b)
1 Model = M(b)

3 Model = M(b)
3Criteria ↓

SS-SIR SIR MLE SS-SIR SIR MLE SS-SIR SIR MLE

Emp. MSE 0.050 0.099 0.046 0.034 0.089 0.028 0.033 0.088 0.025
RE of SS-SIR 1.000 1.972 0.907 1.000 2.604 0.812 1.000 2.697 0.764

(1− R̄2
0) 0.050 0.096 0.045 0.034 0.087 0.028 0.032 0.086 0.025

RE of SS-SIR 1.000 1.946 0.908 1.000 2.566 0.813 1.000 2.657 0.766

Overall, the results in tables 2.6-2.17 are evidently quite satisfactory. The SS-SIR signif-

icantly outperforms the SIR, as is expected, under all the settings considered, and w.r.t. all

the error measures used, as well as across all the choices of (L, IL) for continuous Y . The

efficiency gains of SS-SIR w.r.t. SIR for all the settings with r = 1, as well as for the first

direction in all the settings with r = 2, are substantially high, and in certain cases, over-

whelmingly so. Further, in all the cases with r = 2, the efficiency gains even for the second

direction are in fact significantly high as well, although they may not have been properly

reflected in the corresponding RE measures. This also highlights the potential usefulness of

SS-SIR in estimating the higher (second, third etc.) directions, for which the SIR estimates

are known to often have poor finite sample performances. For continuous Y with r = 1, it

is also worth noting the comparison of SS-SIR and SIR, across all choices of L, to the OLS.

While the SIR significantly under-performs w.r.t. the OLS under all the models, the SS-SIR
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does so, only slightly, under M(1)
1 when the standard linear model holds and therefore the

OLS is the optimal estimator of β0. However, for the non-linear modelsM(1)
2 andM(2)

3 , SS-

SIR significantly outperforms the OLS in addition to the SIR, for all choices of L. For binary

Y with r = 1 however, it is interesting to note that while the SIR once again significantly

under-performs w.r.t. the MLE in all cases, the latter almost always performs equally well,

and in fact slightly better in some cases, compared to the SS-SIR as well, indicating that at

least for the settings considered here, it is difficult to beat the performance of the MLE.

Lastly, for continuous Y , the performance of SS-SIR itself seems to be fairly robust to the

choice of L as long as it is reasonable (not too small or not too large w.r.t. n), and certainly

seems to be more robust than the SIR whose performance degrades significantly for L = 50

in most cases. Combining the results over all the cases, a choice of any L in the range of

10 to 20 seems to be quite reasonable for SS-SIR, at least for n = 500, and tends to lead

to its best performances under all the settings considered here. In general, we believe that

for a given n, a choice of L roughly of the order of n
1
2 should work quite well for SS-SIR.

However, the theoretical results provided here are for a fixed (L, IL) regime, and a detailed

analysis of SS-SIR under this regime with L diverging is beyond the scope of this paper.
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3.1 Summary

We consider the regression of a binary outcome (Y ) on a set of (possibly high dimensional)

covariates (X) based on a large unlabeled data with observations only for X, and addition-

ally, a ‘surrogate’ (S) which, while not being strongly predictive of Y all throughout its

support, can do so with high accuracy when it assumes extreme values. Such data arises

naturally in settings where Y , unlike (X, S), is somewhat difficult or expensive to obtain, a

frequent scenario in modern studies involving large databases like electronic medical records

(EMR), where an example of Y and S could be some disease outcome of interest and its

corresponding diagnostic codes and/or laboratory test results respectively. Assuming Y and

S both follow flexible single index models with respect to X, we show that under sparsity

assumptions, we can recover the regression parameter of Y versus X by simply fitting a least

squares LASSO estimator to the subset of the observed data restricted to the extreme sets of

S with Y imputed using the surrogacy of S. To the best of our knowledge, a problem of this

sort has not been considered in the relevant statistical literature, and our associated results

are quite novel. We obtain sharp finite sample performance bounds, with several interesting

implications, for our estimator, including deterministic deviation bounds and probabilistic

guarantees for the bounds to obey satisfactory convergence rates. We demonstrate the effec-

tiveness of our approach through extensive finite sample simulations, followed by application

to a real EMR dataset.

3.2 Introduction

Unsupervised classification methods are of great use in a wide variety of scientific applica-

tions including image retrieval and processing, document classification in text mining, high

dimensional genomic analysis and other problems in biomedical sciences (Ko and Seo, 2000;

Merkl and Rauber, 2000; Gllavata et al., 2004; Chen et al., 2005; Henegar et al., 2006). In

recent years, many unsupervised statistical and machine learning methods have been pro-
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posed to classify categorical outcomes. Examples include clustering, latent class mixture

modeling, neural networks and random forest based methods (Merkl and Rauber, 2000;

Hofmann, 2001; Shi and Horvath, 2006; Cios et al., 2007; Wei and Kosorok, 2013). Most

of the related existing literature however largely focuses on identifying algorithms that can

accurately classify the outcomes of interest with less focus on the statistical properties of

the estimated model parameters. In this paper, we consider a surrogate aided unsupervised

classification problem of a very different and unique nature. Motivated particularly by the

problem of automated phenotyping with electronic medical records (EMR) data, we consider

a regression modeling approach to unsupervised classification with assistance from surrogate

outcomes whose extreme values are highly predictive of the outcome.

Specifically, we consider regressing a binary outcome Y on a set of covariates X (possibly

high dimensional) based on a flexible single index model with an unknown link function, so

that the regression parameter (β0, say) we wish to recover is identifiable only upto scalar

multiples. However, the available data, while it is possibly large/massive in size, is completely

unlabeled with Y never observed, thus leading to an unsupervised set-up. However, while

the availability of Y may be limited, it is often possible, especially in datasets like EMR,

that one (or more) of the variables, automatically recorded in the database, while not being

strongly predictive of Y throughout its support, can do so with high accuracy when it

assumes extreme values, thereby serving as a good ‘surrogate’ (S, say) in its extreme sets.

Such data arises naturally in settings where Y , unlike X and S, is difficult or expensive to

obtain, a scenario that is of great practical relevance especially in the modern ‘big data’

era with massive unlabeled datasets (often electronically recorded) becoming increasingly

available and tractable. In particular, they are frequently encountered in modern biomedical

studies involving analyses of large databases like EMR, where a typical choice of Y and S

could be a disease phenotype like rheumatoid arthritis (RA) and the ICD9 diagnostic codes

and/or lab tests for RA respectively. We first briefly discuss the motivating problem of EMR

automated phenotyping followed by a brief summary of our contributions in this paper and
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the proposed framework for unsupervised learning with extremes of surrogate outcomes.

3.2.1 Automated Phenotyping Using EMR

Endowed with a wealth of de-identified clinical and phenotype data for large patient co-

horts, EMR linked with bio-repositories are increasingly gaining popularity as rich resources

of data for discovery research (Murphy et al., 2009; Kohane, 2011). Such large scale datasets

obtained in a cost-effective and timely manner are of great importance in modern medical

research for addressing several questions including the biological role of rare variants and

the disease risk profiles of common and rare variants (Kohane, 2011). The availability of

detailed patient level phenotypic data from the EMR system linked with a wide range of

genomic and biological marker measurements provides a unique opportunity to rigorously

study genome-phenome association networks and improve the understanding of disease pro-

cesses and treatment responses (Wilke et al., 2011; Kohane et al., 2012). For example, as new

genetic variants are being increasingly discovered, the scope of their clinical significance can

be assessed by examining the range of disease phenotypes that are associated with these vari-

ants. Such assessment has been recently proposed using Phenome-wide Association Studies

(PheWAS) based on EMR cohorts (Denny et al., 2010). EMR-based cohorts are the key to

the success of PheWAS as they contain nearly complete clinical diagnoses for a large group

of subjects, broadening the ability to simultaneously test for potential associations between

genetic variants and a wide range of disorders, in contrast to traditional prospective cohort

studies collecting data only on predetermined outcomes of interest.

However, despite its potential for translational research, one major rate-limiting step in

EMR driven PheWAS is the difficulty in extracting accurate phenotype information from the

EMR (Bielinski et al., 2011). Since gold standard measurements for the phenotypes typically

require manual chart review by physicians which is logistically prohibitive especially for mul-

tiple phenotypes, current PheWAS methods primarily rely on ICD9 codes to assess whether

a patient has a clinical condition (Denny et al., 2010; Liao et al., 2010). A major limitation
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of the ICD9 codes is that they can have highly variable predictive accuracy for identifying

many diseases and hence, can introduce substantial noise into the subsequent association

studies. For example, based on data from the Partner’s Healthcare, among subjects with at

least 3 ICD9 rheumatoid arthritis (RA) codes, only 56% of those actually have confirmed

RA after manual chart review by a rheumatologist (Liao et al., 2010). However, for subsets

of patients where the ICD9 codes assume extreme values (too high or, too low), they can

often predict the corresponding phenotype with a high degree of accuracy, thereby serving

as an effective surrogate outcome for these subsets. Appropriate and efficient use of such

available surrogacy information can prove to be quite useful for creating data-driven labeling

methods that can significantly reduce the burden (in time and effort) of manual labeling. In

particular for EMR data, such automated phenotyping algorithms can pave the way for high

throughput phenotyping (Yu et al., 2015), allowing for phenome-genome association studies

that typically require the availability of multiple phenotypes and hence does not scale well

with manual labeling methods for obtaining gold standard labels.

3.2.2 Contributions of this Paper: A Brief Summary

With the above motivation and the basic set-up introduced earlier, we now assume the

additional availability of observations for such a surrogate S, and also assume that S depends

on X through another single index model with some parameter α0 (say). We now consider

the subset of the data restricted to the extreme sets of S (formally characterized through

the upper and lower qth quantiles of S with q ∈ (0, 1) small enough), impute the missing Y

deterministically using the surrogacy of S, and try to recover β0 through some regression

procedure on this data. We demonstrate that while it is, quite sensibly, not possible to

recover β0 without some further assumptions, it is indeed possible to do so if we additionally

assume that β0 is sparse (and in fact sparser than α0, along with some other conditions), by

simply fitting a least squares LASSO estimator to this restricted (and imputed) data. While

the method is clearly quite simple, its success indeed depends on the assumed conditions as
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well as appropriate choices of q for creating the restricted data (something that should be

typically dictated by domain knowledge), and that of the tuning parameter which should be

chosen slightly higher than usual so that sparser solutions like β0 are favored.

We obtain explicit finite sample deviation bounds for the performance of our estimator

with high probabilistic guarantees (under some conditions on the design distribution) for

the bounds to obey satisfactory convergence rates (depending on the choice of q, the ex-

tent of the corresponding misclassification error πq, and the sample size nq of the restricted

data). The results are quite sharp and have several useful implications, including an inter-

esting ‘variance-bias’ trade-off involving the above three quantities, and for a given order of

the misclassification error πq, the corresponding optimal order of q can also be determined

thereof. We also explicitly characterize the behaviour of πq versus q for one familiar choice

of (Y,X, S), wherein the interplay between β0 and α0, and the necessary conditions for our

approach to succeed become more explicit. We demonstrate the effectiveness of our approach

through extensive finite sample simulations, where its performance (in estimation, prediction

or, variable selection) is found to be comparable, if not better in most cases, to that of a

supervised estimator based on as many as 500 labels. The sensitivity of our estimator to the

choice of q also seems to be fairly robust as long it is chosen reasonably. We also applied

our approach to a real dataset obtained from an EMR cohort with promising results, along

with validation on a training data that was available to us in this case.

The rest of this paper is organized as follows. In section 3.3, we formally introduce and

formulate the problem including all our basic assumptions and notations, followed by expo-

sition of our proposed estimation procedure, including characterization of all the theoretical

properties of our estimator. Numerical studies, including extensive simulation results and

an application to an EMR dataset are presented in section 3.5, followed by a concluding

discussion in section 3.6. Proofs of all the theoretical results are provided in Appendix B.
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3.3 Problem Formulation and Proposed Methodology

Let Y ∈ {0, 1} denote a binary outcome random variable of interest, X ∈ Rp denote a p

dimensional random vector of covariates, and S ∈ R denote a ‘surrogate’ random variable

whose role as surrogate would be made more precise shortly. We assume throughout that

(Y, S,X′)′, defined on a common probability space, has finite 2nd moments. Let P(.) denote

the underlying probability measure characterizing the distribution of (Y, S,X′)′, and E(.)

denote expectation with respect to (w.r.t.) P(.). We next characterize the surrogacy of S.

Role of S as a surrogate: The variable S, in very heuristic terms, satisfies the follow-

ing property: it is known apriori (typically based on practical experiences and/or domain

knowledge) that when S is ‘too low’ or ‘too high’, then the corresponding Y is ‘very likely’

to be 0 or 1 respectively (or the other way around). In order to formalize this notion, we

first introduce a few notations as follows.

For any q ∈ (0, 1], let δq and δq respectively denote the (q/2)th and (1− q/2)th quantiles

of the distribution of S. Let Iq denote the interval: (−∞, δq]∪ [δq,∞). Let Pq(.) denote the

underlying probability measure characterizing the distribution of (Y, S,X′)′ | S ∈ Iq, and let

Eq(.) denote expectation w.r.t. Pq(.). Hence, for any measurable event A involving (Y, S,X′)′,

Pq(A) = P(A |S ∈ Iq), and for any measurable and P−integrable function f(.) of (Y, S,X′)′,

Eq{f(Y, S,X)} = E{f(Y, S,X) | S ∈ Iq}. Also, let us define: π−q = P(Y = 1|S ≤ δq) and

π+
q = P(Y = 0|S ≥ δq). Then the premises of our problem entails that as functions of q, π−q

and π+
q are both small for small enough q. We now formalize this assumption as follows:

Assumption 3.1. (Surrogacy Assumption) Conditional on S ∈ Iq, let us define the sur-

rogate outcome Y ∗q as: Y ∗q | S ∈ Iq = 1(S ≥ δq | S ∈ Iq), where 1(.) denotes the indicator

function. Let πq = Pq(Y 6= Y ∗q ), the misclassification error incurred by using Y ∗q as a surro-

gate for Y , given S ∈ Iq. Then, we make the following assumption regarding the behavior

of πq:

πq ≡ Pq(Y 6= Y ∗q ) =
1

2
(π−q + π+

q ) ≤ Cqν ∀ q ≤ q0 ∈ (0, 1] small enough, (3.1)
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for some universal constants ν > 0 and C > 0, and some q0 ∈ (0, 1] small enough.

Note that the choice of the cut-points δq and δq as precisely being the (q/2)th and (1 −

q/2)th quantiles of S is mostly for simplicity, and is not actually necessary. In general, they

may correspond to some qth1 and (1− q2)th quantiles of S respectively, with q1 and q2 being

purely determined by the practical considerations of the problem, such that the surrogacy

assumption above is satisfied for those choices of q1, q2 and q = (q1 + q2). Nevertheless, we

shall stick to this formulation for the sake of notational convenience. Also, note that without

loss of generality (w.lo.g.), we have adopted the convention that the more likely value of Y in

the lower tail of S is 0 and that in the upper tail is 1. If the other way round is more likely,

then we may simply flip the definition of Y and Y ∗q to (1− Y ) and (1− Y ∗q ) respectively.

Data representation: The data actually observed under the unsupervised setting con-

sidered herein can be represented as: S∗N = {(Si,X′i)′ : i = 1, . . . , N} consisting of N

independent and identically distributed (i.i.d.) observations from the joint distribution of

(S,X′)′ only. Let us also define the corresponding ideal sample with the Y observed as:

SN = {(Yi, Si,X′i)′ : i = 1, . . . , N} consisting of N i.i.d. observations from the joint distribu-

tion of (Y, S,X′)′. For the most part of this paper, our primary focus will be on the subset

of S∗N (and SN) consisting of the observations for which the corresponding S satisfies the

restriction S ∈ Iq. We formally define them as follows. For any q ∈ (0, 1], define:

Z∗nq
= {(Y ∗q,i, Si,X′i)′ : Si ∈ Iq; i = 1, . . . , nq ≡ Nq}, and (3.2)

Znq = {(Yi, Si,X′i)′ : Si ∈ Iq, ; i = 1, . . . , nq ≡ Nq}, (3.3)

where w.l.o.g., we have re-indexed the observations in both Z∗nq
and Znq for notational

convenience, and also assumed for simplicity that the effective sample size nq ≡ Nq of Z∗nq

and Znq is indeed an integer. Note that in the definition of Z∗nq
, we have additionally included

the corresponding (deterministic) observations of the surrogate outcome Y ∗q as they would

be useful later in the construction of our proposed estimator.
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We also wish to point out here that appealing to the potentially abundant availability

of unlabeled data, given the practical considerations underlying our problem of interest,

the size N of the original sample S∗N will be assumed to be massive/substantially large, so

that the distribution of (S,X′)′ can be presumed to be known for all practical purposes.

Consequently, we shall assume for simplicity that the quantiles δq and δq of S are known

since, for each fixed q, they can be near-perfectly estimated from S∗N at an ignorable error

rate of O(N−1/2) with N very large. Another key consequence that the premise of N being

very large bears on our approach in this paper is that even for a desirably small enough

choice of q, so that the surrogacy assumption is more likely to be satisfied, the sample size

nq of the corresponding restricted datasets Z∗nq
and Znq , which would be of primary interest

to us hereafter, is still satisfactorily large enough so as to ensure statistical stability and

reasonable convergence rates for estimators constructed based on these datasets. While all

results obtained in this paper for our proposed estimators are finite sample results, they are

essentially derived keeping in mind the following asymptotic regime: N →∞, q = O(N−η)

for some constant η ∈ (0, 1), so that q → 0 and nq = O{N (1−η)} → ∞, as N →∞.

Model based assumptions: We assume throughout that the dependence of Y on X (and

S), and that of S on X are characterized by the following single index models (SIMs).

Y = f(β′0X; ε) with ε ⊥⊥ (S,X) and f(.) : R2 → {0, 1} unknown; and (3.4)

S = g(α′0X; ε∗) with ε∗ ⊥⊥ X, ε∗ ⊥⊥ ε, and g(.) : R2 → XS unknown; (3.5)

where XS ⊆ R denotes the appropriate support of S, and β0,α0 ∈ Rp are some unknown

parameter vectors of interest characterizing the respective models, while ε, ε∗ represent the

corresponding random noise components. Note that since the ‘link’ functions f(.) and g(.) are

allowed to be completely unspecified (upto basic measurability and moment based restrictions

to comply with our starting assumptions), the corresponding regression parameters β0 and

α0 are identifiable only upto scalar multiples (or in other words, only the span or ‘direction’
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of β0 and α0 are identifiable). Both models (3.4) and (3.5) are highly flexible, and yet easily

interpretable, semi-parametric models, and as special cases, they include all commonly used

parametric models like standard generalized linear models (glms) with known link functions.

For (3.4), it might be more helpful to view the function f(.) as some sort of a ‘thresholding’

function given by: f(a; b) = 1{f̄(a; b) > 0} ∀ a, b ∈ R, for some f̄(.; .) : R2 → R. For

instance, with f(a, b) = 1[h(a) + b > 0] ∀ a, b ∈ R for some h(.) : R → R, and with

ε ∼ Logistic (0, 1) or Normal (0, 1) distributions, the model (3.4) corresponds to the logistic

or probit regression models respectively, including linear as well as non-linear functional forms

of β′0X through appropriate choices of h(.). Similarly, for a continuous S, with g(a; b) =

{g∗(a) + b} ∀ a, b ∈ R for some g∗(.) : R→ R, and with ε∗ ∼ Normal (0, σ2) for some σ ≥ 0,

the model (3.5), through appropriate choices of g∗(.), includes the standard linear model as

well as other non-standard models involving non-linear functional forms of α′0X.

The assumed models (3.4) and (3.5) also imply that (Y ⊥⊥ X) |β′0X and (S ⊥⊥ X) |α′0X,

so that β′0X and α′0X are the sufficient statistics summarizing the dependencies of Y and S

on X respectively . Moreover, (3.4) also implies that (Y ⊥⊥ S) |X, so that Y relates to S only

through X (and hence, S behaves as a so-called ‘instrumental variable’, a term frequently

used in the causal inference literature). Note that this condition does not contradict in any

way the surrogacy assumption (3.1) which only relates Y and S marginally (involving no

conditioning w.r.t. X), and that too only when S assumes extreme values (so that S need

not be a strong predictor of Y throughout its entire support).

It is also worth noting that the condition (Y ⊥⊥ S) |X is very different (and not neces-

sarily stronger or weaker) from the typical surrogacy assumption (also known as the ‘Naive

Bayes’ assumption) that is frequently made in the measurement error literature, wherein the

surrogate and the covariates are assumed to be independent conditional on the true outcome.

However, for the problems generally considered in those literatures, a proper surrogate out-

come (typically, a systematically noisy version of the true outcome) is actually observed for

all individuals, which is quite unlike the setting considered herein. In our case, over the
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entire observed data S∗N , the subset Z∗nq
in (3.2), for some appropriate choice of q, provides

us with the only (and albeit approximate) access to the corresponding true Y . Our primary

goal however is to still recover (upto a scalar multiple) the regression parameter β0 in (3.4)

given the setting we are provided. It is therefore only reasonable, and almost necessary, to

have (Y ⊥⊥ S) |X, in order to make proper sense out of the problem at hand and to have

any hope of recovering β0 based on Z∗nq
(or even Znq , for that matter), as it ensures that

the restriction S ∈ Iq underlying the construction of Z∗nq
and Znq does not alter the relation

between Y and X in (3.4) that defines our parameter of interest β0. We next discuss some

useful motivations and essential fundamentals underlying our approach for recovering β0.

Basic foundations of our approach and some fundamental results: We begin with

a few notations. For a given choice of q ∈ (0, 1], let pq = Eq(Y ), p∗q = Eq(Y ∗q ) = 1/2 (in our

case), µq = Eq(X), and Σq = Var (X | S ∈ Iq) which is further assumed to be a positive

definite (p.d.) matrix. For any given q ∈ (0, 1], let us now define:

Lq(v) ≡ Eq[{Y − pq − v′(X− µq)}2] ∀ v ∈ Rp, βq = arg min
v∈Rp

Lq(v); (3.6)

L∗q(v) ≡ Eq[{Y ∗q − p∗q − v′(X− µq)}2] ∀ v ∈ Rp, αq = arg min
v∈Rp

L∗q(v). (3.7)

With Σq assumed to be p.d., both βq and αq are well-defined and unique, and further denote

the population target parameters corresponding to the least squares regression of Y and Y ∗q

on X respectively, given S ∈ Iq. Also, note that since we would be only interested in the

slope vector of regression coefficients corresponding to X, we have conveniently removed the

need for any intercept parameter by appropriately centering all concerned variables in the

definitions of Lq(.) and L∗q(.). Finally, while we have considered the squared loss above,

which admittedly is often not the preferred choice of a loss function for binary outcomes,

other convex loss functions more suited for binary outcomes, like the logistic loss, can also

be similarly considered. However, we do believe that the squared loss is a somewhat safer

and more convenient choice in this case, since the inherent restriction S ∈ Iq underlying
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our setting can correspond to highly flat regions in the curves of these other choices of loss

functions, and their minimization can potentially lead to non-identifiability/perfect classi-

fication issues on a population scale, as well as finite sample stability/convergence issues.

The squared loss on the other hand does not have any such identifiability issues as long as

Σq is p.d. It is also worth noting that the target parameter (the slope vector of regression

coefficients) corresponding to the least squares reqression of any binary outcome on a set of

covariates is well known to have the simple and clear interpretation of being proportional to

the corresponding LDA (linear discriminant analysis) direction (Hastie et al., 2008).

The main motivation behind our consideration of (3.6) and (3.7) lies in a remarkable and

interesting result from Li and Duan (1989), where they show that for any generic outcome Y

satisfying a SIM (with some parameter γ ∈ Rp) w.r.t. some generic set of covariates X ∈ Rp,

if the following two conditions hold: (i) the underlying design distribution of X satisfies

a certain ‘linearity of expectation condition’ given by: E(v′X | γ ′X) is a linear function of

γ ′X ∀ v ∈ Rp, and (ii) for a loss function L(Y; a+v′X) that is convex in the second argument

(like the squared loss, for instance), if the minimizer (a,v) of E{L(Y; a+ v′X)} over a ∈ R,

v ∈ Rp exists and is unique, then v ∝ γ, so that v recovers the SIM parameter γ upto a

scalar multiple. As noted earlier, with (Y ⊥⊥ S) |X, the SIM (3.4) continues to hold with

the same parameter β0 even under the restriction S ∈ Iq that underlines the construction

of Z∗nq
and Znq . Hence, given this fact, we have considered in (3.6) the expected squared

loss for Y and its corresponding minimizer with the hope that if a result of a similar flavor

as that obtained by Li and Duan (1989) can be shown to hold for βq, then at least if the

hypothetical data Znq were actually observed, a minimization of the corresponding empirical

squared loss for Y based on Znq would lead to a consistent estimator of the β0 direction.

Of course, the major issue is that we only observe Z∗nq
in practice, and therefore can

only hope to minimize the empirical squared loss for Y ∗q based on Z∗nq
, which would be a

consistent estimator of the minimizer of the corresponding expected squared loss for Y ∗q , as

considered in (3.7). However, owing to the surrogacy assumption, Lq(.) and L∗q(.) should be
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pointwise quite close to each other, and hence owing to their smoothness and convexity, it is

not unreasonable to expect that their minimizers αq and βq should also be close. All these

questions and intuitions highlight the necessity of a better understanding of the behavior of

αq and βq, their dependencies on β0 and α0, as well as their relation to each other. Lastly,

another technical, but no less important, issue is the validity of the ‘linearity of expectation

condition’, which can be quite tricky in our case since our essential design distribution

of interest is that of (X | S ∈ Iq) and not of X. In standard SIM problems, the design

distribution is often assumed to be elliptically symmetric (e.g. the normal distribution) for

which the condition is known to hold. However, such an assumption seems overly unrealistic

for (X |S ∈ Iq), and even for the most familiar case of a normally distributed X, it does not

seem to hold apart from some trivial scenarios. We would therefore assume a different kind

of a ‘linearity condition’ that is more reasonable and likely to hold in practice for a fairly

wide class of distributions. The next assumption is in this regard, and the subsequent result

based on it aims to characterize βq and αq more explicitly, as well as provide answers to most

of the questions raised herein, some of which would be albeit contradicting our intuitions,

but nonetheless would be useful for the exposition and understanding of our final approach.

Assumption 3.2. (Design Linearity Conditions) We assume that the marginal distribution

of X satisfies: for any v ∈ Rp, E(v′X |α′0X,β′0X) is a linear function of α′0X and β′0X, i.e.

E(v′X |α′0X,β′0X) = cv + av(α′0X) + bv(β′0X) ∀ v ∈ Rp, and (3.8)

E(β′0X |α′0X) = c+ a(α′0X), (3.9)

for some real constants cv, av and bv all depending on v, and some real constants c and a.

The constants cv, av, and bv can be evaluated explicitly as the regression coefficients

obtained from the least squares regression of v′X on α′0X and β′0X, and are all well-defined

and unique as long as Var{(α′0X,β′0X)′} is p.d. Similarly, c and a can be obtained as the

regression coefficients from the least squares regression of β′0X on α′0X. Note that (3.8) and
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(3.9) are restrictions on X only (and hence, called ‘design’ conditions), and do not involve Y

(or Y ∗q ). Moreover, they only involve the unconditional marginal distribution of X and not

the distribution of {X |S ∈ Iq}, which however is actually our underlying design distribution

of interest. The condition (3.8) is slightly stronger than the typical linearity conditions that

have been usually assumed (Li and Duan, 1989) in the SIM literature, in the sense that it

requires a joint linearity in α′0X and β′0X, instead of only β′0X. The primary reason for its

necessity is the fact that the underlying design distribution {X|S ∈ Iq} inherently depends on

α′0X through S owing to (3.5). Nevertheless, both conditions (3.8) and (3.9) are still satisfied

by all elliptically symmetric distributions, including the normal distribution. Moreover, Hall

and Li (1993) have also argued that for a wide class of distributions satisfying some mild

restrictions, such linearity conditions are ‘approximately true’ with high probability for most

directions v ∈ Rp, as long as p is large enough. We now present our first main result that

provides a useful characterization of βq and αq in terms of β0 and α0.

Theorem 3.1. Let βq and αq be as defined in (3.6) and (3.7) respectively. Assume the

design linearity condition (3.8) holds from assumption 3.2. Then, we have:

βq = aqα0 + bqβ0 and (3.10)

αq = a∗qα0, (3.11)

for some real constants aq, bq and a∗q all depending on q. The constants (aq, bq) are explicitly

given by: (av, bv) respectively from (3.8) with v = βq. The constant a∗q is given by: (av+bva)

with v = αq, where a is from (3.9), and (av, bv) are from (3.8) .

Theorem 3.1 establishes the explicit relationships of βq and αq, the target parameters for

the least squares regression of (Y | S ∈ Iq) and (Y ∗q | S ∈ Iq) respectively on (X | S ∈ Iq), to

the original SIM parameters β0 and α0. (3.11) essentially shows that αq ∝ α0 and therefore,

a simple minimization of the empirical squared loss for Y ∗q based on Z∗nq
would lead to an

estimator that can only consistently recover the direction of α0, and not β0. This finding,
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while somewhat contradictory to our original intuitions, does make sense, since due to (3.5),

(Y ∗q |S ∈ Iq) and (X |S ∈ Iq) are after all directly related through a SIM with parameter α0,

and further, the design distribution of (X | S ∈ Iq) does satisfy the conventional linearity of

expectation condition typically assumed in the SIM literature, i.e. Eq(v′x | α′0X) is indeed

linear in α′0X owing to (3.5) and (3.8)-(3.9). Hence, (3.11) is really a consequence of standard

results that are well known in the SIM literature.

On the other hand, (3.10) shows, rather surprisingly, that βq lies in the (two-dimensional)

span of α0 and β0, and therefore, even if (Y |S ∈ Iq) were actually observed, the estimator

obtained from a simple minimization of the empirical squared loss for Y based on Znq would

only be able to consistently recover the direction of its target parameter βq that does not lie

along the β0 direction itself. Note that this result is in stark contrast with standard results

from the SIM literature, where it would have been expected to lie along the β0 direction.

This distinction is largely due to the dependence on α0 of the restriction S ∈ Iq that

characterizes the underlying design distribution, and also makes the conventional linearity

condition, requiring Eq(v′x | β′0X) to be linear in β′0X, unlikely to hold.

Overall, theorem 3.1 clearly shows that some further assumptions are perhaps needed

regarding the structure of β0 (and possibly α0 as well) in order to have any hope of recovering

β0 based on Z∗nq
(or even Znq). In this regard, we demonstrate that if β0 additionally

satisfies some sparsity assumptions, then it is indeed possible to recover β0 from Z∗nq
based

on a L1-penalized least squares regression of Y ∗q on X. The L1 penalty introduced in the

minimization favours solutions with a sparse structure, as possessed by β0, and therefore

provides the chance to ‘push’ the solution of the un-penalized regression (that provably

recovers the α0 direction) to a sparser solution possibly targeting the β0 direction. It is

also worth noting that the sparsity assumption, one of the most popular and interpretable

structure based assumptions that are used in the statistical literature (especially in high

dimensional statistics, although high dimensionality is not the reason for introducing this

assumption in our case), is a scale invariant criteria, and therefore, it fits well into our setting
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where β0 and α0 are identifiable only upto scalar multiples. We next discuss the details of

our proposed approach and the associated estimator.

3.3.1 The Unsupervised LASSO (ULASSO) Estimator

For convenience of further discussion, we first introduce some notations that will be used

throughout the rest of this paper. For any v ∈ Rp, let v[j] denote its jth coordinate ∀ j ∈

{1, . . . , p}. Let ‖v‖1 =
∑p

j=1 |v[j]|, ‖v‖2 = (
∑p

j=1 v2
[j])

1/2, and ‖v‖∞ = max
1≤j≤p

‖v[j]‖ respec-

tively denote the L1, L2 and L∞ norms of any v ∈ Rp. Let A(v) = {j : v[j] 6= 0} ⊆ {1, . . . , p}

denote the support of v, and sv = #{j : v[j] 6= 0} denote the size of A(v) for any v ∈ Rp.

For any J ⊆ {1, . . . , p} and any u ∈ Rp, let ΠJ (u) ∈ Rp denote the restriction of u onto J

i.e. {ΠJ (u)}[j] = u[j]1{j ∈ J } ∀ j ∈ {1, . . . , p}, let J c = {1, . . . , p}\J , letMJ ⊆ Rp denote

the subspace: {u ∈ Rp : A(u) ⊆ J}, and letM⊥
J = {u ∈ Rp : A(u) ⊆ J c} ⊆ Rp denote the

orthogonal complement (w.r.t. the L2 inner product) ofMJ . For the choices of J given by:

J = A(v) or J = Ac(v) for some v ∈ Rp, we shall use the shorthand Πv(.) and Πc
v(.) to

denote ΠA(v)(.), and ΠAc(v)(.) respectively. Lastly, let PJ (v) and P⊥J (v) respectively denote

the orthogonal projections of any v ∈ Rp ontoMJ andM⊥
J , for any J as above. Note that:

P⊥A(β0)(βq) = ΠAc(β0)(βq) ≡ Πc
β0

(βq) = Πc
β0

(aqα0). These relations would be used later on.

Let Xnq = n−1
q

∑nq

i=1 Xi, Y
∗
nq

= n−1
q

∑nq

i=1 Y
∗
q,i respectively denote the sample means of

X and Y ∗q in Z∗nq
, and let Σ̂q = nq

−1
∑nq

i=1(Xi −Xnq)(Xi −Xnq)
′ denote the corresponding

sample covariance matrix of X. We next define the empirical squared loss between Y ∗q and

X based on Z∗nq
, and some related quantities of interest. For any β,v ∈ Rp, let us define:

Lnq(Z∗nq
;β) =

1

nq

nq∑
i=1

{(Y ∗q,i − Y
∗
nq

)− β′(Xi −Xnq)}2, (3.12)

∇{Lnq(Z∗nq
;β)} =

∂

∂β
Lnq(Z∗nq

;β) = −2 Tnq(β), where (3.13)

Tnq(β) =
1

nq

nq∑
i=1

{(Y ∗q,i − Y
∗
nq

)− β′(Xi −Xnq)}(Xi −Xnq), and (3.14)

δ{Lnq(Z∗nq
;β; v)} = Lnq(Z∗nq

;β + v)− Lnq(Z∗nq
;β)− v′∇{Lnq(Z∗nq

;β)}. (3.15)
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Since we are only interested in the slope vector of regression coefficients w.r.t. X, we have

appropriately centered all the concerned variables in (3.12). We now consider the L1 pe-

nalized (convex) minimization of (3.12). Assuming that β0 is indeed sparse, we propose to

estimate the β0 direction based on the following estimator:

β̂nq
(λ) ≡ β̂nq

(λ;Z∗nq
) = arg min

β∈Rp

{
Lnq(Z∗nq

;β) + λ‖β‖1

}
, (3.16)

where λ ≥ 0 denotes the regularization/tuning parameter controlling the effect of the penalty

term. β̂nq
(λ) is simply the LASSO estimator corresponding to the least squares regression

of Y ∗q on X based on Z∗nq
, (and can also be viewed as a sparse LDA estimator, owing to the

correspondence between LDA and least squares regression for binary outcomes). We shall

call this estimator the Unsupervised LASSO (ULASSO) estimator. Note that while we have

used the standard L1 norm as the choice of our penalty term, other sparsity friendly penalties

such as weighted versions of the L1 norm (that includes the Adaptive LASSO penalty as

a special case) can also be considered. However, we prefer to stick to the formulation in

(3.16) for the sake of simplicity. It also needs to be noted that since the LASSO estimator

is known to be sensitive to the scaling of the covariates, it might be helpful in practice to

standardize the covariates (w.r.t. the underlying design distribution of X | S ∈ Iq) prior to

implementing the estimation procedure. We shall next study the finite sample properties

of β̂nq
(λ) first in terms of deterministic deviation bounds, followed by probabilistic bounds

regarding performance guarantees and convergence rates.

Deterministic deviation bounds: For convenience of further discussion, we introduce a

few notations and definitions, followed by stating our required assumptions. Recalling the

definition of Tnq(β) from (3.14), and letting Tnq = Tnq(βq), it is straightforward to note that:

Tnq ≡ Tnq(βq) = T(1)
nq

+ T(2)
nq ,1 − T(2)

nq ,2, where (3.17)
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T(1)
nq

=
1

nq

nq∑
i=1

(Y ∗q,i − Yi)(Xi −Xq), (3.18)

T(2)
nq ,1 =

1

nq

nq∑
i=1

{Yi − pq − β
′
q(Xi − µq)}(Xi − µq), and (3.19)

T(2)
nq ,2 =

1

nq

nq∑
i=1

{Yi − pq − β
′
q(Xi − µq)}(Xq − µq), (3.20)

where, throughout in (3.18)-(3.20), {Y1, . . . , Ynq} denotes the corresponding unobserved true

outcomes from Znq , as defined in (3.3). We next state the first of our two assumptions

required for obtaining the finite sample deviation bounds of β̂nq
(λ).

Assumption 3.3. (Restricted Strong Convexity) With δ{Lnq(Z∗nq
;β; v)} as defined in

(3.15), we assume that at β = βq, the loss function Lnq(Z∗nq
;β) satisfies a restricted strong

convexity property as follows: ∃ a (non-random) constant κq > 0, depending on q, such that

δ{Lnq(Z∗nq
;βq; v)} ≡ v′Σ̂qv ≤ κq‖v‖2

2 ∀ v ∈ C(β0;βq), where (3.21)

C(β0;βq) = {v ∈ Rp : ‖Πc
β0

(v)‖1 ≤ 3‖Πβ0
(v)‖1 + 4‖Πc

β0
(βq)‖1} ⊆ Rp.

Assumption 3.3, largely adopted from Negahban et al. (2012), is one of the several re-

stricted eigenvalue type assumptions that are standard in the high dimensional statistics

literature. While we have assumed (3.21) to hold deterministically for any realization of

Z∗nq
, it only needs to hold almost surely (a.s.) w.r.t. Pq for some constant κq. It can also be

generalized further, wherein it only needs to hold with high probability, in which case that

corresponding probability needs to be factored into all our subsequent probabilistic bounds.

A somewhat simpler, yet stronger, sufficient condition that ensures (3.21) is that the mini-

mum eigenvalue of Σ̂q is bounded below a.s. [Pq] by some constant κq > 0. Even this can be

substantially weakened if Σ has a strictly positive minimum eigenvalue, and the underlying

design distribution (X|S ∈ Iq) is sufficiently well behaved with nice concentration properties

(e.g. sub-gaussian distributions), in which case, using random matrix theory, (3.21) can be

shown to hold for some appropriate choice of κq with overwhelming probability. We shall
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however stick to the formulation in (3.21) for simplicity, and we refer the interested reader

to Vershynin (2010) for further details. We next state our second set of assumptions which

relates to structured sparsity conditions on β0, α0 and some arbitrary realization of β̂nq
(λ).

Assumption 3.4. (Restricted Sparsity Conditions) 1. We assume that β0 is strictly sparser

than α0 in the sense that Ac(β0) ∩ A(α0) is non-empty, so that ∃ j ∈ {1, . . . , p} such that

β0[j] = 0 and α0[j] 6= 0. Let Cmin(α0,β0) = min {|α0[j]| : j ∈ Ac(β0) ∩A(α0)} > 0, and let

Cmax(α0,β0) = max {|α0[j]| : j ∈ Ac(β0) ∩ A0(α0)} > 0.

2. For a given choice of the tuning parameter λ ≥ 0, we define λ to be (β0,α0, q)−admissible,

if ∃ some realization z∗nq
(not necessarily the observed one) of the data Z∗nq

such that the

corresponding estimator β̂nq
(λ; z∗nq

) based on z∗nq
and the given choice of λ, satisfies the

property: β̂nq [j](z
∗
nq

;λ) = 0 for some j ∈ Ac(β0)∩A(α0) (a non-empty set due to condition 1).

In our subsequent results, λ, wherever involved, would be assumed to satisfy this condition.

Assumption 3.4 imposes some mild restrictions on the sparsity patterns of β0, α0, and

one arbitrary realization of β̂(λ;Z∗nq
) for a given choice of λ. In particular, condition 1 needs

β0 to be sparser than α0 in at least one coordinate, and therefore formally characterizes the

very essence and purpose behind our consideration of a penalized regression approach for

recovering β0, which we motivated earlier through the intuition that the penalized solution

would be favoring sparser solutions and try to push it away from the un-regularized solution

that recovers the α0 direction. Condition 1 therefore simply ensures that β0 is among one of

these favorable sparser directions. Condition 2 is a somewhat unusual condition requiring a

very mild, but nonetheless critical, assumption to hold regarding the sparsity structure of the

solution β̂(λ;Z∗nq
) for at least one realization of Z∗nq

over the entire sample space underlying

the generation of Z∗nq
. Given a λ, it requires the estimator, at least for one arbitrary sample

point, to be sparse in one of the coordinates ∈ Ac(β0) ∩ A(α0). Of course, while this can

perhaps be always ensured by making the λ large, the main utility of this condition lies in

ensuring the fact that even for choices of λ of a reasonably small enough order (which really

determines the convergence rates of the estimators), at least one of the coordinates in α0
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that ∈ Ac(β0) ∩ A(α0) should not be too strong so as to be always (over the whole sample

space) selected by β̂(λ;Z∗nq
). We now propose our deterministic deviation bound result.

Theorem 3.2. Let Z∗nq
be given, and suppose assumption 3.3 and condition 1 of assumption

3.4 hold. Let λ be any given choice of the tuning parameter in (3.16) such that λ ≥ 4‖Tnq‖∞,

where Tnq is as in (3.17). Suppose further that the chosen λ is (β0,α0, q)-admissible, as

defined in condition 2 of assumption 3.4. Then, the corresponding ULASSO estimator

β̂nq
(λ) ≡ β̂(λ;Z∗nq

) satisfies the following deviation bound w.r.t. the β0 direction:

∥∥∥β̂nq
(λ)− bqβ0

∥∥∥
2
≤ λ

κq

[{
9sβ0

+ d1(α0,β0)
} 1

2 + d2(α0,β0)
]
, where (3.22)

bq is as in (3.10), κq is as in (3.21), sβ0
is the size of Aβ0

, and d1(α0,β0), d2(α0,β0) > 0

are universal constants depending only on α0 and β0 in a scale invariant manner as follows:

d1(α0,β0) = 4d(α0,β0)
∥∥∥Πc

β0
(α0)

∥∥∥
1
, d2(α0,β0) = d(α0,β0) ‖α0‖2 , with (3.23)

d(α0,β0) =
4
∥∥∥Πc

β0
(α0)

∥∥∥
1

+ 3s
1
2
β0
Cmax(α0,β0)

C2
min(α0,β0)

,

where Cmax(α0,β0) and Cmin(α0,β0) are as defined in condition 2 of assumption 3.4.

Theorem 3.2, for any given realization of Z∗nq
and any choice of a corresponding λ that sat-

isfies the required conditions, establishes a purely deterministic deviation bound of β̂nq
(λ)

w.r.t. a scalar multiple of β0 (the scalar multiple bq being implicitly, and quite sensibly,

assumed to be non-zero), as desired. Note that the constants d1(α0,β0) and d2(α0,β0) ap-

pearing in the bound (3.22) are invariant to the scaling of α0 and β0, which is quite desirable

and sensible given the SIM setting we have considered. Apart from the universal constants

and the strong convexity constant, the bound primarily depends on λ whose order will essen-

tially determine the convergence rate of β̂nq
(λ). In this regard, the (random) lower bound

4‖Tnq‖∞ characterizing the choice of λ in theorem 3.2 now becomes the quantity of primary

interest. If we can find a non-random sequence anq that converges to 0 at a satisfactorily fast
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enough rate, and anq can be shown to upper bound Tnq with high probability (w.h.p.), then

a choice of λ = 4anq , as long as it satisfies the additional conditions required for theorem

3.2, will guarantee the bound in (3.22) to hold w.h.p. at the satisfactory rate of O(anq/κq).

Probabilistic performance guarantees: We next aim to provide such a probabilistic

bound for Tnq . In order to do so, we shall require some mild restrictions on the underlying

design distribution of (X | S ∈ Iq), so that it is sufficiently well-behaved, and satisfies some

nice and desirable concentration properties. In particular, we shall assume that it follows

some sub-gaussian distribution. Recall that any random variable Z with E(Z) = 0 is said

to follow a sub-gaussian distribution with parameter σ2, for some σ ≥ 0, if E{exp(tZ)} ≤

exp(σ2t2/2) ∀ t ∈ R. Further, a random vector Z ∈ Rp, with E(Z) = 0, is said to follow

a sub-gaussian distribution with parameter σ2, for some σ ≥ 0, if for each t ∈ Rp, the

random variable t′Z follows a sub-gaussian distribution with parameter at most σ2‖t‖2
2. We

next define a similar notion of sub-gaussian distributions that is more suitable for our case,

wherein we appropriately account for the underlying restriction of {S ∈ Iq}, as follows.

Definition 3.1. (Sub-gaussian distributions given S ∈ Iq). Let Z ∈ R and Z ∈ Rp be

any scalar and vector valued measurable functions of (Y, S,X′)′ respectively. Let Z̃q =

{Z − Eq(Z)}, and Z̃q = {Z − Eq(Z)} denote their corresponding centered versions given

{S ∈ Iq}, for any q ∈ (0, 1]. Then, Z is said to follow a {S ∈ Iq}-restricted sub-gaussian

distribution with parameter σ2
q for some constant σq > 0 (allowed to depend on q), to be

denoted as: Z ∼ SGq(σ
2
q ), if Eq{exp(tZ̃q)} ≤ exp(σ2

q t
2/2) ∀ t ∈ R. Further, Z is said to

follow a {S ∈ Iq}-restricted sub-gaussian distribution, with parameter σ2
q for some constant

σq > 0 (allowed to depend on q), to be denoted as: Z ∼ SGq(σ
2
q ), if for each t ∈ Rp, t′Z

follows a {S ∈ Iq}-restricted sub-gaussian distribution with parameter at most σ2
q‖t‖2

2.

The conditions required to be satisfied by {S ∈ Iq}-restricted sub-gaussian distributions,

as introduced in definition 3.1 above, are quite mild, and should be expected to hold for a

fairly large family of distributions for (S,X′)′, especially those where the (unconditional) dis-

100



tribution of (S,X′)′ is itself sub-gaussian. In particular, when (S,X′)′ follows a multivariate

normal distribution, it can be shown, as would be discussed later, that for most small enough

q of interest to us (specifically, ∀ q ≤ 1/2), X ∼ SGq(σ
2
q ) indeed with σ2

q ≤ c1δ
2

q ≤ c2log(q−1)

for some universal constants c1, c2 > 0. (For q ∈ (1/2, 1], the moment generating function of

(X | S ∈ Iq) still follows a sub-gaussian type bound, but only upto a scalar multiple). Note

also that the parameter σq in definition 3.1 is allowed to depend on q, and therefore, possibly

diverge (slowly enough) as q decreases (as is seen to be the case when (S,X′)′ is normally

distributed). We now provide our final result regarding probabilistic bounds for Tnq .

Theorem 3.3. Suppose X ∼ SGq(σ
2
q ), as defined in 3.1, for some constant σq > 0 allowed to

depend on q. For any a ∈ [0, 1], define ã > 0 as: ã = 0 if a ∈ {0, 1}, ã = 1/2 if a = 1/2, and

ã = [(a− 1/2)/log{πq/(1− πq)}]1/2 if a /∈ {0, 1, 1/2}. Let p̃q and π̃q denote ã for a = pq and

a = πq respectively. Further, let γ2
q = (p̃q + σq‖βq‖2)2. Then, with Tnq = T(1)

nq +T(2)
nq ,1 −T(2)

nq ,2

as defined in (3.17)-(3.20), we have: for any given ε1, ε2, ε3, ε4, ε5 > 0,

(i) Pq
{∥∥∥T(1)

nq

∥∥∥
∞
> ε1(πq + ε2)

}
≤ 2exp

{
− ε21

2σ2
q

+ log (nqp)

}
+ exp

(
−nqε

2
2

2π̃2
q

)
,

(ii) Pq
{∥∥∥T(2)

nq ,1

∥∥∥
∞
> 2σqγq(2

√
2ε3 + ε23)

}
≤ 2exp

(
−nqε23 + log p

)
, and

(iii) Pq
(∥∥∥T(2)

nq ,2

∥∥∥
∞
> ε4ε5

)
≤ 2exp

(
−nqε

2
4

2σ2
q

+ log p

)
+ 2exp

(
−nqε

2
5

2γ2
q

)
. (3.24)

In particular, for any universal constants: c1, c2 > 0 such that max (c1, c2) > 1; and c3 > 0,

c4, c5 > 1, and c6 > 0; and letting c0 = (c4 + c5c6); and assuming πq < 1/2 w.l.o.g., we have:

With probability at least 1−
(

πq
1− πq

)c3
− 2

p(c1−1)n
(c2−1)
q

− 2

p(c4−1)
− 2

p(c5−1)
− 2

pc6
,∥∥Tnq

∥∥
∞ ≤ anq ≡ anq(c1, . . . , c6), where anq ≡ anq(c1, . . . , c6) is given by:

σq
√

2log (pc1nc2q )

{
πq +

√
(1− 2πq)c3

nq

}
+ 2σqγq

(
2
√

2c4

√
log p

nq
+

log p

nq
c0

)
. (3.25)

Theorem 3.3 provides an explicit finite sample characterization of the behaviour of Tnq in

terms of a flexible probabilistic bound. In particular, it implies that for some suitably chosen
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constants (c1, . . . , c6), a choice of λ = 4anq will ensure that the condition λ ≥ 4‖Tnq‖∞,

required for theorem 3.2, holds w.h.p. (characterized more explicitly in the bound above).

Consequently, with a choice of λ = 4anq , as long as it satisfies the other conditions required for

theorem 3.2, the deviation bound (3.22) holds w.h.p. as well, thereby ensuring a satisfactory

convergence rate of O(anq/κq) for β̂nq
(λ) as an estimator of the β0 direction.

Turning to the convergence rate of anq itself, we note that the (dominating) polynomial

part of the rate is determined primarily by πq and n
−1/2
q , which behave antagonistically w.r.t.

each other as q increases or decreases, so that the rate exhibits an interesting phenomenon

similar to a ‘variance-bias tradeoff’. The misclassification error πq, expected to increase as

q increases, can be viewed as a ‘bias’ term, while n
−1/2
q , which decreases as q increases,

corresponds to the usual variance (rather, standard deviation) term. In particular, with

πq = O(qν) for some given ν > 0, as in (3.1), and q = O(N−η) for some unknown η ∈ (0, 1),

the combined rate: (πq +n
−1/2
q ) ≡ O{N−νη +N (1−η)/2} can be minimized w.r.t. η, leading to

an optimal choice given by: ηopt = 1/(2ν+1), and a corresponding optimal order of q given by:

qopt = O{N−1/(2ν+1)}. For q = qopt, πq and n
−1/2
q have the same order, so that optimal order

of the (polynomial part of the) convergence rate of anq is given by: (anq)opt = O{N−ν/(2ν+1)}.

Practical choice of λ: Finally, while we have so far characterized the theoretical prop-

erties of β̂nq
(λ) in great detail and generality, an important issue that has not yet been

addressed is the choice of λ in practice, required for the actual implementation of β̂nq
(λ),

since πq (and ν) would be typically unknown in reality. In this regard, we first note that,

the theoretical choice 4anq for λ is essentially of the order: O[{log (nqp)}1/2(πq + n
−1/2
q )]

(ignoring, for simplicity, the constants σq and γq). Owing to the additional πq term (as well

as the log (nqp) term), this is therefore expected to be slightly higher than O[{(log p)/nq}1/2]

which is well known to be the typical choice of the order of λ for standard L1−penalized

estimation methods. This is again a manifestation of the fact that in our case, the choice of

the λ should be slightly higher than usual, so that sparser solutions are favored. Motivated

102



by this intuition, we now propose to choose the tuning parameter λ in practice through

minimizing a criteria similar to the Bayes Information Criteria (BIC) defined as follows:

BIC(λ) ≡ BIC{λ; β̂nq
(λ);Z∗nq

} = Lnq{Z∗nq
; β̂nq

(λ)}+
log(nq)

nq
‖β̂nq

(λ)‖0, (3.26)

where, ∀ v ∈ Rp, ‖v‖0 = sv denotes the L0 pseudo-norm, and Lnq(.; .) is as in (3.12). Com-

pared to other standard criteria for selecting tuning parameters, like the Akaike Information

Criteria (AIC) and cross-validation (CV), the BIC is known to penalize more and therefore,

select sparser solutions which serves quite well for our purpose. While a detailed theoretical

analysis of the merits and demerits of using the BIC for selecting λ in our case is beyond

the scope of this paper, we find that, based on our extensive simulation studies as well as

applications to real data, the above criteria works quite well in practice, and we believe this

continues to hold in general as long as the πq and the chosen q are reasonable enough.

3.4 Analysis of Key Quantities for a Familiar Choice

of (Y, S, X)

We next characterize, for a particularly familiar choice of (Y, S,X), the distributional prop-

erties of {(S,X)|S ∈ Iq}, as well as the behaviour of πq, all of which are closely related to the

fundamental assumptions underlying our proposed methodology for this problem. Suppose

X ∼ Np(µ,Σ), the p−variate normal distribution with mean µ ∈ Rp and dispersion matrix

Σp×p. Further, let S |X follow the standard linear model: S = α′0X + ε∗ for some α0 ∈ Rp,

where ε∗ ⊥⊥ X and ε∗ ∼ N1(a, σ2), for some a ∈ R and σ ≥ 0. Lastly, let (Y |X) ≡ (Y |S,X)

follow the standard logistic model given by: Y = 1(β′0X + ε > 0) for some β0 ∈ Rp, where

ε ⊥⊥ (S,X) and ε ∼ Logistic (b, 1), the standard logistic distribution with mean b, for some

b ∈ R, and variance 1. For simplicity, we shall assume w.l.o.g. that µ = 0, a = 0, and b = 0.

Let σ2
S ≡ Var(S) = (α′0Σα0 + σ2), and let ψ(β′0X) = P(Y = 1 |X) ≡ P(Y = 1 |X, S),

with ψ(u) = exp(u)/{1 + exp(u)} ∀ u ∈ R. Note that the assumed set-up also implies that
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(S,X)′ jointly follows a (p + 1)-variate normal distribution, and further, X | S ∼ Np(γ0,Γ)

with γ0 = (Σα0)/σ2
S ∈ Rp and Γp×p = (Σ − σ2

Sγ0γ
′
0). Let ρ0 ≡ ρ0(α0,β0) ∈ [−1, 1] denote

Corr (α′0X,β
′
0X), and assume w.l.o.g. that the signs of α0 and β0 have been appropriately

chosen such that ρ0 ≥ 0. Let ρ̃0 ≡ ρ̃(α0,β0) = ρ0 (α′0Σα0/σ
2
S)1/2 ∈ [0, 1], the fraction of ρ0

scaled by the population R2 value for the regression of S on X. Let η0 ≡ η0(β0) > 0 denote

(β′0Σβ0)1/2. Lastly, let Φ(.) and φ(.) denote the cumulative distribution function (c.d.f.) and

the density function respectively of the standard N1(0, 1) distribution, and for any q ∈ (0, 1],

let zq and zq denote its (q/2)th and (1 − q/2)th quantiles. Hence, zq ≤ 0, zq ≥ 0, zq = −zq,

and further, δq = σSzq and δq = σSzq. We now propose the following result.

Theorem 3.4. Consider the particular set-up introduced above for (Y, S,X). Then,

(i) The expectations of S and X given S ∈ Iq satisfy the following relations:

E(S | S ≥ δq) = − E(S | S ≤ δq) = σS
φ(zq)

Φ(zq)
, and Eq(S) = 0.

E(X | S ≥ δq) = − E(X | S ≤ δq) = γ0

{
σS
φ(zq)

Φ(zq)

}
, and Eq(X) = 0.

(ii) The variances of S and X given S ∈ Iq, denoted henceforth by Varq(.), satisfy:

E(S2 | S ≥ δq) = E(S2 | S ≤ δq) = σ2
S

{
1 + zq

φ(zq)

Φ(zq)

}
≡ Varq (S).

E(XX′ | S ≥ δq) = E(XX′ | S ≤ δq) = Σ + γ0γ
′
0

{
σ2
S zq

φ(zq)

Φ(zq)

}
≡ Varq (X).

(iii) The moment generating functions (m.g.f.s) of S and X given S ∈ Iq satisfy:

MGFS,q(t) ≡ Eq(etS) =
eσ

2
St

2/2

2Φ(zq)
{Φ(zq + σSt) + Φ(zq − σSt)} ∀ t ∈ R.

MGFX,q(t) ≡ Eq(et
′X) =

et
′Σt/2

2Φ(zq)
{Φ(zq + σSt′γ0) + Φ(zq − σSt′γ0)} ∀ t ∈ Rp.

(iv) Let λmax(Σ) > 0 denote the maximum eigenvalue of Σ. Then, the m.g.f.s MGFS,q(.)
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and MGFX,q(.) further satisfy the following sub-gaussian type bounds:

MGFS,q(t) ≤ exp

{
1

2
t2σ2

S(1 + 2z2
q )

}
∀ t ∈ R; ∀ q ∈ (0, 1/2].

MGFS,q(t) ≤ 4 exp

(
1

2
t2σ2

S

)
, ∀ t ∈ R; ∀ q ∈ (1/2, 1].

MGFX,q(t) ≤ exp

[
1

2
‖t‖2

2{λmax(Σ) + 2σ2
Sz

2
q‖γ0‖2

2}
]
∀ t ∈ Rp; ∀ q ∈ (0, 1/2].

MGFX,q(t) ≤ 4 exp

{
1

2
‖t‖2

2λmax(Σ)

}
∀ t ∈ Rp; ∀ q ∈ (1/2, 1].

(v) The misclassification error πq (as well as π+
q and π−q ) satisfies the following bound:

πq ≡
1

2
(π+

q + π−q ) ≤ exp
(
η2

0/2
) Φ (−zq − σSβ′0γ0)

Φ (−zq)
∀ q ∈ (0, 1];

≤ exp

{
1

2
(1− ρ̃2

0)η2
0 − zqρ̃0η0

}
(z2
q + 1)

zq(zq + ρ̃0η0)
. Cexp

{
1

2
(1− ρ̃2

0)η2
0 − zqρ̃0η0

}
,

where C > 0 is some universal constant, and all other notations are as defined earlier.

(vi) Lastly, the behavior of δ
2

q (as well as δ2
q) w.r.t. q is reflected by the following bounds:

δ
2

q ≡ σ2
Sz

2
q = σ2

Sz
2
q ≡ δ2

q ≤ 2σ2
S log (q−1); ∀ q ∈ (0, 1].

δ
2

q ≡ σ2
Sz

2
q = σ2

Sz
2
q ≡ δ2

q ≥ 2σ2
S log {(5q)−1}; ∀ q ∈ [0.0002, 1].

Theorem 3.4, for the special choice of (Y, S,X) considered herein, explicitly characterizes

the distributional properties of {(S,X) |S ∈ Iq}, as well as the behavior of the misclassifica-

tion error πq w.r.t. q. In particular, result (iv) implies that for most choices of q that are of

interest to us, X ∼ SGq(σ
2
q ) indeed, as required in theorem 3.3, for some appropriate choice

of the constant σq > 0 depending on q only through zq. Further, owing to result (vi), z2
q

(and hence, σ2
q ) diverges slowly enough, only at logarithmic orders, as q ↓ 0, thereby showing

that, at least in this case, σq (and γq) appearing in the bound (3.25) only has a minor effect

on the convergence rate of λ = 4anq and consequently, on that of our estimator β̂nq
(λ).
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Moreover, the strict positive definiteness of Σq as shown by result (ii), combined with the

fact that X ∼ SG(σ2
q ) for some σq, also ensures that our strong convexity assumption 3.3

can be ensured to hold in this case w.h.p., using the results from Vershynin (2010), through

some appropriate choice of the constant κq > 0 which, with some more work, can also be

shown to be uniformly bounded below w.r.t. q by some universal constant.

Finally, turning our focus onto the bound of πq obtained in result (v) which, it needs

to be noted, is a fairly sharp bound (especially for small enough q), we first observe that

apart from zq, it depends critically on the constants η0 and ρ̃0 that can be respectively

interpreted as the ‘strength’ of the signal β′0X underlying the generation of Y |X, and that

of the correlation ρ0 (upto a minor scaling constant) between the β0 and the α0 directions.

In order for this bound to obey a polynomial rate w.r.t. q, as we have assumed in (3.1), it

must behave as: c1exp(−c2z
2
q), owing to result (vi), for some constants c1, c2 > 0. However,

treating η0 and ρ̃0 as universal constants, the bound clearly behaves only as: c∗1exp(−c∗2zq),

for some constants c∗1, c
∗
2 > 0, thereby leading to a slower rate than desired.

This therefore indicates that it would be perhaps more helpful to envision a ‘regime’ where

η0 and ρ̃0 are allowed to vary with q, so that η0 increases and (1− ρ̃2
0) decreases, both albeit

slowly enough, as q decreases to 0. In particular, for a given choice of q, if η0 is strong enough

such that η2
0 & d1z

2
q, and at the same time (1− ρ̃2

0) is small enough so that (1− ρ̃2
0)η2

0 . d2,

for some constants d1, d2 > 0, then clearly, the bound starts behaving as: c1exp(−c2z
2
q) for

some constants c1, c2 > 0, as desired. Further, owing to result (vi), note that this setting

also necessarily implies that: (1− ρ2
0) ≤ (1− ρ̃2

0) . O(z−2
q ) . O{log (q−1)} . O{1/(log N)},

thereby indicating that the α0 and β0 directions must be fairly strongly correlated with each

other, at least upto 1/(log N) order, under this regime, a regime that is almost necessary, in

this case, for our surrogacy assumption 3.1 to hold, and for our approach to be successful.

Intuitively, this makes sense since E(S | X) ≡ α′0X and P(Y = 1 | X) ≡ ψ(β′0X) are

monotone in α′0X an β′0X respectively, so that given X, the tails of S will be closely linked to

those of α′0X, and further owing to the surrogacy assumption in these tails, the corresponding
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ψ(β′0X) should be close to 0/1 indicating that β′0X should also lie in its own tails, thereby

implying the necessity of a fairly strong correlation between the α0 and β0 directions. Note

however that this does not trivialize the problem or our proposed methods in any way for

this case. While the α0 direction does need to be ‘close’ to the β0 direction in this case, it

only needs to be so in 1/(log N) order (and therefore, not necessarily ‘too close’). Hence,

while the α0 direction can indeed be near perfectly estimated from S∗N at a rate of O(N−1/2),

it may not be a reasonable estimator of the β0 direction itself, which it might be only able to

estimate at sub-optimal logarithmic rates, instead of the polynomial rates we have ensured,

under the additional structured sparsity assumptions, for our estimator based on Z∗nq
.

3.5 Numerical Studies

3.5.1 Simulation Results

We conducted extensive simulation studies to compare the performance of our proposed

ULASSO estimator to those of standard supervised estimators based on labeled data of

various sample sizes. Throughout, we let N = 100000, and use two choices each for p, q and

the labeled data size (n) given by: p = 20 or p = 50, q = 0.02 or q = 0.04, and n = 300 or

n = 500 (denoted henceforth as n300 or n500 respectively). X is generated as: X ∼ Np(0,Σ),

where we use two choices of Σ, representing two types of correlation structures for X, given

by: Σ = Ip (the p × p identity matrix) or, Σ = Σρ, where the (i, j)th entry of Σρ is given

by: (Σρ)[i,j] = ρ|i−j| ∀ 1 ≤ i, j ≤ p, with ρ = 0.2. For each choice of p and Σ as above, we

generated Y |X based on the standard logistic regression model given by: Y = 1(β′0X+ε > 0)

with ε ∼ Logistic (0, 1) and ε ⊥⊥ (X, S), and throughout, we set β0 = (1′cp , 0.5 ∗ 1′cp ,0
′
p−2cp)′,

where 1a and 0a, for any a, denote (1, . . . , 1)′a×1, and (0, . . . , 0)′a×1 respectively, and cp = bp 1
2 c

with b.c being the floor function. Finally, S |X is generated from the standard linear model:

S = α′0X + ε∗ with ε∗ ∼ N1(0, 1) and ε∗ ⊥⊥ (X, ε), where for any choice of (p,Σ, q) as above,

α0 is generated as: β0 +ξ/(log N) with the entries {ξ[j]}
p
j=1 of ξ being fixed realizations from

either a Uniform (r1, r2) distribution with r1 = 2, r2 = 5, or from a N1(r1, r
2
2) distribution
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with r1 = 3, r2 = 1. Note that such choices of α0, motivated by our discussions in section

3.4, ensure that while α0 is ‘close’ to β0, yet its deviations of O(1/log n) from β0 are still

substantially large enough so as to lead to a non-trivial setting.

For each of the settings above, we replicated the simulations over 500 iterations, and for

each such iteration, we obtained our ULASSO estimator, as well as the following supervised

estimators based on a labeled data (at both n300 and n500): (i) the logistic LASSO estimator

(Sup.Log.LASSO) and the logistic MLE (Sup.Log.MLE) through penalized and un-penalized

logistic regression of Y on X respectively, and (ii) the least squares LASSO (Sup.Lin.LASSO)

estimator and the OLS estimator (Sup.Lin.OLS) through penalized and un-penalized linear

regression of Y on X respectively. In addition, we also considered α0 as a possible estimator

of the β0 direction. For the ULASSO estimator, the tuning parameter was selected using

the BIC criteria defined in (3.26). For the Sup.Log.LASSO estimator, the tuning parameter

was selected using the appropriate BIC criteria based on the logistic loss, while for the

Sup.Lin.LASSO estimator, it was selected using the appropriate AIC criteria based on the

squared loss, to avoid over-shrinkage. All estimators were further sign-normalized w.r.t. β0

as follows: β̃
′
Σβ0 ≥ 0 where β̃ denotes any generic estimator of the β0 direction.

For all the estimators, we report the empirical mean squared error (Emp. MSE) of

the normalized versions of the estimators w.r.t. the normalized version of β0 defined as:

‖β̃/‖β̃‖2 − β0/‖β0‖2‖2
2, for any generic estimator β̃, averaged over the 500 iterations. We

also report the relative efficiency (RE) of ULASSO w.r.t. all other estimators considered,

defined as the inverse ratio of the Emp. MSE of ULASSO to those of the other estimators.

In order to compare the prediction/classification performance, we consider the area under

the ROC curve (AUC) measure, notably a scale-invariant measure, for all the estimators.

For each estimator and each iteration, the AUC was calculated based on an independent

validation data of size N , and we report its average (Avg. AUC) over the 500 iterations.

As a performance benchmark, we also report the corresponding average AUC (denoted as

AUCoracle) obtained by using the true β0 direction. Lastly, to compare the variable selection

108



performance of all the LASSO estimators, we obtained their corresponding true positive rate

(TPR) and false positive rate (FPR) w.r.t. A(β0), defined as: TPR = |A(β̃)∩A(β0)|/|A(β0)|

and FPR = |A(β̃)∩Ac(β0)|/|Ac(β0)| for any generic estimator β̃, and report their average

TPR (Avg. TPR) and average FPR (Avg. FPR), averaged over the 500 iterations. Results

for all the 16 simulation settings introduced herein are now tabulated through tables 3.1-3.16.

Table 3.1: Results for p = 20,Σ = Ip, q = 0.02, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.018 0.074 0.040 0.122 0.052 0.091 0.054 0.094 0.056 0.100
RE of ULASSO 1.000 4.157 2.224 6.799 2.925 5.104 3.026 5.275 3.140 5.599

Avg. AUC 0.875 0.863 0.871 0.853 0.868 0.860 0.868 0.859 0.867 0.858
AUCoracle 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879

Avg. TPR 1.000 0.978 0.998 0.867 0.979 – – – – –
Avg. FPR 0.002 0.227 0.246 0.035 0.050 – – – – –

Table 3.2: Results for p = 20,Σ = Ip, q = 0.02, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.012 0.082 0.041 0.134 0.053 0.094 0.054 0.096 0.057 0.124
RE of ULASSO 1.000 6.965 3.478 11.321 4.478 7.899 4.574 8.115 4.791 10.460

Avg. AUC 0.877 0.862 0.870 0.851 0.868 0.859 0.868 0.859 0.867 0.853
AUCoracle 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879

Avg. TPR 1.000 0.968 0.996 0.848 0.978 – – – – –
Avg. FPR 0.000 0.221 0.238 0.034 0.058 – – – – –
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Table 3.3: Results for p = 20,Σ = Ip, q = 0.04, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.010 0.080 0.040 0.131 0.056 0.094 0.055 0.097 0.057 0.113
RE of ULASSO 1.000 8.046 4.027 13.091 5.572 9.366 5.461 9.693 5.737 11.246

Avg. AUC 0.877 0.862 0.870 0.851 0.867 0.859 0.867 0.858 0.867 0.855
AUCoracle 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879

Avg. TPR 1.000 0.972 0.997 0.846 0.973 – – – – –
Avg. FPR 0.015 0.229 0.234 0.033 0.053 – – – – –

Table 3.4: Results for p = 20,Σ = Ip, q = 0.04, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.011 0.077 0.042 0.121 0.056 0.093 0.056 0.095 0.059 0.091
RE of ULASSO 1.000 7.232 3.914 11.319 5.253 8.692 5.204 8.926 5.501 8.543

Avg. AUC 0.877 0.863 0.870 0.854 0.867 0.859 0.867 0.859 0.867 0.860
AUCoracle 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879 0.879

Avg. TPR 1.000 0.976 0.997 0.874 0.975 – – – – –
Avg. FPR 0.001 0.234 0.231 0.043 0.057 – – – – –

Table 3.5: Results for p = 20,Σ = Σρ, q = 0.02, and {ξ[j]}
p
j=1 ∼ N1(3, 1).. Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.024 0.081 0.043 0.112 0.054 0.115 0.066 0.120 0.071 0.106
RE of ULASSO 1.000 3.358 1.778 4.656 2.227 4.776 2.755 4.980 2.944 4.413

Avg. AUC 0.899 0.891 0.897 0.885 0.895 0.886 0.893 0.885 0.892 0.880
AUCoracle 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904

Avg. TPR 1.000 0.977 0.999 0.902 0.981 – – – – –
Avg. FPR 0.000 0.200 0.201 0.024 0.035 – – – – –
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Table 3.6: Results for p = 20,Σ = Σρ, q = 0.02, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.018 0.078 0.044 0.111 0.054 0.112 0.068 0.118 0.073 0.135
RE of ULASSO 1.000 4.436 2.477 6.307 3.040 6.340 3.844 6.689 4.129 7.671

Avg. AUC 0.901 0.891 0.897 0.885 0.895 0.886 0.893 0.885 0.892 0.873
AUCoracle 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904

Avg. TPR 1.000 0.982 0.998 0.894 0.984 – – – – –
Avg. FPR 0.001 0.196 0.209 0.022 0.034 – – – – –

Table 3.7: Results for p = 20,Σ = Σρ, q = 0.04, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.031 0.077 0.045 0.111 0.055 0.112 0.068 0.117 0.073 0.113
RE of ULASSO 1.000 2.490 1.458 3.589 1.786 3.647 2.225 3.792 2.361 3.670

Avg. AUC 0.898 0.891 0.896 0.885 0.895 0.886 0.893 0.885 0.892 0.879
AUCoracle 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904 0.904

Avg. TPR 1.000 0.980 0.997 0.906 0.985 – – – – –
Avg. FPR 0.095 0.191 0.195 0.023 0.032 – – – – –

Table 3.8: Results for p = 20,Σ = Σρ, q = 0.04, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.020 0.083 0.045 0.117 0.055 0.115 0.068 0.122 0.073 0.122
RE of ULASSO 1.000 4.201 2.252 5.926 2.770 5.816 3.416 6.158 3.679 6.152

Avg. AUC 0.900 0.890 0.896 0.884 0.895 0.885 0.893 0.884 0.892 0.876
AUCoracle 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903

Avg. TPR 1.000 0.974 0.998 0.890 0.984 – – – – –
Avg. FPR 0.000 0.200 0.200 0.021 0.032 – – – – –
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Table 3.9: Results for p = 50,Σ = Ip, q = 0.02, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.022 0.149 0.068 0.353 0.114 0.197 0.107 0.193 0.112 0.148
RE of ULASSO 1.000 6.889 3.157 16.357 5.279 9.126 4.972 8.917 5.207 6.875

Avg. AUC 0.912 0.882 0.901 0.824 0.890 0.870 0.891 0.871 0.890 0.882
AUCoracle 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917

Avg. TPR 1.000 0.891 0.984 0.612 0.898 – – – – –
Avg. FPR 0.001 0.119 0.154 0.012 0.026 – – – – –

Table 3.10: Results for p = 50,Σ = Ip, q = 0.02, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.024 0.145 0.068 0.336 0.111 0.193 0.107 0.188 0.112 0.204
RE of ULASSO 1.000 6.104 2.838 14.149 4.667 8.132 4.490 7.918 4.707 8.576

Avg. AUC 0.911 0.882 0.901 0.831 0.890 0.871 0.891 0.872 0.890 0.868
AUCoracle 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917

Avg. TPR 1.000 0.898 0.985 0.630 0.902 – – – – –
Avg. FPR 0.001 0.119 0.149 0.012 0.027 – – – – –

Table 3.11: Results for p = 50,Σ = Ip, q = 0.04, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.023 0.140 0.067 0.331 0.110 0.195 0.106 0.188 0.111 0.160
RE of ULASSO 1.000 6.067 2.894 14.406 4.782 8.480 4.605 8.166 4.834 6.957

Avg. AUC 0.912 0.884 0.901 0.833 0.891 0.871 0.892 0.872 0.890 0.879
AUCoracle 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917

Avg. TPR 1.000 0.904 0.982 0.635 0.902 – – – – –
Avg. FPR 0.006 0.117 0.147 0.011 0.027 – – – – –
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Table 3.12: Results for p = 50,Σ = Ip, q = 0.04, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.025 0.148 0.066 0.342 0.114 0.198 0.106 0.190 0.112 0.209
RE of ULASSO 1.000 5.947 2.665 13.711 4.557 7.930 4.267 7.632 4.510 8.391

Avg. AUC 0.911 0.882 0.901 0.827 0.890 0.870 0.892 0.872 0.890 0.867
AUCoracle 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917 0.917

Avg. TPR 1.000 0.894 0.985 0.632 0.899 – – – – –
Avg. FPR 0.003 0.113 0.156 0.011 0.026 – – – – –

Table 3.13: Results for p = 50,Σ = Σρ, q = 0.02, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.011 0.131 0.068 0.248 0.104 0.250 0.136 0.244 0.148 0.192
RE of ULASSO 1.000 11.634 5.985 21.970 9.248 22.164 12.057 21.634 13.151 17.004

Avg. AUC 0.935 0.914 0.926 0.890 0.918 0.894 0.914 0.895 0.912 0.889
AUCoracle 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937

Avg. TPR 1.000 0.931 0.987 0.741 0.925 – – – – –
Avg. FPR 0.000 0.101 0.122 0.009 0.015 – – – – –

Table 3.14: Results for p = 50,Σ = Σρ, q = 0.02, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.026 0.132 0.066 0.256 0.102 0.253 0.134 0.242 0.147 0.181
RE of ULASSO 1.000 5.140 2.566 9.947 3.951 9.817 5.193 9.393 5.686 7.028

Avg. AUC 0.932 0.914 0.926 0.888 0.919 0.893 0.914 0.895 0.912 0.892
AUCoracle 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937

Avg. TPR 1.000 0.933 0.990 0.738 0.934 – – – – –
Avg. FPR 0.000 0.108 0.129 0.009 0.017 – – – – –
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Table 3.15: Results for p = 50,Σ = Σρ, q = 0.04, and {ξ[j]}
p
j=1 ∼ N1(3, 1). Comparison of

ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR and
FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.026 0.133 0.067 0.256 0.103 0.250 0.134 0.243 0.146 0.165
RE of ULASSO 1.000 5.138 2.569 9.896 3.983 9.661 5.186 9.381 5.638 6.377

Avg. AUC 0.932 0.914 0.926 0.888 0.918 0.894 0.914 0.895 0.912 0.896
AUCoracle 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937

Avg. TPR 1.000 0.933 0.989 0.728 0.933 – – – – –
Avg. FPR 0.016 0.106 0.126 0.006 0.016 – – – – –

Table 3.16: Results for p = 50,Σ = Σρ, q = 0.04, and {ξ[j]}
p
j=1 ∼ Uniform (2, 5). Comparison

of ULASSO and all supervised estimators, as well as α0, based on Emp. MSE, AUC, TPR
and FPR. Shown also are the REs, based on Emp. MSE, of ULASSO w.r.t. all the estimators.

ULASSO Sup.Log.LASSO Sup.Lin.LASSO Sup.Log.MLE Sup.Lin.OLS α0Criteria
n300 n500 n300 n500 n300 n500 n300 n500

Emp. MSE 0.019 0.135 0.066 0.252 0.100 0.252 0.132 0.241 0.144 0.206
RE of ULASSO 1.000 7.045 3.423 13.156 5.226 13.179 6.922 12.595 7.527 10.789

Avg. AUC 0.934 0.913 0.926 0.890 0.919 0.894 0.915 0.896 0.913 0.885
AUCoracle 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937 0.937

Avg. TPR 1.000 0.932 0.990 0.740 0.934 – – – – –
Avg. FPR 0.001 0.106 0.129 0.009 0.016 – – – – –

Overall, as is evident from all the results presented in tables 3.1-3.16, the performance of

the ULASSO estimator seems to be quite satisfactory in its own right w.r.t. all the criteria we

have considered, and also seems to be fairly robust to the choice of q as well as the underlying

correlation structure of X. Among the supervised estimators considered, the Sup.Log.LASSO

estimator seems to have the best performance throughout, which is understandable given

that apart from using the true labels, it also exploits the knowledge of the true link as well

as the sparsity of β0. However, even w.r.t. the Sup.Log.LASSO estimator at both sample

sizes n300 and n500, the ULASSO seems to be significantly more efficient in almost all cases.

Further, its prediction performance, as measured by the AUC, seems to be satisfactorily close

to the gold-standard AUCoracle measure, and is in fact, uniformly higher than those achieved
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by the supervised estimators over all the settings. The variable selection performance of

ULASSO in terms of the TPR and FPR also seems to be near-perfect, especially for the

TPR, over all the cases, and is again uniformly superior to those achieved by the supervised

estimators. Lastly, the performance of α0, w.r.t. all the criteria considered, is clearly seen

to be significantly worse over all cases than those of the ULASSO as well as most of the

supervised estimators, thereby indicating that while it is ‘close’ to β0, it is not close enough

(and sparse enough) to be considered a reasonable estimator of the β0 direction.

3.5.2 Application to EMR Data

We applied our proposed method to an EMR study of rheumatoid arthritis (RA), a systemic

autoimmune (AI) disease, conducted at the Partners HealthCare. Further details on this

study can be found in Liao et al. (2010, 2013). The study cohort consists of 44014 patients,

and the binary outcome of interest in this case was a disease phenotype defined as clinically

confirmed diagnosis of RA. The primary goal was to understand and model the disease

risk of RA based on several relevant clinical variables, including RA biomarkers, standard

medications for RA, as well other relevant AI diseases and/or clinical conditions known to be

closely related to RA, rich information for all of which were available through the data for a

large number of patients. However, the availability of gold standard outcomes was limited as

it required logistically prohibitive manual chart review by the physician. A labeled training

data was therefore only available for 500 patients, wherein observations for the gold standard

outcome were obtained through manual chart review by two expert rheumatologists. We used

this training data to implement standard supervised procedures, while we considered the rest

of the massive unlabeled data available and implemented our proposed ULASSO estimator

under the surrogate aided unsupervised learning framework considered herein. The surrogate

we used for this purpose was a variable called RA-w which corresponds to the total count

of ICD9 diagnostic codes for RA for a patient taken at least a week apart. It is natural to

expect that when RA-w assumes too high or too low values, the patient is very likely to be
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diseased or healthy respectively. Based on the full available data, with RA-w notably being

a count variable, a choice of (lower, upper) cut-offs given by: (1 %, 99%) and (2.5 %, 97.5%)

for RA-w turned out to correspond to (0, 45) and (0, 70) codes respectively, and based on

the training data, the corresponding empirical misclassification errors turned out to be 2/81,

and 5/95 respectively, both of which were therefore quite reasonably small.

In order to model the disease risk of RA, we related it to a set of 37 covariates altogether

available through the dataset, which included: (i) age, gender, (ii) counts of ICD9 codes for

other related AI diseases like psoriatic arthritis (PsA), juvenile rheumatoid arthritis (JRA)

and systemic lupus erythometasus (SLE), denoted in our results as PsA-r, JRA-r and SLE-r

respectively, (iii) counts of ICD9 codes for PsA, JRA and SLE taken at least a week apart,

denoted in our results as PsA-w, JRA-w and SLE-w respectively, (iii) counts of mentions of

PsA, JRA and SLE in the physicians’ notes extracted via natural language processing (NLP),

denoted in our results as PsA-nlp, JRA-nlp and SLE-nlp respectively, (iv) combined counts

of normalized ICD9 codes, at least a week apart, for RA, and NLP extracted mentions of RA

from physicians’ notes, denoted in our results as RA-w-nlp, (v) codified test results and/or

NLP extracted mentions of positivity for standard RA biomarkers including rheumatoid

factor (RF), anti-cyclic citrullinated polypeptide (anti-CCP) and anti-tumor necrosis factors

(anti-TNF) that are routinely checked for RA patients to assess the disease progression,

(vi) counts of codified and/or NLP extracted mentions of methotrexate (a frequently used

medication for RA), seropositivity, erosion (radiological evidence of bone erosion), as well

as several other standard medications and/or relevant clinical conditions that are known to

be related to RA, including Enb, Hum, Rem, Ore, Rit, Anak, Sulf, Aza, Plaq, Arava, Pen,

Gld, Neo, Facts, PM, DM, PMR, Spond, and other medications (other meds.). A detailed

glossary of the abbreviations used above, as well as further explanations regarding the clinical

significance of these variables can be found in Liao et al. (2010, 2013). All the count/binary

variables were further log-transformed as: x→ log(1 + x), to increase stability of the model

fitting. In order to ensure comparability of the point estimates for the regression coefficients
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across all the predictors, especially since the estimates would be based on sparsity based

estimators, all the covariates were further standardized to have unit variance w.r.t. the full

data, and all our results are reported in this standardized scale for the covariates.

Based on these 37 covariates, and the RA-w surrogate, we implemented our ULASSO

estimator using the unlabeled data with two choices of q given by: q = 0.02 (nq = 4375) and

q = 0.05 (nq = 5040), and further constructed another ULASSO estimator, denoted in our

results as ‘combined’, wherein we appropriately combined the two estimators for q = 0.02 and

q = 0.05, by averaging their normalized versions. Based on the available labeled data and

these 37 covariates, we also implemented the supervised (sup.) logistic LASSO and Adaptive

LASSO (ALASSO) estimators. The tuning parameter for ULASSO was selected using the

BIC criteria in (3.26), while those for the sup. logistic LASSO and ALASSO estimators were

selected using the BIC criteria based on the logistic loss. We also computed the α0 estimator

using poisson regression of the surrogate RA-w, a count variable, w.r.t. the 37 covariates

based on the full available data. All the estimators obtained were further normalized to have

unit L2 norm. For the ALASSO estimator, we also computed bootstrap based estimates

of its standard errors, denoted in our results as boot.sdalasso, using 500 bootstrap samples,

for reference and also to get a reasonable idea about the significance of the point estimates

obtained. Further, in order to examine the prediction/classification performance of all the

above estimators, we also computed estimates of their corresponding AUC measures based

on the labeled data. For the supervised logistic LASSO and ALASSO estimators, this was

computed by additionally using K−fold cross-validation with K = 5, to avoid over-fitted

estimates of the AUC. The results for the data analysis are presented in table 3.17.

Overall, the results in table 3.17 seem to be quite satisfactory. First of all, the subset of

predictors selected by the various ULASSO estimators, as well as the corresponding point

estimates of the regression coefficients for the selected variables, are fairly close to each other,

which therefore highlights, based on real data, the robustness of ULASSO to the choice of q

as long as it is reasonable. At the same time, the ULASSO for q = 0.05, and hence the
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Table 3.17: Coordinate-wise comparison of the ULASSO (at q = 0.02, 0.05, and their com-
bination) to the supervised logistic LASSO and Adaptive LASSO estimators, as well as to
the α0 estimator, for the data example. Shown also are the bootstrap based SE estimates
for the Adaptive LASSO estimator, as well as the AUC estimates for all the estimators.

ULASSO Sup. Logistic Estimators α0Predictors
q = 0.02 q = 0.05 Combined LASSO ALASSO Boot.sdalasso

Age 0 0 0 0 0 0.123 0.057
Gender 0 0 0 0 0 0.026 -0.012
PsA-r 0 0 0 -0.021 0 0.052 -0.010
JRA-r 0 0 0 -0.078 0 0.064 0.214
SLE-r 0 0 0 0 0 0.076 0.161
PsA-w 0 0 0 0 0 0.035 0.053
JRA-w 0 0 0 0 0 0.089 -0.259
SLE-w 0 0 0 0 0 0.090 -0.090
RA-w-nlp 0.808 0.886 0.847 0.854 0.847 0.144 0.690
PsA-nlp 0 0 0 0 0 0.093 -0.036
JRA-nlp 0 0 0 -0.067 -0.123 0.098 0.016
SLE-nlp 0 0 0 0 0 0.075 -0.094
Methotrexate 0 0.117 0.058 0.211 0.216 0.135 0.124
Anti-TNF 0 0.011 0.005 0.137 0.082 0.103 0.017
Enb 0.126 0.066 0.096 0 0 0.041 0.066
Hum 0 0 0 0 0 0.034 -0.001
Rem 0.043 0 0.022 0 0 0.048 0.010
Ore 0 0 0 0 0 0.034 0.007
Rit 0 0 0 0 0 0.019 -0.036
Anak 0 0 0 0 0 0.025 0.006
Sulf 0 0 0 0 0 0.054 0.060
Aza 0 0 0 0 0 0.042 -0.033
Plaq 0 0 0 0 0 0.016 0.062
Arava 0.252 0.103 0.177 0.015 0 0.062 0.051
Pen 0 0 0 0 0 0.061 -0.002
Gld 0.103 0.033 0.068 0 0 0.051 -0.012
Neo 0 0 0 0 0 0.034 -0.030
Other Meds. 0 0 0 0 0 0.057 0.023
Anti-CCP 0 0 0 0.040 0 0.090 0.007
RF 0 0 0 0.078 0.064 0.097 0.086
Erosion 0.467 0.402 0.435 0.282 0.291 0.138 0.061
Seropositive 0.177 0.053 0.115 0.331 0.354 0.096 0.030
Facts 0.082 0.145 0.114 0 0 0.022 0.559
Spond 0 0 0 0 0 0.029 0.022
PM 0 0 0 0 0 0.008 0.013
DM 0 0 0 0 0 0.006 -0.006
PMR 0 0 0 0 0 0.026 0.008

Est. AUC 0.945 0.943 0.945 0.950 0.950 – 0.921
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‘combined’ ULASSO, does select one or two more clinically relevant variables, including

anti-TNF and methotrexate, thereby indicating the potential utility, at least in this case, of

considering multiple choices of q for constructing ULASSO, followed by combining the esti-

mators appropriately. Moreover, the subset of predictors selected by the various ULASSO

estimators, as well as the corresponding point estimates, all seem to be reasonably close

enough, in general, to those obtained for the sup. logistic LASSO/ALASSO estimators.

There are indeed a few disparities, in terms of the selected subsets, among the ULASSO and

the sup. logistic LASSO/ALASSO estimators. However, considering the standard error es-

timates for the ALASSO estimator in those disparate coordinates, the estimates are unlikely

to be significant, and therefore these disparities are perhaps ignorable. In terms of pre-

diction/classification accuracy, all the ULASSO estimators seem to have quite satisfactory

performance in their own right, with estimated AUC measures close to 0.95, and moreover,

are nearly similar to those for the sup. logistic LASSO/ALASSO estimators requiring as

many as 500 labels. Finally, the performance of the α0 estimator, both in terms of estima-

tion, as well as prediction based on the AUC measure, seems to be substantially worse than

those of all the ULASSO as well as the sup. logistic LASSO/ALASSO estimators, thereby

indicating its unsuitability as an estimator of the β0 direction in this case.

3.6 Discussion

We have considered in this paper a fairly unique surrogate aided unsupervised learning

problem for binary outcomes under a SIM set-up, and proposed a penalized estimation

procedure for signal recovery under some structured sparsity assumptions. We have provided

precise (and fairly sharp) finite sample performance bounds for our estimator establishing

its convergence rates, among other implications, as well as presented extensive simulation

studies and applications to real data all of which seem to yield fairly satisfactory results.

The performance of the estimator also seems to be quite robust to the choice of q, as long

as it is chosen to be reasonably small and the corresponding πq is small enough as well.
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This also indicates that the estimator can perhaps be further combined appropriately over

multiple choices of q, as shown in our data example, leading to a more stable and efficient

estimator. As mentioned earlier, while we have focussed here only on the standard L1 norm

as the choice of our penalty/regularizer for simplicity, other sparsity friendly penalties like

weighted versions of the L1 norm, including the Adaptive LASSO penalty in particular, can

also be considered. Moreover, we have focussed here on a setting involving the availability

of one surrogate. The proposed procedure can also be extended to settings where we have

multiple such surrogates available, each satisfying the desired assumptions, in which case the

estimators of the β0 direction obtained from each of them (and possibly over several choices

of q) can be further combined effectively to give a more stable and efficient estimator.

Lastly, apart from the recovery of β0, another key consequence of our sparsity based

approach is its capability to perform variable selection. This can be extremely useful in

subsequent analyses based on an actual training data with Y observed, wherein only the

selected variables may be used, and this can significantly improve the efficiency/accuracy

of the final classification rule. To the best of our knowledge, relatively little work has been

done on problems of this sort which are highly recent, and our approach as well as the results

obtained in this paper are quite novel. The closest connections to this work are some recent

but sporadic works in one-bit compressed sensing with ‘adversarial’ bit flips/corruptions

(Laska et al., 2009; Plan and Vershynin, 2013a,b; Chen et al., 2013; Jacques et al., 2013; Li,

2013; Natarajan et al., 2013; Feng et al., 2014), as well as more classical problems considered

in the measurement error and misclassification literature (Carroll, 1998; Carroll et al., 2006;

Buonaccorsi, 2010). However, in both cases, the problem settings as well as the approach

and the necessary assumptions required therein are quite different, and their connections

to our approach in this paper are remote at best. A key feature of our problem is that we

don’t observe Y at all, and instead we use the surrogacy of S to ‘synthesize’ our outcomes,

something which we don’t believe has been considered anywhere in the relevant literature.
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Appendix A

Proofs of All Results in Chapter 1

A.1 Preliminaries

The following Lemmas A.1-A.3 would be useful in the proofs of the main theorems.

Lemma A.1. Let Z ∈ Rl be any random vector and g(Z) ∈ Rd be any measurable function

of Z, where l and d are fixed. Let Sn = {Zi}ni=1 ⊥⊥ Sm = {Zj}mj=1 be two random samples

of n and m i.i.d. observations of Z respectively. Let ĝn(.) be any estimator of g(.) based on

Sn such that the random sequence: T̂n ≡ supz∈χ‖ĝn(z)‖ is Op(1), where χ ⊆ Rl denotes the

support of Z. Let Ĝn,m denote the (double) random sequence: m−1
∑

Zj∈Sm ĝn(Zj), and let

Gn denote the random sequence: ESm(Ĝn,m) = EZ{ĝn(Z)}, where EZ(.) denotes expectation

w.r.t. Z ∈ Sm ⊥⊥ Sn, and all expectations involved are assumed to be finite almost surely

(a.s.) [Sn] ∀ n. Then: (a) Gn,m − Gn = Op(m
− 1

2 ), and (b) as long as g(.) has finite 2nd

moments, m−1
∑

Zj∈Sm g(Zj)− EZ {g(Z)} = Op(m
− 1

2 ).

The next two lemmas would be useful in the proof of Theorem 1.4. They may also be

of more general use in other applications that involve controlling empirical process terms

indexed by KS estimators. Suppose that our basic assumption (c) holds, and consider

the KS framework introduced in section 1.5. Let lPr(w) = mPr(w)fPr(w) and ϕ̃
(%)
Pr

(w) =

(nhr)−1
∑n

i=1 Kh(w,P
′
rXi)Y

%
i , for % = 0, 1. Let f̃Pr = ϕ̃

(0)
Pr

, l̃Pr = ϕ̃
(1)
Pr

, m̃Pr = l̃Pr/f̃Pr , ϕ
(0)
Pr

=

fPr and ϕ
(1)
Pr

= lPr . Let ϕ(%)(x; Pr) = ϕ
(%)
Pr

(P′rx) and ϕ̃(%)(x; Pr) = ϕ̃
(%)
Pr

(P′rx) ∀ % = 0, 1. Let

f̃ = ϕ̃(0), l̃ = ϕ̃(1) and m̃ = l̃/f̃ . Now, let Pn denote the empirical probability measure on Rp
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based on {Xi}ni=1, and for any measurable function γ(.) (possibly vector valued) of X, let

G∗n(γ) = n
1
2

∫
γ(x)(Pn − PX)(dx).

Lemma A.2. Consider the set-up introduced above. For any fixed integer d ≥ 1, let λ(.) be

any Rd-valued measurable function of X that is bounded a.s. [PX]. Define: b
(1)
n = n−

1
2h−r+hq

and an,2 = (log n)
1
2 (nhr)−

1
2 + hq. Assume b

(1)
n = o(1) for (A.1) and n

1
2a2

n,2 = o(1) for (A.2)

below. Then, under Assumption 1.2 (i)-(v), and ∀ % ∈ {0, 1},

G∗n[λ(.){ϕ̃(%)(.; Pr)− ϕ(%)(.; Pr)}] = Op(b
(1)
n ) = op(1), and (A.1)

G∗n[λ(.){m̃(.; Pr)−m(.; Pr)}] = Op(n
1
2a2

n,2) = op(1). (A.2)

Let ϕ̂(%)(x; P̂r) = (nhr)−1
∑n

i=1 Kh(P̂
′
rx, P̂

′
rXi)Y

%
i ∀ % ∈ {0, 1}, where P̂r is as in section

1.4.2 and all other notations are the same as in the set-up of Lemma A.2. Let f̂(x; P̂r) =

ϕ̂(0)(x; P̂r) and l̂(x; P̂r) = ϕ̂(1)(x; P̂r). Then:

Lemma A.3. Consider the set-up of Lemma A.2. Let ϕ̂(%)(x; P̂r) be as above, and let λ(.)

be as in Lemma A.2. Suppose (P̂r −Pr) = Op(αn) for some αn = o(1). Assume b
(2)
n = o(1),

where b
(2)
n = αn + n−

1
2αnh

−(r+1) + n
1
2α2

n(h−2 + n−1h−(r+2)). Then, under Assumption 1.2,

G∗n[λ(.){ϕ̂(%)(.; P̂r)− ϕ̃(%)(.; Pr)}] = Op(b
(2)
n ) = op(1) ∀ % ∈ {0, 1}. (A.3)

A.1.1 Proof of Lemma A.1

Firstly, since d is fixed, it suffices to prove the result for any arbitrary scalar coordinate

Ĝ
(j)
n,m ≡ Ĝn,m (say) and G

(j)

n ≡ Gn (say) of Ĝn,m and Gn respectively, for any j ∈ {1, . . . , d}.

For any data S and S∗, we let PS and PS,S∗ denote the joint probability distributions of the

observations in S and (S, S∗) respectively, ES(.) denote the expectation w.r.t PS, and PS | S∗

denote the conditional probability distribution of the observations in S given S∗.
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To show that Ĝn,m − Gn = Op(m
− 1

2 ), we first note that since Sn ⊥⊥ Sm,

PSn,Sm

(
|Ĝn,m − Gn| > m−

1
2 t
)

= ESn

{
PSm

(
|Ĝn,m − Gn| > m−

1
2 t
∣∣ Sn)} ,

for any t > 0. Now, conditional on Sn, Ĝn,m−Gn is a centered average of {ĝn(Zj)}mj=1 which

are i.i.d. and bounded by T̂n <∞ a.s. [PSn ] ∀ n. Hence, applying Hoeffding’s inequality, we

have for any n and m,

PSm

(
|Ĝn,m − Gn| > m−

1
2 t
∣∣ Sn) ≤ 2 exp

(
− 2m2t2

4m2T̂ 2
n

)
a.s. [PSn ]. (A.4)

Now, since T̂n ≥ 0 is Op(1), we have: for any given ε > 0, ∃ δ(ε) > 0 such that: PSn{T̂n >

δ(ε)} ≤ ε/4 ∀ n. Let A(ε) denote the event: {T̂n > δ(ε)} and let Ac(ε) denote its complement.

Then, using (A.4), we have: ∀ n and m,

PSn,Sm

(
|Ĝn,m − Gn| > m−

1
2 t
)
≤ ESn

{
2 exp

(
− 2m2t2

4m2T̂ 2
n

)}

= ESn

{
2 exp

(
− t2

2T̂ 2
n

)}
= ESn

[
2 exp

(
− t2

2T̂ 2
n

){
1Ac(ε) + 1A(ε)

}]

≤
[
2 exp

{
− t2

2δ2(ε)

}
PSn {Ac(ε)}+ 2 PSn {A(ε)}

]
≤ 2 exp

{
− t2

2δ2(ε)

}
+
ε

2
≤ ε

2
+
ε

2
= ε (for some suitable choice of t),

where the last step follows by choosing t ≡ tε to be any large enough t such that

exp{−t2/2δ2(ε)} ≤ ε/4. Such a choice of tε clearly exists. This establishes the first claim (a)

in Lemma A.1. The second claim (b) in Lemma A.1 is a trivial consequence of the Central

Limit Theorem (CLT).
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A.2 Proof of Theorem 1.1

To show Theorem 1.1, we first note that under Assumption 1.1 (i)-(v), and letting an =

(log n)
1
2 (nhp)−

1
2 + hq, the following holds:

supx∈X |m̂(x)−m(x)| = Op(an) = supx∈X |f̂(x)− f(x)|. (A.5)

(A.5) is a fairly standard result and we only provide a sketch of its proof as follows. Un-

der Assumption 1.1 (ii)-(iii), using Theorem 2 of Hansen (2008), supx∈X |l̂(x)− EL{l̂(x)}| =

Op(a
∗
n) = supx∈X |f̂(x)− EL{f̂(x)}|, where a∗n = (log n)

1
2 (nhp)−

1
2 . Next, using standard ar-

guments based on Taylor series expansions of l(.) and m(.) under their assumed smoothness,

and noting that K(.) is a qth order kernel having finite qth moments, we obtain:

supx∈X |EL{l̂(x)} − l(x)| = O(hq) = supx∈X |EL{f̂(x)} − f(x)|.

Combining these two results, and the definitions of m(.) and m̂(.) along with Assumption

1.1 (iv), we have (A.5). Next, note that using (1.4), we have:

ΓN(θ̂np − θ0) = EU [N−1

N∑
j=1

−→
Xj{m̂(Xj)−

−→
X ′jθ0}] +Op(N

− 1
2 )

= EX[
−→
X{m̂(X)−m(X)}] +Op(N

− 1
2 ),

where the first step is due to Lemma A.1 (a) with supx∈X‖−→x {m̂(x) − −→x ′θ0}‖ ≤

supx∈X [‖−→x ‖{|m̂(x) − m(x)| + |m(x) − −→x ′θ0|}] = Op(1) due to (A.5) and the bounded-

ness of X and m(.), while the last step uses: EX[
−→
X{m(X)−

−→
X ′θ0}] = 0 which follows from

the definitions of θ0 and m(.). It then follows further, using Γ−1
N = I(p+1) +Op(N

− 1
2 ), that

n
1
2 (θ̂np − θ0) = n

1
2 EX[

−→
X{m̂(X)−m(X)}] +Op

( n
N

) 1
2
.
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Letting φn(X) = (nhp)−1
∑n

i=1 K{(X −Xi)/h}{Yi −m(X)}, and expanding the first term

in the above equation, we now obtain:

n
1
2

(
θ̂np − θ0

)
= T

(1)
n,1 + T

(2)
n,1 +Op

( n
N

) 1
2
, (A.6)

where T
(1)
n,1 = n

1
2 EX{

−→
Xφn(X)/f(X)} and

T
(2)
n,1 = n

1
2 EX

[−→
Xφn(X){f̂(X)−1 − f(X)−1}

]
= n

1
2 EX[

−→
X {m̂(X)−m(X)} {f(X)− f̂(X)}/f(X)]

≤ n
1
2 supx∈X

{
‖−→x ‖ |m̂(x)−m(x)|

∣∣∣f̂(x)/f(x)− 1
∣∣∣} = Op

(
n

1
2a2

n

)
, (A.7)

where the last step in (A.7) follows from (A.5), Assumption 1.1 (iv) and the boundedness of

X. For T
(1)
n,1, we have:

T
(1)
n,1 = n

1
2

∫
X

−→x φn(x)dx = n−
1
2

n∑
i=1

∫
X

−→x h−pKh(x−Xi) {Yi −m(x)} dx

= n
1
2

n∑
i=1

n−1

∫
Ai,n

−−−−−−−→
(Xi + hψi) K (ψi) {Yi −m(Xi + hψi)} dψi, (A.8)

where ψi = (x −Xi)/h and Ai,n = {ψi ∈ Rp : (Xi + hψi) ∈ X}. Now, since K(.) is zero

outside the bounded set K, the ith integral in (A.8) only runs over (Ai,n ∩ K). Further, since

h = o(1), using Assumption 1.1 (vi), Ai,n ⊇ K a.s. [PL] or, (Ai,n ∩ K) = K a.s. [PL] ∀

1 ≤ i ≤ n with n large enough. Thus, for large enough n, (A.8) can be written as:

T
(1)
n,1 = n−

1
2

n∑
i=1

∫
K

−−−−−−−→
(Xi + hψi) K (ψi) {Yi −m(Xi + hψi)} dψi a.s. [PL]

= n
1
2

n∑
i=1

n−1
[−→
X i {Yi −m(Xi)}+Op(h

q)
]

(A.9)

= n−
1
2

n∑
i=1

−→
X i {Yi −m(Xi)}+Op

(
n

1
2hq
)
, (A.10)
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where (A.9), and hence (A.10), follows from standard arguments based on Taylor series

expansions of m(Xi +hψi) around m(Xi) under the assumed smoothness of m(.), and using

the fact that K(.) is a qth order kernel. Combining (A.6), (A.7) and (A.10), and noting that

under our assumptions, (n
1
2a2

n +n
1
2hq) = O{n 1

2hq + (log n)(n
1
2hp)−1}, the result of Theorem

1.1 now follows.

A.3 Proof of Theorem 1.2

Let Γn = 1
n

∑n
i=1

−→
X i

−→
X ′i, and

T(1)
n =

1

n

n∑
i=1

−→
X i {Yi − µ(Xi; Pr)} ,T(2)

n,K =
1

n

K∑
k=1

∑
i∈Ik

−→
X i∆̂k(Xi; Pr, P̂r,k).

Then, using (1.6)-(1.10), it is straightforward to see that:

E[
−→
X{Y − µ(X; Pr)}] ≡ E[

−→
X{Y −m(X; Pr)−

−→
X ′ηPr

}] = 0, and (A.11)

Γn
(
η̂(Pr,K) − ηPr

)
= T(1)

n −T
(2)
n,K. (A.12)

Under (A.11), assumptions (i) and (c), it follows from Lemma A.1 (b) that T
(1)
n = Op(n

− 1
2 ).

Next, due to assumption (ii) and the boundedness of X,

‖T(2)
n,K‖ ≤ n−1

K∑
k=1

∑
i∈Ik

supx∈X{‖−→x ‖ |∆̂k(x; Pr, P̂r,k)|} = Op(cn−K
).

Finally, under assumptions (c)-(d), we have: Γn = I(p+1) + Op(n
− 1

2 ) using Lemma A.1 (b).

Further, since Γn is invertible a.s., Γ−1
n = I(p+1) + Op(n

− 1
2 ). Using all these facts, we then

have: (η̂(Pr,K) − ηPr
) = Γ−1

n (T
(1)
n −T

(2)
n,K) = T

(1)
n −T

(2)
n,K +Op{n−

1
2 (n−

1
2 + cn−K

)}. Thus,

(η̂(Pr,K) − ηPr
) = T(1)

n −T
(2)
n,K +Op(n

−1 + n−
1
2 cn−K

). (A.13)

126



Let ΓN = N−1
∑N

j=1

−→
Xj

−→
X ′j, R

(1)
N = N−1

∑N
j=1

−→
Xj{µ(Xj; Pr) −

−→
X ′jθ0} and R̂

(K)
N,n =

N−1
∑N

j=1

−→
Xj{µ̂(Xj; P̂r,K)− µ(Xj; Pr)}. Then, using (1.9), we have:

ΓN(θ̂(Pr,K) − θ0) = N−1

N∑
j=1

−→
Xj[µ̂(Xj; P̂r,K)−

−→
X ′jθ0] = R

(1)
N + R̂

(K)
N,n.

Next, using (1.6)-(1.10), we have: R̂
(K)
N,n = ΓN(η̂(Pr,K) − ηPr

) + Ŝ
(K)
N,n, where

Ŝ
(K)
N,n = K−1

∑K
k=1{N−1

∑N
j=1

−→
Xj∆̂k(Xj; Pr, P̂r,k)}.

Hence, we have: ΓN(θ̂(Pr,K) − θ0) = ΓN(η̂(Pr,K) − ηPr
) + R

(1)
N + Ŝ

(K)
N,n.

Now, under assumptions (i)-(ii) and (c)-(d), we have:

(I)
∑K

k=1 supx∈X ‖−→x ∆̂k(x; Pr, P̂r,k)‖ = Op(1),

so that using Lemma A.1 (a), Ŝ
(K)
N,n = K−1

∑K
k=1 Ŝ∗n,k + Op(N

− 1
2 ), where Ŝ∗n,k =

EX{
−→
X∆̂k(X; Pr, P̂r,k)} ∀ 1 ≤ k ≤ K;

(II) R
(1)
N = E[

−→
X{µ(X; Pr)−

−→
X ′θ0}] +Op(N

− 1
2 ) = Op(N

− 1
2 )

from Lemma A.1 (b) and E[
−→
X{µ(X; Pr) −

−→
X ′θ0}] = 0 due to (A.11) and 1.1; and lastly,

(III) Γ−1
N = I(p+1) +Op(N

− 1
2 ). It then follows from (I)-(III) that

θ̂(Pr,K) − θ0 = (η̂(Pr,K) − ηPr
) + K−1

K∑
k=1

Ŝ∗n,k +Op(N
− 1

2 ). (A.14)

Using (A.13) and (1.11) in (A.14), we then have:

θ̂(Pr,K) − θ0 = n−1

n∑
i=1

ψ(Zi,Pr)− K−1

K∑
k=1

{
n−1
K

∑
i∈Ik

Ĝk(Xi)
}

+Op(bn,K),
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where bn,K = n−1 + n−
1
2 cn−K

+N−
1
2 . It follows, as claimed in (1.12), that

n
1
2 (θ̂(Pr,K) − θ0) = n−

1
2

n∑
i=1

ψ(Zi,Pr)−Gn,K +Op(c
∗
n,K) (A.15)

We next show that Gn,K = Op(cn−K
) for any fixed K ≥ 2. To this end, let T(n)

k =

(nK)−
1
2

∑
i∈Ik Ĝk(Xi), D̂k = supx∈X |∆̂k(x; Pr, P̂r,k)| and C = supx∈X‖−→x ‖ < ∞. For any

subset A ⊆ L, let PA denote the joint distribution of the observations in A, and let EA(.)

denote expectation w.r.t. PA. By definition, Gn,K = K− 1
2

∑K
k=1 T

(n)
k = Op(cn−K

) if and only

if given any ε > 0, ∃ Mε > 0 such that P
(
‖Gn,K‖ > Mεcn−K

)
≤ ε ∀ n. Note that for any

M > 0,

P
(
‖Gn,K‖ > Mcn−K

)
≤ P

(
K−

1
2

K∑
k=1

‖T(n)
k ‖ > Mcn−K

)

≤
K∑
k=1

P

(
K−

1
2‖T(n)

k ‖ >
Mcn−K
K

)
≤

K∑
k=1

p+1∑
l=1

P

{
|T(n)

k[l]| >
Mcn−K

K 1
2 (p+ 1)

1
2

}

=
K∑
k=1

p+1∑
l=1

EL−k

[
PLk

{
|T(n)

k[l]| >
Mcn−K

K 1
2 (p+ 1)

1
2

∣∣∣∣ L−k
}]

, (A.16)

where the steps follow from repeated use of Bonferroni’s inequality and other standard

arguments. Now, conditional on L−k (⊥⊥ Lk, with K ≥ 2), n
1
2
KT

(n)
k is a centered sum of

the i.i.d. random vectors {
−→
X i∆̂k(Xi; Pr, P̂r,k)}i∈Ik which, due to assumption (ii) and the

compactness of X , are bounded by: CD̂k <∞ a.s. [PL−k ] ∀ k, n. Hence, applying Hoeffding’s

inequality to T(n)
k[l] ∀ l, we have:

PLk

{
|T(n)

k[l]| >
Mcn−K

K 1
2 (p+ 1)

1
2

∣∣∣∣ L−k
}
≤ 2 exp

{
−

M2c2
n−K

2(p+ 1)KC2D̂2
k

}
(A.17)

a.s. [PL−k ] ∀ n; for each k ∈ {1, ...,K} and ∀ 1 ≤ l ≤ (p+ 1).

Now, since D̂k = Op(cn−K
), (cn−K

/D̂k) ≥ 0 is stochastically bounded away from 0. Thus,

∀ k, and for any given ε > 0, ∃ δ(k, ε) > 0 (independent of n) such that: PL−k {(cn−K /D̂k) ≤
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δ(k, ε)} ≤ ε∗ ∀ n, where ε∗ = ε/{4K(p+1)} > 0. Let δ̃(K, ε) = min{δ(k, ε) : k = 1, ...,K} > 0

(as K is fixed). Let A(k, ε) denote the event: {(cn−K /D̂k) ≤ δ̃(K, ε)}, and let Ac(k, ε) be its

complement. Then, PL−k {A(k, ε)} ≤ ε∗, while on Ac(k, ε), (cn−K
/D̂k) > δ̃(K, ε). Thus, the

bound in (A.17) is dominated by: 2 exp[−M2δ̃2(K, ε)/{2(p + 1)KC2}] on Ac(k, ε), and

trivially by 2 on A(k, ε) ∀ k. Plugging the bound of (A.17) into (A.16) and using all these

facts, we then have:

P
(
‖Gn,K‖ > Mcn−K

)
≤

K∑
k=1

p+1∑
l=1

EL−k

[
2 exp

{
−

M2c2
n−K

2(p+ 1)KC2D̂2
k

}]

=
K∑
k=1

p+1∑
l=1

EL−k

[
2 exp

{
−

M2c2
n−K

2(p+ 1)KC2D̂2
k

}{
1Ac(k,ε) + 1A(k,ε)

}]

≤
K∑
k=1

p+1∑
l=1

[
2 exp

{
− M2δ̃2(K, ε)

2(p+ 1)KC2

}
PL−k {A

c(k, ε)}+ 2 PL−k {A(k, ε)}

]

≤ 2K(p+ 1)

[
exp

{
− M2δ̃2(K, ε)

2(p+ 1)KC2

}
+ ε∗

]
≤ ε

2
+
ε

2
= ε (with some suitable choice Mε for M), (A.18)

where the last step follows from noting the definition of ε∗ and choosing Mε to be any M large

enough such that 4 exp[−M2δ̃2(K, ε)/{2(p+ 1)KC2}] ≤ ε/{K(p+ 1)}. Thus, (A.18) shows

Gn,K = Op(cn−K
) for any fixed K ≥ 2. This further establishes (1.13) and all its associated

implications. The proof of Theorem 1.2 is now complete.

A.4 Proof of Theorem 1.3

We first note that for an,2 = (log n)
1
2 (nhr)−

1
2 + hq,

supw∈XPr
|ϕ̃(%)

Pr
(w)− ϕ(%)

Pr
(w)| = Op(an,2), ∀ % ∈ {0, 1}. (A.19)
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To see this, note that under Assumption 1.2 (ii)-(iii), Theorem 2 of Hansen (2008) applies,

and we have for dn = (log n)
1
2 (nhr)−

1
2 ,

supw∈XPr
|ϕ̃(%)

Pr
(w)− EL{ϕ̃(%)

Pr
(w)}| = Op(dn) ∀ % ∈ {0, 1}.

Next, using standard arguments based on a qth order Taylor series expansion of ϕ
(%)
Pr

(.) and

noting that K(.) is a qth order kernel, we obtain:

supw∈XPr
|EL{ϕ̃(%)

Pr
(w)} − ϕ(%)

Pr
(w)| = O(hq) ∀ % ∈ {0, 1}.

Combining these two results gives (A.19). Further,

supx∈X |m̃(x; Pr)−m(x; Pr)| = supw∈XPr
|m̃Pr(w)−mPr(w)|

≤ supw∈XPr

∣∣∣∣∣ l̃Pr(w)− lPr(w)

f̃Pr(w)

∣∣∣∣∣+ supw∈XPr

{∣∣∣∣∣ |lPr(w)|
fPr(w)

− |lPr(w)|
f̃Pr(w)

∣∣∣∣∣
}

= Op(an,2), (A.20)

where the last step follows from repeated use of (A.19) and Assumption 1.2 (iii)-(iv). Next,

we aim to bound supx∈X |ϕ̂(%)(x; P̂r) − ϕ̃(%)(x; Pr)| to account for the potential estimation

error of P̂r. Using a first order Taylor series expansion of K(.) under Assumption 1.2 (vi),

we have: ∀ % ∈ {0, 1},

ϕ̂(%)(x; P̂r)− ϕ̃(%)(x; Pr) =
1

nhr

n∑
i=1

∇K ′(wi,x)(P̂r −Pr)
′
(

x−Xi

h

)
Y %
i

= trace
{

(P̂r −Pr)
′M̂(1)

n,%,x

}
+ trace

{
(P̂r −Pr)

′M̂(2)
n,%,x

}
, (A.21)

where

M̂(1)
n,%,x =

1

nhr+1

n∑
i=1

(x−Xi)

{
∇K ′

(
P′rx−P′rXi

h

)}
Y %
i and
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M̂(2)
n,%,x =

1

nhr+1

n∑
i=1

(x−Xi)

{
∇K ′(wi,x)−∇K ′

(
P′rx−P′rXi

h

)}
Y %
i ,

with wi,x ∈ Rr being ‘intermediate’ points satisfying: ‖wi,x − P′r(x −Xi)h
−1‖ ≤ ‖P̂′r(x −

Xi)h
−1 − P′r(x − Xi)h

−1‖ ≤ Op(αnh
−1). The last bound, based on (P̂r − Pr) = Op(αn)

and the compactness of X , is uniform in (i,x). For any matrix A = [aij], let ‖A‖max denote

the max-norm of A, and |A| denote the matrix [|aij|]. Now, Assumption 1.2 (viii) implies:

‖∇K(w1) −∇K(w2)‖ ≤ B‖w1 − w2‖ ∀ w1,w2 ∈ Rr, for some constant B < ∞. Then

using the above arguments, we note that ∀ % ∈ {0, 1}, ‖ supx∈X |M̂
(2)
n,%,x|‖max is bounded by:

supx∈X

{
B

nhr+1

n∑
i=1

‖x−Xi‖
∥∥∥∥wi,x −

P′rx−P′rXi

h

∥∥∥∥ |Y %
i |

}

≤ supx∈X

{
B

nhr+1

n∑
i=1

‖x−Xi‖

∥∥∥∥∥(P̂r −Pr)
′(x−Xi)

h

∥∥∥∥∥ |Y %
i |

}

≤ sup
x∈X ,X∈X

{
‖x−X‖‖(P̂r −Pr)

′(x−X)‖
} B

nhr+2

n∑
i=1

|Y %
i | ≤ Op

( αn
hr+2

)
.

The first two steps above use the triangle inequality, the Lipschitz continuity of ∇K(.) and

the definition of wi,x, while the next two use the compactness of X , the uniform bound

obtained in the last paragraph, the Law of Large Numbers (LLN), and that (P̂r − Pr) =

Op(αn). Thus, we have:

supx∈X

∣∣∣trace
{

(P̂r −Pr)
′M̂(2)

n,%,x

}∣∣∣ = Op

(
α2
n

hr+2

)
∀ % ∈ {0, 1}. (A.22)

Now for bounding M̂
(1)
n,%,x, let us first write it as:

M̂(1)
n,%,x = M̂(1,1)

n,%,x − M̂(1,2)
n,%,x, where

M̂(1,1)
n,%,x = (nhr+1)−1

n∑
i=1

x∇K ′{P′r(x−Xi)/h}Y %
i and

M̂(1,2)
n,%,x = (nhr+1)−1

n∑
i=1

Xi∇K ′{P′r(x−Xi)/h}Y %
i ∀ % ∈ {0, 1}.
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Then, under Assumption 1.2 (iii), (vi) and (vii), using Theorem 2 of Hansen (2008) along

with the compactness of X , we have: for each s ∈ {1, 2} and % ∈ {0, 1},

∥∥∥supx∈X

∣∣∣M̂(1,s)
n,%,x − EL

(
M̂(1,s)

n,%,x

)∣∣∣∥∥∥
max
≤ Op

(
log n

nhr+2

) 1
2

. (A.23)

Now, ∀ % ∈ {0, 1}, let ν(%)(w) = E{Y % | XPr = w}fPr(w) and ξ(%)(w) = E{XY % | XPr =

w}fPr(w). Further, let {∇ν(%)(w)}r×1 and {∇ξ(%)(w)}p×r denote their respective first order

derivatives. Then, ∀ % ∈ {0, 1}, we have:

∥∥∥supx∈X

∣∣∣EL (M̂(1,1)
n,%,x

)∣∣∣∥∥∥
max

=

∥∥∥∥supx∈X

∣∣∣∣ x

hr+1

∫
ν(%)(w) ∇K ′

(
P′rx−w

h

)
dw

∣∣∣∣∥∥∥∥
max

=

∥∥∥∥supx∈X

∣∣∣∣x ∫ ∇ν(%)′ (P′rx + hψ) K(ψ)dψ

∣∣∣∣∥∥∥∥
max

= O(1), and (A.24)

∥∥∥supx∈X

∣∣∣EL (M̂(1,2)
n,%,x

)∣∣∣∥∥∥
max

=

∥∥∥∥supx∈X

∣∣∣∣h−(r+1)

∫
ξ(%)(w) ∇K ′

(
P′rx−w

h

)
dw

∣∣∣∣∥∥∥∥
max

=

∥∥∥∥supx∈X

∣∣∣∣D(x)

∫
∇ξ(%) (P′rx + hψ) K(ψ)dψ

∣∣∣∣∥∥∥∥
max

= O(1), (A.25)

where, ∀ x ∈ X , D(x) denotes the p× p diagonal matrix: diag(x[1], . . . ,x[p]). In both (A.24)

and (A.25), the first step follows from definition, the second from standard arguments based

on integration by parts (applied coordinate-wise) and change of variable, while the last one

is due to compactness of X and a medley of the conditions in Assumption 1.2 namely,

boundedness and integrability of K(.) and ∇K(.), (iii) and (v) for (A.24) so that ∇ν(%)(.)

is bounded on XPr , and (ix) for (A.25). It now follows that for each % ∈ {0, 1},

∥∥∥supx∈X

∣∣∣EL (M̂(1)
n,%,x

)∣∣∣∥∥∥
max

= O(1). (A.26)
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Letting d∗n = (log n)
1
2 (nhr+2)−

1
2 , we now have from (A.23) and (A.26):

supx∈X

∣∣∣trace
{

(P̂′r −P′r)M̂
(1)
n,%,x

}∣∣∣ = Op (αnd
∗
n + αn) ∀ % ∈ {0, 1}. (A.27)

Applying (A.27) and (A.22) to (A.21) using the triangle inequality, we have ∀ %,

supx∈X |ϕ̂(%)(x; P̂r)− ϕ̃(%)(x; Pr)| = Op

{
α2
n

hr+2
+ αn

(log n)
1
2

(nhr+2)
1
2

+ αn

}
. (A.28)

Finally, note that m̂(x; P̂r) = l̂(x; P̂r)/f̂(x; P̂r) = ϕ̂(1)(x; P̂r)/ϕ̂
(0)(x; P̂r). Repeated use of

(A.28), along with (A.20) and Assumption 1.2 (iii)-(iv), leads to:

supx∈X

∣∣∣m̂(x; P̂r)−m(x; Pr)
∣∣∣

≤ supx∈X

∣∣∣m̂(x; P̂r)− m̃(x; Pr)
∣∣∣+ supx∈X |m̃(x; Pr)−m(x; Pr)|

≤ supx∈X

{∣∣∣∣∣ l̂(x; P̂r)− l̃(x; Pr)

f̂(x; P̂r)

∣∣∣∣∣+

∣∣∣∣∣ l̃(x; Pr)

f̃(x; Pr)
− l̃(x; Pr)

f̂(x; P̂r)

∣∣∣∣∣
}

+Op(an,2)

≤ Op

{
α2
n

hr+2
+ αn

(log n)
1
2

(nhr+2)
1
2

+ αn

}
+Op(an,2) = Op(an,1 + an,2). (A.29)

The proof of Theorem 1.3 is now complete.

A.5 Proofs of Lemmas A.2-A.3 and Theorem 1.4

A.5.1 Proof of Lemma A.2

First note that for each % ∈ {0, 1},

∫
ϕ̃(%)(x; Pr)Pn(dx) = n−2

n∑
i1=1

n∑
i2=1

H
(n,%)
i1,i2

is a V-statistic, where H
(n,%)
i1,i2

= h−rλ(Xi1)Y
%
i2
K{P′r(Xi1 − Xi2)/h}. Using the V-statistic

projection result given in Lemma 8.4 of Newey and McFadden (1994), it then follows that
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for each % ∈ {0, 1},

G∗n
{
λ(.)[ϕ̃(%)(.; Pr)− EL{ϕ̃(%)(.; Pr)}]

}
= n−

1
2Op

[
E(‖H(n,%)

i1,i1
‖) + {E(‖H(n,%)

i1,i2
‖2)}

1
2

]
= Op

(
n−

1
2h−r

)
, (A.30)

The last step follows from K(.) and λ(.) being bounded and Y % having finite 2nd moments.

Now, observe that n
1
2G∗n

{
λ(.)[EL{ϕ̃(%)

? (.; Pr)}]
}

is a centered sum of i.i.d. random vectors

bounded by:

Dn,% = supx∈X
{
‖λ(x)‖ |EL{ϕ̃(%)

? (x; Pr)}|
}

= O(hq) ∀ % ∈ {0, 1},

where throughout, for any estimator ξ̃(.) with population limit ξ(.), we use the notation

ξ̃?(.) to denote its centered version given by: ξ̃?(.) = ξ̃(.) − ξ(.). Here, Dn,% = O(hq) since

λ(.) is bounded and supx∈X |EL{ϕ̃?(x; Pr)}| = supw∈XPr
|EL{ϕ̃(%)

Pr
(w)} − ϕ(%)

Pr
(w)| = O(hq),

as argued while proving (A.19). Hence, ∃ a constant κ% > 0 such that hq/Dn,% ≥ κ% ∀ n.

Then, using Hoeffding’s Inequality, we have: ∀ n, given any ε > 0 and any M = M(ε) large

enough,

d∑
l=1

P
[∣∣G∗n {λ[l](.)[EL{ϕ̃(%)

? (.; Pr)}]
}∣∣ > Mhq

d
1
2

]
≤ 2d exp

(
− M2h2q

2dD2
n,%

)
⇒

P
[∥∥G∗n {λ(.)[EL{ϕ̃(%)

? (.; Pr)}]
}∥∥ > Mhq

]
≤ 2d exp

(
−
M2κ2

%

2d

)
≤ ε ⇒

G∗n
{
λ(.)[EL{ϕ̃(%)

? (.; Pr)}]
}

= Op(h
q) ∀ % ∈ {0, 1}. (A.31)

Combining (A.30) and (A.31) using the linearity of G∗n(.), we then have (A.1).

Next, to show (A.2), let f(x; Pr) = ϕ(0)(x; Pr) and l(x; Pr) = ϕ(1)(x; Pr). Then, we

write

G∗n[λ(.){m̃?(.; Pr)}] = G∗n[λ(.){T̃(1)
n,Pr

(.)− T̃
(2)
n,Pr

(.)− T̃
(3)
n,Pr

(.) + T̃
(4)
n,Pr

(.)}],
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where

T̃
(1)
n,Pr

(x) =
l̃?(x; Pr)

f(x; Pr)
, T̃

(2)
n,Pr

(x) =
f̃?(x; Pr)l(x; Pr)

f(x; Pr)2
,

T̃
(3)
n,Pr

(x) =
l̃?(x; Pr)f̃?(x; Pr)

f̃(x; Pr)f(x; Pr)
, and T̃

(4)
n,Pr

(x) =
l(x; Pr)f̃?(x; Pr)

2

f̃(x; Pr)f(x; Pr)2
. (A.32)

Since λ
(1)
Pr

(x) ≡ λ(x)f(x; Pr)
−1 and λ

(2)
Pr

(x) ≡ λ(x)l(x; Pr)f(x; Pr)
−2 are bounded a.s. [PX]

due to Assumption 1.2 (iii)-(iv) and the boundedness of λ(.), using these as choices of ‘λ(.)’

in (A.1), we have:

G∗n{λ
(1)
Pr

(.)l̃?(.; Pr)} = G∗n{λ(.)T̃
(1)
n,Pr

(.)} = Op(b
(1)
n ),

G∗n{λ
(2)
Pr

(.)f̃?(.; Pr)} = G∗n{λ(.)T̃
(2)
n,Pr

(.)} = Op(b
(1)
n ).

Further, for each s ∈ {3, 4}, supx∈X ‖T̃
(s)
n,Pr

(x)‖ ≤ Op(a
2
n,2) which follows from repeated

use of (A.19) along with Assumption 1.2 (iii)-(iv). Consequently, with λ(.) bounded a.s.

[PX], for each s ∈ {3, 4}, G∗n{λ(.)T̃
(s)
n,Pr

(.)} is bounded by: Op(n
1
2a2

n,2). Combining all these

results using the linearity of G∗n(.), we finally obtain: G∗n{λ(.)m̃?(.; Pr)} = Op(b
(1)
n + n

1
2a2

n,2)

= Op(n
1
2a2

n,2), thus leading to (A.2). The proof of the lemma is now complete.

A.5.2 Proof of Lemma A.3

Throughout this proof, all additional notations introduced, if not explicitly defined, are

understood to have been adopted from the proof of Theorem 1.3 in section IV. Now, using

(A.21), ϕ̂(%)(x; P̂r) − ϕ̃(%)(x; Pr) = trace{(P̂′r − P′r)M̂
(1)
n,%,x} + trace{(P̂′r − P′r)M̂

(2)
n,%,x}, and

M̂
(1)
n,%,x = M̂

(1,1)
n,%,x − M̂

(1,2)
n,%,x as defined in section IV. Thus,

G∗n[λ(.){ϕ̂(%)(.; P̂r)− ϕ̃(%)(.; Pr)}] = G∗n
{
ζ̂

(1,1)

n,%,λ(.)− ζ̂
(1,2)

n,%,λ(.) + ζ̂
(2)

n,%,λ(.)
}
,
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where ∀ (ω) ∈ {(1, 1), (1, 2), (2)}, % ∈ {0, 1}, and x ∈ X ,

ζ̂
(ω)

n,%,λ(x) = λ(x) trace
{

(P̂′r −P′r)M̂
(ω)
n,%,x

}
. (A.33)

Then, ∀ s ∈ {1, 2} and l ∈ {1, . . . , d}, each element of

∫
λ[l](x)M̂(1,s)

n,%,xPn(dx) = n−2

n∑
i1=1

n∑
i2=1

H(n,s)
l,% (i1, i2)

is a V-statistic, where

H(n,s)
l,% (i1, i2) = h−(r+1)λ[l](Xi1)Y

%
i2

U(s)(i1, i2)∇K ′{P′r(Xi1 −Xi2)/h}

with U(1)(i1, i2) = Xi1 and U(2)(i1, i2) = Xi2 . Hence, similar to the proof of (A.30), using

Lemma 8.4 of Newey and McFadden (1994) with X compact, ∇K(.) and λ(.) bounded, and

Y % having finite 2nd moments, we have: for each l ∈ {1, . . . , d}, s ∈ {1, 2} and % ∈ {0, 1},

∥∥∥G∗n [λ[l](.)M̂
(1,s)
n,%,(.) − EL

{
λ[l](.)M̂

(1,s)
n,%,(.)

}]∥∥∥
max

= Op

(
n−

1
2h−(r+1)

)
.

It then follows from (P̂r −Pr) = Op(αn) that for each s and %,

G∗n
[
ζ̂

(1,s)

n,%,λ(.)− EL
{
ζ̂

(1,s)

n,%,λ(.)
}]

= Op

(
αnn

− 1
2h−(r+1)

)
. (A.34)

Next, for any given l, s and %, each element of n
1
2G∗n[EL{λ[l](.)M̂

(1,s)
n,%,(.)}] is a centered sum of

i.i.d. random variables which are bounded by:

∥∥∥supx∈X

{
‖λ(x)‖ |EL(M̂(1,s)

n,%,x)|
}∥∥∥

max
= O(1),

where the order follows from (A.24), (A.25) and the boundedness of λ(.). Hence, similar

to the proof of (A.31), using Hoeffding’s inequality and that (P̂r −Pr) = Op(αn), we have:
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∀ l ∈ {1, . . . , d}, s ∈ {1, 2} and % ∈ {0, 1},

∥∥∥G∗n [EL {λ[l](.)M̂
(1,s)
n,%,(.)

}]∥∥∥
max

= Op(1)⇒ G∗n
[
EL
{
ζ̂

(1,s)

n,%,λ(.)
}]

= Op(αn). (A.35)

For any matrix A, let us denote by A[a,b] the (a, b)th element of A. Now, to control

G∗n{ζ̂
(2)

n,%,λ(.)} in (A.33), note that ‖G∗n{ζ̂
(2)

n,%,λ(.)}‖ is bounded by:

n
1
2 supx∈X ‖λ(x)‖

∑
a,b

∫ ∣∣∣∣(P̂′r −P′r)[b,a]

(
M̂(2)

n,%,x

)
[a,b]

∣∣∣∣ (Pn + PX)(dx)

≤ n
1
2 rp sup

x∈X ,X∈X
{‖λ(x)‖ ‖x−X‖}

∥∥∥P̂r −Pr

∥∥∥
max

Ẑ%∗n

≤ Op

(
n

1
2αn

)
Ẑ%∗n , (A.36)

where the last step follows from (P̂r − Pr) = Op(αn) and the boundedness of X and λ(.),

and Ẑ%∗n =
∫
Ẑ(%)
n (x) (Pn + PX)(dx) with

Ẑ(%)
n (x) = n−1

n∑
i=1

|Y %
i |

hr+1

∥∥∥∥∇K(wi,x)−∇K

{
P′r(x−Xi)

h

}∥∥∥∥ .
Now, ‖wi,x −P′r(x−Xi)h

−1‖ ≤ ‖(P̂r −Pr)
′(x−Xi)h

−1‖ ≤ Op(αnh
−1) uniformly in (i,x),

as noted while proving (A.22). Further, with L∗, as defined in Assumption 1.2 (vii), let An

denote the event: {‖(P̂r − Pr)
′(x − Xi)h

−1‖ ≤ L∗ ∀ x ∈ X , i = 1, .., n}. Then, with

(P̂r − Pr) = Op(αn), X compact and αnh
−1 = o(1) since n

1
2α2

nh
−2 = o(1) as assumed, it

follows that P(An)→ 1. Using these along with Assumption 1.2 (vii) and the function φ(.)

defined therein, we have: on An with P(An)→ 1,

Ẑ(%)
n (x) ≤

n∑
i=1

|Y %
i |

nhr+1

∥∥∥∥∥(P̂r −Pr)
′(x−Xi)

h

∥∥∥∥∥φ
{

P′r(x−Xi)

h

}
≤ √rp sup

x∈X ,X∈X
‖x−X‖

∥∥∥P̂r −Pr

∥∥∥
max

n∑
i=1

|Y %
i |

nhr+2
φ

{
P′r(x−Xi)

h

}
.
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Thus, Ẑ%∗n ≤ Op

(
αnZ̃%∗n

)
, where Z̃%∗n =

∫
Z̃(%)
n (x)(Pn + PX)(dx),

Z̃(%)
n (x) = n−1

n∑
i=1

Z̃(%)
n (x; Zi), and Z̃(%)

n (x; Z) =
|Y %|
hr+2

φ

{
P′r(x−X)

h

}
.

Let Z0 ≡ (Y 0,X0′)′ ∼ PZ be generated independent of L, and define:

Ũ(1)
n,% = n−1

n∑
i=1

EX0{Z̃(%)
n (X0; Zi)}, Ũ(2)

n,% = n−1

n∑
i=1

EZ0{Z̃(%)
n (Xi; Z

0)},

Ũ(1,1)
n,% = E{Z̃(%)

n (X0; Z0)}, and Ṽ(k)
n,% = E{Z̃(%)

n (X0; Z)k} for k = 1, 2.

Then, first note that:
∫
Z̃(%)
n (x)PX(dx) = Ũ(1)

n,%. Further, since

∫
Z̃(%)
n (x)Pn(dx) = n−2

n∑
i1=1

n∑
i2=1

Z̃(%)
n (Xi1 ; Zi2)

is a V-statistic, we have:

∫
Z̃(%)
n (x)Pn(dx) = Ũ(1)

n,% + Ũ(2)
n,% − Ṽ(1)

n,% +Op{n−1Ũ(1,1)
n,% + n−1(Ṽ(2)

n,%)
1
2}

using Lemma 8.4 of Newey and McFadden (1994). Then, with all notations as above, we

have:

n−1Ũ(1,1)
n,% + n−1(Ṽ(2)

n,%)
1
2 ≤ Op

(
n−1h−(r+2)

)
, (A.37)

and Ũ(1)
n,% =

1

nhr+2

n∑
i=1

|Y %
i |
∫
XPr

φ

(
w −P′rXi

h

)
fPr(w)dw

≤ BPr

nh2

n∑
i=1

{
|Y %
i |
∫
An

Xi

φ(ψi)dψi

}
,

≤ BPr

h2

{∫
Rr

φ(ψ)dψ

}{
n−1

n∑
i=1

|Y %
i |

}
≤ Op

(
h−2
)
, (A.38)

where ψi = h−1(w − P′rXi) ∀ i, Anx = {ψ : (P′rx + hψ) ∈ XPr} ∀ x ∈ X , and BPr =
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supw∈XPr
fPr(w) < ∞. The error rate in (A.37) follows since φ(.) is bounded and Y % has

finite 2nd moments, while that of Ũ(1)
n,% follows from Assumption 1.2 (iii), integrability of

φ(.), and LLN applied to the sequence {Y %
i }ni=1 having finite 2nd moments. Now, note that

Ũ(2)
n,% − Ṽ(1)

n,% is a centered average of [EZ0{Z̃(%)
n (Xi; Z

0)}]ni=1 which are i.i.d. and bounded by:

sup
x∈X

EZ{Z̃(%)
n (x; Z)} = sup

x∈X

1

hr+2

∫
XPr

φ

(
P′rx−w

h

)
m

(%)
Pr

(w)fPr(w)dw,

where m
(%)
Pr

(w) = E(|Y |% |XPr = w) ∀ % ∈ {0, 1} and w ∈ XPr . Using the integrability of

φ(.), we then have:

sup
x∈X

EZ{Z̃(%)
n (x; Z)} ≤ sup

x∈X

C
(%)
Pr

hr+2

∫
XPr

φ

(
P′rx−w

h

)
dw

≤ sup
x∈X

C
(%)
Pr

h2

∫
An

x

φ(−ψ) dψ ≤
C

(%)
Pr

h2

{∫
Rr

φ(ψ)dψ

}
= O

(
h−2
)
,

where C
(%)
Pr

= supw∈XPr
m

(%)
Pr

(w)fPr(w) < ∞ due to Assumption 1.2 (iii), and Anx = {ψ :

(P′rx + hψ) ∈ XPr}, as before. It then follows, similar to the proof of (A.31), from a simple

application of Hoeffding’s inequality that

Ũ(2)
n,% − Ṽ(1)

n,% = Op

(
n−

1
2h−2

)
. (A.39)

Using (A.37)-(A.39), we finally have: Z̃%∗n = Op(h
−2 + n−1h−(r+2)). Hence,

Ẑ%∗n =

∫
Ẑ(%)
n (x) (Pn + PX)(dx) ≤ Op

(
αnZ̃%∗n

)
= Op

(αn
h2

+
αn

nhr+2

)
, (A.40)

and
∥∥∥G∗n {ζ̂(2)

n,%,λ(.)
}∥∥∥ ≤ Op

(
n

1
2α2

n

h2
+
n

1
2α2

n

nhr+2

)
∀ % ∈ {0, 1}, (A.41)

where the final bound in (A.41) follows from (A.36). The desired result in (A.3) now follows

by applying (A.34), (A.35) and (A.41) to (A.33) using the linearity of G∗n(.). The proof of

the lemma is now complete. (Note that conditions (i), (iv) and (viii) in Assumption 1.2 were
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actually not used in this proof).

A.5.3 Proof of Theorem 1.4

Finally, to establish the result of Theorem 1.4, let λ0(x) = −→x which is measurable and

bounded on X . Further, with G∗n(.) as defined in appendix A.1, note that Gn,K for K = 1 is

given by:

Gn,K = G∗n{λ0(.)m̃?(.; Pr)}+ G∗n[λ0(.){m̂(.; P̂r)− m̃(.; Pr)}], (A.42)

due to linearity of G∗n(.). Now, using Lemma A.2, we have:

G∗n{λ0(.)m̃?(.; Pr)} = Op(n
1
2a2

n,2) = Op(a
∗
n,2). (A.43)

The second term G∗n[λ0(.){m̂(.; P̂r)− m̃(.; Pr)}] in (A.42) can be written as:

G∗n[λ0(.){T̂(1)
n,Pr

(.)− T̂
(2)
n,Pr

(.)− T̂
(3)
n,Pr

(.) + T̂
(4)
n,Pr

(.)}]

= Op

(
b(2)
n + n

1
2a2

n,1 + n
1
2an,1an,2

)
= Op

(
a∗n,1
)
, (A.44)

where with slight abuse of notation,

T̂
(1)
n,Pr

(x) =
â− ã
b

, T̂
(2)
n,Pr

(x) =
a(̂b− b̃)
b2

,

T̂
(3)
n,Pr

(x) =
(â− ã)(̃b− b)

b b̃
+

(â− ã)(̂b− b̃)
b̃ b̂

, and

T̂
(4)
n,Pr

(x) =
ã(̂b− b̃)2

b̂ b2
− (ã− a)(̂b− b̃)

b2
+
a(̂b− b̃)(̃b− b)(b+ b̃)

(b b̃)(b b̂)
,

with (a, b) = {l(x; Pr), f(x; Pr)}, (ã, b̃) = {l̃(x; Pr), f̃(x; Pr)} and (â, b̂) =

{l̂(x; P̂r), f̂(x; P̂r)}}.

For (A.44), the starting expansion is due to a linearization similar to (A.32), while the

final rate is due to the following: note that λ
(1)
0,Pr

(.) ≡ b−1λ0(.) and λ
(2)
0,Pr

(.) ≡ ab−2λ0(.)

are both bounded a.s. [PX] due to Assumption 1.2 (iii)-(iv) and the boundedness of λ0(.).
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Hence, using these as choices of ‘λ(.)’ in Lemma A.3, we have: G∗n{(â − ã)λ
(1)
0,Pr

(.)} =

G∗n[λ0(.){T̂(1)
n,Pr

(.)}] = Op(b
(2)
n ) and G∗n{(̂b − b̃)λ

(2)
0,Pr

(.)} = G∗n[λ0(.){T̂(2)
n,Pr

(.)}] = Op(b
(2)
n )

respectively. Further, note that for each s ∈ {3, 4}, supx∈X‖T̂
(s)
n,Pr

(x)‖ ≤ Op(a
2
n,1 + an,1an,2)

which follows from repeated use of (A.19), (A.28) along with Assumption 1.2 (iii)-(iv). Con-

sequently, with λ0(x) bounded a.s. [PX], for each s ∈ {3, 4}, G∗n[λ0(.){T̂(s)
n,Pr

(.)}] is bounded

by: Op(n
1
2a2

n,1 + n
1
2an,1an,2). Combining all these results using the linearity of G∗n(.) and

noting that with a∗n,2 = o(1), (b
(2)
n + n

1
2a2

n,1 + n
1
2an,1an,2) = O(a∗n,1), (A.44) now follows and,

along with (A.43) and (A.42), implies: Gn,K = Op(a
∗
n,1 + a∗n,2) as claimed in Theorem 1.4.

Lastly, using this in (1.12), the expansion in (1.17) and its associated implications follow.

The proof of Theorem 1.4 is now complete.
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Appendix B

Proofs of All Results in Chapter 3

B.1 Preliminaries

We first state a few preliminary lemmas that would be useful in the proofs of theorem 3.3-3.4.

Lemma B.1. (Properties of sub-gaussian distributions) Let Z be any random variable with

E(Z) = 0, and suppose that Z follows a sub-gaussian distribution with parameter σ2, to be

denoted as Z ∼ SG(σ2), for some σ ≥ 0, so that E{exp(aZ)} ≤ exp(σ2a2/2) ∀ a ∈ R. Then,

(i) For any ε > 0, P(Z > ε) ≤ exp
{
− ε2

2σ2

}
, and P(|Z| > ε) ≤ 2 exp

{
− ε2

2σ2

}
.

(ii) For any b ∈ R, bZ ∼ SG(b2σ2). Further, for any Z1 ∼ SG(σ2
1) and Z2 ∼ SG(σ2

2), with

Z1 and Z2 not necessarily independent, (Z1 + Z2) ∼ SG{(σ1 + σ2)2}. If Z1 and Z2 are

additionally independent, then (Z1 + Z2) ∼ SG(σ2
1 + σ2

2), with an improved parameter.

(iii) For each positive integer m ≥ 2, E(|Z|m) ≤ 2(
√

2σ)mΓ(m/2 + 1), where Γ(.) denotes

the standard gamma function given by: Γ(t) =
∫∞

0
xt−1e−x dx ∀ t ≥ 0.

(iv) For any collection {Zj}mj=1 of sub-gaussian random variables (not necessarily indepen-

dent) with parameter σ2, P
(

max
1≤j≤m

|Zj| > ε

)
≤ 2 exp

{
− ε2

2σ2 + log m
}

, for any ε > 0.

(v) A random vector Z ∈ Rd for any d, with E(Z) = 0, is said to follow a sub-gaussian

distribution with parameter σ2, denoted as Z ∼ SG(σ2), for some σ ≥ 0, if ∀ t ∈ Rd,

the random variable t′Z ∼ SG{σ2(t)}, for some σ(t) ≥ 0 such that σ2(t) ≤ σ2‖t‖2
2. For
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any collection {Zj}mj=1 of random vectors (not necessarily independent) in Rd such that

Zj ∼ SG(σ2) ∀ j, P
(

max
1≤j≤m

‖Zj‖∞ > ε

)
≤ 2 exp

{
− ε2

2σ2 + log (md)
}

, for any ε > 0.

Lemma B.2. (Sub-gaussian properties for binary variables) Let Z ∈ {0, 1} be a binary ran-

dom variable with E(Z) ≡ P(Z = 1) = p ∈ [0, 1]. Let Z̃ = (Z − p) denote the corresponding

centered version of Z. Then, Z̃ ∼ SG(p̃ 2), where p̃ > 0 is given by: p̃ = 0 if p ∈ {0, 1},

p̃ = 1/2 if p = 1/2, and p̃ = [(p− 1/2)/log {p/(1− p)}]1/2 if p /∈ {0, 1, 1/2}.

Lemma B.3. (Bernstein’s inequality) Let {Z1, . . . , Zn} denote any collection of n indepen-

dent (not necessarily i.i.d.) random variables ∈ R, such that E(Zi) = 0 ∀ 1 ≤ i ≤ n.

Suppose ∃ constants σ ≥ 0 and K ≥ 0, such that n−1
∑n

i=1 E(|Zi|m ≤ (m!/2)Km−2σ2, for

each positive integer m ≥ 2. Then, the following concentration bound holds:

P

(
1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ ≥ √2σε+Kε2

)
≤ 2 exp (−nε2) for any ε > 0.

Lemma B.4. (Useful bounds for the standard normal density and c.d.f.) Let φ(.) and Φ(.)

respectively denote the density and the c.d.f. of the standard N1(0, 1) distribution. Further,

let Φ(t) = {1− Φ(t)} ≡ Φ(−t) ∀ t ∈ R. Then the following bounds hold: for any t > 0,

t

1 + t2
φ(t) ≤ Φ(t) ≤ φ(t)

t
, and Φ(t) ≤ exp

(
−t

2

2

)
.

Lemma B.5. (Properties of the truncated normal distribution) Let Z ∼ N1(0, σ2) distribu-

tion for some σ > 0, and let φ(.) and Φ(.) respectively denote the density and the c.d.f. of

the standard N1(0, 1) distribution. For any a, b such that −∞ ≤ a < b ≤ ∞, consider the

truncated random variable: Za,b ≡ (Z | a ≤ Z ≤ b). Let a = (a/σ) and b = (b/σ). Then,

(i) For any a, b as above, Za,b satisfies the following distributional properties:

E(Z | a ≤ Z ≤ b) = σ
φ(a)− φ(b)

Φ(b)− Φ(a)
, E(Z2 | a ≤ Z ≤ b) = σ2

{
1 +

aφ(a)− bφ(b)

Φ(b)− Φ(a)

}
,
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and MGFZa,b
(t) ≡ E

(
etZ | a ≤ Z ≤ b

)
= eσ

2t2/2

{
Φ(b− σt)− Φ(a− σt)

Φ(b)− Φ(a)

}
∀ t ∈ R.

(ii) For any q ∈ (0, 1], let zq and zq respectively denote the (q/2)th and (1−q/2)th quantiles

of the standard N1(0, 1) distribution, so that −zq = zq ≥ 0. Consider the function:

fq(t) = 1
2Φ(zq)

{Φ(zq + t) + Φ(zq − t)} ∀ t ∈ R. Then, fq(.) satisfies: for any t ∈ R,

fq(t) ≤ exp
(
t2z2

q

)
∀ q ∈ (0, 1/2], while fq(t) ≤ 2 trivially ∀ q ∈ (1/2, 1].

Lemma B.1 is a collection of several well-known properties of sub-gaussian distributions,

and proofs and/or discussions of these results (or equivalent versions) can be found in several

relevant references, including Vershynin (2010) for instance. Lemma B.2 explicitly charac-

terizes the sub-gaussian properties of (centered) binary random variables, and its proof can

be found in Buldygin and Moskvichova (2013). Lemma B.3 is one of many versions of the

well-known Bernstein’s inequality, and this particular version has been adopted from Van de

Geer and Lederer (2013). Lemma B.4 provides some useful and fairly well known bounds

involving the standard normal c.d.f. and density, and their mentions and/or discussions can

be found in Düembgen (2010), Chiani et al. (2003) and the references cited therein. Lastly,

lemma B.5 provides some useful distributional properties of truncated normal distributions.

For the results in (i), proofs and/or mentions of them (or much more general versions) can

be found in a combination of references including Tallis (1961), Johnson et al. (1994), Hor-

race (2004, 2005) and Burkardt (2014). Result (ii) in lemma B.5 is a fairly straightforward

conclusion, and can be obtained, for instance, through direct numerical verification. We skip

the details here for the sake of brevity, and leave them to the interested reader to verify.
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B.2 Proof of Theorem 3.1

We first note that owing to our model based assumptions (3.4)-(3.5), and the linearity

condition (3.8) in assumption 3.2, the following identities hold: ∀ v ∈ Rp,

E(v′X |α′0X,β′0X, ε, ε∗) = E(v′X |α′0X,β′0X) = cv + av(α′0X) + bv(β′0X), (B.1)

and v′µq ≡ Eq(v′X) = Eq{Eq(v′X |α′0X,β′0X, ε, ε∗)} = Eq{E(v′X |α′0X,β′0X, ε, ε∗)}

= Eq{cv + av(α′0X) + bv(β′0X)} = cv + av(α′0µq) + bv(β′0µq), (B.2)

where, for the second equality in obtaining (B.2), we have used the fact that owing to (3.5),

S is completely determined by the conditioning variables {β′0X,α′0X, ε, ε∗}, so that the term

Eq(. | β′0X,α′0X, ε, ε∗) inside can be replaced by E(. | β′0X,α′0X, ε, ε∗). Note further that for

all the steps in obtaining (B.2), it is implicitly understood, as would be the case henceforth,

that the values assumed by the conditioning variables {β′0X,α′0X, ε, ε∗} are such that the

underlying restriction {S ∈ Iq} is indeed feasible so that Eq(.|β′0X,α′0X, ε, ε∗) is well-defined.

Next, note that that expected squared loss function Lq(v) satisfies: ∀ v ∈ Rp,

Lq(v) ≡ Eq[{Y − pq − v′(X− µq)}2]

= Eq(Eq[{Y − pq − v′(X− µq)}2 | β′0X,α′0X, ε, ε∗])

= Eq(E[{Y − pq − v′(X− µq)}2 | β′0X,α′0X, ε, ε∗])

≥ Eq
{(

E[{Y − pq − v′(X− µq)} | β′0X,α′0X, ε, ε∗]
)2
}

= Eq
[{

E(Y | β′0X,α′0X, ε, ε∗)− pq − E(v′X | β′0X,α′0X, ε, ε∗) + v′µq
}2
]

= Eq
[{
Y − pq − av(α′0X)− bv(β′0X) + av(α′0µq) + bv(β′0µq)

}2
]

= Eq
[{
Y − pq − (avα0 + bvβ0)′(X− µq)

}2
]
≡ Lq(avα0 + bvβ0). (B.3)

The second equality in obtaining (B.3) follows from arguments similar to those mentioned

earlier while obtaining (B.2). The subsequent inequality follows from (conditional) Jensen’s
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inequality, while in the penultimate step we have used (B.1)-(B.2), as well as the fact that

owing to (3.4), Y is completely determined (hence constant) by the conditioning variables

{β′0X,α′0X, ε, ε∗}. Thus, (B.3) now shows that the value of Lq(.) at every v ∈ Rp is bounded

below by its value at a corresponding point of the form (avα0 + bvβ0) ∈ Rp. In particular,

this also applies to v = βq, which however is the unique minimizer of Lq(v) over v ∈ Rp.

Hence, βq must be of the form (avα0 + bvβ0) with v = βq. This establishes (3.10).

To show (3.11), we first note that owing to (3.5) and (3.8)-(3.9), we have: ∀ v ∈ Rp,

E(v′X |α′0X, ε∗) = E(v′X |α′0X) = (cv + bvc) + (av + bva)(α′0X), and (B.4)

v′µq ≡ Eq(v′X) = Eq{Eq(v′X |α′0X, ε∗)} = Eq{E(v′X |α′0X, ε∗)}

= Eq{(cv + bvc) + (av + bva)(α′0X)} = (cv + bvc) + (av + bva)(α′0µq), (B.5)

where, for the second equality in obtaining (B.5), we have used the fact that owing to

(3.5), S is completely determined by the conditioning variables {α′0X, ε∗}, so that the term

Eq(. | β′0X,α′0X, ε, ε∗) inside can be replaced by E(. | β′0X,α′0X, ε, ε∗).

Next, note that that expected squared loss function L∗q(v) satisfies: ∀ v ∈ Rp,

L∗q(v) ≡ Eq[{Y ∗q − p∗q − v′(X− µq)}2]

= Eq(Eq[{Y ∗q − p∗q − v′(X− µq)}2 |α′0X, ε∗])

= Eq(E[{Y ∗q − p∗q − v′(X− µq)}2 |α′0X, ε∗])

≥ Eq
{(

E[{Y ∗q − p∗q − v′(X− µq)} |α′0X, ε∗]
)2
}

= Eq
[{

E(Y ∗q |α′0X, ε∗)− p∗q − E(v′X |α′0X, ε∗) + v′µq
}2
]

= Eq
[{
Y ∗q − p∗q − (av + bva)(α′0X) + (av + bva)(α′0µq)

}2
]

= Eq
[{
Y ∗q − p∗q − (av + bva)α′0(X− µq)

}2
]
≡ L∗q{(av + bva)α0}. (B.6)

The second equality in obtaining (B.6) follows from arguments similar to those mentioned

earlier while obtaining (B.5). The subsequent inequality follows from (conditional) Jensen’s
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inequality, while in the penultimate step we have used (B.4)-(B.5), as well as the fact that

owing to (3.5) and the very definition of Y ∗q , Y ∗q is completely determined (hence constant) by

the conditioning variables {α′0X, ε∗}. Thus, (B.6) now shows that the value of L∗q(.) at every

v ∈ Rp is bounded below by its value at a corresponding point of the form (av+bva)α0 ∈ Rp.

In particular, this also applies to v = αq, which however is the unique minimizer of L∗q(v)

over v ∈ Rp. Hence, αq must be of the form (av + bva)α0 with v = αq. We have therefore

established (3.11), as required. The proof of theorem 3.1 is now complete.

B.3 Proof of Theorem 3.2

The proof of this result, at least the initial part of it, relies substantially on a useful result

from Negahban et al. (2012). We will therefore try to adopt some of their basic notations

and terminology at the beginning of this proof in order to facilitate the use of that result.

Let R(u) = ‖u‖1 ∀ u ∈ Rp, and let R∗(u) ≡ sup
v∈Rp\{0}

{u′v/R(v)} ∀ u ∈ Rp denote the

‘dual norm’ for R(.). Further, for any subspaceM⊆ Rp, let Ψ(M) ≡ sup
v∈M\{0}

{R(u)/‖u‖2}

denote the ‘subspace compatibility constant’ forM w.r.t. the normR(.). Then, with J ,MJ

andM⊥
J as defined at the beginning of section 3.3.1, it is not difficult to show that: (i) R(.)

is decomposable w.r.t. the orthogonal subspace pair (MJ ,M⊥
J ) for any J ⊆ {1, . . . , p}, in

the sense that R(u + v) = R(u) +R(v) ∀ u ∈MJ ,v ∈M⊥
J ; (ii) R∗(u) = ‖u‖∞ ∀ u ∈ Rp;

and (iii) with J = A(v) for any v ∈ Rp, Ψ2(MJ ) = sv. We refer the interested reader to

Negahban et al. (2012) for further discussions and/or proofs of these facts.

Then, owing to the decomposability of R(.) over (MJ ,M⊥
J ) with J chosen to be A(β0),

and under our restricted strong convexity assumption 3.3 regarding Lnq(Z∗nq
;β) at β = βq,

we have, using Theorem 1 of Negahban et al. (2012), that: for any given Z∗nq
and λ ≥

4‖Tnq‖∞,

∥∥∥β̂nq
(λ;Z∗nq

)− βq
∥∥∥2

2
≤ 9sβ0

λ2

κ2
q

+ 4 |aq|
λ

κq

∥∥∥Πc
β0

(α0)
∥∥∥

1
, (B.7)
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where, while applying the result from Negahban et al. (2012), we have chosen the parameter

θ∗, in their notation, as θ∗ = βq, and also used 2R∗[∇{Lnq(Z∗nq
;βq)}] ≡ 4‖Tnq‖∞, and

P⊥A(β0)(βq) = ΠAc(β0)(βq) ≡ Πc
β0

(βq) = Πc
β0

(aqα0), so thatR{P⊥A(β0)(βq)} = |aq|‖Πc
β0

(α0)‖1.

It needs to be mentioned that the result from Negahban et al. (2012) used here is quite a

powerful one, since it provides highly flexible and general bounds for penalized M -estimators

based on loss functions satisfying some restricted strong convexity, like the one we assume in

3.3, and regularizers based on norms that are ‘decomposable’ over orthogonal subspace pairs,

as shown to hold for the L1 norm for subspace pairs like: (MJ ,M⊥
J ) for any J . The bounds

hold for any such subspace pair which, in our case, we choose to be {MA(β0),M⊥
A(β0)}. More

importantly, the result provides deviation bounds of the estimator w.r.t. any point that can

be reasonably viewed as a possible ‘target’, and not necessarily the exact parameter that

minimizes the expected loss. Only the lower bound for λ needs to be appropriately defined

for each such ‘target’. Of course, the deviation bound depends directly on λ, and is only

useful if the (random) lower bound, defined by this ‘target’, for λ can be bounded above

w.h.p. by a sequence converging fast enough to 0. In our case, owing to theorem 3.1, αq,

the minimizer of L∗q(.), is really the ‘official’ target parameter. However, even with βq as

the ‘target’, the corresponding deviation bound for β̂nq
(λ) may still satisfy reasonable rates,

since the lower bound 4‖Tnq‖∞ for λ, defined through βq, may still have a fast enough

convergence rate w.h.p. owing to the definition of βq and the surrogacy assumption. In

fact, this is what we precisely show in theorem 3.3. Nevertheless, the entire point of this

digression was to provide some helpful perspectives regarding the nuances underlying our

result and its proof, and also elaborate to some extent on the general usefulness of the tools

used here.

Coming back to the proof, we next note that under assumption 3.4 conditions 1-2, with

the λ chosen as above in (B.7) being further assumed to be (β0,α0, q)-admissible, ∃ some re-

alization z∗nq
(not necessarily the observed one) of Z∗nq

such that the corresponding estimator

β̂nq
(λ; z∗nq

) based on z∗nq
and the given choice of λ, satisfies the property: β̂nq [j](z

∗
nq

;λ) = 0
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for some j ∈ Ac(β0) ∩ A(α0). Noting that the bound in (B.7) is deterministic and applies

to any realization of Z∗nq
, including z∗nq

in particular, we then have:

|aq|2 |α0[j]|2 ≡
{
β̂nq [j](λ; z∗nq

)− βq[j]
}2

≤
∥∥∥β̂nq

(λ; z∗nq
)− βq

∥∥∥2

2

≤ 9sβ0

λ2

κ2
q

+ 4 |aq|
λ

κq

∥∥∥Πc
β0

(α0)
∥∥∥

1
(using B.7), and therefore,

|aq| ≤
λ

κq
∣∣α0[j]

∣∣2
[

2
∥∥∥Πc

β0
(α0)

∥∥∥
1

+

{
4
∥∥∥Πc

β0
(α0)

∥∥∥2

1
+ 9sβ0

∣∣α0[j]

∣∣2} 1
2

]

≤ λ

κqCmin(α0,β0)2

{
4
∥∥∥Πc

β0
(α0)

∥∥∥
1

+ 3s
1
2
β0
Cmax(α0,β0)

}
≡ λ

κq
d(α0,β0), (B.8)

where d(α0,β0) is as defined in theorem 3.2, and the preliminary bound on |aq| in the second

last step follows from noting that the previous step leads to a quadratic inequality in |aq| and

therefore, some straightforward algebra involving standard theory of quadratic inequalities

leads to this bound. Finally, to obtain our desired result, we now note that:

∥∥∥β̂nq
(λ;Z∗nq

)− bqβ0

∥∥∥
2

=
∥∥∥β̂nq

(λ;Z∗nq
)− βq + aqα0

∥∥∥
2

≤
∥∥∥β̂nq

(λ;Z∗nq
)− βq

∥∥∥
2

+ |aq| ‖α0‖2

≤
{

9sβ0

λ2

κ2
q

+ 4 |aq|
λ

κq

∥∥∥Πc
β0

(α0)
∥∥∥

1

} 1
2

+ |aq| ‖α0‖2

≤ λ

κq

{
9sβ0

+ 4
∥∥∥Πc

β0
(α0)

∥∥∥
1
d(α0,β0)

} 1
2

+
λ

κq
d(α0,β0) ‖α0‖2

≡ λ

κq

[{
9sβ0

+ d1(α0,β0)
} 1

2 + d2(α0,β0)
]
, (B.9)

where the bounds follow due to (B.7)-(B.8). The proof of theorem 3.2 is now complete.

B.4 Proof of Theorem 3.3

With X ∼ SGq(σ
2
q ), we first note that (Xi −Xnq) ∼ SGq(σ

2
q) ∀ 1 ≤ i ≤ nq, owing to lemma

B.1 (ii) and (v), where σ2
q = σ2

q (1−n−1
q ) ≤ σ2

q . Further, let us define: Z∗q = |Y −Y ∗q | ∈ {0, 1},

and define Z∗q,i ∀ 1 ≤ i ≤ nq accordingly. Then, (Z∗q | S ∈ Iq) is a binary variable with
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Pq(Z∗q = 1) = πq. Hence, using lemma B.2, (Z∗q − πq) ∼ SGq(π̃
2
q ), and further, using

lemma B.1 (ii), n−1(
∑nq

i=1 Z∗q,i) ∼ SGq(π̃
2
q/nq). Using lemma B.1 (v) and (i), we now have:

∀ ε1, ε2 > 0,

Pq
(

max
1≤i≤nq

∥∥Xi −Xnq

∥∥
∞ > ε1

)
≤ 2 exp

{
− ε21

2σ2
q

+ log (nqp)

}
, and (B.10)

Pq

{
1

nq

nq∑
i=1

Z∗q,i > (πq + ε2)

}
≤ exp

(
−nqε

2
2

2π̃2
q

)
. (B.11)

Using (B.10)-(B.11), and noting the definition of T(1)
nq in (3.18), we then have: ∀ ε1, ε2 > 0,

Pq
{∥∥∥T(1)

nq

∥∥∥
∞
> ε1(πq + ε2)

}
≡ Pq

{∥∥∥∥∥ 1

nq

nq∑
i=1

(Xi −Xnq)(Y
∗
q,i − Yi)

∥∥∥∥∥
∞

> ε1(πq + ε2)

}

≤ Pq

{(
max

1≤i≤nq

∥∥Xi −Xnq

∥∥
∞

)(
1

nq

nq∑
i=1

Z∗q,i

)
> ε1(πq + ε2)

}

≤ Pq
(

max
1≤i≤nq

∥∥Xi −Xnq

∥∥
∞ > ε1

)
+ Pq

{
1

nq

nq∑
i=1

Z∗q,i > (πq + ε2)

}

≤ 2 exp

{
− ε21

2σ2
q

+ log (nqp)

}
+ exp

(
−nqε

2
2

2π̃2
q

)
. (B.12)

(B.12) therefore establishes the first of the three bounds in (3.24). To obtain the other two,

Let us first define: X̃q = (X−µq), Ỹq = (Y − pq) and Z̃q = (Ỹq−β
′
qX̃q). Then, we first note

that X̃q ∼ SGq(σ
2
q ) by assumption, Ỹq ∼ SGq(p̃

2
q) owing to lemma B.2, and Z̃q ∼ SGq(γ

2
q )

owing to lemma B.1 (ii) and (v), where γ2
q = (p̃q + σq‖βq‖2)2 is as defined in theorem 3.3.

Hence, applying lemma B.1 (iii) to Z̃q and X̃q, we then have: ∀ 1 ≤ j ≤ p, and any integer

m ≥ 2,

Eq
(
|X̃q[j]Z̃q|m

)
≤
{
Eq
(
|X̃q[j]|

)2m
} 1

2 {
Eq
(
|Z̃q|2m

)} 1
2

≤
{

2
(√

2σq

)2m

Γ(m+ 1)

} 1
2
{

2
(√

2γq

)2m

Γ(m+ 1)

} 1
2

= 2{Γ(m+ 1)}(2σqγq)m =
m!

2
(2σqγq)

m−2(4σqγq)
2,
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where the first inequality follows from Holder’s inequality, and the rest are due to lemma B.1

(iii) applied to Z̃q and X̃q[j] for each j. Next, note that owing to the very definition of βq,

Eq(X̃qZ̃q) = 0 and further, the above bound ensures that the random variable X̃q[j]Z̃q, for

each j satisfies the moment conditions required in lemma B.3 with σ ≡ 4σqγq and K ≡ 2σqγq.

Hence applying lemma B.3, and noting the definition of T(2)
nq ,1 in (3.19), we have: for any

ε3 > 0,

Pq
{∥∥∥T(2)

nq ,1

∥∥∥
∞
> 2σqγq(2

√
2ε3 + ε23)

}
≡ Pq

{∥∥∥∥∥ 1

nq

nq∑
i=1

X̃q,iZ̃q,i

∥∥∥∥∥
∞

> 2σqγq(2
√

2ε3 + ε23)

}

≤
p∑
j=1

Pq

{
1

nq

∣∣∣∣∣
nq∑
i=1

X̃q,i[j]Z̃q,i[j]

∣∣∣∣∣ > 2σqγq(2
√

2ε3 + ε23)

}
≤ 2p exp

(
−nqε23

)
≡ 2exp

(
−nqε23 + log p

)
, (B.13)

where the first inequality follows from a straightforward application of the union bound, and

the next one follows from the use of lemma B.3. (B.13) therefore establishes the second

bound in (3.24). To establish the third and final bound in (3.24), we first note that using

lemma B.2 (ii), (Xnq − µq) ∼ SGq(σ
2
q/nq), and n−1

q

∑nq

i=1 Z̃q,i ∼ SGq(γ
2
q/nq). Using lemma

B.1 (v) and (i), and noting that Eq(Z̃q) = 0, we now have: ∀ ε4, ε5 > 0,

Pq
(∥∥Xnq − µq

∥∥
∞ > ε4

)
≤ 2 exp

{
−nqε

2
4

2σ2
q

+ log p

}
, and (B.14)

Pq

(
1

nq

∣∣∣∣∣
nq∑
i=1

Z̃q,i

∣∣∣∣∣ > ε5

)
≤ exp

(
−nqε

2
5

2γ2
q

)
. (B.15)

Using (B.14)-(B.15), and noting the definition of T(2)
nq ,2 in (3.20), we then have: ∀ ε4, ε5 > 0,

Pq
(∥∥∥T(2)

nq ,2

∥∥∥
∞
> ε4ε5

)
≡ Pq

{∥∥∥∥∥(Xnq − µq
)( 1

nq

nq∑
i=1

Z̃q,i

)∥∥∥∥∥
∞

> ε4ε5

}

≤ Pq

{∥∥Xnq − µq
∥∥
∞

(
1

nq

∣∣∣∣∣
nq∑
i=1

Z̃q,i

∣∣∣∣∣
)
> ε4ε5

}
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≤ Pq
(∥∥Xnq − µq

∥∥
∞ > ε4

)
+ Pq

{
1

nq

∣∣∣∣∣
nq∑
i=1

Z̃q,i

∣∣∣∣∣ > ε5

}

≤ 2 exp

{
−nqε

2
4

2σ2
q

+ log p

}
+ 2 exp

(
−nqε

2
5

2γ2
q

)
. (B.16)

(B.16) therefore establishes the third and final bound in (3.24). Lastly, the claim (3.25) in

theorem 3.3 follows from noting the representations (3.17)-(3.20) of Tnq in terms of T(1)
nq , T(2)

nq ,1

and T(2)
nq ,2, and straightforward use of (B.12), (B.13) and (B.16) through appropriate choices

of {ε1, . . . , ε5} in terms of universal constants {c1, . . . c6} as follows: ε1 = {2 log (nc1q p
c2)} 1

2σq,

for any c1, c2 > 0 such that max (c1, c2) > 1; ε2 = {c3(1− 2πq)/nq}
1
2 for any c3 > 0, and also

noting the definition of π̃q when πq < 1/2 (as assumed for this part); ε3 = {c4(log p)/nq}
1
2

for any c4 > 1; and lastly, ε4 = {2c5(log p)/nq}
1
2σq and ε5 = {2c6(log p)/nq}

1
2γq, for any

c5 > 1 and any c6 > 0 respectively. The proof of theorem 3.3 is now complete.

B.5 Proof of Theorem 3.4

First of all, the results for {E(S|S ≤ δq),E(S2|S ≤ δq)} and {E(S|S ≥ δq),E(S2|S ≥ δq)}, are

straightforward implications of lemma B.5 (i) with the choices of a, b as: {a = −∞, b = δq}

and {a = δq, b = ∞} respectively. Further, the results for Eq(S) and Varq(S) follow from

noting that: Eq(S) = 1/2{E(S |S ≤ δq)+E(S |S ≥ δq)}, and 1/2{E(S2 |S ≤ δq)+E(S2 |S ≥

δq)} = Eq(S2) ≡ Varq(S) since Eq(S) = 0. Next, for the corresponding results regarding

X, we first note that under the assumed set-up, X | S follows a linear model given by:

X = γ0S + ε with ε ∼ Np(0,Γ) and ε ⊥⊥ S, where γ0 and Γ are as defined therein. Using

this relation and the results already proved, the results for {E(X |S ≤ δq),E(XX′ |S ≤ δq)}

and {E(X |S ≥ δq),E(XX′ |S ≥ δq)} now follow immediately. Further, the results for Eq(X)

and Varq(X) follow from noting that: Eq(X) = 1/2{E(X | S ≤ δq) + E(X | S ≥ δq)}, and

1/2{E(XX′ | S ≤ δq) + E(XX′ | S ≥ δq)} = Eq(XX′) ≡ Varq(X) since Eq(X) = 0. This

completes the proof of all the results mentioned in (i) and (ii) in theorem 3.4.

Next, we note that ∀ t ∈ R, MGFS,q(t) ≡ Eq(etS) = 1/2{E(etS |S ≤ δq)+E(etS |S ≥ δq)},
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and the result in (iii) for MGFS,q(t) now follows directly from lemma B.5 (i) using the choices

of a, b as: {a = −∞, b = δq} and {a = δq, b = ∞} respectively. For MGFX,q(t), we note

that ∀ t ∈ Rp, MGFX,q(t) ≡ Eq(et
′X) = Eq[exp{(t′γ0)S + t′ε}] = {E(et

′ε)}MGFS,q(t
′γ0)

where, in the last step, we use ε ⊥⊥ S. The result now follows from using the result for

MGFS,q(.), and the standard expression for the m.g.f. of ε ∼ Np(0,Γ), as well as using the

fact that Γ = (Σ − σ2
Sγ0γ

′
0). This completes the proof of all results in (iii). Further, all

the bounds in (iv) for MGFS,q(.) are straightforward implications of lemma B.5 (ii), and so

are the bounds for MGFX,q(.) in (iv), where we additionally use standard the inequalities:

t′Σt ≤ λmax(Σ)‖t‖2
2 and |t′γ0|2 ≤ ‖t‖2

2‖γ0‖2
2 ∀ t ∈ Rp. This therefore completes the proof

of all the m.g.f. related results mentioned in (iii) and (iv) in theorem 3.4.

Next, for the bounds on δq in result (vi), the upper bound is a straightforward consequence

of the second inequality provided in lemma B.4, and noting that: q/2 = Φ(zq) and δq = σSzq.

The lower bound follows from the lower bound given in the first inequality in lemma B.4.

The restriction q ≥ 0.0002 in the statement of the lower bound result in (vi) is needed to

bound the quantity {(1 + z2
q)/zq} that inevitably comes up while using the inequality from

the lemma. In particular, this restriction implies that {(1 + z2
q)/zq} ≤ 5

√
2/π and ensures

the final bound stated in the result. This completes the proof of result (vi) in theorem 3.4.

Finally, to show the results in (v) regarding π−q , π+
q and πq, we first note that:

π−q ≡ P(Y = 1 | S ≤ δq) = E{P(Y = 1 |X, S) | S ≤ δq}

= E{P(Y = 1 |X) | S ≤ δq} = E{ψ(β′0X) | S ≤ δq}

≤ E
{
eβ
′
0X | S ≤ δq

}
= e

1
2
η20

Φ(−zq − σSβ′0γ0)

Φ(−zq)
, (B.17)

π+
q ≡ P(Y = 0 | S ≥ δq) = E{P(Y = 0 |X, S) | S ≥ δq}

= E{P(Y = 0 |X) | S ≥ δq} = E{ψ(−β′0X) | S ≥ δq}

≤ E
{
e−β

′
0X | S ≥ δq

}
=

Φ(−zq − σSβ′0γ0)

Φ(−zq)
eη

2
0/2, (B.18)
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and therefore, we have:

πq ≡
1

2
(π−q + π+

q ) ≤ e
1
2
η20

Φ(−zq − σSβ′0γ0)

Φ(−zq)
. (B.19)

For both (B.17) and (B.18), the second steps use the fact that (Y ⊥⊥ S) |X, and the final

bounds follow, similar to the earlier proofs for the results in (iii), from straightforward uses

of the results regarding m.g.f.s of truncated normal distributions given in lemma B.5, as well

as use of the relationship between X and S given by: X = γ0S + ε with ε ∼ Np(0,Γ) and

ε ⊥⊥ S, and noting the definitions of γ0, Γ and η0. (B.19) therefore establishes the first bound

in result (v) of theorem 3.4. The subsequent bounds in result (v) now follow from (B.19)

along with straightforward uses of the first inequality (both the upper and lower bounds)

given in lemma B.4 noting that β′0γ0 > 0 by assumption, as well as using the fact that

σsβ
′
0γ0 ≡ ρ̃0η0. All the claims in result (v) are now established, and the proof of theorem

3.4 is complete.
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