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Abstract

One major aim of statistics is to systematically study outcomes of interest in a population by

observing the properties of a sample of that population. Some outcomes, such as the total number of

people infected in an epidemic, can depend on properties of the whole population, such as the structure

of contacts among the individuals, or contact network. A network is a collection of individuals as well as

the pairwise connections between them. This dissertation explores how the effects of network structure

on infectious outcomes yield challenges for statistical analysis, and suggests strategies to address them.

In Section I, we consider an intervention to reduce the spread of an epidemic on a collection of indi-

viduals in partially-connected networks, and show how network structure and mixing across networks

can reduce the probability of observing true intervention effects, or statistical power. In Section II, we

show how accounting for estimated properties of an epidemic contact network can improve statisti-

cal power, and that this improvement depends on the properties of the whole network as well as the

epidemic spreading through them. Finally, in Section III, we derive the conditions under which a par-

ticular kind of network — the Degree-Corrected Stochastic Blockmodel — is susceptible to extensive

epidemic spread, enabling statistical analysts to estimate when and to what extent the challenges and

corrections explored here require consideration. We will conclude with a discussion of how the esti-

mates and derivations in the final two sections can be used as adjustment covariates when assessing

the effect of treatment on epidemic spread.
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Section I: Challenges in Cluster Randomized Trials with
Contact Network Structure

Whenever possible, the efficacy of a new treatment is investigated by randomly assigning some individ-

uals to a treatment and others to control, and comparing the outcomes between the two groups. Often,

when the treatment aims to slow an infectious disease, clusters of individuals are assigned to each

treatment arm. The structure of interactions within and between clusters can reduce the power of the

trial, i.e. the probability of correctly detecting a real treatment effect. We investigate the relationships

among power, within-cluster structure, cross-contamination via between-cluster mixing, and infectiv-

ity by simulating an infectious process on a collection of clusters. We demonstrate that compared to

simulation-based methods, current formula-based power calculations may be conservative for low lev-

els of between-cluster mixing, but failing to account for moderate or high amounts can result in severely

underpowered studies. Power also depends on within-cluster network structure for certain kinds of in-

fectious spreading. Infections that spread opportunistically through highly connected individuals have

unpredictable infectious breakouts, making it harder to distinguish between random variation and real

treatment effects. This approach can be used before conducting a trial to assess power using network

information, and we demonstrate how empirical data can inform the extent of between-cluster mixing.



Introduction

In order to determine how effective a treatment is, it is common to randomly assign test subjects to

different treatment arms. In one arm, subjects receive the experimental treatment, and subjects in the

other arm receive usual care or a placebo. Randomization helps to ensure that the treatment is the

cause of any difference in outcomes between the subjects in the two treatment arms, as opposed to

some pre-treatment characteristics of the individuals. If the treatment is effective, the probability that

a trial will find a statistically significant difference attributed to the treatment is called the power of

the trial1. Adequate power requires a sufficiently large number of subjects to be tested, which can be

expensive or infeasible. Underpowered studies are not only less likely to find a true relationship if one

exists, but they are also more likely to erroneously conclude that an effect exists when it does not.2 3

In order to control the probability of these errors, it is important to be able to accurately assess power

before conducting a study.

When designing a randomized trial, we may not want or be able to randomly assign individuals to

treatment. Individuals may be members of a cluster with complex interactions, which makes it infea-

sible or unethical to assign some individuals within a cluster to treatment and others to control. For

example, the spread of HIV from infected to uninfected individuals in a small village might be slowed

by offering its members information about safer sexual practices. In this case, it may be difficult or un-

ethical to keep treated individuals’ sex partners from sharing information or resources. We may instead

choose to randomly select villages to participate in this regime, where villages correspond to naturally

occurring clusters, and to compare HIV infection rates between treatment and control villages. This

type of experiment is called a Cluster Randomized Trial (CRT).4 5 6 7 Several CRTs are underway to reduce

the incidence of new cases of HIV in contact networks, including the BCPP8, PopART9, and SEARCH10

trials.

The correlation in outcomes of individuals within a cluster (e.g. HIV infection statuses) is known to

reduce the power of a trial5. This correlation is generally summarized by a single parameter, called the

Intracluster Correlation Coefficient (ICC)4, which is the average pairwise correlation of outcomes within

clusters. This measure assumes that the correlation in outcomes for any two individuals within a cluster

is identical. However, the structure of relationships within a cluster can be heterogeneous, and power

may depend on that structure, which is not captured by the ICC. Usually, this structure is either ig-

nored11 or analysis is performed using methods that allow it to be left unspecified12. Furthermore,

individuals are often likely to interact with others not only in the same cluster but also in other clusters.
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Cross-contamination13 or interference14 occurs when subjects’ outcomes depend not only on the treatment

to which they are assigned, but on the treatment assignments of other subjects as well. This can reduce

the difference in outcomes between treated and untreated clusters, thereby decreasing power15. For ex-

ample, economic ties may exist between villages, the residents of which might then share information

related to the treatment. In the context of infectious spread through clusters, cross-contamination would

occur if infectious contact takes place across clusters. If the treatment succeeds in slowing the infection

rate in the treatment cluster, mixing between clusters will decrease the difference between outcomes

across clusters, so the power to detect a treatment effect will decrease and the probability of a false

discovery will increase. This must be addressed either by adding more clusters to the trial or increasing

cluster sizes, both of which could be difficult and costly. This issue is also often left unaddressed.16 17

The effect of within-cluster structure and between-cluster mixing may depend on the type of infection

spreading through each cluster. For example, a highly contagious infectious disease like the flu can

spread more efficiently through more highly connected individuals18. Other infectious diseases, such

as a sexually transmitted disease, can only be transmitted to one person at a time, no matter how many

partners one has. The number of individuals whom an infected person may infect at a given time is the

person’s infectivity. This quantity likely differs from person to person, and it depends crucially on the

transmission dynamics of the disease.

In this section, we study, via simulation, the effect of within-cluster structure, the extent of between-

cluster mixing, and infectivity on statistical power in CRTs. We simulate the spread of an infectious

process and investigate how power is affected by features of the process. Specifically, we consider two

infections with different infectivities spreading through a collection of clusters. We use a matched-pairs

design, wherein clusters in the study are paired, and each pair has one cluster assigned to treatment one

to control7. We model the complex within-cluster correlation structure as a network in which edges

represent possible transmission pathways between two individuals, comparing results across three dif-

ferent well-known network models. To model one type of cross-contamination, we introduce a single

parameter γ that summarizes the extent of mixing between the two clusters comprising each cluster

pair. This approach departs from standard power calculations for CRTs, in which the researcher applies

a formula that determines the required sample size as a function of the number and size of clusters, the

ICC, and the effect size19. Figure 1 depicts the different assumptions behind these two approaches. We

show that our measure of mixing between clusters can have a strong effect on experimental power, or

the probability of correctly detecting a real treatment effect. We also show that within-cluster structure

can affect power for certain kinds of infectivity. We contrast this method to standard power calcula-

tions. We end by demonstrating how to assess between-cluster mixing before designing a hypothetical
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CRT, using a network dataset of inter-regional cell phone calls.

a 

b 

Figure 1: A schematic comparing the Intracluster Correlation Coefficient (ICC) approach to the design of this study.
Each panel shows a cluster pair, and each enclosure represents a cluster. Panel a depicts cluster pair outcomes (cir-
cle colors) which are correlated (gray shading) within each cluster according to the ICC. In contrast, Panel b shows
specific relationships (contact network ties) among individuals both within and between the two clusters, and out-
comes among them will depend on an infection spreading only through these ties. We show that modeling both
contact network structure and the spreading process explicitly rather than modeling correlations across outcomes
results in new findings about power in CRTs.

Methods

Simulation of Cluster Randomized Trials

We simulate both within-cluster structure and between-cluster mixing using network models. We sim-

ulate pairs of clusters with each cluster in each pair initially generated as a stand-alone network. We

examine the Erdös-Rényi (ER)20, Barabási-Albert (BA)21, and stochastic blockmodel (SBM)22 random

networks, and we simulate 2C clusters comprised of n nodes each. In order to explicitly allow for

between-cluster mixing, we define a between-cluster mixing parameter γ as the number of network
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edges between the treatment cluster and the control cluster, divided by the total number of edges in the

cluster pair. To ensure that proportion γ of the edges are shared across clusters, we perform degree-

preserving rewiring23 within each of the C cluster-pairs until proportion γ edges are shared between

clusters. We then use a compartmental model to simulate the spread of an infection across each cluster

pair24. All nodes are either susceptible (S) or infected (I), and nodes may only transition from S to

I. The number of neighbors each node can potentially infect at any given time is called its infectivity.

We consider both unit and degree infectivity, for which infected nodes may contact one or all of their

neighbors at a given time, respectively. Treated and control clusters infect their neighbors with equal

probability under the null hypothesis, and infected individuals in treatment clusters infect with reduced

probability under the alternative hypothesis. Finally, we analyze the resulting trial under two different

analysis scenarios, and we juxtapose our findings with a standard power calculation19.

Networks

Infectious disease dynamics have been studied extensively using deterministic ordinary differential

equations25 as well as network simulations26. Using networks to simulate the spread of infection allows

rich epidemic detail, and this added complexity facilitates exploration of the effect of cluster structure

on power in CRTs. A brief treatment of these features using differential equations is in the Additional

Details subsection.

A simple network G consists of a set of n nodes (individuals) and a set of binary pairwise edges (relation-

ships) between the nodes. This structure can be compactly expressed by a symmetric adjacency matrix

An×n. If an edge exists between individuals i and j then Aij = Aji = 1, and 0 otherwise. The degree of

node i, denoted by ki, is the number of edges connecting node i to other nodes in the network. Networks

can be used to describe complex systems like social communities, the structure of metabolic pathways,

and the World Wide Web; many reviews of this work are available.27 28 29 30

A random network ensemble is a collection of all possible networks specified either by a probability model

or a mechanistic model28. The simplest and most studied random network is the Erdös-Rényi (ER)

model20, which assumes that each potential edge between any pair of nodes in a network occurs in-

dependently with unit probability. Nodes in an ER network tend to have degrees close to their shared

expected value, while in real-world social and contact networks, the distribution of node degrees is typ-

ically heavy-tailed: a few nodes are very highly connected (“hubs”), but most have small degree. To cap-

ture degree heterogeneity, we also simulate networks from the Barabási-Albert (BA) model.31 21 These
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networks are generated beginning with a small group of connected nodes and successively adding

nodes one at a time, connecting them to the nodes in the existing network with probability proportional

to the degree of each existing node. This mechanism has been shown to yield a power-law degree

distribution:21 P(k) ∼ k−α with α = 3. This distribution is heavy-tailed, so the probability that some in-

dividuals are highly connected is more likely than in other network models like the ER. While it can be

difficult to assess whether an observed network has a power-law degree distribution32, the BA model

comes closer to capturing the heavy-tailed degree distributions observed in social networks than the ER

model. Another hallmark of real-world social networks is that individuals tend to cluster together into

communities, or groups of individuals who share more edges with each other than between them33. We

use stochastic blockmodels (SBMs)22 to model within-cluster communities by assuming that each node

is a member of a one block in a partition of blocks B comprising all nodes in the network, and that

the probability of an edge between two nodes depends only on block membership (see Additional De-

tails). Other popular families of random networks include Exponential Random Graphs (ERGMs)34

and Small-World network of Watts and Strogatz, among others35. We leave their implications for CRTs

for future research. Network instances generated using Python’s networkx library. Each node within

each cluster has the same expected number of edges 〈k〉 = 4. For Figures 4 and 5, we chose C = 20 and

n = 300, because for γ = 0 these parameters yield empirical power within 0.8− 0.9, which is a typical

range used in cluster randomized trials.

Network Mixing

In each cluster pair, one cluster is randomly assigned to treatment and the other is not. The mixing

parameter γ can be expressed in terms of the entries in the adjacency matrix, A, and the treatment

assignment of clusters:

γ : =
∑ij Aij

(
1− δ(ri,rj)

)
∑ij Aij

(1)

= 1− 1
2m ∑

ij
Aijδ(ri,rj). (2)

Here, m := ∑i<j Aij is the total number of edges in the study, ri = 1 if node i is in the treatment arm and

ri = 0 otherwise, and δ(a,b) is equal to 1 when a = b and 0 otherwise. This definition of between-cluster

mixing is closely related to the concept of modularity, used extensively in network community detection
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(see Additional Details). If γ = 0, the two clusters share no edges with each other. If γ = 1/2, there are

as many edges reaching across two clusters as exist within them. Finally, if γ = 1, edges are only found

between clusters, and the cluster pair network is said to be bipartite. A schematic of network mixing is

shown in Figure 2.

a 

c d 

b 

Figure 2: A diagram showing two clusters with various proportions of mixing.

Network Rewiring

We first simulate two random networks from the same network model and with the same number

of edges, each corresponding to a cluster in a pair of clusters. Then, we randomly select one edge

from each cluster in the pair and remove these two edges. Finally we create two new edges among the

four nodes such that the two edges reach across the cluster pair. This process is called degree-preserving

rewiring23 because it preserves the degrees of all the nodes involved. The process is depicted in Figure

3. We repeat the rewiring process until proportion γ of the total edges are rewired. The result is a single

cluster pair in our simulated CRT, and the pair-generating process is repeated until we have generated

our target number of cluster pairs.
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𝑟 = 0 𝑟 = 1 𝑟 = 0 𝑟 = 1 

𝑟 = 0 𝑟 = 1 𝑟 = 0 𝑟 = 1 

a b 

d c 

Figure 3: Degree-preserving rewiring is performed by selecting an edge within each cluster, and swapping them
to reach across the cluster pair. The dashed gray lines represent another way the edges could have been rewired
while still preserving degree; either rewiring is chosen with equal probability.

Infectious Spread

Compartmental models assume that each node in a population is in one of a few possible states,

or compartments, and that individuals switch between these compartments according to some rules.

Although more realistic models include more states36, we will assume for simplicity that nodes are

in only one of two states: uninfected but susceptible (S), and infected and contagious (I). We assume

that the network structure of each cluster pair represents the possible transmission paths from infected

nodes to susceptible ones.

Let Iirct represent the infectious status for node i in treatment arm r = {0,1} and cluster pair c = 1, ...,C

at discrete time t = 1, ..., Tc, with Iirct = 1 if the node is infected and 0 otherwise. We define r = 0 if node

i is in the control arm, and r = 1 if i is in the treatment arm. Let Irct := 〈Iirct〉 represent the proportion

of infected nodes in cluster pair c at discrete time t. At the beginning of the study, 1% of individuals in

each cluster is infected, i.e. Irc0 = 0.01. For each time step t, each node i selects qi network neighbors at

random, and infects each one with probability pi. Because different infectious diseases have different

infectivity behavior, we study both unit and degree infectivity, or qi = 1 and qi = ki, respectively. We

assume that the infection probability depends only on the treatment arm membership of each node ri,

thus pi = pri . Treatment reduces the probability pri of infection. If two clusters in a pair have the same

infection rate, the treatment has no effect and pri = p. This is the null hypothesis under examination in

our hypothetical study. When we simulate trials under the null hypothesis we set p = 0.30 in every
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cluster. The alternative hypothesis holds if the treatment succeeds in reducing the infection rate, p1 < p0.

When we simulate under the alternative hypothesis, p0 = 0.30 and p1 = 0.25. The trial ends when the

cumulative incidence of infection grows to 10% of the population, i.e., when the cluster pair infection

rate 〈IircTc〉 = 0.1 for some time Tc.

Analysis

At the end of the simulation, we test whether the treatment was effective by comparing the number

of infections between treated and control clusters according to two analysis scenarios. In real-world

CRTs, the most efficient and robust way to compare the two groups depends on what information about

the infection can feasibly be gathered from the trial. In some trials, surveying the infectious status of

individuals is difficult, and therefore this information is only available for the beginning and end time

points of the trial. In others, the times to infection for each node are available. In addition to what

information is available, the researcher must choose a statistical test according to which assumptions

they find suitable to their study. A model-based test assumes that the data are generated according to a

particular model, which can be more powerful than other tests if the model is true37. Alternatively, a

permutation test38 does not make any assumptions about how the data were generated. To show how

to conduct an analysis suited to different scenarios based on available data, we analyzed our simulated

trial using two different sets of assumptions. In Scenario 1, we assume that outcomes are only known

at the end of the trial, and perform a model-based test. In Scenario 2, we assume that the time to

each infection is known, and perform a permutation test. We show that the results of the simulation are

qualitatively similar under both scenarios. (Note that it is possible to use a permutation test for Scenario

1 or a model-based test for Scenario 2, which would create two new analyses.) For both scenarios,

pseudo-code for carrying out a simulation-based power calculation for a CRT studying an infectious

spread through networks is as follows:
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1) For all clusters in the study:

a) Ascertain or conjecture within-cluster network structure

and between-cluster mixing for clusters.

2) Repeat several times:

a) Simulate a collection of networks consistent with cluster

structure and mixing properties.

b) Simulate an infectious spread through networks.

3) Assess the empirical power of the simulation using the

outcomes from the spreading process. Power calculations for

two study scenarios are detailed below.

Table 1: Our simulation algorithm used to assess the effect of within-cluster structure, between-cluster mixing and
infectivity on statistical power.

Scenario 1: The log risk ratio is the logarithmic ratio of infected individuals in the treatment clusters to

the control clusters at the end of study. For simulation m, let I(0)m := 〈log I0cTc
I1cTc
〉 = 〈log I0cTc − log I1cTc〉

be the difference in the number of infections between two clusters in a pair averaged over each of the

C cluster pairs at the trial end Tc. The simulation was repeated 20,000 times under the null hypothesis

and cutoff values I∗2.5 and I∗97.5 were established such that P(I∗2.5 < I(0)m < I∗97.5) = α for significance level

α = .05. We repeated this process under the alternative 20,000 times, and the proportion of these trials

with statistics I(A)
m more extreme than (I∗2.5, I∗97.5) is the simulated power or empirical power.

Scenario 2: We pool the individual infection times for the treatment arm and the control arm, and sum-

marize the difference between the two arms’ infection times using an appropriate statistic (e.g. the

logrank statistic39). The permutation test is performed by comparing the observed logrank statistic to

the distribution of log-rank statistics when the treatment labels are permuted, or switched, for each clus-

ter pair. The p-value for this analysis is the proportion of times the log-rank statistic with the real labels

is more extreme than the permuted log-rank statistics. Because the permutation test is computationally

expensive, this entire process is repeated 2,000 times, and we calculate the proportion of permutation

p-values below 0.05, which is the empirical or simulated power.

We also compare this formulation to traditional methods. From Hayes and Bennett19, the number of

clusters required for power β in a CRT with binary outcomes is:
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C = 2 + (zα/2 + zβ)
2 ×

[
π0(1− π0)

n
+

π1(1− π1)

n
+ k2(π2

0 + π2
1)

]/
(π0 − π1)

2 (3)

To calculate power, we fix n = 300,C = 20, and α = 0.05, and solve for power β. In this formula, π0 and

π1 are the mean proportion of outcomes within control and treated clusters, and k is the coefficient of

variation, which is directly related to the ICC ρ 6 40 :

k =

√
ρ× 1− π̂

π̂
(4)

Where π̂ is the overall prevalence by study end. This calculation assumes that the log risk ratio by study

end log
(

π0
π1

)
takes on the values observed in our simulation setting 0.135 for no between-cluster mixing

γ = 0, and the overall prevalence is 10%, both assumed to be accurately estimated from a small pilot

study. The value from the ICC must also be assumed beforehand or estimated in a small pilot study.

To compare this approach with our simulation design, we assumed that the ICC took on a range of

plausible empirical values 0.0− 0.1 reported in the literature.7 40 41 For more details, see the Additional

Details subsection.

Results

We begin by showing the effect of the mixing parameter γ on the infection risk ratios between treated

and untreated clusters. The means and standard deviations of simulated risk ratios observed under

Scenario 1 are presented in Figure 4.
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Figure 4: The log risk ratio means and standard deviations under Scenario 1. The rows correspond to the means
(Panels a and b) and standard deviations (Panels c and d), shown on the y axis. The x-axis is the value of the
mixing parameter γ, and each curve represents the three within-cluster network structures. The left column shows
the spread of an infection in which an infected node may only infect one neighbor per time step (unit infectivity),
whereas the right column assumes one may spread an infection to each of their neighbors (degree infectivity). We
see that network topology has an effect on the variation of the log rate ratio only in the latter case.

For both kinds of infectivity, neither the heavy-tailed degree distribution of the BA network nor the

within-cluster community structure of the SBM network dramatically impacts the differences between

the proportion of infections in the treated and controlled clusters in each pair (top row) compared to

the ER network. The differences between the risk of infections in the treated and untreated cluster pairs

decreases as mixing increases, and reverses direction when γ > 1/2. This is expected because for this

range of between-cluster mixing, infected individuals in the treatment cluster are more likely to contact

members of the untreated cluster and vice versa, which is unlikely in practice but is included here for

completeness. In almost all cases, the variation in the simulated studies’ average log risk ratio decreases

uniformly as γ increases, which suggests that increasing the amount of mixing across communities

results in less variation in the average rate of infections. However, the BA network is an exception.

Under degree infectivity, when individuals can infect everyone to whom they are connected in a single

time step, an infected node with large degree may spread its infection to each of its contacts at a single
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time point, which can cause a very fast outbreak. However, highly-connected individuals are rare, so

in this case outbreaks are large but infrequent, increasing the variation in observed differences between

treated and untreated clusters. This variation means that more clusters are required to estimate the

average treatment effect with any precision. In other words, rare outbreaks make it harder to distinguish

whether differences between the treatment arm and control arm are due to treatment or to a chance

outbreak occurring in either arm. Therefore, under degree infectivity, the BA network results in less

power than the SBM or ER networks, which shows that within-cluster network structure can impact

the power to detect treatment effects in CRTs for certain kinds of infections.

For the two analysis scenarios described in Methods, we can directly estimate empirical power as the

proportion of simulations resulting in the rejection of the null hypothesis at the α = 0.05 level under

the alternative for a range of mixing values γ. Our results, as well as a comparison with the standard

approach, are summarized in Figure 5.

Figure 5: Estimated power for each scenario. The blue, red, and green lines represent the ER, BA, and SBM network
models, respectively. The top row shows results for Scenario 1, and the bottom row shows results for Scenario 2.
The left column shows unit infectivity, and the right column shows degree infectivity. The horizontal gray bars
represent the expected power using the standard approach for a range of plausible values for the ICC.
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In all settings, power is lowest when γ ≈ 1/2, with approximately the same number of edges between

clusters as within them. Scenarios 1 and 2 (the top and bottom rows, respectively) show few differences

from one another, which suggests that the two strategies for significance testing tend to give qualita-

tively similar results. Unit infectivity (lefthand column) shows no differences in power among network

types. This is not the case for degree infectivity (righthand column), in which the BA network shows

less power than the other networks, for the reasons discussed above. Finally, the gray bars indicate

that when no mixing is present, standard power calculations are conservative for all network types we

studied, and no sample size adjustment may be needed. However, moderate to severe between-cluster

mixing can greatly overestimate expected power. In the case of the BA network and degree infectivity,

the standard approach always overestimates trial power.

Size and Number of Study Clusters

Our results so far have shown how power in CRTs is affected by between-cluster mixing, within-cluster

structure, and infectivity. Next, we show how power relates to other trial features, namely the size and

number of clusters, n and C, respectively. The results are qualitatively similar for Scenarios 1 and 2, and

the results shown in Table 6 are for Scenario 1. The table shows results for each combination of a range

of cluster sizes n = {100,300,1000} and numbers C = {5,10,20} as a 3× 3 grid of pairs of cells. Each

cell pair is a side-by-side comparison of results for unit infectivity (lefthand cell) and degree infectivity

(righthand cell). Each cell shows simulated results for within-cluster structure (columns) as well as

amount of between-cluster mixing (rows). Considering the case of C = 10,n = 300 (the middle-most

cell pair), we notice a few trends. We see that increasing mixing (looking down each column) decreases

power in all cases. We can directly compare the two types of infectivity (comparing cells in the pair), and

see that all the entries are similar except for the BA network (middle column). For BA networks, power

is much lower for degree infectivity spreading compared to unit infectivity. This suggests that CRTs

with network structure similar to BA networks can have substantially less power when the infection

spreads in proportion to how connected each node is. Finally, we may compare studies of differing

cluster numbers and sizes (comparing cell pairs), and see qualitatively similar results: in each case,

more or larger clusters in the study (cell pairs further down or right) result in more power overall.

When power is very high (bottom-right cell pair), within-cluster structure affects results less. Therefore,

careful consideration of expected power is most important when trial resources are limited, which is

often the case in practice.
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C = 5 C = 10 C = 20
Unit Degree Unit Degree Unit Degree

n = 100

0.13 0.14 0.14 0.12 0.10 0.12 0.22 0.22 0.23 0.19 0.16 0.20 0.39 0.39 0.38 0.34 0.28 0.37 γ = 0.0
0.10 0.10 0.10 0.11 0.09 0.10 0.15 0.17 0.15 0.18 0.12 0.16 0.27 0.27 0.24 0.26 0.21 0.26 γ = 0.1
0.08 0.08 0.07 0.09 0.07 0.09 0.09 0.13 0.11 0.11 0.11 0.13 0.15 0.15 0.15 0.22 0.15 0.18 γ = 0.2
0.07 0.06 0.06 0.07 0.06 0.07 0.08 0.09 0.06 0.08 0.08 0.08 0.10 0.09 0.10 0.11 0.11 0.11 γ = 0.3

n = 300

0.34 0.33 0.32 0.33 0.20 0.33 0.57 0.55 0.57 0.59 0.34 0.56 0.85 0.86 0.86 0.87 0.57 0.87 γ = 0.0
0.21 0.22 0.21 0.25 0.13 0.27 0.39 0.39 0.39 0.46 0.28 0.46 0.63 0.65 0.65 0.71 0.44 0.70 γ = 0.1
0.16 0.15 0.15 0.17 0.14 0.19 0.23 0.22 0.22 0.28 0.19 0.30 0.41 0.43 0.40 0.52 0.38 0.44 γ = 0.2
0.08 0.08 0.08 0.12 0.10 0.10 0.13 0.14 0.13 0.14 0.13 0.17 0.21 0.21 0.19 0.28 0.24 0.27 γ = 0.3

n = 1000

0.78 0.80 0.76 0.84 0.39 0.81 0.97 0.97 0.97 0.98 0.75 0.98 1.00 1.00 1.00 1.00 0.95 1.00 γ = 0.0
0.61 0.57 0.59 0.69 0.38 0.67 0.85 0.86 0.85 0.93 0.61 0.91 0.99 0.99 0.99 1.00 0.91 1.00 γ = 0.1
0.39 0.37 0.36 0.47 0.31 0.51 0.62 0.60 0.59 0.76 0.52 0.76 0.89 0.90 0.87 0.97 0.83 0.96 γ = 0.2
0.15 0.19 0.16 0.30 0.21 0.28 0.31 0.33 0.36 0.49 0.36 0.45 0.58 0.56 0.57 0.74 0.62 0.73 γ = 0.3

ER BA SBM

Figure 6: Experimental power in our simulation framework for different sizes and numbers of cluster pairs, n and
C, respectively, for Scenario 1. Each cell shows output for 3,000 simulations of each combination of n and C, all
three within-cluster structures, various values of mixing parameter γ, and both unit and degree infectivity. The
results are similar for Scenario 2.

Empirical Estimation of the Extent of Mixing

Finally, we show how our mixing parameter can be estimated using data in the planning stages of a

hypothetical CRT. Sometimes the entire network structure between individuals in a prospective trial

is known beforehand, such as the sexual contact network on Likoma Island42. In this case, between-

cluster mixing can be estimated using Equation 2. In other trials, perhaps only partial information

is known, like the degree distribution21 and/or the proportion of ties between clusters. In this case,

clusters can be generated that preserve partial network information such as degree distribution,43 44 and

degree-preserving rewiring can be performed until proportion γ of ties between clusters is observed,

where this quantity is estimated from the network data, if possible.

The structure of calls between cell phones is often persistent over time45 and indicative of actual social

relationships46. We use a network of cell phone calls as a proxy for a contact network, we use our defi-

nition of between-cluster mixing to estimate the amount of mixing between hypothetical clusters. The

dataset consists of all the calls made between cellphones of a large mobile carrier within a quarter year.

Individual phone numbers were anonymized, and we only report results for the number of individuals

and calls within or between zip codes.

The dataset contains phone calls originating from Z = 3806 different zip codes, and we define a cluster

as a collection of zip codes that are spatially close to one another. Because zip codes are numerically

assigned according to spatial location, we assume that zip codes that are numerically contiguous to each
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other are also close to each other spatially. Therefore, zip code z = 1, ..., Z assigned to cluster cz = 1, ...,2C

is

cz :=
⌈ z

Z
2C
⌉

(5)

where 2C is the total number of clusters in the trial, and d·e is the ceiling function. Once the num-

ber of clusters 2C is specified, clusters may be paired, with one cluster in each pair randomized to a

hypothetical treatment, and the other to the control condition.

For this dataset, we consider two definitions for the number of edges shared between individuals, one

in which they are unweighted and one in which they are weighted by the number of calls between

them. That is, we consider two definitions for an edge Aij between individuals i and j, belonging to

clusters ci and cj respectively. The number of calls between i and j over the period of investigation is

defined as dij. For Definition 1, we assume and edge exists between the two individuals if they have

called each other at least once, Aij = I(dij ≥ 1), and otherwise no edge exists between them Aij = 0.

For Definition 2, we assume an edge between them may be weighted by the number of total calls made

between them, Aij = dij. Using both definitions, we found the degree distribution of each cell phone to

be heavy-tailed (see Additional Details).

Next, we estimate mixing parameter γ for this dataset. For a range of numbers of cluster pairs C, we

cluster all Z zip codes into 2C clusters, and randomize one cluster in each pair to a hypothetical treat-

ment, and the other to a control. For 200 randomizations, we calculate the between-cluster mixing

parameter γ according to Equation 2. We examine the relationship between γ and the number of clus-

ters C. The mean and (2.5,97.5) percentiles of these estimates as a function of the number of clusters

number C are shown in Figure 7.
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Figure 7: A log-linear plot displaying empirical values of mixing parameter γ. The y axis shows the mean and
(2.5,97.5) quantiles of these estimates. The x axis in each panel corresponds to a range of cluster numbers C.

Figure 7 displays a number of distinct trends. As the number of clusters increases, fewer of the total zip

codes are included in each cluster, and the number of calls between clusters increases. This means that

individuals are more likely to call others in zip codes geographically closer to them, which has been con-

firmed in other phone communication networks47. Between-cluster mixing unweighted by the number

of calls (blue) results in higher estimates of γ than weighted (red), which means that when individuals

call others outside their cluster, they tend to call those people less than others they call within their

cluster. There is significant between-cluster mixing for all values of C, implying that between-cluster

mixing would significantly decrease the power of a trial that assumes each cluster to be independent

(γ = 0). Furthermore, as the number of clusters increases, the average cluster size decreases, and mix-

ing reaches a maximum of γ = 0.45. Extrapolating from our simulation framework, power could be

reduced dramatically in this case.

Discussion

Before conducting a trial, it is important to have an estimate of statistical power in order to assess the

risks of failing to find true effects and of spurious results. If individuals belong to interrelated clusters,

randomly assigning them to treatment or control may not be a palatable option, and CRTs can be used
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to test for treatment effects. Power in CRTs is known to depend on the number and size of clusters, as

well as the amount of correlation within each cluster. However, within-cluster correlation structure is

often measured by a single number and clusters are usually assumed to be independent of one another.

Unfortunately, these assumptions can produce misleading estimates of power.

To investigate this problem, we studied the effects of complex within-cluster structure, a measure of

between-cluster mixing strength, and infectivity on power by simulating a matched-pairs CRT for an

infectious process. We simulated a collection of cluster pairs as a network, controlling the proportion of

edges shared across each pair. We then simulated an SI infectious process on each cluster pair, with one

cluster assigned to treatment and the other assigned to control. The effect of treatment in this simulation

lowered the probability that an infected individual succeeds at infecting a susceptible neighbor. We also

considered two types of infectivity: unit and degree.

We found that between-cluster mixing had a profound effect on statistical power, no matter what net-

work or infectious process was simulated. As the number of edges shared across clusters in different

treatment groups increased to 1/2, on average the two clusters were nearly indistinguishable, and thus

power fell to nearly zero. This is not surprising, but most power calculations assume clusters are inde-

pendent, and this issue is usually left unaddressed. We compared these findings to the ICC approach,

and found it will significantly underestimate expected power if the extent of between-cluster mixing is

moderate to severe.

The effect of within-cluster structure was more nuanced. For degree infectivity, the spread of infection

was less predictable if the network contained some highly-connected nodes, due to the variation in

and strong effects of these hubs becoming infected. We did not observe this level of variability for

networks without highly-connected hub nodes. We also did not observe this level of variability for

unit infectivity, regardless of how many hubs were present in the network. Taken together, we found

that for the network structures we studied, within-cluster structure had a significant impact on power

only when the infectious process exhibited degree infectivity. The effect of within-cluster structure and

between-cluster mixing on statistical power are qualitatively similar for a range of cluster sizes and

numbers, although (as is well known) an increase in either results in more power overall.

Our simulation framework, outlined in the pseudo-algorithm in Methods, can be used to estimate

power before an actual trial. If partial or full network information is available, it can be used to sim-

ulate an infectious processes using a compartmental model, and analyze the resulting outcomes as we

have described. We demonstrated how to estimate between-cluster mixing using a dataset composed
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of cellphone calls from a large mobile carrier, which are taken to represent a contact network. For a

hypothetical prospective trial on the individuals in this dataset, we defined a cluster as a group of in-

dividuals within a collection of contiguous zip codes. We then grouped clusters into pairs, randomly

assigned one cluster in each pair to a hypothetical treatment condition and the other to a control, and

estimated mixing parameter γ for each simulation. We found substantial between-cluster mixing for all

choices of cluster numbers, and mixing increased when clusters were chosen to be more numerous but

smaller. Estimates of between-cluster mixing ranged from moderate to severe, regardless of whether

the estimation adjusted for the frequency of calls or not.

We have shown that our simulation-based method of calculating power can differ quantitatively from

the formula-based method (see Figure 5). The two differ qualitatively as well. Traditional formula-

based power calculations have been developed outside the context of network theory and consequently

they do not take either within-cluster structure or between-cluster mixing into account. Furthermore,

although we selected a restrictively simple simulation for clarity of demonstration, simulations for an

actual prospective trial could include a much higher level of study-specific realistic detail, making a

simulation-based power calculation more appropriate to the given study. The methods that we propose

are most appropriate for studies in which the outcome is infectious, spreading through the population

via person-to-person contacts. We leave it to subject matter experts to recognize when this condition is

satisfied.

Our study invites several investigations and extensions. First, we have employed restrictively simple

network models and infectious spreading process, and more nuanced generalizations are available.

While our work shows how infectious spreading and complex structure can affect expected results in

CRTs, more specific circumstances require extensions with more tailored network designs and infection

types for power to be properly estimated. Second, we have focused our attention on matched-pair CRTs,

and our framework should be extended to other CRT designs used in practice7. Third, these findings

should be replicated in data for which both network structure and infectious spread are available.

19



Additional Details

Here, we provide additional details for a few topics discussed in the main body of this section. We

first demonstrate a simple approach to modeling infectious spread with between-cluster mixing using

ordinary differential equations, and compares this result to the simulation approach used earlier. We

then describe the ordinary stochastic blockmodel and provides details for the specific spatial version we

used above. The next subsection connects our definition of between-mixing parameter γ with a com-

mon metric used in applications of network science. We also describe how the Intracluster Correlation

Coefficient is defined, and we show estimates of this quantity for our simulations. The final subsection

shows the degree distribution for the empirical cell phone network, with discussion.

Ordinary Differential Equation Approach to Between-Cluster Mixing

One of the most common approaches to investigating the spread of an epidemic on networks is Ordi-

nary Differential Equations (ODEs)24 26. ODEs are functions of a variable in terms of its derivatives.

Compartmental models for epidemic spread can use ODEs to specify the rate of change for individuals

in terms of others. A common assumption used to specify ODEs for epidemic spread is mass action,

in which the spread of an infection depends only on the proportion of individuals in each compart-

ment. For example, an SI compartmental model assumes that individual i is either infected (Ii(t) = 1)

or not infected but susceptible (Si(t) = 1) at any time t. These two statuses are mutually exclusive, and

Si(t) = 1− Ii(t). An ordinary differential equation that assumes mass action would specify the change

in the total proportion of infected individuals I(t) := 〈Ii(t)〉 in terms of the infected proportion I(t)

at time t. If we assume mass action, we may model the rate of infectious growth in an SI compart-

mental model as proportional to the proportion of infected individuals multiplied by the proportion of

susceptible individuals:

dI(t)
dt

= pS(t)I(t) = p(1− I(t))I(t) (6)

In this section, we consider a collection of c = 1, ...,C cluster pairs, with one cluster in each pair assigned

to the treatment condition r = 1 and the other to control r = 0. Furthermore, we assume that clusters

are mixed according to mixing parameter γ, For the SI compartmental model, Iirc(t) = 1 if individual i
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is infected and 0 otherwise. We may assume that the spread of an infection across the network pair is

a mass action ODE as above, with a simple modification. Let Irc(t) = 〈Iirc(t)〉 represent the proportion

of infected nodes in cluster pair c at discrete time t. Individual i may contact an individual j in the

opposing cluster with probability γ. In this case, the probability of a successful infection requires that

i is susceptible and j is infectious. Mass action dictates that the rate of change for each cluster depends

only on the proportion of individuals in each infectious status for either cluster, which is now sum of

ODEs weighted by mixing parameter γ:

∂I0c(t)
∂t

= [(1− γ)I0c(t)p0 + γI1c(t)p1] (1− I0c(t)) (7)

∂I1c(t)
∂t

= [(1− γ)I1c(t)p1 + γI0c(t)p0] (1− I1c(t)) (8)

According to Equations 7 and 8, if γ = 0, the rate of infection in each cluster is identical to Equation 6.

As γ approaches 1/2, the difference in the proportion of infected individuals in the two treatment arms

decreases to no difference.

The ODE approach is quite comparable to the stochastic approach we used in this section. To show this,

we created network clusters with every node connected to each other in the cluster, performed degree-

corrected rewiring, simulated an infectious processes with unit infectivity on the pair, and averaged the

proportion of infections at each time step. Figure 8 shows the infection rates over time for a range of

mixing values γ = {0.0,0.1,0.2,1}. The solid lines shows the average of the network simulations. The

dashed lines show the a numerical solution to Equations 7 and 8. The two are comparable, suggesting

that differential equations and network simulations can approximately interchangeably describe the

same infectious process.
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Figure 8: The proportion of infections over time. The solid line is the mass action rate equation, and the dashed
lines are the mean of simulations of an infectious process on a complete (fully-connected) network. The infectious
process was simulated for γ = {0.0,0.1,0.2,1}, matching Figure 5. As γ approaches 1/2, the difference in infection
rates in two clusters in a pair decreases, demonstrated by the red and blue curves approaching each other. When
γ = 1, the relative rates of infections switch.

Where the differential equation approach assumes individuals contact everyone in the population, in-

fections spreading through fixed networks only allow contact through existing edges. This redundant

contact effect18 causes infections through networks to be slightly slower, also observable in Figure 8.

Modularity and Between-Mixing Parameter γ

Our definition of between-mixing parameter γ (Equation 2) has a convenient interpretation in terms of

findings in network science. Modularity Q is a measure of how well the individuals in a network and

their relationships fit into mutually exclusive groups48. For CRTs, we assume the natural groupings to

be the two treatment arms. If Q = 1, all edges exist within treatment arms. If Q = −1, all edges are

between the two treatment arms. The definition of modularity is written in the same terms as γ:
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Q :=
1

2m ∑
ij

(
Aij −

kik j

2m

)
δ(ri,rj) (9)

If the individuals between the two treatment arms have equal numbers of edges, ∑ij
kikj
(2m)2 δ(ri,rj) =

1/2, and γ = 1/2− Q. Therefore, if modularity can be computed, so can the mixing between the two

treatment arms. More generally, γ is entirely a function of cluster structure matrix A and treatment

assignments, so if an experimenter knows the structure of relationships among individuals in the study,

they may calculate the estimate the amount of mixing between the two treatment arms.

Details on the Stochastic Blockmodel

A stochastic blockmodel (SBM) is a probabilistic network model, which means that the probability of

an edge existing between nodes i and j is specified by probability pi,j. SBM assumes that each network

node is a member of a exactly one block in a partition of b blocks B = B1, ..., Bb, and the probability pi,j of

a connection between nodes i and j depends only on each node’s block membership. Denote the block

membership of node i as Bi. A probability matrix Pb×b describes all edge probabilities for a network,

with pi,j = PBi ,Bj . We will return to the stochastic blockmodel in later sections.

In this section, we imitate within-cluster community structure using a SBM. We assume each cluster

is comprised of blocks arranged in a triangular lattice structure. Blocks of nodes may be thought of

near each other in geographic location, and while most edges are contained within each block, blocks

share a few edges according to a triangular spatial pattern. We organized clusters into 10 equally-sized

blocks, and individuals within each block are connected to others within their block such that average

within-block degree is 9
10 〈k〉. For between-block connections, we also assume that each edge between

members of blocks share a total between-block degree of 1
10 〈k〉 with adjacent blocks according to the

lattice structure, and no edges with all other blocks. A diagram of this network ensemble is shown in

Figure 9.
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Figure 9: 10 communities or blocks within clusters were created according to the stochastic blockmodel, with a
small probability of community ties in a triangular lattice. Edge probabilities were selected to preserve the average
degree of a random network.

The ICC

The Intracluster Correlation Coefficient (ICC) is a measure of the average correlation between individ-

ual outcomes within a cluster. The ICC assumes that the correlation is identical for all pairs of indi-

viduals within a cluster, and is constant across clusters. The ICC can also be expressed as the ratio of

between-cluster variance to the total outcome variance in the study49. We calculated this value for each

network ensemble and value of γ in our simulations. These results are shown in Figure 10.
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Figure 10: ICCs from Scenario 1, averaged over all simulations. ICC values are shown for unit infectivity (Panel
a) and degree infectivity (Panel b), as well as each within-cluster structure and extent of between-cluster mixing
specified in our simulations.

These values are quite low, but not very far from typical values41 and lower values have been reported

in actual trials7. These values for the ICC are low because in our design, the data is collected for

each cluster pair when the average proportion of infections within each pair is 10%, which results in

relatively low variation in infection proportions for each cluster.

Like power, the relative value of the ICC depends on within-cluster structure, the amount of between-

cluster mixing, and infectivity. In the case of unit infectivity, the ICC shrinks as between-cluster mixing

increases for all within-cluster structures. However, in many power calculation formulas19, lower val-

ues of ICC indicate increased power, not less. This shows that even if sample size calculations account
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for within-cluster correlations as measured by the ICC, power can be reduced by other trial features,

such as the extent of between-cluster mixing.

Degree Distribution for an Empirical Cell Phone Network

This section specified two definitions for an edge between callers in the cell phone network, which are,

respectively, unweighted or weighted by the number of total number of calls made between each pair

of callers. The empirical degree distribution for both definitions are found in Figure 11.
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Figure 11: The empirical degree distribution for the calling network dataset. Panel a corresponds to Definition 1
(unweighted), and Panel b corresponds to Definition 2 (weighted).

Focusing on Panel a, we notice three distinct regimes. The vast majority of callers make calls with

1 − 100 others. The distribution of those who call a large number (100 − 1000) of others follows a

nearly straight line on these log-log plots, which is indicative of a power-law for this segment. Finally,

a few singular callers are found to call a very large number (> 1000) of callers within the quarter. The

general shape is similar for both the unweighted and weighted definitions. This degree distribution is
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in accordance to similar datasets analyzed in the literature47.
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Section II: Utilizing Network Properties to Improve Trial Power

In the previous section, we saw how mixing between treated and control contact networks in an epi-

demic process leads to reduced statistical power, or probability to observe a true reduction in spreading

rate. We also observed that the size of this reduction depends on the type of epidemic, the extent of mix-

ing and kind of network observed, and that these conditions may be met in empirical networks. In this

section, we will describe how to improve statistical power when studying treatment effects to reduce

epidemic spread in contact networks. We will again consider the cluster randomized trial, and utilize

an estimator of treatment effect — Augmented Generalized Estimating Equations — that reduces treat-

ment estimate variation by accounting for differences between the distribution of covariates in treated

and control clusters. By simulating cluster randomized trials without between cluster mixing, we will

estimate the size of the improvements to statistical power gained by measuring and including various

features of each network and pre-trial epidemic outcomes in the analysis. Finally, we will estimate how

much these gains are affected by a variety of network and epidemic characteristics.



Introduction

Infectious diseases such as HIV spreads through specific ties between individuals. For any fixed time,

these transmission routes constitute a network34 20 21 35 28. For a deleterious infection, a treatment aims

to reduce the probability of transmission from one node to another. In the context of HIV, one strategy

to reduce the overall rate of transmission is to test and treat all infected individuals, which is the goal

of several ongoing clinical trials8 9 10.

In order to determine if the treatment is effective, we may randomly assign some individuals to treat-

ment, and others to receive standard care or a placebo. This helps to ensure that average differences

between individuals in different treatment groups is caused by the treatment assignment, rather than

other characteristics of individuals belonging to the groups. Interference occurs when an individual’s

outcome depends on the outcomes of other individuals in addition to treatment assignment50. This can

be avoided by randomly assigning independent clusters of individuals to treatment and control, and

comparing the outcomes between clusters assigned to each treatment arm. This type of experiment is

called a Cluster Randomized Trial (CRT)4 7.

Generalized Estimating Equations (GEEs)51 are a semi-parametric approach for estimating treatment

effects when data are correlated4, and can be applied to CRTs. This approach has the advantage of

providing unbiased estimates of the average marginal treatment effect within the population, whereas

mixed effect models only provide an estimated intervention effect conditional on adjustment covari-

ates52. Despite randomizing clusters to either treatment arm, baseline covariates may be imbalanced

between treatment groups. Furthermore, most CRTs studying infectious processes do not use contact

network information to balance randomization (yet not all10), and more imbalance between treatment

arms may be related to how the infectious outcome depends on baseline contact network features. In

both cases, accounting for this covariate imbalance can improve the efficiency of treatment effect esti-

mates53, which could mean a reduction in treatment effect bias, standard error, or both.

In this section, we investigate the degree to which effect estimates are improved by adjusting for co-

variate imbalance in several simulated cluster randomized trials of epidemic processes in networks.

We first describe the network generation framework as well as the infectious process on them. Next, we

detail how these may be used as clusters in a CRT, and we describe the estimation of the intervention

effect while adjusting for network features using augmented GEE. We then describe the simulation of

each trial scenario, as well as various statistical properties of using each network feature adjustment.
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We then show and discuss the main results of our approach, and conclude with discussion.

Network Generation and Epidemic Spread

In this section, we will describe a generative and flexible contact network model. Then, we will detail

the epidemic dynamics used to simulate an infectious process.

Block Structure and Node Degree

Consider a network G with nodesN = {1, ...,n} and edges E ⊂ N ×N . The edges may be described in

an adjacency matrix En×n, which has value 1 if an edge exists between nodes i and j, and a 0 otherwise.

The stochastic blockmodel of Anderson, Wasserman, Faust22 assumes that each node i belongs to only

one block bi in a partition of nodes B = {1, ..., B}. The complete set of node memberships may be

represented compactly as a vector b = {b1, ...,bn}. In this model, the probability of an edge existing

between two nodes i and j depends only on block membership, thus P(Eij = 1) = pbibj
. Karrer and

Newman54 extend this model to the Degree-Corrected Stochastic Blockmodel, which allows each node to

have an arbitrary expected degree θi = E
(

∑j Eij

)
. The probability of an edge existing between two

nodes i and j depends only on their expected degrees and the probability of edges existing between

nodes of each block ωbi ,bj
. The probability of an edge existing between members of any two blocks

may be written compactly as a matrix ωB×B. The likelihood of this model assumes that the number

of edges between any two nodes i and j is independent and Poisson distributed with mean count bij,

where bij is the product of the expected degree of nodes i and j (θi and θj, respectively), multiplied by

the expected amount of mixing between the blocks of which i and j belong ωbi ,bj
. Karrer and Newman

define the likelihood of the Degree-Corrected Stochastic Blockmodel using the Poisson distribution for

mathematical convenience, but it implies that each pair of nodes may have more than one edge (a

multi-edge), but we do not expect many of these to occur. We will prove this directly in Section III, but

this for now we will give an intuitive argument. There are (n
2) node pairs and only a finite expected

number of edges for each node, and therefore means the number of edges between any two nodes

approaches zero as the number of nodes in the network n increases. Therefore, while we expect single

edges to exist between node pairs, each pairing is very unlikely, so we do not expect many more edges

to occur between the same two nodes very often by chance. Finally, edges may also exist between a

node and itself (a self-edge). These appear twice in the adjacency matrix, so they are given a half amount

of likelihood each. Combining these, we can write the full likelihood as:
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P(E|θ,ω,b) = ∏
i<j

b
Eij
ij

Eij!
exp

(
−bij

)
×∏

i

(
1
2 bii

)Eij/2(
Eij/2

)
!

exp
(
−1

2
bii

)
(10)

bii = θiθjωbi ,bj
(11)

This model has several attractive features. It allows for arbitrary degree for each node, as well as arbi-

trarily complex interaction between blocks, provided they are symmetric. (The number of edges exist-

ing between blocks must be the same, regardless of which block we identify first.) Second, it is estimable,

meaning the parameters can be estimated from an empirical network. It is also generative, meaning one

can generate networks that are consistent with the specified model parameters54 (For more notes on

generating networks from this model, see Section III.)

We will consider two types of block structure, both of which are special cases of bipartite networks. A

bipartite network is one in which each node belongs to exactly one of two groups, and edges only exist

between members of opposite groups. We consider eight blocks (four in each bipartite group), and two

types of block structure: random, and heterogeneous (see Section 4). A diagram of these structures is

shown in Figure 12.
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Figure 12: The left panel shows random bipartite mixing, in which males and females share edges independent of
their block memberships. The right panels shows strong bipartite community structure, in which the edges in the
network only exist in four bipartite communities, one of which also mixes significantly with the others. In both
figures, the strength of mixing is shown by the thickness of each tie. Both of these block structures are bipartite,
meaning edges only exist between nodes in Blocks 1-4 and nodes in Blocks 5-8.

Degree Assortative Rewiring

Finally, in addition to block structure and node degree, networks may vary in the extent to which having

a high degree is correlated to sharing edges with other nodes with high degree55. One metric for this

feature is degree assortativity, which is the Pearson correlation coefficient comparing the degree of the

two nodes associated with every edge in the network56. We can vary this measure by performing degree

assortative rewiring, which increases or decreases the assortativity in the network while preserving block

structure and each node’s degree57. This is performed by randomly selecting two edges within a block

pair and rewiring them, as follows.
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1 Select two blocks b1 and b2 at random.

2 Select two edges (n1,n2) and (n3,n4) at random between blocks b1 and b2.

3 Iff |k1 − k2|+ |k3 − k4| > |k1 − k4|+ |k2 − k3|:

Remove edges (n1,n2) and (n3,n4)

Add edges (n1,n4) and (n2,n3)

Table 2: Our algorithm used to rewire network edges in order to increase the assortativity of each network. To
decrease assortativity, perform Step 3 if and only if the inequality is reversed.

A diagram of this process is shown in Figure 13.

c

a b

d

Figure 13: A schematic of degree assortative rewiring. Panel a displays a network. Panel b highlights two edges
selected within the same block pair. Panel c shows a potential rewiring, which will only occur if rewiring will
increase assortativity. In this case, rewiring does increase assortativity, and Panel d displays the successful rewiring.
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We consider networks with both assortative and disassortative rewiring, further described in Section 4.

Infectious Spread

After creating a network, we simulate an infectious spread on a collection of networks26, using Algo-

rithm 3. Upon establishing an initial subset of nodes that are infected, each node with degree ki may

infect a subset of their neighbors qi at each time step. This process is continued for a finite number of

time steps. A diagram of the infectious process over time is shown in Figure 14.

1 1% of all nodes are selected at random to be initially infected.

2 Until B% population incidence:

For each infected node i (in random order):

a Successively select qi neighbors.
b If neighbor j is already infected, do nothing. If not, infect with probability

0.3.

3 Repeat five times:

For each infected node i (in random order):

a Successively select qi neighbors.

b If neighbor j is already infected, do nothing. If not, infect with probability:

p = 0.3 for those in control clusters,
p = 0.1 for those in treated clusters.

Table 3: Our simulation algorithm used to propagate an infectious spread through each network. Among other
parameters, we consider all combinations of a range of values for qi and B.
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Figure 14: 1% of nodes are randomly selected as initially infected, and an infectious process spreads until B%
overall baseline prevalence is reached (time tB). Individuals are infected according to Algorithm 3. Then, each
cluster is randomized to treatment (A = 1) or control (A = 0), wherein infected nodes in treated clusters have their
infection probability reduced by 70%. The process continues for another 5 time steps.

In this process, infectivity qi is the number of individuals one may infect at a given time, which may

vary from none to the degree an individual has. Zhou et al.18 showed that the properties of network

spread can depend strongly on infectivity, which may differ between actual infectious processes. We

will consider both unit infectivity and degree infectivity, in which an individual infects either one part-

ner (selected at random) or each partner, respectively. A schematic of this infectious process is shown

in Figure 15.

i

Figure 15: A schema of the stochastic agent-based infectious process. In general, 0 ≤ qi ≤ ki individuals may be
selected at each time step. We will use infectivity qi = 1 (unit) or qi = ki (degree).

35



Treatment Effect Estimation and Adjustment

Now that we have detailed the simulation of networks and infectious spread through them, we will

describe the augmented GEE, which will estimate the effect of treatment on clusters within the trial.

Then, we will describe how network features may improve the estimate of treatment effect.

Consider a trial that consists of i = 1, ...,m clusters with j = 1, ...,ni individuals per cluster, with ∑i ni = N

total individuals in the study. For each individual, Yij is 1 if the individual is infected by the end of the

trial, and 0 otherwise. The vector Yi = (Yi1, ...,Yini )
> is the related vector of outcomes in cluster i. In

addition, each individual has a set of P covariates Xij = (X1
ij, ..., XP

ij)
>, with all covariates represented

compactly as Xi = (Xi1, ...,Xini )
>. Individuals in cluster i are all assigned to the same treatment, and

we assume two levels of treatment: Ai = 0 for controls, and Ai = 1 for communities receiving the in-

tervention. Each individual belongs to a cluster specific contact network with corresponding adjacency

matrix Ei. Unlike Section I, in this section we assume there is no mixing across clusters.

In a trial, the data-generating mechanism is not directly observed, and the treatment effect must be

estimated from observed outcomes. GEE evaluates the marginal treatment effect in the population, av-

eraged over all individual characteristics. This type of analysis is unbiased if the data come from a ran-

dom sample. This means that all possible confounding variables have the same expected distribution

among the treated (Ai = 1) and control (Ai = 0) populations, and no differences in missingness across

communities. The marginal treatment effect is βA = E(E(Yij|Ai = 1,Xij,Ei))−E(E(Yij|Ai = 0,Xij,Ei))

estimated by using the marginal regression model E(Yij|Ai) = µi(β, Ai) = g(β0 + βA Ai). In this section,

g will be the identity function, and βA is the risk difference between outcomes averaged within clusters

in the intervention compared to control.

The GEE-based approach gives estimates that are consistent and asymptotically normal51. However,

we will consider a method to improve the efficiency with which this estimate is made. Although we

expect the treated and control clusters to be similar due to randomization, chance imbalance can cause

the two groups to differ. In the case that measured covariates are related to both treatment assignment

as well as the outcome, Tsiatis et al.53 proposed a way to add a term (augment) estimators to account

for this imbalance, which decreases estimate variance and increases statistical efficiency. In the context

of the GEE, Stephens et al.58 propose the following estimating equations with an extra augmentation

term:
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0 =
m

∑
i=1

[
D>i V−1

i (Yi −µi(β, Ai))︸ ︷︷ ︸
classic GEE term

(12)

+ ∑
a=0,1

πa(1− π)1−aD>i V−1
i

(
B(Xi,Ei, a)−µi(β, a)

)
︸ ︷︷ ︸

augmentation term

]
. (13)

Here, D>i = ∂µi(β,Ai)
∂β , V−1

i is the covariance structure, and π = 1
2 is the fixed probability of treatment at-

tribution. The inverse variance covariance matrix is V−1
i = φU1/2

i R(α)U1/2
i where Ui = diag(Var(yij)),

φ is the scale parameter and R(α) is the working correlation, specified by the analyst. The augmented

GEE improves efficiency optimally if the outcome model is59 60:

B(Xij,Ei, Ai) = E(Yij|Xij,Ei, Ai). (14)

To compute these quantities, we fit a generalized linear model regression for each treatment group

(a = 0,1), such as B(Xij,Ei, Ai) = X>ij Ξ
(X)
i + Ẽ>ij Ξ

(E)
i , where Ẽij is a vector of covariates for individual

j in cluster i derived from its cluster’s adjacency matrix Ei, and Ξ(X)
i and Ξ(E)

i are fitted covariates for

demographic and network data, respectively. In this section, we will consider network features Ẽi;j only

for the augmentation term, and absorb these two terms into the single, conventional notation Xij.

Next, we give the exact specification of the trials we performed, including fixed and variable aspects

of the network generation process and the epidemic spread. Then, we describe which features are

measured from the resulting trial, which are used as adjustment covariates in the augmented GEE.

Finally, we specify a range of statistics that reflect the quality of the effect estimates from each trial.

Scenario Aspects

Each trial consists of an infectious process propagating on m = 48 clusters (networks) of sizes ranging

from n = 120 to 280, with an average size of size 200. In addition, we also consider each possible

combination of six trial aspects:
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a1: Mean degree of each node: {2,10}

a2: Node Degree Distribution: ∈ {Poisson,Powerlaw}

a3: Assortativity {−0.3,0.3}

a4: Mixing structure (µ,λ) ∈ {(0,0), (0.8,0.1)}

a5: Infectivity: {Unit,Degree}

a6: Baseline Prevalence = B ∈ {2%,25%}

Table 4: A summary of the scenario aspects investigated. We consider each combination of these.

Finally, for each combination of trial aspect, we perform R = 1000 stochastic trials, and retain effect

estimate statistics for each trial.

Network Features

While a network consists of pairwise connections between individuals i and j, the GEE augmentation

term assumes imbalance can be modeled by a vector network features for each individual Xij. We

assume this vector is composed of a small number of functions of the network in which they belong.

Some of these are constant per network, and some are different for every individual. They fall into four

broad classes: those involving degree, mesoscopic structure, baseline infections, and combinations of

these.

Each node i has degree ki = ∑j Eij, the total number of individuals that share an edge with that node.

Mean neighbor degree mi =
∑j Eijkj

ki
is the unweighted average of a node’s neighbors’ degrees. Assortativ-

ity is a composite measure of mean neighbor degree across the entire network, the Pearson correlation

between both nodes’ degrees across each edge in the network.

Network features may also capture mesoscopic network structure, or structure existing between local and

global scope of the network. For example, the networks we consider contain block structure, and we

consider I(Bi = 1 or Bi = 5), an indicator if a node belongs to the two blocks that are highly connected

with other blocks. We may also consider components, or subsets of the network in which each individual

are in the same component if and only if they share a path. A path exists between two node i and

j iff there exists a subset of edges Eij ⊂ E in the network that connect nodes i and j. Note that in this

section, a cluster refers to a single network randomized to an intervention arm, whereas components are
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distinct from clusters in that several components comprise a single cluster. The components of a cluster

c∈ 1, ...,C are assumed to be ordered from largest to smallest in size, where size is defined as the number

of nodes in each component. We consider the size of the largest component in the network ∑i I(Ci = 1),

the mean component size n/C, the number of components C, and the size of the component each node

belongs to, ∑j I(Ci = Cj).

Another potential feature available for adjustment at baseline is the infectious status of each node in

the network at baseline. One simple metric is the number of infected neighbors at baseline for each

node ∑j Eij Ij(0), or the number of infected individuals belonging to the same component as a node

∑j I(Ci = Cj)Ij(0). We may also consider the length of the path between each node i and each infected

individual j at baseline. We consider the inverse of the shortest path length from the closest node

infected at baseline
(
minj dij

)−1, as well as the sum of the inverse path lengths ∑j d−1
ij .

We also consider any collection of these covariates. That is, we consider an outcome model including

all these (12) covariates, as well as a stepwise selection of variables61. Finally, we also consider a few

non-linear fits for the probability of infection for each covariate. Specifically, we consider a spline term,

and a power-law fit for the degree covariate.

In Table 5, we summarize the network features we use for the augmentation term:
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Unadj: No adjustment term

1: Degree ki

2: Mean Neighbor Degree mi := ∑j Aijkj
ki

3: Assortativity ρk,m

4: Member of Connected Block I(Bi = 1)

5: Size of Largest Component ∑i I(Ci = 1)

6: Mean Component Size n/C

7: Number of Components C

8: Size of Node’s Component ∑j I(Ci = Cj)

9: Total Neighbor Infections at baseline ∑j Aij Ij(0)

10: Total Node’s Component Infections at baseline ∑j I(Ci = Cj)Ij(0)

11: 1/nearest infected path length at baseline
(
minj dij

)−1

12: ∑i 1/path length to Infected Node i at baseline ∑j

(
d−1

ij

)
13: Complete inclusion of the above

14: Stepwise regression of the above

Spl: Spline(Degree) spline3(ki)

Pow: Powerlaw(Degree) C · ka
i

Table 5: A summary of the network feature sets used in the augmentation term of the augmented GEE.

Statistics Measured

We now describe the statistics we will use to compare the unadjusted GEE to the augmented GEE with

network features. For r = 1, ..., R trials, we compute the augmented GEE estimates of treatment effect

size β̂r and estimate standard deviation ŝdr(β̂r). In addition, we use trial outcomes Yij;r to compute the

true treatment effect by calculating the average risk difference across all trials:

β∗ :=
∑ijr Yij;r · I(Ai = 1)

∑ijr I(Ai = 1)
−

∑ijr Yij;r · I(Ai = 0)

∑ijr I(Ai = 0)
(15)

From this value, obtain the estimated empirical bias and empirical variance of the treatment effect

estimate:
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B̂iasr(β̂r) = β∗ − β̂r (16)

To combine the amount of bias and size of the standard error in a single composite measure, we compute

the root mean squared error for each trial, defined as:

R̂MSE :=

√
1
R ∑

r
B̂iasr(β̂r)2 + V̂ar(β̂) (17)

Our metric for the gained improvement by the augmentation term is the percent reduction in RMSE for

each adjustment covariate set, comparing the augmentation adjustment R̂MSEadj to that of the unad-

justed GEE (R̂MSEGEE:

Ĝain := 100×
(

1−
R̂MSEadj

R̂MSEGEE

)
(18)

Statistical coverage is the probability that the estimated confidence intervals cover the true treatment

effect, which must be 95% or greater for valid inference:

P(β∗A ∈ CI(β̂∗)) (19)

Finally, in our setting with the null hypothesis β = 0, power is the probability that the confidence inter-

val is significantly different from zero given that the treatment effect is not zero:

P(0 /∈ CI(β̂∗A)|βA 6= 0) (20)

These measures are summarized in Table 6.
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Bias β̂0 − β

SEmodel ŝe
(

β̂
)

SEempirical ŝe
(

β̂m

)
RMSEmodel

√
Bias2 + SE2

mod

RMSEempirical

√
Bias2 + SE2

emp

%Reduction RMSEmodel
R̂MSE

(mod)
adj

R̂MSE
(mod)
GEE

%Reduction RMSEempirical
R̂MSE

(emp)
adj

R̂MSE
(emp)
GEE

Coveragemodel ∑m I
(

β ∈ ĈI
(

β̂m

))
/M

Powermodel ∑m I
(

0 /∈ ĈI
(

β̂m

))
/M

Table 6: The result statistics we evaluate for each trial scenario and adjustment covariate set.

Results

Descriptive Statistics

Adjusting for covariates increases efficiency when the covariate is related to outcomes (on average) as

well as to treatment effects that occur from chance imbalance. Figure 16 shows the correlation in our

generated trials between the outcome and each covariate, as well as with the treatment.
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Figure 16: A plot of the distribution of univariate correlations between single covariates and indicators for either
treatment or outcome. The left shows correlations with variation around zero, suggesting imperfect randomization
due to finite sample sizes, and the right panel shows that some network or baseline epidemic covariates are corre-
lated with the outcome. Nonzero covariate correlations in both panels suggests gains in efficiency when estimating
the effect of treatment.

Because Figure 16 shows that the adjustment covariates are correlated with both treatment and out-

come, we expect gains, or reductions in the RMSE.

Main Results

In this section, we will show results for each adjustment strategy and statistic. First, we show the

improvements (percent reductions) in RMSE in Figure 17.
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Figure 17: Improvements, or percent reductions, in RMSE for each covariate set. Means are shown with diamonds,
each line shows the 80% quartile range, and outer dots show the extrema.

.

We see that each covariate displays very different behavior. Degree-related covariates (red) are modest,

but consistent in displaying gains. Component covariates (green) are also modest, and not reliably

positive. In contrast, covariates involving other infections at baseline (blue) can be very informative,

with some covariates showing a very wide range of effects, including an inflation of RMSE. Finally,

fitted non-linear covariates for degree did not result in larger improvements overall, which suggests

that a linear fit takes advantage of much of the potential gains in reducing estimate RMSE.

We also consider several other statistics, averaged across of the 26 treatment scenarios (with standard

deviations across scenarios in parentheses). These results are shown in Table 7.
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UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
Bias 0 0 0 0 0 0 0 0 0 -0.02 -0.05 0 -0.05 -0.02 -0.01 0 0

RobSE 3.02 2.94 2.91 2.96 3.02 2.92 2.87 2.89 2.98 0.88 1.62 1.02 1.78 0.76 0.75 2.92 2.94
EmpSE 2.92 2.83 2.82 2.93 2.92 2.89 2.89 2.85 2.84 0.73 1.56 0.93 1.84 0.86 0.85 2.81 2.82

Gains 0(0) 2(2) 2(3) -1(2) 0(0) 0(2) -2(5) 1(3) 2(3) 67(15) 20(39) 62(16) 0(60) 56(22) 57(21) 3(2) 3(2)
Power 30.6 30.8 31.2 31.7 30.6 32.4 32.2 32.6 30.4 81.1 45.6 74.4 38.1 82.7 83.7 31 31

Coverage 95(2) 95(2) 95(2) 94(2) 95(2) 94(2) 94(2) 94(2) 95(2) 94(6) 96(3) 94(6) 94(3) 89(7) 90(7) 95(2) 95(2)

Table 7: A table of treatment effect statistics averaged across each trial aspects. Each row displays a statistic, and
each column displays an adjustment feature or strategy. Standard deviations across trial aspects are shown in
parentheses. Positive numbers indicate the percent improvement in RMSE.

We see that the improvements shown in Figure 17 translate to very significant gains in power. In ad-

dition, coverage is adequate for most scenarios, ensuring a valid interpretation of power for those sce-

narios. This is owed to low bias, and broadly accurate (albeit somewhat conservative) estimates of

standard error.

For brevity, the statistics of each trial conditional on each trial aspect combination are given in the Ap-

pendix. In addition to results averages across each trial aspect, we may consider the effect each aspect

has on each trial statistic. To accomplish this, we used a simple linear regression, modelling each trial

scenario with a statistic as the outcome and trial aspect as a binary covariate. The coefficients resulting

from this model represent the percent improvement what results from changing one trial aspect from

0 to 1, holding all other trial aspects constant. The results for each statistic is found in the Appendix,

but we focus on the percent improvement in RMSE, shown in Table 8. To provide guidance on how to

interpret coefficients, we provide an example of a description of a coefficient of improvement modifi-

cation by singling out the row corresponding to Deg Infect and column F9. Holding constant aver-

age degree, degree distribution, network assortativity, community structure, and baseline prevalence,

an epidemic process exhibiting degree infectivity shows an additional improvement of 12 percentage

points in RMSE compared to an epidemic process exhibiting unit infectivity. Therefore, in this case,

using adjustment variable F9 (total number of infected neighbors at baseline) is more important if the

epidemic process has degree infectivity compared to unit infectivity.
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UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0 1 -1 -2 -0 -1 -5 0 -1 57 -27 56 -46 30 34 1 1
High Degree 0 -1 -1 -1 0 -1 -1 -2 -2 -9 11 -14 -33 -3 -4 -1 -1
Powerlaw 0 3 2 2 0 1 0 4 3 -8 -4 -8 -7 -1 -1 3 3
Assortative 0 1 -0 -1 0 0 -1 -0 -1 4 2 6 3 4 4 -0 0
Communities -0 -1 -1 -0 -0 -0 -1 -2 -1 0 -3 -0 -7 -1 -1 -2 -1
Deg. Infect 0 1 4 1 0 2 4 1 2 12 32 14 52 14 12 1 1
High Base. 0 1 2 1 0 1 6 2 2 19 55 14 84 38 36 1 1

Table 8: A table of percent estimate improvement modification in RMSE modified by each trial aspect. Each row
displays a trial aspect, and each column displays an adjustment feature or strategy.

In trials in which clusters of individuals have a heavy-tailed (powerlaw) distribution, we observe mod-

est positive improvements in RMSE reductions when adjusting for Features 1− 8 (covariates related to

degree and component sizes). However, this change also results in diminished gains when adjusting

for baseline infection-related covariates. In contrast, much the opposite holds when adjusting for ei-

ther degree infectivity, high baseline, or both: the benefits of adjusting for Features 1-8 are positive but

diminished, whereas the improvements for adjusting for baseline infections (Features 9-12) are much

larger. This suggests that a node’s local network of partners and their infectious status can be quite

predictive of the risk acquire the infection, which has also been reported by Ghani et al.62 However,

these infectious covariates can show a wide range of possible effects on RMSE, including significant

inflations for some scenarios. Care should therefore be taken to ensure that the epidemic context is

sufficiently similar to the cases described here in which they are beneficial before measuring and using

these covariate of interest for adjustment. In addition, while we have considered a range of simula-

tion variants, several additional modeling assumptions are likely incongruent with an empirical study,

including being well-characterized by an SI process propagating on a fixed network.

Full statistics for each simulation scenario and adjustment strategy are shown in the tables, both marginal

across scenarios as well as conditional on each scenario (see Appendix). In addition, the effect of modi-

fying any specific scenario aspect (holding the others constant) is shown in the modification results.

Auxiliary Analyses

We also considered the analysis detailed above for two variants: increasing the size of the networks,

and including covariates in the classic GEE covariate adjustment set.

First, we consider the analysis with networks considerably larger (six-fold) than those considered above.
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This yields networks with an average size of n = 1200 (ranging from size 720 to 1680). These results can

be found in the second segment of the appendix at the end of this section.

We first observe that the expected treatment effect is larger: incidence is reduced by 3.43% in the treat-

ment arm compared to the control arm, which is greater than the 2.64% observed in the trials with

smaller networks. Because the baseline incidence and followup time is held constant for the two, this

means that the 70% reduction in infection probability for each individual more effectively reduces the

overall incidence throughout the trial for larger networks. We also observe that for each adjustment

covariate set, the bias is very low (0-0.02), and coverage is higher (94-100%) compared to than that ob-

served for smaller networks. In addition to larger treatment effect sizes, the empirical and robust stan-

dard errors are generally attenuated compared to the smaller networks, which yields greater power for

all scenarios.

For the larger network case, we also observe gains in efficiency when incorporating an adjustment set,

and the gains differ in several ways. The gains obtained from using degree-based covariates (Features

1-2) are greater both in expectation as well as the maximum. However, the variation in gains is also

increased. The incorporation of assortativity (Feature 3) is generally less helpful, again with a wide

range of potential gain percentage points. Block and component Features (4-8) also display a wide

range of variability, with no substantial differences in expected gains in efficiency. In contrast, variables

involving baseline infections (Features 9-11) are somewhat attenuated and highly variable, but still

display the greatest expected and maximum gains. Somewhat surprisingly, Feature 12 (the sum of

inverse path lengths to an infected individual) becomes unhelpful on balance. Including all variables

or a stepwise selection of the above variables shows generally substantial gains. Note that with larger

network sizes, these composite adjustment sets display low bias and high coverage compared to the

smaller networks. Finally, we consider non-linear functions of Feature 9 (number of infected neighbors

at baseline), including fitted powerlaw curves as well as polynomial splines with degree 3. These both

show slightly attenuated and more variable gains compared to the linear fit, which suggest that these

expansions do not generally improve the utility of the adjustment covariate.

Finally, we consider using each covariate or covariate set as adjustment terms in the classic GEE, com-

pared to the augmented GEE. For equal comparison with the main results, we include the analysis for

the smaller size of networks only. Recall that the classic GEE consists only of Equation 12, whereas

the augmented GEE includes a second set of terms adjusting for covariate imbalance across treatment

strata (Equation 13). Both of these approaches incorporate a vector of covariates for each cluster, and

potentially each individual. In the classic GEE, variation in the treatment effect estimate is reduced by
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accounting for the correlation of the covariate set to the observed outcome for each individual. This

contrasts with the augmentation term of the augmented GEE, in which the covariate set is used in the

second term to estimate the outcome for each individual, conditional on that individual belonging to

each treatment stratum. Both adjustment strategies are expected to yield improvements in efficiency

when estimating the treatment effect58 63. These results can be found in the final segment of the ap-

pendix at the end of this section.

The result of including the adjustment in the unaugmented GEE is very similar to the augmentation

term, with a few differences we explore here. We observe that the overall treatment effect estimate is

slightly larger. However, the standard error estimates have also increased on balance. Combined, these

have a negligible effect on bias (low) and coverage (91-95%), which are substantially similar. The dif-

ferences in standard error estimates are reflected in the percent improvements in RMSE: substantially

equivalent for covariates related to degree, block, and component membership (Features 1-8), but some

variation in covariates related to infections at baseline (Features 9-12). The gains from features related to

local measures of infected nodes at baseline are somewhat attenuated: the number of infected neighbors

at baseline (Feature 9) and inverse minimum path length to an infected individual at baseline (Feature

11) are both lower for the classic GEE analysis. In contrast, more global measures of infections at base-

line, including total component infections at baseline (Feature 10) and sum of inverse path lengths to

infected individuals at baseline (Feature 12), both show increased gains. These differences are reflected

in gains in power, which are lower for the first two covariates and higher for the second two, respec-

tively. Because the gains from each of these features is highly variable but generally high, it is not

clear if these reflect qualitatively significant differences between these two analyses, which otherwise

comparable in improvement of the efficiency in effect estimation.

Discussion

In an epidemic process, infectious outcomes depend on network structure and spreading process dy-

namics. When assessing the marginal effect of treatment on the infectious process, one strategy to

improve the estimation of the treatment effect is to adjust for covariate imbalance in the clusters ran-

domized to each treatment arm. Several contact network features and characteristics of epidemic spread

can be included to adjust this analysis. In this section, we have used the augmented GEE to estimate

the magnitude of these gains, as well as how these gains are modified by aspects of each network and

epidemic dynamics. We found that adjusting for baseline infections yields robust gains across each
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scenario, and that the improvement size depends on the specific aspects of the epidemic process.

We consider including augmentation terms that reduce network properties to a single covariate for each

node. These covariates differ in the gains they provide in our simulation scenarios, but also in their ro-

bustness to scenario specification, interpretability, and feasibility of gathering in practice. For example,

the sum of all inverse path lengths to an infected individual shows both wide variation in RMSE im-

provements across each setting. It would also be difficult to assess this covariate for each person unless

one obtains the full network and the infectious state of each individual at baseline. In contrast, each

individuals’ degree may be feasible to obtain, but the gains we observe from this covariate are mod-

est. The number of neighbors infected at baseline is an excellent covariate in each of these respects.

When analysing a spreading process through a network, we recommend assessing and incorporating

this information for each member of each cluster.

This work also invites several extensions. We assume that each collection of networks is known with

perfect accuracy, an assumption that is not realistic. Information may be missing or misreported for

individual outcomes, network data, or both, a phenomenon that may lead to bias or low power in esti-

mating the treatment effect. In addition, binary data is amenable to using other measures of treatment

effect such as the log odds ratio, the analysis of which would require a suitable adjustment in the defini-

tion of the true treatment effect across all trials (Equation 15). Finally, we consider a restrictively simple

epidemic process and treatment regime, an assumption that does not capture realistic dynamics of most

epidemics.
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Section III: Derivation of Epidemic Properties of the
Degree-Corrected Stochastic Blockmodel

We have explored a range of challenges and remedies in the study of epidemic processes on networks.

We have also determined how these effects depend on properties of each network and epidemic prop-

agating on them. However, all of our examples so far assume that the network has a sufficient network

structure to sustain an epidemic. When a network is not sufficient to sustain an epidemic, we may

not expect network effects like those considered in Section I, and the remedies of Section II may not be

needed. It is therefore important to know when this condition is met. In this section, we will examine

a specific type of network model — the Degree-Corrected Stochastic Blockmodel, a generative model

which allows nodes of the network to belong to blocks that differ in their degree distribution, as well

as their mixing patterns with other blocks, each of which may be estimated from an empirical network.

This model is valuable to investigate because it allows the flexibility to account for both block struc-

ture and a variety of degree distributions, both of which are observed in real networks. We will derive

conditions for the existence of a giant component, as well as the size of an epidemic propagating on

it. We will also find the proportion of the epidemic size contained in each block. Using these results, a

researcher can assess whether a network with a given degree sequence and block structure can sustain

an epidemic, as well as the extent of that epidemic for network nodes with a particular degree and block

membership.



Introduction and Relevant Work

The study of networks, or network science, has become a very active research field in recent decades,

and many exact and probabilistic results for networks have been derived. In addition to theoretical

insight, the practical advantage of these results is to predict properties and behaviors of networks when

data or simulations are not available. Paul Erdös and Alfréd Renyı́ proved the size of the giant compo-

nent (largest connected subnetwork) for the random graph20, in which edges are distributed randomly

through the network. This work was expanded by Molloy and Reed44 and later by Bèla Bollobas64 to

include random networks with arbitrary degree distributions. Mark Newman found several proper-

ties of the configuration model using probability generating functions65. Dimitris Achlioptas discussed

the conditions for an extensive epidemic in the stochastic blockmodel using techniques developed for

multi-type Galton-Watson branching processes66. However, many network properties such as the size

of the giant component, have not been derived directly for the stochastic blockmodel, with or without

correcting for degree. The existence of a giant component is particularly important, as it indicates that

a substantial portion of the nodes in a network are connected to one another, which is a precondition

for an epidemic to spread through the network, which we turn to next.

The SIR process is an epidemic compartmental model24 that assumes that individuals are either sus-

ceptible to a disease (state S), infected and contagious (state I), or recovered with no chance of again

changing state (state R). Scalia-Tomba derived the asymptotic final size distribution of a multitype

SIR processes for fully-mixed populations67. Peter Neal derived a central limit theorem for the size of

multitype SIR epidemics on random graphs68. Newman derived exact properties of an SIR epidemic

propagating through networks with arbitrary degree distribution, again using generating functions69.

In this Section, we apply this final approach to a more general network model to derive the size of the

giant component and final size of an SIR epidemic propagating on this network.

Generative Specification for the Degree-Corrected Stochastic Block-

model

The Degree-Corrected Stochastic Blockmodel (DegSBM) was first defined by Brian Karrer and Mark

Newman54. They define the likelihood for the DegSBM using the observed degree sequence (see Equa-

tion 10), and show that community-detection methods that use this likelihood find block structure while
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accounting for the observed degree sequence of the whole network. However, the likelihood in that pa-

per only specifies the expected number of edges for each node, and generating new networks consistent

with its likelihood yields a different expected degree distribution in expectation. In this section, we give

a specification of the DegSBM that is written in a way that allows for the generation of new networks

that are consistent, meaning that the empirical estimates of parameters from the generated network

converge to the specified parameters in the limit of large networks. We then show a number of exact

properties of the network in the infinite limit of large sizes, as well as infectious properties of infinite-

time SIR process propagating on the network. We conclude by demonstrating that these theoretical

properties match simulation studies of empirical networks.

We begin by describing our formulation of the DegSBM. As noted in Section II, a network28 is a collec-

tion of individuals (nodes) as well as the pairwise connections between them. These relationships can

be described using an adjacency matrix An×n = {0,1}n×n, where Aij = 1 iff an edge exists between nodes

i and j. Each node i has a degree di = ∑j Aij, the total number of edges in which node i is a member.

Assume that for any given number of nodes n, each node i belongs to block k ∈ 1, ...,K (bi = k) according

to a multinomial distribution Π with one draw and block probabilities {π1, ...,πK}> = π with π>1 =

1. The members of block k are assumed to share a common degree distribution belonging to Xk, an

arbitrary non-negative integer-valued random variable. The Probability Generating Function70 (PGF)

for a distribution is defined as

gXk (t) := E
(

tXk
)

(21)

The PGF exhibits several useful properties. First, as the name suggests, we may use the function to

generate the probabilities of each value of the random variable:

PXk (d) = P(Xk = d) =
1
d!

ddgXk (t)
dtd

∣∣∣∣∣
t=0

(22)

PGFs also allow us to quickly derive the moments of the distribution:
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drgXk (t)
dtr

∣∣∣∣
t=1

= E

(
Xk!

(Xk − r)!

)
(23)

This can be a major advantage, because moments are derived in terms of the derivatives of the PGF,

rather than by integrating over functions of the probability mass function (PMF), which can be pro-

hibitively difficult. Note that gXk also specifies the expected degree for nodes belonging to block k,

g′Xk
(0) = E(Xk) := 〈dk〉. In this section, we assume that the PGF exists for each block, implying that

each moment for each degree distribution exists. Let g(t) := [gX1(t), ..., gXK (t)] be the vector of PGFs for

each block k.

With classes and class degrees defined, it remains to specify how the probabilities of edges depend on

block membership. For node i with block membership bi = k and degree d(i) ∼ Xk, the membership of

each node with which node i shares an edge is again a multinomial distribution with d(i) draws and

block membership probabilities Θk· := {θk1, ...,θkK} subject to Θk·1 = 1. The edge mixing probabilities

for nodes of all block memberships can be compactly written as a matrix ΘK×K := {Θ>1· , ...,Θ>K·}>, sub-

ject to Θ1= 1. We also define the expected number of edges between any member of block k to members

of block l, 〈dkl〉 := 〈dk〉Θkl . Therefore, the expected total number of edges with one node in block k and

another in block l is mkl := nπk〈dk〉Θkl . Because this relationship is symmetric, the DegSBM requires

one final constraint that mkl = mlk for all block pairs k, l.

Having defined all necessary parameters for our specification of the DegSBM, we now describe how to

sample a network consistent with these parameters. To ensure that block memberships, edge counts by

block pair, and degree distributions are correctly represented by π, Θ, and g respectively, consider the

following sampling scheme. First, for nodes i = 1, ...,n, sample node memberships bi = 1, ...,K such that

[nπk] nodes belong to each block (where [·] indicates rounding to the nearest integer). Then, for each

node i, sample its degree according to the random variable Xbi
specified by PGF gXk (t), subject to the

constraint that the sum of each blocks’ total degree sums to [n〈dk〉]. The degree of each node can be

thought of as a stub, or edge end whose destination node has not yet been defined. Then, for each block

pair 1 ≤ k ≤ l ≤ K, select [mkl ] stubs in each block (or twice this number if k = l), select two stubs (one

from each block) at random, and connect them.

Together, π,Θ, and g(t) specify the probabilistic version of the DegSBM. For intuition, the model may

be viewed as a composition of configuration models within each block, summed with random bipar-
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tite networks between each block, where members of either block share the degree distribution of the

block’s configuration portion. A schematic example of a DegSBM network is shown in Figure 18.
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Figure 18: A schematic for the Degree-Corrected Stochastic Blockmodel. In this diagram, the model is shown as a
mixture of K configuration models (subplot a) and (K

2) random bipartite networks (subplots b− d).

Derivation of Network Properties

In this section, we show the derivation of several properties of the DegSBM, including the number of

self-edges and multiedges, the clustering coefficient, the number of second neighbors for members of

each block, the size of the giant component, and the final epidemic size of an SIR epidemic process. We

also find the proportion of nodes belonging to each block in the giant component, or recovered nodes

at the end of an SIR process. We use techniques and definitions similar to those found in Newman28, as

well as papers by Newman, Strogatz and Watts65 69.

Number of Self-Edges and Multi-Edges

We begin by finding the number of Self-Edges and Multi-Edges for the DegSBM. In particular, we show

that these values are negligible for large n.
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A self-edge is an edge between a node and itself. Because edges residing within each block are selected at

random, this probability is the inverse of the number of edges within the block. The expected number

of edges for all individuals in block k is nπk〈dk〉, of which Θkk remain within that block. Consider that

node i with d(i) edges remaining within its block may connect to itself (d(i)
2 ) =

d(i)(d(i)−1)
2 different ways,

where E
[
(

d(i)
2 )
]
=
〈d2

kk〉−〈dkk〉
2 . For all K blocks and nπk nodes within each block, the total number of

expected self-edges is

K

∑
k=1

nπk
[
〈d2

kk〉 − 〈dkk〉
]

2mkk
=

K

∑
k=1

〈d2
kk〉 − 〈dkk〉
2〈dkk〉

· I (Θkk > 0) (24)

Because this value does not depend on n and the expected number of edges in the graph is n
2 ∑K

i=1 πk〈dk〉=

O(n), the ratio of self-edges tend to zero as n→∞.

Similarly, a multi-edge is an additional edge between two nodes that already share an edge. Let nodes

i and j belong to blocks k and l, with degrees d(i) and d(j), respectively. There are d(i) × d(i) ways this

can occur. With a total expected number of mkl edges existing between blocks k and l, the probability

that i and j share an edge is therefore
d(i)d(j)

mkl
. The probability that nodes i and j share at least two edges

follows similarly: given they are already connected, d(i) − 1 and d(j) − 1 edges from node i and j remain

respectively, so the probability of another edge is
(d(i)−1)(d(j)−1)

mkl−1 . The total probability of a multiedge

between nodes i and j is therefore

d(i)d(j)

mkl

(d(i) − 1)(d(j) − 1)

mkl − 1
(25)

For i 6= j, E(d(i)d(j)) = E(d(i))E(d(j)) = 〈dbjbi
〉, and the expected probability of a multiedge between

nodes i and j is therefore

[
〈d2

kl〉 − 〈dkl〉
] [
〈d2

lk〉 − 〈dlk〉
]

mkl(mkl − 1)
(26)
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Recall that there are nπk and nπl expected number of nodes in blocks k and l, respectively. Summing

the probability of a multiedge for all nodes per block and for all unique pairs of blocks k and l (and

dividing by 2 to avoid double-counting), the total expected number of multiedges is

K

∑
k=1

K

∑
l=k

n2πkπl
[
〈d2

kl〉 − 〈dkl〉
] [
〈d2

lk〉 − 〈dlk〉
]

2mkl(mkl − 1)
(27)

−→
n→∞

K

∑
k=1

K

∑
l=k

πkπl
2πk〈dkl〉(πl〈dlk〉)

[
〈d2

kl〉 − 〈dkl〉
][
〈d2

lk〉 − 〈dlk〉
]

(28)

=
K

∑
k=1

K

∑
l=k

1
2

(
〈d2

k〉
〈dk〉

− 1

)(
〈d2

l 〉
〈dl〉
− 1

)
· 1 (Θlk > 0) (29)

Note again that this term is or order O(1), whereas the total number of edges in the DegSBM is O(n),

making this term negligible as the network size tends to infinity.

Clustering Coefficient

Next, we find the clustering coefficient for the DegSBM. There are several ways to define the clustering

coefficient for a network. In this section, we use a commonly-used definition: the probability that any

two nodes i and j having at least one common neighbor also share an edge directly, meaning an edge

exists between them. The probability that nodes i and j connected to common node c share a direct edge

depends on their degrees. However, the degree distribution of a node selected by randomly selecting

the node at either end of a randomly selected edge is not the same as the probability specified by the

degree distribution of each node. We first describe the excess degree distribution for nodes i and j, and

then find the probability that they are directly connected to one another.

The probability that a node selected at random within block k has degree d is PXk (d). In contrast, if you

select an edge at random with at least one stub belonging to block k, that stub will belong to a node with

degree e proportional to e× PXk (e), since there are e edges or e ways to choose that node by randomly

selecting an edge with a node in block k. Similarly, the probability that this node has degree in excess

of e edges is (e + 1)PXk (e + 1). The probability of the excess degree distribution X∗k is therefore
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PX∗k
(e) =

(e + 1)PXk (e + 1)
∑∞

d=0(e + 1)PXk (e + 1)
(30)

=
(e + 1)PXk (e + 1)

∑∞
d=1(e)PXk (e)

(31)

=
(e + 1)PXk (e + 1)

∑∞
d=0(e)PXk (e)

(32)

=
(e + 1)PXk (e + 1)

〈dk〉
(33)

Note that Equation holds because the first term in the sum is 0 · PXk (0) = 0.

Given that nodes i and j belong to blocks k and l respectively and share common neighbor c, the proba-

bility that they share a direct edge, i.e. are connected to one another, is
(d(i)−1)Θkl(d(j)−1)

mkl
=

(d(i)−1)(d(j)−1)
nπk〈dk〉

.

The probability that nodes i and j have their respective excess degrees is PX∗k
(d(i)− 1) and PX∗l

(d(j)− 1),

respectively. Thus, given they share a common neighbor, the total probability of members of block k

and block l sharing a direct edge is

∞

∑
d(i)=1

∞

∑
d(j)=1

PX∗k
(d(i) − 1)PX∗l

(d(j) − 1)
(d(i) − 1)(d(j) − 1)

nπk〈dk〉
(34)

=
∞

∑
d(i)=0

∞

∑
d(j)=0

PX∗k
(d(i))PX∗l

(d(j))
d(i)d(j)

nπk〈dk〉
(35)

=
1

nπk〈dk〉
∞

∑
d(i)=0

PX∗k
(d(i))d(i)

∞

∑
d(j)=0

PX∗l
(d(j))d(j) (36)

=
1

nπk〈dk〉

 ∞

∑
d(i)=0

(d(i) + 1)PXk (d(i) + 1)
〈dk〉

d(i)

 ∞

∑
d(j)=0

(d(j) + 1)PXl (d(j) + 1)

〈dl〉
d(j)

 (37)

=
1

nπk〈dk〉〈dk〉〈dl〉

 ∞

∑
d(i)=0

d(i)(d(i) − 1)PXk (d(i))

 ∞

∑
d(j)=0

d(j)(d(j) − 1)PXl d(j)

 (38)

=

[
〈d2

k〉 − 〈dk〉
] [
〈d2

l 〉 − 〈dl〉
]

nπk〈dk〉2〈dl〉
(39)

Finally, the probabilities that nodes i and j belong to blocks k and l , and the probability that node c is

in block m, is πk. Putting these together, the clustering coefficient for the whole network is:
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K

∑
m=1

K

∑
k=1

K

∑
l=1

πmθmkθml
nπkπl

[
〈d2

k〉 − 〈dk〉
] [
〈d2

l 〉 − 〈dl〉
]

〈dk〉2〈dl〉
(40)

Because this term is O
(

1
n

)
, the clustering coefficient vanishes for large n for the DegSBM. This may

seem like a surprising result: the purpose using block structure is to allow for network structures that

are mesoscopic, (medium-sized), which is often assumed to include clustering as we have defined it,

but does not exist in the limit of large DegSBM networks. However, when Θ→ diagK(1), nodes can

be made to connect only to members of their own block, which is one way to conceptualize network

community structure, an example of a mesoscopic structure that the DegSBM may exhibit.

Number of Second Neighbors

In this section, we derive the distribution for the number of second neighbors for nodes in block k. A

second neighbor of parent node i is a neighbor k of a node j with whom i shares an edge, provided nodes

i and k do not also share a direct edge. Simply described, the distribution of second neighbors is the

distribution of the number of first neighbors of nodes who are themselves first neighbors of a node.

The distribution of neighbors’ degrees depends both on the block membership of node i, as well as the

block membership of their first neighbors. We proceed by using PGFs to describe the distribution of

excess degree conditional on the block membership of each neighbor of the parent node, and find the

marginal distribution over this profile.

First, we describe the probability generating function of the excess degree distribution. For node i in

block k, the PGF for the excess degree of node depends on the block membership of the node reached by

selecting a random edge. Given the node membership of this node is block l, the PGF of excess degree

is:
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gX∗l
(t) =

∑∞
d=0(d + 1)PXl (d + 1)td

∑∞
d=0(d + 1)PXl (d + 1)

(41)

=
∑∞

d=1 dPXl (d)t
d−1

∑∞
d=1 dPXl (d)

(42)

=
∑∞

d=0 dPXl (d)t
d−1

∑∞
d=0 dPXl (d)

(43)

=
g′Xl

(t)

E(Xl)
(44)

=
g′Xl

(t)

g′l(1)
(45)

Given node i is in block k, the probability that each of its neighbors have membership l is Θkl . The

unconditional PGF for excess degree is:

gXk;1(t) = El

[
gX∗l

(t)
]

(46)

=
K

∑
l=1

Θkl · gX∗l
(t) (47)

=
K

∑
l=1

Θkl
g′Xl

(t)

g′Xl
(1)

(48)

= Θ>k·

[
g′(t)
g′(1)

]
(49)

We use the sum of excess degrees to second neighbor PGF, which requires we derive the PGF of the

sum of independent draws from a distribution. Consider the distribution of the sum of D draws from

an arbitrary random variable X:
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g∑D
d=1 X(t) = E

[
t∑D

d=1 X
]

(50)

= E

[
D

∏
d=1

tX

]
(51)

=
D

∏
d=1

E
[
tX
]

(52)

=
(

E
[
tX
])D

(53)

= gD
X (t) (54)

This mathematical convenience is a known property of PGFs, sometimes called the “power property”70.

Let’s consider a parent node i belonging to block k, which shares d(l) edges with members of block

l = 1, ...,K, summing to d edges total. The PGF for the degree of each node connected to node i is

distributed according to PGF gxl ;1(t). Because the block membership of each neighbor is independent,

their sum has PGF gd(l)
Xl ;1

(t). Adding across all blocks, the PGF for second nearest neighbors of node i

conditional on their edge profile d := d(1), ...,d(K) is

gXk ;2(t|d) =
K

∏
l=1

gd(l)
Xl ;1(t) (55)

For the DegSBM, each block membership of each neighbor of a node belonging to block k is identically

and independently distributed according to a multinomial distribution with probabilities Θk·, with PMF

PΠ(d)

(
∑K

l=1 d(l)
)

!

∏K
l=1 d(l)!

K

∏
l=1

[
Θd(l)

kl

]
(56)

By the law of iterated expectation, the PGF for second neighbors for node i in block k with d total

neighbors is
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gXk ;2(t|d) = ∑
d:d>1=d


PΠ(d)

(
∑K

l=1 d(l)
)

!

∏K
l=1 d(l)!

K

∏
l=1

[
Θd(l)

kl

] K

∏
l=1

gd(l)
Xl ;1(t)

 (57)

(58)

While exact, this does not appear to simplify any further, and marginalizing over the distribution of first

edges Xk does not appear useful. We may alternatively consider marginalizing over degree directly.

Consider the expected number of d neighbors belonging to block l = 1, ...,K. The PGF of the expected

excess degree is gXk;1(t). Summing over each block, the PGF of for the second nearest neighbors for a

node in block k with degree d is

gXk ;2(t|d) = gXk ;1(t)d (59)

Finally, let’s write for the PMF as PXk ;2(e|d) be the probability of having e second neighbors given d first

neighbors, corresponding to PGF gXk ;2(t|d). The probability of node i in block k having degree d has

probability PXk (d), so the PGF of second neighbors for node i is

gxk ;2(t) =
∞

∑
e=0

PXk ;2(e)te (60)

=
∞

∑
e=0

∞

∑
d=0

PXk (d)PXk ;2(e|d) te (61)

=
∞

∑
d=0

PXk (d)
∞

∑
e=0

PXk ;2(e|d) te

︸ ︷︷ ︸
gXk ;2(t|d)

(62)

=
∞

∑
d=0

PXk (d)gXk ;1(t)d (63)

= gXk

(
gXk ;1(t)

)
(64)

With this in hand, we may calculate the average number of second neighbors for nodes in block k as
dgXk ;2(t)

dt = g′Xk

(
gXk ;1(t)

)
· g′Xk ;1(t). Evaluating each part of this expression:
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gXk (1) = 1 (65)

g′Xk
(1) = 〈dk〉 (66)

gXk ;1(1) = Θ>k·

[
g′(1)
g′(1)

]
= Θ>k·1= 1 (67)

g′Xk ;1(1) = Θ>k·

[
g′(t)
g′(1)

]′∣∣∣∣∣
t=1

(68)

=
K

∑
l=1

Θkl
〈dl〉

g′′Xl (1) (69)

=
K

∑
l=1

Θkl
〈dl〉

E
(

d2
l − dl

)
(70)

=
K

∑
l=1

Θkl
〈dl〉

(
〈d2

l 〉 − 〈dl〉
)

(71)

=
K

∑
l=1

Θkl

(
〈d2

l 〉
〈dl〉
− 1

)
(72)

=

(
K

∑
l=1

Θkl
〈d2

l 〉
〈dl〉

)
− 1 (73)

Putting these together, we obtain the mean number of second neighbors for members of block k:

dgXk ;2(t)
dt

∣∣∣∣
t=1

= 〈dk〉
[(

K

∑
l=1

Θkl
〈d2

l 〉
〈dl〉

)
− 1

]

It is possible to consider further network neighborsn2, but unfortunately this does not appear to simplify

as neatly.

Degree Distribution With Block Members

To find the size of the giant component in the DegSBM, we consider the degree distribution for con-

nected components of members belonging to each block k, and sum across all blocks. Consider two

nodes i and j in block k. If they are members of the same component, a path exists between the two.

This may occur in several ways. One obvious route is to share an edge directly. Another is for both

nodes to share a common neighbor c in block l (where l may equal k). More circuitous paths may exist,
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but for analytical tractability we only consider these two routes. If we assume the former is a special

case of the lattern2, the number of edges shared by members of block k through a connecting node in

block l is generated by the degree distribution of edges in block pair (k, l), and the degree distribution

of a node reached by randomly selecting an edge emanating from block k. Using the same arguments

for the number of second neighbors and summing over each block l, this is distributed according to the

PGF:

GXk (t) = gXk

(
K

∑
l=1

Θkl
g′Xl

(t)

g′Xl
(1)

)
(74)

= gXk

(
Θ>k·g

′
·1(t)

)
(75)

= gXk

(
gXk ;1(t)

)
(76)

Similarly, we may describe the degree distribution for a connected block being reach by selecting an

edge at random among the nodes belonging to members of block k:

GXk ;1(t) =
K

∑
l=1

Θkl

g′Xl

(
∑K

m=1 Θlmg′Xl

(
g′Xm (t)
gXm (1)

))
g′Xl

(1)
(77)

=
K

∑
l=1

Θkl

g′Xl

(
Θ>l· g·1(t)

gXl
(t)

)
g′Xl

(1)
(78)

=
K

∑
l=1

Θkl

(
g′Xl

(gXl ;1(t))

g′Xl
(1)

)
(79)

= Θ>k·

[
g′(g·1(t))
g′(1)

]
(80)

In the following section, we describe how to use these PGFs to find the distribution of finite component

sizes and the size of the giant component.
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Finite Component Size Distribution

Consider the distribution of sizes of components that are reached by randomly selected member of

block k. Let h(k)0 (t) = ∑∞
s=0 σ

(k)
s ts be the PGF for this distribution for each block k. Similarly, let h(k)1 (t) =

∑∞
s=0 ρ

(k)
s ts be the PGF for the distribution of sizes of components found when following an edge se-

lected at random with one of its nodes (also selected at random) belonging to block k. We find these

probabilities by first considering the degree of the removed node, and integrate over all degrees. Let Pc
Xk

and Pc
Xk ;1 be the degree distributions corresponding to PGFs GXk and GXk ;1 from the previous section.

Additionally, let P(k)(s|d) represent the probability that node i belonging to block k and component size

of s (excluding itself) has degree d. Then:

σ
(k)
s =

∞

∑
d=0

Pc
Xk
(d)P(k)(s− 1|d) (81)

Substituting this into h(k)0 , we obtain

h(k)0 (t) =
∞

∑
s=1

∞

∑
d=0

Pc
Xk
(d)P(k)(s− 1|d)ts (82)

= t
∞

∑
d=0

Pc
Xk
(d)

∞

∑
s=1

P(k)(s− 1|d)ts−1 (83)

= t
∞

∑
d=0

Pc
Xk
(d)

∞

∑
s=0

P(k)(s|d)ts

︸ ︷︷ ︸[
h(k)1 (t)

]d

(84)

= tGXk (h
(k)
1 (t)) (85)

The final sum follows because P(k)(s|d) describes probability of the component size found by following

a random member of block k, which may occur d independent ways, and recalling the “power property”

of PGFs, this sum yields a multiplication for its PGF, as described in the previous section. Similarly, we

may find the probability of finding a component of size s after the removal of node i belonging to block

k with degree d:
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ρ
(k)
s =

∞

∑
d=0

Pc
Xk ;1(d)P(s− 1|d) (86)

Substituting into h(k)1 , we obtain:

h(k)1 (t) =
∞

∑
s=1

∞

∑
d=0

Pc
Xk ;1(d)P(k)(s− 1|d)ts (87)

= t
∞

∑
d=0

Pc
Xk ;1(d)

∞

∑
s=1

P(k)(s− 1|d)ts−1 (88)

= t
∞

∑
d=0

Pc
Xk ;1(d)

∞

∑
s=0

P(k)(s|d)ts

︸ ︷︷ ︸[
h(k)1 (t)

]d

(89)

= tGXk ;1(h
(k)
1 (t)) (90)

We may therefore evaluate h(k)0 (t) by first finding u(k)(t) such that u(k)(t) = tGXk ;1(u(k)(t)), substitute

these function into h0(t), and take its derivatives to find the fraction of nodes belonging to components

of size s. However, because h0(t) is not evaluated directly, taking its explicit derivatives is prohibitive.

Size of the Giant Component

Note that ∑∞
s=0 σ

(k)
s need not sum to 1 for any k. Failure to sum to 1 occurs only if there is a component

that is a substantial (non-zero) fraction of the total number of nodes n as n→∞, called a giant component

S. This component must therefore have the size described by the remainder of nodes after each finite

component is considered. This can be found for each block k, and summed across each block:
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S = 1−
K

∑
k=1

πk

∞

∑
s=0

σ
(k)
s (91)

= 1−
K

∑
k=1

πkh(k)0 (1) (92)

= 1−
K

∑
k=1

πkGXk (h
(k)
1 (1)) (93)

We may thus find the size of the giant component by solving:

S = 1−
K

∑
k=1

πkGXk (u
k) (94)

∀k
(
u(k) = GXk (u

(k))
)

(95)

This may be written compactly:

u= G·1(u) (96)

S = 1− π>G(u) (97)

Note that this also yields a formulation for the fraction of nodes in the giant component and also a

member of block k:

1− π>G(u) = π> [1−G(u)] (98)

⇒ Sk = πk

(
1− G(u(k))

)
(99)
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Infectious Spread

So far, we have considered how the full set of parameters specifying the DegSBM allow for probabilistic

estimates of other properties, such as the number of multi-edges, self-edges, clustering coefficient, num-

ber of second neighbors, number of finite component sizes, and the size of the giant component. In this

section, we extend the methods used previously in this section to find properties or epidemic processes

occurring on the DegSBM. Specifically, we consider the properties of an infinite-time SIR process on

the DegSBM in the limit of network size, most of which have analogs of the statistics we have already

derived. Alternatively, it is also possible to study the finite-time behavior of compartmental epidemic

network processes on networks26, which we save for future work.

SIR Processes on Networks

An SIR process is a compartmental model24 describing the spread of an infectious disease. The model

specifies a number of individuals, and assumes that each has one of three infectious states: susceptible

(S), infected and contagious (I), and recovered and no longer susceptible (R). Specifically, susceptible

nodes in contact with infected neighbors may become infected themselves, and infectious nodes may

recover (and lose susceptibility) at a fixed time in the future. The fully-mixed assumption states that

each individual is equally likely to come in contact with any other. These conditions are the underpin-

nings of the Reed-Frost model71, which simplifies the description of the infection to the proportion of

individuals in each state compartment over time.

Epidemic processes on networks are different. A natural way to consider the role of a network in

epidemics is as the specific contacts each node has, or could have, with other nodes. On this view, an SIR

process on a network consists of a stochastic process, in which each node is one of three infectious states.

At any time, a suspectable neighbor may be infected by an infected network node with probability β,

and infected individuals may recover (independent of others’ states) at any time with independent

probability γ.

A classic way to proceed with this specification was first described by Denis Mollison72 and Peter

Grassberger73. Consider a single infected individual, who may infect some of their neighbors before

recovering from the disease. The edges between the original node and the subset of its neighbors who

are ultimately infected by it is a subset of the network. These newly-infected nodes go on to infect other

67



nodes, and the subset of edges along which the infection progresses together constitute an increasingly

larger subset of the network. This is very similar to a percolation process74 75, which we introduce next.

A percolation process considers a network or lattice, and assumes that sites (nodes) or bonds (edges) are

“occupied” according to a set of rules. The simplest rule is a random selection for each entity. With

these rules in place, does the lattice contain an unbroken path of occupied sites or bonds that spans

the lattice? This and related questions are key research topics in percolation theory. Returning to SIR

processes on networks, the lattice is a given DegSBM network, and the percolation process rule is the

sequential infection and recovery of individual nodes, beginning with a single infected (“occupied”)

node. The result of this process is a subset of the network edges along which individuals have become

infected, which may have properties like the ones we have already derived. In the next subsection,

we will argue that the addition of a single term for transmissibility T allows us to then derive results

for these properties for the final size of an edge percolation process on the DegSBM model, whose

constituent nodes comprise those infected in an epidemic on these networks.

Transmissibility

Assume that the time to infection for the susceptible neighbor is a Poisson process76 with rate β, and

the probability of the infected individual recovering is also a Poisson process with a rate of recovery γ.

If each individual in a population contacts all others with equal probability, this is called mass action,

and epidemics with this property have been studied extensively, neatly reviewed by Anderson and

May24. However, we may also consider contacts existing within a fixed network structure, which has

been considered by Newman69, whose treatment we will review for the remainder of this subsection.

Consider a susceptible individual j who is connected to only one infected individual i. We presently

assume that the rate of transmission is the same for each node. If node j is exposed to infectious node

i for a total period of time with length ti, the probability of not being infected during a short moment

of time with length dt is 1− β · dt. It is often assumed that this process is continuous, wherefore simu-

lations may use a discrete representation for time. Here we consider the continuous case. For Poisson

processes, the probability of infection for each infinitesimal moment is independent. Thus, if the total

probability of node i being infected for a period of susceptibility of length ti is Ti, the total probability

of no infection is
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1− Ti =(1− βdt)ti/dt (100)

−→
dt→0

Ti =1− e−βti (101)

For the recovery Poisson process, ti
iid∼ exp(γ), so the average probability of infection between nodes i

and j is

〈Ti〉 =
∫ ∞

0

[
1− e−βt

]
γe−γtdt (102)

=

[∫ ∞

0
γe−γtdt

]
−
[
γe−(γ+β)tdt

]
(103)

= 1− 1
1 + βγ−1 (104)

For use in simulations, we now turn to the discrete case, dti = 1. Here, β represents the probability of

an infection at each time step, and γ represents the probability of recovery for an infected node at each

time step. In this setting, the probability of not being infected is 1− Ti = (1− β)ti , where ti
iid∼ geo(γ).

Then:

〈1− Ti〉 = 1− 〈Ti〉 (105)

=
∞

∑
t=1

γ(1− γ)t · (1− β)t (106)

= γ
∞

∑
t=1

[(1− γ)(1− β)]t (107)

=
γ

1− (1− γ)(1− β)
(108)

〈Ti〉 = 1− 1
1 + β(γ−1 − 1)

(109)

Note that for β→ 0 and βγ−1→ λ, the discrete case converges to a Poisson process.

Consider that this average transmissibility is in fact the probability that any node (belonging to the
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same compartment of the initial infected node) ever becomes infected. Then the probability of a node

in block k with degree d having e infected neighbors is generated by the PGF

gXk (t; T) =
∞

∑
e=0

∞

∑
d=0

[(
d
e

)
Te(1− T)d−e

]
PXk (d)t

e (110)

=
∞

∑
d=0

PXk (d)
d

∑
d=0

[(
d
e

)
Te(1− T)d−e

]
te (111)

=
∞

∑
d=0

PXk (d)
[(

d
e

)
(Tt)e(1− T)d−e

]
(112)

=
∞

∑
d=0

PXk (d) (1− T + Tt)d (113)

= gXk (1 + (t− 1) · T) (114)

This form for the PGF of infected nodes is very similar to the block-specific PGFs used to derive network

statistics for the DegSBM. Indeed, in the special case that T = 1, bond percolation is guaranteed to

proliferate throughout the network component, reducing to the results we have shown so far. In the

general case T ∈ [0,1], we may derive new statistics for the percolation subnetwork corresponding to

the final size of an SIR epidemic. Let’s consider these in turn.

Final Size of the Epidemic

We now apply the discussion of transmissibility and bond percolation to find the final epidemic size of

the DegSBM. Just as before, we may define the PGF for infected nodes belonging to connected compo-

nents of block k:

GXk (t; T) = GXk (1 + (t− 1) · T) (115)

GXk ;1(t; T) = GXk ;1(1 + (t− 1) · T) (116)

The arguments used before to derive the final size of the epidemic follow exactly as those for the giant

component, yielding:
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u=G·1(u; T) (117)

S = 1− π>G(u; T) (118)

Note that this also yields a formulation for the fraction of nodes in the giant component and also a

member of block k:

1− π>G(u; T) = π> [1−G(u; T)] (119)

⇒ Sk = πk

(
1− G(u(k); T)

)
(120)

Node Risk of Infection

The quantity u(k) may be interpreted as the probability that the node in block k at the end of a randomly

chosen edge in the network remains uninfected during an epidemic69. Therefore, the probability that

the infection propagates along any given edge to a member of block k is T · (1 − u(k)). If this node

also has degree d, the total probability that a node does not become infected through any of its edges is

then
[
1− T · (1− u(k))

]d
. We may therefore write the probability or risk of becoming infected R(k)

d for

a given node with degree d in block k as:

R(k)
d = 1−

[
1− T ·

(
1− u(k)

)]d
(121)
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Results

In this section, we describe a simulation study to validate our results. For several specific choices

using the full range of DegSBM parameters, we simulated 100 DegSBMs for each specification. We also

carried out a single SIR infectious process on each one, beginning with a single infected node selected

at random with transmissibility T = 0.9, and proceeded until no remaining nodes were infected (all

had either recovered or were never infected). For each specification, we also varied a single parameter

(usually the degree for some or all blocks), and plotted each statistic while varying this parameter.

Although smaller networks also perform well, in each case we simulated networks of size n = 48,000.

In plots 19-73, we show several theoretical and simulated values for important statistics derived in this

section. The first plot shows the average number of second neighbors for members of each block. That

is, we show the average number of neighbors of the neighbors for members of each block k. We also

plot the total size of the giant component, or the fraction of all nodes that belong to the giant component,

ranging from 0− 1. In addition, we show the fraction of all nodes that belong to both the giant com-

ponent as well as each block k, showing the relative contribution of members of each block to the giant

component. Similarly, we show the final epidemic size of the single SIR process conducted on each simu-

lation, which is the fraction of nodes that are recovered from being infected at the end of the infectious

process. We also show the epidemic size for members of each block: that is, the fraction of nodes that

are both members of block k as well as ever became infected throughout the SIR process. Because all

infected individuals eventually recover, this fraction is the same and all those who are recovered by the

end of the epidemic process.

Here, we discuss each of the figures. For all of the following, the theoretical value is shown as a line,

and each dot shows a simulation. All results fit our theory well, with a few exceptions we will discuss in

turn. We begin by discussing base cases. The configuration model is a network where only the degree

distribution is specified, and edges are otherwise uncorrelated. Within our framework, this corresponds

to a single mixing and allocation block, where π and Θ to 1. We consider a series of configuration

models, for which each simulation increases in its mean degree. Figure 24 shows the average number

of second neighbors for each node. Figure 25 shows the size of the giant component. We observe that a

giant component only exists when the mean degree is greater than 1, and increases quickly thereafter.

Figure 26 shows the fraction of nodes that belong to both the giant component and a particular block.

(In the case of a single block, these are the same.) Figure 27 shows the final size of an SIR epidemic, or

the fraction of nodes that were infected (and recovered, which all eventually do). This shows similar
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behavior to that of Figure 21: only when the mean degree has reached a sufficient number of nodes does

an epidemic of substantial size occur. Similarly, 28 shows the fraction of nodes that were both infected

and belonged to each block, which in this case is the same.

Not all simulated infections lead to a significant fraction of infected nodes. Note that for the epidemic to

spread through a non-zero fraction of the network, the single infected node must meet two conditions:

first, it must be connected to a significant fraction of the network (that is, it must be a member of the

giant component if one exists); second, it must successfully transmit the infection to at least some of

its neighbors, who in turn transmit the disease (that is, the infection does not die out prematurely).

Because we select a node at random, we expect the first condition to only be met with a probability

equal to the size of the giant component, which we discussed above. The second condition is a function

of transmissibility parameter T as well as the first infected node’s specific degree, as well as some

chance that the infection dies out by chance. While it would be possible to only keep simulations that

meet these two conditions, we show these results to show the qualitative dichotomy of outcomes, as

well as their frequency as a function of these conditions.

Figures 19-23 show an alternative specification for the configuration model: each of three blocks share

the same degree distribution as well as expected degree, and the mixing structure is equal across all

three blocks. These results show that using blocks that are similar to each other does not result in

different behavior from the classic configuration model. However, we note that Figures 21 and 23 show

that each block contributes an equal third of its nodes to form the giant component, as well as the final

size of the epidemic.

Next, we show that the DegSBM is also able to recover similar results for the random bipartite network

as well. Recall that a bipartite network is one in which each node belongs to exactly one of two groups,

and edges only exist between members of opposite groups. This is easily represented as a two-block

DegSBM, with mixing matrix values of 0 belonging to the diagonals. We show results for which one

group is half the size of the other, but has twice the number of edges. Figure 29 shows that the two blocks

(groups) have the same number of second neighbors. This may first seem surprising because the two

have differing degree distributions. However, in the case of bipartite networks, each second neighbor

is reached by first selecting a neighbor in the opposite group, who can in turn only be connected to

a member of the second group, which remains true regardless of which is a symmetric relationship.

Figure 30, show again that a giant component only occurs with a sufficient density of edges. However,

Figure 31 shows that this giant component is not equally comprised of nodes belonging to both blocks,

as one is larger than the other. This critical behavior and asymmetric contribution of each block is
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similar in the final epidemic size, shown in Figures 32 and 33.

Turning to more exotic cases, we consider cases for which blocks are arranged to form distinct shapes

using the mixing matrix. We first consider four blocks arranged to form a square. (That is, each block

have edges with exactly two other blocks, and not themselves.) Figure 34 shows that the number of

second neighbors remains equal for each. Figures 35 and 36 shows again that only a sufficient number

of edges will cause a giant component to appear, and in this case each corner of the square contributes to

the size of the giant component equally. This is also the case for the final epidemic size, shown in Figures

37 and 38. We also consider four blocks arranged in a tube, meaning two inner blocks are connected to

exactly two other blocks (and not within either block), and two outer blocks are each connected only to

one inner block. This results in non-equivalent values for the number of second neighbors (Figure 39) as

well as contributions to the giant component and final epidemic size (Figures 41 and 43), respectively.

We next consider two cases in which half of the nodes have a fixed degree distribution and mean degree,

and the other half of the nodes have a sequentially increasing expected degree, and consider what

happens to the existence of a giant component and epidemic size (and the relative contributions of

either block to these). In the first case, we hold the constant degree block to have an average degree of

1, which is the threshold for the existence of a giant component20. In this case, we see that the number

of second neighbors increases for member of both blocks (Figure 44). We also observe that a giant

component begins to exist when both blocks have degree greater than 1 (45), but that the non-constant

block always contributes more to the giant component (Figure 46). We observe similar behavior for

the final epidemic size (Figures 47 and 48). We also consider the case where the constant block has an

insufficient degree distribution and mean degree to cause a giant component to exist. Again, Figure

49 shows that the number of second neighbors increases for both blocks. However, Figures 50 and

51 show that while nodes in the changing block are part of a giant component to an equal degree as

those in Figure 46, the constant block only exhibits half the number of nodes to the giant component,

decreasing its overall size (Figure 50) compared to Figure 45. This is also similar in Figures 52 and 53.

Next, we consider a large number of blocks, each with different mean degree, and very little mixing

between them. In the limit, each of these blocks can be considered independence configuration models,

but it is not known if a slight amount of mixing causes different behavior than treating them separately.

Figure 54 shows that the number of second neighbors grows multiplicatively faster for each block ac-

cording to their own mean degree. Figure 55 shows that for these parameter values, a giant component

appears rapidly, but the contribution of each block (Figure 56) does not rise quickly from zero at the

same time for all blocks. Although some mixing exists between each of the blocks, it is insufficient to
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cause a significant number of nodes to be a part of the giant component unless that block itself has a

sufficient number of edges to cause a giant component to appear of its own accord. We note that the

simulation results for Figure 56 show an underestimation of the number of nodes in the giant compo-

nent for the smallest block. This is due to our only considering two of the major ways nodes can be a

part of a larger component, (discussed in the subsection Degree Distribution With Block Members). These

patterns are also similar when considering the final epidemic size (see Figures 57 and 58).

What will happen if we hold the degree distribution and mean degree to be the same in the previous

case, but increase the mixing somewhat among these blocks? Figure 59 shows substantially the same

number of second neighbors for each block, although the blocks containing the fewest edges increase in

the number of their second neighbors somewhat. Figures 60 and 57 also show similar behavior, albeit

with more members overall belonging to the giant component and final epidemic size, respectively.

In contrast, Figures 61 and 63 show that with a sufficient amount of mixing between the blocks, each

block begins to significantly contribute to the giant component and final epidemic size (albeit differing

amounts), even though some do not have a sufficient number of edges to create these of their own

accord. This shows that connections with other blocks can significantly alter the epidemic behavior

when either considering blocks alone, or as a single random block.

Finally, we show two examples of block structure designed to have no easy interpretation, besides

shuffling each of the parameters in order to assess whether the in these cases. We shows these results

for three blocks (Figures 64-68) and four blocks (Figures 69-73). In both cases, we still see a close fit

for each statistic. This suggests that the simulation of most structures specifiable by the model fit our

theoretical predictions well.
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Configuration (One Block)

π = [1]

g = [Poi(a)]

Θ = [1]
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Figure 19: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 20: The size of the giant component for a range
of values a.
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Figure 21: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 22: The size of an epidemic for a range of values
a.
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Figure 23: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Configuration (Many Blocks)

π =

[
1
3

,
1
3

,
1
3

]
g = [Poi(a),Poi(a),Poi(a)]

Θ =


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Figure 24: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 25: The size of the giant component for a range
of values a.
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Figure 26: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 27: The size of an epidemic for a range of values
a.
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Figure 28: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Bipartite

a ∈ [0.05,1.5]

π =

[
1
3

,
2
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]
g = [Poi(2a),Poi(a)]

Θ =
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Figure 29: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 30: The size of the giant component for a range
of values a.
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Figure 31: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 32: The size of an epidemic for a range of values
a.

0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Giant Component

a

G
ia

nt
 C

om
po

ne
nt

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

l
l

llllllllllllll

l

l

llllll

l

l
l

l

l

l

llll

l

l
l

l

l

l

l

l

llll

l

l

llll

l

l

llllll

l

l

ll

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

llll

l

l
l

l

l

ll

l

l

Block 1
Block 2
Theory
Simulation

Figure 33: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Square

a ∈ [0.6,5]

π =

[
1
4

,
1
4

,
1
4

,
1
4

]
g = [Poi(a),Poi(a),Poi(a),Poi(a)]

Θ =


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Figure 34: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 35: The size of the giant component for a range
of values a.
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Figure 36: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 37: The size of an epidemic for a range of values
a.

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Giant Component

a

G
ia

nt
 C

om
po

ne
nt

llllllllllllllllllllllllllllllllllllllllllllllllllllllll

llll

llllllllllllllllllllllll

llll

llll

llll

llll

llll

llll

llll
llll

llll

llllllllllll

llll
llll

llll
llll

lllllll
lllllllll

llll
llll

llll
llll

llll

llllllllllllllll
llll

llll

lll
lllllllllllllllllllllllllllllllllllllllll

llll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

l

Block 1
Block 2
Block 3
Block 4
Theory
Simulation

Figure 38: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Tube

a ∈ [0.6,5]

π =

[
1
4

,
1
4

,
1
4

,
1
4

]
g = [Poi(a),Poi(a),Poi(a/2),Poi(a/2)]

Θ =


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Figure 39: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 40: The size of the giant component for a range
of values a.
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Figure 41: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 42: The size of an epidemic for a range of values
a.
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Figure 43: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Core with Saturated Periphery
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Figure 44: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 45: The size of the giant component for a range
of values a.
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Figure 46: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 47: The size of an epidemic for a range of values
a.
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Figure 48: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Core with Unsaturated Periphery
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Figure 49: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 50: The size of the giant component for a range
of values a.
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Figure 51: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 52: The size of an epidemic for a range of values
a.
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Figure 53: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Isolated Communities

For K = 6,K = [K, ...,1],

a ∈ (0.01,2.5)

π = 1/K

g = [Poi(K · a)]

Θ =
[
diag(K − 0.05) + 11> · 0.01

]
�K−11>

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

20
0

Second Neighbors

a

S
ec

on
d 

N
ei

gh
bo

rs

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
lll

l
lllllll

l
l
lll

lllll
l
lll
llll

lll
l
l

l
l
l
l

lllll

l

l
ll

l
l
l

l

l
l
l

l

l

l

l

l
ll
ll

ll
l

l
l

l

ll
l
l

l
l
l

l
l

l

l
l

l

l

l

l

l
l

l

l
l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

ll

l

l
l

l

l

l

l

l
l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Theory
Simulation
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6

Figure 54: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 55: The size of the giant component for a range
of values a.
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Figure 56: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 57: The size of an epidemic for a range of values
a.
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Figure 58: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Connected Communities

For K = 6,K = [K, ...,1],

a ∈ [0.01,2.5]

π = 1/K

g = [Poi(K · a)]

Θ =
[
diag(K − 0.5) + 11> · 0.1

]
�K−11>
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Figure 59: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 60: The size of the giant component for a range
of values a.
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Figure 61: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 62: The size of an epidemic for a range of values
a.
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Figure 63: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Three Shuffled Blocks

a ∈ (0.6,7)
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Figure 64: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 65: The size of the giant component for a range
of values a.

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Giant Component

a

G
ia

nt
 C

om
po

ne
nt

lllllllllllllllllllllllllll

l
l

ll

l
l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

Block 1
Block 2
Block 3
Theory
Simulation

Figure 66: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 67: The size of an epidemic for a range of values
a.
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Figure 68: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Four Shuffled Blocks
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Figure 69: The number of second neighbors for mem-
bers of each block, for a range of values a.
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Figure 70: The size of the giant component for a range
of values a.
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Figure 71: The fraction of members in a block and the
giant component, for a range of values a.
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Figure 72: The size of an epidemic for a range of values
a.

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Giant Component

a

G
ia

nt
 C

om
po

ne
nt

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
l

l

l

l

llll
l

l

l

l

llllllllllllllllllll

l

l

l

l

llllllllllllllllllll
l

l

l

l

llllllllllllllllllll

l

l

l

l

l

l

l

l

llll

l

l

l

l

llllllllllllllllllllllllllll

l

l

l

l
llll

l

l

l

l

llll

l

l

l

l
llllllll

l

l

l

l

llllllllllllllll
l

l

l

l

llllllllllll

l

l

l

l

l

l

l

l

llllllll

l

l

l

l

l

l

l

l

l

l

l

l

llll

l

l

l

l

l

l

l

l
llllllllllll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll

l

l

l

l

l

l

l

l

llllllllllllllllllll

l

l

l

l

llllllllllllllllllllllllllllllllllllllll
l

Block 1
Block 2
Block 3
Block 4
Theory
Simulation

Figure 73: The fraction of members in a block and in-
fected in the epidemic, for a range of values a.
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Discussion

Degree-Corrected Stochastic Blockmodel is a network model that allows for each node to have an ar-

bitrary degree, and for members to belong to a finite number of discrete blocks, between which the

members of each block may share an arbitrary number of its edges, subject to an equal number of edges

shared between each pair. In this section, we detailed a procedure that generates networks whose prop-

erties are consistent with its specification as the size of the network grows.

We then derived several asymptotic statistics for this model. We find that the number of self edges

and multiedges for this model are constants as the network grows, so we may ignore these for large

networks. We also found that the clustering coefficient decreases as the size of the network increases,

so the clustering coefficient for the Degree-Corrected Stochastic Blockmodel is negligible in the limit

of n→ ∞. This is unlike many empirical networks which exhibit significant clustering, making this a

drawback for the realism of this model. We also derived the size of the giant component as a function

of node membership, degree distribution, and mixing structure. We also found the fraction of nodes

each block contributes to the network. We then described an infinite-time SIR process propagating on

the network, and found the final size of the epidemic in similar terms to that of the giant component.

Finally, we simulated several kinds of networks specifiable as a DegSBM. We find that our theoretical

results match simulation well. These results could be used in practice by applying community detection

methods to an empirical network, finding the empirical mixing distribution and degree distribution,

and using these results to detect the size of a giant component or epidemic, as well as the relative

contributions of each block.

Several extensions of the Degree-Corrected Stochastic Blockmodel may be useful. Our results do not

require any bound on the complexity of the mixing matrix of degree distributions, but in each case the

results only hold asymptotically. It is desirable to consider the case where block structure increases in

complexity along with network size n. A particularly interesting case would be when most all block

structure is contained on or near the diagonal of the mixing matrix, such as those with strong commu-

nity or lattice structure. Finally, it is possible to incorporate a term for clustering in many networks65 77,

which would be a welcome addition to this model.
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Concluding Remarks

In this dissertation, we have investigated the statistical properties of epidemic spread on networks. We

also find how to use these properties to improve the efficiency of statistical analysis. We review each of

these in turn.

In Section I, we found that for trials of infectious processes in networks, network structure can reduce

the probability of correctly detecting a real treatment effect, or statistical power. We show this by con-

sidering a simulated cluster randomized trial in which individuals become infected through network

neighbors. These networks consisted of within-cluster network structure, as well as network edges

across clusters belonging to different intervention arms, and found that empirical power depends on

both of these. We also showed that a common way to estimate power before a study does not capture

these dependencies. This presents a challenge and opportunity to develop and apply statistical adjust-

ments to recover power by accounting for the dependence of the infectious process on these network

properties.

In Section II, we consider one strategy for improving statistical power. We again consider the cluster

randomized setting, wherein isolated networks are randomized to two treatment arms. Upon simu-

lating each trial, we obtain several covariates for each node and cluster based on each network and

baseline infection, and consider their use in statistical methods designed to more efficiently estimate

the treatment effect. To this end, we used the recently developed Augmented Generalized Estimating

Equations, which account for the relationship between these covariates and the outcome for both treat-

ment arms. We show that under a wide range of simulation parameters, network-related covariates

show modest gains in statistical efficiency, and covariates relates to baseline infections show substantial

gains. We also show that these gains depend on specific assumptions about the network and epidemic

process. However, not each collection of relationships implies that an infectious epidemic is possible or

likely, or how that infection depends on the properties of each individual in the network. This prompts

the development of analytical derivations that link network structure to global and individual risk of

infection.

In Section III, we consider an analytical approach to understand these relationships for the Degree-

Corrected Stochastic Blockmodel, which is sufficiently flexible to consider the degree of each network

node as well as mixing structure between discrete blocks of nodes. For this model, we derive a range of

network properties, such as a global measure of connectivity (the size of the giant component) and the
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risk and extent of potential epidemic spread. We also show that this is related to a measure of risk for

individual nodes in the network. To return to the context of cluster randomized trials, these estimates

of network and node properties can also be used as adjustment covariates in adjustment methods that

aim to increase statistical efficiency.

Taken together, Section I shows that properties of the network and infectious spread can reduce the ef-

ficiency with which treatment effects reduce the incidence of infectious outcomes. We have also shown

how this reduction can be remedied by incorporating network features in the estimation procedure.

When properties of networks can be assessed directly, Section II suggests which covariates would be ef-

ficient for a range of epidemic scenarios. When network structure can only be partially estimated, such

as degree distribution and mixing structure, we derive in Section III the extent of risk of an epidemic,

and derive several other network and node properties. When estimating the effect of a treatment on

reducing the epidemic spread on networks, the methods of these latter two sections can both be used

to produce network-related covariates that can be used in adjustment techniques to recover statistical

power.
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takis. Geographic constraints on social network groups. PLoS one, 6(4):e16939, 2011.

[48] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks. Phys. Rev.
E, 83:016107, Jan 2011.

[49] Sally M Kerry and J Martin Bland. The intracluster correlation coefficient in cluster randomisation. Bmj,
316(7142):1455–1460, 1998.

[50] Michael G Hudgens and M Elizabeth Halloran. Toward causal inference with interference. Journal of the
American Statistical Association, 2012.

[51] Scott L Zeger and Kung-Yee Liang. Longitudinal data analysis for discrete and continuous outcomes. Biomet-
rics, pages 121–130, 1986.

[52] Alan E Hubbard, Jennifer Ahern, Nancy L Fleischer, Mark Van der Laan, Sheri A Lippman, Nicholas Jewell,
Tim Bruckner, and William A Satariano. To gee or not to gee: comparing population average and mixed
models for estimating the associations between neighborhood risk factors and health. Epidemiology, 21(4):467–
474, 2010.

[53] Anastasios A Tsiatis et al. Covariate adjustment for two-sample treatment comparisons in randomized clinical
trials: A principled yet flexible approach. Statistics in medicine, 27(23):4658–4677, 2008.

[54] Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. Physical
Review E, 83(1):016107, 2011.

[55] Mark EJ Newman. Assortative mixing in networks. Physical review letters, 89(20):208701, 2002.

[56] Duncan S Callaway, John E Hopcroft, Jon M Kleinberg, Mark EJ Newman, and Steven H Strogatz. Are ran-
domly grown graphs really random? Physical Review E, 64(4):041902, 2001.

[57] R Xulvi-Brunet and IM Sokolov. Reshuffling scale-free networks: From random to assortative. Physical Review

92



E, 70(6):066102, 2004.

[58] Alisa J Stephens, Eric J Tchetgen Tchetgen, and Victor De Gruttola. Augmented gee for improving efficiency
and validity of estimation in cluster randomized trials by leveraging cluster-and individual-level covariates.
Statistics in medicine, 31(10):915, 2012.

[59] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. Estimation of regression coefficients when some
regressors are not always observed. Journal of the American statistical Association, 89(427):846–866, 1994.

[60] Min Zhang, Anastasios A Tsiatis, and Marie Davidian. Improving efficiency of inferences in randomized
clinical trials using auxiliary covariates. Biometrics, 64(3):707–715, 2008.

[61] RI Jennrich and PF Sampson. Application of stepwise regression to non-linear estimation. Technometrics,
10(1):63–72, 1968.

[62] Azra C Ghani and Geoffrey P Garnett. Risks of acquiring and transmitting sexually transmitted diseases in
sexual partner networks. Sexually transmitted diseases, 27(10):579–587, 2000.

[63] Stuart J Pocock, Susan E Assmann, Laura E Enos, and Linda E Kasten. Subgroup analysis, covariate adjust-
ment and baseline comparisons in clinical trial reporting: current practiceand problems. Statistics in medicine,
21(19):2917–2930, 2002.
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Appendix: Augmented GEE on Smaller Networks

Statistics Marginal Across All Scenarios

Treatment Effect β: -2.64

None F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
Bias 0 0 0 0 0 0 0 0 0 -0.02 -0.05 0 -0.05 -0.02 -0.01 0 0

RobSE 3.02 2.94 2.91 2.96 3.02 2.92 2.87 2.89 2.98 0.88 1.62 1.02 1.78 0.76 0.75 2.92 2.94
EmpSE 2.92 2.83 2.82 2.93 2.92 2.89 2.89 2.85 2.84 0.73 1.56 0.93 1.84 0.86 0.85 2.81 2.82

Gains 0(0) 2(2) 2(3) -1(2) 0(0) 0(2) -2(5) 1(3) 2(3) 67(15) 20(39) 62(16) 0(60) 56(22) 57(21) 3(2) 3(2)
Power 30.6 30.8 31.2 31.7 30.6 32.4 32.2 32.6 30.4 81.1 45.6 74.4 38.1 82.7 83.7 31 31

Coverage 95(2) 95(2) 95(2) 94(2) 95(2) 94(2) 94(2) 94(2) 95(2) 94(6) 96(3) 94(6) 94(3) 89(7) 90(7) 95(2) 95(2)

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
Pow: Powerlaw(Degree)

Spl: Spline(Degree)

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Statistics Modification By Scenario Aspect

a γa
(Intercept) 0.33

High Degree -0.00
Powerlaw -2.27

Assortative 0.01
Communities -0.16

Deg. Infect. -3.00
High Base -0.52
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.00 0.00 0.01 0.01 -0.00 -0.00 -0.00 -0.00 0.00 0.06 0.02 0.06 0.01 0.05 0.05 0.00 0.00
High Degree 0.00 0.00 0.01 0.00 0.00 -0.00 0.02 -0.01 -0.00 -0.03 0.02 -0.01 -0.01 -0.00 0.00 -0.00 0.00
Powerlaw 0.00 -0.00 -0.01 -0.01 0.00 -0.00 0.01 -0.00 -0.00 -0.01 -0.02 0.00 -0.02 0.00 0.01 -0.01 -0.00
Assortative 0.00 -0.00 0.01 -0.00 0.00 0.00 0.02 0.01 0.00 0.02 0.04 0.01 0.06 0.03 0.02 0.01 0.00
Communities -0.00 0.00 -0.00 0.00 -0.00 0.01 0.00 0.00 -0.00 -0.05 -0.03 -0.05 -0.01 -0.04 -0.04 -0.00 -0.00
Deg. Infect. 0.00 -0.00 -0.01 -0.01 0.00 -0.00 -0.01 0.00 0.00 -0.03 -0.08 -0.01 -0.06 -0.03 -0.01 0.00 -0.00
High Base. 0.00 -0.00 -0.02 -0.02 0.00 0.00 -0.03 -0.01 -0.00 -0.05 -0.06 -0.07 -0.07 -0.09 -0.11 -0.01 -0.00

Robust S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.47 -0.37 -0.36 -0.45 -0.47 -0.48 -0.35 -0.43 -0.44 0.07 0.33 -0.10 0.39 0.15 0.13 -0.37 -0.38
High Degree 0.67 0.70 0.73 0.69 0.67 0.68 0.75 0.62 0.73 0.60 0.66 0.90 1.12 0.45 0.46 0.69 0.65
Powerlaw 0.91 0.77 0.71 0.83 0.91 0.86 0.68 0.75 0.84 0.32 0.33 0.25 0.35 0.17 0.16 0.74 0.79
Assortative 0.00 -0.04 -0.01 0.01 0.00 -0.01 -0.00 0.00 -0.01 -0.09 -0.04 -0.13 -0.02 -0.06 -0.06 -0.02 -0.03
Communities -0.20 -0.15 -0.14 -0.14 -0.20 -0.18 -0.12 -0.12 -0.16 -0.06 -0.04 -0.05 0.05 -0.02 -0.01 -0.14 -0.15
Deg. Infect. 2.66 2.53 2.45 2.58 2.66 2.59 2.40 2.58 2.56 0.63 0.80 0.65 0.54 0.57 0.58 2.51 2.55
High Base. 2.93 2.82 2.79 2.86 2.93 2.84 2.73 2.80 2.90 0.23 0.86 0.61 0.73 0.12 0.11 2.80 2.83

Empirical S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.53 -0.46 -0.43 -0.51 -0.53 -0.50 -0.38 -0.47 -0.48 0.12 0.75 -0.11 0.80 0.36 0.36 -0.46 -0.47
High Degree 0.52 0.52 0.56 0.55 0.52 0.59 0.59 0.56 0.61 0.39 0.27 0.76 0.95 0.30 0.31 0.53 0.52
Powerlaw 0.87 0.76 0.71 0.81 0.87 0.80 0.72 0.70 0.71 0.27 0.39 0.23 0.43 0.17 0.17 0.72 0.74
Assortative 0.02 0.01 0.03 0.05 0.02 0.03 0.07 0.04 0.05 -0.09 -0.02 -0.08 -0.01 -0.05 -0.07 0.03 0.02
Communities -0.16 -0.11 -0.11 -0.14 -0.16 -0.14 -0.12 -0.08 -0.11 -0.06 -0.05 -0.06 0.02 -0.05 -0.05 -0.09 -0.10
Deg. Infect. 2.48 2.35 2.27 2.44 2.48 2.37 2.30 2.36 2.33 0.32 0.61 0.46 0.38 0.47 0.47 2.33 2.35
High Base. 3.17 3.06 3.03 3.16 3.17 3.12 2.98 3.07 3.03 0.40 0.42 0.79 0.30 0.16 0.15 3.03 3.04

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0 1 -1 -2 -0 -1 -5 0 -1 57 -27 56 -46 30 34 1 1
High Degree 0 -1 -1 -1 0 -1 -1 -2 -2 -9 11 -14 -33 -3 -4 -1 -1
Powerlaw 0 3 2 2 0 1 0 4 3 -8 -4 -8 -7 -1 -1 3 3
Assortative 0 1 -0 -1 0 0 -1 -0 -1 4 2 6 3 4 4 -0 0
Communities -0 -1 -1 -0 -0 -0 -1 -2 -1 0 -3 -0 -7 -1 -1 -2 -1
Deg. Infect. 0 1 4 1 0 2 4 1 2 12 32 14 52 14 12 1 1
High Base. 0 1 2 1 0 1 6 2 2 19 55 14 84 38 36 1 1

Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 28 28 28 29 28 31 30 30 28 75 37 69 28 70 72 28 28
High Degree 35 34 34 34 35 36 34 36 35 6 46 9 27 11 10 34 35
Powerlaw -4 -3 -3 -3 -4 -5 -3 -3 -5 2 3 2 1 9 9 -3 -3
Assortative 1 1 1 1 1 0 1 0 1 6 1 6 -1 3 3 1 1
Communities 5 4 4 4 5 5 4 4 4 4 3 3 0 3 2 4 4
Deg. Infect. -4 -3 -3 -4 -4 -5 -3 -5 -3 4 -8 9 9 5 4 -3 -3
High Base. -26 -26 -27 -26 -26 -27 -27 -27 -27 -10 -27 -17 -16 -5 -5 -26 -26

Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 95 95 95 94 95 94 94 94 96 92 94 94 93 87 88 95 95
High Degree 2 2 2 2 2 1 2 1 1 7 3 6 3 8 8 2 2
Powerlaw -0 -0 -0 -0 -0 -0 -0 0 0 1 0 1 0 1 1 -0 0
Assortative -0 -0 -0 -0 -0 -0 -1 -0 -0 -0 -1 -0 -0 0 0 -0 -0
Communities -0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 -0 0 0 0 -0 -0
Deg. Infect. 1 1 1 1 1 2 1 2 1 -1 -2 -1 -2 0 0 1 1
High Base. -2 -2 -2 -2 -2 -2 -2 -2 -1 -4 2 -5 2 -4 -5 -2 -2

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
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Statistics Conditional On Each Scenario

a βa
000000 -0.34
000001 -0.43
000010 -1.37
000011 -0.82
000100 -0.43
000101 -0.47
000110 -1.62
000111 -2.03
001000 -0.32
001001 -0.54
001010 -1.39
001011 -0.94
001100 -0.42
001101 -0.49
001110 -1.46
001111 -0.93
010000 -0.77
010001 -1.24
010010 -5.00
010011 -2.51
010100 -0.72
010101 -1.20
010110 -5.13
010111 -3.72
011000 -0.86
011001 -1.38
011010 -4.80
011011 -1.76
011100 -0.81
011101 -1.32
011110 -4.77
011111 -3.09
100000 -2.01
100001 -8.51
100010 -5.61
100011 -3.58
100100 -2.07
100101 -8.89
100110 -5.54
100111 -3.37
101000 -1.99
101001 -8.37
101010 -5.59
101011 -3.48
101100 -1.97
101101 -8.37
101110 -5.59
101111 -3.47
110000 -1.64
110001 -5.03
110010 -5.17
110011 -3.64
110100 -1.67
110101 -5.31
110110 -5.32
110111 -3.54
111000 -1.71
111001 -5.69
111010 -5.42
111011 -3.36
111100 -1.65
111101 -5.74
111110 -5.59
111111 -3.18

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.10 0.00 0.00
000010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.40 0.40 0.40 0.40 0.40 0.40 0.00 0.00
000100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 0.00 0.00 0.00 0.00
000101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 0.00 0.00
000111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.50 -0.60 -0.60 -0.60 -0.60 -0.60 0.00 0.00
001000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.00 0.00
001001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 0.00 0.00 0.00 0.00 0.00
001011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.10 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 0.00 0.00
001100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 0.00
001110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 0.00 0.00 0.00
001111 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.10 0.00 0.10 0.10 0.00 0.00 0.00 0.00
010000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 0.00 0.00
010001 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
010010 0 0.00 0.10 0.10 0 0.00 0.10 0.00 0.10 0.10 -0.30 0.20 -0.20 0.10 0.20 0.00 0.00
010011 0 0.00 -0.10 -0.10 0 0.00 -0.10 0.00 0.00 0.20 0.10 0.20 0.10 0.10 0.10 0.00 0.00
010100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
010101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
010110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 -0.20 0.20 -0.10 0.20 0.20 0.00 0.00
010111 0 0.00 -0.10 0.00 0 0.00 -0.20 0.00 -0.10 -0.50 -0.60 -0.50 -0.60 -0.60 -0.60 -0.10 -0.10
011000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
011001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.00
011010 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 0.10 -0.10 0.20 0.00 0.20 0.20 0.00 0.00
011011 0 -0.10 -0.10 -0.10 0 -0.10 -0.20 0.00 -0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
011100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
011101 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.10 0.00 0.00
011110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 0.00 0.10 0.10 0.00 0.00
011111 0 0.00 0.00 -0.10 0 0.10 0.00 0.00 0.10 -0.20 -0.30 -0.20 -0.20 -0.30 -0.30 0.00 0.00
100000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 -0.20 0.10 0.10 0.00 0.00
100010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.00
100011 0 0.00 0.00 0.00 0 0.00 -0.10 -0.10 0.00 -0.10 -0.10 -0.10 -0.10 -0.20 -0.20 0.00 0.00
100100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.20 -0.30 -0.10 -0.40 -0.20 -0.20 0.00 0.00
100110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.00 0.00
100111 0 0.00 0.00 0.00 0 0.00 -0.10 -0.10 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
101000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.00 0.00 0.00
101010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.20 0.00 0.00 0.00 0.00
101011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.20 -0.10 -0.20 -0.10 -0.20 -0.20 0.00 0.00
101100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
101101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.00
101110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.10 0.10 0.00 0.00
101111 0 0.00 0.00 0.00 0 0.00 0.10 0.10 0.00 -0.10 -0.10 0.00 -0.20 -0.10 -0.10 0.00 0.00
110000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00 0.00 0.00
110001 0 0.00 0.00 0.00 0 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 -0.20 -0.10 -0.10 -0.10 0.00
110010 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 0.10 0.00 0.10 0.00 0.10 0.20 0.00 0.00
110011 0 0.00 -0.10 -0.10 0 0.00 0.00 0.00 0.00 -0.20 -0.40 -0.20 -0.40 -0.40 -0.30 0.00 0.00
110100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
110101 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 0.00 0.00
110110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.10 0.20 0.20 0.00 0.00
110111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.20 -0.10 -0.10 -0.10 -0.10 0.00 0.00
111000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 0.00 -0.10 -0.10 -0.10 0.00 0.00
111010 0 0.00 0.10 0.00 0 0.00 0.10 0.00 0.00 -0.10 -0.20 -0.10 -0.30 0.00 0.00 0.00 0.00
111011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 0.00 0.00 0.00 0.00
111100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
111101 0 0.00 0.00 0.00 0 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 -0.20 -0.10 -0.10 0.00 0.00
111110 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 -0.10 0.00 0.00 -0.10 0.00 0.10 0.00 0.00
111111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.20 0.30 0.20 0.30 0.20 0.20 0.00 0.00
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Percent Relative Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -23 -0 -23 -0 -23 -23 -0 -0
000010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000011 -0 -0 -0 -0 -0 -0 -0 -0 -0 -49 -49 -49 -49 -49 -49 -0 -0
000100 -0 -0 -0 -0 -0 -0 -0 -0 -0 23 23 23 23 -0 -0 -0 -0
000101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 -0 6 6 6 -0 -0
000111 -0 -0 -0 -0 -0 -0 -0 -0 -0 25 29 29 29 29 29 -0 -0
001000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -31 -31 -0 -31 -31 -31 -0 -0
001001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 -7 -0 -0 -0 -0 -0
001011 -0 -0 -0 -0 -0 -0 -0 -0 -11 21 21 21 21 21 21 -0 -0
001100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 20 -0 -0 -0 -0 -0 -0
001110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 -0 7 7 -0 -0 -0
001111 -0 -0 -0 -0 -0 -0 11 -0 -0 -11 -0 -11 -11 -0 -0 -0 -0
010000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 13 13 13 -0 -0
010001 -0 -0 -0 -0 -0 -0 8 -0 -0 -0 -0 -0 8 -0 -0 -0 -0
010010 -0 -0 -2 -2 -0 -0 -2 -0 -2 -2 6 -4 4 -2 -4 -0 -0
010011 -0 -0 4 4 -0 -0 4 -0 -0 -8 -4 -8 -4 -4 -4 -0 -0
010100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -14 -0 -14 -0 -0 -0 -0
010101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
010110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 4 -4 2 -4 -4 -0 -0
010111 -0 -0 3 -0 -0 -0 5 -0 3 13 16 13 16 16 16 3 3
011000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 12 -0 -0 -0 -0
011001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -7 -7 -7 -7 -7 -7 -0 -0
011010 -0 -0 -0 -0 -0 -0 -2 -0 -0 -2 2 -4 -0 -4 -4 -0 -0
011011 -0 6 6 6 -0 6 11 -0 6 -0 -6 -0 -6 -0 -0 -0 -0
011100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -12 -0 -12 -0 -0 -0 -0
011101 -0 -0 -0 -0 -0 -0 -8 -0 -0 -8 -0 -8 -0 -8 -8 -0 -0
011110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -2 -0 -2 -2 -0 -0
011111 -0 -0 -0 3 -0 -3 -0 -0 -3 6 10 6 6 10 10 -0 -0
100000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 1 -1 2 -1 -1 -0 -0
100010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -2 -2 -2 -2 -0 -0
100011 -0 -0 -0 -0 -0 -0 3 3 -0 3 3 3 3 6 6 -0 -0
100100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100101 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 3 1 4 2 2 -0 -0
100110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -2 -2 -2 -0 -0
100111 -0 -0 -0 -0 -0 -0 3 3 -0 -0 -0 -3 -0 -0 -0 -0 -0
101000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -0 -1 -0 -1 -0 -0 -0
101010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 4 -0 -0 -0 -0
101011 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 3 6 3 6 6 -0 -0
101100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -5 -0 -0 -0 -0
101101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -1 -1 -1 -1 -1 -0 -0
101110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -2 -2 -2 -0 -0
101111 -0 -0 -0 -0 -0 -0 -3 -3 -0 3 3 -0 6 3 3 -0 -0
110000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -6 -6 -0 -0 -0 -0
110001 -0 -0 -0 -0 -0 -0 -0 2 -0 2 2 2 4 2 2 2 -0
110010 -0 -0 -0 -0 -0 -0 -2 -0 -0 -2 -0 -2 -0 -2 -4 -0 -0
110011 -0 -0 3 3 -0 -0 -0 -0 -0 5 11 5 11 11 8 -0 -0
110100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -0 -6 -0 -0 -0 -0
110101 -0 -0 -0 -0 -0 -0 -2 -0 -0 2 2 2 2 2 2 -0 -0
110110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 2 -4 -4 -0 -0
110111 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 6 3 3 3 3 -0 -0
111000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
111001 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 2 -0 2 2 2 -0 -0
111010 -0 -0 -2 -0 -0 -0 -2 -0 -0 2 4 2 6 -0 -0 -0 -0
111011 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 3 3 3 -0 -0 -0 -0
111100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -0 -6 -0 -0 -0 -0
111101 -0 -0 -0 -0 -0 -0 -0 2 -0 2 2 2 3 2 2 -0 -0
111110 -0 -0 -0 -0 -0 -0 -2 -0 -0 2 -0 -0 2 -0 -2 -0 -0
111111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -9 -6 -9 -6 -6 -0 -0
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Robust Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.80 0.20 0.70 0.30 0.30 0.80 0.80
000001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.80 0.30 0.80 0.30 0.20 1.00 1.00
000010 1.60 1.60 1.60 1.60 1.60 1.60 1.50 1.60 1.60 0.50 1.00 0.50 0.90 0.50 0.50 1.60 1.60
000011 4.50 4.40 4.40 4.40 4.50 4.40 4.30 4.40 4.60 0.40 1.30 0.40 0.90 0.40 0.40 4.40 4.40
000100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.80 0.20 0.70 0.30 0.30 0.80 0.80
000101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.20 0.90 0.30 0.80 0.30 0.20 1.00 1.00
000110 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0.50 1.10 0.50 1.00 0.50 0.50 1.50 1.50
000111 4.50 4.50 4.40 4.50 4.50 4.40 4.40 4.50 4.60 0.40 1.50 0.40 1.00 0.40 0.40 4.50 4.50
001000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.20 0.80 0.20 0.70 0.30 0.30 0.90 0.90
001001 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.20 0.20 0.90 0.30 0.80 0.30 0.30 1.10 1.10
001010 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 0.60 1.00 0.50 0.90 0.50 0.50 1.70 1.70
001011 4.20 4.10 4.10 4.10 4.20 4.10 4.00 4.10 4.20 0.30 1.00 0.30 0.70 0.40 0.40 4.10 4.10
001100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.90 0.20 0.80 0.20 0.70 0.30 0.30 0.80 0.80
001101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 0.20 0.90 0.30 0.80 0.30 0.30 1.00 1.00
001110 1.60 1.60 1.60 1.60 1.60 1.50 1.50 1.60 1.60 0.50 1.00 0.50 0.90 0.50 0.50 1.60 1.60
001111 4.20 4.10 4.10 4.20 4.20 4.10 4.10 4.20 4.20 0.40 1.20 0.30 0.90 0.40 0.40 4.10 4.10
010000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.50 0.90 0.60 1.10 0.40 0.40 0.80 0.80
010001 1.70 1.60 1.60 1.60 1.70 1.60 1.60 1.50 1.70 0.70 1.40 0.80 1.60 0.50 0.50 1.60 1.60
010010 3.40 3.30 3.10 3.20 3.40 3.20 3.00 3.10 3.20 1.70 2.20 1.40 2.10 1.40 1.40 3.20 3.30
010011 8.40 7.90 7.50 7.90 8.40 7.80 7.20 7.80 7.70 0.80 2.00 0.80 1.70 0.70 0.70 7.70 8.20
010100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.80 0.50 1.10 0.40 0.40 0.70 0.70
010101 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.40 1.60 0.60 1.30 0.70 1.60 0.40 0.40 1.50 1.50
010110 3.00 2.90 2.80 2.90 3.00 2.90 2.70 2.90 2.90 1.60 2.10 1.30 2.00 1.30 1.30 2.90 2.90
010111 8.00 7.80 7.50 7.80 8.00 7.70 7.30 7.80 7.70 0.80 2.30 0.90 2.00 0.70 0.70 7.70 7.90
011000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.80 0.90 0.40 1.00 0.40 1.10 0.40 0.30 0.90 0.90
011001 2.00 1.90 1.90 1.90 2.00 2.00 1.90 1.90 2.00 0.50 1.50 0.70 1.70 0.40 0.40 1.90 1.90
011010 3.10 2.90 2.80 2.90 3.10 2.90 2.80 2.90 2.90 1.70 2.00 1.30 1.90 1.30 1.30 2.90 2.90
011011 8.10 7.40 7.10 7.70 8.10 7.40 6.90 7.50 7.30 0.60 1.70 0.50 1.30 0.60 0.50 7.30 7.60
011100 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.30 0.90 0.40 1.10 0.30 0.30 0.70 0.80
011101 1.80 1.70 1.80 1.80 1.80 1.80 1.80 1.70 1.80 0.50 1.40 0.60 1.70 0.40 0.40 1.70 1.70
011110 2.60 2.50 2.40 2.60 2.60 2.50 2.40 2.50 2.50 1.50 1.80 1.20 1.90 1.20 1.20 2.50 2.50
011111 7.90 7.50 7.30 7.80 7.90 7.50 7.10 7.80 7.50 0.70 2.20 0.70 1.80 0.70 0.70 7.50 7.60
100000 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.80 0.40 0.60 0.40 1.20 0.40 0.40 0.80 0.80
100001 4.10 4.10 4.10 4.10 4.10 3.90 4.10 3.90 4.00 1.00 2.40 1.60 2.70 0.80 0.80 4.10 4.10
100010 2.00 2.00 2.00 2.00 2.00 1.90 2.00 2.00 2.00 1.10 1.50 1.00 2.00 1.00 1.00 2.00 2.00
100011 6.00 5.90 5.90 5.90 6.00 5.80 5.90 5.80 6.00 2.00 3.30 2.90 3.40 1.70 1.70 5.90 5.90
100100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.70 0.40 0.60 0.40 1.20 0.40 0.40 0.80 0.80
100101 3.90 4.00 3.90 3.90 3.90 3.70 3.90 3.80 3.80 1.00 2.30 1.60 2.90 0.80 0.80 3.90 3.90
100110 1.90 1.90 1.90 1.90 1.90 1.80 1.90 1.90 1.90 1.00 1.40 1.00 2.00 1.00 1.00 1.90 1.90
100111 5.60 5.60 5.60 5.50 5.60 5.50 5.50 5.50 5.60 2.00 3.20 2.80 3.50 1.80 1.80 5.60 5.60
101000 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.80 0.40 0.60 0.40 1.20 0.40 0.40 0.80 0.80
101001 4.20 4.20 4.20 4.10 4.20 3.90 4.10 4.00 4.10 1.10 2.40 1.60 2.80 0.80 0.80 4.20 4.10
101010 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 1.10 1.60 1.10 2.00 1.00 1.00 2.10 2.10
101011 6.20 6.20 6.20 6.20 6.20 6.10 6.10 6.10 6.20 1.90 3.30 2.80 3.50 1.70 1.70 6.20 6.10
101100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.70 0.40 0.60 0.40 1.20 0.40 0.40 0.80 0.80
101101 4.00 4.00 4.10 3.90 4.00 3.80 3.90 3.90 3.90 1.00 2.30 1.50 2.90 0.80 0.80 4.00 4.00
101110 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.10 1.50 1.00 2.10 1.00 1.00 1.90 1.90
101111 5.80 5.80 5.80 5.80 5.80 5.80 5.80 5.70 5.80 1.90 3.10 2.70 3.40 1.70 1.70 5.80 5.80
110000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60 0.70 0.60 1.10 0.50 0.50 0.80 0.80
110001 3.30 3.20 3.30 3.30 3.30 3.30 3.20 3.00 3.50 1.40 2.10 1.60 2.50 0.80 0.80 3.20 3.20
110010 2.90 2.90 2.80 2.80 2.90 2.90 2.80 2.80 2.90 1.60 2.20 1.50 2.30 1.50 1.50 2.80 2.80
110011 7.70 7.30 7.10 7.30 7.70 7.60 6.90 7.10 7.60 2.30 3.30 3.20 3.20 1.60 1.60 7.10 7.20
110100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.50 0.70 0.60 1.10 0.50 0.40 0.80 0.80
110101 3.20 3.10 3.10 3.10 3.20 3.00 3.10 3.00 3.30 1.20 2.00 1.40 2.60 0.80 0.80 3.10 3.10
110110 2.60 2.60 2.50 2.60 2.60 2.60 2.50 2.50 2.60 1.30 1.90 1.30 2.20 1.30 1.30 2.50 2.50
110111 7.10 6.90 6.80 7.00 7.10 7.00 6.70 6.80 7.10 2.10 3.10 3.00 3.20 1.60 1.60 6.80 6.80
111000 0.90 0.90 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.50 0.70 0.50 1.20 0.40 0.40 0.90 0.90
111001 3.90 3.70 3.80 3.80 3.90 3.80 3.70 3.60 4.00 1.20 2.30 1.40 2.70 0.80 0.80 3.70 3.70
111010 2.60 2.50 2.50 2.50 2.60 2.50 2.50 2.40 2.50 1.30 1.90 1.20 2.10 1.20 1.20 2.50 2.50
111011 7.40 6.80 6.70 7.10 7.40 7.30 6.60 6.70 7.30 1.70 3.20 2.50 3.20 1.30 1.30 6.80 6.80
111100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.40 0.70 0.40 1.20 0.40 0.40 0.80 0.80
111101 3.50 3.50 3.50 3.50 3.50 3.40 3.40 3.30 3.60 1.00 2.10 1.20 2.70 0.70 0.70 3.40 3.40
111110 2.30 2.20 2.20 2.30 2.30 2.30 2.20 2.20 2.30 1.30 1.80 1.20 2.20 1.20 1.20 2.20 2.20
111111 6.80 6.40 6.30 6.70 6.80 6.70 6.40 6.50 6.80 1.50 2.90 2.30 3.20 1.30 1.30 6.40 6.50

101



Empirical Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 1.00 0.20 0.90 0.50 0.50 0.80 0.80
000001 1.00 1.00 1.00 1.10 1.00 1.10 1.10 1.00 1.00 0.20 1.00 0.30 0.90 0.40 0.40 1.00 1.00
000010 1.70 1.60 1.60 1.70 1.70 1.60 1.70 1.60 1.70 0.50 1.20 0.40 1.00 0.70 0.70 1.60 1.60
000011 4.60 4.50 4.50 4.60 4.60 4.50 4.50 4.60 4.40 0.40 1.20 0.40 0.90 0.60 0.60 4.50 4.50
000100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 1.10 0.30 0.80 0.50 0.50 0.80 0.80
000101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 1.10 0.30 0.90 0.40 0.40 1.00 1.00
000110 1.50 1.50 1.50 1.60 1.50 1.50 1.60 1.50 1.50 0.50 1.30 0.40 1.10 0.70 0.70 1.50 1.50
000111 4.60 4.50 4.50 4.60 4.60 4.50 4.50 4.60 4.50 0.50 1.40 0.40 1.00 0.50 0.50 4.50 4.50
001000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.20 1.00 0.30 0.90 0.60 0.50 0.90 0.90
001001 1.10 1.10 1.10 1.20 1.10 1.20 1.20 1.10 1.20 0.20 1.10 0.30 0.90 0.50 0.50 1.10 1.10
001010 1.70 1.70 1.70 1.80 1.70 1.70 1.80 1.70 1.80 0.60 1.10 0.50 1.00 0.70 0.70 1.70 1.70
001011 4.30 4.20 4.20 4.30 4.30 4.30 4.30 4.30 4.30 0.30 1.00 0.30 0.70 0.70 0.60 4.20 4.20
001100 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.20 1.20 0.30 0.90 0.60 0.60 0.90 0.90
001101 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.00 1.00 0.20 1.10 0.30 0.90 0.50 0.50 1.00 1.00
001110 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.60 1.60 0.50 1.30 0.50 1.10 0.80 0.80 1.60 1.60
001111 4.40 4.30 4.30 4.40 4.40 4.30 4.40 4.40 4.30 0.40 1.20 0.40 0.90 0.60 0.60 4.30 4.30
010000 0.80 0.80 0.80 0.80 0.80 0.80 0.90 0.80 0.80 0.60 1.20 0.70 1.50 0.70 0.70 0.80 0.80
010001 1.60 1.60 1.60 1.60 1.60 1.70 1.70 1.60 1.60 0.80 1.70 0.90 2.00 0.70 0.70 1.50 1.50
010010 2.90 2.80 2.60 2.80 2.90 2.80 2.90 2.70 2.70 1.00 2.20 0.80 2.20 1.40 1.40 2.70 2.80
010011 8.50 8.00 7.60 8.20 8.50 7.80 7.30 7.70 7.30 1.00 1.90 1.10 1.70 1.00 1.00 7.80 7.90
010100 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.70 0.70 0.40 1.00 0.50 1.30 0.60 0.60 0.70 0.70
010101 1.60 1.50 1.60 1.60 1.60 1.60 1.60 1.50 1.50 0.60 1.50 0.70 1.90 0.60 0.50 1.50 1.50
010110 2.50 2.40 2.30 2.50 2.50 2.40 2.50 2.40 2.40 1.00 2.30 0.80 2.30 1.30 1.30 2.40 2.40
010111 8.10 7.90 7.60 8.10 8.10 7.90 7.40 7.80 7.50 0.80 1.90 1.00 1.80 0.80 0.80 7.70 7.80
011000 0.90 0.80 0.90 0.90 0.90 0.90 1.00 0.80 0.90 0.40 1.30 0.50 1.40 0.60 0.60 0.80 0.80
011001 2.10 2.00 2.10 2.10 2.10 2.10 2.10 2.00 2.00 0.60 1.80 0.70 2.00 0.60 0.50 2.00 2.00
011010 2.70 2.50 2.50 2.60 2.70 2.60 2.70 2.50 2.50 1.10 2.00 0.90 2.00 1.20 1.20 2.50 2.50
011011 7.90 7.30 7.00 7.70 7.90 7.20 7.10 7.30 7.00 0.90 1.70 0.90 1.50 1.00 0.90 7.20 7.30
011100 0.70 0.70 0.80 0.70 0.70 0.80 0.90 0.70 0.70 0.30 1.10 0.40 1.30 0.50 0.40 0.70 0.70
011101 1.90 1.90 1.90 2.00 1.90 1.90 2.00 1.90 1.90 0.50 1.80 0.60 2.10 0.50 0.50 1.90 1.90
011110 2.40 2.30 2.20 2.40 2.40 2.30 2.40 2.30 2.30 1.20 2.00 0.90 2.00 1.10 1.10 2.30 2.30
011111 8.00 7.60 7.50 8.00 8.00 7.70 7.50 7.80 7.50 0.70 1.90 0.80 1.70 0.90 0.90 7.60 7.60
100000 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.70 0.70 0.40 0.60 0.40 1.50 0.50 0.50 0.70 0.70
100001 4.10 4.00 4.10 4.20 4.10 4.10 4.20 4.10 4.10 1.00 1.80 1.60 2.50 0.90 0.90 4.00 4.00
100010 1.40 1.40 1.40 1.40 1.40 1.40 1.50 1.40 1.40 0.50 1.60 0.60 2.40 0.90 0.90 1.40 1.40
100011 5.60 5.40 5.50 5.60 5.60 5.60 5.60 5.60 5.60 1.60 2.40 2.60 2.70 1.70 1.70 5.40 5.50
100100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.60 0.40 1.40 0.50 0.40 0.70 0.70
100101 3.90 3.90 3.90 4.00 3.90 3.90 4.00 4.00 3.90 1.00 1.60 1.50 2.50 0.90 0.90 3.90 3.90
100110 1.40 1.40 1.40 1.40 1.40 1.40 1.50 1.40 1.40 0.50 1.70 0.50 2.60 0.90 0.90 1.40 1.40
100111 5.50 5.40 5.40 5.50 5.50 5.50 5.50 5.50 5.50 1.60 2.20 2.60 2.70 1.70 1.70 5.40 5.40
101000 0.70 0.70 0.70 0.80 0.70 0.70 0.80 0.80 0.70 0.40 0.70 0.40 1.50 0.40 0.40 0.70 0.70
101001 4.20 4.20 4.20 4.30 4.20 4.30 4.30 4.30 4.20 1.10 1.90 1.60 2.50 0.90 0.90 4.20 4.20
101010 1.50 1.40 1.40 1.60 1.50 1.50 1.50 1.50 1.50 0.50 1.80 0.60 2.60 0.90 0.90 1.40 1.40
101011 6.20 6.10 6.10 6.20 6.20 6.20 6.30 6.20 6.20 1.50 2.30 2.70 2.80 1.60 1.60 6.10 6.10
101100 0.70 0.70 0.70 0.80 0.70 0.70 0.80 0.80 0.70 0.40 0.60 0.40 1.50 0.40 0.40 0.70 0.70
101101 3.90 3.90 3.90 4.00 3.90 3.90 3.90 3.90 3.90 1.00 1.70 1.50 2.60 0.90 0.90 3.90 3.90
101110 1.40 1.30 1.40 1.40 1.40 1.40 1.40 1.40 1.40 0.50 1.60 0.60 2.60 0.90 0.90 1.30 1.30
101111 5.80 5.80 5.80 5.90 5.80 5.80 5.90 5.90 5.80 1.50 2.30 2.60 2.70 1.60 1.50 5.80 5.80
110000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60 0.90 0.60 1.50 0.70 0.70 0.80 0.80
110001 3.20 3.10 3.20 3.30 3.20 3.30 3.20 3.10 3.10 1.40 1.90 1.50 2.40 0.90 0.90 3.00 3.00
110010 2.30 2.20 2.20 2.30 2.30 2.30 2.40 2.20 2.20 0.80 2.30 0.90 2.60 1.40 1.40 2.20 2.20
110011 7.70 7.30 7.20 7.50 7.70 7.60 7.10 7.10 7.40 2.00 2.50 3.20 2.70 1.70 1.70 7.10 7.20
110100 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.70 0.70 0.50 0.70 0.50 1.40 0.60 0.60 0.70 0.70
110101 3.30 3.20 3.30 3.30 3.30 3.30 3.30 3.30 3.30 1.20 1.80 1.40 2.60 0.90 0.90 3.20 3.20
110110 2.00 1.90 1.90 2.00 2.00 2.00 2.10 2.00 2.00 0.60 2.20 0.70 2.60 1.20 1.10 1.90 1.90
110111 7.10 6.90 6.70 7.10 7.10 7.10 6.80 6.90 7.00 1.90 2.40 3.00 2.60 1.70 1.70 6.80 6.90
111000 0.80 0.80 0.90 0.80 0.80 0.80 0.90 0.80 0.80 0.50 0.90 0.50 1.50 0.60 0.60 0.80 0.80
111001 3.90 3.70 3.80 3.90 3.90 3.90 3.90 3.70 3.80 1.20 2.00 1.40 2.60 0.90 0.90 3.70 3.70
111010 1.90 1.80 1.90 2.00 1.90 1.90 2.10 1.90 1.90 0.60 2.20 0.70 2.60 1.10 1.10 1.80 1.80
111011 7.60 7.00 6.90 7.50 7.60 7.50 7.00 6.90 7.20 1.40 2.50 2.40 2.60 1.40 1.40 7.00 7.00
111100 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.70 0.70 0.40 0.70 0.40 1.40 0.50 0.50 0.70 0.70
111101 3.70 3.60 3.60 3.70 3.70 3.70 3.70 3.60 3.60 1.00 1.80 1.20 2.70 0.90 0.80 3.60 3.60
111110 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.60 1.60 0.60 1.90 0.70 2.60 1.10 1.10 1.60 1.60
111111 6.80 6.50 6.40 6.90 6.80 6.80 6.60 6.60 6.70 1.20 2.20 2.30 2.50 1.30 1.30 6.50 6.50
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 2 1 -3 0 -1 -0 1 -2 76 -28 69 -5 39 42 2 2
000001 0 1 0 -1 0 -1 -2 1 -0 78 0 73 10 59 62 1 1
000010 0 2 3 -2 0 0 -2 1 0 68 26 73 37 57 59 2 2
000011 0 2 3 -1 0 1 3 0 4 87 73 87 78 85 85 2 2
000100 0 1 -0 -1 0 -1 -2 0 -1 76 -41 68 -5 37 40 1 1
000101 0 1 1 -1 0 -1 -0 1 0 78 -7 72 10 56 59 1 1
000110 0 1 1 -1 0 -0 -1 0 -0 67 15 72 29 55 57 1 1
000111 0 2 2 -1 0 1 1 -0 2 84 67 84 74 82 83 2 1
001000 0 1 1 -1 0 -0 -2 1 -2 75 -15 69 1 34 42 2 2
001001 0 1 0 -2 0 -0 -2 0 -2 79 6 74 19 58 60 1 1
001010 0 2 2 -2 0 0 -3 0 -3 66 37 71 44 58 60 2 2
001011 0 2 2 -1 0 0 0 -0 0 91 76 91 82 84 84 2 1
001100 0 1 -0 -1 0 -1 -2 1 -2 77 -33 70 -5 29 33 1 1
001101 0 1 -0 -1 0 -1 -3 0 -1 78 -9 72 8 52 54 1 1
001110 0 1 1 -1 0 0 -2 -0 -1 67 22 72 35 51 54 1 1
001111 0 2 2 -1 0 1 -2 -0 1 91 74 91 80 87 87 1 1
010000 0 4 -2 -1 0 -2 -9 6 3 31 -49 19 -84 12 15 6 5
010001 0 5 2 2 0 -0 -5 6 4 53 -5 46 -24 60 60 7 6
010010 0 4 9 2 0 4 0 8 6 67 24 70 23 51 52 6 5
010011 0 5 10 4 0 8 14 10 14 89 78 87 79 88 88 9 7
010100 0 1 -1 -1 0 -2 -13 1 0 37 -47 24 -84 13 17 2 1
010101 0 3 1 -0 0 -1 -2 3 3 59 2 53 -24 64 66 4 4
010110 0 2 6 -1 0 2 -2 4 4 61 8 65 7 45 46 3 3
010111 0 3 7 0 0 3 9 4 8 89 75 86 77 88 88 5 4
011000 0 4 -4 -2 0 -0 -12 3 1 57 -53 46 -59 32 34 5 4
011001 0 6 3 1 0 1 -1 6 4 72 12 68 6 73 74 7 7
011010 0 7 10 3 0 5 -0 8 6 59 27 68 26 54 55 7 7
011011 0 7 10 2 0 8 10 8 11 89 78 89 81 87 88 8 7
011100 0 2 -3 -0 0 -2 -16 2 1 59 -52 47 -73 33 40 3 2
011101 0 4 2 -1 0 0 -4 2 3 75 8 70 -8 73 75 4 4
011110 0 5 6 -0 0 2 -2 4 4 52 17 63 16 53 54 4 4
011111 0 5 6 -1 0 4 6 2 7 90 76 90 79 88 88 5 5
100000 0 -0 -0 -2 0 -0 -4 -2 -0 51 12 50 -101 28 30 0 0
100001 0 1 1 -2 0 -0 -2 -1 -0 75 56 62 40 78 78 1 1
100010 0 1 1 -3 0 -0 -5 -4 0 63 -16 58 -74 34 35 1 1
100011 0 2 2 -1 0 -0 -1 -1 -0 72 57 53 52 69 69 2 2
100100 0 0 0 -1 0 -0 -3 -4 -0 46 16 45 -98 34 36 -0 0
100101 0 1 0 -1 0 -0 -3 -2 -0 75 58 62 35 76 77 1 0
100110 0 0 0 -2 0 -0 -5 -3 -0 64 -20 62 -91 35 36 0 0
100111 0 1 1 -1 0 -0 -1 -1 0 71 59 53 50 68 68 1 1
101000 0 1 0 -4 0 -0 -3 -4 -0 46 5 47 -103 39 41 1 0
101001 0 2 2 -1 0 -0 -1 -1 -0 74 56 63 40 78 78 2 2
101010 0 1 1 -7 0 -0 -6 -3 -0 64 -21 59 -74 36 36 1 1
101011 0 2 2 -1 0 -0 -1 0 -0 76 62 56 55 73 74 2 2
101100 0 -1 -0 -6 0 0 -5 -5 0 46 14 45 -102 37 38 -1 -1
101101 0 0 0 -2 0 -0 -1 -1 -0 74 56 63 33 76 77 0 1
101110 0 1 0 -4 0 -0 -6 -3 -0 62 -17 58 -90 33 33 1 1
101111 0 1 1 -1 0 0 -1 -1 0 75 60 56 53 73 74 1 1
110000 0 2 -0 -2 0 -3 -6 1 0 21 -14 21 -90 16 18 2 2
110001 0 5 1 -3 0 -2 1 4 3 57 42 52 27 71 71 6 6
110010 0 3 3 -1 0 -1 -6 3 1 65 -3 61 -14 38 39 5 4
110011 0 5 7 3 0 1 8 8 4 73 67 59 65 78 78 8 6
110100 0 1 -0 -0 0 -1 -7 -1 0 29 0 25 -96 14 18 1 1
110101 0 3 0 -1 0 -1 -1 1 0 64 46 59 21 72 73 3 3
110110 0 2 2 -2 0 -0 -8 -0 0 67 -9 62 -30 41 42 2 2
110111 0 3 5 -0 0 0 4 3 2 73 66 58 63 76 76 4 3
111000 0 1 -5 -1 0 -2 -7 -2 0 41 -7 42 -79 32 32 1 1
111001 0 5 3 -1 0 -1 1 4 3 69 47 64 34 77 78 6 6
111010 0 5 1 -2 0 -1 -9 3 2 66 -14 63 -38 44 45 5 5
111011 0 7 9 1 0 1 7 9 5 81 67 69 65 81 82 8 7
111100 0 1 -1 -4 0 -1 -7 -1 -0 44 -1 41 -101 31 33 2 1
111101 0 3 3 -0 0 -0 -1 1 1 72 50 68 27 77 77 3 3
111110 0 2 2 -0 0 -0 -9 -1 0 61 -20 58 -63 30 31 2 2
111111 0 5 7 -2 0 0 4 4 2 81 67 66 63 80 80 5 5
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Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 7 7 7 8 7 8 7 7 6 45 6 29 6 37 39 7 7
000001 7 7 8 8 7 8 9 8 7 66 9 45 10 59 62 7 7
000010 12 12 12 12 12 13 14 12 11 91 29 97 35 85 87 12 12
000011 6 6 7 7 6 6 7 6 5 97 13 96 26 94 94 6 6
000100 9 9 9 10 9 10 11 10 7 53 7 34 6 44 47 9 9
000101 7 7 8 8 7 8 8 9 6 67 8 46 9 60 62 7 7
000110 18 18 18 19 18 19 19 19 16 97 33 99 40 92 93 18 18
000111 8 8 7 8 8 8 8 8 6 99 15 99 28 96 97 7 8
001000 6 6 6 6 6 6 7 6 5 51 8 30 8 43 46 6 6
001001 7 7 8 9 7 8 8 8 6 68 10 46 10 62 64 7 7
001010 10 11 12 12 10 12 13 11 12 87 28 98 36 86 88 11 11
001011 7 7 6 7 7 8 8 7 6 87 10 85 16 71 75 7 6
001100 8 8 8 9 8 9 9 9 7 54 7 32 6 44 48 8 8
001101 6 6 6 7 6 7 8 7 6 65 7 44 8 56 60 6 6
001110 14 14 14 14 14 15 16 14 13 91 26 98 32 87 89 14 14
001111 8 8 8 8 8 8 9 8 7 94 10 93 18 87 88 8 8
010000 15 16 16 16 15 16 17 20 13 36 14 25 8 51 53 16 15
010001 10 10 10 11 10 12 11 12 8 46 18 34 13 73 74 10 10
010010 29 31 38 36 29 32 39 35 34 96 65 100 68 97 97 33 31
010011 7 7 7 7 7 7 7 6 6 97 21 92 30 93 94 7 7
010100 18 18 18 19 18 20 19 21 15 48 17 31 10 59 58 18 18
010101 12 13 13 14 12 14 14 14 11 56 16 38 11 79 80 13 13
010110 38 40 44 41 38 40 46 42 40 99 69 100 73 98 98 41 40
010111 9 9 9 9 9 9 9 8 8 99 22 96 30 99 99 9 8
011000 13 14 14 14 13 14 16 16 12 68 18 54 11 72 75 14 14
011001 10 10 10 11 9 10 11 11 9 79 18 64 15 93 95 10 9
011010 33 38 40 37 33 37 42 38 37 95 71 100 76 98 99 37 37
011011 6 6 6 7 6 7 7 6 6 94 15 94 23 88 90 6 6
011100 18 17 17 18 18 19 20 20 15 82 19 64 11 78 80 18 17
011101 13 13 14 14 13 13 15 14 11 90 18 77 12 94 96 13 13
011110 45 48 50 46 45 47 51 47 47 99 76 100 77 99 99 48 48
011111 8 9 9 8 8 8 10 8 8 100 21 100 32 98 98 9 8
100000 73 72 73 73 73 79 74 76 76 100 92 100 48 98 99 72 72
100001 55 54 54 55 55 58 55 58 55 100 98 100 88 100 100 54 54
100010 88 89 88 88 88 90 88 89 89 100 96 100 85 100 100 89 89
100011 8 8 8 8 8 9 8 9 8 38 10 20 11 49 49 8 8
100100 78 76 78 78 78 84 78 80 82 100 95 100 52 99 99 76 77
100101 61 60 61 63 61 64 62 64 62 100 99 100 88 100 100 60 60
100110 90 89 89 90 90 92 90 90 91 100 95 100 83 99 99 89 89
100111 11 10 10 11 11 12 11 11 10 37 11 23 11 49 49 10 10
101000 73 71 71 73 73 79 72 75 76 100 91 100 48 99 99 72 72
101001 51 51 51 52 51 54 52 55 52 100 96 100 88 100 100 52 52
101010 82 83 83 83 82 85 83 84 83 100 93 100 81 100 100 83 83
101011 9 9 8 9 9 10 10 10 8 37 9 17 12 50 50 9 9
101100 75 72 73 76 75 82 75 78 79 100 95 100 45 98 98 72 74
101101 56 55 54 57 56 59 56 58 56 100 98 100 86 100 100 55 56
101110 90 90 89 90 90 91 90 91 90 100 97 100 81 100 100 90 90
101111 10 10 10 10 10 10 10 10 10 42 13 25 10 53 52 10 10
110000 48 49 49 50 48 54 52 55 48 82 79 78 45 90 90 50 50
110001 32 33 32 33 32 34 33 37 29 95 70 88 50 100 100 33 33
110010 41 42 44 45 41 42 46 46 41 100 72 100 68 98 98 43 44
110011 9 9 9 10 9 9 9 10 8 31 12 20 14 56 56 9 9
110100 59 57 58 60 59 65 58 65 58 91 83 86 41 91 92 59 58
110101 39 40 40 40 39 42 41 44 36 100 80 96 56 100 100 41 41
110110 57 58 59 59 57 58 60 61 57 100 83 100 74 99 100 58 58
110111 9 8 8 9 9 9 9 9 8 35 14 20 13 59 60 9 8
111000 51 52 52 53 51 54 53 56 50 94 76 95 38 95 96 52 52
111001 30 32 31 31 30 31 32 35 27 100 75 99 58 100 100 33 33
111010 61 64 65 62 61 62 64 66 61 100 81 100 73 100 100 65 65
111011 9 10 10 10 9 9 11 9 8 53 11 28 14 71 72 9 10
111100 58 55 57 60 58 62 58 62 57 99 83 97 35 97 98 56 56
111101 37 37 37 39 37 38 39 41 35 100 83 100 58 100 100 38 38
111110 76 78 78 77 76 76 78 78 75 100 89 100 77 100 100 78 78
111111 10 10 10 10 10 10 10 10 9 64 16 31 14 75 76 10 10
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Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 94 95 95 93 94 94 94 94 95 94 95 94 95 88 90 95 95
000001 93 94 94 92 93 93 92 92 95 94 95 94 95 88 88 94 94
000010 92 93 93 92 92 92 92 92 93 91 90 94 90 86 88 93 93
000011 94 94 94 93 94 94 93 94 95 88 95 88 92 83 83 94 94
000100 94 94 94 93 94 93 94 93 95 90 94 92 94 85 85 94 93
000101 94 94 94 93 94 94 93 93 95 92 95 93 95 87 87 94 94
000110 93 94 94 93 93 93 93 93 94 91 91 93 91 88 89 94 94
000111 95 94 94 95 95 95 95 95 96 68 91 66 87 61 61 95 95
001000 95 96 96 95 95 95 94 94 96 92 94 93 94 87 88 95 95
001001 94 94 94 93 94 94 94 93 95 90 92 92 92 85 86 94 94
001010 94 94 94 93 94 93 92 94 93 90 90 92 90 86 88 94 94
001011 95 95 94 94 95 94 93 95 95 77 92 80 88 71 72 95 95
001100 93 93 93 92 93 92 92 92 94 92 95 92 96 83 84 93 93
001101 94 95 95 93 94 94 93 94 96 91 95 92 96 85 87 95 95
001110 92 92 91 92 92 92 91 92 92 90 89 93 90 86 87 92 92
001111 93 93 93 93 93 92 92 93 93 91 94 91 94 86 86 93 93
010000 94 95 94 94 94 93 94 94 96 94 97 95 96 88 88 96 95
010001 95 95 95 94 95 94 93 94 95 92 95 93 94 86 85 94 94
010010 97 97 97 97 97 97 95 97 97 98 91 99 91 95 95 97 97
010011 94 94 94 93 94 94 95 95 96 84 94 84 91 80 81 95 96
010100 95 95 94 94 95 93 93 93 96 95 97 94 96 89 89 95 95
010101 94 95 95 93 94 94 93 93 96 92 96 94 96 88 88 95 95
010110 98 98 98 97 98 98 96 98 98 98 92 99 91 94 95 98 98
010111 93 93 94 92 93 93 93 93 94 89 97 87 95 82 82 93 94
011000 95 95 94 94 95 94 94 94 95 93 96 95 96 88 88 95 95
011001 92 93 92 92 92 92 92 92 94 93 95 94 94 91 92 93 94
011010 96 96 96 96 96 96 95 96 96 97 93 99 93 94 95 96 96
011011 94 94 94 94 94 94 93 95 95 71 94 72 91 67 68 94 94
011100 95 95 95 94 95 94 94 94 96 95 98 94 96 90 90 95 95
011101 92 92 92 91 92 92 91 92 94 94 94 94 94 88 89 92 92
011110 94 94 94 94 94 94 92 94 95 95 92 96 92 94 94 94 94
011111 94 94 94 93 94 94 93 94 95 88 96 86 94 83 83 94 94
100000 97 97 97 96 97 94 96 96 96 97 98 96 96 93 94 97 97
100001 94 94 94 93 94 92 93 92 94 95 99 95 97 92 93 94 94
100010 99 100 100 99 99 99 99 99 99 100 96 100 93 98 98 100 100
100011 96 96 96 96 96 96 96 95 96 98 99 97 99 95 95 96 96
100100 97 97 97 96 97 96 96 95 96 95 98 96 95 91 92 97 97
100101 94 95 95 94 94 93 94 93 94 94 99 95 97 90 92 95 95
100110 99 99 99 99 99 99 99 99 99 100 95 100 92 97 97 99 99
100111 94 94 95 94 94 94 94 94 94 98 100 96 99 96 95 95 94
101000 96 97 97 96 96 95 95 95 96 96 96 97 95 93 94 97 97
101001 93 94 94 93 93 92 92 92 93 93 99 94 97 91 92 94 94
101010 99 99 99 99 99 99 99 99 99 100 95 100 92 98 98 99 99
101011 95 95 95 94 95 94 94 94 94 98 99 95 98 95 95 95 95
101100 96 97 96 95 96 94 96 94 95 96 97 95 96 93 94 97 96
101101 96 96 96 94 96 95 95 95 95 96 99 96 98 92 93 96 96
101110 100 100 100 99 100 99 99 99 99 100 95 100 93 98 98 100 100
101111 95 95 95 95 95 95 94 93 95 98 98 96 98 96 96 95 95
110000 95 96 95 95 95 94 95 94 96 95 97 95 96 90 90 96 96
110001 95 95 95 94 95 94 95 93 97 95 98 96 97 90 90 95 95
110010 98 98 98 98 98 98 97 98 98 100 94 100 93 96 96 99 99
110011 94 94 94 94 94 94 92 93 95 97 99 95 98 92 92 94 94
110100 96 96 95 95 96 94 95 94 96 95 97 96 95 89 91 96 96
110101 93 92 92 93 93 92 93 91 94 94 97 95 96 89 89 93 93
110110 98 98 98 98 98 98 98 98 98 100 94 100 93 97 98 98 98
110111 93 94 94 93 93 93 94 94 94 97 99 95 98 94 94 94 94
111000 95 95 95 95 95 93 95 94 96 94 95 96 96 91 92 96 95
111001 95 94 94 93 95 94 94 92 96 94 97 94 96 90 91 95 94
111010 99 99 99 98 99 99 98 98 99 100 92 99 90 96 97 99 99
111011 94 93 93 92 94 94 92 93 94 97 99 95 98 93 93 93 93
111100 95 96 96 94 95 94 94 94 95 96 97 96 96 93 92 96 96
111101 92 93 94 92 92 92 91 92 94 94 98 95 96 91 90 93 93
111110 99 99 99 99 99 99 98 99 99 100 95 100 92 97 97 99 99
111111 93 93 94 93 93 93 93 93 94 98 99 94 98 93 93 93 93
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Appendix: Augmented GEE on Larger Networks

Statistics Marginal Across All Scenarios

Treatment Effect β: -3.43

None F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
Bias 0 0 0 0 0 0 0 0 0 0.01 0.02 0 0 0.02 0.02 0.01 0.01

RobSE 1.61 1.54 1.53 1.52 1.61 1.43 1.5 1.38 1.81 0.79 1.47 0.96 1.75 0.62 0.62 0.9 1
EmpSE 1.33 1.24 1.22 1.31 1.33 1.34 1.25 1.29 1.25 0.6 0.86 0.74 1.37 0.58 0.57 0.62 0.63

Gains 0(0) 4(5) 3(9) -4(9) 0(0) -3(6) 0(9) -1(10) 3(6) 38(45) 19(31) 30(46) -57(75) 44(30) 44(30) 33(55) 34(51)
Power 67 68.4 67.9 68.8 67 73.5 69.2 75 58 89.3 62.9 86.5 54.5 92.2 92.2 88.2 84.1

Coverage 98(2) 98(2) 98(2) 98(2) 98(2) 95(2) 98(2) 95(2) 99(1) 98(2) 99(1) 98(2) 98(2) 94(4) 95(4) 99(2) 98(2)

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
Pow: Powerlaw(Degree)

Spl: Spline(Degree)

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Statistics Modification By Scenario Aspect

a γa
(Intercept) -1.40

High Degree -1.18
Powerlaw -0.68

Assortative -0.13
Communities -0.17

Deg. Infect. -1.66
High Base. -0.23
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.00 -0.00 0.01 0.01 -0.00 -0.00 -0.01 0.00 -0.00 -0.03 -0.03 -0.03 -0.04 -0.00 -0.00 -0.03 -0.03
High Degree 0.00 -0.01 -0.01 -0.02 0.00 0.00 -0.01 -0.00 -0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01
Powerlaw 0.00 -0.00 -0.01 -0.00 0.00 0.00 -0.01 -0.00 0.01 0.01 0.02 0.01 -0.00 0.03 0.03 0.01 0.01
Assortative 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 -0.00 0.02 0.03 0.02 0.04 0.02 0.02 0.02 0.02
Communities -0.00 0.00 0.01 0.00 -0.00 -0.00 0.01 0.00 -0.00 0.01 0.02 0.01 0.03 0.00 0.00 0.02 0.02
Deg. Infect. 0.00 0.00 -0.01 -0.00 0.00 0.00 0.00 -0.00 0.00 0.01 0.01 0.02 -0.02 0.02 0.03 0.00 0.00
High Base. 0.00 -0.00 -0.01 -0.00 0.00 0.00 -0.00 -0.00 0.00 0.02 0.02 0.00 0.02 -0.02 -0.03 0.02 0.02

Robust S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.32 -0.28 -0.28 -0.28 -0.32 -0.43 -0.27 -0.41 -0.23 -0.28 -0.05 -0.42 -0.00 -0.25 -0.25 -0.06 -0.54
High Degree 0.68 0.72 0.77 0.64 0.68 0.48 0.74 0.53 0.32 0.60 0.48 0.82 0.70 0.53 0.53 0.53 0.57
Powerlaw 0.34 0.24 0.22 0.29 0.34 0.43 0.19 0.28 0.43 0.39 0.20 0.38 0.34 0.19 0.19 0.31 0.81
Assortative -0.01 -0.03 0.04 -0.02 -0.01 -0.01 0.00 -0.00 0.02 -0.03 0.02 -0.02 0.05 -0.02 -0.02 -0.02 -0.11
Communities -0.01 0.04 0.06 0.01 -0.01 -0.04 0.08 0.04 0.04 0.02 0.04 0.06 0.08 0.04 0.04 0.02 -0.02
Deg. Infect. 1.32 1.24 1.14 1.27 1.32 1.49 1.15 1.44 1.41 0.72 0.92 0.70 0.81 0.75 0.75 0.76 1.04
High Base. 1.53 1.43 1.41 1.43 1.53 1.37 1.37 1.28 1.84 0.44 1.38 0.81 1.53 0.26 0.26 0.33 0.79

Empirical S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.44 -0.43 -0.40 -0.44 -0.44 -0.43 -0.40 -0.39 -0.44 -0.23 0.04 -0.37 0.34 -0.24 -0.24 -0.19 -0.18
High Degree 0.37 0.39 0.45 0.46 0.37 0.39 0.45 0.44 0.47 0.43 0.05 0.56 0.37 0.48 0.48 0.43 0.39
Powerlaw 0.35 0.26 0.23 0.26 0.35 0.36 0.23 0.22 0.24 0.33 0.31 0.36 0.37 0.26 0.26 0.37 0.39
Assortative -0.02 -0.00 0.03 0.06 -0.02 0.00 0.01 -0.01 0.00 -0.04 0.01 -0.04 -0.02 -0.04 -0.04 -0.05 -0.07
Communities -0.04 0.03 0.03 0.01 -0.04 -0.05 0.05 0.04 0.04 -0.00 -0.02 0.02 -0.02 0.03 0.02 -0.01 -0.02
Deg. Infect. 1.33 1.27 1.13 1.22 1.33 1.29 1.19 1.24 1.21 0.48 0.77 0.59 0.66 0.61 0.61 0.43 0.47
High Base. 1.54 1.40 1.37 1.49 1.54 1.54 1.36 1.45 1.40 0.47 0.50 0.73 0.70 0.31 0.31 0.45 0.46

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0 3 -1 -6 -0 -9 -5 -5 1 18 -13 17 -161 37 38 9 11
High Degree 0 -2 -3 -6 -0 3 -4 -9 -5 -14 25 -17 -2 -21 -21 -13 -11
Powerlaw 0 4 1 2 0 -3 3 8 4 -37 -5 -39 1 -20 -20 -46 -45
Assortative 0 0 -3 -6 0 -0 -2 -0 -1 7 -1 5 9 4 4 8 9
Communities -0 -4 -2 -2 0 3 -4 -4 -3 2 1 1 2 -1 -1 4 4
Deg. Infect. 0 0 10 10 -0 6 7 7 4 33 3 38 89 7 6 42 38
High Base. 0 5 6 5 0 2 10 8 4 47 39 38 110 46 46 54 52

Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 89 90 89 90 89 103 90 107 72 114 86 114 70 115 115 109 117
High Degree 4 2 2 4 4 3 1 -1 24 -14 6 -15 11 -15 -15 -13 -8
Powerlaw 13 14 13 11 13 3 14 6 14 -4 19 -5 8 -1 -1 -6 -15
Assortative 2 3 1 3 2 2 2 1 0 2 2 3 2 1 1 3 4
Communities 4 2 3 4 4 4 2 2 3 1 3 1 1 -1 -1 2 2
Deg. Infect. -14 -13 -10 -15 -14 -25 -12 -26 -9 -16 -15 -18 0 -15 -15 -14 -24
High Base. -52 -50 -51 -50 -52 -46 -49 -46 -61 -17 -61 -20 -53 -15 -15 -15 -25

Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 100 100 100 100 100 95 100 95 100 98 99 98 95 94 94 100 97
High Degree 1 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 0 1
Powerlaw -0 -0 -0 0 -0 0 -0 0 0 -1 -0 -0 1 -2 -2 -2 0
Assortative -0 -0 -0 -1 -0 -0 -0 0 0 1 -0 1 0 0 0 0 1
Communities -0 -0 -0 -0 -0 -0 -0 -0 -0 0 0 0 0 -0 0 0 0
Deg. Infect. -2 -2 -2 -2 -2 2 -2 2 -1 0 -1 -1 -0 4 4 0 1
High Base. -2 -2 -2 -3 -2 -2 -2 -2 -1 -1 1 -1 3 -2 -2 -1 -0

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
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Statistics Conditional On Each Scenario

a βa
000000 -0.57
000001 -1.12
000010 -3.08
000011 -3.42
000100 -0.69
000101 -1.45
000110 -4.20
000111 -3.50
001000 -0.62
001001 -1.34
001010 -4.38
001011 -3.19
001100 -0.72
001101 -1.67
001110 -5.39
001111 -3.54
010000 -0.93
010001 -2.35
010010 -5.55
010011 -3.46
010100 -1.04
010101 -2.77
010110 -5.60
010111 -3.66
011000 -1.01
011001 -3.01
011010 -5.53
011011 -3.33
011100 -1.11
011101 -3.43
011110 -5.73
011111 -3.48
100000 -2.23
100001 -3.79
100010 -5.73
100011 -3.32
100100 -2.40
100101 -3.75
100110 -5.68
100111 -3.17
101000 -2.25
101001 -3.68
101010 -5.69
101011 -3.27
101100 -2.39
101101 -3.77
101110 -5.66
101111 -3.13
110000 -1.78
110001 -6.52
110010 -4.88
110011 -3.51
110100 -1.92
110101 -7.35
110110 -5.03
110111 -3.22
111000 -1.83
111001 -7.14
111010 -5.17
111011 -3.24
111100 -1.92
111101 -6.61
111110 -5.24
111111 -3.23

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 -0.10 -0.20 -0.10 -0.30 -0.10 -0.10 -0.10 -0.10
000010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000011 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
001000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
001011 0 0.00 0.00 0.00 0 0 0.00 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
001110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
001111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
010000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
010001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 0.00 0.00 -0.10 -0.10
010010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 -0.10 -0.10 0.00 -0.20 0.10 0.10 -0.10 -0.10
010011 0 0.00 0.00 0.10 0 0 0.00 0.00 0.10 0.20 0.30 0.10 0.30 0.20 0.20 0.20 0.20
010100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
010101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.00 0.00 0.10 0.10
010110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.20 0.00 0.00
010111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 0.00 0.00
011000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
011001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
011010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 0.10 0.00 0.00
011011 0 0.10 0.10 0.10 0 0 0.10 0.00 0.10 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.10
011100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
011101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
011110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 0.10 0.00 0.00
011111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
100000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
100001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
100010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.00 0.00
100011 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
100100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.00
100111 0 0.00 0.00 0.00 0 0 0.10 0.00 0.00 0.10 0.10 0.10 0.20 0.10 0.10 0.10 0.10
101000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.00 0.20 0.10 0.10 0.10 0.10
101010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101011 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
101110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
101111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.20 0.10 0.20 0.10 0.10 0.10 0.10
110000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.10 0.10
110010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 0.10 0.00 0.00
110011 0 -0.10 -0.20 -0.20 0 0 -0.30 -0.10 0.00 -0.20 -0.40 -0.10 -0.60 -0.40 -0.40 -0.30 -0.20
110100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.00
110111 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
111000 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
111001 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.00
111010 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.00
111011 0 0.00 -0.10 -0.10 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111100 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00
111101 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.10 0.10
111110 0 0.00 0.00 0.00 0 0 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.20 0.20 0.10 0.10
111111 0 0.00 0.00 0.00 0 0 0.10 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 0.00 0.00
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Percent Relative Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000001 -0 -0 -0 -0 -0 -0 -0 -0 -0 9 18 9 27 9 9 9 9
000010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000011 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -0 -3 -0 -0 -0 -0
001000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 -0 -0 -0
001011 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 -0 -0 -0 -0 -0 -0 -0
001100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -0 -6 -0 -0 -0 -0
001110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 -0 -0 -0
001111 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 3 3 3 3 3 3 3
010000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
010001 -0 -0 -0 -0 -0 -0 -0 -0 -0 4 -0 4 4 -0 -0 4 4
010010 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 2 -0 4 -2 -2 2 2
010011 -0 -0 -0 -3 -0 -0 -0 -0 -3 -6 -9 -3 -9 -6 -6 -6 -6
010100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
010101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -4 -4 -0 -4 -0 -0 -4 -4
010110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -0 -2 -4 -0 -0
010111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 3 3 3 -0 -0
011000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
011001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
011010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -2 -2 -0 -0
011011 -0 -3 -3 -3 -0 -0 -3 -0 -3 -6 -6 -6 -9 -6 -6 -6 -3
011100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
011101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
011110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -2 -2 -0 -0
011111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -3 -3 -3 -3 -3 -3 -3
100000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -4 -0 -0 -0 -0
100001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 -0 -0 -0
100010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -2 -0 -0
100011 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 -0 -0 -0
100100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -0 -0
100111 -0 -0 -0 -0 -0 -0 -3 -0 -0 -3 -3 -3 -6 -3 -3 -3 -3
101000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -3 -0 -5 -3 -3 -3 -3
101010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101011 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 -0 -0 -0
101110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 -0 -0 -0
101111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -6 -3 -6 -3 -3 -3 -3
110000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
110001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -0 -2 -2 -2 -2 -2
110010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -2 -2 -0 -0
110011 -0 3 6 6 -0 -0 9 3 -0 6 11 3 17 11 11 9 6
110100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
110101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
110110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -0 -2 -2 -0 -0
110111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3 -0 -0 -0 -0
111000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -5 -0 -0 -0 -0
111001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -0 -0 -1 -1 -0 -0
111010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -0 -2 -2 -0 -0
111011 -0 -0 3 3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
111100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -5 -0 -0 -0 -0
111101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -0 -2 -2 -2 -2 -2
111110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -2 -2 -2 -4 -4 -2 -2
111111 -0 -0 -0 -0 -0 -0 -3 -0 -0 -0 -0 -0 -0 3 3 -0 -0
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Robust Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.10 0.30 0.10 0.50 0.10 0.10 0.20 0.10
000001 0.70 0.70 0.70 0.70 0.70 0.60 0.70 0.60 1.00 0.20 0.80 0.20 1.00 0.10 0.10 0.30 0.20
000010 0.70 0.70 0.70 0.70 0.70 0.60 0.70 0.60 0.90 0.40 0.70 0.30 0.90 0.30 0.30 0.70 0.40
000011 2.20 2.00 1.90 2.20 2.20 2.20 1.90 2.10 3.20 0.30 2.10 0.40 1.80 0.30 0.30 0.50 0.30
000100 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.10 0.30 0.10 0.50 0.10 0.10 0.20 0.10
000101 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.60 1.20 0.20 0.90 0.20 1.10 0.10 0.10 0.30 0.20
000110 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 1.00 0.50 0.80 0.40 1.00 0.40 0.40 0.90 0.50
000111 2.10 2.00 2.00 2.10 2.10 2.10 2.00 2.00 3.50 0.40 2.40 0.50 2.20 0.30 0.30 0.50 0.40
001000 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.10 0.30 0.10 0.40 0.10 0.10 0.20 0.10
001001 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 1.20 0.20 0.90 0.20 1.00 0.10 0.10 0.30 0.20
001010 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.80 1.10 0.60 0.90 0.40 1.00 0.40 0.40 1.00 0.60
001011 1.70 1.50 1.40 1.70 1.70 1.70 1.40 1.60 2.70 0.30 2.00 0.30 1.60 0.30 0.30 0.50 0.30
001100 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.10 0.30 0.10 0.50 0.10 0.10 0.20 0.10
001101 0.90 0.90 0.90 0.90 0.90 0.80 0.90 0.80 1.30 0.20 1.00 0.30 1.20 0.20 0.20 0.30 0.20
001110 1.00 0.90 1.00 0.90 1.00 0.90 0.90 0.90 1.20 0.60 1.00 0.50 1.10 0.50 0.50 1.10 0.60
001111 1.80 1.70 1.70 1.80 1.80 1.80 1.70 1.80 3.10 0.30 2.30 0.50 2.10 0.30 0.30 0.50 0.30
010000 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.40 0.30 0.40 0.50 0.20 0.20 0.50 0.40
010001 1.10 1.00 1.10 1.10 1.10 1.00 1.00 0.70 1.50 0.70 1.20 0.80 1.60 0.30 0.30 0.80 0.80
010010 1.70 1.70 1.50 1.50 1.70 1.70 1.50 1.60 1.70 0.90 1.60 0.90 1.70 0.90 0.90 1.20 1.10
010011 3.80 3.30 2.70 3.00 3.80 3.70 2.70 3.40 3.90 1.10 2.50 1.50 2.60 0.70 0.70 1.10 3.00
010100 0.30 0.30 0.30 0.30 0.30 0.20 0.30 0.20 0.40 0.40 0.30 0.40 0.50 0.20 0.20 0.40 0.40
010101 1.10 1.10 1.10 1.10 1.10 0.90 1.10 0.80 1.60 0.60 1.30 0.80 1.60 0.30 0.30 0.70 0.70
010110 1.50 1.50 1.40 1.40 1.50 1.50 1.40 1.40 1.60 0.90 1.40 0.80 1.70 0.80 0.80 1.10 1.00
010111 3.30 3.10 2.70 2.90 3.30 3.30 2.90 3.20 3.90 1.20 2.50 1.60 2.90 0.90 0.90 1.20 3.00
011000 0.30 0.30 0.40 0.30 0.30 0.30 0.30 0.20 0.40 0.40 0.30 0.40 0.50 0.20 0.20 0.40 0.40
011001 1.40 1.20 1.40 1.40 1.40 1.30 1.30 0.90 2.00 0.60 1.50 0.80 1.90 0.30 0.30 0.60 0.60
011010 1.50 1.40 1.40 1.40 1.50 1.50 1.30 1.40 1.60 0.90 1.40 0.80 1.60 0.80 0.80 1.20 1.00
011011 3.10 2.50 2.20 2.80 3.10 2.90 2.00 2.70 3.40 0.70 2.50 0.90 2.80 0.40 0.40 0.70 2.00
011100 0.30 0.40 0.40 0.30 0.30 0.20 0.40 0.20 0.40 0.30 0.30 0.30 0.50 0.20 0.20 0.40 0.30
011101 1.40 1.30 1.50 1.40 1.40 1.10 1.40 1.00 2.00 0.50 1.50 0.80 1.90 0.30 0.30 0.60 0.60
011110 1.40 1.30 1.30 1.30 1.40 1.30 1.30 1.30 1.50 0.80 1.30 0.80 1.60 0.80 0.80 1.20 0.90
011111 2.60 2.30 2.20 2.50 2.60 2.50 2.20 2.40 3.40 0.80 2.50 1.00 3.00 0.50 0.50 0.70 2.00
100000 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.30 0.30 0.20 0.40 0.20 0.70 0.20 0.20 0.30 0.20
100001 2.20 2.20 2.20 2.10 2.20 1.40 2.10 1.50 1.90 0.50 2.20 1.30 2.90 0.40 0.40 0.60 0.50
100010 1.20 1.20 1.20 1.20 1.20 1.00 1.20 1.00 1.10 0.70 1.00 0.70 1.10 0.70 0.70 1.00 0.70
100011 3.40 3.40 3.40 3.40 3.40 2.90 3.40 3.00 3.20 2.00 3.00 2.40 3.40 1.80 1.80 2.00 1.90
100100 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.30 0.30 0.20 0.40 0.20 0.70 0.20 0.20 0.30 0.20
100101 2.10 2.20 2.20 2.10 2.10 1.30 2.10 1.50 1.80 0.50 2.20 1.30 2.90 0.40 0.40 0.70 0.50
100110 1.40 1.40 1.40 1.40 1.40 1.30 1.40 1.30 1.30 1.00 1.10 1.00 1.30 0.90 0.90 1.10 1.00
100111 4.00 4.00 4.00 4.00 4.00 3.60 4.00 3.70 3.80 2.10 3.10 2.80 3.30 1.90 1.90 2.10 2.10
101000 0.40 0.40 0.40 0.30 0.40 0.20 0.40 0.30 0.30 0.20 0.40 0.20 0.60 0.20 0.20 0.30 0.20
101001 2.20 2.20 2.20 1.80 2.20 1.40 2.20 1.50 2.00 0.50 2.20 1.30 2.90 0.40 0.40 0.60 0.50
101010 1.20 1.20 1.20 1.20 1.20 1.10 1.20 1.10 1.20 0.80 1.00 0.80 1.20 0.80 0.80 1.00 0.80
101011 3.60 3.60 3.60 3.40 3.60 3.20 3.60 3.30 3.50 2.00 3.00 2.50 3.50 1.80 1.80 2.00 2.00
101100 0.40 0.40 0.40 0.30 0.40 0.20 0.40 0.30 0.30 0.20 0.40 0.20 0.60 0.20 0.20 0.30 0.20
101101 2.20 2.20 2.20 1.60 2.20 1.30 2.10 1.50 1.80 0.50 2.20 1.40 2.90 0.40 0.40 0.70 0.50
101110 1.40 1.40 1.40 1.30 1.40 1.30 1.40 1.30 1.30 1.00 1.20 1.00 1.30 0.90 0.90 1.20 1.00
101111 4.00 4.00 4.10 3.80 4.00 3.70 4.00 3.70 3.90 2.10 3.10 2.80 3.40 1.90 1.90 2.10 2.10
110000 0.40 0.40 0.40 0.40 0.40 0.30 0.40 0.30 0.40 0.40 0.40 0.50 0.50 0.20 0.20 0.50 0.50
110001 1.80 1.70 1.80 1.80 1.80 1.50 1.70 1.20 2.40 1.20 2.00 1.30 2.60 0.50 0.50 1.20 1.60
110010 1.70 1.60 1.60 1.60 1.70 1.60 1.60 1.50 1.70 1.10 1.50 1.10 1.80 1.10 1.10 1.20 1.20
110011 4.00 3.70 3.60 3.60 4.00 4.00 3.50 3.60 4.30 2.40 3.00 3.00 3.40 2.00 2.00 2.40 4.10
110100 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.30 0.40 0.40 0.40 0.40 0.60 0.20 0.20 0.50 0.40
110101 1.80 1.70 1.70 1.80 1.80 1.30 1.70 1.20 2.30 1.00 2.10 1.40 2.70 0.50 0.50 1.10 1.20
110110 1.70 1.60 1.60 1.60 1.70 1.60 1.60 1.60 1.70 1.20 1.50 1.20 1.80 1.20 1.20 1.30 1.30
110111 3.70 3.60 3.50 3.50 3.70 3.60 3.40 3.40 3.90 2.50 3.00 2.90 3.50 2.10 2.10 2.40 3.70
111000 0.40 0.40 0.40 0.40 0.40 0.30 0.40 0.30 0.40 0.40 0.40 0.50 0.60 0.20 0.20 0.50 0.50
111001 2.10 1.90 2.20 2.00 2.10 1.70 2.00 1.30 2.70 1.10 2.30 1.50 3.00 0.40 0.40 1.20 1.30
111010 1.70 1.70 1.70 1.70 1.70 1.70 1.60 1.60 1.70 1.30 1.50 1.30 1.80 1.30 1.30 1.40 1.30
111011 4.10 3.80 3.80 4.00 4.10 4.10 3.60 3.80 4.30 2.30 2.80 2.80 3.40 1.80 1.80 2.20 3.50
111100 0.40 0.40 0.40 0.40 0.40 0.20 0.40 0.30 0.40 0.40 0.40 0.40 0.60 0.20 0.20 0.40 0.40
111101 2.10 2.00 2.10 1.70 2.10 1.40 2.00 1.30 2.50 1.10 2.40 1.50 3.10 0.40 0.40 1.10 1.20
111110 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.70 1.30 1.40 1.30 1.80 1.20 1.20 1.40 1.30
111111 3.90 3.80 3.80 3.90 3.90 3.90 3.70 3.80 4.10 2.30 2.70 2.80 3.40 1.90 1.90 2.20 3.10
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Empirical Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.10 0.50 0.10 0.10 0.10 0.10
000001 0.60 0.50 0.50 0.60 0.60 0.60 0.60 0.60 0.60 0.10 0.70 0.20 1.10 0.10 0.10 0.10 0.10
000010 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.30 0.60 0.30 0.90 0.30 0.30 0.30 0.30
000011 2.10 1.90 1.80 2.10 2.10 2.10 1.80 2.10 1.70 0.20 0.90 0.40 1.10 0.20 0.20 0.20 0.20
000100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.10 0.50 0.10 0.10 0.10 0.10
000101 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.20 0.70 0.20 1.10 0.20 0.10 0.20 0.20
000110 0.70 0.60 0.60 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.70 0.30 1.10 0.30 0.30 0.40 0.40
000111 2.10 2.00 2.00 2.10 2.10 2.10 2.00 2.10 2.00 0.30 0.90 0.50 1.10 0.30 0.30 0.30 0.30
001000 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.10 0.50 0.10 0.10 0.10 0.10
001001 0.70 0.70 0.70 0.70 0.70 0.80 0.70 0.70 0.70 0.20 0.70 0.20 1.00 0.20 0.20 0.20 0.20
001010 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.50 0.80 0.30 1.00 0.30 0.30 0.40 0.50
001011 1.80 1.60 1.50 1.80 1.80 1.80 1.60 1.70 1.50 0.20 0.80 0.30 0.80 0.20 0.20 0.20 0.20
001100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.10 0.20 0.10 0.50 0.10 0.10 0.10 0.10
001101 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.80 0.20 1.10 0.20 0.20 0.20 0.20
001110 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.50 0.90 0.40 1.20 0.40 0.40 0.50 0.50
001111 1.80 1.70 1.70 1.90 1.80 1.90 1.70 1.80 1.70 0.30 0.90 0.40 0.90 0.30 0.30 0.30 0.30
010000 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.40 0.20 0.40 0.50 0.20 0.20 0.50 0.50
010001 0.90 0.80 0.90 0.90 0.90 1.00 0.80 0.80 0.80 0.60 0.90 0.60 1.50 0.40 0.40 0.70 0.70
010010 1.30 1.20 1.00 1.10 1.30 1.20 1.20 1.10 1.10 0.50 1.70 0.50 2.00 0.80 0.80 0.50 0.70
010011 4.00 3.40 2.80 3.20 4.00 3.80 2.80 3.40 2.90 1.10 1.60 1.50 2.00 0.70 0.70 1.00 1.20
010100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.40 0.50 0.20 0.20 0.40 0.40
010101 0.90 0.80 0.90 0.90 0.90 0.90 0.90 0.80 0.80 0.50 0.80 0.60 1.40 0.40 0.40 0.60 0.60
010110 1.10 1.00 0.90 1.00 1.10 1.10 1.00 1.00 1.00 0.40 1.50 0.50 2.00 0.70 0.70 0.50 0.60
010111 3.40 3.20 2.70 3.00 3.40 3.40 3.00 3.30 3.10 1.20 1.40 1.50 1.90 0.90 0.90 1.10 1.20
011000 0.20 0.20 0.30 0.20 0.20 0.30 0.20 0.20 0.20 0.30 0.20 0.40 0.60 0.20 0.20 0.40 0.40
011001 1.10 0.90 1.10 1.10 1.10 1.20 1.10 1.00 1.10 0.40 1.10 0.70 1.60 0.30 0.30 0.60 0.50
011010 1.00 1.00 1.00 1.00 1.00 1.00 1.10 0.90 1.00 0.40 1.50 0.50 1.80 0.70 0.70 0.40 0.50
011011 3.20 2.60 2.20 2.80 3.20 3.00 2.10 2.70 2.10 0.80 1.50 0.90 1.90 0.40 0.40 0.70 0.90
011100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.30 0.50 0.20 0.20 0.30 0.30
011101 1.00 1.00 1.10 1.10 1.00 1.10 1.10 1.00 1.00 0.40 1.10 0.50 1.60 0.30 0.30 0.40 0.40
011110 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.40 1.40 0.40 1.90 0.60 0.60 0.40 0.40
011111 2.60 2.30 2.10 2.40 2.60 2.50 2.20 2.40 2.20 0.70 1.20 0.90 1.80 0.50 0.50 0.70 0.80
100000 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.20 0.70 0.20 0.20 0.20 0.20
100001 1.40 1.30 1.40 1.40 1.40 1.40 1.40 1.50 1.40 0.40 0.50 0.70 1.80 0.30 0.30 0.40 0.40
100010 0.70 0.60 0.60 0.70 0.70 0.70 0.70 0.70 0.70 0.30 0.60 0.30 1.20 0.50 0.50 0.30 0.30
100011 2.80 2.70 2.70 2.80 2.80 2.80 2.80 2.80 2.80 1.50 1.60 1.80 2.30 1.60 1.60 1.50 1.50
100100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.20 0.70 0.20 0.20 0.20 0.20
100101 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.50 1.30 0.40 0.60 0.70 1.70 0.30 0.30 0.40 0.40
100110 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.50 0.60 0.50 1.10 0.60 0.60 0.50 0.50
100111 3.60 3.60 3.60 3.70 3.60 3.60 3.60 3.70 3.60 1.60 1.80 2.30 2.20 1.80 1.80 1.60 1.60
101000 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.20 0.60 0.20 0.20 0.20 0.20
101001 1.40 1.30 1.30 1.60 1.40 1.40 1.40 1.50 1.40 0.40 0.50 0.70 1.80 0.30 0.30 0.40 0.40
101010 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.60 0.40 1.10 0.50 0.50 0.40 0.40
101011 3.20 3.20 3.10 3.30 3.20 3.20 3.20 3.20 3.20 1.50 1.70 2.00 2.40 1.60 1.60 1.50 1.50
101100 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.30 0.20 0.20 0.20 0.20 0.70 0.20 0.20 0.20 0.20
101101 1.30 1.30 1.30 1.50 1.30 1.30 1.30 1.50 1.30 0.40 0.60 0.70 1.70 0.40 0.40 0.40 0.40
101110 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.40 0.60 0.50 1.10 0.60 0.60 0.40 0.40
101111 3.70 3.60 3.60 3.70 3.70 3.70 3.70 3.70 3.70 1.60 1.80 2.40 2.40 1.70 1.70 1.60 1.50
110000 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.30 0.20 0.40 0.20 0.40 0.50 0.30 0.30 0.50 0.50
110001 1.50 1.20 1.50 1.50 1.50 1.60 1.40 1.30 1.40 1.00 0.70 1.00 1.70 0.60 0.60 1.10 1.10
110010 1.10 1.10 1.10 1.20 1.10 1.20 1.20 1.10 1.10 0.80 1.30 0.80 1.90 1.00 1.00 0.80 0.80
110011 3.80 3.50 3.30 3.50 3.80 3.80 3.30 3.40 3.60 2.10 2.00 2.70 2.60 2.00 2.00 2.00 2.10
110100 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.30 0.20 0.40 0.20 0.40 0.60 0.20 0.20 0.40 0.40
110101 1.30 1.10 1.30 1.30 1.30 1.30 1.20 1.20 1.20 0.80 0.50 1.00 1.50 0.60 0.60 0.90 0.90
110110 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 0.70 1.20 0.70 1.80 1.10 1.00 0.80 0.80
110111 3.30 3.20 3.00 3.20 3.30 3.30 3.20 3.20 3.30 2.00 1.90 2.50 2.50 2.00 2.00 1.90 2.00
111000 0.20 0.20 0.20 0.30 0.20 0.30 0.30 0.30 0.20 0.40 0.20 0.40 0.50 0.30 0.30 0.50 0.40
111001 1.60 1.20 1.60 1.70 1.60 1.80 1.40 1.30 1.40 0.80 0.90 0.90 1.90 0.50 0.50 0.90 0.90
111010 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 0.70 1.20 0.70 1.80 1.10 1.10 0.80 0.70
111011 4.10 3.80 3.60 3.90 4.10 4.10 3.60 3.80 3.90 2.10 1.80 2.60 2.50 1.80 1.80 2.00 2.00
111100 0.20 0.20 0.20 0.30 0.20 0.20 0.30 0.30 0.20 0.30 0.20 0.30 0.50 0.20 0.20 0.30 0.30
111101 1.40 1.40 1.40 1.70 1.40 1.50 1.40 1.40 1.40 0.80 0.80 1.00 1.80 0.70 0.70 0.90 0.90
111110 1.00 1.00 1.00 1.10 1.00 1.00 1.10 1.00 1.00 0.70 1.10 0.70 1.70 1.00 1.00 0.70 0.70
111111 3.70 3.60 3.60 3.70 3.70 3.70 3.60 3.70 3.70 2.00 1.80 2.60 2.30 1.70 1.70 1.90 1.90
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 3 2 -1 0 -11 -2 2 1 53 -10 46 -140 44 44 53 53
000001 0 4 4 -2 0 -5 -3 1 -0 69 -24 66 -97 71 72 69 68
000010 0 5 5 -2 0 -6 4 2 4 44 -9 55 -58 53 53 45 44
000011 0 11 16 -1 0 -1 14 2 18 90 58 83 49 89 89 90 90
000100 0 0 0 -3 0 -4 -4 0 0 53 1 47 -133 45 46 52 52
000101 0 2 1 -2 0 -3 -2 1 0 77 -9 73 -68 77 78 77 77
000110 0 2 2 -2 0 -2 -2 1 1 42 -11 54 -63 55 55 43 42
000111 0 5 7 -1 0 -1 4 1 5 85 57 76 49 86 86 85 85
001000 0 1 1 -9 0 -8 -2 1 -1 53 -12 44 -122 51 51 51 52
001001 0 4 4 -4 0 -6 1 2 1 79 -4 75 -35 78 78 78 78
001010 0 3 4 -4 0 -3 1 1 1 42 -3 57 -24 56 56 43 42
001011 0 11 15 -1 0 -0 11 1 14 89 55 83 57 87 87 89 89
001100 0 -0 -0 -7 0 -3 -4 0 -1 52 -11 46 -127 48 49 51 51
001101 0 2 2 -5 0 -2 -1 1 -0 78 -5 75 -38 78 79 78 78
001110 0 1 2 -1 0 -1 -0 1 -0 40 -5 54 -35 54 54 41 40
001111 0 7 9 -0 0 -1 5 1 8 84 51 76 50 85 85 84 84
010000 0 5 -4 -5 0 -25 -5 -2 4 -118 5 -126 -166 -14 -15 -154 -140
010001 0 16 2 -3 0 -13 8 17 11 31 3 30 -64 56 56 23 23
010010 0 5 20 11 0 1 4 10 10 63 -35 59 -60 35 35 61 46
010011 0 14 30 19 0 5 30 13 25 73 59 62 48 82 82 73 69
010100 0 2 -1 -6 0 -9 -9 -3 2 -85 16 -95 -156 -11 -7 -115 -102
010101 0 7 -1 -3 0 -6 -1 5 4 36 7 29 -61 54 54 29 31
010110 0 3 12 1 0 -1 2 6 6 58 -45 53 -84 28 29 55 46
010111 0 5 21 13 0 0 12 4 10 66 60 56 44 74 74 67 65
011000 0 5 -39 -10 0 -27 -14 -1 1 -62 -4 -95 -165 10 11 -99 -91
011001 0 13 -3 -4 0 -15 -1 10 -4 60 -9 38 -55 70 70 48 53
011010 0 6 8 3 0 -0 -4 9 8 59 -44 53 -74 35 35 57 51
011011 0 19 31 10 0 6 34 16 33 75 51 71 39 85 85 77 71
011100 0 2 -13 -19 0 -11 -16 -3 2 -50 9 -65 -150 10 11 -69 -64
011101 0 6 -5 -8 0 -8 -3 4 2 63 -3 48 -53 70 70 57 60
011110 0 3 4 1 0 -1 -3 4 5 56 -51 54 -109 31 32 55 53
011111 0 9 17 5 0 0 14 5 14 71 51 64 31 81 81 73 69
100000 0 -1 -0 -5 0 0 -10 -33 1 19 15 22 -257 21 23 22 22
100001 0 3 2 -2 0 -0 -3 -7 -0 74 62 46 -31 77 77 73 73
100010 0 1 1 -5 -0 -0 -4 -5 -1 50 14 48 -85 30 29 49 50
100011 0 1 1 -2 0 -0 -3 -3 -0 47 40 35 15 41 41 47 47
100100 0 -0 -0 -7 0 0 -4 -24 0 25 20 25 -212 21 22 25 26
100101 0 1 1 -4 0 -0 -3 -12 -0 72 56 43 -32 73 73 71 71
100110 0 0 0 -4 0 0 -5 -6 -0 41 18 40 -42 23 23 41 41
100111 0 0 0 -3 0 -0 -1 -2 -0 56 49 35 37 51 51 55 56
101000 0 1 1 -25 0 -0 -6 -17 -0 22 22 25 -186 21 22 25 25
101001 0 1 1 -16 0 -0 -2 -10 -0 72 61 46 -31 74 74 71 72
101010 0 1 1 -8 0 -0 -6 -5 -0 44 16 42 -64 24 25 44 45
101011 0 1 1 -4 0 -0 -1 -1 -0 52 46 37 23 49 49 52 53
101100 0 0 0 -18 0 -0 -6 -25 -0 23 19 23 -192 21 22 24 25
101101 0 1 1 -15 0 -0 -4 -16 -0 71 57 42 -29 72 72 71 71
101110 0 0 0 -4 0 -0 -4 -4 -0 44 19 43 -40 23 23 44 44
101111 0 0 1 -1 0 -0 -2 -1 -0 57 51 36 35 54 54 57 58
110000 0 2 -2 -7 0 -10 -4 -15 0 -83 26 -83 -126 -21 -21 -120 -107
110001 0 20 -1 0 0 -9 9 17 10 32 54 33 -13 62 63 29 26
110010 0 3 6 -3 0 -1 -3 3 1 34 -17 34 -65 10 9 30 31
110011 0 7 14 7 0 -1 12 10 4 45 47 30 30 46 46 47 44
110100 0 0 -1 -11 0 -1 -5 -17 -0 -62 22 -69 -159 -11 -11 -94 -82
110101 0 10 1 -1 0 -3 2 3 3 34 58 24 -15 55 55 32 31
110110 0 1 2 -3 0 -0 -3 2 0 34 -12 32 -68 2 2 30 30
110111 0 3 9 3 0 -0 3 3 1 39 42 25 25 41 41 42 39
111000 0 3 -1 -23 0 -13 -9 -15 0 -65 20 -78 -138 -11 -11 -95 -86
111001 0 21 1 -11 0 -13 11 17 11 49 45 43 -24 70 70 44 46
111010 0 4 3 1 0 -1 -2 4 2 35 -8 33 -62 -4 -4 32 32
111011 0 8 12 5 0 -0 11 8 5 49 55 36 40 57 57 53 51
111100 0 1 -0 -33 0 -2 -28 -25 -0 -41 17 -46 -136 -9 -9 -58 -52
111101 0 6 -0 -16 0 -3 0 -0 2 41 43 32 -22 53 53 40 40
111110 0 2 2 -2 0 -0 -5 1 0 33 -3 32 -65 5 5 32 32
111111 0 2 4 0 0 -0 3 2 1 46 53 31 39 53 53 48 49
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Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 45 45 46 48 45 75 46 83 17 100 45 100 20 100 100 92 100
000001 33 32 32 35 33 49 34 54 6 100 20 100 18 100 100 100 100
000010 100 100 100 100 100 100 100 100 99 100 99 100 94 100 100 100 100
000011 34 42 47 36 34 35 46 38 6 100 20 100 45 100 100 100 100
000100 65 64 64 66 65 92 67 94 34 100 66 100 31 100 100 100 100
000101 39 40 40 42 39 57 40 60 9 100 33 100 24 100 100 100 100
000110 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100
000111 39 42 44 39 39 41 42 42 6 100 12 100 24 100 100 100 100
001000 50 50 49 53 50 78 51 84 22 100 51 100 29 100 100 96 100
001001 34 36 36 36 34 46 36 51 10 100 29 100 28 100 100 100 100
001010 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100
001011 49 60 63 50 49 50 62 51 9 100 20 100 55 100 100 100 100
001100 69 68 67 70 69 90 70 92 36 100 70 100 37 100 100 100 100
001101 43 43 42 45 43 55 44 60 13 100 42 100 33 100 100 100 100
001110 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100
001111 54 58 59 54 54 55 57 55 6 100 12 100 26 100 100 100 100
010000 95 96 94 95 95 97 96 99 85 63 97 58 50 98 99 50 56
010001 57 66 57 58 57 62 68 86 22 92 49 89 30 100 100 86 86
010010 94 96 99 99 94 95 99 97 96 100 92 100 84 100 100 100 99
010011 17 20 27 24 17 17 27 19 9 90 25 68 24 100 100 92 20
010100 99 99 99 99 99 100 98 100 96 84 100 78 64 100 100 71 78
010101 75 79 74 76 75 87 78 93 34 99 70 98 44 100 100 98 98
010110 98 98 100 99 98 98 99 99 98 100 96 100 89 100 100 100 100
010111 20 22 27 26 20 21 25 22 10 84 18 65 15 98 98 85 18
011000 94 96 89 94 94 96 94 100 86 84 97 73 58 100 100 70 75
011001 62 75 57 63 62 67 67 90 23 100 58 98 36 100 100 100 99
011010 98 100 100 100 98 98 99 100 100 100 94 100 87 100 100 100 100
011011 21 32 37 25 21 22 41 27 8 99 19 96 15 100 100 100 47
011100 99 99 97 98 99 100 98 100 95 94 100 91 71 100 100 89 91
011101 73 79 67 75 73 88 75 94 28 100 71 100 46 100 100 100 100
011110 100 100 100 100 100 100 100 100 100 100 97 100 88 100 100 100 100
011111 29 33 35 31 29 30 37 31 10 100 15 96 10 100 100 100 49
100000 100 100 100 100 100 100 100 100 100 100 100 100 94 100 100 100 100
100001 39 38 39 42 39 78 40 72 51 100 14 95 12 100 100 100 100
100010 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100011 12 12 11 13 12 19 13 19 13 36 6 23 7 42 42 34 35
100100 100 100 100 100 100 100 100 100 100 100 100 100 95 100 100 100 100
100101 36 35 35 38 36 81 38 69 59 100 17 93 10 100 100 100 100
100110 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
100111 9 9 9 11 9 14 10 13 11 31 6 18 8 37 36 29 31
101000 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100
101001 33 34 33 53 33 76 36 65 45 100 13 95 11 100 100 100 100
101010 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
101011 13 12 12 16 13 17 13 17 14 34 6 23 8 44 44 33 34
101100 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100
101101 37 36 32 64 37 80 39 69 58 100 17 93 10 100 100 100 100
101110 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
101111 11 10 10 14 11 14 12 14 12 29 6 16 8 38 38 27 29
110000 100 100 100 100 100 100 100 100 100 98 100 98 94 100 100 92 95
110001 97 100 97 97 97 98 98 100 91 100 100 100 83 100 100 100 94
110010 89 91 92 92 89 90 92 93 89 100 91 100 80 100 99 100 99
110011 13 13 12 13 13 13 15 14 8 26 7 19 7 37 37 24 11
110100 100 100 100 100 100 100 100 100 100 100 100 100 96 100 100 99 99
110101 100 100 100 100 100 100 100 100 99 100 100 100 91 100 100 100 99
110110 93 94 94 94 93 94 95 95 93 100 96 100 83 100 100 100 100
110111 13 14 13 14 13 14 14 15 9 21 8 18 6 30 30 22 11
111000 100 100 100 100 100 100 100 100 100 100 100 98 95 100 100 97 98
111001 95 100 95 96 95 97 98 100 89 100 99 100 76 100 100 100 98
111010 93 95 95 94 93 94 95 96 93 100 97 100 86 100 100 100 100
111011 13 14 13 12 13 14 15 15 10 28 13 22 10 43 42 31 16
111100 100 100 100 100 100 100 100 100 100 100 100 100 96 100 100 100 100
111101 96 98 96 97 96 99 97 100 89 100 99 100 65 100 100 100 99
111110 98 98 98 98 98 98 98 98 97 100 98 100 88 100 100 100 100
111111 13 13 14 13 13 13 16 13 11 26 12 19 8 39 40 27 17
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Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 100 100 100 99 100 94 99 93 100 99 100 98 97 92 92 100 99
000001 98 99 99 98 98 97 98 93 100 91 99 93 92 84 84 100 89
000010 98 98 98 98 98 95 98 95 100 98 98 98 96 96 96 100 98
000011 95 95 96 94 95 94 96 94 100 98 100 96 100 97 97 100 98
000100 100 100 100 100 100 94 99 94 100 99 100 98 96 92 93 100 99
000101 98 98 98 97 98 94 98 94 100 97 99 97 97 92 92 100 97
000110 98 98 98 98 98 95 98 95 100 98 98 99 96 98 98 100 98
000111 95 95 95 94 95 94 94 93 100 97 100 96 100 94 95 100 97
001000 100 100 100 99 100 95 100 95 100 99 100 98 97 94 95 100 98
001001 97 98 98 96 97 93 97 94 100 97 99 98 97 92 92 100 97
001010 98 98 98 96 98 95 97 96 99 98 97 98 96 98 98 100 98
001011 93 94 95 93 93 93 94 93 100 98 100 97 100 97 97 100 98
001100 100 100 100 98 100 95 99 94 100 99 100 99 96 94 94 100 99
001101 98 98 98 97 98 93 97 93 100 97 99 99 97 92 94 100 97
001110 95 95 96 94 95 92 95 93 100 97 97 97 93 95 95 100 97
001111 94 95 96 95 94 94 94 94 100 97 100 94 100 95 94 100 97
010000 100 100 100 100 100 95 100 95 100 96 100 96 97 91 90 96 96
010001 98 99 99 97 98 94 98 94 100 96 100 98 98 90 91 96 96
010010 99 99 100 98 99 99 99 99 99 100 96 100 94 98 98 100 98
010011 94 94 95 93 94 94 94 95 99 96 100 95 99 92 92 95 100
010100 100 100 100 100 100 95 100 95 100 97 100 97 98 93 93 96 97
010101 99 99 99 99 99 94 99 94 100 98 100 98 98 91 91 97 98
010110 99 99 99 98 99 98 99 99 100 100 98 99 96 98 98 100 99
010111 93 93 94 93 93 93 92 94 98 96 100 95 100 96 96 96 100
011000 100 100 100 100 100 95 100 96 100 98 100 97 98 92 92 98 97
011001 98 98 99 98 98 95 98 93 100 99 99 99 98 92 92 98 98
011010 99 99 99 100 99 99 99 99 100 100 97 99 95 98 98 100 100
011011 94 94 95 94 94 94 93 95 100 94 100 94 99 90 90 93 99
011100 100 100 100 99 100 94 100 95 100 96 100 96 98 92 92 97 95
011101 99 99 99 98 99 94 99 93 100 100 100 100 98 91 90 99 99
011110 100 100 100 100 100 99 99 99 100 100 97 100 95 99 99 100 100
011111 94 95 95 95 94 94 94 94 100 95 100 96 100 94 94 96 99
100000 100 100 100 100 100 97 100 96 99 98 100 99 97 97 97 100 99
100001 100 100 100 100 100 93 100 95 100 98 100 100 100 97 97 100 97
100010 100 100 100 100 100 99 100 99 99 100 100 100 94 100 100 100 100
100011 98 98 98 98 98 96 98 96 97 99 100 99 99 97 97 99 99
100100 100 100 100 100 100 96 100 96 99 99 100 98 95 95 96 100 98
100101 100 100 100 100 100 95 100 95 98 98 100 100 100 97 98 100 98
100110 100 100 100 100 100 100 100 100 100 100 100 100 98 100 100 100 100
100111 97 97 97 95 97 95 96 94 96 99 100 98 99 96 96 99 99
101000 100 100 100 99 100 97 100 96 100 98 100 99 97 96 96 100 98
101001 100 100 100 97 100 95 99 95 99 99 100 100 100 96 96 100 99
101010 100 100 100 100 100 100 100 100 100 100 100 100 97 100 100 100 100
101011 98 98 98 96 98 96 97 96 97 98 100 99 100 97 97 98 98
101100 100 100 100 98 100 97 100 95 100 98 100 99 95 96 95 100 99
101101 100 100 100 96 100 95 100 95 99 100 100 100 100 97 97 100 100
101110 100 100 100 100 100 100 100 100 100 100 100 100 97 99 99 100 100
101111 97 97 97 96 97 95 96 95 96 99 100 98 99 97 98 98 98
110000 100 100 100 100 100 95 100 97 100 96 100 97 97 91 91 96 96
110001 98 100 98 98 98 93 99 92 100 96 100 99 100 91 91 97 98
110010 98 98 98 98 98 98 98 98 99 97 98 98 96 96 96 98 97
110011 97 96 98 96 97 97 96 95 97 97 100 95 98 94 93 96 99
110100 100 100 100 100 100 95 100 95 100 97 100 97 97 93 94 96 96
110101 99 100 100 99 99 93 100 94 100 98 100 100 100 91 91 98 98
110110 99 100 99 99 99 99 99 99 99 98 98 98 97 97 97 98 98
110111 96 96 97 96 96 95 95 95 98 98 99 97 99 95 95 98 99
111000 100 100 100 99 100 96 100 98 100 98 100 98 98 93 93 98 97
111001 99 100 99 97 99 94 100 95 100 99 100 100 100 92 92 99 99
111010 99 99 99 99 99 99 99 99 100 99 99 99 97 98 98 100 99
111011 95 95 96 95 95 95 93 94 97 97 100 96 100 95 95 97 99
111100 100 100 100 99 100 96 100 96 100 99 100 100 99 92 94 100 99
111101 99 99 99 95 99 93 99 92 100 99 100 100 100 77 77 98 99
111110 99 99 99 99 99 99 100 100 99 100 99 100 97 98 98 100 100
111111 96 95 96 96 96 96 95 95 97 98 99 97 100 94 95 97 99
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Appendix: Classic GEE on Smaller Networks

Statistics Marginal Across All Scenarios

Treatment Effect β: -2.98

None F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
Bias 0 0 0 0 0 0 -0.01 0 0 0.01 -0.01 0.02 -0.01 -0.05 -0.05 0.03 0.03

RobSE 3.02 2.94 2.91 2.98 3.02 2.92 2.87 2.91 2.95 1.33 1.36 1.47 1.54 0.9 0.9 0.91 0.91
EmpSE 2.93 2.83 2.82 2.93 2.93 2.89 2.82 2.87 2.83 1.18 1.07 1.45 1.44 0.95 0.95 0.74 0.76

Gains 0(0) 3(2) 3(3) -1(1) 0(0) 0(2) 2(4) 1(3) 2(3) 59(15) 58(10) 34(30) 32(32) 57(18) 57(18) 66(17) 66(17)
Power 30.6 31.1 31.2 31 30.6 32.3 31.6 32.2 30.7 64 56.2 51.9 47.4 68.3 68.3 77.5 78.3

Coverage 95(2) 95(2) 95(2) 95(2) 95(2) 94(2) 95(2) 95(2) 95(2) 95(3) 96(3) 94(3) 93(4) 91(4) 91(4) 95(4) 94(4)

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
Pow: Powerlaw(Degree)

Spl: Spline(Degree)

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Statistics Modification By Scenario Aspect

a γa
(Intercept) -0.80

High Degree -2.71
Powerlaw -0.28

Assortative 0.04
Communities -0.12

Deg. Infect. -0.88
High Base. -0.43
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.00 0.00 -0.01 -0.00 -0.00 0.00 -0.01 0.00 0.00 -0.06 -0.10 -0.08 -0.13 -0.15 -0.15 -0.06 -0.05
High Degree 0.00 0.00 0.01 0.00 0.00 0.00 -0.01 -0.01 -0.00 0.04 0.08 0.06 0.08 0.11 0.11 0.05 0.05
Powerlaw 0.00 -0.00 0.01 0.01 0.00 -0.00 -0.01 0.01 0.00 0.02 0.02 0.05 0.02 0.00 0.00 0.05 0.05
Assortative 0.00 -0.00 -0.01 -0.00 0.00 -0.00 -0.00 0.01 -0.01 0.01 -0.00 0.03 0.02 0.01 0.01 0.01 0.02
Communities -0.00 0.00 0.00 -0.01 -0.00 0.00 0.01 -0.01 0.01 0.01 0.00 -0.02 0.01 -0.02 -0.02 -0.01 -0.02
Deg. Infect. 0.00 -0.00 0.01 0.01 0.00 -0.00 -0.01 0.01 0.00 0.00 -0.03 0.03 -0.01 -0.05 -0.05 0.04 0.03
High Base. 0.00 -0.00 0.01 0.01 0.00 -0.00 0.01 -0.01 0.00 0.04 0.12 0.05 0.13 0.15 0.15 0.04 0.05

Robust S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.46 -0.38 -0.38 -0.45 -0.46 -0.47 -0.37 -0.44 -0.45 -0.18 -0.06 0.04 0.13 0.05 0.05 0.12 0.10
High Degree 0.68 0.70 0.74 0.70 0.68 0.67 0.78 0.67 0.77 0.20 0.55 1.12 0.68 0.51 0.51 0.55 0.45
Powerlaw 0.90 0.77 0.71 0.84 0.90 0.87 0.65 0.77 0.81 0.90 0.33 0.39 0.35 0.32 0.32 0.33 0.43
Assortative 0.02 -0.03 -0.01 0.00 0.02 -0.00 -0.00 0.01 0.01 -0.32 -0.04 -0.08 -0.02 -0.07 -0.07 -0.11 -0.15
Communities -0.20 -0.17 -0.14 -0.15 -0.20 -0.18 -0.13 -0.14 -0.16 -0.18 -0.07 -0.05 0.03 -0.02 -0.02 -0.04 -0.10
Deg. Infect. 2.65 2.54 2.46 2.60 2.65 2.59 2.43 2.58 2.53 1.50 1.07 0.68 0.83 0.63 0.63 0.67 0.69
High Base. 2.92 2.83 2.81 2.88 2.92 2.83 2.76 2.80 2.84 0.92 1.02 0.80 0.96 0.33 0.33 0.17 0.29

Empirical S.E.

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0.53 -0.44 -0.43 -0.52 -0.53 -0.52 -0.44 -0.45 -0.49 -0.13 0.06 0.03 0.31 0.08 0.08 0.13 0.13
High Degree 0.47 0.46 0.50 0.49 0.47 0.55 0.57 0.51 0.59 -0.02 0.13 1.04 0.39 0.43 0.43 0.38 0.30
Powerlaw 0.86 0.75 0.71 0.84 0.86 0.81 0.65 0.71 0.70 0.85 0.33 0.38 0.38 0.37 0.37 0.30 0.35
Assortative 0.06 0.02 0.03 0.05 0.06 0.06 0.07 0.04 0.06 -0.33 0.01 -0.06 0.04 -0.07 -0.07 -0.09 -0.12
Communities -0.18 -0.14 -0.14 -0.15 -0.18 -0.15 -0.13 -0.13 -0.12 -0.16 -0.09 -0.02 0.02 -0.01 -0.01 -0.07 -0.09
Deg. Infect. 2.51 2.39 2.33 2.50 2.51 2.43 2.33 2.41 2.35 1.19 0.87 0.62 0.74 0.57 0.57 0.31 0.38
High Base. 3.20 3.08 3.06 3.19 3.20 3.14 3.04 3.11 3.05 1.09 0.75 0.89 0.69 0.44 0.44 0.38 0.42

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) -0 1 1 -1 -0 -1 0 -0 2 58 50 17 11 47 47 54 55
High Degree 0 -1 -2 -1 0 -1 -3 -3 -3 -2 -2 -23 -16 -9 -9 -8 -7
Powerlaw 0 3 4 1 0 1 5 4 3 -16 -0 -8 2 -8 -8 -11 -11
Assortative 0 1 1 0 0 0 -0 0 0 8 1 2 -2 3 3 6 6
Communities -0 -1 -1 -1 -0 -0 -1 -1 -1 2 -1 -4 -9 -2 -2 1 1
Deg. Infect. 0 1 3 1 0 2 2 1 2 -2 1 29 23 9 9 14 13
High Base. 0 1 0 1 0 1 1 2 1 13 18 37 46 27 27 21 20

Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 29 29 30 29 29 31 30 31 30 70 52 39 41 52 52 64 72
High Degree 34 33 33 33 34 35 33 34 34 31 43 24 32 30 30 13 13
Powerlaw -5 -4 -3 -4 -5 -5 -3 -3 -5 0 12 1 5 8 8 5 -2
Assortative 0 1 0 1 0 0 1 0 0 6 1 1 -1 3 3 6 8
Communities 4 3 4 4 4 4 3 3 4 6 2 1 -1 2 2 4 5
Deg. Infect. -4 -3 -3 -4 -4 -6 -3 -5 -4 -28 -13 15 1 6 6 8 2
High Base. -26 -27 -28 -26 -26 -27 -27 -27 -27 -27 -36 -16 -24 -17 -17 -9 -13

Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
(Intercept) 95 95 95 95 95 94 95 94 95 91 93 94 88 90 90 94 92
High Degree 2 2 2 2 2 1 2 2 1 4 5 3 5 5 5 4 5
Powerlaw 0 0 0 0 0 1 0 0 1 1 1 0 1 -0 -0 -1 2
Assortative -0 -0 -0 -0 -0 -0 -0 -0 -0 0 -1 -1 -1 -1 -1 -1 -1
Communities -0 -0 -0 -0 -0 -0 0 -0 -0 1 1 1 0 1 1 1 1
Deg. Infect. 1 0 0 1 1 1 1 1 0 3 -1 -0 1 0 0 0 1
High Base. -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 1 -2 3 -3 -3 -3 -2

Unadj: No adjustment term
F1: Degree
F2: Mean Neighbor Degree
F3: Assortativity
F4: Member of Connected Block
F5: Size of Largest Component
F6: Mean Component Size
F7: Number of Components
F8: Size of Node’s Component
F9: Total Neighbor Infections at baseline

F10: Total Node’s Component Infections at baseline
F11: 1/nearest infected path length at baseline
F12: ∑i 1/path length to Infected Node i at baseline
All: Complete inclusion of the above

Step: Stepwise regression of the above

121



Statistics Conditional On Each Scenario

a βa
000000 -0.32
000001 -0.50
000010 -1.45
000011 -1.28
000100 -0.35
000101 -0.50
000110 -1.65
000111 -1.33
001000 -0.45
001001 -0.58
001010 -1.38
001011 -0.84
001100 -0.38
001101 -0.46
001110 -1.50
001111 -1.12
010000 -0.78
010001 -1.19
010010 -4.84
010011 -2.13
010100 -0.74
010101 -1.21
010110 -5.21
010111 -3.29
011000 -0.86
011001 -1.46
011010 -4.72
011011 -1.81
011100 -0.80
011101 -1.36
011110 -4.84
011111 -2.79
100000 -1.97
100001 -8.49
100010 -5.62
100011 -3.36
100100 -2.02
100101 -8.55
100110 -5.60
100111 -3.48
101000 -1.98
101001 -8.34
101010 -5.48
101011 -2.83
101100 -2.03
101101 -8.36
101110 -5.54
101111 -3.29
110000 -1.69
110001 -4.96
110010 -5.22
110011 -3.01
110100 -1.68
110101 -5.05
110110 -5.28
110111 -3.37
111000 -1.76
111001 -5.65
111010 -5.24
111011 -3.39
111100 -1.67
111101 -5.22
111110 -5.58
111111 -3.14

a= [I(High Degree),

I(Powerlaw),

I(Assortativity),

I(Blocks),

I(Degree Infectivity),

I(High Baseline)]
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Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 0.00 0.00
000010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.20 -0.10 -0.20 -0.20 -0.20 -0.10 -0.10
000011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.20 -0.20 -0.10 -0.10
000100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
000101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 0.00 0.00
000110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.20 -0.10 -0.20 -0.20 -0.20 -0.10 -0.10
000111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
001000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
001001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
001010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 -0.10 -0.10 0.10 0.00
001011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.20 -0.20 -0.10 -0.10
001100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 0.00 0.00
001101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
001110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.20 -0.10 -0.20 -0.20 -0.20 0.00 0.00
001111 0 0.00 0.00 0.00 0 0.00 0.10 0.00 0.00 -0.10 -0.20 -0.10 -0.10 -0.20 -0.20 -0.10 -0.10
010000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 0.00 0.00
010001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
010010 0 0.00 0.00 0.00 0 0.00 0.00 0.10 0.00 0.10 0.00 0.20 0.10 -0.20 -0.20 0.20 0.20
010011 0 0.00 0.00 0.10 0 0.00 0.00 0.00 0.00 0.20 0.30 0.50 0.30 0.50 0.50 0.50 0.40
010100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
010101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 0.00 0.00
010110 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.00 -0.20 0.00 -0.20 -0.40 -0.40 0.00 0.00
010111 0 0.00 0.10 0.00 0 0.00 0.20 0.10 0.10 0.00 0.10 -0.10 0.20 -0.10 -0.10 0.00 -0.10
011000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 0.00 0.00
011001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 0.00 0.00
011010 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.10 -0.10 0.10 -0.10 -0.30 -0.30 0.10 0.10
011011 0 -0.10 -0.10 0.00 0 -0.10 -0.10 0.00 -0.10 -0.10 -0.20 0.10 -0.20 0.00 0.00 0.00 0.10
011100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 0.00 0.00
011101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 0.00 0.00
011110 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.40 -0.40 0.00 0.00
011111 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100001 0 0.00 0.00 0.00 0 0.00 -0.10 -0.10 0.00 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
100010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 0.00 0.00
100011 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 0.00 0.00
100100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
100101 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 0.10 0.10 0.20 0.20 0.10 0.10 0.10 0.10
100110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 -0.10 0.00 0.00
100111 0 0.00 0.00 0.00 0 0.00 -0.10 -0.10 0.00 -0.20 -0.20 -0.20 -0.30 -0.30 -0.30 -0.20 -0.20
101000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
101001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
101010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.10 0.10
101011 0 0.00 0.00 0.00 0 0.00 0.00 0.10 0.00 0.40 0.40 0.40 0.60 0.50 0.50 0.50 0.50
101100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 0.00 0.00
101101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.10 0.10 0.10 0.10 0.10
101110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 -0.10 -0.10 0.10 0.00
101111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 0.10 -0.10 0.10 0.10 0.10 0.00 0.00
110000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 0.00 0.00 0.00
110001 0 0.00 0.00 0.00 0 0.00 0.00 0.10 0.00 0.00 0.00 -0.10 0.00 -0.10 -0.10 0.00 0.00
110010 0 0.00 0.00 0.00 0 0.00 -0.10 0.00 0.00 -0.10 -0.30 0.00 -0.30 -0.30 -0.30 0.00 0.00
110011 0 0.00 0.10 0.10 0 0.00 0.00 -0.10 0.00 0.10 0.40 0.00 0.40 0.30 0.30 0.20 0.20
110100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
110101 0 0.00 0.00 0.00 0 0.00 0.00 -0.10 0.00 0.00 0.10 0.00 0.00 0.10 0.10 0.00 0.00
110110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.10 -0.10 0.00 -0.10 -0.20 -0.20 0.20 0.10
110111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111000 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10
111001 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.00 -0.10 0.00 0.00 0.00 0.00
111010 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 -0.10 0.10 -0.10 -0.10 -0.10 0.10 0.10
111011 0 0.00 0.10 0.10 0 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
111100 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
111101 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.40 0.40 0.50 0.60 0.40 0.40 0.40 0.40
111110 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 -0.10 -0.20 -0.10 -0.20 -0.30 -0.30 0.00 -0.10
111111 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0.00 0.20 0.30 0.40 0.30 0.40 0.40 0.30 0.30
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Percent Relative Bias

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 20 20 20 20 -0 -0
000010 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 14 7 14 14 14 7 7
000011 -0 -0 -0 -0 -0 -0 -0 -0 -0 8 8 8 8 16 16 8 8
000100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
000101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 20 20 20 20 20 -0 -0
000110 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 12 6 12 12 12 6 6
000111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -8 -8 -8 -8 -8 -8 -8 -8
001000 -0 -0 -0 -0 -0 -0 -0 -0 -0 22 22 22 22 22 22 22 22
001001 -0 -0 -0 -0 -0 -0 -0 -0 -0 17 17 17 17 17 17 17 17
001010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 -0 -0 7 7 -7 -0
001011 -0 -0 -0 -0 -0 -0 -0 -0 -0 12 12 12 12 24 24 12 12
001100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 26 -0 26 26 -0 -0
001101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
001110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 13 7 13 13 13 -0 -0
001111 -0 -0 -0 -0 -0 -0 -9 -0 -0 9 18 9 9 18 18 9 9
010000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 13 13 13 -0 -0
010001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
010010 -0 -0 -0 -0 -0 -0 -0 -2 -0 -2 -0 -4 -2 4 4 -4 -4
010011 -0 -0 -0 -5 -0 -0 -0 -0 -0 -9 -14 -23 -14 -23 -23 -23 -19
010100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
010101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 8 8 8 8 8 -0 -0
010110 -0 -0 -0 -0 -0 -0 2 -0 -0 -0 4 -0 4 8 8 -0 -0
010111 -0 -0 -3 -0 -0 -0 -6 -3 -3 -0 -3 3 -6 3 3 -0 3
011000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 12 12 12 12 12 -0 -0
011001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 7 7 -0 -0
011010 -0 -0 -0 -0 -0 -0 2 -0 -0 -2 2 -2 2 6 6 -2 -2
011011 -0 6 6 -0 -0 6 6 -0 6 6 11 -6 11 -0 -0 -0 -6
011100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 12 12 -0 -0
011101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 7 7 -0 -0
011110 -0 -0 -0 -0 -0 -0 2 -0 -0 -0 2 -0 2 8 8 -0 -0
011111 -0 -0 -0 -0 -0 -0 4 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100001 -0 -0 -0 -0 -0 -0 1 1 -0 -1 -1 -1 -1 -1 -1 -1 -1
100010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 2 2 2 -0 -0
100011 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -0 -3 -0 -0 -0 -0
100100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
100101 -0 -0 -0 -0 -0 -0 1 -0 -0 -1 -1 -2 -2 -1 -1 -1 -1
100110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 2 2 2 -0 -0
100111 -0 -0 -0 -0 -0 -0 3 3 -0 6 6 6 9 9 9 6 6
101000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
101001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -0 -0 -0 -0 -0
101010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 -0 -0 -2 -2
101011 -0 -0 -0 -0 -0 -0 -0 -4 -0 -14 -14 -14 -21 -18 -18 -18 -18
101100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 5 5 5 -0 -0
101101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -1 -1 -0 -1 -1 -1 -1 -1
101110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 -0 2 2 -2 -0
101111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -3 -3 3 -3 -3 -3 -0 -0
110000 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 -0 -0 -0 -0
110001 -0 -0 -0 -0 -0 -0 -0 -2 -0 -0 -0 2 -0 2 2 -0 -0
110010 -0 -0 -0 -0 -0 -0 2 -0 -0 2 6 -0 6 6 6 -0 -0
110011 -0 -0 -3 -3 -0 -0 -0 3 -0 -3 -13 -0 -13 -10 -10 -7 -7
110100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
110101 -0 -0 -0 -0 -0 -0 -0 2 -0 -0 -2 -0 -0 -2 -2 -0 -0
110110 -0 -0 -0 -0 -0 -0 -0 -0 -0 -2 2 -0 2 4 4 -4 -2
110111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
111000 -0 -0 -0 -0 -0 -0 -0 -0 -0 6 6 6 6 6 6 6 6
111001 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -0 2 -0 -0 -0 -0
111010 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 -2 2 2 2 -2 -2
111011 -0 -0 -3 -3 -0 -0 -0 -0 -0 -0 -0 -3 -0 -0 -0 -0 -0
111100 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0
111101 -0 -0 -0 -0 -0 -0 -0 -0 -0 -8 -8 -10 -11 -8 -8 -8 -8
111110 -0 -0 -0 -0 -0 -0 -0 -0 -0 2 4 2 4 5 5 -0 2
111111 -0 -0 -0 -0 -0 -0 -0 -0 -0 -6 -10 -13 -10 -13 -13 -10 -10

124



Robust Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
000001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
000010 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 0.70 0.60 0.70 0.70 0.50 0.50 0.60 0.50
000011 4.50 4.40 4.40 4.50 4.50 4.40 4.30 4.40 4.40 1.40 1.40 0.60 1.20 0.50 0.50 0.40 0.40
000100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
000101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 0.20 0.40 0.60 0.70 0.30 0.30 0.20 0.20
000110 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0.70 0.70 0.70 0.80 0.60 0.60 0.60 0.50
000111 4.50 4.40 4.40 4.50 4.50 4.40 4.40 4.40 4.50 1.40 1.50 0.70 1.30 0.60 0.60 0.50 0.40
001000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.20 0.40 0.50 0.50 0.30 0.30 0.20 0.20
001001 1.20 1.10 1.10 1.10 1.20 1.10 1.10 1.10 1.20 0.20 0.40 0.60 0.60 0.40 0.40 0.30 0.20
001010 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 0.80 0.70 0.60 0.70 0.50 0.50 0.60 0.60
001011 4.20 4.10 4.10 4.10 4.20 4.10 4.00 4.10 4.10 1.10 1.30 0.40 1.10 0.40 0.40 0.30 0.30
001100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
001101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 0.20 0.50 0.60 0.70 0.30 0.30 0.20 0.20
001110 1.60 1.60 1.60 1.60 1.60 1.60 1.50 1.60 1.60 0.70 0.70 0.70 0.70 0.50 0.50 0.60 0.50
001111 4.20 4.10 4.10 4.20 4.20 4.10 4.10 4.10 4.10 1.10 1.30 0.50 1.10 0.50 0.50 0.40 0.30
010000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.50 0.40 0.80 0.70 0.50 0.50 0.60 0.60
010001 1.60 1.60 1.60 1.60 1.60 1.60 1.50 1.50 1.60 0.70 0.70 1.10 0.90 0.70 0.70 0.80 0.80
010010 3.40 3.30 3.00 3.20 3.40 3.30 3.00 3.20 3.20 2.40 1.90 1.80 1.80 1.50 1.50 1.80 1.70
010011 8.30 8.00 7.60 8.00 8.30 7.80 7.20 7.80 7.50 5.90 3.20 1.30 3.40 1.10 1.10 0.80 2.30
010100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.40 0.80 0.70 0.50 0.50 0.50 0.50
010101 1.50 1.50 1.50 1.50 1.50 1.50 1.40 1.40 1.50 0.60 0.70 1.10 1.00 0.70 0.70 0.70 0.60
010110 3.00 2.90 2.80 3.00 3.00 2.90 2.70 2.90 2.90 2.10 1.70 1.70 1.70 1.40 1.40 1.80 1.60
010111 7.90 7.70 7.50 7.80 7.90 7.60 7.20 7.70 7.50 5.10 2.90 1.60 3.00 1.30 1.30 0.90 1.50
011000 0.90 0.90 0.90 0.90 0.90 0.90 0.80 0.80 0.90 0.40 0.50 0.90 0.70 0.50 0.50 0.40 0.40
011001 2.00 1.90 1.90 2.00 2.00 2.00 1.90 1.90 2.00 0.60 0.80 1.20 1.10 0.70 0.70 0.60 0.60
011010 3.10 2.90 2.80 3.00 3.10 3.00 2.70 2.90 2.90 2.10 1.60 1.60 1.60 1.30 1.30 1.80 1.70
011011 8.10 7.50 7.30 7.70 8.10 7.40 6.90 7.50 7.10 3.70 3.10 0.80 3.00 0.70 0.70 0.60 1.20
011100 0.80 0.70 0.70 0.70 0.80 0.70 0.70 0.70 0.80 0.30 0.40 0.90 0.80 0.40 0.40 0.30 0.30
011101 1.80 1.70 1.70 1.80 1.80 1.80 1.70 1.70 1.80 0.50 0.70 1.20 1.20 0.60 0.60 0.50 0.50
011110 2.60 2.50 2.40 2.60 2.60 2.50 2.40 2.50 2.50 1.70 1.40 1.50 1.50 1.20 1.20 1.70 1.50
011111 7.90 7.50 7.40 7.90 7.90 7.50 7.30 7.80 7.40 2.90 2.90 1.10 2.90 1.00 1.00 0.70 0.90
100000 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.80 0.40 0.50 0.70 0.90 0.40 0.40 0.40 0.40
100001 4.10 4.10 4.10 4.10 4.10 3.80 4.10 3.90 4.00 1.10 2.10 2.20 2.30 0.90 0.90 1.00 0.90
100010 2.00 2.00 2.00 2.00 2.00 1.90 2.00 2.00 2.00 1.10 1.20 1.40 1.50 1.00 1.00 1.20 1.10
100011 6.00 5.90 5.90 6.00 6.00 5.80 6.00 5.90 6.00 2.10 3.10 3.70 3.00 1.90 1.90 2.00 1.90
100100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.70 0.40 0.50 0.70 0.90 0.40 0.40 0.40 0.40
100101 3.90 4.00 4.00 3.90 3.90 3.70 3.90 3.80 3.90 1.00 2.10 2.10 2.40 0.90 0.90 0.90 0.90
100110 1.90 1.90 1.90 1.90 1.90 1.80 1.90 1.90 1.90 1.10 1.10 1.30 1.50 1.00 1.00 1.10 1.00
100111 5.60 5.60 5.60 5.60 5.60 5.50 5.60 5.50 5.60 2.10 2.90 3.30 3.10 1.90 1.90 2.00 1.90
101000 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.80 0.40 0.50 0.80 0.90 0.40 0.40 0.40 0.40
101001 4.20 4.20 4.20 4.20 4.20 4.00 4.20 4.10 4.10 1.20 2.10 2.30 2.30 1.00 1.00 1.00 1.00
101010 2.10 2.10 2.10 2.10 2.10 2.00 2.10 2.10 2.10 1.20 1.30 1.50 1.50 1.10 1.10 1.20 1.10
101011 6.20 6.20 6.20 6.20 6.20 6.10 6.20 6.10 6.20 2.10 3.00 3.60 3.00 1.90 1.90 1.90 1.80
101100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.70 0.40 0.50 0.80 1.00 0.40 0.40 0.40 0.40
101101 4.00 4.00 4.10 4.00 4.00 3.80 4.00 3.90 3.90 1.10 2.00 2.10 2.40 1.00 1.00 1.00 1.00
101110 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90 1.10 1.20 1.30 1.60 1.00 1.00 1.20 1.00
101111 5.80 5.80 5.80 5.80 5.80 5.70 5.80 5.80 5.80 2.00 2.80 3.30 3.00 1.90 1.90 1.90 1.80
110000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60 0.50 0.80 0.70 0.50 0.50 0.60 0.60
110001 3.30 3.20 3.30 3.30 3.30 3.30 3.20 3.10 3.40 1.40 1.60 2.10 1.80 1.10 1.10 1.40 1.40
110010 2.90 2.80 2.80 2.90 2.90 2.90 2.80 2.80 2.90 1.80 1.70 2.00 1.70 1.50 1.50 1.60 1.50
110011 7.70 7.30 7.10 7.40 7.70 7.60 7.00 7.20 7.50 4.80 3.00 4.20 3.00 2.30 2.30 2.20 2.20
110100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.50 0.50 0.80 0.80 0.50 0.50 0.60 0.50
110101 3.20 3.10 3.20 3.20 3.20 3.10 3.10 3.00 3.20 1.20 1.50 2.00 1.90 1.00 1.00 1.20 1.20
110110 2.60 2.50 2.50 2.60 2.60 2.60 2.50 2.50 2.60 1.50 1.50 1.70 1.60 1.30 1.30 1.40 1.30
110111 7.00 6.90 6.70 7.00 7.00 7.00 6.70 6.90 7.00 4.00 2.80 3.90 2.90 2.20 2.20 2.00 2.00
111000 0.90 0.90 0.90 0.90 0.90 0.80 0.90 0.80 0.90 0.50 0.50 0.90 0.80 0.50 0.50 0.50 0.50
111001 3.90 3.70 3.70 3.80 3.90 3.80 3.70 3.60 3.90 1.30 1.70 2.20 2.00 1.20 1.20 1.10 1.10
111010 2.60 2.50 2.50 2.50 2.60 2.50 2.40 2.50 2.60 1.50 1.40 1.80 1.50 1.30 1.30 1.40 1.30
111011 7.40 6.90 6.80 7.20 7.40 7.30 6.70 6.90 7.30 2.90 2.80 3.50 2.90 1.90 1.90 1.60 1.50
111100 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.40 0.50 0.90 0.90 0.40 0.40 0.40 0.40
111101 3.50 3.40 3.50 3.50 3.50 3.40 3.40 3.40 3.60 1.10 1.60 2.00 2.10 1.10 1.10 1.00 1.00
111110 2.30 2.20 2.20 2.30 2.30 2.30 2.20 2.20 2.30 1.40 1.40 1.70 1.60 1.20 1.20 1.40 1.30
111111 6.80 6.50 6.40 6.70 6.80 6.70 6.40 6.60 6.80 2.20 2.60 3.30 2.80 1.80 1.80 1.50 1.40
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Empirical Standard Error

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
000001 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.40 0.60 0.60 0.40 0.40 0.20 0.20
000010 1.70 1.60 1.60 1.70 1.70 1.70 1.60 1.70 1.60 0.70 0.60 0.60 0.70 0.60 0.60 0.50 0.50
000011 4.60 4.50 4.50 4.60 4.60 4.60 4.50 4.60 4.40 1.50 1.40 0.60 1.20 0.60 0.60 0.40 0.40
000100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.70 0.40 0.40 0.20 0.20
000101 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.20 0.40 0.70 0.70 0.40 0.40 0.20 0.20
000110 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0.70 0.70 0.70 0.80 0.60 0.60 0.50 0.50
000111 4.70 4.60 4.60 4.70 4.70 4.60 4.60 4.70 4.60 1.50 1.30 0.70 1.30 0.70 0.70 0.40 0.40
001000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.20 0.40 0.60 0.60 0.30 0.30 0.20 0.20
001001 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.30 0.40 0.60 0.60 0.40 0.40 0.30 0.30
001010 1.80 1.80 1.80 1.90 1.80 1.80 1.80 1.80 1.80 0.80 0.70 0.60 0.70 0.60 0.60 0.60 0.60
001011 4.50 4.40 4.40 4.50 4.50 4.40 4.40 4.50 4.30 1.20 1.30 0.50 1.10 0.50 0.50 0.30 0.30
001100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.20 0.40 0.60 0.70 0.30 0.30 0.20 0.20
001101 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 0.20 0.40 0.60 0.70 0.40 0.40 0.20 0.20
001110 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60 0.70 0.70 0.70 0.80 0.60 0.60 0.50 0.60
001111 4.30 4.20 4.20 4.30 4.30 4.20 4.20 4.30 4.20 1.10 1.30 0.60 1.20 0.50 0.50 0.40 0.40
010000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60 0.40 0.90 0.70 0.60 0.60 0.70 0.70
010001 1.70 1.60 1.60 1.60 1.70 1.60 1.50 1.60 1.60 0.70 0.60 1.20 1.00 0.80 0.80 0.90 0.80
010010 2.80 2.70 2.50 2.80 2.80 2.70 2.60 2.70 2.60 1.70 1.50 1.50 1.60 1.40 1.40 1.00 1.00
010011 8.60 8.30 7.90 8.40 8.60 8.00 7.60 8.00 7.60 6.00 3.10 1.60 3.60 1.40 1.40 1.00 2.00
010100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.50 0.30 0.90 0.80 0.50 0.50 0.50 0.50
010101 1.50 1.40 1.50 1.50 1.50 1.50 1.40 1.40 1.40 0.60 0.60 1.20 1.10 0.80 0.80 0.70 0.70
010110 2.40 2.40 2.30 2.50 2.40 2.40 2.30 2.30 2.30 1.50 1.40 1.50 1.60 1.40 1.40 0.90 1.00
010111 8.20 7.90 7.70 8.30 8.20 7.90 7.30 7.90 7.50 5.20 2.40 1.80 2.90 1.60 1.60 0.70 1.20
011000 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.40 0.40 0.90 0.80 0.50 0.50 0.40 0.40
011001 2.00 1.90 1.90 2.00 2.00 2.00 1.90 1.90 1.90 0.60 0.80 1.20 1.20 0.80 0.80 0.70 0.60
011010 2.70 2.50 2.40 2.60 2.70 2.50 2.40 2.50 2.40 1.50 1.40 1.40 1.60 1.30 1.30 1.10 1.10
011011 8.40 7.80 7.70 8.20 8.40 7.70 7.40 7.80 7.30 3.80 3.10 1.10 3.30 1.10 1.10 0.90 1.30
011100 0.70 0.70 0.70 0.80 0.70 0.80 0.70 0.70 0.70 0.30 0.40 0.90 0.90 0.50 0.50 0.30 0.30
011101 1.90 1.80 1.80 1.90 1.90 1.90 1.80 1.80 1.80 0.50 0.60 1.20 1.30 0.70 0.70 0.50 0.50
011110 2.40 2.30 2.20 2.40 2.40 2.40 2.20 2.30 2.30 1.40 1.20 1.30 1.50 1.20 1.20 1.10 1.10
011111 8.30 7.90 7.80 8.30 8.30 8.00 7.80 8.20 7.70 3.00 2.60 1.30 2.90 1.20 1.20 0.70 0.80
100000 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.40 0.80 0.90 0.40 0.40 0.40 0.40
100001 4.20 4.20 4.20 4.30 4.20 4.20 4.30 4.30 4.20 1.10 1.30 2.20 1.80 1.00 1.00 0.90 0.90
100010 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.50 1.40 0.50 0.80 1.30 1.60 0.90 0.90 0.50 0.50
100011 5.60 5.50 5.50 5.70 5.60 5.60 5.70 5.70 5.60 1.70 1.90 3.50 2.20 1.80 1.80 1.60 1.50
100100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.40 0.70 0.90 0.40 0.40 0.40 0.40
100101 3.90 3.80 3.80 3.90 3.90 3.90 3.90 4.00 3.90 1.00 1.20 2.10 1.90 1.00 1.00 0.90 0.90
100110 1.40 1.30 1.40 1.40 1.40 1.40 1.40 1.40 1.40 0.50 0.80 1.20 1.70 0.90 0.90 0.50 0.50
100111 5.40 5.40 5.40 5.50 5.40 5.40 5.50 5.50 5.40 1.60 1.90 3.30 2.20 1.80 1.80 1.60 1.50
101000 0.70 0.70 0.70 0.70 0.70 0.70 0.80 0.80 0.70 0.40 0.40 0.90 1.00 0.40 0.40 0.40 0.40
101001 3.90 3.90 3.90 4.00 3.90 3.90 4.00 4.00 3.90 1.10 1.30 2.20 1.80 1.20 1.20 1.00 1.00
101010 1.50 1.40 1.40 1.50 1.50 1.50 1.50 1.50 1.50 0.50 0.90 1.30 1.60 0.90 0.90 0.50 0.50
101011 6.30 6.10 6.10 6.30 6.30 6.30 6.20 6.20 6.30 1.60 2.00 3.50 2.30 1.80 1.80 1.50 1.40
101100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.40 0.40 0.80 1.00 0.40 0.40 0.40 0.40
101101 4.10 4.00 4.00 4.10 4.10 4.10 4.10 4.20 4.10 1.10 1.30 2.10 2.00 1.10 1.10 0.90 0.90
101110 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40 0.50 0.80 1.30 1.70 0.90 0.90 0.50 0.50
101111 5.80 5.70 5.70 5.80 5.80 5.80 5.80 5.70 5.80 1.50 1.90 3.20 2.30 1.80 1.80 1.50 1.50
110000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.60 0.40 0.80 0.70 0.60 0.60 0.70 0.60
110001 3.20 3.00 3.20 3.20 3.20 3.30 3.10 3.10 3.10 1.40 1.10 2.00 1.60 1.30 1.30 1.40 1.40
110010 2.20 2.10 2.10 2.20 2.20 2.20 2.10 2.20 2.20 0.90 1.20 1.60 1.50 1.30 1.30 0.80 0.90
110011 7.60 7.30 7.10 7.50 7.60 7.60 7.00 7.20 7.30 4.60 2.20 4.10 2.40 2.30 2.30 2.00 2.00
110100 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.50 0.40 0.80 0.80 0.50 0.50 0.60 0.50
110101 3.20 3.10 3.10 3.20 3.20 3.20 3.10 3.10 3.10 1.20 1.00 1.90 1.50 1.20 1.20 1.20 1.20
110110 1.90 1.90 1.90 2.00 1.90 1.90 1.90 1.90 1.90 0.80 1.10 1.50 1.50 1.20 1.20 0.70 0.70
110111 7.10 6.90 6.80 7.20 7.10 7.10 6.90 7.00 7.00 3.80 2.00 3.90 2.30 2.30 2.30 1.80 1.70
111000 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.50 0.40 0.90 0.80 0.50 0.50 0.50 0.50
111001 4.00 3.70 3.80 4.00 4.00 4.00 3.80 3.80 3.90 1.20 1.30 2.10 1.80 1.30 1.30 1.10 1.10
111010 2.00 1.80 1.90 2.00 2.00 2.00 1.90 1.90 1.90 0.70 1.00 1.50 1.50 1.10 1.10 0.60 0.60
111011 7.40 6.90 6.90 7.30 7.40 7.40 7.00 6.90 7.10 2.70 2.10 3.60 2.40 2.00 2.00 1.40 1.40
111100 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.40 0.40 0.90 0.90 0.50 0.50 0.40 0.40
111101 3.50 3.40 3.40 3.50 3.50 3.50 3.50 3.50 3.50 1.10 1.20 2.00 1.80 1.20 1.20 1.00 1.00
111110 1.60 1.50 1.50 1.60 1.60 1.60 1.60 1.60 1.60 0.70 1.00 1.60 1.80 1.20 1.20 0.60 0.60
111111 6.80 6.40 6.30 6.80 6.80 6.80 6.40 6.50 6.60 2.00 1.80 3.40 2.10 1.90 1.90 1.40 1.30
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Improvement

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 0 3 3 -1 0 -1 3 2 4 79 53 28 25 59 59 75 75
000001 0 1 1 -2 0 -2 -0 1 2 79 61 38 38 60 60 77 78
000010 0 3 3 -1 0 0 2 1 4 57 59 61 54 64 64 69 69
000011 0 2 2 -1 0 0 1 0 4 68 70 86 73 87 87 91 91
000100 0 1 1 -1 0 -1 -0 1 0 77 51 22 16 55 55 74 74
000101 0 1 1 -2 0 -1 -0 0 0 79 59 33 30 60 60 78 78
000110 0 1 1 -1 0 -0 0 0 2 53 53 51 43 57 57 65 64
000111 0 1 1 -1 0 1 2 0 3 68 71 85 73 86 86 90 90
001000 0 2 2 -1 0 -0 0 1 2 78 58 39 38 61 61 75 75
001001 0 1 1 -1 0 -1 1 1 1 78 62 48 47 66 66 78 78
001010 0 2 2 -1 0 0 1 1 2 56 62 65 60 67 67 68 67
001011 0 2 2 -1 0 1 1 0 3 73 71 89 75 89 89 93 93
001100 0 1 1 -1 0 -1 1 1 2 78 51 29 19 58 58 76 76
001101 0 1 1 -1 0 -1 -0 0 1 80 61 40 35 64 64 79 79
001110 0 2 2 -1 0 0 2 0 3 56 56 56 49 60 60 66 65
001111 0 1 2 -1 0 1 1 -0 2 75 70 87 72 87 87 91 91
010000 0 5 3 -0 0 -1 6 4 5 26 55 -7 14 27 27 15 20
010001 0 6 4 2 0 0 7 4 6 57 61 30 40 51 51 47 49
010010 0 5 12 3 0 4 8 5 8 40 49 47 43 50 50 65 63
010011 0 4 8 2 0 6 12 7 11 30 64 81 58 83 83 87 77
010100 0 2 1 -2 0 -2 0 1 1 37 53 -23 -5 28 28 29 33
010101 0 4 2 -1 0 -1 5 4 3 60 61 22 28 47 47 52 54
010110 0 3 8 -2 0 1 7 4 5 40 44 39 35 43 43 61 59
010111 0 3 6 -1 0 4 10 3 9 37 71 78 65 81 81 91 85
011000 0 5 4 -0 0 -0 4 4 4 58 53 1 11 42 42 53 54
011001 0 7 6 2 0 1 6 5 6 70 60 40 41 61 61 67 68
011010 0 8 11 2 0 5 11 6 9 44 49 49 40 51 51 60 58
011011 0 7 8 2 0 8 12 7 12 54 63 87 60 87 87 89 84
011100 0 4 3 -0 0 -1 3 2 3 59 51 -21 -21 36 36 54 55
011101 0 5 5 -1 0 -0 6 4 4 74 67 39 33 63 63 73 73
011110 0 6 8 -0 0 2 8 4 5 43 50 45 36 50 50 55 54
011111 0 5 6 -0 0 4 6 2 7 64 69 84 65 85 85 92 90
100000 0 0 0 -3 0 -0 -1 -4 -0 49 46 -7 -21 45 45 49 49
100001 0 1 1 -1 0 -0 -0 -1 -0 75 70 47 58 75 75 77 78
100010 0 2 1 -2 0 -0 -1 -3 -0 64 40 10 -16 35 35 64 65
100011 0 2 2 -1 0 -0 -1 -1 0 70 65 37 61 68 68 71 73
100100 0 -0 -0 -3 0 -0 -1 -5 -0 48 46 -3 -27 43 43 47 47
100101 0 1 1 -1 0 -0 -1 -2 0 74 68 47 51 74 74 77 77
100110 0 1 1 -2 0 -0 -1 -2 -0 62 41 10 -24 35 35 64 64
100111 0 1 1 -1 0 -0 -2 -1 -0 70 65 39 60 66 66 70 72
101000 0 1 1 -1 0 -0 -3 -3 -0 46 44 -17 -30 42 42 46 45
101001 0 1 1 -1 0 -0 -2 -1 -0 71 68 43 53 70 70 75 75
101010 0 1 1 -3 0 -0 -2 -4 -0 63 42 11 -10 36 36 64 65
101011 0 2 2 -1 0 -0 1 1 0 73 67 44 62 71 71 75 76
101100 0 -0 -0 -0 0 -0 -3 -6 -0 46 45 -13 -43 41 41 46 45
101101 0 1 1 -1 0 -0 -1 -2 -0 73 68 48 51 73 73 77 77
101110 0 1 1 -2 0 0 -3 -4 0 61 41 9 -24 34 34 62 62
101111 0 2 2 -1 0 -0 0 1 0 74 67 45 61 70 70 73 74
110000 0 2 -0 -2 0 -3 1 -2 1 17 49 -9 12 24 24 15 17
110001 0 6 1 -2 0 -2 3 3 3 56 66 38 50 60 60 56 55
110010 0 4 5 2 0 -0 4 2 2 58 45 27 33 40 40 62 62
110011 0 4 7 2 0 1 8 6 4 39 71 46 68 69 69 74 74
110100 0 1 -0 -1 0 -1 -1 -2 0 23 49 -11 -10 29 29 22 24
110101 0 3 0 -0 0 -1 1 1 1 62 67 40 51 63 63 63 63
110110 0 3 4 -1 0 -0 2 -0 1 60 46 21 23 40 40 65 66
110111 0 3 5 -1 0 0 3 2 1 47 71 45 68 68 68 74 75
111000 0 1 2 -2 0 -3 -0 -2 1 41 48 -15 -4 35 35 40 39
111001 0 7 4 -0 0 -1 5 4 3 69 68 47 54 67 67 73 74
111010 0 6 6 -0 0 -0 3 1 3 62 51 21 21 42 42 69 69
111011 0 7 8 2 0 1 6 7 5 64 72 52 67 74 74 81 81
111100 0 1 1 -1 0 -1 -1 -3 0 47 53 -18 -22 40 40 47 46
111101 0 3 2 -0 0 -0 1 -0 1 67 65 41 46 64 64 70 70
111110 0 5 5 -1 0 -0 1 2 1 58 38 0 -11 25 25 62 62
111111 0 6 7 -1 0 0 6 4 2 71 73 49 68 72 72 80 81
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Power

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 7 7 7 7 7 8 7 8 6 49 12 12 17 21 21 31 43
000001 8 8 8 8 8 9 8 9 7 63 15 12 17 26 26 50 61
000010 14 14 15 13 14 14 15 14 14 47 50 50 44 65 65 83 90
000011 8 8 7 7 8 8 8 7 7 14 12 50 16 59 59 95 97
000100 8 8 8 8 8 9 8 9 7 62 11 11 16 24 24 43 55
000101 9 9 9 10 9 10 10 11 8 65 14 12 17 24 24 53 62
000110 17 18 18 18 17 18 18 18 17 64 56 53 46 73 73 91 96
000111 8 8 8 8 8 8 8 8 7 16 16 59 21 66 66 97 98
001000 7 8 8 8 7 8 8 9 7 48 13 14 18 25 25 37 46
001001 8 9 9 9 8 9 8 10 8 61 16 14 21 28 28 57 67
001010 12 12 12 12 12 13 13 13 12 43 50 57 52 67 67 79 87
001011 8 8 8 9 8 8 8 8 8 11 8 42 9 46 46 76 87
001100 7 7 7 7 7 8 7 7 6 52 12 9 15 20 20 39 48
001101 8 7 7 8 8 8 7 8 7 60 13 14 17 28 28 52 64
001110 14 15 15 15 14 16 16 15 14 54 55 55 44 69 69 83 90
001111 8 8 8 9 8 8 8 8 7 13 11 49 13 56 56 88 93
010000 15 16 16 15 15 16 16 18 14 36 39 19 24 33 33 30 33
010001 11 11 10 10 11 11 12 14 10 47 38 21 27 37 37 37 41
010010 28 31 37 31 28 31 36 33 32 59 84 87 85 92 92 96 94
010011 8 8 7 8 8 7 8 7 7 7 12 59 14 71 71 96 41
010100 17 17 18 19 18 20 18 20 15 43 43 16 22 36 36 37 42
010101 13 13 13 14 13 14 14 14 12 59 36 18 20 39 39 47 52
010110 42 43 46 42 42 43 46 43 43 79 95 91 93 94 94 98 98
010111 8 8 8 9 8 9 8 8 7 11 18 53 22 67 67 99 70
011000 16 17 17 17 16 16 17 19 16 66 40 17 25 42 42 59 63
011001 9 10 10 11 9 10 11 12 10 75 40 26 29 51 51 72 75
011010 32 37 40 35 32 36 40 36 36 70 92 92 90 95 95 93 95
011011 8 10 9 10 8 9 9 8 8 8 10 66 11 70 70 94 60
011100 17 17 17 18 17 18 18 20 16 78 41 16 21 43 43 74 76
011101 12 12 13 13 12 13 13 13 10 89 44 21 27 55 55 85 87
011110 46 48 49 45 46 47 51 47 47 89 99 92 92 97 97 99 99
011111 8 9 9 9 8 10 10 8 8 19 14 73 18 79 79 100 88
100000 73 72 73 72 73 79 72 74 78 100 100 74 63 100 100 100 100
100001 55 55 55 55 55 60 54 58 56 100 100 96 99 100 100 100 100
100010 89 89 89 88 89 90 88 89 89 100 100 99 95 100 100 100 100
100011 7 7 7 8 7 8 8 8 7 31 10 16 12 38 38 36 38
100100 77 75 76 76 77 83 77 78 81 100 100 78 57 100 100 100 100
100101 59 59 58 59 59 63 57 60 61 100 100 98 99 100 100 100 100
100110 92 92 92 91 92 93 92 92 93 100 100 98 92 100 100 100 100
100111 9 10 9 9 9 10 9 9 10 32 10 17 9 38 38 33 36
101000 70 70 70 71 70 78 70 73 75 100 100 69 59 100 100 100 100
101001 50 51 50 51 50 55 51 54 52 100 100 95 99 100 100 100 100
101010 82 83 82 82 82 84 80 82 83 100 100 98 94 100 100 100 100
101011 8 8 8 8 8 9 8 8 8 30 11 15 13 42 42 40 43
101100 79 78 78 78 79 84 78 80 82 100 100 72 52 100 100 100 100
101101 54 54 53 55 54 57 55 56 55 100 100 96 97 100 100 100 100
101110 89 89 88 89 89 90 89 89 90 100 100 99 93 100 100 100 100
101111 10 10 9 10 10 10 10 9 10 36 13 17 14 44 44 41 42
110000 54 55 54 54 54 56 56 59 54 75 98 53 67 86 86 76 80
110001 30 33 30 30 30 32 33 37 28 95 97 65 80 98 98 95 95
110010 40 42 44 43 40 42 45 44 40 94 96 80 91 96 96 100 99
110011 7 8 8 8 7 8 10 8 8 10 14 12 17 31 31 32 31
110100 59 57 59 58 59 66 57 61 60 86 99 50 57 92 92 87 89
110101 36 36 36 36 36 39 37 39 34 99 98 73 82 100 100 99 99
110110 58 59 60 58 58 60 60 60 58 98 99 90 95 98 98 100 100
110111 9 9 9 10 9 9 9 9 9 13 15 14 16 33 33 37 39
111000 53 53 54 54 53 56 54 57 52 95 98 45 52 93 93 94 94
111001 31 32 32 31 31 33 33 34 30 99 98 76 82 99 99 100 100
111010 55 60 60 57 55 56 61 59 55 99 100 89 92 100 100 100 100
111011 9 9 8 9 9 9 10 9 8 21 16 18 18 42 42 59 60
111100 58 56 57 59 58 63 58 61 57 98 98 46 44 95 95 98 98
111101 33 34 32 34 33 35 34 35 30 100 99 80 84 100 100 100 100
111110 74 76 77 75 74 76 77 77 74 100 100 92 89 100 100 100 100
111111 8 8 8 8 8 8 8 8 7 31 19 19 18 50 50 65 67
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Coverage

UnAdj F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 All Step Pow Spl
000000 94 94 94 93 94 94 94 94 95 94 94 94 88 92 92 97 94
000001 96 95 96 95 96 94 95 95 96 91 94 92 90 89 89 96 92
000010 93 93 93 92 93 93 93 93 94 90 86 94 85 87 87 91 87
000011 94 94 94 94 94 94 94 94 94 94 96 90 94 87 87 92 88
000100 95 96 95 95 95 94 95 95 96 94 96 94 91 90 90 96 94
000101 92 93 93 92 92 92 93 92 94 91 94 93 89 89 89 94 91
000110 93 93 93 93 93 93 93 93 94 91 90 93 87 88 88 92 89
000111 93 93 93 93 93 93 93 93 94 94 97 92 95 89 89 96 94
001000 94 94 94 94 94 94 94 93 94 88 90 92 86 88 88 91 88
001001 94 94 94 93 94 93 94 94 94 90 92 94 88 91 91 92 89
001010 93 93 93 92 93 92 92 93 92 91 89 93 87 87 87 92 90
001011 92 92 92 92 92 92 92 92 92 93 93 83 94 80 80 90 85
001100 94 95 95 94 94 93 94 94 96 92 95 93 88 88 88 95 92
001101 93 94 94 93 93 92 93 92 95 93 96 93 90 90 90 96 94
001110 94 94 94 94 94 94 94 94 94 91 88 94 86 86 86 92 89
001111 94 94 94 93 94 94 94 93 94 95 94 87 92 84 84 89 85
010000 95 95 95 94 95 94 95 94 96 90 97 93 90 88 88 93 93
010001 95 95 95 96 95 95 95 94 96 94 96 93 90 90 90 94 94
010010 97 98 97 97 97 97 97 97 98 98 96 97 93 95 95 99 98
010011 93 93 94 93 93 93 93 93 94 94 95 86 93 83 83 82 92
010100 94 94 94 94 94 94 94 93 95 93 98 93 91 92 92 96 96
010101 95 95 95 94 95 94 95 94 96 92 97 94 90 89 89 94 94
010110 97 97 98 97 97 97 97 97 98 98 94 96 92 93 93 99 98
010111 93 93 93 92 93 93 94 93 94 95 98 90 96 89 89 95 96
011000 94 94 93 93 94 93 93 93 95 92 95 93 89 90 90 94 94
011001 94 95 94 94 94 94 94 94 95 93 94 93 89 88 88 92 92
011010 97 96 96 96 97 96 96 97 97 97 93 97 90 92 92 98 97
011011 93 93 92 92 93 93 92 93 93 95 93 80 92 75 75 75 82
011100 95 94 94 94 95 94 95 93 95 95 97 94 90 92 92 96 95
011101 94 93 94 93 94 93 94 93 95 93 97 95 90 88 88 94 93
011110 94 95 95 95 94 94 95 94 96 96 94 96 91 93 93 97 96
011111 94 94 92 92 94 94 92 93 94 95 96 87 94 84 84 91 92
100000 97 97 97 97 97 95 96 95 96 96 99 94 96 95 95 97 96
100001 93 94 93 92 93 91 93 92 92 94 100 94 98 91 91 95 95
100010 99 99 99 99 99 99 100 100 99 100 99 98 94 96 96 100 100
100011 96 96 96 96 96 95 95 95 95 98 100 96 100 97 97 98 98
100100 97 97 97 96 97 94 96 95 95 96 99 95 96 93 93 96 96
100101 94 95 94 93 94 93 94 93 94 95 100 95 98 92 92 95 95
100110 99 99 99 99 99 98 98 98 99 100 98 97 91 97 97 100 100
100111 95 95 95 94 95 94 94 94 95 98 99 95 99 95 95 98 98
101000 96 96 96 96 96 94 96 95 95 95 99 92 93 94 94 96 95
101001 96 96 97 96 96 95 96 95 96 96 100 94 98 91 91 95 95
101010 99 99 99 99 99 99 99 99 99 100 98 97 93 97 97 100 100
101011 95 95 95 94 95 94 94 94 95 98 99 95 98 96 96 98 98
101100 97 97 97 96 97 95 97 95 96 96 98 95 95 94 94 97 96
101101 94 94 94 93 94 93 94 93 94 96 100 94 98 91 91 95 95
101110 99 99 99 98 99 99 99 99 99 100 98 96 92 95 95 100 100
101111 95 95 95 94 95 94 95 95 95 99 99 96 98 96 96 98 98
110000 96 96 96 96 96 95 96 94 97 93 98 94 94 92 92 95 95
110001 95 96 96 95 95 94 95 95 97 95 100 96 97 90 90 94 94
110010 99 99 99 99 99 98 98 98 99 100 97 98 94 95 95 100 100
110011 94 94 94 93 94 94 94 94 95 96 98 95 98 94 94 96 97
110100 96 97 96 96 96 95 96 95 96 94 98 95 94 93 93 95 95
110101 96 96 96 95 96 94 95 95 96 96 99 96 97 92 92 95 96
110110 98 99 99 98 98 98 99 98 99 100 98 97 94 96 96 100 100
110111 95 94 94 94 95 94 94 94 95 96 99 95 97 92 92 96 97
111000 97 97 97 96 97 96 96 95 97 94 98 95 94 93 93 95 95
111001 94 95 94 93 94 94 94 94 95 96 98 95 96 91 91 94 94
111010 98 99 99 98 98 98 98 98 98 100 98 97 92 96 96 100 100
111011 94 94 94 94 94 94 94 94 95 97 99 93 97 93 93 97 97
111100 94 95 95 94 94 92 94 93 95 96 99 95 94 93 93 96 96
111101 94 95 95 94 94 93 94 93 95 94 99 92 96 88 88 94 93
111110 99 99 99 99 99 99 99 99 99 100 97 96 91 93 93 100 100
111111 94 95 94 94 94 94 95 95 94 98 100 94 98 92 92 96 97
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