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Balancing transcriptional activity in Drosophila through protein-protein interactions on chromatin 

 

Abstract 

 Chromatin plays a vital role in the implementation of gene expression programs.  Several 

disparate groups of regulatory proteins alter chromatin state through post-translational modification of 

histone proteins, nucleosome remodeling, and higher order chromatin structure in order to affect gene 

expression.  Several of these key groups, such as the Male-Specific Lethal complex and Polycomb Group 

have been well characterized in Drosophila.  Yet aspects of their biology at the molecular level, such as 

the means by which they are faithfully targeted to regulated loci throughout the genome and the 

molecular mechanisms they employ to alter transcriptional state, still remain unexplained.  In this 

dissertation I explore how identifying protein-protein interactions on chromatin reveals insights into 

these unanswered questions critical to chromatin biology.  My results highlight the importance of 

balancing active and repressive chromatin states for the proper maintenance of gene expression.  

 The Male-Specific Lethal complex is the dosage compensation complex in Drosophila, which 

upregulates gene expression on the male X chromosome approximately two-fold.  The MSL complex 

catalyzes an acetyl mark which may create a uniquely permissive chromatin state to promote 

transcriptional elongation.  A proteomic screen for MSL-interacting proteins identified UpSET, the 

Drosophila homolog of yeast SET3 and mammalian MLL5.  Interestingly, SET3 and UpSET have been 

characterized to assemble into histone deacetylase complexes.  I employed genetic, genomic, and 

proteomic techniques to assess whether UpSET plays a role in dosage compensation.  UpSET appears to 

play a role in limiting the level of activation of the MSL complex.  Surprisingly, UpSET appears to play a 

more important role in the maintenance of heterochromatin. 
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 The Polycomb Group is comprised of a well characterized set of developmental repressors.  The 

PcG assembles into several multiprotein complexes to maintain the repressed state.  The PcG is opposed 

by a group of activators known as the Trithorax group.  Although the PcG and TrxG often appear to be 

recruited to the same genomic elements in different tissues, whether they might interact directly was 

not known.  In a collaboration with Dr. Hyuckjoon Kang, I characterized the TrxG protein Female sterile 

(1) homeotic and found that it interacts specifically with PRC1.  The data support a model that bivalency, 

a poised state observed in mammalian stem cells, may be critical, perhaps transiently, in the developing 

Drosophila embryo.  The mechanism of coordination amongst the various PcG complexes on chromatin 

is not well understood.  We also identified the Sex comb on midleg protein, a known member of the 

PcG, as a potential physical bridge between PRC1 and PRC2. 

 In these sets of experiments, I have characterized instances of crosstalk between activating and 

repressing regulators which are critical for the proper maintenance of chromatin state.  Perturbations of 

these interactions may lead to an imbalance of regulators on chromatin and aberrant transcriptional 

activity.  These findings highlight the need for tuning gene expression state and suggest chromatin-

based mechanisms by which this can be accomplished. 
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This chapter contains excerpts from McElroy, et al, 2014. 
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On the importance of chromatin  

 The central dogma of molecular biology is often summarized simply as “DNA makes RNA makes 

protein.”  Mechanistic insights at the molecular level were critically important to deciphering the 

process by which DNA could create RNA (and itself be copied) and by which RNA could direct protein 

expression.  And while much of biology does indeed follow this generalized rule, it has become apparent 

that proteins provide feedback to the genome to influence which DNA gets to make RNA at any 

particular time.  Additionally, numerous examples now exist of non-protein-coding RNAs being essential 

for proper gene expression and genome organization.   

The level at which such proteins and non-coding RNAs influence gene expression is typically not 

at the level of altering DNA primary sequence.  Such modification of the sequence of DNA would be 

untenable for the integrity of individual genes and insufficient for the rapid responses needed in 

biological systems.  Instead, protein and RNA factors control the access of transcriptional complexes to 

DNA, thereby controlling gene expression.  In the eukaryotic system, DNA is wrapped around an 

octameric core of histone proteins to assemble a unit called the nucleosome.  Additional proteins and 

RNAs interact with nucleosomes and the associated DNA in the nucleus to form what is called 

chromatin. 

Given the complexity of nuclear content in eukaryotes, it is lucky, then, that the original studies 

of the structure of DNA, which were so vitally important to working out the central dogma of molecular 

biology, made use of systems that generally lacked the higher order packaging of DNA of eukaryotes.  

Certainly the beautiful X-ray crystallography data generated by Wilkins, Franklin, and their colleagues 

would not have been interpretable had the DNA been chromatinized, and the seminal synthesis of these 

data into their model of the DNA double helix by Crick and Watson would not have been possible. 

From this technical standpoint to the reality of molecular biology and genetics, it is abundantly 

clear that chromatin plays a key role in the cell.  In addition to packaging DNA into the nucleus, the 
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milieu of chromatin associated proteins affects the stability of the genome, the organization of the 

chromosomes, timing of replication, transcriptional activity, and many other processes.  Given the 

diversity of proteins and biochemical properties that associate with chromatin, a truly systematic study 

of each gene is impractical for any one researcher.  Instead a common approach is to focus on groups of 

genes critical for specific biological processes. 

 

Chromatin-based modulation of gene expression 

One critical process for an organism is the maintenance of the transcriptional activity state of 

developmentally important genes.  These genes have their spatial pattern of expression set during the 

course of development by certain transient transcription factors.  Following the disappearance of these 

transcription factors, whether the gene is on or off needs to be preserved in the cell and any of its 

daughters.  Epigenetic memory, that is, heritable changes in gene expression not dependent on changes 

to DNA primary sequence, is executed by two groups of proteins: the Polycomb group (PcG), responsible 

for maintenance of repression, and the Trithorax Group (TrxG), responsible for maintenance of the 

active state (Schuettengruber et al., 2011, Simon and Kingston, 2013, Steffen and Ringrose, 2014).   

Another critical process for organisms is that of dosage compensation.  Dosage compensation is 

the process by which the expression levels from sexually dimorphic chromosomes are tuned to balance 

that of autosomes.  The loss of dosage compensation is highly detrimental to one or the other sex, as 

the proper ratios of expression of sex-linked factors become skewed.  While there are several strategies 

to achieve dosage compensation, all strategies rely on a chromatin-based mechanism.  In Drosophila 

melanogaster, a core complex of five proteins and two non-coding RNAs localize specifically to the male 

X chromosome and boost the expression of active genes by approximately 2-fold via the establishment 

of a unique chromatin state that is permissive for efficient transcriptional elongation (the Male-Specific 

Lethal complex, [MSL])(Chen et al., 2014, Lucchesi and Kuroda, 2015). 
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The overarching theme relevant to the above examples is the proper balance between 

activation and repression through chromatin state.  In eukaryotes, the nucleus is generally organized 

into two types of chromatin: euchromatin and heterochromatin (Figure 1-1).  Active genes are found in 

the euchromatic regions of the genome, and silenced genes are found in heterochromatin.  

Furthermore, heterochromatin can be further subdivided into constitutive and facultative 

heterochromatin.  The differences between these flavors of heterochromatin lie in the proteins that 

mediate their formation and the general genomic location.  The Polycomb group is the main player in 

facultative heterochromatin, which intermixes with euchromatin on the long chromosome arms, 

whereas the Heterochromatin protein 1 (HP1) family forms constitutive heterochromatin, which serves 

a highly structural role primarily in centromeric and pericentromic regions.  The work presented herein 

documents several interactions between activating and repressive proteins, and characterizes the effect 

these interactions have on the balance between euchromatin and heterochromatin. 

 

Transcription and Chromatin 

 Transcription is the process by which a messenger molecular, RNA, is made from DNA, the 

ultimate repository of genetic information.  Transcription is, by itself, a rather complicated process, 

without even considering the context of chromatin in which is must take place.  The major agent of gene 

expression in the RNA Polymerase II holoenzyme.  This multisubunit machine has modules dedicated to 

each step of transcription: from the melting of DNA strands to yield a template for RNA synthesis to 

proofreading to ensure fidelity of nucleotide incorporation to processivity of the synthesis reaction 

(Vannini and Cramer, 2012).  Furthermore, each step is heavily regulated and integrates feedback from 

the rest of the cell to determine when and how much transcription occurs. 

 Transcriptional regulation can be split into three main phases: initiation, promoter clearance, 

and elongation.  Initiation often occurs as a cascade of recruitment steps.  Initially, sequence-specific  
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Figure 1-1: The classical view of euchromatin vs heterochromatin 

Euchromatin and heterochromatin differ in the density of nucleosome packaging and in their 

complements of non-histone proteins and enrichments of histone post-translational modifications.  

Euchromatin is thought of as a much more open structure, whereas heterochromatin is more 

densely packed, with less DNA accessibility.  Euchromatin is enriched for proteins such as the 

Trithorax Group (TrxG) and, in males, the Male-Specific Lethal complex (MSL).  These proteins 

reinforce active genes and deposit histone post-translational modifications associated with active 

loci such as those indicated.  Heterochromatin covers repressed genes and is enriched for members 

of the Polycomb group (PcG) and Heterochromatin Protein 1 (HP1).  These two groups of repressive 

factors have their own associated histone marks such as Histone H3 lysine 27 trimethylation for the 

PcG and Histone H3 lysine 9 di- and tri-methylation for HP1.  The typical dogma is that these 

proteins and modifications are antithetically opposed and do not associate with each other. 
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Figure 1-1 (Continued)  
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transcription factors (TFs) bind to DNA in response to stimuli or other cellular conditions.  These 

sequence-specific factors then recruit general transcription factors (GTFs).  GTFs are critical for the 

loading of RNA polymerase II (Pol II) and the initiation of RNA synthesis (Vannini and Cramer, 2012).  The 

next phase of transcriptional regulation occurs when Pol II become paused, usually within a few hundred 

nucleotides from the transcriptional start site (TSS).  Originally thought to be a rare event, new 

experimental technologies have revealed that promoter-proximal pausing is a very common occurrence 

throughout the genome (Price, 2008).  Pausing is induced by negative elongation factor (NELF) and DRB 

sensitivity inducing factor (DSIF), which stalls engaged Pol II (Yamaguchi et al., 2013).  Pausing is relieved 

by the cyclin-dependent kinase P-TEFb, which phosphorylates NELF, causing its dissociation, and DSIF, 

causing it to become a pro-elongation factor (Guo and Price, 2013, Kwak and Lis, 2013).  At this point, 

Pol II enters the phase of productive transcriptional elongation.  Upon reaching the end of the transcript, 

Pol II encounters a polyA signal, which causes the association of termination factors.  Proper termination 

again requires P-TEFb activity (Laitem et al., 2015).  The different stages of transcription can be 

identified using the modification state of the C-terminal domain (CTD) of the Pol II enzyme.  The CTD of 

Pol II consists of a variable number (by organism) of heptad repeats, with many of the residues being 

post-translationally modified at different times throughout the transcriptional cycle (Egloff et al., 2012, 

Phatnani and Greenleaf, 2006). 

 All steps of transcription can be sensitive to the chromatin environment.  One classic paradigm 

for this is the regulation of genes by nucleosome occlusion of the promoter.  Nucleosomes assembled 

over the promoter sequence present a physical barrier to the association of sequence-specific TFs 

and/or GTFs with DNA (Gilchrist and Adelman, 2012).  ATP-dependent chromatin remodelers can 

resolve this and promote transcription by sliding or evicting nucleosomes to allow DNA access.  There 

are also chromatin looping events between the promoter and enhancer elements distal to the gene loci 

that greatly affect the efficacy of transcription.  An important player in these sort of long-range 
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interactions is the Mediator complex.  The Mediator complex is made up of ~30 proteins and facilitates 

the crosstalk between enhancer and promoter by physically bridging the looped structure, though it 

may also modulate Pol II function more directly (Ansari and Morse, 2013).  Mediator complex can be 

broken down into several different modules, based on functionality, copurification, and reconsititutional 

structural studies (Lariviere et al., 2012).  Recent work in the field of Mediator structure has synthesized 

these various analyses to reveal a detailed physical map for the complex and its association with Pol II 

(Plaschka et al., 2016).     

 Once engaged, nucleosomes may present physical barriers to the progression of Pol II.  It has 

been observed using a variety of nucleosome mapping techniques that the first few downstream 

nucleosomes are typically well phased (Zhang et al., 2011).  Whether the +1 nucleosome actually 

represents a barrier is somewhat debated in the field, since, while nucleosome mapping techniques 

clearly show strongly positioned nucleosomes, other techniques suggest these nucleosomes are in a 

state of high turnover (Dion et al., 2007).  Some of this turnover may be mediated by the exchange of 

canonical histone subunits for variant histones, which may loosen the wrapping of DNA around the 

nucleosome (Ranjan et al., 2015, Weber et al., 2014).  The presence of Pol II also has an effect on the 

spacing and phasing of nucleosomes.  It has been proposed that the promoter-proximally paused Pol II 

itself promotes a phased nucleosome architecture.  The mechanism for this is the fact that the paused 

Pol II complex is highly stable on DNA, and therefore functions as a barrier for the thermodynamic 

repositioning of nucleosomes back over favorable DNA sequences (Gilchrist et al., 2010, Gilchrist et al., 

2008).  This poises the gene for expression, provided that the next Pol II holoenzyme is recruited quickly, 

before nucleosomes can relax back to positions which prevent the next round of transcription. 

 Another consideration for the status of transcription is the chromatin state beyond simple 

nucleosome positioning.  Chromatin packages meters of DNA into a sphere that is only microns in 

diameter, requiring a high degree of compaction.  Nucleosome density and higher order folding of 
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chromatin can have both positive and negative effects.  As mentioned above, higher order folding 

interactions bring distal enhancers adjacent to promoters which modify, typically in a positive fashion, 

transcription.  Similarly, co-regulated genes may physically associate in subnuclear locations.  This sort of 

folding does not always activate transcription, however, as repressive complexes also may loop to 

promoters and silence transcription (Kassis, 2002).   

From the physical standpoint, too, more densely packed nucleosomes restrict the access of 

transcription factors to DNA.  Perhaps the clearest example of this is during mitosis.  Chromosome 

condensation into metaphase chromosomes poised for proper segregation generally inhibits 

transcription as most chromatin associated factors are evicted (Delcuve et al., 2008).  A good deal of this 

is undoubtedly due to the extreme compaction that is required as chromatin folds from nucleosomes to 

the higher order 30nm fiber and beyond.  While this is an extreme example, clearly the state of 

chromatin has profound consequences on transcription. 

 

Chromatin state and the histone code   

 A key aspect in our understanding of chromatin state is the complement of histone post-

translational modifications which exist in the cell.  The histone proteins which make up the core octomer 

around which DNA is wound also extend their N-terminal tails out from the structure.  These tails can be 

highly modified by numerous enzymes and can serve as a scaffold for protein-protein interactions on 

chromatin, or can change the biophysical properties of nucleosomes themselves (Zhao and Garcia, 

2015).  These modifications reveal insights as to the state of chromatin domains and the underlying 

transcriptional state of the genes contained within them.  The idea of the histone code was that if one 

could accurately assess, predict, and/or alter the locations of histone post-translational modifications 

(PTMs), it would be possible to infer the state of genes (Jenuwein and Allis, 2001).  Unfortunately, the 

idea of the histone code in a binary sense (ie, if this modification, then this must happen/be the case) is 
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not quite true.  Even combinatorially, the exact input and output of histone modifications remains 

elusive, yet the overall correlations, as described below, have greatly advanced the field of molecular 

biology and molecular genetics. 

 Several key advances in characterizing the state of chromatin have employed large scale ChIP 

experiments followed either by microarrays or sequencing.  By surveying a wide variety of histone PTMs, 

it has been possible to identify coincident marks, genome feature associations, and co-enriched 

chromatin proteins.  In this way, chromatin state can be broken down into a number of classes based on 

the relative enrichment of a panel of histone modifications.  For example, using 18 histone marks, 

Kharchenko and colleagues identified 9 different types of chromatin state (Kharchenko et al., 2011).  

High co-enrichment of H3K4me2/me3, and H3K9ac was the observed signature for the TSS of expressed 

genes.  The signature for transcriptional elongation was evident by H3K36me3 across gene bodies.  The 

chromatin signature often found over introns was enrichment of lower methylation states of H3K36 and 

enrichment of H3K27ac.  H3K27ac is most strongly associated in the literature with enhancers; that 

some enhancers lie within introns may account for this enrichment.  A unique form of active chromatin 

carries enrichment for H4K16ac, which, in Drosophila, is strongly enriched on the dosage compensated 

male X chromosome due to the activity of the MSL complex.  Three different heterochromatin states 

were classified.  One is enriched for H3K27me3, corresponding to PcG facultative heterochromatin, 

while the other two are enriched to different degrees with H3K9me2 and H3K9me3, corresponding to 

two types of HP1 constitutive heterochromatin.  Ho, Jung, Liu, and colleagues performed similar 

analyses using 8 histone marks across humans, flies, and worms, and identified 16 states (Ho et al., 

2014).  Many of these are similar to the classifications discussed above, with the caveat that they often 

parse the above into more finely separated states (ie, transcription at the 5’ end of a gene vs 3’ end). 

 Beyond the ability to scaffold chromatin proteins, some histone PTMs are known to change the 

properties of nucleosomes.  One mechanism for the compaction of chromatin into the 30nm fiber 
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discussed in the previous section is packing interactions between adjacent nucleosomes.  This is 

achieved by the interaction between a negatively charged “acidic patch” of residues of the H2A and H2B 

histone subunits with the N-terminal tail of histone H4 (Kalashnikova et al., 2013).  Like other histone N-

terminal tails, H4 is quite basic (numerous lysines provide a positive charge).  Packing between adjacent 

nucleosomes requires the H4 tail-H2A/H2B acidic patch interaction to neutralize charges and allow close 

proximity of nucleosomes.  The H4K16ac PTM mark introduces an acetyl group onto the H4 tail.  In 

addition to the physical space of the acetyl molecule, it also introduces a negative charge.  Crystal 

structure analysis shows the H4K16 residue positioned centrally over the acidic patch during adjacent 

nucleosome interactions.  The introduction of the negative charge from the acetyl group and the central 

location of the H4K16 residue in the acidic patch groove leads to a complete loss of the H4 tail/acidic 

patch interaction (Shogren-Knaak et al., 2006).  Without this interaction, nucleosomes are unable to 

pack closely, and chromatin remains more extended and open.  Intriguingly, this same modification is 

facilitated by the Male-Specific Lethal complex in Drosophila, which creates a unique, highly active 

chromatin state (Gelbart et al., 2009).  

 

The Male-Specific Lethal Complex in Drosophila 

 The MSL complex regulates dosage compensation in Drosophila.  Dosage compensation is the 

means by which X chromosome gene expression is adjusted to balance gene expression from the 

autosomes.  In flies, this is achieved by hypertranscription of the active genes on the single male X 

chromosome.  The MSL complex is made up of 5 core proteins (Figure 1-2A) and two redundant non-

coding RNAs (roX1 and roX2). The loss of any protein component or both RNAs leads to male lethality.  

Downstream of the sex determination cascade, the MSL complex is assembled in males only and 

targeted exclusively to active genes on the X chromosome.  Recruitment to the male X appears to occur 

in at least three steps (Figure 1-2B).  Complex assembly is initiated on the nascent roX RNAs at their sites  
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Figure 1-2: The Male-Specific Lethal Complex is the Dosage Compensation Complex for Drosophila 

A) The Male-Specific Lethal complex is made up of 5 proteins (MSL-1, -2, -3, MOF, and MLE) and 2 

non-coding roX RNAs (roX1 and roX2). 

B) The MSL complex is assembled at roX loci and recruited to high affinity chromatin entry site 

(CES) on the male X chromosome.  The MSL complex then spreads to all active genes on the X 

chromosome where it facilitates the hypertranscription of genes to achieve dosage 

compensation.  Figure adapted from McElroy et al, 2014. 
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Figure 1-2 (Continued)  
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of transcription.  The second step involves targeting to several hundred chromatin entry sites (CES, also 

called high affinity sites, HAS) carrying a degenerate sequence motif. The third targeting step involves 

sequence-independent spreading in cis to most active genes.  It is for this third step that roX RNAs seem 

most critical (reviewed in (Gelbart and Kuroda, 2009)).  Evidence for this “nucleate and spread” model 

comes from experiments in which the MSL complex becomes targeted to active genes flanking the 

ectopic insertion of roX RNA transgenes on autosomes (Kelley et al., 1999, Larschan et al., 2007).  

Therefore, the initial targeting of the complex to X chromosome entry sites is critical for its specificity. 

However, understanding the mechanism for the selection of the initial chromatin entry sites has been 

challenging, since the associated MSL-response element (MRE) sequence motif is enriched <2 fold on 

the X chromosome versus the autosomes. 

 There are two main enzymatic properties known to be required for MSL function.  The first, RNA 

helicase activity, is conferred by Maleless (MLE) (Lee et al., 1997), which recent work suggests may be 

critical for roX RNA remodeling and complex assembly (Maenner et al., 2013).  The second, histone 

acetyltransferase activity directed towards H4K16, is catalyzed by Males absent on the first (MOF) 

(Akhtar and Becker, 2000, Hilfiker et al., 1997), which is likely to be key to the increase in transcriptional 

activity of male X-linked genes.  While these activities are both essential for MSL function, they appear 

to be dispensable for the initial targeting of the complex.  More recently, the groups of Dou and Becker 

showed that MSL2 has E3 ubiquitin ligase activity in vitro.  Wu et al (2011) provided evidence that 

mammalian and fly MSL2 had activity in association with MSL1, leading to ubiquitination of H2B K34 

(H2B K31 in flies)(Wu et al., 2011).  In contrast, Villa et al (2012) found that Drosophila MSL2 

ubiquitinates other MSL components, likely serving a stoichiometry-balancing role (Villa et al., 2012).  

Whether either of these functions is essential for dosage compensation has not yet been reported. 

 Non-enzymatic domains that have chromatin interaction capabilities are present as well.  MSL3 

and MOF both contain chromodomains, which are found in various chromatin-modifying proteins and 
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often interact with methylated histones.  The MSL3 chromodomain is characterized to have H3K36me3 

binding (Larschan et al., 2007), H4K20me1 binding (Kim et al., 2010), and H4K20me2 binding (Moore et 

al., 2010). The MSL3 chromodomain plays a role in the spread of MSL to all active genes, but, like the 

enzymatic activities above, is dispensable for initial targeting (Sural et al., 2008). Unsurprisingly, MLE 

contains several RNA-interacting motifs, including a double-stranded RNA binding domain, a DExH 

helicase domain, and a C terminal glycine rich region, which could be used for engaging chromatin via 

RNA (Izzo et al., 2008, Morra et al., 2008). 

The CXC domain of the MSL2 protein has been shown to have affinity for DNA in vitro (Fauth et 

al., 2010).  Structural analysis of this domain bound to non-specific or MRE DNA suggests that this 

domain may mediate recognition of the motif.  Indeed, there appeared to be two modes of DNA 

interaction for the CXC domain: a lower affinity “scanning” mode and a higher affinity mode engaged on 

the MRE (Zheng et al., 2014).  However, other experiments revealed another factor to be critically 

important for MSL complex recruitment.  In an RNAi screen for factors influencing MSL complex 

recruitment, the gene CG1832 was identified (Larschan et al., 2012).  It was later shown that the CG1832 

protein, renamed CLAMP (chromatin-linked adaptor for MSL proteins), facilitated recruitment of the 

MSL core complex and directly recognized the MRE motif through an array of zinc finger domains 

(Soruco et al., 2013).  From CES, the complex binds at all active genes on the X via a spreading 

mechanism that includes recognition of the H3K36me3 histone mark for active transcription by MSL3 

(Larschan et al., 2007). 

Once bound at active genes on the X chromosome, the MSL complex achieves dosage 

compensation by increasing the transcriptional output of these genes.  The molecular mechanism by 

which this occurs could, hypothetically, proceed by changes in initiation of transcription or by changes in 

the elongation rate or processsivity.  Initial genomic analyses disagreed on the key steps in transcription 

that were most affected (Conrad et al., 2012, Larschan et al., 2011).  Subsequently, a computational 
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error in Conrad et al (2012) that greatly overstated the differential in Pol II recruitment to promoters in 

males, was noted in the literature (Ferrari et al., 2013a, Straub and Becker, 2013, Vaquerizas et al., 

2013).  Along with additional data, enhanced transcriptional elongation, through the creation of a 

uniquely permissive chromatin environment by the MSL complex, is the model currently favored in our 

laboratory (Ferrari et al., 2014, Ferrari et al., 2013b). 

One hurdle in the study of the MSL complex is that traditional biochemical methods fail to purify 

intact complexes.  The reasoning for this is that members of the MSL complex are extremely sensitive to 

the conditions used to solubilize the complex off of chromatin.  Members of the Kuroda lab developed a 

technique to affinity purify a bait protein and all of its interactors from crosslinked chromatin and 

identify them using mass spectrometry (Wang et al., 2013).  From these same chromatin samples, the 

genomic localization of the bait protein can also be assessed (Alekseyenko et al., 2014a, Alekseyenko et 

al., 2014b, Alekseyenko et al., 2015).  When applied to the MSL complex, all genetically known members 

were recovered among the top hits (Wang et al., 2013).  Of the novel factors identified, I further 

explored how one, UpSET (CG9007), might contribute to dosage compensation, and also found an 

unexpected connection to heterochromatin (see Chapter 2). 

  

The Polycomb Group 

 The Polycomb Group (PcG) is a set of proteins critical for the maintenance of repression of 

developmentally-silenced genes.  The members of the PcG were originally characterized in the fruit fly 

Drosophila melanogaster as being necessary for the maintenance of the parasegment specific pattern of 

Hox gene expression (Lewis, 1978).  Mutations in PcG genes lead to homeotic transformation in the fly.  

Homeotic transformations occur when key developmental Hox genes, which specify the body plan, are 

transcribed outside of their proper domain of expression (Jurgens, 1985, Struhl, 1981).  For example, 

many PcG mutants give rise to ectopic sex combs, a specialized hair-like structure, typically only found 
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on the first legs of males.  These ectopic sex combs are usually observed on the second leg, but also 

sometimes on the third; they may also ectopically appear on tarsal segments, indicating defects in the 

proximal to distal axis as well.  The incidence of these ectopic sex comb structures are due to the 

improper activation of the homeotic gene Sex combs reduced (Scr) in regions where it normally is silent 

(Lewis et al., 1980, Pattatucci and Kaufman, 1991, Struhl, 1982).   

 Further investigation of these proteins has identified hundreds of additional PcG-bound genes in 

Drosophila, suggesting that the PcG functions as a general repressor (Negre et al., 2006, Schwartz et al., 

2006, Tolhuis et al., 2006).  In the mammalian system, the PcG has been implicated in processes ranging 

from the cell cycle to cancer.  At individual target genes in flies, Polycomb response elements (PREs) 

have been identified that can function in ectopic chromatin contexts, but these lack a strong consensus 

motif (Kassis and Brown, 2013).  A classical model for the targeting of PcG complexes is that they 

recognize PREs in silenced domains that were previously established by repressive, spatially restricted 

transcription factors. Once PcG complexes are initially targeted to PREs, they can be stably maintained 

at these loci even after the original silencing factors are no longer expressed (Follmer et al., 2012, 

Francis et al., 2009, Lengsfeld et al., 2012).  Like the MSL complex, the PcG may also have a spreading 

mechanism, as silenced regions can form large PcG-associated domains (Tolhuis et al., 2006). The 

creation of these domains, which can differ from cell type to cell type, is not fully understood, but recent 

work by members of our lab suggests that these domains spread to fill topologically-associated domains, 

which correspond to insulated neighborhoods created by the three-dimensional folding of the genome 

(Jung et al., 2016). 

A hallmark of the PcG is that they form several distinct multiprotein complexes, with an array of 

different biochemical and enzymatic activities, in order to properly maintain silencing (Figure 1-3).  A 

substantial number of the known Polycomb group proteins (PcG) have been identified as subunits of 

two main PcG complexes, Polycomb repressive complex 1 and 2 (PRC1 and PRC2).  PRC1 complex is  
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Figure 1-3: The PcG forms multiprotein complexes that maintain gene repression 

The Polycomb Group (PcG) forms several biochemically distinct multiprotein complexes.  These 

complexes have an array of biochemical and enzymatic properties.  PRC1 binds to H3K27me3 via the 

chromodomain of Pc, while the SET domain of E(z) in PRC2 catalyzes that methyl mark.  PhoRC 

recognizes DNA in a sequence specific manner.  The dRAF complex catalyzes ubiquitylation of 

histone H2A, whereas the PR-DUB complex catalyzes its removal.  The diversity of PcG complexes 

work in synergistic ways to reinforce a repressed transcriptional state.  Figure adapted from McElroy 

et al, 2014. 
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Figure 1-3 (Continued)  
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thought to act as a direct executor of target gene silencing through inhibition of chromatin remodeling 

and chromatin compaction (Shao et al., 1999).  Polycomb (Pc), Polyhomeotic (Ph), Posterior sex combs 

(Psc) and Sex comb extra (Sce, aka dRing) are the core subunits of PRC1 (Francis et al., 2001).  

Suppressor of zeste 2 (Su(z)2), which is functionally redundant with Psc (Lo et al., 2009), and Sex comb 

on midleg (Scm) co-purify with PRC1 at sub-stoichiometric levels and are also categorized as PRC1 

subunits.  RNA interference (RNAi) knockdown experiments in tissue culture cells have suggested that 

Scm may be particularly important for PcG complexes at PREs (Wang et al., 2010). 

The PRC2 complex is responsible for trimethylation of Histone H3 lysine27 (H3K27me3) (Cao et 

al., 2002, Czermin et al., 2002, Kuzmichev et al., 2002, Muller et al., 2002), a mark of transcriptional 

repression which is known to be recognized by the chromodomain of Pc. PRC2 consists of Enhancer of 

zeste (E(z)) as its catalytic subunit and Suppressor of zeste 12 (Su(z)12), Extra sex combs (Esc), and 

Nurf55 (aka Caf1) as noncatalytic subunits.  Several other PcG complexes have been identified in 

Drosophila.  dRAF (dRING-associated factors) complex, which shares Psc and Sce/dRing with PRC1, 

contains the demethylase dKDM2 and is involved in H3K36me2 demethylation and H2A ubiquitylation 

(Lagarou et al., 2008).  Polycomb repressive deubiquitinase (PR-DUB), another PcG complex, consists of 

Additional sex combs (Asx) and the ubiquitin carboxy-terminal hydrolase Calypso, which specifically 

removes monoubiquitin from histone H2A (Scheuermann et al., 2010).  Classical genetic experiments 

imply that the cycling of ubiquitylation of H2A is important for PcG repression. 

The Pho-repressive complex (PhoRC), consisting of the DNA binding proteins Pleiohomeotic 

(Pho) or Pleiohometic-like (Phol) together with Sfmbt (Scm-related gene containing four mbt domains), 

is the only PcG complex shown to have sequence specific DNA binding activity (Alfieri et al., 2013, 

Klymenko et al., 2006).  Evidence for an interaction between PRC2 components and the DNA binding 

proteins Pho and Phol, as well as the requirement of Pho in PRE binding of E(z), led to a model of 

hierarchical recruitment of PcG complexes (Wang et al., 2004).  In this model, Pho and Phol bind to PREs 
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and recruit PRC2 complex to PREs through their interaction.  Subsequently, E(z) methylates H3K27, 

which results in the recruitment of PRC1 by the recognition of the histone mark by the Pc 

chromodomain.  However, this simple model is not sufficient to explain PcG silencing.  PRC1 and PRC2 

components are still visible by immunostaining at many sites on polytene chromosomes in pho and pho-

like double mutants (Brown et al., 2003), suggesting that additional DNA binding factors are likely to be 

involved in PcG recruitment and silencing.  

In a collaboration with Hyuckjoon Kang, a postdoc in the lab, we sought to address unknown 

aspects of PcG biology.  While biochemically distinct PcG complexes have been identified, we were 

interested in whether these complexes were similarly separable when found in the chromatin context.  

In the course of this exploration, we identified an already-known PcG factor, Scm, that physically 

interacted with both PRC1 and PRC2, which we suggest allows for coordination of these complexes for 

the proper maintenance of silencing (see Chapter 3).  We also were interested in whether there was 

interplay between the PcG and the Trithorax Group (TrxG, see below), which have opposing functions, 

yet are found at overlapping sites throughout the genome.  Our data support an interaction between 

PRC1 and the TrxG protein Fs(1)h, and suggests an interrelatedness of these two groups during the 

course of development (see Chapter 3). 

 

The Trithorax Group 

 The Trithorax Group serve a very similar role in development as the PcG, except with the 

opposite effect.  Whereas the PcG maintains the repression of Hox (and many other) genes, the TrxG 

maintains the expression of these genes.  The TrxG was originally defined as those genes whose function 

was to antagonize PcG-mediated silencing (Kingston and Tamkun, 2014).  Due to their role maintaining 

the expression pattern of Hox genes, TrxG genes often have homeotic phenotypes of their own, typically 

the reverse of PcG in that posterior to anterior transformations are observed.  One example of this is the 
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transformation of the haltere (a rudimentary wing structure on the third thoracic segment) to wing 

(second thoracic segment).  This striking phenotype is due to the failure to maintain expression of the 

Ubx gene (which normally functions in the haltere to suppress the wing fate) (Lewis, 1978).  The model 

for TrxG recruitment mirrors the model for PcG recruitment, where TrxG proteins are brought to 

domains initially activated by developmental factors.  Some of the same recruitment machinery, but in 

different chromatin context, may function to recruit both the PcG and TrxG (Kassis and Brown, 2013). 

 Once again similar to the PcG, the TrxG assembles into several multiprotein complexes which 

achieve maintenance of activation via chromatin remodeling and nucleosome post-translational 

modification (Schuettengruber et al., 2011) (Figure 1-4).  The histone modifying complexes affect two 

types of marks: methylation and acetylation.  Methylation marks are deposited by three complexes 

whose core catalytic subunits contain SET domains.  These complexes are known as the COMPASS or 

COMPASS-like complexes and they share several accessory factors such as Ash2, DPY30, RBBP5, and 

WD5 (Shilatifard, 2012).  Each complex is differentiated by its own unique catalytic subunit and 

additional specific accessory factors.  The catalytic proteins are Set1, Trx, and Trr, and catalyze the 

methylation of histone H3 on lysine 4.  Histone H3 lysine 4 trimethylation (H3K4me3) is known to be 

enriched at promoters and the transcriptional start site, with regions of H3K4me2 flanking it.  While all 

three of these SET domain proteins are competent for the deposition of H3K4 methylation, Set1 is 

responsible for the majority of it throughout the genome, with Trx and Trr catalyzing the mark at more 

specific subsets of sites.   

Interestingly, the Trr/COMPASS-like complex has an additional catalytic factor: the demethylase 

UTX (Schuettengruber et al., 2011, Shilatifard, 2012).  UTX has demethylase activity directed toward 

H3K27, effectively erasing the PcG-catalyzed mark.  The Trr complex, unlike Set1 and Trx, appears to be 

responsive to several signaling pathways, and thus encountering target sites in a different chromatin 

context than Set1 and Trx, but it remains unclear why the Trr complex would carry along this function  
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Figure 1-4: The TrxG forms multiprotein complexes that maintain gene activation 

The Trithorax Group (TrxG) forms many multiprotein complexes to reinforce the active state of gene 

expression.  In general these complexes either post-translationally modify histones, or remodel 

chromatin.  COMPASS/COMPASS-like complexes are responsible for H3K4me3 via the catalytic 

subunits dSet1, Trx, and Trr.  The Trr complex also carries Utx, an H3K27-directed demethylase.  

Ash1 methylates H3K36 and its partner CBP is an acetyl transferase.  Chromatin remodelers from 

the Swi/Snf (BRM, OSA, and MOR), Iswi (Iswi), and Chd (Kis) families also facilitate active 

transcription by remodeling chromatin around the promoters of active genes.  The BET protein 

Fs(1)h recognizes active chromatin via its double bromodomains, but has not be found to be a 

stoichiometric member of any multiprotein complexes. 
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Figure 1-4 (Continued)  
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while Set1 and Trx complexes do not.  Another activity that is thought to oppose the PcG is the 

methylation of H3K36 in active gene bodies.  This methyl mark is catalyzed by a different SET-domain 

TrxG protein, Ash1.  Ash1 also forms a complex with the protein dCBP/p300.  dCBP performs yet another 

catalytic activity, namely the acetylation of H3K27 and possibly other histone and non-histone residues.  

The H3K27ac modification is most closely associated with active enhancers, and is mutually exclusive 

with the PcG-deposited H3K27 methylation mark.   

 Additional TrxG complexes are capable of modulating the structure of chromatin by remodeling 

nucleosomes.  These ATP-dependent processes slide nucleosomes to create nucleosome-depleted 

promoters and may help to regularly space the first few nucleosomes of the transcriptional unit.  Other 

ATP-dependent activities include the exchange of histone variants associated with transcriptional 

activation and labile nucleosomes.  The Swi/Snf, Iswi, and CHD family of chromatin remodelers are all 

members of the TrxG and each have unique functions and differ in the means of their recruitment to 

target loci (Kingston and Tamkun, 2014, Schuettengruber et al., 2011). 

 My work on the TrxG focuses on Female sterile (1) homeotic (Fs(1)h).  As discussed above, we 

identified Fs(1)h as a possible interactor with the PcG complex PRC1.  Unlike many of the other TrxG 

proteins, Fs(1)h has not been identified as a constitutive member of a multiprotein complex, and 

functions as a co-activator contacting numerous transcription-related complexes near transcriptional 

start sites.  Our data support the validity of an Fs(1)h-PRC1 interaction and suggest that this interaction 

may be important during gene activity transitions during the course of development (see Chapter 3). 

 

Constitutive Heterochromatin and HP1 

 Constitutive heterochromatin is a prominent feature of all genomes.  This type of 

heterochromatin is characteristically gene poor and repetitive DNA rich (Smith et al., 2007).  Such 

chromatin is found predominantly around the centromere and pericentromeric regions of the 
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chromosome (Figure 1-5).  Heterochromatin components are also found at the telomeres in Drosophila.  

Heterochromatin is generally important for chromosome stability and the proper segregation of 

chromosomes (Morris and Moazed, 2007).  These functions have implications for the maintenance of 

genome stability. 

Constitutive heterochromatin is maintained by a very different set of machinery than facultative 

heterochromatin, though recent evidence suggests that there may be more interplay between these 

two groups than previously recognized (Cabrera et al., 2015).  The foremost of the constitutive 

heterochromatin effectors is Heterochromatin protein 1 (HP1, also known as Su(var)2-5), which binds 

throughout constitutive heterochromatin (Grewal and Moazed, 2003).  The HP1 protein binds to 

heterochromatin through its chromodomain.  The HP1 chromodomain has affinity for di- and tri-

methylated histone H3 at lysine 9 (H3K9me2/me3).  These histone modifications are created by the 

enzyme Su(var)3-9, which is a SET domain protein with methyltransferase activity (Shankaranarayana et 

al., 2003).   

The role of heterochromatin in gene silencing is evident in a process called position effect 

variegation (PEV).  This occurs when chromosome rearrangements result in the juxtaposition of 

euchromatic genes near heterochromatin, often near the centromere (Elgin and Reuter, 2013).  This 

typically results in variegated silencing of the locus.  Several alleles that display this phenomenon exist, 

but perhaps most well-known is the whitemottled4 (wm4) allele.  An X-chromosome inversion results in the 

white+ gene, whose wild-type function results in red pigmentation of the adult eye, being placed 

adjacent to heterochromatin.  Animals carrying this allele typically have reduced eye pigmentation.  If, 

however, the heterochromatin system is compromised due to genetic perturbations, increased 

pigmentation is observed.  Several additional genes involved in heterochromatin have been identified in 

screens for suppressors of variegation (that is, mutations resulting in more eye pigmentation). 
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Figure 1-5: Heterochromatin formation is mediated by Su(var)3-9 and HP1 

Heterochromatin plays an important structural role for chromosomes.  Found at the centromere 

(CEN) and pericentromeric regions, the DNA content of constitutive heterochromatin is often highly 

repetitive in nature.  The histone methyltransferase Su(var)3-9 catalyzes di- and tri-methylation of 

histone H3 on lysine 9.  This mark is recognized by the chromodomain of Heterochromatin Protein 1 

(HP1). 
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Figure 1-5 (Continued)  
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Despite being competent for the repression of euchromatin genes when chromosome structure 

is altered, the classical view of constitutive heterochromatin paints a picture of a highly repressed state 

with little cross-talk with euchromatic factors.  Experiments in our lab identified additional factors 

involved in heterochromatin, but generally conformed to this model (Alekseyenko et al., 2014b).  It was 

rather unexpected, then, that my work on the MSL complex led me to examine how an MSL interactor, 

UpSET, may help to sustain a critical balance between euchromatin and heterochromatin (see Chapter 

2). 

  

Summary and Overview of the Dissertation 

 The different groups of proteins above play a variety of critical roles in the proper regulation of 

the genome.  With the TrxG and MSL complex functioning to achieve proper levels of activation, the PcG 

and heterochromatin work to prevent aberrant expression.  Striking the proper balance between these 

two states, and finely tuning the exact level of expression, may therefore require more crosstalk 

between all of these chromatin groups than has previously been recognized. 

 In this dissertation, I explore several proteins which suggest interrelatedness between these 

groups that had not previously been characterized.  In seeking to understand the contribution of the 

protein UpSET to MSL-mediated dosage compensation, I found that this protein may have a more 

prominent role in the maintenance of heterochromatin.  Using both genomic and genetic techniques, I 

provide evidence for UpSET functioning to limit the extent of activation of dosage compensated X-linked 

genes and to prevent improper expression levels of heterochromatin genes.  In a fruitful collaboration 

with Hyuckjoon Kang, a post-doctoral researcher in the lab, we characterized the Scm protein as a 

physical link between PRC1 and PRC2.  We also explored the extent to which the Fs(1)h protein 

functionally and physically interacts with the PcG PRC1 complex.  Our data are provocative, supporting a 
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model for the determination of chromatin state based on direct, but mutually exclusive, interactions 

between members of the PcG and the TrxG. 
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Abstract 

 

Chromatin plays a critical role in faithful implementation of gene expression programs.  Different post-

translational modifications of histone proteins reflect the underlying state of gene activity, and many 

chromatin proteins write, erase, bind, or are repelled by these histone marks.  One such protein is 

UpSET, the Drosophila homolog of yeast Set3 and mammalian MLL5.  Here we show that UpSET is 

necessary for the proper balance between active and repressed states.  Using CRISPR/Cas-9 editing, we 

generated flies and S2 cells which are mutant for upSET.  We find that loss of UpSET is lethal in both 

sexes in flies, but tolerated in S2 cells.  Misregulated heterochromatin is apparent by suppressed 

position effect variegation of the wm4 allele in flies, and by ChIP-seq for the H3K9me2 heterochromatin 

mark and quantification of bulk histone post-translational modifications in S2 cells.  Consistent with 

participation in a histone deacetylase complex, we observe increased spreading of H4K16-acetylation 

specifically on the dosage compensated male X chromosome. Finally, we demonstrate that gene 

expression changes at the nascent-transcript level are consistent with a disruption in the balance of 

active and silent histone modifications.  Our findings support a role for UpSET in maintaining 

heterochromatin, and delimiting activation of X-linked genes by the Male-Specific Lethal dosage 

compensation complex. 
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Introduction: 

 

 One family of chromatin-associated proteins which post-translationally modify histones is the 

SET domain-containing proteins.  The SET domain catalyzes methylation of histone tails.  Different SET 

domain-containing proteins create unique histone modification signatures, which are associated with 

different forms of active and repressed chromatin environment.  Of the family of SET domain proteins, 

one paralog is a notable exception to this paradigm.  The Drosophila protein UpSET and its homologs 

Set3 in yeast and MLL5 in mammals are not known to have histone modifying activity. In fact, conserved 

catalytically important residues in the SET domain are mutated in UpSET/Set3/MLL5 suggesting that 

protein function must not rely on the competence of the SET domain.  Rather than catalyzing histone 

methylation, these proteins have been characterized in yeast and flies to form a complex with histone 

deacetylase (HDAC) activity (provided by a different catalytic protein) (Pijnappel et al., 2001, Rincon-

Arano et al., 2012). 

 Phenotypically, Set3 is a non-essential gene in yeast (Pijnappel et al., 2001), with a phenotype of 

defective transcription kinetics observed only when cells are metabolically challenged (Kim et al., 2012, 

Wang et al., 2002).  Set3 complex (Set3C) was also recently tied to the DNA damage response operating 

under a model of altered histone acetylation dynamics (Torres-Machorro et al., 2015).  MLL5 in 

mammals has been tied to several different cellular processes including haematopoesis (Heuser et al., 

2009, Madan et al., 2009, Zhang et al., 2009), cell cycle progression (Cheng et al., 2008, Deng et al., 

2004), cancer (Emerling et al., 2002), and DNA methylation (Yun et al., 2014), though its exact 

mechanistic role or binding partners in these diverse functions have not been fully resolved.  In 

Drosophila, upSET-/- flies were described to be viable, but with a female fertility defect due to 

derepression of transposable elements in the ovary (Rincon-Arano et al., 2012). 
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 We previously identified the UpSET protein (CG9007) as a top interactor with the MSL3 protein 

by a crosslinked affinity purification technique (Wang et al., 2013). MSL3 is a chromodomain protein 

that is a core constituent of the Male-Specific Lethal (MSL) dosage compensation complex in Drosophila.  

The MSL complex of five genetically-defined proteins and two redundant noncoding RNAs localize 

specifically to the male X to create a unique chromatin environment and boost expression of active 

genes (for review see (Lucchesi and Kuroda, 2015)).  The chromatin environment that is created by the 

MSL complex is catalyzed by the Males-absent-on-first (MOF) protein, which acetylates histone 4 on 

lysine 16 (H4K16ac).  This modification has a very stereotypical pattern near transcriptional start sites on 

autosomes and across the female genome.  In contrast, on the male X, H4K16ac is enriched on gene 

bodies, reflecting the localization of the MSL complex and its putative function in transcriptional 

elongation. 

 The interaction between UpSET, a member of an HDAC complex, and MSL3, a member of the 

MSL complex that makes an acetyl mark, is striking.  One question immediately raised is whether UpSET 

might contribute to dosage compensation.  To investigate this, we created an upSET mutant Drosophila 

fly line using the CRISPR/Cas-9 system for genome engineering and a homologous recombination donor.  

In contrast to previous reports, we observed upSET-/- to be lethal in both males and females.  This 

lethality was rescued by a tagged upSET transgene.  Thus, we were able to analyze the epitope-tagged 

UpSET protein in the upSET-mutant background to identify its genome-wide binding profile.  To further 

assess the molecular defects induced by loss of UpSET, in parallel we created upSET mutant S2 cell lines.  

We surveyed bulk histone post-translational modification levels in these cells, and mapped two specific 

marks by ChIP-seq.  We observed an increase in H4K16ac regions specifically on the male X chromosome 

and a decrease in the heterochromatin-associated histone 3 lysine 9 dimethyl (H3K9me2) mark on all 

chromosomes, along with concomitant aberrant transcription of heterochromatic and X-linked genes as 

measured by nascent-RNA-sequencing. We conclude that heterochromatin and genes on the male X 
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chromosome are particularly sensitive to a balance of acetylation and deacetylation activities, regulated 

in part by the UpSET protein. 

 

Results: 

 

upSET is an essential gene in Drosophila 

 The previous characterization of upSET mutant flies utilized the only two then-available lines 

which carry a P-element and Minos insertion in the upSET gene, respectively.  However, the insertions 

carried by both of these lines leave the coding sequence largely intact.  While Western blotting 

suggested no residual protein, given the possibility that those alleles could in fact be hypomorphic 

instead of complete loss-of-function, we sought to create an upSET deletion allele with the coding 

sequence removed from the genome.  To accomplish this, we turned to the versatile CRISPR/Cas-9 

genome engineering system.  We co-injected w; w-{nos-cas9}/CyO embryos, which express Cas-9 in the 

germ line, with two guide RNA constructs and a homologous recombination donor marked with 3xP3-

DsRed (Figure 2-1A).  We isolated balanced flies that carried the DsRed marker and confirmed the loss of 

upSET coding sequences by PCR.  We found that homozygosity for the upSET deletion is lethal, with a 

low escape rate.  The few escapers that were recovered were sickly and did not reproduce with yw 

mates.  We were able to rescue this lethality with an UpSET-BioTAP transgene (Figure 2-1B).  PCR from 

rescued individuals confirmed that no wild-type upSET DNA remained (Figure 2-1C).  Taken together, 

this suggests that contrary to previous reports, upSET is an essential gene in Drosophila, and that the 

previous alleles are hypomorphs, rather than bona fide loss-of-function. 

 

UpSET-BioTAP localizes to TSS of active genes by ChIP-seq 
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Figure 2-1: upSET is an essential gene in Drosophila 

A) upSET gene span with the location of guide RNA target constructs (blue triangles), homologous 

recombination donor arms (green rectangles), the BioTAP-tag insertion in the rescue construct 

(crimson), and PCR primers (red, not to scale) to assess deletion and rescue. 

B) upSET is homozygous lethal, but is rescued by the UpSET-BioTAP transgene 

C) PCR analysis reveals that homozygous escapers lack the 544bp WT product.  The rescued flies 

produce only the band corresponding to the tagged construct. 
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Figure 2-1 (Continued)  
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 Our previous attempts to determine the localization of UpSET using the BioTAP-tagged 

transgene were unsuccessful in cell culture due to poor stability of the tagged protein in chromatin 

preparations (data not shown).  We reasoned that more of the tagged protein would be incorporated 

into chromatin in the upSET-deleted background, and so we prepared chromatin for ChIP from 0.1g of 

mixed 12-24hr embryos carrying the UpSET-BioTAP transgene in the homozygous DsRed+{ΔupSET} 

background.  We immunoprecipated UpSET-BioTAP using the protein-A moiety, and sequenced the 

resulting material. 

 In agreement with previous localization data generated by UpSET Dam-ID in Kc cells (Rincon-

Arano et al., 2012), we observed UpSET-BioTAP to localize to active genes by ChIP-seq (Figure 2-2A-B).  

More specifically, in the BioTAP data there is enrichment for UpSET-BioTAP ChIP peaks in regions 

carrying the chromatin signatures of transcription-start site proximal and active elongation states (Ho et 

al., 2014) (Figure 2-3).  This is further supported by comparing the overlap of UpSET-BioTAP ChIP peaks 

with different genome feature annotations.  UpSET-BioTAP peak regions display a greater than 2-fold 

enrichment over the genomic background for promoter and 5’ UTR regions and are also enriched for 

coding exons (Figure 2-2C).  Conversely, intron and intergenic regions are depleted from UpSET-BioTAP 

peaks when compared to the whole genome.  When comparing the UpSET-BioTAP dataset to those 

publically available in the modEncode project, we observe the highest correlation with Pol II-datasets 

(Figure 2-4), consistent with enrichment at the TSS of genes in the active chromatin context. 

 We sought to examine whether we could detect an X-specific localization pattern for UpSET-

BioTAP as compared to the autosomal pattern, although in mixed-sex embryos, any apparent X-specific 

localization signal in males would be dampened.  We did not detect any difference between UpSET-

BioTAP localization at the TSS or throughout the gene body between X-linked and autosomal genes 

(Figure 2-5A).  However, when comparing the intensity of UpSET-BioTAP peaks across the X  
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Figure 2-2: UpSET-BioTAP localizes to active TSS in embryos 

A) Two representative genome browser views of 18kb regions of the X and 2L chromosomes.  

There are few differences between UpSET-BioTAP on the X chromosome and binding on the 

autosomes. 

B) Metagene profile for UpSET-BioTAP binding.  Gene bodies from TSS+500bp to TES-500bp are 

scaled.  The 1kb up and downstream, and 500bp into the gene on either end are unscaled.  

UpSET-BioTAP strongly enriches around the TSS.  UpSET-BioTAP shows a strong preference for 

binding at the TSS of active genes.  Please note the y-axis is a linear scale. 

C) UpSET-BioTAP peaks are enriched for genome regions annotated to be promoters, 5’UTR, and 

coding exons.  Intron and intergenic regions are depleted compared to the whole genome 

background. 
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Figure 2-2 (Continued) 
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Figure 2-3: UpSET-BioTAP ChIP peaks are enriched for active TSS and transcriptional elongation 

chromatin signatures 

Ho et al (2014) used eight histone post-translational modifications across three species and machine 

learning to identify 16 different classes of chromatin signatures (top panel).  UpSET-BioTAP peaks 

largely fall into the active signatures, with the highest enrichment of promoter regions (state 1).  

UpSET-BioTAP peaks also enrich for enhancer and transcription signatures (states 3, 4, 5, 7, and 9). 
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Figure 2-3 (Continued)  



53 
 

 

 

 

 

 

Figure 2-4: UpSET-BioTAP ChIP-seq data correlates most strongly with modEncode ChIP-chip datasets for 

PolII 

Pearson correlation coefficients were calculated for the pairwise comparison of the UpSET-BioTAP 

ChIP-seq with a number of ChIP-chip profiles for chromosomal proteins generated by the 

modEncode project using 1kb windows.  The highest degrees of correlation were found with active 

associated proteins and histone PTMs, such as H3K4me3, H3K4me2, and Pol II.  It should be noted 

that the difference in platform (UpSET-BioTAP Chip-seq vs ChIP-chip for modEncode factors) may 

artificially depress the Pearson correlation coefficient values. 
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Figure 2-5: UpSET-BioTAP shows differential enrichment by chromosome arm 

A) Metagene profile comparing the pattern of UpSET-BioTAP across the gene bodies (scaling as in 

Figure 2-2B) of genes on the X versus the Autosomes.  No major differential pattern is detected 

from the UpSET-BioTAP ChIP-seq from mixed embryos.   

B) UpSET-BioTAP ChIP-seq peak intensities at promoters were calculated for genes and grouped by 

chromosome arm.  There is no major enrichment across the euchromatic arms, but higher 

intensity binding is observed in some, but not all, heterochromatin regions. 
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Figure 2-5 (Continued) 
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chromosome, autosome arms, and heterochromatin, we saw higher values for several of the 

heterochromatin regions (Figure 2-5B). 

 

CRISPR-engineered S2 cell lines tolerate inactivating UpSET mutations 

 In order to assess the molecular effects of the loss of UpSET, specifically in male cells, we 

attempted to generate S2 cell lines stably carrying upSET mutations.  S2 cells are a male Drosophila cell 

line which is highly polyploid.  We reasoned that these cells may tolerate perturbed chromatin states 

better than the whole organism, given their tolerance of their non-diploid genome.  The ploidy of the 

genome introduces its own challenges for genome engineering, yet we saw that mutations typically 

went to fixation when we used the CRISPR/Cas-9 system (Housden et al., 2015). We co-transfected S2 

cells with an RFP-expressing marker plasmid and a plasmid co-expressing both the Cas-9 protein and one 

or more of several different guide RNAs directed toward the upSET gene (Figure 2-6A).  To isolate single 

clones, RFP-positive transfected cells were sorted into 96-well plates by FACS.  Following regrowth from 

these single cells, we identified lines that have putative mutations by high-resolution melt assays 

(HRMA) (Bassett et al., 2013).  Statistically significant hits were further analyzed by Sanger sequencing to 

identify the nature of the molecular lesion at the gRNA target site.  In this way, we were able to isolate 3 

upSET mutant lines which should be devoid of wild-type UpSET protein (Figure 2-6B,C).   

 

Mutation of upSET results in aberrant H4K16ac pattern on the male X chromosome 

 To determine whether we could detect a molecular phenotype in the upSET mutant lines, we 

performed ChIP-seq using antibodies against H4K16ac, the MOF-catalyzed mark.  H4K16ac is known to 

have two distinct patterns over the bodies of genes in Drosophila (Gelbart et al., 2009).  The first, a 5’ 

gene and TSS enrichment, is found on autosomes and the female X chromosome.  The second is found 

only on the dosage compensated (male) X chromosome, and is a much higher enrichment with a 3’ bias,  
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Figure 2-6: Generating upSET mutant S2 lines 

A) Schematic for the upSET gene locus.  Non-coding exons are in grey, while coding exons are in 

light orange. Guide RNA targets for Cas9 are listed.  

B) Molecular lesions generated around the upSET gRNA #1 target site (capitalized in reference 

sequence, PAM highlighted), located just downstream of the upSET start codon (underlined in 

reference sequence). Clone G3 has a homozygous 67bp deletion, removing the start codon and 

10 additional coding base pairs, as well as 54 bp of the adjacent sequence. Clone A7 has two 

separate 7bp deletions, both resulting in frameshift mutations and a truncated peptide product.   

C) Molecular lesion generated around the upSET gRNA #7 target site (capitalized in reference 

sequence). Clone B2 carries a 1bp deletion, resulting in a frameshift after 367 amino acids of 

wild-type UpSET protein sequence and a 436 amino acid product. 
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Figure 2-6 (Continued)  
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which reflects the localization of the assembled MSL complex toward the 3’ end of genes.  If UpSET plays 

a general role in acetylation, one would expect both the X and autosomes to be affected by upSET 

mutations.  If, however, UpSET plays a special role in dosage compensation, perhaps a difference in 

effect on H4K16ac on X compared to the autosomes will be apparent. 

 We chose to proceed with ChIP using the (G3) mutant since we expected this largest deletion 

that removes the start codon and adjacent sequence to be the most deleterious.  We observed that the 

H4K16ac pattern on autosomes stayed remarkably consistent (Figure 2-7A).  In comparison, the pattern 

of H4K16ac on the X chromosome was altered, with additional signal appearing to spread out from 

preexisting peaks (Figure 2-7B).  For genome-wide analysis, we used the SPP package to call peaks after 

sub-sampling the H4K16ac datasets.  We then calculated the genomic coverage of these peaks and 

compared the result between chromosome arms.  In accordance with our visual observation, H4K16ac 

peaks on chromosome arms covered similar amounts of the genome (in basepairs) in the wild-type and 

upSET-mutant S2 cells, whereas H4K16ac coverage on the X chromosome was increased in upSET-

mutant cells by ~1Mb (Figure 2-7C).  We calculated the fold change (G3 upSET mutant vs S2) per 

H4K16ac peak and observed that a large portion of the peaks on the X chromosome show increased 

coverage, whereas autosomes remain largely unchanged (Figure 2-7D).  That many peaks are changing 

suggests that the mechanism for increased H4K16ac on the X chromosome in the upSET mutant cell line 

is the consequence of some general, as opposed to site-specific, X-specific process.  

Previous work had shown that upSET-directed RNAi resulted in spreading of H4K16ac at multiple 

candidate regions in the female-type Kc cell line by ChIP-qPCR (Rincon-Arano et al., 2012).  Our result 

supports a role for UpSET in regulating dosage compensation specifically, and thus does not seem 

completely compatible with the previous finding.  Given the observed UpSET-MSL3 interaction, it could 

be that the role UpSET plays in male and female tissues may be different. 
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Figure 2-7: upSET mutant cells have broader H4K16ac peaks on the X chromosome 

A) A representative genome browser view of a 73kb region of the 2L chromosome arm.  H4K16ac 

ChIP-seq tracks show the expected pattern of 5’ enrichment for H4K16ac at TSS on autosomes.  

This pattern remains unchanged in the upSET mutant cell line. 

B) A representative genome browser view of a 73kb region of the X chromosome.  H4K16ac ChIP-

seq tracks show the enrichment of H4K16ac on the male X chromosome in S2 cells.  The upSET 

mutant cells show expanded spreading of the H4K16ac mark compared to wild type the S2 cells. 

C) Quantification of genome by chromosome arm covered by H4K16ac enrichment in wild type S2 

and upSET mutant G3 cells.  The upSET mutant cells have an increased coverage (~1Mb) of the X 

chromosome as compared to autosomes when compared to the parental S2 line. p-values are 

for a one-sided t-test. 

D) Fold change for each peak was calculated as the breadth of the peak in the G3 upSET mutant cell 

line over the breadth of the peak in the S2 parental cell line, when there was any overlap 

between peaks in both datasets.  P-value is for a Wilcoxen test. 
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 Figure 2-7 (Continued) 
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Bulk histone PTM analysis in upSET mutant S2 cells reveals perturbed chromatin state 

 Given that we only tested the dosage compensation mark, H4K16ac, in our ChIP-seq 

experiment, we sought to obtain a more comprehensive assessment of all histone post-translational 

modifications to determine whether H4K16ac was among the top modifications altered by the loss of 

upSET.  We isolated bulk histones from S2 cells and all three upSET mutant cell lines using a salt/acid 

extraction method (Zee et al., 2016).  To quantitatively recover histone peptides with their modification 

state intact for mass spectrometry analysis, histones were derivatized in solution with a protecting 

group that allows recovery of histone peptides from reverse phase chromatography.  Using the mass 

difference between the protecting group and various modifications (acetylation, methylation, etc), we 

were able to quantify the relative abundance within each sample of different modifications in 

comparison to the unmodified peptide.  Since we expected to observe changes in relative amounts of 

acetylations, we also assessed the histone modifications in S2 cells treated with the general HDAC 

inhibitor, sodium butyrate (S2but) (Candido et al., 1978). 

 We observed a slight increase in H4-monoacetylation on the peptide that contains lysines at 

residues 5, 8, 12, and 16 in upSET mutant cells, and a larger increase in the butyrate treated cells (Figure 

2-8A).  We deconvoluted the source of the acetyl observed on this peptide and saw that there was only 

a slight trend toward increased H4K16ac in upSET mutants (Figure 2-8B).  We obtained similar results in 

replicates (Figure S1).     

 Unexpectedly, the largest change in modifications on total histones in the upSET mutant cells 

was in H3K9me2 levels, which were greatly diminished compared to wild-type S2 cells (Figure 2-8C).  

H3K9me2 is a modification known to be enriched in heterochromatin.  The HP1 protein, which is critical 

for heterochromatin formation, interfaces with this mark via its chromodomain.  Taken together with 

the UpSET-BioTAP ChIP observations above, the data suggest an as-yet undetermined role for UpSET in 

heterochromatin. 
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Figure 2-8: Analysis of histone post-translational modifications from bulk histones in upSET mutant cells 

A) Relative quantification (1.0 = 100%) of H4K5K8K12K16 acetyl patterns in upSET mutant cell lines 

(G3, B2, and A7) or butyrate treated cells (S2but) with respect to the parental S2 line. Butyrate 

inhibits deacetylases, resulting in high enrichment of acetylation marks.  The upSET mutant cell 

lines see a more modest increase in acetylated H4 peptide. 

B) Deconvolution of monoacetyl H4 from (A) to identify which residue carries the acetyl mark.  

There is a slight trend for enrichment of H4K16ac in the upSET mutants cells compared to other 

residues. 

C) Relative quantification (1.0 = 100%) of H3K9K14 PTM patterns in upSET mutant cell lines (G3, B2, 

and A7) or butyrate treated cells (S2but) with respect to the parental S2 line.  The 

H3K9me2/me3 marks are depleted from upSET mutant S2 cells, suggestive of an effect on 

heterochromatin. 
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Figure 2-8 (Continued)  
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Lower H3K9me2 levels and deficient heterochromatin reflected by ChIP and PEV 

 To probe whether the UpSET-BioTAP heterochromatin localization and lower bulk levels of 

H3K9me2 in upSET mutant S2 cell lines had functional relevance, we assessed H3K9me2 genomic 

localization in the G3 upSET-mutant cell line.  We observed lower overall coverage in heterochromatin in 

the upSET mutant cell line as compared to S2 cells.  We also observed loss of H3K9me2 from regions on 

euchromatic chromosomes arms (Figure 2-9A).  Taken together with the bulk histone data from all three 

upSET mutant cell lines and the UpSET-BioTAP localization from embryos, these observations in the G3 

upSET-mutant cell line support a role for UpSET in heterochromatin, as its loss had clear repercussions 

on heterochromatin state. 

 To test this hypothesis in the organism, we tested whether heterozygous loss of upSET would 

have an effect on position effect variegation (PEV) of the whitemottled4 (wm4) allele seen in the eyes of 

adult flies.  The wm4 allele carries an inversion on the X chromosome placing the white locus adjacent to 

heterochromatin (Elgin and Reuter, 2013).  As such, defects in heterochromatin components result in 

greater expression of white+ and a greater extent of red eye pigmentation sectoring (Figure 2-9B).  The 

core components of heterochromatin score strongly in these assays and are collectively called 

suppressors of variegation (for example, Su(var)3-9, the enzyme responsible for H3K9 dimethylation).  

We scored the eye sectoring phenotypes of hemizygous wm4 males and compared heterozygous upSET 

individuals to their balancer carrying siblings and the balancer carrying control (for background effects 

of the balancers in the genotypes).  We observed that loss of upSET results in suppression of variegation, 

that is, a larger number of flies with a greater extent of red pigmentation (Figure 2-9B).  This in vivo 

finding, along with our above results, support the conclusion that UpSET plays a role in heterochromatin 

maintenance. 

 

Changes in transcription reflect altered chromatin state 
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Figure 2-9: H3K9me2 depletion following upSET mutation 

A) Representative 36kb region of the X chromosome showing decreased H3K9me2 in the G3 upSET 

mutant line. 

B) Cross scheme for testing of the effect of heterozygous loss of upSET on position effect 

variegation.  The wm4 line has a white variegating phenotype resulting in white eyes.  As 

heterochromatin becomes less stable, there is loss of repression of white resulting in redder 

eyes.  Male flies were sorted at 3 days post-eclosion into three classes: Class A has the highest 

proportion of red sectors, Class B has intermediate levels, and Class C is largely unpigmented.  In 

comparison to siblings or a control cross, heterozygous loss of upSET leads to an increase in red 

pigmentation, skewing the population toward suppressed variegation. 
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Figure 2-9 (Continued)  
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 After it became clear that mutation of upSET using CRISPR/Cas-9 had an effect on chromatin 

state, we wondered what the effect on transcription might be.  In order to assess whether transcription 

tracked with the observed chromatin state, we utilized a urea-based method to sequence the nascently 

transcribed RNA still associated with Pol II.  We elected to isolate nascent Pol II-associated RNAs since 

we hypothesized we might observe any changes in transcription more proximal to chromatin than in the 

steady state cytosolic pool of mRNA.  Indeed, we observed that aberrant transcription occurred in all 

three upSET mutant S2 cell lines in comparison to the parental cell line (Figure 2-10). 

 Disappointingly, looking for statistically up- or down-regulated genes revealed striking 

heterogeneity in the transcriptional profiles between the three upSET-mutant cell lines.  Therefore, we 

asked whether there might be a unifying principle if we looked instead at trends for groups of genes 

based on their locations in heterochromatin vs euchromatin or X-linked vs autosomal.  To do so, we 

counted the numbers of genes falling above and below the no-fold-change (log2FC=0) line per grouping 

(Figure 2-11A-C).  The most striking trend, which was consistent for all three upSET mutant cell lines, 

was that the group of genes found in heterochromatin, as determined by the presence of H3K9me2 over 

the gene in wild-type S2 cells, was upregulated (Figure 2-11D-F, third bar).  While the fold change of 

each gene might not be statistically significant, taken as a whole, the distribution of the 

heterochromatin genes skewed toward increased expression in a statistically significant manner. 

 When comparing X-linked versus autosomal genes, there was a weak trend toward 

upregulation, though this failed to reach the level of statistical significance in all three upSET mutant cell 

lines cell lines (Figure 2-11D-F, second bar).  This result is not as striking as the heterochromatin vs 

euchromatin trend, but in light of the other data presented above, generally supports the same 

hypothesis.  The loss of UpSET has a profound effect on the integrity of heterochromatin, as supported 

by the PEV of wm4, H3K9me2 ChIP-seq, and bulk histone quantification analyses.  Loss of UpSET also has 

an X-specific effect, clearly observable in the H4K16ac ChIP-seq, yet the bulk histone analysis suggests  
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Figure 2-10: Nascent-RNA-seq reveals misregulation of transcription in upSET mutants 

A) Genome browser view of nascent-RNA sequencing read density over the gene CG34334 on the X 

chromosome.  CG34334 is transcribed on the top strand.  Few reads are seen in S2 cells (dark 

blue tracks), but all three upSET mutant cell lines transcribe this gene (light blue tracks). 

B) Genome browser view as in (A) except of the CG15578 gene on the X chromosome.  CG15578 is 

transcribed from the top strand.  In S2 cells there are many reads from antisense transcripts in 

this region, which are largely unchanged in the upSET mutant cell lines.  All three upSET mutant 

cell lines, however, have increased transcription of the CG15578 locus and several kb 

downstream as compared to S2 cells. 
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Figure 2-10 (Continued) 
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Figure 2-11: Increased transcription of heterochromatin and X-linked genes in upSET mutants 

A) Scatter plot showing fold-change for individual genes based on their nascent-RNA levels in the 

G3 upSET mutant cell line on the y-axis vs wild type S2 expression level on the x-axis.  Autosomal 

euchromatin genes are highlighted in blue.  Euchromatin or heterochromatin annotations were 

based on H3K9me2 levels in S2 cells. 

B) As in (A), except with heterochromatin genes highlighted 

C) As in (A-B), except with X chromosome euchromatin genes highlighted 

D) Summary of (A-C) with number of genes falling above and below the zero-fold change line from 

the G3 upSET mutant cell line.  The general trends of increased expression on the X 

chromosome and of heterochromatin genes are statistically significant. 

E) As in (D), except using data comparing the A7 upSET mutant cell line to S2 cells.  The same 

general trends are observed as in (D). 

F) As in (D-E), except using data comparing the B2 upSET mutant cell line to S2 cells.  The same 

general trends are observed as in (D-E), however the trend for upregulation of the X 

chromosome does not reach the threshold for statistical significance in the B2 line. 
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Figure 2-11 (Continued)  
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that this effect is not as robust as the effect on heterochromatin.  Since it has been proposed that MSL 

proteins play a role in activation of autosomal heterochromatin genes (Koya and Meller, 2015), it is 

possible that both the heterochromatin and X-specific effects are due to the UpSET-MSL interaction in 

male cells.  However, we favor a model in which UpSET generally functions to protect heterochromatin 

by restricting active marks in both males and females, but serves an additional role in males to limit the 

MSL complex, keeping it in check to properly tune dosage compensation and MSL activity.   

  

Discussion: 

 

Chromatin and gene expression are intimately linked at the molecular level.  Proteins that create 

and maintain chromatin domains therefore are critical for transcriptional fidelity of gene expression 

programs.  Here we have further investigated one such chromatin protein, the SET-domain containing 

protein UpSET.  Previous characterizations of this protein and its homologs SET3 in yeast and MLL5 in 

mammals have shown that it assembles into a complex with histone deacetylase activity (Pijnappel et 

al., 2001).  Furthermore, the PHD finger of UpSET has been shown to interact with the histone post-

translational modification H3K4me2/3 (Ali et al., 2013, Lemak et al., 2013), which results in recruitment 

of the HDAC complex to transcription start site proximal locations.  Once there, the HDAC complex 

restricts the spread of these activating marks which prevents the improper activation of neighboring 

genes (Kim and Buratowski, 2009, Kim et al., 2012, Rincon-Arano et al., 2012).  Our results are largely 

compatible with this model, yet suggest an additional, Drosophila specific, mode of action (Figure 2-12). 

The original characterization of UpSET in Drosophila made use of a P-element insertion line, 

which left the coding region of the gene intact, which was described as homozygous viable with female 

sterility.  Additionally, many of the experiments were performed in female cultured cells and in female 

tissues.  Interestingly, our lab independently discovered UpSET as one of the most enriched proteins in  



75 
 

 

 

 

 

 

 

Figure 2-12: UpSET: a protein with diverse repressive responsibilities 

The UpSET protein assembles into a complex with histone deacetylase (HDAC) activity.  The exact 

members of this complex are unclear.  Rpd3 and the co-factor Sin3 are candidates that have been 

shown to interact with UpSET (Rincon-Arano et al., 2012), but are not the direct homologs of the 

yeast SET3C (Pijnappel et al., 2001). The HDAC activity opposes run-away over activation of genes by 

limiting the spread of histone acetylation from TSS.  Previous reports identified a role for UpSET in 

silencing of repetitive elements, as well.  We have shown that UpSET-mediated repression has a 

particularly important role on the dosage compensated X chromosome and at heterochromatic 

genes. 
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Figure 2-12 (Continued)  
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crosslinked MSL3 purifications.  This led us to seek whether UpSET plays a role in dosage compensation, 

a male-specific process in Drosophila. 

To our surprise, we found that precise deletion of the upSET locus was lethal in both males and 

females.  That we were able to rescue this lethality with a tagged UpSET transgene suggests that it is due 

specifically to the loss of UpSET.  Furthermore, it suggests that the previously utilized P-element allele 

may be hypomorphic and still provide enough UpSET protein for viability, but then result in maternal 

effect lethality as characterized.  Using our tagged allele we determined the genomic localization of 

UpSET protein in mixed embryos, confirming, while also refining, the previous result for UpSET 

localization to active genes by Dam-ID.  UpSET had been shown to be important for repression of 

repetitive elements, and we observed UpSET to have enhanced binding at genes in heterochromatin 

regions as compared to the autosomes.   

We then created S2 male cell lines that carried upSET mutations that introduce frameshifts to 

the UpSET open reading frame.  The cell culture system proved invaluable for assessing the molecular 

impact of the loss of UpSET.  We observed that loss of UpSET had a profound impact on the state of 

chromatin, which in broad strokes was consistent across all three cell lines.  Consistent with a role 

related to deacetylation, we saw a modest increase in acetylated histone H4 in bulk histones and 

spreading of the MSL-deposited H4K16ac mark on the X chromosome in the only line tested by ChIP-seq 

to date.  Perhaps more interestingly, we found that H3K9me2 levels in bulk histones were reduced in all 

three lines.  ChIP-seq for H3K9me2 likewise showed reduced signal globally, with significant losses 

observed from genic regions of euchromatin.  In addition, our nascent-RNA-sequencing showed 

increases in transcription from heterochromatin regions in all three lines.  These molecular findings 

were further supported by our analysis upSET-mutant flies when we tested the impact of the 

heterozygous DsRed+{ΔupSET} deletion on the position effect variegation phenotype of the wm4 allele.  
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Our findings showed suppressed white variegation, suggesting a loss of heterochromatin stability 

allowing the white locus to become expressed more readily.   

Interestingly, there has long been an as yet unexplained relationship between heterochromatin 

and the X chromosome in Drosophila.  The X chromosome is observed to be less compact in polytene 

chromosome preparations and its morphology is particularly sensitive to mutations in heterochromatin 

components such as Su(var)3-7, Su(var)3-9, and HP1a.  Loss of these core heterochromatin factors leads 

to a swollen X chromosome, whereas the over-expression can lead to enhanced compaction, as 

compared to changes in autosomes.  Furthermore, Jil-1 kinase, which is enriched approximately 2-fold 

on the male X in an MSL-dependent manner, is thought to prevent the spread of heterochromatin by 

catalyzing the H3S10ph modification.  Jil-1 has a complex interplay with heterochromatin components, 

as evidence for phosphorylation of Su(var)3-9 (Boeke et al., 2010) and for a composite H3S10phK9me2 

epigenetic mark (Wang et al., 2014) has been published.  Indeed, using Jil-1 mutant larvae, it has been 

observed that H3K9me2 spreads from pericentric heterochromatin into the euchromatic gene arm, with 

a marked increase on the X chromosome in both sexes (modEncode, unpublished observations).  

Intriguingly this spread appeared to skip over gene bodies, suggesting additional non-Jil-1 mechanisms 

exist for protecting genes from the spread of heterochromatin. 

Differences in experimental methods and in the sex of the cells or tissues used for experiments 

suggest that UpSET serves slightly different, yet essential, roles in the different sexes.  Repression of 

repetitive elements reported in female cells is likely also a role male cells, yet with the functioning MSL 

complex positively influencing the expression of heterochromatin genes, UpSET’s role may be especially 

important to keep this influence in check.  Given the observed MSL-UpSET interaction, we favor a model 

in which the MSL complex physically interacts with UpSET in order to limit acetylation to gene bodies 

and thus fine tune expression levels.  
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The unique function of UpSET in heterochromatin in Drosophila may make sense in terms of 

evolutionary history, since the mammalian homolog MLL5 has been implicated in establishing proper 

DNA methylation, a repressed state that is not found in flies.  However, the exact molecular role for 

MLL5 in this process has not been elucidated (Yun et al., 2014).  One can posit that this derived trait in 

mammals is an extension of the repressive role of SET3 in yeast, with UpSET functioning in an 

intermediate manner.  This expanding alternative repressive role explains how this family of atypical 

catalytically inactive SET-domain proteins has perdured through evolutionary time. 

 

Materials and Methods: 

 

Generating upSET mutant S2 cells and flies 

Mutant S2 cells were generated using the CRISPR/Cas-9 system essentially as described (Housden et al., 

2015).  Guide RNA sequences were obtained from the Drosophila RNAi Screening Center (DRSC)’s sgRNA 

design tool (www.flyrnai.org/crispr2).  Oligonucleotides were ordered from IDT of the appropriate gRNA 

sequence with additional bases to allow for ligation into the BbsI site of the pL018 plasmid (a gift from 

N. Perrimon), which also expresses Cas-9.  S2 cells were transfected using Effectene (Qiagen) using 

360ng of the appropriate pL018 construct and 40ng of an actin::RFP marker plasmid (a gift from T. Wu).  

Four days after transfection, single cells in the top 10% of RFP+ cells (typically ~top3% of total 

population) were sorted by FACS into conditioned media in 96-well plates.  Colony growth from single S2 

cells was observed after 2-3 weeks.  Independent lines were expanded and tested for mutations by 

HRMA (high resolution melt assay) using Precision Melt Supermix (Bio-Rad).  Lines scoring well in the 

HRMA had the gRNA target region amplified by PCR using flanking primers, and the resulting product 

was subcloned into the pCR4Blunt-TOPO vector (Invitrogen).  To identify the molecular lesion, 5 

bacterial colonies per S2 line were sequenced by Genewiz.  Lines with mutations that introduce 

http://www.flyrnai.org/crispr2
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frameshifts or deletions of the start codon and adjacent sequence were used for subsequent 

experiments. 

 upSET directed gRNA sequences were as follows:  

upset1- AACCGAGTCGTGACTGGACATGG.  

upset3- AGGCGCGATGCCGTCTGATTAGG.  

upset5- TGGCCAGGCGCAGTAGTAATAGG.  

upset7- ACAGCAGATCAGCCTACCGCAGG. 

 Mutant flies were generated by injecting gRNA constructs and a homologous recombination 

donor into w; w-{nos-cas9}/CyO embryos (a gift from N. Perrimon, see also (Housden et al., 2014) for 

general guidelines for Drosophila CRISPR/Cas-9).  The gRNA constructs were designed as above and 

oligos were ligated into the pU6-BbsI-chiRNA plasmid (addgene#45946) as described (Gratz et al., 2013).  

The homologous recombination donor was constructed using 1kb of genomic sequence flanking the 5’ 

and 3’ gRNA cut sites inserted into the pDsRed-attP plasmid (addgene#51019) (Gratz et al., 2014), which 

expresses the synthetic marker 3xP3-DsRed in the adult eye.  Adults resulting from the injections were 

outcrossed to yw flies, and their progeny were screened for the fluorescent DsRed marker.  DsRed-

positive progeny were crossed to yw; TM3/TM6 flies to generate balanced stocks of yw; +; 

DsRed+{ΔupSET}/TM3 or yw; +; DsRed+{ΔupSET}/TM6. 

 

Cloning and Transgenesis for the UpSET-BioTAP allele 

 The UpSET-BioTAP allele was constructed using the pRedET recombineering system 

(GeneBridges K002).  The genomic region of upSET was transferred to the pFly (aka pGS-mw) vector and 

injected into flies for site-specific integration at 53B2 on the second chromosome (BestGene stock 

#9736).  The resulting flies, yw; UpSET-BioTAP/UpSET-BioTAP, were crossed into the DsRed+{ΔupSET} 
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background. DsRed+{ΔupSET}-homozygous flies carrying one or two copies of the UpSET-BioTAP allele 

were used for one-step ChIP (see below). 

 Presence of WT upSET or the BioTAP-tagged-upSET transgene was assessed by PCR from 

genomic DNA isolated from 2-3 female flies of the specific genotype.  A 544bp product from WT and a 

1210bp product from the BioTAP-tagged upSET construct are obtained when using the following primer 

pair:  

KAM 201: gctgcacatgtttgatgataagc 

KAM202: gtgcaagctcatactttatgcgc 

 

ChIP-seq from S2 cells 

S2 cell lines for ChIP-seq were crosslinked in culture media with 1.8% formaldehyde for 10min at room 

temperature.  Formaldehyde was quenched by adding glycine to a final concentration of 0.125M.  Fixed 

cells were pelleted at 1500g at 4C and washed with PBS, ChIP Wash A (10mM HEPES, pH7.6, 10mM 

EDTA, 0.5mM EGTA, 0.25% Triton) and ChIP Wash B (10mM HEPES, pH7.6, 100mM NaCl, 1mM EDTA, 

0.5mM EGTA, 0.01% Triton).  Following washing, cells were frozen in liquid nitrogen and stored at -80C.  

After thawing, cells were resuspended in ChIP Wash B and dounced 5-10 strokes to fully resuspend any 

aggregates.  Cells were then thoroughly resuspended in TE buffer, pH8, and 10% SDS was added to 1% 

final concentration for lysis.  Following lysis, chromatin was washed twice with TE, and finally 

resuspended in TE+0.5mM PMSF.  10% SDS was added to a final concentration of 0.1%, and 2mL 

aliquots were made into 15mL polystyrene Falcon conical tubes.  Sonication was done using a Bioruptor 

(Diagenode) on the “high” power setting as 2x10min + 1x4min sessions of 30s on/30s off pulses, with ice 

bath exchanges between sessions.  Following sonication, aliquots were pooled and supplemented 

sequentially with Triton X100 to a 1% final concentration, Sodium-DOC to 0.1% final, and NaCl to 

140mM final.  Debris was removed by centrifugation at 14000g at 4C.  Sonicated chromatin was 
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aliquoted as necessary, frozen in liquid nitrogen, and stored at -80C.  500uL of chromatin was used per 

ChIP, with an additional 100uL chromatin reserved for input.  IPs were done overnight using 3uL of α-

H4K16ac (Millipore 07-329) (Gelbart et al., 2009) or 3uL α-H3K9me2 (abcam 1220).  Immunocomplexes 

were captured with protein-A-agarose for 3hours at 4C.  Bound complexes were washed 5x with RIPA 

(140mM NaCl, 10mM Tris pH8, 1mM EDTA pH8, 1% Triton, 0.1% SDS, 0.1% sodium deoxycholate), once 

with LiCl buffer(250mM LiCl, 10mM Tris pH8, 1mM EDTA pH8, 0.5% NP40, 0.5% sodium deoxycholate), 

twice with TE, and finally resuspended in TE.  Input and IPs were treated for 30min with RNase at 37C, 

then overnight with the addition of proteinaseK and SDS (0.5% final), and crosslinks were reversed for 

6hrs at 65C.  IP samples were supplemented with NaCl to 140mM final, and both IP and input samples 

were extracted with an equal volume of 25:24:1 phenol:chloroform:isoamyl alcohol.  To maximize 

recovery in IPs, the organic fraction was extracted with TEN140 (TE+140mM NaCl) and pooled with the 

initial aqueous phase.  All samples were then extracted with an equal volume of 24:1 

chloroform:isoamyl alcohol, and precipitated overnight at -80C with sodium acetate and ethanol, in the 

presence of glycogen.  The entirety of the precipitated IP-DNA and ~200ng of input DNA were used to 

create high-throughput sequencing Illumina libraries using the NEBNext ChIP-seq kit (NEB 6240).  Prior 

to library amplification, size selection was achieved using a 2% agarose gel (Lonza 50111).  Sequencing 

was performed at the Tufts Genomics Core. 

 

Small scale one-step ChIP-seq from BioTAP-tagged embryos 

To assess the genomic localization of BioTAP-tagged proteins from a small scale of embryos, 

immunoprecipitation using only the proteinA moieties of the tag were performed.  Using a protocol 

essentially described elsewhere (Alekseyenko et al., 2008), 0.1 grams of embryos were collected and 

disrupted using a motorized pestle.  Formaldehyde was added to 1% final concentration and incubated 

for 15min at room temperature.  Following quenching of the reaction with glycine and washing, fixed 
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material was sonicated in RIPA buffer using a Bioruptor, 4 cycles of 30s on/ 30s off on the high setting.  

Sonicated material was supplemented with TritonX-100 to 1%, Sodium DOC to 0.1%, and NaCl to 

140mM, and debris was cleared by centrifugation.  Chromatin was aliquoted and stored at -80C until IP.  

For ChIP, 20-30uL of IgG agarose slurry per IP were washed in RIPA buffer and incubated with chromatin 

overnight.  Bound immunocomplexes were processed for sequencing as described above for ChIP from 

S2 cells. 

 

ChIP-seq analysis 

The adaptor sequences were trimmed with Cutadapt ver. 1.2.1 (Martin, 2011). The reads were aligned 

to the Drosophila  genome (dm3 assembly) using Bowtie ver. 12.0 (Langmead et al., 2009) with a unique 

mapping option (-m 1).  Only uniquely aligned reads were used for the entire analyses. The input 

normalized fold enrichment profiles were generated using get.smoothed.enrichment.mle function of SPP 

R package (Kharchenko et al., 2008) with a step size of 20 bp and Gaussian kernel bandwidth of 150 bp. 

The profiles were normalized by the background scaling method. For metagene plots, the regions in the 

gene body except for 500 bp margins of 5'-end and 3'-end were scaled and averaged after merging two 

replicates. Genes that are larger than 1.5 kb and its distance from the adjacent gene is larger than 1 kb 

were only included in the metagene analysis. To estimate gene expression, RNA-seq samples profiled by 

modENCODE consortium were used for S2 cell and 14-16h embryos (Gerstein et al., 2014).  FPKM = 1 

was used as a threshold for expressed genes. To detect significantly enriched peaks, 

get.broad.enrichment.clusters function of SPP R package was used with a window size of 1 kb and z-

score threshold of 3. The genomic annotation for UpSET and Fs(1)h was performed using CEAS (Shin et 

al., 2009).  For the chromatin annotation, the chromatin segmentations were obtained from the 

previous studies (S2 from (Kharchenko et al., 2011) and embryos from (Ho et al., 2014)). To compare the 

H4K16ac genomic coverage between the mutant and control, significantly enriched regions were 
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detected after subsampling to make the same sequencing depth across samples because the size of 

significantly enriched regions increases for greater sequencing depth (Jung et al., 2014). To test the 

significance of the changes in the H4K16ac genomic coverage, a one sided t-test was used. To compare 

peak breadths between the mutant and control, the fold change in the peak breadth was calculated for 

each overlapped enrichment region of H4K16ac. To access the significance, a paired one-sided Wilcoxen 

rank sum test was used. 

 

Bulk histone purification and mass spec 

Bulk histones were salt-acid extracted from S2 cell lines for analysis by mass spectrometry as described 

(Zee et al., 2016).   

 

Position Effect Variegation of the wm4 allele 

Virgin females of the genotype wm4/wm4; If/CyO were crossed in parallel to males of the test and control 

genotypes at 24°C.  The test genotype was yw/Y; +; DsRed+{ΔupSET}/TM3,Sb.  The control genotype was 

yw/Y; +; TM3,Sb/TM6,Hu,Tb.  Resulting male progeny of these crosses were screened for CyO and sorted 

by the appropriate 3rd chromosome genotypes by balancer chromosome markers.  These flies were 

maintained at 24°C for 3 days, after which variegation of eye pigmentation was assessed. 

 

Nascent-RNA-seq from S2 cells 

Nascent-RNA sequencing was done using a urea-based method similar to NET-seq (Churchman and 

Weissman, 2011, Churchman and Weissman, 2012), and essentially as reported elsewhere (Alekseyenko 

et al., 2015).  In short, 1x107 S2 cells were collected by centrifugation at 300g at 4C, and homogenized in 

CKS buffer + SUPERase•In RNase inhibitor (Ambion AM2696) + ProteaseArrest (G-Biosciences 786-108) 

with 3 strokes through a 25G needle.  Nuclei were collected by centrifugation and resuspended in CF 
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buffer + RNasin.  NUN buffer was added and samples were vortexed ~30s until a wispy, filamentous 

precipitate was apparent.  This precipitate was spun down and washed 3 times with NUN buffer.  

Samples were then treated with proteinaseK in CF buffer + 0.5% SDS at 55C for 30 min.  Samples were 

then passed through a 25G needle 5 times to disrupt the chromatin, and incubated an additional 30 min 

at 55C.  Samples were extracted twice with 25:24:1 phenol:chloroform:isoamyl alcohol, once with 24:1 

chloroform:isoamyl alcohol, and ethanol precipitated overnight in the presence of glycogen (Ambion 

AM9510).  Resulting nucleic acids were treated with RNase-free TURBO DNase (Ambion AM2238) for 30 

min at 37C, with proteinaseK +SDS for an additional 5min at 37C, and then extracted once each with 

25:24:1 phenol:chloroform:isoamyl alcohol and 24:1 chloroform:isoamyl alcohol.  Nascent-RNA was 

ethanol precipitated overnight except without the addition of glycogen.  Illumina sequencing libraries 

were constructed using the NEBNext Ultra Directional RNA Library kit (NEB 7420). 

 

Nascent-RNA-seq analysis 

The reads were mapped as described above. The tag density profiles were generated using 

get.smoothed.tag.density function of SPP R package with a Gaussian kernel of 100 bp and a step size of 

10 bp after library size normalization. To compare the enrichment values between the mutant and 

control, the reads were separated to sense and anti-sense transcripts. The fold change and significantly 

changed regions in transcription between conditions were determined using EdgeR (Robinson et al., 

2010) after TMM (trimmed mean normalization method) (Ross-Innes et al., 2012).  Heterochromatic and 

euchromatic genes were defined using the heterochromatin and euchromatin boundary information for 

each chromosome obtained from a previous study based on H3K9me2 enrichment levels (Riddle et al., 

2011). To access the significance for the portions of up-regulated genes between groups, a bootstrap 

method was used (n=1000).  
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Chapter 3 
Characterization of PRC1 interactors reveals functional link to 

PRC2 or TrxG proteins 
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that led to this collaboration, and cloned several critical constructs.  Fs(1)h BioTAP-XL in S2 cells was a 

collaboration between Hyuckjoon Kang and Kyle McElroy.  LC-MS/MS was performed at the Taplin Mass 
Spectrometry Facility at Harvard Medical School.  Barry Zee provided LC-MS/MS analysis.  Lucy Jung 

performed the bioinformatics analysis of all ChIP experiments.  Kyle McElroy performed all other 
experiments. 
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Abstract 

 

The Polycomb Group are key developmental regulators that form several biochemically distinct 

multiprotein complexes.  Investigation of PRC1 and PRC2 interacting proteins on chromatin using 

BioTAP-XL identified two proteins that may provide insight into the functional crosstalk amongst PcG 

complexes and between the PcG and the Trithorax group.  Subsequent study of Fs(1)h and Scm confirm 

the physical interactions observed by mass spectrometry on chromatin, and further elucidate the roles 

these proteins play in establishing gene expression programs.  We find that the majority Fs(1)h protein is 

involved in the well-characterized role it plays in transcriptional activation.  The Fs(1)h interaction with 

the PcG is specific to PRC1, and the timing and location of these interactions may reveal bivalent states 

on chromatin during the course of development in Drosophila.  The bridging of PRC1 and PRC2 by Scm 

may help to reinforce PcG silencing of key target regions.  Taken together, gene activity fate may be 

dictated by mutually exclusive interaction partners for PRC1. 
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Introduction: 

 

 The Polycomb Group (PcG) are classically defined developmental repressors, first identified in 

Drosophila for their capacity to maintain an epigenetically silenced state.  Subsequent work on these 

genes has shown that they are required for the proper maintenance of gene expression programs, not 

only of developmentally important loci, but hundreds of other sites as well (Negre et al., 2006, Schwartz 

et al., 2006, Tolhuis et al., 2006).  While mutants for PcG genes display similar and stereotypical 

homeotic transformations, the PcG proteins assemble into several distinct multiprotein complexes in 

order to execute gene repression (Figure 1-3) (Simon and Kingston, 2013). 

 These complexes have several different biochemical activities and properties.  The PRC1 

complex contains the subunit Polycomb, whose chromodomain recognizes trimethylated lysine 27 of 

histone H3.  PRC2 contains Enhancer of Zeste, a SET-domain protein, which catalyzes the trimethylation 

of histone 3 lysine 27 (Cao et al., 2002, Czermin et al., 2002, Muller et al., 2002).  The dRing protein is 

common to both PRC1 and dRAF complexes, yet appears to only have H2A-directed ubiquitylization 

activity in the context of the latter (Lagarou et al., 2008).  The recently characterized complex PR-DUB 

removes this ubiquitin mark, though the requirement for ubiquitin cycling remains unclear (Schwartz 

and Pirrotta, 2014).  PhoRC has DNA-specific binding capability, but in general is not sufficient in and of 

itself to recruit the other complexes (Klymenko et al., 2006). 

 While the biochemical activities each complex possesses is fairly well characterized, how exactly 

they function together to identify target sites and then the molecular cascade to establish silencing are 

not clear (McElroy et al., 2014).  To try to identify key proteins that may assist the PcG in doing so, 

Hyuckjoon Kang, a postdoc in the lab, BioTAP-tagged Pc and E(z) subunits as representatives for PRC1 

and PRC2, respectively.  His proteomic analyses of Pc and E(z) BioTAP-XL experiments in transgenic 

embryos confirmed that PRC1 and PRC2 are largely distinct complexes at the protein level (Figure 3-1A),  
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Figure 3-1: Pc and E(z) BioTAP suggest PRC1 and PRC2 are largely distinct and reveal interesting novel 

interactions   

A) Summary of total peptides recovered by BioTAP-XL from Drosophila embryos for PcG proteins in 

Pc (PRC1) and E(z) (PRC2) experiments. PRC1 and PRC2 are schematized and the BioTAP-tagged 

subunit is indicated. There is only low level recovery for subunits of the other complex. Figure 

adapted from Kang, et al, 2015. 

B) Top 10 most enriched proteins from the Pc BioTAP-XL experiments. Total peptide counts for Pc, 

E(z), MSL3, and in embryo input samples are given.  The recovery of Fs(1)h in the Pc pulldown 

and Scm in the E(z) pulldown were unexpected, and led to our follow-up experiments. 
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Figure 3-1 (Continued) 
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even though they colocalize extensively throughout the genome (Jung et al., 2016, Kang et al., 2015).  In 

addition, when examining the proteins that were strongly copurified with Pc and E(z), two stood out in 

particular (Figure 3-1B).   

The first, in the Pc pulldown, was the most strongly co-purified non-PcG protein, and was the 

product of the Female sterile (1) homeotic gene.  This gene is the Drosophila version of the well-

characterized double bromodomain protein Brd4, a known transcriptional activator and member of the 

Trithorax group.  We were puzzled as to why the members of these seemingly diametrically-opposed 

chromatin groups would associate, and while we were confident that the interaction was real since it 

had also been identified by another group using an orthogonal proteomic technique (Strubbe et al., 

2011), we undertook experiments to further characterize the nature of this interaction.  We utilized 

BioTAP-tagged Fs(1)h constructs to confirm the PRC1-Fs(1)h reciprocal interaction and identify the 

breadth of Fs(1)h protein interactions.  I also employed recombinant protein expression to provide 

evidence that Fs(1)h and PRC1 physically interact in a specific manner.  This work is ongoing and will be 

incorporated into a future manuscript co-authored by HJ Kang and L Jung. 

The second striking result was that in the E(z) pulldown, the Scm protein, a known member of 

PRC1, was purified at a high level.  In the original characterization of Scm, it was noted that it associates 

with PRC1 at a substoichiometric ratio, suggesting Scm is not always with PRC1 (Klymenko et al., 2006, 

Ng et al., 2000, Peterson et al., 2004, Saurin et al., 2001).  We reasoned that perhaps Scm might link 

PRC1 and PRC2, and I performed coimmunoprecipitations using recombinant proteins to confirm that 

Scm and PRC2 could physically interact.  Our work on Scm has been successfully published in (Kang et 

al., 2015).   

The work presented here explores two previously underappreciated facets of the molecular 

underpinnings of the PcG, which may shed light onto the mechanisms by which the PcG finds its 

appropriate targets during development and then initiates the maintenance of gene silencing.  Both of 
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these mechanisms appear to require the coordination of many chromatin-associated multiprotein 

complexes, revealing how complex the interactions within the nucleus must be to properly maintain 

gene expression programs, and thus, cell identity. 

 

Results: 

 

BioTAP-tagging may allow the isoform-specific study of Fs(1)h  

In order to test the validity of the PRC1-Fs(1)h interaction, Hyuckjoon Kang cloned the BioTAP 

tag into an Fs(1)h genomic transgene.  The N-terminal BioTAP tag was placed just upstream of the start 

codon.  The Fs(1)h gene produces several variant transcripts, which lead to two types of protein 

isoforms: a short form consisting of ~1000 amino acids containing both bromodomains and an extra 

terminal domain, and a long form consisting of ~2000 amino acids containing the entirety of the short 

form plus an additional carboxy-terminal motif (CTM).  The placement of the N-terminal BioTAP tag 

should allow the expression of both the long and short isoforms carrying the amino-terminal BioTAP tag.  

The C-terminal BioTAP tag replaced the stop codon of the long isoform, and is competent only for the 

tagging of the long form (Figure 3-2A,B).  When HJ Kang transfected these constructs into Drosophila S2 

cells, and made nuclear and cytoplasmic extracts, it was observed that while the C-terminal tag 

appropriately tagged only the long form of Fs(1)h, the N-terminal tag appeared to only produce the 

short form of Fs(1)h (Figure 3-2C).  This unexpected result for the Western Blot suggested that our 

tagging had created a method by which the two isoforms could be studied individually, since it has been 

reported that the long and the short forms may have unique functions. 

 

BioTAP-tagged Fs(1)h isoforms form nuclear speckles 
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Figure 3-2: BioTAP-tagging of Fs(1)h may allow for isoform specific study 

A) Amino- and carboxy-terminal BioTAP tags were cloned into an Fs(1)h genomic transgene.  The 

placement of the tags should allow the N-terminal construct to express both the long and short 

forms of Fs(1)h, whereas the C-terminal construct can express only the tagged long version.  

Fs(1)h has two bromodomains (orange) and an extra terminal domain (green), which are 

common to both proteins. 

B) Insertion locations of the N- and C-BioTAP tags in the genomic constructs superimposed over 

the Fs(1)h genomic locus with annotated transcripts. 

C) Western blot for the proteinA moieties of the BioTAP tag from stably transfected S2 cells.  

Surprisingly, the N-BioTAP transgene appeared to only express the short form of Fs(1)h. 
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Figure 3-2 (Continued) 
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 To determine whether the localization of the N- and C-terminal tagged fusion proteins differed, 

potentially reflecting alternate functions, I employed immunofluorescence using peroxidase-anti-

peroxidase (PAP) to detect the tag in S2 cells.  Both N- and C-terminal tags resulted in proteins enriched 

in the nucleus, as observed by Western blot (Figure 3-3).  At the resolution of the single nucleus, I was 

unable to conclude that there were any differences in localization.  Both preparations display numerous 

foci or speckles in the nucleus.  In general, it appeared that a higher percentage of cells had robust 

expression of the N-terminal construct, which could reflect differential success of the transfection and 

selection steps to generate the stably expressing line.  Alternatively, the different locations of the tag 

could reflect something about the transcription of the Fs(1)h locus, though we did not probe this more 

directly.  The numerous foci and granular nuclear appearance of the tagged Fs(1)h staining is 

reminiscent of the mammalian Brd4 subnuclear localization, which is also observed to have a focal 

pattern (Dow et al., 2010, Farina et al., 2004). 

 

BioTAP-XL ChIP-seq for Fs(1)h reveals few differences between N- and C-terminal tag 

 We sought to refine the localization data from the level of immunofluorescence to the level of 

the genome-wide binding pattern using BioTAP-XL.  Using S2 cells stably expressing either the N- or C-

terminal BioTAP tag, we prepared chromatin according to the BioTAP-XL procedure (Alekseyenko et al., 

2015).  We split each sample following tandem affinity purification, and isolated the 

immunoprecipitated genomic DNA from one quarter of the sample.  Illumina libraries were prepared 

from this material and submitted for next-generation sequencing.  The BioTAP-tagged Fs(1)h samples 

display a high degree of concordance with each other, suggesting that any isoform specific functions 

might not greatly affect the overall genomic localization (Figure 3-4).   

We also compared the BioTAP-tagged Fs(1)h patterns to the genomic localization identified 

using ant-Fs(1)h antibodies for ChIP-seq experiments by our lab (Hyuckjoon Kang) and by the Paro lab  
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Figure 3-3: BioTAP-tagged Fs(1)h form nuclear speckles in S2 cells 

A) Immunofluorescence resulting from peroxidase-anti-peroxidase (PAP) in untransfected S2 cells.  

PAP recognizes the proteinA moieties of the BioTAP tag.  Some background staining of the 

cytoplasm is observed. DNA is counterstained with Hoechst. 

B) Immunofluorescence in N-BioTAP-Fs(1)h expressing cells. Similarly to mammalian Brd4, Fs(1)h 

immunofluorescence suggests a granular distribution of the protein within the nucleus. 

C) Immunofluorescence in Fs(1)h-C-BioTAP expressing cells.  The overall level of expression is 

somewhat lower than in (B), but the nuclear foci are similar. 
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Figure 3-3 (Continued)   
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Figure 3-4: BioTAP-tagged Fs(1)h genomic localization is consistent with previous reports 

A) A representative 62kb genome browser view of Chr2L.  Both N- and C-terminal BioTAP 

constructs produce a highly concordant profile (dark blue tracks).  For comparison, antibody 

ChIP-seq tracks from our lab and the Paro group are also displayed (light blue).  There is strong 

agreement across all four tracks. 

B) A representative 293kb genome browser view of the X chromosome.  As in (A), there is strong 

overlap between the two Fs(1)h BioTAP constructs and antibody ChIP-seq experiments. 

C) Kharchenko et al, (2011) used histone post-translational modifications and machine learning to 

identify 9 different classes of chromatin signatures (upper left panel of heat map).  The upper 

middle panel shows the enrichment of chromosomal proteins by chromatin signature, and the 

further right panel shows the enrichment of genome features by chromatin signature.  BioTAP-

tagged Fs(1)h ChIP-seq peaks largely fall into the active signatures, with the highest enrichment 

of the transcriptional elongation signature (state 2) and active promoter/TSS-proximal regions 

(state 1).  
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Figure 3-4 (Continued)
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(publically available).  The overall patterns corresponded reasonably well, especially in regions of strong 

Fs(1)h enrichment (Figure 3-4B), and Fs(1)h binds primary to regions enriched for active chromatin 

marks (Kharchenko et al., 2011) (Figure 3-4C).  The BioTAP Fs(1)h experiments appeared to have more 

signal outside these regions than the antibody ChIP-seq experiments, suggesting that the strength of the 

association of Fs(1)h at these sites may be weaker and thus only captured by the BioTAP-XL procedure. 

It has been reported that the long form of Fs(1)h may interact with insulator proteins, whereas 

the short form does not (Kellner et al., 2013).  In order to see if there was evidence for this in our ChIP-

seq data, I visually compared the N- and C-terminally tagged Fs(1)h ChIP-seq patterns to the calculated 

enriched regions for CTCF, BEAF-32, GAF, Mod(mdg4), and Su(Hw) using both ChIP-chip and ChIP-seq 

data available from modEncode (datasets 3281, 2638, and 2639 for CTCF; 21 for BEAF-32; 23 for GAF; 24 

for Mod(mdg4); and 27 for Su(Hw)).  While there are regions where the Fs(1)h-L ChIP-seq track shows 

some modest enrichment compared to Fs(1)h-S at regions of multiple insulator binding (see * in Figure 

3-5), the majority of individual insulator and multiply bound sites either are devoid of Fs(1)h binding or 

have similar levels in both the N- and C-terminal (S and L forms, respectively) tagged Fs(1)h experiments 

(see † in Figure 3-5).  While the lack of a strong overlap or enrichment over multiply-bound insulator 

sites does not preclude the possibility of long form Fs(1)h-insulator protein interactions, it does suggest 

that any such interaction is not likely to be the primary role of Fs(1)h long form. 

 

Fs(1)h BioTAP-XL reciprocally co-purifies PRC1 in addition to expected interactions with co-activators 

We treated the remainder of the affinity-purified material from the BioTAP-XL experiment with 

trypsin, purified the resulting peptides, and identified the proteins copurified with N- and C-terminally 

tagged Fs(1)h by LC-MS/MS.  The vast majority of highly enriched proteins have functions related to 

transcriptional activation and maintenance of the active state (Table S1).  This makes a great deal of 

sense, since Fs(1)h, and TrxG proteins in general, are well known for their ability to maintain gene  



106 
 

 

 

 

 

 

Figure 3-5: Weak evidence for a Fs(1)h-L-specific colocalization with insulators 

A) An 80kb window of Chr3L. Peak calls were downloaded from modEncode for ChIP-chip 

experiments for CTCF, BEAF-32, GAF, mod(mdg4), and Su(Hw), and for ChIP-seq experiments for 

CTCF.  These were then visually compared to the N-BioTAP-Fs(1)h and Fs(1)h-C-BioTAP tracks.  

While there were cases (*) where the Fs(1)h-C-BioTAP transgene showed enrichment over 

multiply bound insulator sites, many site (†) either lack any enrichment or have similar 

enrichment between N- and C- BioTAP-tagged Fs(1)h. 

B) A 73kb window of ChrX, as in (A). 
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Figure 3-5 (Continued)  
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expression.  Unlike the majority of TrxG proteins, however, Fs(1)h has not been found to be a 

constitutive member of any stoichiometric multi-protein complexes.  Our proteomics result suggests 

that Fs(1)h does in fact interact with many other TrxG proteins (Table 3-1), but given the overall levels of 

enrichment across the different TrxG complexes, I would hypothesize that these interactions exist as a 

more transient association than a bona fide biochemically stable entity. The molecular model for Fs(1)h 

function is largely based off of the work of the mammalian field in studying the homolog Brd4.  Like 

Brd4, Fs(1)h has two bromodomains and an extra terminal (ET) domain, with an additional C-terminal 

motif (CTM) in the long form.  The model for Brd4 function is that the two bromodomains mediate the 

engagement with chromatin by recognition and binding of acetylated lysines on histone N-terminal tails.  

Acetylation marks are established by other enzymes in the active context of chromatin, and Fs(1)h/Brd4 

binding facilitates active transcription by recruitment of several pro-transcription complexes, such as the 

Mediator complex and P-TEFb.  It has also been reported that Brd4 is an atypical kinase which directly 

targets the PolII CTD (Devaiah et al., 2012), though evidence for this in Drosophila has not been shown. 

Our proteomics does indeed lend support for Fs(1)h primarily functioning in transcriptional 

activation.  The Mediator complex is well represented in the data, with 25 subunits identified.  The 

strongest of these is MED1, which is part of the middle module of Mediator; there does not seem to be 

any overarching preference for one module or another, however, suggesting Fs(1)h may have multiple 

modes of interaction with Mediator.  We also recover both the catalytic subunit of P-TEFb, CDK9, and 

the regulatory subunit, cyclin T (CycT).  Some very elegant biochemistry previously has shown that as 

much as 50% of cellular P-TEFb is associated with Brd4 in mammalian tissue culture cells via a Brd4/CycT 

interaction (Yang et al., 2005).  The specificity of the Brd4/CycT interaction appears to also be the case in 

Drosophila, as CycT is one of the highest enriched proteins in the pulldowns and more strongly enriched 

than CDK9.  Interestingly, of the other two complexes that have a role in the transition to productive  
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Table 3-1: Fs(1)h strongly enriches for proteins related to its co-activator function 

Total peptides recovered in the N-BioTAP-Fs(1)h, Fs(1)h-C-BioTAP, or S2 input samples are listed.  

Selected lists for TrxG members, Mediator complex members, and transcriptional regulatory factors 

PTEF-b, NELF, and DSIF are shown.  The module within Mediator complex is also listed for each 

subunit and Fs(1)h shows no preference for any one module.   
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elongation, only one is found in the Fs(1)h data.  We recovered all four subunits of the NELF complex, 

which is phosphorylated by P-TEFb to allow for pause release into elongation (Yamaguchi et al., 2013).  

The DSIF complex (Spt4/Spt5) is also a P-TEFb target, yet we only lowly enrich Spt5 over input and Spt4 

is absent.  Why Fs(1)h might mediate the targeting of one pausing factor, but not the other, is unclear.   

While the majority of highly enriched proteins have to do with the co-activator function of 

Fs(1)h, we were still able to identify PRC1 components and insulator proteins in the Fs(1)h pulldowns.  

Thus, by reciprocal copurification our data support that Fs(1)h interacts with the subunits of PRC1 (Table 

3-2).  The proteomic data suggests the PcG-Fs(1)h interaction is highly specific for the PRC1 complex, 

since the PRC2 complex components are absent except for the Jarid2 subunit.  Since Jarid2 is a 

substoichiometric subunit of PRC2, it is possible that a Jarid2-Fs(1)h interaction occurs outside of the 

context of the intact PRC2 complex.  Whether this has functional relevance in vivo is being explored 

further in the lab. 

Several insulator proteins are found in the Fs(1)h lists, but do not have a bias toward the C-

terminal (long form) list (Table 3-3).  The identified insulators in order of enrichment are Mod(mdg4), 

BEAF-32, CP190, and Su(Hw).  CP190 and Su(Hw) were recovered at levels below input and furthermore, 

CTCF and GAF were not identified. Mod(mdg4) is the strongest candidate for functional interaction given 

its highest recovery of this set of insulators.  Mod(mdg4) was previously shown to co-immunoprecipitate 

the long form of Fs(1)h (Kellner et al., 2013).  However, in the same experiment, GAF, Su(Hw), and 

CP190 also displayed this property, and our proteomic data do not indicate that these interactions are 

particularly strong.  Taken together with the above ChIP-seq visual analysis, there may indeed be some 

weak evidence for an Fs(1)h long form-specific interaction with insulators, but again likely does not 

constitute a primary role for this protein. 

 

Constructs do no provide isoform specific pulldown 
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Table 3-2: Fs(1)h BioTAP-XL experiments specifically recover PRC1 

Total peptides recovered in the N-BioTAP-Fs(1)h, Fs(1)h-C-BioTAP, or S2 input samples are listed for 

components of PRC1 and PRC2.  Validating the recovery of Fs(1)h in the PRC1 BioTAP-XL 

experiments, PRC1 is observed to be recovered in both Fs(1)h experiments.  This interaction appears 

to be highly specific to PRC1, since PRC2 subunits are largely not recovered. 
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Table 3-2 (Continued)  
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Table 3-3: Low recovery of insulator proteins by Fs(1)h BioTAP-XL experiments 

Total peptides recovered in the N-BioTAP-Fs(1)h, Fs(1)h-C-BioTAP, or S2 input samples are listed for 

several of the insulator proteins.  With the exception of Mod(mdg4) and BEAF-32, insulator proteins 

are not recovered or observed at counts lower than in input samples.  Any insulator-related 

interaction is a minor function of Fs(1)h in comparison to its role in transcriptional activation 

(compare counts to Table 3-1, Table S1) 
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Table 3-3 (Continued)  
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 Despite the Western blot suggesting that the N-terminal tagged construct solely expressed the 

short form of Fs(1)h, the proteomic data strongly suggests this is not the case.  When we looked at the 

peptide coverage over the length of the Fs(1)h protein, it became clear that the N-terminal construct 

purified many peptides that would only be found in the long form of the protein (Figure 3-6).  However, 

the C-terminal tag (long-form only) had relatively more representation of this region than the short 

form.  One possibility is that the N-terminal construct is competent to express tagged long-form at a low 

level that was not clear on the Western blot.  Alternatively, since Brd4 is known to dimerize, perhaps the 

lower levels of long-form specific peptide observed in the N-terminal construct experiment represent 

those peptides identified through tagged-short form Fs(1)h to native long form Fs(1)h interactions.   

The reason for the seemingly isoform-specific Western blot (Figure 3-2C) remains a mystery, but 

when I look at the domain architecture of the FlyBase curated transcripts, I would offer the following 

speculation.  Of the 8 annotated transcripts, 6 code for the short form, while 2 code for the long form 

(Figure 3-2B).  Of the 6 short form transcripts, many share the same 3’ UTR, but have variable 5’ UTRs.  

In fact, for all short form transcripts, the 5’ UTR begins much further upstream than the 5’ UTR of the 

two long form transcripts.  By adding in the BioTAP tag at the 5’ end, perhaps we’ve mimicked a more 

distal transcriptional start site, which might bias the synthesis of short-form transcripts over long-form 

transcripts.   

 

Confirmation of the Fs(1)h-PRC1 interaction using recombinant protein expression 

While we did specifically affinity purify PRC1 components with Fs(1)h (as compared to PRC2 

components), the low level provided impetus for us to confirm the interaction using an orthogonal 

technique.  To do so, I turned as before to recombinant protein expression in Sf9 cells using the 

Baculovirus system.  I obtained pFastBac constructs for the four PRC1 components or Baculoviral 

aliquots for the core four PRC2 components, all generously provided by the Kingston lab (MGH).  In  
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Figure 3-6: Fs(1)h long form is relatively enriched in C-terminal pulldown, but not absent from N-

terminal pulldown 

Histogram for the peptide counts (y-axis) obtained per unique peptide along the length of the Fs(1)h 

protein (x-axis).  Black vertical bar indicates end of Fs(1)h short form (peptides from the right can be 

recovered from Fs(1)h long form proteins only).  While long form-specific peptides are enriched in 

the C-terminal BioTAP-XL experiment relative to in the N-terminal BioTAP-XL experiment, they are 

not absent from the N-terminal experiment.  This suggests that the construct may indeed direct the 

synthesis of N-terminally tagged long form protein, or that through dimerization native long form 

protein is recovered. 
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order to express Fs(1)h, my collaborator, HJ Kang cloned the cDNA of Fs(1)h-S into the pFastBac 

backbone.  I then made Baculoviruses for PRC1 and Fs(1)h, and amplified all viruses in Sf9 cells.   

I then co-infected Sf9 cells with a variety of viruses to express the following combination of 

proteins: Fs(1)h alone (negative control), Fs(1)h and PRC1, Fs(1)h and PRC2 (non-specific control).  The 

PSC and ESC subunits of PRC1 and PRC2, respectively, were Flag tagged in these experiments to facilitate 

purification.  I made nuclear extracts from the infected cells, and incubated extracts with anti-Flag resin 

to immunoprecipitate the PcG complexes.  I washed the immunocomplexes with a stringent salt series 

(2M KCl max) and eluted bound complexes using Flag peptide (Figure 3-7).  I then assessed protein 

contents of the elutions by silver staining of SDS-PAGE gels and by Western blotting.  If Fs(1)h interacted 

with the PcG complex, it too would be observed in the eluate.  I observed that in Flag elutions from 

Fs(1)h-only pulldowns, there was indeed some background binding of the Fs(1)h protein evident by a 

faint ~150 kD band (Figure 3-8A).  This band was much more intense in the PRC1+Fs(1)h elutions.  By 

silver stain it was also possible to identify the four recombinant PRC1 proteins (Flag-tagged PSC FPSC], 

Ph, Pc, and dRING), validating that the complex is assembled.  Similarly, in the PRC2+Fs(1)h elutions, the 

assembly of PRC2 complex (Suz12, E(z), NURF, and Flag-tagged ESC [F-ESC]) was strongly evident (it 

should be noted that FESC and NURF bands comigrate).  In the PRC2+Fs(1)h elutions, the putative Fs(1)h 

band was not strongly present, similar to the Fs(1)h-only level.  There is, however, a more intense band 

in the similar region, but I contend it is clearly a different band.   

To confirm the putative Fs(1)h band is in the Fs(1)h-PRC1 pulldown only, we probed a Western 

blot with anti-Fs(1)h antibody.  Whereas Fs(1)h was expressed at similar levels in the PRC1 and PRC2 

coexpression extracts (and more highly expressed in the Fs(1)h alone extract), there was strong signal in 

the PRC1+Fs(1)h elution only (Figure 3-8B).  To verify the efficiency of Flag-peptide-mediated elution, we 

also boiled the post-elution bead resin.  We observed no additional Fs(1)h bound to the resin in the 

Fs(1)h or PRC2+Fs(1)h, but a weak signal in the PRC1+Fs(1)h lane, suggesting incomplete elution from  
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Figure 3-7: Schematic for testing for an interaction between Fs(1)h and PcG proteins 

A) Purification scheme.  Nuclear extracts were prepared from Sf9 cells co-infected by the 

appropriate Baculoviruses.  Proteins were immunoprecipitated using anti-Flag resin.  The bound 

complexes were washed with a series of buffers with increasing KCl salt.  Bound complexes were 

eluted in 300mM KCl with 0.4mg/mL Flag peptide.  Input and elution fractions were analyzed by 

silver stain and Western blot (WB), as indicated. 

B) To test for the interaction between Fs(1)h and PRC1, infected nuclear extracts were prepared 

for Fs(1)h-only, Fs(1)h coexpressed with PRC1, and Fs(1)h coexpressed with PRC2.  If the Fs(1)h-

PRC1 interaction is specific, Fs(1)h should only be recovered in the Flag immunoprecipitation 

when co-expressed with PRC1. 
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Figure 3-7 (Continued) 
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Figure 3-8: Recombinant Fs(1)h does specifically interact with recombinant PRC1 in Sf9 nuclear extracts 

A) Assembly of PRC1 and PRC2 were confirmed by silver staining.  All four members of each core 

complex are recovered in the appropriate pulldowns.  The putative Fs(1)h band is observed 

weakly when expressed alone or with PRC2, but is strongly recovered in the PRC1 IP. 

B) Anti-Fs(1)h Western blots from input and IP samples show that Fs(1)h is co-immunoprecipitated 

specifically by PRC1. 

C) Full Western blot image from B, along with boiled bead samples to assess extent of elution by 

Flag peptide.  While Flag elution is incomplete, there is no background binding of un-eluted 

Fs(1)h observed on the beads in the Fs(1)h only or PRC2+Fs(1)h samples. 
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Figure 3-8 (Continued) 
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the resin.  I conclude from this experiment that the Fs(1)h interaction with PRC1 is both real and highly 

specific to PRC1 amongst the PcG complexes.  These results will be incorporated for publication into a 

future manuscript co-authored by HJ Kang and L Jung. 

 

Scm is a shared subunit between PRC1 and PRC2 

 One conundrum surrounding Sex-comb on midleg (Scm) is that it has a strong homeotic 

phenotype, much akin to mutations of core members of PRC1 and PRC2, yet, Scm was known only to be 

a substoichiometric member of PRC1.  When HJ Kang identified Scm, but not other PRC1 subunits, in the 

E(z) (PRC2) BioTAP-XL proteomics experiments, it immediately lent itself to follow-up.  Perhaps Scm 

might be a functional bridge between PRC1 and PRC2 to coordinate these complexes on chromatin and 

maintain silent domains.  HJ Kang reciprocally BioTAP-tagged Scm, and observed that both PRC1 and 

PRC2 subunits were recovered in the BioTAP-XL proteomics, with no apparent preference for either 

complex.  HJ Kang also identified numerous other repressive complexes (NCoR, LINT).  HJ Kang proposed 

a model in which Scm is highly important during the course of development for the coordination of not 

only PRC1 and PRC2, but also other repressive complexes, to erase active marks and establish silenced 

domains.   

 In order to test this model, I sought to show that Scm could physically interact with PRC2 using 

recombinant proteins.  Scm had not previously been identified in biochemical purifications of PRC2, so it 

was unknown whether this interaction would even occur using recombinant proteins outside of the 

chromatin context.  Joon cloned Scm into the pFastBac vector and I made Scm-expressing Baculovirus.  I 

employed the PRC2 viral stocks as above, and coexpressed Scm with PRC2 or expressed Scm alone 

(Figure 3-9).  I once again confirmed the assembly of PRC2 by silver staining (Figure 3-10A).  

Unfortunately, the similar molecular weights of Scm and Su(z)12 made it difficult to unambiguously 

identify each band on the silver stain, though I would argue that the differences in silver stain intensity  
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Figure 3-9: Schematic for testing for an interaction between Scm and PRC2 

A) Purification scheme.  Nuclear extracts were prepared from Sf9 cells co-infected by the 

appropriate Baculoviruses.  Proteins were immunoprecipitated using anti-Flag resin.  The bound 

complexes were washed with a series of buffers with increasing KCl salt.  Bound complexes were 

eluted in 300mM KCl with 0.4mg/mL Flag peptide.  Input and elution fractions were analyzed by 

silver stain and Western blot (WB), as indicated. 

B) To test for the interaction between Scm and PRC2, infected nuclear extracts were prepared for 

Scm-only and Scm with PRC2.  If Scm interacts with PRC2, it would be recovered when co-

expressed. 

  



126 
 

Figure 3-9 (Continued) 
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Figure 3-10: Recombinant Scm does interact with recombinant PRC2 in Sf9 nuclear extracts 

A) Assembly of PRC2 was monitored by silver staining.  Bands corresponding to the four core 

members of PRC2 were observed (NURF and F-esc comigrate).  Unfortunately, the similar 

molecular weights of Su(z)12 and Scm made it difficult to conclude whether Scm was recovered. 

B) Western blotting for Scm shows that Scm is strongly co-purified by PRC2. 
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between the upper and lower portions of the Scm/Su(z)12 band suggest that at least two proteins are 

present.  For unambiguous identification of the Scm protein, we probed a Western blot using anti-Scm 

(Figure 3-10B).  It was clear from the Western blot that Scm did in fact interact with PRC2.  I also boiled 

the post-Flag eluted beads, and as was the case for Fs(1)h, observed incomplete elution from the beads, 

in which Scm was only recovered where PRC2 was present. 

 For the Fs(1)h recombinant protein interaction experiment, PRC2 functioned as a non-specific 

control.  That is, not observing Fs(1)h in the PRC2+Fs(1)h elution supported the specificity of the Fs(1)h-

PRC1 interaction, as compared to the argument that Fs(1)h would interact with any protein already 

stuck to the Flag resin.  To perform a similar experiment, I co-expressed Scm with Flag-tagged MCM3 (F-

MCM3), another protein I was working with (see Appendix 1).  The Baculovirus expressing MCM3 also 

co-expressed MCM5, which serves as an internal positive control for F-MCM3 interaction competence.  I 

observed that Scm was co-immunoprecipitated only at background levels by F-MCM3, similar to the 

level seen in Scm-only extracts by silver stain (Figure 3-11A).  F-MCM3 was able to pulldown its bona 

fide partner MCM5, at a roughly stoichiometric level.  In this same experiment I co-expressed F-ESC with 

Scm and observed that Scm was still affinity purified in this case.  This was very clear in the silver stain, 

but perhaps even more striking in the anti-Scm Western blot (Figure 3-11B).  This suggests that an intact 

PRC2 complex is not needed to interact with Scm, and that the PRC2-Scm interaction may be mediated 

by the Esc subunit.  Further testing of each pairwise interaction between Scm and PRC2 complex 

subunits would be needed to conclude this is the case.  

 

Discussion: 

 

In addition to my focus on the MSL complex (Chapter 1), I enjoyed a productive collaboration 

with HJ Kang on PcG interactions.  The main conclusion from my work in this collaboration is that the  
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Figure 3-11: The Scm-PRC2 interaction is likely mediated at least in part through ESC 

A) In order to test whether Scm would non-specifically interact with any Flag-tagged protein, Scm 

was co-expressed with Flag-MCM3.  The Flag-MCM3 virus also expresses MCM5, which should 

be recovered.  Silver staining of elution fractions suggested that Scm was recovered at similar 

levels in the Scm-only and Scm+F-MCM3/MCM5 experiment, suggesting the observed 

interaction in Figure 10 is specific to PRC2.  Furthermore, co-expression of Flag-Esc with Scm 

also recovered Scm protein, suggesting that the Scm-PRC2 interaction is mediated at least in 

part by Esc. 

B) Western blotting confirmed the silver stain result and expression of Scm protein in input 

fractions. 
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interactions that occur between chromatin-bound complexes are more extensive than previously 

appreciated.  The use of the BioTAP-XL technique identified several surprising potential interactions 

between the two major PcG complexes and other proteins, and I was able to test some of these 

interactions using recombinant protein expression and co-immunoprecipitation.  In additional follow-up 

studies, I further explored the interactome and genome localization of the TrxG protein, Fs(1)h.  Based 

on the proteomic work, we saw that the majority of Fs(1)h protein is likely to be involved in the 

expected transcriptional co-activator function, whereas the Fs(1)h-PRC1 interaction is likely to be only at 

a select subset of loci. 

The implications of the Scm-PRC2 interaction may be profound.  The recombinant protein 

interaction experiments suggest that Scm can interact with the core of PRC2 without additional 

accessory factors, and I observed subsequently that Scm may in fact interact with Esc, which is an 

obligate cofactor for E(z) methyltransferase enzymatic function.  The intimacy of the Scm interaction 

with the PRC2 catalytic core led us to explore whether Scm gene function in the fly was necessary for 

the proper patterning of H3K27me3.  On polytene chromosomes, we observed redistribution of 

H3K27me3 in Scm-depleted conditions, suggesting that Scm may have a role in reinforcement of PcG-

silenced chromatin regions (Kang et al., 2015). 

In the mammalian field, especially in stem cells, genomic regions that carry both active and 

repressive chromatin proteins and histone PTMs have been identified (Harikumar and Meshorer, 2015, 

Voigt et al., 2013).  These regions, often termed bivalent or poised due to the coexistence of opposing 

marks, have not been characterized in Drosophila.  The co-localization and physical interaction between 

PRC1 and Fs(1)h suggest that these states may transiently exist during the course of development in 

Drosophila as well.  An intriguing possibility that we are exploring is whether the presence of Scm, which 

we have shown tracks extremely well with H3K27me3 (Jung et al., 2016, Kang et al., 2015), is indicative 

of PcG-mediated silencing, whereas PRC1 presence alone does not specify this fate.  Taken together, 
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these data suggest a model in which the mutual exclusivity of Scm vs Fs(1)h and other co-activators for 

PRC1 interaction may determine whether a region is fated for activation or repression (Figure 3-12).  

Along with HJ Kang and L Jung, we are delving deeper into the interactions that may help to determine 

these fate-choice decisions. 

 

 

Materials and Methods: 

 

Cloning 

BioTAP-tagged Fs(1)h was generated using recombineering as in Chapter 2.  Both N- and C-terminal 

constructs were generated.  Baculoviral constructs for the recombinant expression of Fs(1)h and Scm 

were cloned into pFastBac1 using traditional restriction enzyme cloning methods and the appropriate 

cDNA.  Constructs for PRC1 components were a kind gift from the Kingston lab (MGH). 

 

Western Blotting 

Crude nuclear extracts (as in Figure 3-2) were generated using hypotonic lysis of cells, with the 

supernatant as the crude cytoplasmic extract.  4-12% Bis-Tris acrylamide gradient gels were used to 

resolve proteins, and proteins were transferred to nitrocellulose membranes using the Invitrogen Mini 

Transfer kit.  BioTAP-tagged Fs(1)h was detected using peroxidase-anti-peroxidase (PAP), which 

recognizes the proteinA moieties of the BioTAP tag, used at a dilution of 1:1000.  Anti-Fs(1)h (1:1000) 

was a kind gift from I. Dawid.  Anti-Scm (1:500) was a kind gift from J. Simon. 

 

Immunofluorescence 
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Figure 3-12: Mutually exclusive interactions may dictate gene activity fate 

During the course of development, association of Fs(1)h and PRC1 may poise genes for proper 

induction kinetics.  As other interactions occur on chromatin, either Fs(1)h or PRC1 is evicted from 

sites allowing for either robust repression or activation of genes. 
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Figure 3-12 (Continued)  
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Immunofluorescence in S2 was performed essentially as described (Fanti et al., 2008), omitting the 

flash-freezing of slides.  PAP (1:100) was used to detect the BioTAP tag along with anti-Rabbit 

fluorescent secondary antibody (1:500). 

 

BioTAP-XL for Fs(1)h 

BioTAP-XL was performed as described (Alekseyenko et al., 2015).  Briefly, BioTAP-tagged Fs(1)h-

expressing S2 cells were lysed by Dounce homogenization and the nuclei were crosslinked for 30min at 

room temperature with 3% formaldehyde.  Chromatin was solubilized by sonication, and tandem affinity 

purification was performed, first with IgG-agarose, then with streptavidin-agarose.  Samples were split 

for DNA and protein analyses.  To isolate DNA, proteins were degraded by proteinaseK and crosslinks 

were reversed with SDS and a 6hr incubation at 65C.  Illumina libraries were prepared and sequenced.  

To isolate peptides for mass spectrometry identification, samples were treated with Trypsin and 

desalted by C18 column purification. 

 

ChIP-Seq Data analysis 

ChIP-seq analysis was the same as in Chapter 2. 

 

Proteomic analysis  

Total peptides recovered by mass spectrometry were compared to the appropriate input sample and 

other BioTAP-XL experiments performed in the lab (as non-specific controls, as applicable).  Fold 

enrichment over input was calculated by adding a pseudocount of 1 to all peptide counts.  To calculate 

coverage of the Fs(1)h bait protein, number of peptides were counted for the available trypsin 

fragments. 
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Baculovirus and recombinant protein interaction assays 

Baculoviruses expressing proteins of interest were generated using the Invitrogen Bac-to-Bac kit.  

Briefly, pFastBac1 constructs were transformed into DH10Bac bacteria and subjected to blue-white 

selection.  Genomic DNA was isolated from appropriate white clones and transfected into Sf9 cells using 

Cellfectin II (Invitrogen).  Viruses for PRC2 viruses were a kind gift from the Kingston lab (MGH).  Viruses 

were amplified in Sf9 cells to generate high titer stocks.  Co-infection of Sf9 cells with the appropriate 

viruses was performed for 72hrs, after which infected nuclear extracts were generated using a 

hypotonic lysis and salt extraction.  Protein-protein interactions were assessed by co-

immunoprecipitation by anti-Flag (M2) resin (Invitrogen).  Assembly of PRC1/2 complexes was 

monitored by silver staining, and presence of Fs(1)h or Scm were assessed by silver staining, if possible, 

and by Western blotting. 

 

Silver staining 

Gels were fixed overnight in a solution of 40% methanol, 10% acetic acid.  Two 20 minute rehydrations 

with 10% ethanol, 5% acetic acid were followed by a 30 minute incubation in 60uM DTT in water.  Gels 

were soaked in 0.1% silver nitrate (AgNO3) for 30 minutes, then rinsed briefly in water.  Gels were 

developed with frequent changes of 0.0185% formaldehyde, 3% sodium carbonate (Na2CO3) until the 

desired darkness was achieved.  Staining was stopped using 5% acetic acid. 
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Advantages and obstacles to successful analysis of regulatory factors on chromatin 

My studies presented in this dissertation suggest that interactions on chromatin may include 

crosstalk between disparate regulatory complexes which had not previously been recognized.  Working 

with chromatin is a challenge due to the insolubility of factors when bound to DNA.  Experimenters must 

always consider the balance between using soluble complexes removed from chromatin versus 

introducing crosslinks to stabilize the on-chromatin interactions.  Both techniques are subject to their 

own subset of artifacts and biases.  In this work I employed both approaches in an attempt to generate a 

more complete picture of the interactions as they are found in the cell. 

The BioTAP-XL technique is very powerful in identifying new, functionally relevant interactors 

which may be lost when complexes are solubilized from chromatin.  Time and again, our lab has shown 

that proteins partners identified by BioTAP-XL provide insight for understanding aspects of chromatin 

biology (Alekseyenko et al., 2014a, Alekseyenko et al., 2014b, Alekseyenko et al., 2015, Kang et al., 2015, 

Wang et al., 2013).  The use of BioTAP-XL as a discovery tool in conjunction with traditional biochemical 

experiments can be a useful approach for making new discoveries. 

However, a shortcoming of the BioTAP-XL technique that we have recognized through my work 

is that not all proteins are amenable to the technique.  The UpSET protein is large (~330kDa), not highly 

expressed, and has been prone to degradation in chromatin preparations.  While UpSET may be an 

especially difficult case (Rincon-Arano, personal communication), other large proteins in the lab have 

encountered similar problems due to lack of stability through the BioTAP-XL procedure.  There are 

several approaches that may ameliorate this problem that future experiments could attempt.   

Although we prefer to express native levels of tagged factors whenever possible, one option 

could be to change the expression level of the bait protein.  Creating constructs using cDNA and a strong 

promoter such as actin5C or similar could boost the incorporation of the protein into chromatin.  

Removal of any potential competition from untagged bait protein is another option which I employed in 
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the UpSET ChIP-seq experiments.  In the absence of wild-type UpSET, I was able to perform one-step 

ChIP-seq in transgenic UpSET-BioTAP embryos, however, in that case the full BioTAP-XL procedure still 

failed.  I did not determine whether the failure of the two step procedure might be explained by a poor 

biotinylation efficiency of the tagged UpSET protein.  If so, modifying the BioTAP tag to employ a 

sequence recognized by and requiring an exogenous biotin ligase (such as the BirA system (Beckett et 

al., 1999, Chapman-Smith and Cronan, 1999)) in conjunction with the actin-driven tagged cDNA could 

ensure greater chromatin incorporation and biotin ligation efficiency.  The drawback of changing the tag 

is the requirement of the two-component system, which we have consciously avoided in the standard 

BioTAP tag in order to decrease the number of manipulations in the system. 

Another option would be to alter the way we solubilize the chromatin.  Our current approach 

employs sonication, which is a vigorous process and may contribute to protein degradation.  Several 

alternative methods to solubilize chromatin exist, though typically it is impossible to get sufficient yields 

of chromatin without any sonication.  One method would be to use micrococcal nuclease (MNase), 

which cleaves linker DNA between nucleosomes.  MNase is typically used to ascertain the locations of 

nucleosomes and alone is insufficient to completely solubilize chromatin, however, and much of the 

starting material would remain insoluble due to the inability of the enzyme to access compact chromatin 

regions (Wal and Pugh, 2012).  Often MNase is paired with sonication, albeit for shorter durations than 

employed for BioTAP-XL or ChIP techniques.  Deoxyribonuclease I (DNaseI) is another enzyme typically 

used to release DNA from open chromatin regions (Shibata and Crawford, 2009).  Much like MNase, 

DNaseI cannot penetrate densely packed chromatin structures.  Alternatives to DNaseI, such as 

Benzonase and Cyansase (Grontved et al., 2012), also exist, which have slightly different sequence 

biases in their cleavage profiles.  Perhaps a combination of these enzymes used together or in sequence 

could greatly reduce the amount of sonication required for chromatin solubilization.  Unfortunately, 
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efficient chromatin solubilization without any duration of sonication does not seem, at this time, to be 

possible. 

 

Future improvements of CRISPR/Cas-9 mutagenesis for the generation of mutant S2 cell lines 

In this work I also utilized genome engineering techniques, which over the last few years have 

exploded in their application across model organisms and beyond (Cong et al., 2013, Housden et al., 

2014, Mali et al., 2013).  I found the CRISPR/Cas-9 system to be extremely efficient in introducing 

insertion-deletion (indel) mutations in S2 cells.  One concern with any genome engineering technique is 

whether there are off-target effects from the mutagenic agent.  Studies of CRISPR/Cas-9 have shown 

that there is potential for off-target mutagenesis, but the cleavage rates at alternative sites are typically 

low (Fu et al., 2013, Hsu et al., 2013).  Recently, the Cas-9 enzyme and/or the guide-RNA (gRNA) have 

been further engineered to diminish the potential for off-target effects (Fu et al., 2014, Ran et al., 2013).  

Use of these re-engineered enzymes/guides in Drosophila in the future could greatly increase the 

confidence in on-target mutations being the only changes likely to occur. 

The lethal phenotype that I observed after CRISPR/Cas9 mutagenesis of upSET in the fly was not 

due to off-target effects, as I could rescue the lethality with a wild type tagged upSET transgene.  A 

rescue experiment is more difficult in S2 cells in culture, where transgene copy number is not easily 

modulated.  An alternative method to address concerns about off-targets is to generate independent 

mutations using distinct gRNA sequences.  If frameshift mutations at different locations in the target 

gene produce the same phenotype, confidence would be greatly enhanced.  In my studies of upSET in 

cell culture, I employed several different guides to try to address any concerns about off-target effects, 

and saw the same general trends for upregulation of heterochromatin genes. 

That the general trend in gene regulation and bulk histone levels were consistent across upSET 

mutant cell lines gives me confidence that these phenotypes are caused by the loss of UpSET.  However, 
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a preliminary finding from follow-up ChIP experiments suggests that it is possible that the selective 

pressure to grow from a single cell coupled to the long time frame that is necessary to obtain S2 cell 

colonies may result in a variety of stochastic gene expression and chromatin environment alterations in 

the cell.  Whether the phenotypes described in Chapter 2 are due to these pressures rather than the loss 

of UpSET is, formally, a concern.  An additional concern is the duration for which these upSET mutant 

cells have been cultured subsequent to their isolation, and in between genomic experiments.  It is 

possible that this duration actually causes selection within the mutant population for or against a 

subpopulation of cells that is further obfuscating our analyses.  Therefore, prior to publication, I am 

working to obtain sufficient amounts of tissue from a condition where this chronic loss of UpSET will not 

have occurred for as many cellular generations and therefore decrease any selection for/against a 

specific subset of cells.  To do so, I am hoping to collect a sufficient number of upSET-deleted 

homozygous larvae (the progeny of heterozygous parents) in order to assess the genomic localization of 

H4K16ac and H3K9me2 and/or assess the state of transcription at the nascent-RNA level from imaginal 

disc or other larval tissues. 

Drosophila S2 cells do not readily propagate clonally from a single cell, which has historically 

presented a problem for the field, but recently the use of conditioned media has made recovery 

possible.  The typical efficiency of colonial growth from even wild-type single S2 cells is 15-20%, which is 

poor compared to the efficiency observed in many mammalian cell lines (Cieciura et al., 1956, Puck et 

al., 1956).  Presumably there could be a number of gene expression programs that would allow for 

continued growth from a single cell, which could introduce heterogeneity between replicates even of 

the same genotype.  Whether there is heterogeneity in the expression patterns of single-clone S2 cell 

lines has not been commented on in the literature, given the recent introduction of the technique. 

One way to test whether the heterogeneity in gene expression that I observed is intrinsic to the 

single cell cloning process would be to isolate cells that have been through the engineering and cloning 
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process without becoming mutant for UpSET (or other target).  In hindsight, these might be better wild 

type control cells than untreated and non-clonal S2 parental cells.  These could be somewhat 

cumbersome and expensive experiments, however, depending on the number of samples needed to 

deeply assess heterogeneity.  If cells lacking mutations in the target gene also lack the mutant 

phenotype, though, it is likely that the phenotype is due to loss of the target gene as opposed to any 

heterogeneity introduced by the single cell cloning procedure. 

While the transcriptional profiles at the individual gene level showed heterogeneity in my upSET 

mutant S2 cell lines, one gene in particular was upregulated across all lines, though to varying degrees.  

The locus is roX1, which in wild type S2 cells is lowly expressed for unknown reasons.  I have verified the 

low level in wild-type and the high level of induction of the locus in the upSET mutant cell lines both by 

qPCR and in the nascent-RNA experiment.  This locus is particularly interesting because roX1 is a 

noncoding RNA component of the MSL complex, and our interest in UpSET was initially based on its 

recovery in MSL3 BioTAP-XL pulldowns.  The re-expression of roX1 in the upSET mutant cells proceeds by 

an unknown mechanism, but is accompanied by the loss of H3K9me2 ChIP-seq reads over the locus, 

although this needs to be tested in additional cell lines.  If roX1 becomes expressed, presumably it would 

be incorporated into intact MSL complexes. 

Interestingly, the upregulation of heterochromatin genes could be explained by the re-

expression of roX1.  Recently, several subunits of the MSL complex were proposed to serve a role in 

activation of genes located in heterochromatin (Koya and Meller, 2015), though whether the mechanism 

for this is direct is unclear.  The noncoding RNA roX1 had a particularly potent role in this process.  

Therefore, the activation of roX1 may render the MSL complex once again competent to boost the 

transcription of heterochromatin genes, explaining our observations in the upSET mutant cells.   

 This is not the only connection reported between the dosage compensation complex and 

heterochromatin.  Genetic lesions inactivating both roX RNAs leads to mislocalization of the MSL 
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complex to the chromocenter (heterochromatin) and the repeat-rich 4th chromosome (Deng and Meller, 

2006).  Some have suggested this reflects the ancestral binding capabilities of the MSL complex and its 

preference for a degenerate GA-repeat motif (Figueiredo et al., 2014).  Furthermore, there have been 

some hints through proteomics for incipient interactions between MLE and HP1-depositing proteins 

(Cugusi et al., 2015).  One could then speculate that the gene expression changes we observe in the 

upSET mutant cells are through an MSL-dependent mechanism.  Depleting members of the MSL complex 

from the upSET mutant cells and analyzing the transcriptome could be used to test whether this is the 

case.  Alternatively, due to the concerns about mutant cell culture discussed above, I may test for 

genetic interactions in the fly using the upSET deleted allele and various mutants of interest (roX, 

Su(var)205, etc). 

 

Summary  

 In this dissertation I have presented my findings that the loss of the protein UpSET, which was 

identified by our lab in previous experiments as a highly ranked MSL complex interactor, has a weak 

effect on X chromosome gene expression, but a more potent effect on heterochromatic genes.  These 

gene expression changes were accompanied by global changes to histone post-translational 

modifications, observed by ChIP-seq and by bulk histone analysis.  Unfortunately, BioTAP-XL using 

UpSET as the bait protein failed for unknown reasons, though modifications to the method may be used 

in future work to successfully identify UpSET-interacting proteins.  I have also presented some of the 

data generated over the course of a successful collaboration with Hyuckjoon Kang on the nature of 

Polycomb Group interactions on chromatin.  Future genetic experiments on PcG proteins in S2 cells 

using improved genome engineering techniques informed by my work with upSET mutant S2 cell lines 
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may provide us with a system to quickly test our hypotheses with a plurality of genetic lesions 

unavailable in the whole fly.   
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Spectrometry Facility at Harvard Medical School. Lucy Jung provided bioinformatics support.  Kyle 
McElroy performed all other experiments. 

 
  



153 
 

Abstract: 

 

The kinase Jil-1 has been extensively studied since its discovery in 1996.  Despite this intense research 

focus, no consensus has been reached as to the critical function of Jil-1 in chromatin.  The Jil-1 protein 

has several interesting properties that effect the morphology and stability of the genome as observed in 

polytene chromosomes and may play a general role in transcriptional activation.  Jil-1 mutants, 

however, display a pleiotropic phenotype and are homozygous lethal, confounding investigations into its 

function.  Using a BioTAP-tagged Jil-1 genomic clone, we expressed BioTAP-Jil-1 in male S2 and female 

Kc cells.  We used this allele to identify the sex-specific localization of Jil-1 throughout the genome and 

to characterize any sex-specific protein interactors.  The BioTAP-XL sequencing localization generally 

agreed with the ChIP-chip data generated previously.  We identified few sex-specific interacting proteins 

save the MSL complex.  We followed up on the interaction between Jil-1 and the Mini-chromosome 

maintenance (MCM) complex, which functions as the replicative helicase, to see whether Jil-1 might 

influence the timing of replication via regulatory phosphorylation of the MCM complex.  The in vitro 

kinase assay suggested that, at least in vitro, Jil-1 does not phosphorylate the MCM complex, and we 

suspended our investigation at that stage. 
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Introduction: 

 

 The Jil-1 protein was first uncovered as an antigen for a monoclonal antibody in a screen for 

proteins whose nuclear localization was dynamic throughout the cell cycle (Johansen, 1996, Johansen et 

al., 1996).  That work resulted in the partial cloning of the gene, and its identification as a tandem-serine 

kinase.  Given the similar domain structure to the Janus kinase (JAK) family, but the dissimilarity of the 

residues in the catalytic core, the protein was named JIL-1 and founded a new family of kinases.  The 

same lab further characterized the kinase activity of Jil-1 and found it was capable of phosphorylating 

Histone H3 (Jin et al., 1999).  Intriguingly, they also discovered that Jil-1 has a unique, sex-specific 

enrichment on the male X chromosome, where it binds about 1.8 fold stronger than on the autosomes 

(Jin et al., 2000, Jin et al., 1999).  This enrichment was shown to be MSL-dependent in nature, and 

recombinant tagged-Jil-1 (V5 tag or GST) could cross-immunopurify MSL complex subunits from S2 cell 

lystates (Jin et al., 2000). 

 The Johansen lab continued their work to characterize Jil-1 and identified the residue that Jil-1 

phosphorylates on Histone H3 as the Serine 10 residue (Wang et al., 2001).  Histone 3 serine 10 

phosphorylation (H3S10ph) is a well-known mark for mitotic chromosomes, yet Jil-1 catalyzes this mark 

during interphase.  Interestingly, the Corces lab had only a few months previously published their work 

using immunofluorescence to show that H3S10ph was dramatically reorganized to polytene 

chromosome puffs following heat shock, implicating this mark in transcriptional response (Nowak and 

Corces, 2000).  This juxtaposed with the Johansen lab’s finding in (Wang et al., 2001) that Jil-1 seemed to 

have a very general role in polytene chromosome morphology using a series of truncated mutants.  

Despite the wildly deformed polytene chromosomes in Jil-1 mutants, the MSL complex was found to still 

bind to the X chromosome, suggesting that the while the enhanced binding of Jil-1 to the X chromosome 

was MSL-dependent, the deposition of MSL on the X chromosome was Jil-1-independent. 
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 Another function for Jil-1, this time related to heterochromatin, was uncovered when the 

Supressor of position-effect variegation [Su(var)] mutant Su(var)3-1 was identified as antimorphic 

carboxy-terminal truncation alleles of Jil-1 (Ebert et al., 2004).  This role in heterochromatin was further 

bolstered by the close examination of ultrastructure of polytene chromosomes in Jil-1 mutants.  It was 

observed by transmission electron microscopy of polytene chromosomes that there appeared to be 

ectopic contacts between chromosomal regions (Deng et al., 2005).  One effect of these ectopic contacts 

was the loss of proper euchromatin/heterochromatin organization resulting in an intermingling of 

compact and open chromatin domains.  Intriguingly, the male X chromosome did not behave in this way.  

It instead was observed to be highly dispersed, appearing as a shortened blob-like entity with no trace of 

proper organization remaining.   

It was later observed in these deformed polytene chromosome preparations that there was an 

expansion of H3K9me2 and HP1a immunostaining onto the euchromatin arms from the 

heterochromatin chromocenter (Zhang et al., 2006).  The X chromosome seemed particularly effected, 

though this time showing strong upregulation of these heterochromatin components throughout both 

the male and female X chromosomes.  This observation piqued the interest of a post-doc in the Kuroda 

lab, Annette Plachetka, who confirmed this result using the higher-resolution technique of ChIP-on-chip 

of H3K9me2 from Jil-1 mutant larvae (unpublished observations).  She also assessed the level of 

expression of a panel of genes in heterozygous and homozygous male larvae, but observed only a small 

change in expression, leaving the precise role for Jil-1 in dosage compensation unanswered.   

This reflects the main debate in the field in general about whether the main role of Jil-1 is 

primarily to maintain chromosome structure and genome organization, or to play a more proximal to 

transcription and gene expression.  Certainly there are data to support both roles and these two major 

roles need not be mutually exclusive.  The polytene chromosome results discussed above are further 

bolstered by findings that Jil-1 interacts physically or genetically with other chromosomal structural 
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proteins such as Chromator (Rath et al., 2006), Su(var)3-9 (Boeke et al., 2010) and Su(var)3-7 (Deng et 

al., 2010); that tethered Jil-1 induces chromatin structure remodeling without the recruitment of RNA 

Pol II (Deng et al., 2008); and that different domains of Jil-1 can redundantly rescue polytene 

chromosome morphology (Bao et al., 2008).  Evidence supporting the role in gene expression include 

data showing that a series of Jil-1 mutants have differential effects on dosage compensation of the 

white gene (Lerach et al., 2005); that H3S10ph may facilitate release of RNA Pol II from promoter-

proximal pausing (Ivaldi et al., 2007) (notably disputed in (Cai et al., 2008)); that chromatin of induced 

genes in mammals require H3S10ph or H3S28ph (Drobic et al., 2010); and that the 14-3-3 proteins which 

coordinate transcriptional elongation are reliant on H3S10ph (Karam et al., 2010). 

One notable study from the Becker lab looked comprehensively at the relationship between Jil-1 

and transcription.  They observed no correlation between intensity of Jil-1 binding and level of 

expression (Regnard et al., 2011).  They also reported that the expression of the majority of genes were 

unaffected in Jil-1 RNAi depletions, but there was a modest, yet significant, depletion of X-linked 

expression.  The implication of this work is that Jil-1 may reinforce the active state, but alone is 

insufficient to establish it; this finding is indeed compatible with a role in both chromosome structure 

and in transcription.  A general model for Jil-1 typically proposes that Jil-1 and the H3S10ph mark 

counteract heterochromatin proteins and heterochromatin-associated marks.  Evidence for this 

dichotomy can be gleaned from all the above work, by a more targeted study of the effect of H3S10ph 

on expression and H3K9me2 (Cai et al., 2014), and by the fact that different domains of Jil-1 rescue 

different Jil-1-null defects (morphology vs H3K9me2 spread vs viability) (Li et al., 2013). 

 Interestingly, in the H3K9me2 ChIP-chip analysis by Annette Plachetka, H3K9me2 was observed 

to spread into euchromatin, as observed by immunofluorescence, but appeared to largely skip active 

gene bodies, suggesting that redundant mechanisms in addition to Jil-1 must protect genes against the 

spread of heterochromatin.  Furthermore, most recently it was determined that some of the antibodies 
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used to characterize H3K9me2 and H3S10ph were ineffective at discerning the individual mark from the 

H3K9me2S10ph composite mark (Wang et al., 2014).  While this composite mark is observed only in 

heterochromatin and on chromosome 4, this result calls into question any model for Jil-1 function 

invoking H3S10ph as an ironclad barrier to H3K9me2 deposition, and suggests a more dynamic interplay 

between euchromatin and heterochromatin than previously appreciated. 

 In order to investigate the role that Jil-1 plays in dosage compensation, members of our lab 

tagged Jil-1 with an amino-terminal BioTAP bipartite tag.  I used this construct to express BioTAP-Jil-1 in 

both S2 (male) and Kc (female) cells.  Using the BioTAP-XL procedure (Alekseyenko et al., 2015) and the 

transgenic S2 and Kc cells, I was able to identify the genomic localization of BioTAP-Jil-1 and compare it 

to the known sex-specific differential pattern.  From the same input chromatin I was able to characterize 

Jil-1 interacting proteins.  Consistent with the pleiotropic effect observed in Jil-1 mutants, Jil-1 interacts 

with a large array of proteins.  The only remarkable sex-specific difference in interactors, however, were 

components of the MSL complex.  In comparison to other BioTAP-XL pulldowns by the lab, the mini-

chromosome maintenance (MCM) complex was a candidate Jil-1-specific interactor.  As Jil-1 is an 

established kinase, I sought to determine if it might regulate the activity of the MCM complex by 

phosphorylation, and thereby affect the timing of replication (Bochman and Schwacha, 2009), which is 

known to be early for the male X chromosome (Chatterjee and Mukherjee, 1977).  The results of the 

kinase assay using recombinant proteins however suggested that Jil-1 was not able to phosphorylate any 

of the available residues on the MCM complex, leaving the link between replication timing and the X 

chromosome a mystery. 
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Results and Discussion: 

 

BioTAP-Jil-1 localization recapitulates known sex-specific Jil-1 binding patterns 

Annette Plachetka, a former post-doc in the lab, cloned a BioTAP tag into the amino-terminus of 

the Jil-1 genomic locus using the pRedET recombineering system.  The tagged Jil-1 locus was transferred 

to the pGS (“pFly”) vector for transfection and expression.  To generate stably expression BioTAP-tagged 

S2 and Kc cells, I co-transfected pGS-mw-BioTAP-Jil-1 and pHygro, which confers resistance to the 

antibiotic Hygromycin, using the calcium phosphate transfection kit.  Following selection, I verified that 

BioTAP-Jil-1 was expressed by running crude nuclear extracts and probing for the protein A moieties of 

the BioTAP tag using peroxidase-anti-peroxidase (PAP) (Figure A1-1b).  Since it was reported that Jil-1 

can autophosphorylate (Jin et al., 1999) and may be regulated by phosphorylation, I tested whether the 

inclusion of phosphatase inhibitors when making crude nuclear preparations would have an effect on 

protein stability.  I found that this did not appear to be the case and expression appeared unchanged +/- 

phosphatase inhibitors.  An unknown band (double asterisk), common to tagged extracts, may be a 

degradation product of BioTAP-Jil-1, but is largely depleted from the nuclear extract of fractionated S2 

cells (Figure A1-1b, details below).  Furthermore, when BioTAP-Jil-1 was detected in 

immunofluorescence experiments in S2 (Figure A1-2a) or Kc (data not shown) cells by PAP, the signal is 

localized to the nucleus.  Depending on the level of overall staining in the nucleus, the pattern of 

BioTAP-Jil-1 staining appears somewhat reminiscent of the X-chromosomal staining of MSL1 by 

immunofluorescence (Figure A1-2b).  These data suggest that the BioTAP-Jil-1 transgene is functional in 

S2 and Kc cells, though transgenic complementation of Jil-1 mutant flies was not performed. 

To analyze protein and DNA interactions of BioTAP-Jil-1, I performed the BioTAP-XL procedure 

(Alekseyenko et al., 2015) using BioTAP-Jil-1-expressing S2 and Kc cells.  Following tandem affinity 

purification, I split the samples, and from a one quarter aliquot from each of the S2 and Kc cell  
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Figure A1-1: BioTAP-Jil-1 expression in S2 and Kc cells 

A) An amino-terminal BioTAP-tag was cloned into a Jil-1 genomic construct.  The resulting protein 

carries the proteinA-biotin acceptor tag, with the addition of a TEV protease recognition site 

between the two tag halves.  Jil-1 has two kinase domains (I and II) and is known to 

autophosphorylate. 

B) S2 and Kc cells were transfected with the BioTAP-Jil-1 construct.  To verify expression and 

stability of the BioTAP-Jil-1 protein with and without phosphatase inhibitors, crude nuclear 

extracts were prepared and expression was assessed by Western blot against the proteinA 

portion of the tag using peroxidase-anti-peroxidase (PAP).  The inclusion of Phosphatase 

inhibitors had no effect on BioTAP-Jil-1 stability. 
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Figure A1-1 (Continued) 
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Figure A1-2: Immunofluorescence of BioTAP-Jil-1 in S2 cells is reminiscent of MSL1 staining in S2 cells 

A) BioTAP-Jil1-expressing S2 cells were immunostained using PAP.  DNA was counter stained with 

Hoechst.  The resulting fluorescent pattern was, in some nuclei, reminiscent of the strong 

sectoring of MSL staining for the X chromosome.  Jil-1 is known to be enriched on the X 

chromosome in male cells, and this result suggests BioTAP-Jil-1 is active in S2 cells. 

B) Anti-MSL1 immunofluorescence in S2 cells, counterstained with Hoechst. 
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Figure A1-2 (Continued)  
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purifications, isolated the affinity-purified genomic DNA, prepared Illumina sequencing libraries, and had 

those libraries sequenced.  We compared the resulting data to the ChIP-chip results generated by the 

modEncode project using anti-Jil-1 antibody and chromatin from S2 and Kc cells (datasets 945 and 3037, 

respectively).  Visual comparison of the tracks in the genome browser show a high degree of 

concordance between BioTAP-Jil-1 ChIP-seq and anti-Jil-1 ChIP-chip (Figure A1-3).  The enrichment of Jil-

1 on the male X chromosome is evident, and regions of sex-specific Jil-1 binding are recapitulated by the 

BioTAP-Jil-1 ChIP-seq (Figure A1-4).  Since the ChIP-seq agreed highly with the ChIP-chip data, we did not 

perform additional analyses on the BioTAP-Jil-1 ChIP-seq datasets.   

 

Few sex-specific BioTAP-Jil-1 interactions identified by mass spectrometry 

That we see BioTAP-Jil-1 localizing properly by ChIP lent further support to the functionality of 

the tagged protein, so I sought to identify any sex-specific interacting partners by liquid chromatography 

tandem mass spectrometry (LC-MS/MS).  The goal of this effort was to understand the targeting or 

function of Jil-1, and whether additional factors could clarify the dosage compensation, chromatin 

structural, or transcriptional roles for Jil-1.  Using the three-quarter remainders of the tandem affinity 

purified samples from the BioTAP-XL procedure, I performed on-bead trypsinization to generate 

peptides for mass spec.  The list of proteins and their peptide counts recovered in the two Jil-1 

experiments were compared to untagged and input controls (to address specificity and enrichment, 

respectively), and the pared down list was analyzed for enrichment of known pathways or complexes. 

An immediate result of the mass spec was the confirmation by reciprocal pulldown of the Jil-1-

MSL complex interaction.  All members of the MSL complex were found in the S2 cell IP, but were 

absent from the KC cell IP (Table A1-1), consistent with their relative instability (MSL1 & MSL3) or lack of 

expression (MSL2) in female cells.  Furthermore, MOF and MLE, which are expressed in both male and 

female cells, were still recovered in the Kc cell IP.  This suggests that the interaction with MOF and MLE  
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Figure A1-3: BioTAP-Jil-1 ChIP-Seq from S2 and Kc are highly similar to modEncode anti-Jil-1 ChIP-chip 

A) A representative 182kb region on Chr3R.  BioTAP-Jil-1 ChIP-seq in S2 and Kc cells agree quite 

well with each other on autosomes.  Comparison of the BioTAP-Jil-1 experiments to anti-Jil-1 

ChIP-chip experiments from modEncode shows a high degree of correlation. 

B) As in (A), a representative 75kb region of Chr2L.  Jil-1 is known to have a preference for the 

bodies of active genes. 
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Figure A1-3 (Continued)  
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Figure A1-4: BioTAP-Jil-1 recapitulates sex specific differences observed between S2 and Kc cells 

A) Jil-1 is known to have an X-specific enrichment in male cells.  The BioTAP-Jil-1 samples 

recapitulate several of these observed sex-specific differences.  A 343kb region of ChrX is shown.  

In S2 cells BioTAP-Jil-1 is more broadly enriched than in Kc cells.  These regions agree with the 

patterns observed in the anti-Jil-1 ChIP-chip modEncode data. 

B) As in (A), a representative 73kb region of ChrX.  As on autosomes, Jil-1 binding is enriched over 

gene bodies. 
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Figure A1-4 (Continued)  
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Table A1-1: BioTAP-XL of Jil-1 recovers MSL and MCM complexes 

Total peptide counts from BioTAP-XL proteomics experiments for Jil-1 baits in S2 (green) and Kc 

(pink) cells.  BioTAP-Jil-1 is recovered at similar levels from both cell lines.  The core components of 

the MSL complex are recovered in S2 cells but not Kc cells. This results supports the literature 

(Alekseyenko et al 2012) and shows the interaction occurs by reciprocal IP (Wang et al 2013).  

Interestingly, the MCM complex is recovered in both S2 and Kc cells, and was therefore selected for 

follow-up experiments.  Other potentially functional interactors mined from the literature are listed, 

though the enrichments of many of these proteins compared to input and controls (MSL3, HP1, and 

POF) are somewhat low to strongly support critical functional interactions. 
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Table A1-1 (Continued)  
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may exist outside of the context of the intact MSL complex, but that the majority of Jil-1 protein 

interacts with proteins distinct from the dosage compensation machinery.  Unfortunately, no other 

enriched sex-specific differences were identified to suggest a mechanism for differential Jil-1 activity or 

targeting in the two sexes (Table S2). 

As mentioned above, one model for Jil-1 function with respect to transcriptional activation 

invokes H3S10ph as a requisite mark for the scaffolding protein family 14-3-3, whose recruitment to 

chromatin facilitates transcriptional elongation.  The two Drosophila paralogs of 14-3-3 (epsilon and 

zeta) are enriched greater than 4-fold in both S2 and Kc pulldowns (Table A1-1), which seems to lend 

support to the validity of this hypothesis (Karam et al., 2010).  Interestingly, recent work has shown that 

Jil-1 is capable of phosphorylating Su(var)3-9, a heterochromatin component (Boeke et al., 2010).  While 

no sex-specificity for this interaction was presented in vivo, we did observe Su(var)3-9 in the S2 IP, but 

not in the Kc IP.  However, the recovery of Su(var)3-9 in the BioTAP-Jil-1 S2 experiment was not enriched 

over input recovery levels.  So our results regarding a potential Jil-1/Su(var)3-9 interaction should be 

considered inconclusive or would require additional validation. 

 

BioTAP-Jil-1 mass spec recovers the replication helicase complex, MCM2-7 

One intriguing finding in the BioTAP-Jil-1 mass spec data is that the entirety of the MCM2-7 

complex is recovered in both S2 and Kc experiments.  This ubiquitously expressed complex has been 

found as a non-specific contaminant in other chromatin-based protein isolation techniques (R. Kingston, 

personal communication), however in our BioTAP-XL method, these proteins are generally not 

recovered (Table A1-1).  The mini-chromosome maintenance complex (MCM) is a heterohexameric ring 

which functions as the replicative helicase along with accessory proteins Cdc45 and the GINS complex 

(Moyer et al., 2006).  The complex is recruited to origins through interactions directly with ORC 
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components, and is loaded onto DNA in a poised, salt-stable double-hexamer configuration in a Cdt1-

dependent manner (Samson and Bell, 2013).   

Notably, none of the ORC components, Cdt1, Cdc45, nor any of the members of the GINS 

complex are recovered in the Jil-1 pulldowns, suggesting that the involvement between Jil-1 and the 

MCM complex may be outside of the context of the replicative helicase.  Indeed, several lines of 

evidence implicate the MCMs in functions outside of replication, including transcription (Snyder et al., 

2009), chromatin remodeling, and cell-cycle checkpoint regulation (for review, see (Forsburg, 2004)).  A 

combination of these processes via the MCM complex could explain the role of Jil-1 not only in dosage 

compensation (X-specific transcription), but also general transcription, genome replication timing (X 

chromosome known to be early replicating), and polytene chromosome morphology. 

The MCM complex is expressed at a level much higher than is needed for replication, leading to 

the hypothesis that there may be distinct populations of MCM complexes doing a variety of nuclear 

tasks.  The tails of the MCM complex proteins are thought to be integral to the regulation of MCM 

activity.  With respect to the well characterized task of replication initiation and helicase function, the 

MCM complex subunits need to be phosphorylated by DDK and CDK, two cell-cycle-specific kinases.  

Interestingly, there are additional phosphorylation marks on the MCM proteins themselves that are not 

accounted for by DDK or CDK activity, and in fact, some DDK-dependent phosphorylation sites 

apparently require other pre-existing phosphorylation marks (Figure A1-5) (Randell et al., 2010).  The 

kinases responsible for these other phosphorylation sites are unknown.  This raised the intriguing 

possibility that Jil-1 may in fact have a regulatory interaction with the MCM complex, whereby 

phosphorylation of the MCM complex by Jil-1 could activate it for transcription or replication tasks. 

 

BioTAP-Jil-1 kinase is active in vitro, but does not appear to phosphorylate MCM2-7   
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Figure A1-5: The MCM complex is the replicative helicase and is regulated by phosphorylation 

A) The MCM complex is a hexameric ring of AAA+ ATPases which functions as the replicative 

helicase along with Cdc45 and the GINS complex.  MCM is loaded in at origins of replication 

through interactions with ORC and Cdt1.  Only the MCM hexamer is recovered in the BioTAP-Jil-

1 proteomics.   

B) The MCM complex is densely phosphorylated by numerous kinases.  While some are known 

(schematized in blue), many are catalyzed by unknown kinases (red).  These modifications are 

necessary for MCM activation and are thought to be an integration point for signaling pathways. 
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Figure A1-5 (Continued) 
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 In order to test this hypothesis, I endeavored to perform an in vitro kinase assay using 

recombinant Jil-1 and recombinant MCM complex.  To do so, I obtained MCM-expressing baculoviruses 

generously provided by the Botchan lab (UC-Berkeley).  After viral amplification, Sf9 cells were co-

infected with these baculoviruses such that all MCM components should be expressed.  I then Flag-

purified the complex from Sf9 nuclear extracts, and performed ion-exchange column chromatography to 

obtain stoichiometric hexamer complexes (Figure A1-6A).  I then tested for phosphorylation by 

recombinant Jil-1. 

 I originally attempted to express a GST-tagged Jil-1 construct in bacteria as the source for 

recombinant Jil-1 protein.  While I was able to efficiently induce GST-Jil-1 in bacteria, the protein was 

consistently found in the insoluble pellet following cell lysis (Figure A1-7A).  Only trace amounts of GST-

Jil-1 were recovered using a glutathione resin, limiting the usefulness of this expression method for the 

kinase assay.  I then turned to the BioTAP-Jil-1 construct expressed in S2 cells (Figure A1-7B).  I 

fractionated S2 cells and pulled BioTAP-Jil-1 down using IgG-resin.  I then liberated Bio-Jil-1 from the 

resin using the TEV protease, which cleaves between the Protein A and Biotin-accepting sequences of 

that early version of the BioTAP tag.  As a control, I performed the same fractionation, IgG pulldown, 

and TEV protease treatment from untransfected S2 cells (Figure A1-7C).  I then used the TEV-treated 

supernatant, which should contain Bio-Jil-1 from the BioTAP-Jil-1 transfected S2 cells and only trace 

contaminants from the untransfected S2 cells as the source of kinase for the in vitro assay. 

 To test the in vitro kinase activity of the TEV supernatants (ie, Bio-Jil-1 vs trace contaminants), I 

used recombinant Xenopus histone H3 (a gift from Bob Kingston, MGH) and salt/acid-extracted S2 

histones (Figure A1-6B), which should function as positive controls.  When Bio-Jil-1 alone was incubated 

with P32-labeled ATP, I observed a strong signal, suggesting that autophosphorylation was occurring.  In 

comparison, there was still some signal in the untransfected S2 purification, albeit much less, suggesting 

that traces of additional kinases may have been pulled down non-specifically.  However, when incubated  
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Figure A1-6: Purification of substrates for in vitro kinase assays 

A) To purify the MCM complex, Baculovirus-infected nuclear extracts were prepared as described.  

To obtain stoichiometric complexes, the Flag-purified material was further purified using ion 

exchange column chromatography.  The resulting fractions have what appear to be 

stoichiometrically equal MCM hexamers. 

B) Jil-1 is known to phosphorylate histone H3 at serine 10 (H3S10ph).  Histones therefore were 

utilized as positive controls to test the activity of the purified recombinant Jil-1.  Using a hybrid 

acid/salt extraction method from S2 cells, the core 4 histones were recovered at high purity.  

Histone H1 may also be present in these preparations at low levels. 
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Figure A1-6 (Continued)  
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Figure A1-7: Expression of recombinant Jil-1 for in vitro kinase assays 

A) Initial efforts to express Jil-1 centered on GST-Jil-1 expression in bacteria.  While induction was 

achieved (* for GST-Jil-1, † for GST-ADD-WT domain control), and the induced band reacted with 

a GST antibody, the GST-Jil-1 fusion was present at only very low levels in elution fractions. 

B) BioTAP-Jil-1 was expressed in stably transfected S2 cells.  Nuclear extracts (NE) were enriched 

for BioTAP-Jil-1 over other potential contaminant bands as compared to whole cell extracts 

(WCE) or cytoplasmic extracts (CE). 

C) For in vitro kinase reactions, BioTAP-Jil-1 was pulled down using IgG-agarose and Bio-Jil-1 was 

liberated from the resin using TEV protease, which recognizes an amino acid sequence between 

the ProteinA moieties and biotin accepting sequence in this earlier version of the BioTAP tag.  As 

a negative control, S2 nuclear extracts were treated in the same way. 
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with either Xenopus histone H3 or S2 bulk histones, I observed robust phosphorylation at the 

appropriate size for H3 in the BioTAP-Jil-1 TEV supernatant only (Figure A1-8A). 

 To test for phosphorylation of the MCM complex by Jil-1, I mixed the stoichiometric MCM 

complexes with the TEV supernatants from BioTAP-Jil-1 and untransfected S2 cells as above.  While 

there is evidence of weakly phosphorylated bands appearing in the Bio-Jil-1 sample, several of the bands 

either existed previously in the Bio-Jil-1 alone lane, or appeared to also exist in the S2+MCM control lane 

(Figure A1-8B).  Given the robust signal observed with the positive control H3 and with the 

autophosphorylation of Bio-Jil-1, we felt that the lack of a strong signal in the region of the MCM 

complex suggested a negative result for this experiment. 

 Even though the in vitro kinase assay generated a negative result for the phosphorylation of the 

MCM complex by Jil-1, the nature of the MCM/Jil-1 interaction is intriguing since it could potentially 

explain numerous of the Jil-1 phenotypes.  If the MCM/Jil-1 interaction is real, it may not rely on 

regulatory information conferred by phosphorylation.  Alternatively, it is possible that future efforts 

could determine a set of conditions in vitro that allow for phosphorylation to occur, or more careful 

proteomic study of the MCM complex isolated in BioTAP-Jil-1 experiments may be employed to attempt 

to identify an in vivo phosphorylation event.  Jil-1 clearly plays a role in open chromatin structure, 

though, and perhaps this role brings it into contact with the MCM complex either as the replication fork 

is transiting or in any of the other putative functions for the MCM complex. 

 Despite our efforts, Jil-1 remains an intriguing enigma in the field.  The wide range of 

phenotypes in Jil-1 mutants suggest a diverse array of potential functions.  From its clear involvement 

with the MSL complex to the less clear mechanism of this involvement, and from its potential role in 

transcription to evidence for a much more general role in genome organization, Jil-1 will undoubtedly be 

the focus of numerous research groups for years to come.  
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Figure A1-8: Jil-1 does not appear to phosphorylate the MCM complex in vitro 

A) In order to confirm the activity of Jil-1 in the TEV supernatant, BioTAP-Jil-1 TEV supernatant (BTJ) 

or S2 TEV supernatant (S2) were incubated with salt/acid extracted (AE) core Drosophila 

histones or with recombinant Xenopus histone H3 (Xen) and P32-labeled ATP.  We observed 

strong auto-phosphorylation of the Jil-1 band.  The S2 fraction also had some background kinase 

activity from trace contaminant kinases.  Only the BioTAP-Jil-1 TEV supernatant had kinase 

activity toward the histones, however. 

B) As in (A), except TEV supernatant kinase sources were incubated with the stoichiometric MCM 

complexes.  There did not appear to be any strong indication that BioTAP-Jil-1 phosphorylated 

any of the members of the MCM complex.  Two exposures of the same autoradiograph are 

shown. 
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Figure A1-8 (Continued)  
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Materials and Methods: 

Cloning 

An early version of the BioTAP tag was cloned into a genomic transgene of Jil-1 by recombineering as in 

Chapter 2 and 3. 

 

Western Blotting 

Western blotting was performed as in Chapter 3.  Anti-GST (Sigma G7781) was used at 1:10,000. 

 

Immunofluorescence 

Immunofluorescence in S2 and Kc cells was performed as in Chapter 3.  Anti-MSL1 was used at a dilution 

of 1:100. 

 

BioTAP-XL for Jil-1 

BioTAP-XL was performed as in Chapter 3 and in (Alekseyenko et al., 2015).  BioTAP-Jil-1 expressing S2 

and Kc cells were used to identify sex-specific interactors. 

 

ChIP-seq analysis 

ChIP-seq analysis was the same as in Chapter 2. 

 

Recombinant Jil-1 expression 

GST-Jil-1 and GST-ADD-WT carrying bacterial strains were induced at OD600=~0.5 using 1mM IPTG.  GST-

Jil-1 was found to be largely insoluble regardless of induction temperature or duration.  BioTAP-Jil-1 was 

transfected into S2 cells to generate a stable line.  Extracts were made as from Sf9 cells in Chapter 2.  
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BioTAP-Jil-1 was immunoprecipitated using IgG-agarose and liberated from the resin using TEV protease, 

which cleaves an earlier version of the BioTAP tag between modules. 

 

Recombinant MCM expression (Flag/baculo, similar to chapter 3; purification) 

Baculovirus stocks for MCM-expressing viruses were a kind gift from the Botchan lab (UC-Berkeley).  

Viruses were re-amplified and co-infected as in Chapter 3.  Purification of stoichiometric MCM2-7 

complexes was performed with ion exchange chromatography as described (Ilves et al., 2010).  Ion 

exchange chromatography was performed using the fast protein liquid chromatography (FPLC) set up of 

the Winston lab (HMS). 

 

Histone extraction (salt/acid) 

Histones were extracted using a salt/acid hybrid protocol essentially as described (Zee et al., 2016). 

 

In vitro kinase assay 

TEV supernatants containing recombinant Bio-Jil-1 or from a control S2 lysate (trace contaminants only) 

were incubated with acid-extracted S2 histones, recombinant Xenpous H3 (a gift from the Kingston lab), 

or stoichiometric MCM complexes in the presence of P32-labeled ATP.  After a 20 minute incubation at 

30C, the reaction was stopped by the addition of 2x SDS sample buffer.  Histone in vitro kinase reactions 

were resolved on 18% acrylamide gels, while MCM in vitro kinase reactions were resolved on 8% 

acrylamide gels.  Gels were dried and exposed to film for a few hours or overnight.  
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Figure S1: Replicate analysis of histone post-translational modifications from bulk histones in upSET 

mutant cells 

A) Relative quantification (1.0 = 100%) of H4K5K8K12K16 acetyl patterns in upSET mutant cell lines 

(G3 and B2) with respect to the parental S2 line. Trends observed with these replicates are the 

same as in Figure 2-8. 

B) Deconvolution of monoacetyl H4 from (A) to identify which residue carries the acetyl mark.  

There is a slight trend for enrichment of H4K16ac in the upSET mutants cells compared to other 

residues.  Trends observed with these replicates are the same as in Figure 2-8. 

C) Relative quantification (1.0 = 100%) of H3K9K14 PTM patterns in upSET mutant cell lines (G3 and 

B2) with respect to the parental S2 line.  The H3K9me2/me3 marks are depleted from upSET 

mutant S2 cells, suggestive of an effect on heterochromatin.  Trends observed with these 

replicates are the same as in Figure 2-8. 

 

  



189 
 

Figure S1 (Continued)  
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Table S1: BioTAP-tagged Fs(1)h associated proteins in S2 cells 

 

BioTAP-N-Fs(1)h  Fs(1)h-C-BioTAP 

Gene Name Peptides 
Total 

Peptides 
Input (S2) Total 

peptides 
 Gene Name Peptides 

Total 
Peptides 

Input (S2) Total 
peptides 

fs(1)h 58 613 7  fs(1)h 57 374 0 

Hcf 45 110 6  ACC 44 71 30 

Top2 45 85 6  Mtor 43 59 6 

MESR4 40 87 0  Hcf 37 73 0 

Mtor 34 42 30  CycT 34 69 6 

rno 33 60 0  Top2 32 44 0 

bip2 32 66 0  MESR4 27 51 0 

east 30 49 0  kis 26 30 0 

Taf1 28 48 0  Hsc70-4 25 60 1 

wapl 27 48 0  CG1815 23 36 0 

CG2247 26 51 0  bip2 23 34 0 

CG1815 26 40 1  Nelf-A 20 34 0 

Mi-2 25 36 2  MED1 20 31 2 

kis 25 26 0  Mi-2 19 25 0 

SMC1 23 30 0  CG8677 19 21 0 

Cap 23 29 0  CG4751 18 23 0 

CG8677 23 27 0  glu 18 20 12 

mor 22 45 0  CG7946 17 30 0 

Ncoa6 22 26 0  SMC2 17 22 0 

CG7946 21 50 12  mor 16 27 17 

Hsc70-4 21 44 0  Hsp83 16 24 0 

Taf2 21 34 0  rno 16 23 0 

dre4 21 34 16  wapl 16 20 0 

Iswi 21 30 11  Nipped-B 16 18 16 

trr 21 24 0  dre4 15 21 0 

E(bx) 21 22 8  cher 15 15 41 

MED1 20 28 0  Lam 14 20 0 

brm 20 26 8  Cap 14 16 0 

CG4747 19 33 12  Ncoa6 14 15 12 

CycT 19 33 0  CG4747 13 25 0 

SA 19 30 0  CG2247 13 25 0 

sno 19 24 0  CG4564 13 24 11 

Taf6 18 29 2  Iswi 13 19 6 

Nipped-B 18 22 0  woc 13 19 0 

Lam 17 24 41  east 13 17 5 

e(y)3 17 21 0  lid 13 17 0 

Sin3A 17 21 1  SMC1 13 15 0 

dom 17 18 0  CG1910 12 24 0 

rad50 16 21 0  betaTub56D 12 22 13 

skd 16 19 0  Act5C 12 22 4 

glu 16 18 0  Jafrac1 12 22 0 

woc 15 28 6  Ef2b 12 18 0 

Nelf-A 15 23 0  rad50 12 17 13 

bon 15 19 0  pzg 12 16 0 

MED26 15 18 0  simj 12 16 0 

ptip 15 17 0  sno 12 15 0 

MEP-1 15 17 0  CG12702-RA 12 14 25 

Taf5 14 23 0  CG42232 12 13 0 

fbl6 14 22 0  emb 12 13 0 

Taf7 14 22 0  ATPCL 12 13 17 

Gnf1 14 19 16  mod 11 22 7 

Su(z)2 14 18 0  14-3-3epsilon 11 20 0 

RpII215 14 17 0  nej 11 19 0 

CG34422 14 16 0  RpA-70 11 16 12 

CG42232 14 16 25  Hsc70-3 11 16 8 
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Tfb1 13 28 1  pont 11 14 0 

CG1910 13 23 0  tou 11 13 12 

pzg 13 19 13  Chc 11 13 8 

osa 13 19 0  E(bx) 11 13 0 

CG1647 13 17 0  RpII215 11 11 0 

ACC 13 15 0  Ef1alpha48D 10 33 0 

lid 13 14 5  fbl6 10 16 0 

Rif1 13 14 0  Psc 10 13 2 

MBD-R2 13 13 2  Taf6 10 13 0 

CG15439 12 26 0  e(y)3 10 13 0 

Act5C 12 26 13  enok 10 13 4 

CG4564 12 20 0  rept 10 13 8 

pont 12 20 8  RfC4 10 12 4 

MED14 12 19 0  Ubqn 10 12 0 

Hsc70-3 12 18 12  Taf1 10 12 3 

CG5098 12 18 0  RpII140 10 12 0 

Ubqn 12 16 4  CG34422 10 11 0 

hay 12 16 0  Taf7 10 11 1 

SMC2 12 16 0  Sin3A 10 10 2 

RnrL 12 15 0  Jra 9 16 0 

Bap60 12 14 0  TH1 9 14 0 

Smr 12 13 0  Bub3 9 14 8 

RpII140 12 12 3  Hrb27C 9 13 0 

fu2 11 24 0  MED23 9 12 0 

Bub1 11 23 0  ncd 9 11 0 

Bub3 11 21 0  MED17 9 11 0 

nej 11 15 0  blanks 9 11 5 

rept 11 14 4  Bap55 9 11 0 

hang 11 13 0  ptip 9 11 5 

Kdm2 11 12 0  Aac11 9 11 8 

tlk 11 11 0  brm 9 11 1 

Nipped-A 11 11 0  MTA1-like 9 11 0 

Jra 10 23 2  Smr 9 10 0 

Ef1alpha48D 10 21 0  Bub1 9 10 0 

Top1 10 19 0  MED26 9 10 0 

row 10 19 0  SA 9 10 0 

14-3-3zeta 10 16 3  Smc5 9 10 0 

Ssrp 10 16 0  Rif1 9 9 0 

ebi 10 15 0  TER94 9 9 0 

Chro 10 13 7  spen 9 9 0 

Psc 10 12 0  Cdk9 8 16 5 

kto 10 12 0  Rpd3 8 15 3 

Br140 10 12 0  14-3-3zeta 8 13 1 

simj 10 11 0  Tfb1 8 12 0 

mip120 10 10 0  
DNApol-
alpha180 

8 11 28 

CG6905 10 10 4  zip 8 10 0 

His2B 9 17 19  polybromo 8 9 0 

MED17 9 16 0  Sap130 8 9 0 

kay 9 15 0  pds5 8 9 0 

Prp8 9 13 13  mre11 8 9 0 

polybromo 9 12 0  hang 8 8 2 

Sap130 9 11 0  MBD-R2 8 8 0 

Hsc70-5 9 11 5  Psi 8 8 20 

D19A 9 11 0  His4 7 25 0 

BRWD3 9 9 0  NELF-B 7 15 1 

pps 9 9 0  Pen 7 13 0 

Cul-4 9 9 2  zfh1 7 13 4 

His4 8 54 20  sqd 7 12 0 

His2Av 8 33 8  Chd64 7 12 0 

Rpd3 8 21 5  alphaTub84B 7 11 0 

CG6543 8 21 3  kay 7 11 0 

CtBP 8 18 0  MED14 7 11 0 
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Dref 8 17 0  fu2 7 11 1 

Bap55 8 16 5  mod(mdg4) 7 10 0 

NELF-B 8 15 0  Hel25E 7 10 0 

scu 8 13 6  Su(var)2-10 7 9 0 

Dek 8 13 0  osa 7 9 0 

vtd 8 12 0  Bap60 7 9 0 

CG16711 8 12 0  CtBP 7 9 0 

14-3-
3epsilon 

8 12 7  regucalcin 7 9 0 

e(y)1 8 12 0  Nelf-E 7 9 0 

mrn 8 11 0  Ssrp 7 9 0 

mod 8 11 17  IntS9 7 9 5 

Bap170 8 10 1  ERp60 7 9 0 

pds5 8 10 0  trr 7 8 0 

tou 8 9 0  tai 7 8 0 

ear 8 9 0  CG16711 7 8 0 

Klp3A 8 9 0  Hsc70Cb 7 8 3 

dikar 8 9 0  RfC3 7 8 0 

Cp190 8 9 12  dikar 7 8 0 

Cdk7 8 9 0  Hop 7 8 2 

Ef2b 8 9 0  
BcDNA.LD236

34 
7 7 0 

nito 8 8 7  skd 7 7 0 

spen 8 8 0  ebi 7 7 0 

Jarid2 8 8 0  Karybeta3 7 7 16 

cg 7 19 0  Gnf1 7 7 0 

PNUTS 7 12 0  Mcm3 7 7 0 

srp 7 10 0  kto 7 7 8 

mod(mdg4) 7 10 1  His2Av 6 16 3 

MED8 7 10 0  CG6543 6 15 19 

Cdk9 7 10 0  His2B 6 14 1 

lola 7 9 2  Droj2 6 11 0 

Hmt4-20 7 9 0  Cyp1 6 10 0 

Snr1 7 9 3  TfIIS 6 9 1 

MED23 7 9 0  su(f) 6 9 0 

BEST:LD0712
2 

7 9 0  Rm62 6 8 0 

Pen 7 9 1  Klp3A 6 8 0 

wah 7 8 0  eIF-4a 6 8 0 

lilli 7 8 0  CG5524 6 8 5 

CG1737-RA 7 8 0  Hrb87F 6 7 3 

zf30C 7 8 0  caz 6 7 0 

mip130 7 8 0  CG4785 6 7 1 

Utx 7 8 0  Mdh2 6 7 0 

gfzf 7 7 2  Dref 6 7 10 

CstF-64 7 7 0  pAbp 6 7 6 

Sfmbt 7 7 0  scu 6 7 0 

tefu 7 7 0  IntS1 6 7 0 

bel 7 7 4  Nipped-A 6 7 4 

Smc5 7 7 0  pUf68 6 6 0 

CG5524 7 7 0  TfIIA-L 6 6 0 

Ars2 7 7 14  MEP-1 6 6 23 

dalao 6 10 0  sle 6 6 1 

Rm62 6 9 0  Rat1 6 6 3 

RfC38 6 9 0  vkg 6 6 4 

MED6 6 9 0  CG6905 6 6 0 

CG7154 6 9 0  RnrL 6 6 0 

Lpt 6 8 0  msk 6 6 0 

MED19 6 8 0  sxc 6 6 2 

RfC4 6 8 8  Cul-4 6 6 0 

Chd64 6 8 0  Klp10A 6 6 0 

CG10333 6 8 0  IntS6 6 6 0 

TfIIS 6 7 0  MED16 6 6 0 
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BcDNA.LD23
634 

6 7 2  msps 6 6 0 

CG4751 6 7 0  Dek 5 10 0 

nop5 6 7 0  Hsp68 5 10 0 

Ote 6 7 14  srp 5 9 0 

Kap-alpha3 6 7 0  CstF-64 5 9 0 

mre11 6 7 0  dalao 5 8 0 

stwl 6 7 0  cg 5 8 12 

su(f) 6 7 1  Ef1gamma 5 8 3 

CoRest 6 7 0  Gp93 5 8 0 

enok 6 7 0  Srp54 5 8 7 

Top3alpha 6 7 0  smt3 5 8 0 

JIL-1 6 7 0  Pp2A-29B 5 8 0 

rdx 6 7 0  Taf2 5 7 0 

Orc1 6 7 0  MED6 5 7 3 

IntS1 6 7 0  SelD 5 7 2 

Psi 6 7 0  CG16941 5 7 0 

Nelf-E 6 6 0  MRG15 5 6 2 

TfIIFalpha 6 6 0  lola 5 6 12 

CG4849 6 6 3  Cp190 5 6 0 

CG4785 6 6 0  PNUTS 5 6 3 

CG6686 6 6 0  Snr1 5 6 10 

hyx 6 6 3  Su(var)205 5 6 2 

Caf1-180 6 6 0  CG8149 5 6 0 

CG2469 6 6 0  mrn 5 6 0 

Caf1 5 12 0  bon 5 6 5 

wds 5 12 2  l(2)35Df 5 6 0 

skpA 5 12 0  Asun 5 6 1 

Taf8 5 11 0  dpa 5 5 2 

His1 5 10 0  Tctp 5 5 0 

Pc 5 9 0  Mcm2 5 5 0 

Su(var)2-10 5 8 0  dom 5 5 0 

TfIIA-L 5 8 0  su(s) 5 5 0 

MED7 5 8 0  Taf5 5 5 0 

row 5 8 12  Jarid2 5 5 1 

Cyp1 5 8 0  Bap170 5 5 0 

Sce 5 7 0  scra 5 5 0 

Hrb27C 5 7 8  yip2 5 5 0 

yip2 5 7 0  barr 5 5 0 

CG7185 5 7 6  Kdm2 5 5 0 

Taf4 5 7 0  E(Pc) 5 5 7 

Hrb87F 5 6 5  nito 5 5 0 

E(Pc) 5 6 0  CG5913 5 5 4 

CG12702-RA 5 6 0  mdy 5 5 0 

sle 5 6 23  Sfmbt 5 5 0 

Spt5 5 6 2  Chd1 5 5 11 

RfC3 5 6 3  CG5931 5 5 0 

Aac11 5 6 5  Mcm5 5 5 0 

CG5931 5 6 11  Sav1 4 31 2 

Rcd5 5 6 4  wds 4 7 0 

Prp19 5 6 6  Caf1 4 6 0 

RpI135 5 6 6  crp 4 6 0 

Map205 5 6 8  Top1 4 6 0 

Pep 5 6 16  RfC38 4 6 2 

CG3542 5 6 0  Gale 4 6 0 

blanks 5 6 0  dco 4 5 0 

Rrp1 5 5 0  CoRest 4 5 0 

l(3)mbt 5 5 0  Lpt 4 5 0 

Hsp83 5 5 17  mip120 4 5 0 

Synd 5 5 0  BEST:LD07122 4 5 0 

atms 5 5 0  CG3523 4 5 0 

mus210 5 5 0  JIL-1 4 5 0 

lds 5 5 0  Top3alpha 4 5 0 
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Map60 5 5 0  yki 4 5 0 

RpI1 5 5 4  CG17078-RA 4 5 6 

ERp60 5 5 5  CG7185 4 5 0 

sxc 5 5 0  CG8839 4 5 15 

CG2118 5 5 0  SF2 4 5 0 

IntS4 5 5 0  Gdi 4 5 0 

ncd 5 5 0  Cdk7 4 5 0 

CG14438 5 5 0  mus101 4 5 0 

CG17002 5 5 0  shot 4 5 0 

smt3 4 15 7  nop5 4 4 0 

Mat1 4 9 0  ear 4 4 2 

sqd 4 7 4  Spt5 4 4 2 

SelD 4 7 3  Sym 4 4 0 

Xpd 4 7 0  CG1647 4 4 0 

TH1 4 7 0  Usp7 4 4 4 

IntS9 4 7 0  bel 4 4 3 

caz 4 6 3  tho2 4 4 7 

Su(var)205 4 6 10  Chro 4 4 0 

alphaTub84B 4 6 0  bin3 4 4 0 

CG1622-RA 4 6 1  Larp7 4 4 0 

CG9007 4 6 0  CG5098 4 4 0 

MED21 4 6 0  CG2807 4 4 0 

CG4203 4 6 0  TfIIFbeta 4 4 0 

betaTub56D 4 6 0  Mcm6 4 4 0 

CG6379 4 6 0  Cpsf73 4 4 0 

CG9302 4 5 0  pic 4 4 3 

ph-p 4 5 1  IntS11 4 4 0 

ttk 4 5 0  shn 4 4 0 

Scm 4 5 0  CG32737 4 4 0 

MTA1-like 4 5 1  Caf1-180 4 4 5 

Ssl1 4 5 1  RpS14a 4 4 0 

Brd8 4 5 0  CG5384 4 4 0 

Klp10A 4 5 0  Moe 4 4 5 

CG10600 4 5 0  Hsc70-5 4 4 0 

CG2199 4 5 9  defl 4 4 14 

crp 4 5 0  Ars2 4 4 0 

CG11076 4 5 1  
DNApol-
epsilon 

4 4 0 

CG17471 4 5 0  pho 4 4 0 

Rcd1 4 5 3  Cul-3 4 4 8 

Chd3 4 5 0  Map205 4 4 0 

CG18292-RA 4 4 0  CG2118 4 4 0 

Alh 4 4 0  Su(z)2 4 4 2 

CG4282 4 4 0  CAP-D2 4 4 0 

Adf1 4 4 2  CG6227 4 4 0 

CG9797 4 4 3  Ctf4 4 4 0 

IntS6 4 4 0  Acf1 4 4 0 

zfh1 4 4 0  CG33129 3 6 0 

D19B 4 4 0  pnr 3 6 2 

Mes-4 4 4 0  tsr 3 6 16 

Sgf29 4 4 0  Pep 3 5 0 

barr 4 4 0  cg 3 5 0 

Caf1-105 4 4 0  Hsc70-1 3 5 0 

CG6841 4 4 3  CG30122 3 5 0 

Chd1 4 4 0  Mat1 3 5 6 

CG17078-RA 4 4 0  Prp19 3 5 0 

CG3163 4 4 1  CG1646 3 5 0 

ct 4 4 0  CG18292-RA 3 4 0 

CG10631 4 4 0  vtd 3 4 0 

l(2)37Cb 4 4 1  Zn72D 3 4 0 

CG12909 4 4 0  Sce 3 4 0 

snama 4 4 0  Jupiter 3 4 0 

CG15356-RA 4 4 0  hay 3 4 0 
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Ref1 4 4 7  CG17233 3 4 0 

CAP-D2 4 4 2  Alh 3 4 0 

CG16941 4 4 2  MED21 3 4 0 

Hsc70-1 3 10 0  Hmt4-20 3 4 1 

ix 3 6 0  U2af50 3 4 0 

Hrb98DE 3 6 0  dod 3 4 0 

Trl 3 5 0  ash2 3 4 0 

Eaf6 3 5 0  Nap1 3 4 0 

CG3689 3 5 0  IntS4 3 4 0 

MED30 3 5 1  MED24 3 4 0 

MED11 3 5 0  row 3 4 0 

U2af50 3 5 1  IntS12 3 4 0 

Jafrac1 3 5 4  CrebB-17A 3 4 0 

MED16 3 5 0  Rrp1 3 4 1 

CG4951 3 5 2  mof 3 4 0 

Srp54 3 5 0  bl 3 4 0 

CG8142 3 5 2  lilli 3 4 0 

abs 3 5 4  atms 3 4 0 

CstF-50 3 5 0  CG8507 3 4 0 

MRG15 3 4 0  MED7 3 4 0 

Jupiter 3 4 0  CG34422 3 4 0 

CG10209 3 4 0  Map60 3 4 0 

CG17912 3 4 0  Taf4 3 4 0 

SF2 3 4 15  Smu1 3 4 0 

mof 3 4 1  msn 3 3 0 

Nurf-38 3 4 0  Mes2 3 3 0 

DMAP1 3 4 0  CG3689 3 3 1 

cactin 3 4 0  CG1316 3 3 0 

CG33129 3 4 0  RpII33 3 3 0 

RpII33 3 4 0  Akap200 3 3 3 

CG3548 3 4 1  CG6841 3 3 0 

B52 3 4 0  ran 3 3 0 

IntS2 3 4 0  lig 3 3 0 

PNUTS 3 4 0  Art1 3 3 0 

CG7593 3 4 0  Dip-B 3 3 0 

bl 3 4 0  TfIIFalpha 3 3 0 

CG8507 3 4 0  Hr96 3 3 4 

cl 3 4 0  Fs(2)Ket 3 3 0 

vkg 3 4 3  Nurf-38 3 3 10 

tth 3 3 0  nonA 3 3 0 

Mes2 3 3 0  swm 3 3 0 

MED24 3 3 0  Bre1 3 3 0 

MED25 3 3 0  Xpd 3 3 0 

IntS12 3 3 0  GstT1 3 3 0 

Jupiter 3 3 0  CG2469 3 3 0 

CG8436 3 3 3  Khc 3 3 0 

Gp93 3 3 3  gro 3 3 0 

hang 3 3 0  IntS10 3 3 0 

Wdr82 3 3 0  Rad23 3 3 0 

nbs 3 3 0  p47 3 3 0 

CG7379 3 3 0  MED4 3 3 0 

wee 3 3 0  Vap-33-1 3 3 2 

CG3995 3 3 0  Nup50 3 3 0 

CG1888 3 3 0  CG4203 3 3 0 

omd 3 3 0  CG6693 3 3 3 

mtSSB 3 3 3  CG13185 3 3 0 

Asun 3 3 0  ct 3 3 12 

regucalcin 3 3 0  Nup358 3 3 0 

Hnf4 3 3 0  CG15356-RA 3 3 0 

Bj1 3 3 9  cmet 3 3 1 

pnr 3 3 0  CG3163 3 3 0 

MED4 3 3 0  cdc2 3 3 0 

Asx 3 3 0  Utx 3 3 0 
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psq 3 3 0  MED25 3 3 0 

CG32737 3 3 0  ns1 3 3 0 

CG12592 3 3 0  CG12909 3 3 0 

CG11873 3 3 0  Vinc 3 3 0 

Su(var)2-HP2 3 3 0  CG8036 3 3 0 

Rad23 3 3 0  Cg25C 3 3 0 

Ino80 3 3 1  sip1 3 3 0 

BcDNA.LD23
876 

3 3 0  RecQ4 3 3 3 

CG11266 3 3 1  CG10139 3 3 0 

CG3680 3 3 1  l(2)04524 3 3 0 

Su(var)2-HP2 3 3 4  msi 3 3 3 

CG34422 3 3 0  Nlp 3 3 0 

Cpsf100 3 3 1  rin 3 3 1 

Rbbp5 3 3 0  mus209 3 3 0 

ncm 3 3 0  BRWD3 3 3 0 

swm 3 3 0  MED27 3 3 2 

opa1-like 3 3 0  CG4598 3 3 0 

Cbp80 3 3 3  CG10977 3 3 0 

Orc5 3 3 0  Rpn3 3 3 3 

pic 3 3 0  Vha26 3 3 0 

Pitslre 3 3 2  mus210 3 3 4 

CG3756 3 3 2  Mad1 3 3 0 

eIF-4a 3 3 0  sgg 3 3 1 

Sym 3 3 2  Hlc 3 3 2 

IntS3 3 3 0  DnaJ-1 3 3 5 

CG12288 3 3 0  CtBP 2 6 0 

prod 3 3 2  Hmu 2 6 0 

Rat1 3 3 1  skpA 2 4 0 

CG5787 3 3 22  CG32767 2 4 0 

Orc6 3 3 0  Kap-alpha3 2 4 0 

ash1 3 3 0  ix 2 4 0 

CG4266 3 3 0  PNUTS 2 4 0 

Dp 3 3 0  MED11 2 4 0 

CG10984 3 3 0  RpL40 2 4 0 

Rbp2 3 3 0  La 2 4 1 

XRCC1 3 3 0  Ssl1 2 4 0 

meso18E 3 3 0  FKBP59 2 4 0 

apt 3 3 0  CG2990-RB 2 4 0 

msps 3 3 0  MED10 2 3 0 

MED10 2 8 0  Wdr82 2 3 0 

RpL40 2 8 0  Pa1 2 3 0 

ttk 2 4 0  CG2691 2 3 0 

crol 2 4 0  CG7593 2 3 0 

Hsp68 2 4 0  tlk 2 3 0 

lin-52 2 4 0  CG4282 2 3 1 

MED27 2 4 0  Set 2 3 0 

DnaJ-1 2 4 2  BEAF-32 2 3 3 

ran 2 4 0  rump 2 3 0 

Dsp1 2 3 0  Tcp-1eta 2 3 1 

CG5181 2 3 0  Cpsf100 2 3 0 

cg 2 3 0  Ssb-c31a 2 3 0 

Tim13 2 3 0  e(y)1 2 3 0 

Trap1 2 3 1  bic 2 3 0 

hoip 2 3 0  CG15439 2 3 0 

CG6227 2 3 0  D1 2 3 3 

yki 2 3 0  smid 2 3 0 

WRNexo 2 3 0  gpp 2 3 0 

Zif 2 3 0  CG5958-RA 2 3 0 

CG10139 2 3 3  Etl1 2 3 0 

CG12112-RA 2 3 0  CG17233 2 3 0 

CG17493 2 3 0  how 2 3 0 

Rbp1 2 3 1  mamo 2 2 0 
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CG13708 2 3 0  kuk 2 2 0 

SmB 2 3 4  Cpsf160 2 2 0 

Nlp 2 3 3  CG11964 2 2 0 

ns1 2 3 0  wah 2 2 0 

EloA 2 3 2  ttk 2 2 0 

Bre1 2 3 0  ush 2 2 0 

CG3909 2 3 0  Pc 2 2 1 

CG10977 2 3 0  CG1240 2 2 0 

Mcm3 2 3 0  ps 2 2 0 

Taf11 2 3 0  Taf8 2 2 3 

CG13096 2 3 15  Zn72D 2 2 0 

Cg25C 2 3 0  CG10600 2 2 0 

Fib 2 3 15  CG11120 2 2 0 

msn 2 2 0  mxc 2 2 0 

CG18004-RB 2 2 0  CG7288 2 2 0 

CG8149 2 2 2  CG13349 2 2 0 

sbb 2 2 0  CG2051 2 2 0 

CG33097 2 2 2  CG30122 2 2 0 

MBD-like 2 2 0  Mes-4 2 2 0 

TfIIB 2 2 0  CaBP1 2 2 0 

Pa1 2 2 0  CG11164 2 2 0 

CG10672 2 2 0  CG17912 2 2 0 

CG7987 2 2 0  Rop 2 2 0 

Nop56 2 2 0  Spt6 2 2 2 

mip40 2 2 0  Rpb5 2 2 0 

Nap1 2 2 0  CG2852 2 2 0 

CG11120 2 2 0  chic 2 2 0 

CG17233 2 2 0  H 2 2 0 

Taf12 2 2 0  ncm 2 2 0 

dod 2 2 0  lost 2 2 0 

Zn72D 2 2 0  CG12592 2 2 0 

chif 2 2 0  eIF4G 2 2 0 

Smu1 2 2 0  Hdac3 2 2 0 

Tango4 2 2 0  MED15 2 2 0 

Hpr1 2 2 3  REG 2 2 0 

CG7971 2 2 0  pav 2 2 2 

BtbVII 2 2 0  CG8142 2 2 0 

CG11999 2 2 4  beag 2 2 0 

CaBP1 2 2 0  CG10979 2 2 0 

CrebB-17A 2 2 0  CG3542 2 2 0 

CG2807 2 2 0  Jupiter 2 2 0 

Droj2 2 2 1  CG31075 2 2 0 

Mdh2 2 2 1  G9a 2 2 0 

pUf68 2 2 4  omd 2 2 0 

CG4617 2 2 0  ttk 2 2 0 

Ef1gamma 2 2 12  Cap 2 2 0 

Nop60B 2 2 0  D19A 2 2 0 

Acn 2 2 0  DMAP1 2 2 0 

ball 2 2 0  CG4813 2 2 0 

SF1 2 2 0  Rae1 2 2 0 

Su(var)3-3 2 2 0  CG4266 2 2 0 

msn 2 2 0  Scm 2 2 0 

MED15 2 2 0  ham 2 2 0 

tho2 2 2 3  Rbbp5 2 2 0 

Taf10 2 2 0  velo 2 2 1 

CG12262 2 2 0  Dlc90F 2 2 0 

CG31291 2 2 0  chinmo 2 2 3 

scaf6 2 2 0  CG4849 2 2 2 

D1 2 2 0  Adf1 2 2 3 

Prp3 2 2 2  CG14641 2 2 0 

cora 2 2 0  Rpt4 2 2 0 

glo 2 2 3  bur 2 2 0 

gro 2 2 0  Tpr2 2 2 0 
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gpp 2 2 0  EndoGI 2 2 0 

emb 2 2 0  Ald 2 2 1 

dik 2 2 0  Rbp1 2 2 0 

Lint-1 2 2 0  Taf11 2 2 0 

Etl1 2 2 0  hoip 2 2 0 

CG5514-RA 2 2 0  Br140 2 2 0 

Karybeta3 2 2 0  CG17544-RA 2 2 0 

Mad1 2 2 4  CG15784 2 2 4 

CG9135 2 2 0  abs 2 2 0 

Ada2b 2 2 0  egg 2 2 6 

CG2691 2 2 0  CG1371 2 2 2 

Vap-33-1 2 2 0  Pabp2 2 2 0 

HmgZ 2 2 0  CG1888 2 2 0 

CG11107 2 2 10  Gapdh1 2 2 0 

su(s) 2 2 0  CG4887 2 2 0 

pen 2 2 4  alphaCop 2 2 0 

Acf1 2 2 0  CG17002 2 2 0 

Tip60 2 2 0  Cap-D3 2 2 0 

lola 2 2 0  Eb1 2 2 0 

CG7477 2 2 0  Acon 2 2 0 

lolal 2 2 0  CycB 2 2 0 

REG 2 2 0  fru 2 2 3 

CG8289 2 2 3  Cbp80 2 2 0 

lost 2 2 0  CG1640 2 2 0 

eRF1 2 2 0  MED8 2 2 0 

pho 2 2 0  Fancd2 2 2 2 

scra 2 2 0  fl(2)d 2 2 0 

Fen1 2 2 0  EfTuM 2 2 6 

XNP 2 2 0  betaTub97EF 2 2 0 

l(2)35Df 2 2 5  Hnf4 2 2 0 

IntS11 2 2 3  Rcd1 2 2 0 

CG17446 2 2 0  CG7918 2 2 7 

Hel25E 2 2 0  Ref1 2 2 0 

msk 2 2 0  zf30C 2 2 1 

CG7920 2 2 0  Su(var)3-9 2 2 8 

Orc4 2 2 0  Pdi 2 2 0 

HP1b 2 2 0  cora 2 2 0 

CG5913 2 2 0  CycH 2 2 0 

CG3884 2 2 0  psq 2 2 31 

shn 2 2 0  alpha-Spec 2 2 0 

CG13773 2 2 0  CG14438 2 2 0 

CG4598 2 2 2  
BcDNA.LD238

76 
2 2 1 

CkIIalpha 2 2 0  skap 2 2 0 

CG10979 2 2 0  Eaf6 2 2 0 

ctrip 2 2 0  Gas41 2 2 0 

Tfb4 2 2 0  lolal 2 2 0 

AGO2 2 2 3  Spt20 2 2 0 

thoc7 2 2 1  CG8858 2 2 0 

SmD2 2 2 1  pps 2 2 6 

CG9601-RA 2 2 0  RpI135 2 2 0 

CG33695 2 2 0  CG3884 2 2 0 

CG15514 2 2 0  PHGPx 2 2 0 

Set1 2 2 2  CG7427 2 2 0 

mad2 2 2 0  Fkbp13 2 2 0 

CG18600 2 2 3  apt 2 2 0 

G9a 2 2 0  HP1b 2 2 0 

Hdac3 2 2 0  row 2 2 3 

clu 1 5 0  CG8436 2 2 0 

CtBP 1 4 5  Nop56 2 2 0 

CG30116 1 4 0  Trip1 2 2 0 

BEAF-32 1 3 0  B52 2 2 0 

baf 1 3 2  CG5118 2 2 0 
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htl 1 3 0  hyd 2 2 0 

CG9293 1 2 0  CG6904 2 2 0 

CG1240 1 2 1  CG7239 2 2 0 

CG4360 1 2 0  Ssdp 2 2 10 

CG10324 1 2 0  CG11107 2 2 0 

CG6272 1 2 0  exba 2 2 2 

MED20 1 2 0  coil 2 2 0 

SmE 1 2 2  Rpn9 2 2 0 

fd68A 1 2 0  CG8929 2 2 0 

Sfmbt 1 2 0  CG5516 2 2 0 

CG1316 1 2 1  CG30116 1 4 1 

CHES-1-like 1 2 0  CG1622-RA 1 3 1 

TfIIEalpha 1 2 0  Trap1 1 3 0 

CG17233 1 2 0  clu 1 3 0 

x16 1 2 3  CG12391 1 2 0 

NLaz 1 2 0  crol 1 2 4 

Rpb10 1 2 0  SmB 1 2 0 

ctp 1 2 0  CG14715 1 2 0 

CG3491 1 2 0  CG5181 1 2 0 

TotM 1 2 0  CG10543 1 2 1 

CG18766 1 1 0  Tim8 1 2 1 

E2f2 1 1 0  MED30 1 2 0 

Su(var)2-10 1 1 0  lin19 1 2 0 

Rpb5 1 1 2  WRNexo 1 2 1 

CG4788-RA 1 1 0  RanGap 1 2 0 

Rtf1 1 1 0  CG10543 1 2 0 

CG10555 1 1 0  CG17385 1 2 0 

Nacalpha 1 1 1  msn 1 2 0 

Saf-B 1 1 2  SC35 1 2 0 

CG12391 1 1 0  CG13992-RA 1 2 0 

CG14715 1 1 0  htl 1 2 0 

CG7288 1 1 0  sec23 1 2 0 

Or7a 1 1 0  Cct1 1 2 0 

CycA 1 1 0  CkIIalpha 1 2 1 

ph-d 1 1 0  SmD3 1 2 0 

chm 1 1 0  CG5554 1 2 0 

lola 1 1 0  CstF-50 1 2 0 

Usp7 1 1 0  CG9987 1 2 0 

JHDM2 1 1 0  ebd1 1 2 4 

U2af38 1 1 1  lark 1 2 0 

CG5118 1 1 0  RpL3 1 2 0 

CG13992-RA 1 1 0  CG3918 1 2 0 

Max 1 1 0  CG11058 1 2 0 

Cap 1 1 0  Trl 1 1 0 

smid 1 1 3  tsh 1 1 0 

tai 1 1 0  CG12104 1 1 1 

CG15784 1 1 0  ph-p 1 1 0 

CG16838 1 1 0  mip130 1 1 0 

su(Hw) 1 1 4  CG9293 1 1 10 

CG4221 1 1 0  koi 1 1 0 

defl 1 1 0  CG5590 1 1 0 

nonA 1 1 10  mad2 1 1 0 

CG5694 1 1 0  Cap-G 1 1 1 

Pof 1 1 0  Nacalpha 1 1 4 

mrt 1 1 0  CG5641 1 1 0 

Octbeta3R 1 1 0  CG5514-RA 1 1 0 

noi 1 1 2  Tango4 1 1 0 

mdy 1 1 4  ATbp 1 1 2 

HmgD 1 1 0  HP1c 1 1 0 

CG10543 1 1 0  CG7154 1 1 0 

HP5 1 1 0  pnt 1 1 0 

kin17 1 1 0  CG8435 1 1 0 

asf1 1 1 0  Cctgamma 1 1 0 
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Xrp1 1 1 0  CG7477 1 1 0 

ush 1 1 0  Su(var)2-10 1 1 0 

CG5180 1 1 0  NTPase 1 1 0 

ph-d 1 1 0  raps 1 1 0 

ACC 1 1 0  CG42668 1 1 0 

CG8097 1 1 0  RpL10Ab 1 1 0 

Arp8 1 1 0  CG6418 1 1 0 

lat 1 1 0  wal 1 1 0 

mus209 1 1 1  Bx42 1 1 0 

alpha-
Adaptin 

1 1 6  Tim13 1 1 1 

exba 1 1 0  CG11266 1 1 0 

Spt6 1 1 0  Phf7 1 1 0 

CG14641 1 1 3  CG5525 1 1 0 

SC35 1 1 0  srpk79D 1 1 0 

YL-1 1 1 0  Sfmbt 1 1 0 

tsr 1 1 2  CG3011 1 1 0 

BtbVII 1 1 0  CG2926 1 1 0 

Rpb4 1 1 0  Tm1 1 1 14 

lin19 1 1 0  RpS8 1 1 0 

Su(var)3-9 1 1 1  CG3198 1 1 0 

Myb 1 1 1  esc 1 1 0 

CG6674 1 1 0  kst 1 1 10 

ebd1 1 1 0  RpLP0 1 1 0 

Cpsf73 1 1 0  mle 1 1 0 

beag 1 1 0  Rpn5 1 1 0 

CG16972 1 1 0  Fer1HCH 1 1 0 

RpL11 1 1 1  CG9135 1 1 0 

da 1 1 0  Cypl 1 1 0 

Fech 1 1 0  Rb97D 1 1 0 

Cdk8 1 1 0  fd68A 1 1 0 

chic 1 1 0  l(3)mbt 1 1 0 

d4 1 1 0  meso18E 1 1 1 

NHP2 1 1 7  FANCI 1 1 0 

CG6700 1 1 0  lola 1 1 0 

CG10907 1 1 0  eIF-4E 1 1 0 

dgt1 1 1 0  CG12262 1 1 2 

sec6 1 1 0  SmE 1 1 0 

ssx 1 1 0  ACC 1 1 0 

CG9915 1 1 0  CG3760 1 1 3 

Cpsf160 1 1 0  CG3605 1 1 0 

CycB 1 1 0  jumu 1 1 0 

CG7637 1 1 1  CG4045 1 1 0 

Atu 1 1 0  dUTPase 1 1 0 

Zn72D 1 1 3  geminin 1 1 7 

LKR 1 1 0  CG11092 1 1 0 

PSR 1 1 0  Cct5 1 1 0 

RpS19a 1 1 9  Hrb98DE 1 1 0 

cathD 1 1 1  Clic 1 1 1 

pit 1 1 5  U2af38 1 1 0 

CG4360 1 1 0  da 1 1 0 

CG10462 1 1 0  mip40 1 1 0 

Cypl 1 1 0  CG10932 1 1 0 

exo70 1 1 0  nxf2 1 1 2 

CG9866 1 1 0  gfzf 1 1 1 

l(1)G0148 1 1 0  RpL11 1 1 7 

TFAM 1 1 0  CG7194 1 1 0 

Ef1beta 1 1 6  CG13142 1 1 0 

Dlc90F 1 1 1  Su(dx) 1 1 0 

CG15107 1 1 0  CG2862 1 1 0 

CG4291-RA 1 1 0  CG1218 1 1 0 

CG17118 1 1 0  lds 1 1 0 

Hmu 1 1 0  Gapdh2 1 1 0 
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CG5727 1 1 0  CG3224 1 1 0 

CG12608 1 1 0  CG5198 1 1 0 

Arf79F 1 1 2  cindr 1 1 0 

fru 1 1 0  CG8258 1 1 3 

CG7692 1 1 0  Nup214 1 1 0 

Atac1 1 1 0  ade5 1 1 0 

CG3363 1 1 0  CG11208 1 1 0 

CG15477 1 1 0  tum 1 1 0 

Cyp12d1-d 1 1 0  CG10324 1 1 0 

Deaf1 1 1 0  Rpn2 1 1 0 

shn 1 1 0  gammaCop 1 1 0 

CG13624 1 1 0  CG12258 1 1 0 

CG2051 1 1 0  CG3226 1 1 0 

Tctp 1 1 2  Aats-asp 1 1 0 

CG9987 1 1 0  CG6388 1 1 0 

Kdm4B 1 1 0  Nop60B 1 1 0 

Clic 1 1 0  CG13865 1 1 0 

Rbf2 1 1 0  HmgZ 1 1 1 

futsch 1 1 0  Rab1 1 1 0 

sgg 1 1 0  CG7945 1 1 0 

FKBP59 1 1 0  CG6179 1 1 0 

Nup50 1 1 2  zip 1 1 9 

MrgBP 1 1 0  CG2199 1 1 0 

crol 1 1 0  MED28 1 1 0 

CG4400 1 1 0  lat 1 1 0 

Arf102F 1 1 0  BEST:LD13441 1 1 0 

Nup358 1 1 12  CG8223 1 1 0 

TfIIFbeta 1 1 0  Asx 1 1 0 

Rab2 1 1 0  awd 1 1 0 

put 1 1 0  Lasp 1 1 0 

schlank 1 1 3  tefu 1 1 0 

Ets97D 1 1 0  polo 1 1 0 

CG16865 1 1 0  Mnn1 1 1 0 

Rrp6 1 1 0  SF1 1 1 0 

su(w[a]) 1 1 0  mus309 1 1 0 

CG14442 1 1 0  Msh6 1 1 0 

parvin 1 1 0  Mcm7 1 1 0 

Rpb7 1 1 1  Slob 1 1 0 

CG14868 1 1 0  Parp 1 1 0 

msl-3 1 1 3  CG6272 1 1 0 

CG3847 1 1 0  ss 1 1 1 

CG10274 1 1 0  CG9911 1 1 4 

sdk 1 1 0  pen 1 1 0 

Cf2 1 1 0  px 1 1 3 

Gasp 1 1 0  sqh 1 1 0 

CG8119 1 1 0  eIF3-S4-1 1 1 4 

sog 1 1 0  Rcd5 1 1 0 

cher 1 1 0  CG3339 1 1 0 

CG5941 1 1 0  PSR 1 1 0 

Msh6 1 1 0  RpS3 1 1 3 

CG12163 1 1 1  x16 1 1 0 

CG4707 1 1 0  EG:25E8.3 1 1 0 

lark 1 1 4  CG9281 1 1 0 

CG9331 1 1 0  CG8478 1 1 0 

Gdi 1 1 0  Syp 1 1 0 

CG5641 1 1 4  dgt5 1 1 0 

CG10993 1 1 0  CG5004-RA 1 1 0 

Klp67A 1 1 0  HmgD 1 1 0 

CG14712 1 1 0  CG7033 1 1 0 

yemalpha 1 1 0  sec13 1 1 0 

Hira 1 1 0  Fen1 1 1 0 

l(1)G0020 1 1 9  RPA2 1 1 6 

msl-2 1 1 0  Ef1beta 1 1 0 
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CG7564 1 1 2  BtbVII 1 1 0 

His2A 1 1 7  Tango1 1 1 0 

TfIIEbeta 1 1 0  ort 1 1 0 

koi 1 1 10  betaTub60D 1 1 0 

mxc 1 1 0  CG10631 1 1 2 

CG14073 1 1 0  noi 1 1 0 

Klp61F 1 1 0  r-l 1 1 0 

BCL7-like 1 1 0  CG33695 1 1 5 

CG10754 1 1 0  Mlc-c 1 1 0 

Cdk12 1 1 0  CG14544 1 1 2 

eIF-2alpha 1 1 0  CG9018 1 1 2 

dco 1 1 0  Prp3 1 1 0 

Nopp140 1 1 12  Anp32a 1 1 0 

Spn27A 1 1 0  CG7987 1 1 0 

Prp3 1 1 0  Hel89B 1 1 0 

CG32708 1 1 0  Msp-300 1 1 0 

Mhc 1 1 0  MrgBP 1 1 0 

Doa 1 1 0  CG6621 1 1 0 

Cas 1 1 0  CG7504 1 1 0 

Tpr2 1 1 0  CG6700 1 1 0 

CG42668 1 1 0  Fmr1 1 1 1 

CG11123 1 1 3  CG4164 1 1 0 

RpS14a 1 1 5  CkIalpha 1 1 0 

Cyp28a5 1 1 0  CG12065 1 1 0 

CG13223 1 1 0  Mms19 1 1 2 

cmet 1 1 0  baf 1 1 0 

CG6961 1 1 0  BtbVII 1 1 0 

CG5071 1 1 0  eIF-1A 1 1 0 

CG18815 1 1 0  eco 1 1 0 

CG6015 1 1 0  CG17209 1 1 0 

cic 1 1 0  Spt3 1 1 0 

CG8840 1 1 0  CG10565 1 1 0 

SmD3 1 1 1  CG12608 1 1 0 

CG7376 1 1 0  D19B 1 1 0 

bys 1 1 3  HP5 1 1 9 

Tfb5 1 1 0  l(1)G0020 1 1 0 

CG3702 1 1 0  CG3995 1 1 0 

Gale 1 1 2  mrt 1 1 3 

CG31955 1 1 0  CG8289 1 1 7 

CG2233 1 1 0  CG13097 1 1 0 

CG11058 1 1 0  CG14442 1 1 0 

CG8635 1 1 0  msb1l 1 1 1 

Tbp 1 1 0  Cpr 1 1 0 

Fancd2 1 1 0  CG7920 1 1 2 

gp210 1 1 17  Arf79F 1 1 0 

MED31 1 1 0  MTA1-like 1 1 2 

comt 1 1 0  Doa 1 1 3 

chn 1 1 0  glo 1 1 17 

CG5789-RA 1 1 0  gp210 1 1 0 

Lap1 1 1 0  CG9213 1 1 0 

Mtr3 1 1 0  Crc 1 1 3 

CG42550 1 1 0  CG9797 1 1 0 

CG15207 1 1 0  CG11788 1 1 0 

OstDelta 1 1 8  BCL7-like 1 1 0 

YT521-B 1 1 0  CG13887 1 1 0 

Mcm5 1 1 0  CG17493 1 1 0 

Uvrag 1 1 0  ytr 1 1 0 

CG4164 1 1 1  RpL30 1 1 0 

Hop 1 1 0  CG9004 1 1 1 

cdc2 1 1 0  RpS12 1 1 0 

RpS28b 1 1 2  Rrp4 1 1 0 

NAT1 1 1 0  Pros45 1 1 0 

     Actr13E 1 1 0 
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     wee 1 1 9 

     Bj1 1 1 8 

     OstDelta 1 1 0 

     AnnIX 1 1 0 

     CG9302 1 1 0 

     Cpr64Ac 1 1 0 

     CG1703 1 1 0 

     tweek 1 1 0 

     GstE3 1 1 0 

     ZAP3 1 1 0 

     RpL23 1 1 0 

     CG10754 1 1 0 

     Cnx99A 1 1 0 

     ctrip 1 1 3 

     Hpr1 1 1 2 

     CG3756 1 1 0 

     CG1109 1 1 2 

     CG33097 1 1 0 

     ps 1 1 0 

     CG31368 1 1 0 

     gem 1 1 1 

     CG7637 1 1 0 

     pan 1 1 0 

     CG3511 1 1 0 

     CG13690 1 1 0 

     Imp 1 1 0 

     Rpn12 1 1 0 

     Tina-1 1 1 0 

     ras 1 1 0 

     beta'Cop 1 1 0 

     MED31 1 1 0 

     TfIIEalpha 1 1 0 

     Uch-L3 1 1 0 

     CG5044 1 1 0 

     RanBPM 1 1 0 

     Dsp1 1 1 0 

     rempA 1 1 0 

     l(1)G0156 1 1 0 

     Dpy-30L1 1 1 0 

     CG7338 1 1 0 

     ph-d 1 1 0 

     CG17737 1 1 0 

     exo84 1 1 14 

     Ote 1 1 0 

     CG3815 1 1 12 

     RpL7 1 1 0 

     CG4936 1 1 0 

     CG5174-RA 1 1 0 

     Arp8 1 1 0 

     CG10132 1 1 0 

     IntS2 1 1 0 

     CG7770 1 1 0 

     ver 1 1 0 

     CG13923 1 1 1 

     Nup205 1 1 0 

     Nsf2 1 1 0 

     Cat 1 1 0 

     eIF2B-delta 1 1 0 

     CG13850 1 1 0 

     pnt 1 1 0 

     Lint-1 1 1 0 

     Trn-SR 1 1 0 

     tex 1 1 0 
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     Rrp6 1 1 0 

     IntS8 1 1 0 

     Jheh2 1 1 0 

     Ahcy13 1 1 0 

     MAPk-Ak2 1 1 0 

     scf 1 1 0 

     Brd8 1 1 0 

     Eig71Ec 1 1 0 

     Orc5 1 1 2 

     prod 1 1 0 

     CG4617 1 1 0 

     eIF-2alpha 1 1 0 

     CG1979 1 1 0 

     kay 1 1 0 

     CG12168 1 1 0 

     abo 1 1 0 

     CG5933 1 1 0 

     CG14005 1 1 0 

     cactin 1 1 0 

     CG9727 1 1 0 

     CG7834 1 1 3 

     eIF3-S10 1 1 0 

     shi 1 1 0 

     robl 1 1 0 

     Es2 1 1 0 

     Hsp60 1 1 0 

     CG1965 1 1 0 

     Arf102F 1 1 0 

     Sec16 1 1 0 

     alien 1 1 0 

     Prx6005 1 1 0 

     MAGE 1 1 0 

     snama 1 1 0 

     Klp67A 1 1 0 

     CG9667 1 1 0 

     l(1)G0230 1 1 3 

     pea 1 1 0 

     Adk3 1 1 0 

     Atx2 1 1 0 

     Pax 1 1 0 

     Acn 1 1 0 

     Cyt-c-p 1 1 0 

     l(1)G0007 1 1 0 

     Myo31DF 1 1 0 

     Rab2 1 1 0 

     CLIP-190 1 1 0 

     Irbp 1 1 0 

     CG15514 1 1 0 

     
DNApol-
alpha73 

1 1 0 

     CHES-1-like 1 1 0 

     GstO2 1 1 0 
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Table S2: BioTAP-Jil-1 associated proteins in S2 and Kc cells 

S2 BioTAP-Jil-1  Kc BioTAP-Jil-1  

Gene Name Peptides 
Total 

Peptides 
Input S2 (Total 

peptides) 
Gene Name Peptides 

Total 
Peptides 

Input S2 (Total 
peptides) 

Hsp83 29 68 1 Top2 29 44 57 

Hsc70-4-RA 27 81 1 Hsc70-4-RA 28 70 1 

JIL-1-RB 26 114 0 JIL-1-RB 27 106 28 

CG7946 25 72 1 Hsp83 27 40 0 

CG11198 24 27 0 CG11198 27 33 16 

Top2 21 35 1 CG4747 25 52 7 

CG4747 18 46 1 CG7946 25 85 9 

Lam 16 20 0 RpA-70 16 20 44 

Hop 16 21 0 betaTub56D 15 21 18 

regucalcin-RD 14 30 0 eIF-4a-RD 14 21 5 

betaTub56D 14 20 1 lid 13 14 31 

Act5C 14 33 1 Act5C 12 18 7 

eIF-4a-RD 14 29 1 dpa 12 15 9 

stwl 14 22 0 14-3-3epsilon 11 22 10 

14-3-3epsilon 13 36 1 rept 11 12 12 

CG2118 13 24 0 pont 11 12 0 

RpA-70 12 18 0 CG16972 11 12 0 

CG10630 11 25 1 Cap 11 11 2 

Jafrac1 11 26 1 stwl 10 11 0 

ATPCL 10 12 0 CG10630 10 18 12 

zip 10 10 1 TER94-RC 10 13 8 

dpa 10 12 0 Mi-2 10 10 5 

lid 10 10 1 Hcf 10 13 6 

Hsc70Cb 10 15 0 Bap55 10 15 44 

CG1815 10 10 0 Ef2b 10 12 13 

mor 9 10 1 dre4 9 10 0 

cher 9 10 1 scra 9 10 0 

Iswi 9 10 1 CG2118 9 11 2 

TER94-RC 9 15 1 Psa-RA 9 9 4 

Ef2b 9 13 1 14-3-3zeta 8 16 25 

Chd64 8 13 0 mod 8 9 1 

Chc 8 8 1 Chd64 8 8 4 

14-3-3zeta 8 17 1 Sin3A 8 10 24 

Clic 8 20 0 His2B 8 29 50 

CG12030 8 14 1 Lam 8 10 13 

Cyp1 8 18 0 Cyp1 8 12 4 

CG8149 8 12 1 Hop 8 9 15 

cher 8 12 1 ERp60 8 10 42 

Tcp-1zeta 8 10 0 His4 8 48 3 

Tcp-1eta 8 10 0 Ef1alpha100E 8 17 8 

Mcm3 8 10 0 E(bx) 8 10 4 

CtBP 8 11 1 Ahcy13 8 11 28 

Ef1alpha100E 8 20 1 alphaTub84D 7 12 12 

dre4 8 10 1 Iswi 7 10 7 

alpha-Spec 8 8 1 CtBP 7 11 3 

alphaTub84D 7 14 1 ATPCL 7 8 0 

mod 7 8 1 CG5524 7 7 6 

Ef1gamma 7 14 1 Mcm2 7 7 5 

Dek 7 9 1 CG6084 7 9 7 

Rpd3 7 13 1 Droj2 6 6 2 

Mcm2 7 7 0 Dek 6 7 14 

ERp60 7 8 1 pzg 6 7 15 

EndoGI 7 9 0 ran 6 8 7 

Khc 7 7 0 Jafrac1 6 8 6 

His4 7 40 1 Top2 6 8 14 

Mcm5 7 7 0 Tcp-1eta 6 8 0 

Mtor 7 7 1 CG8149 6 7 6 
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Hcf 7 8 1 Hsc70Cb 6 8 3 

l(2)35Df 7 7 1 CG10417 6 6 12 

rad50-RB 7 8 1 Mcm5 6 8 0 

sqd 6 15 1 CG1815 6 6 12 

Rm62-RE 6 7 1 CG8258 6 6 35 

Mi-2 6 6 1 alpha-Spec 6 6 14 

PyK 6 8 0 sqd 5 12 16 

pont 6 6 1 
Ef1alpha48D-

RA 
5 10 0 

CG8036 6 8 0 JIL-1 5 13 12 

dUTPase 6 10 0 Su(var)205 5 5 4 

Bap55 6 7 1 Dref 5 6 6 

Vinc 6 6 0 Rpd3 5 7 0 

kst 6 7 1 EndoGI 5 5 10 

anon1A3 5 6 1 mor 5 5 8 

JIL-1 5 9 0 Hrb98DE 5 8 5 

CG7033 5 5 0 Idh 5 6 8 

Su(var)205 5 7 1 Uba1 5 5 9 

Jupiter-RD 5 5 0 Gapdh1 5 7 2 

CG4699-RA 5 5 1 CG42232 5 5 1 

Droj2 5 9 0 Eip55E 5 6 29 

CG4236 5 11 1 Rm62-RE 5 6 3 

Hrb98DE 5 10 1 rad50-RB 5 5 3 

Su(var)2-HP2 5 6 1 CG9273 5 5 5 

Mcm6-RA 5 6 0 CG4236 5 9 6 

His2B 5 19 1 CG2982 5 5 9 

eIF4G 5 5 1 row 5 5 0 

CaBP1 5 5 0 CG34422 5 6 0 

rept 5 6 1 CG11006 5 5 16 

ran 5 8 1 CG8036 5 8 0 

pic 5 5 0 MBD-R2 5 6 0 

CG8258 5 9 0 tum 5 5 5 

Map205 5 6 1 pic 5 6 3 

Ars2 5 8 1 Mcm7 5 6 0 

T-cp1 5 5 0 anon1A3 4 4 13 

Ef1alpha48D-
RA 

4 8 1 Ef1gamma 4 4 4 

Hrb87F 4 4 1 wds 4 4 4 

Ald 4 4 0 Hrb87F 4 8 0 

CG5384 4 5 0 CG4699-RA 4 5 5 

Sin3A 4 4 1 smt3 4 8 1 

SelD 4 6 1 CG3226 4 4 0 

Gapdh1 4 7 0 Clic 4 5 37 

FKBP59 4 5 0 Mtor 4 4 15 

Ef1beta 4 6 1 CG7033 4 4 2 

ncd 4 6 1 CG6554 4 4 0 

mof 4 4 0 Msh6 4 4 0 

RfC4 4 5 1 geminin 4 5 0 

eEF1delta 4 6 1 pav 4 4 8 

CG3609 4 4 0 Tctp 4 5 1 

CG42232 4 4 1 Nlp 4 8 2 

RfC38 4 5 1 CG2051 4 4 0 

Klp3A 4 4 0 dom 4 4 0 

Eno 4 4 0 CoRest-RF 4 4 6 

Hel25E 4 8 1 His2Av 4 7 5 

La 4 6 0 RfC38 4 5 9 

glu 4 4 0 Gnf1 4 4 13 

granny-smith 4 5 0 Ssrp 4 4 16 

Cct5 4 4 0 
His1:CG33852-

RA 
4 6 6 

MBD-R2 4 5 1 Hel25E 4 5 2 

L(2)04524 4 6 0 dUTPase 4 5 5 

Karybeta3 4 4 0 Mcm3 4 5 2 
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ebi-RA 4 4 1 CG17337 4 4 13 

Gnf1 4 5 1 PyK 4 5 3 

Pep 4 6 1 CaBP1 4 4 2 

E(bx) 4 5 1 caz 3 4 3 

gro 4 4 0 CG1240 3 5 3 

brm 4 4 1 Jupiter-RD 3 3 0 

pds5 4 5 0 CG9894-RB 3 3 4 

msl-3 4 4 1 Mi-2 3 3 15 

CG16972 4 4 0 Chc 3 3 2 

CG9894-RB 3 3 0 Gapdh2 3 3 3 

Nurf-38 3 6 1 TfIIS 3 3 0 

Snr1 3 3 1 CG10630 3 3 6 

TfIIS 3 3 0 Nurf-38 3 4 2 

Ubi-p63E 3 6 1 Snr1 3 3 0 

CG1910 3 3 0 CG2827-RA 3 3 18 

CG17337 3 6 0 Bj1 3 3 2 

wds 3 4 1 Klp10A 3 4 2 

CG3226 3 3 0 osa-RC 3 3 7 

shrb 3 4 1 emb 3 3 1 

Nlp 3 10 1 CG16817 3 3 3 

Ote 3 3 1 Top1-RB 3 3 12 

CG1640 3 3 0 Karybeta3 3 3 3 

kis 3 3 1 La 3 4 5 

REG 3 4 0 mod(mdg4)-RD 3 3 2 

emb 3 3 0 Mcm6-RA 3 4 5 

pzg 3 3 1 Usp7 3 3 5 

CG9135 3 4 0 Bre1 3 3 0 

Dis3 3 3 1 r-l 3 3 6 

CG17544 3 3 0 Ubi-p63E 3 8 6 

Eb1 3 3 0 Ef1beta 3 3 10 

smt3 3 11 1 Pdi 3 3 1 

CG5362 3 5 0 Prosalpha1 3 3 6 

Ssrp 3 3 1 l(2)35Df 3 3 5 

CG2051 3 3 0 CG9135 3 3 4 

ade5 3 6 0 Ssb-c31a 3 4 12 

cher 3 5 1 128up 3 3 0 

zip-RC 3 3 1 MEP-1 3 3 4 

His1:CG33852-
RA 

3 4 1 RfC4 3 3 0 

bur 3 3 0 glu 3 3 8 

tsr 3 4 1 Ars2 3 4 2 

Gapdh2 3 4 0 Cdc37-RA 3 3 5 

CG9987 3 3 0 cul-4 3 4 0 

Idh 3 4 0 Klp3A 3 3 2 

msk 3 3 0 ncd 3 3 2 

mus101 3 3 0 CG6227 3 3 6 

Map60 3 3 1 Pp2A-29B 3 3 2 

CG6673 3 4 0 crp 3 4 0 

His2Av 3 5 1 mre11 3 3 3 

woc 3 3 1 ade5 3 3 0 

zip-RC 3 3 1 spel1 3 3 2 

CG6554 3 6 0 MTA1-like 3 3 8 

CG6388 3 6 0 Rack1 3 3 0 

CG5363 3 3 0 DppIII 3 3 0 

Rrp1 3 3 1 CG10722 3 3 0 

Moe-RB 3 7 1 Smc5 3 3 6 

CG5931 3 3 1 Chro 3 4 5 

exba 3 3 0 CG13185 3 3 5 

AnnIX 3 3 1 brm 3 3 10 

mod(mdg4)-RD 3 3 1 Ca-P60A 3 3 0 

Cat 3 3 0 gro 3 3 4 

CG11107 3 6 1 DNApol-delta 3 3 0 

Usp7 3 3 0 MRG15 2 2 1 
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shot 3 3 1 CG7911 2 2 2 

Lasp 3 3 0 emb 2 2 14 

CG12171 3 3 0 Nap1 2 3 12 

Hsc70-3 3 3 1 Hrb27C 2 2 1 

CG9273 3 3 0 glu 2 3 1 

BcDNA:GH1061
4 

3 3 0 Anp32a 2 3 0 

Pgk 3 3 0 shrb 2 2 0 

Pp2A-29B 3 3 0 CG2446 2 2 2 

CG34422 3 3 0 zip 2 2 15 

Bre1 3 3 0 growl 2 2 3 

CG6783 3 4 0 Taf6 2 2 7 

DppIII 3 5 0 Acf1 2 2 9 

CG1516 3 3 0 mdy 2 2 9 

CG2767 3 3 0 Tcp-1zeta 2 2 5 

CG3714 3 3 0 CG5384 2 2 0 

CG8290 3 3 0 CG15141 2 3 3 

lark 3 3 1 D1 2 2 3 

GstD1 3 4 0 
BcDNA:LD2211

8 
2 2 2 

caz 2 2 1 REG 2 2 0 

CG7911 2 2 0 Klp3A 2 2 3 

betaTub97EF 2 2 1 Set 2 3 0 

CG14715 2 3 0 CG3523 2 2 2 

SMC4 2 2 0 glu 2 2 2 

CG1316 2 2 0 dom-RD 2 2 0 

Mcm7 2 3 0 CG3609 2 2 5 

chic 2 3 0 FKBP59 2 2 0 

Nap1 2 2 0 Spt5 2 2 0 

Uba1 2 2 0 HmgZ 2 2 5 

sle 2 2 1 bl 2 2 0 

growl 2 3 1 CG4045 2 2 2 

Tctp 2 2 1 tsr 2 2 1 

mus209 2 2 0 Mcm3 2 2 11 

RfC3 2 2 1 Rrp1 2 2 2 

xl6 2 2 1 SelD 2 2 1 

osa-RC 2 2 1 Mlc-c 2 2 0 

Spt6-RA 2 2 0 cg 2 2 0 

Pros28.1 2 2 0 CG13350 2 3 3 

Mlc-c 2 3 1 CG9797 2 2 4 

CoRest-RF 2 2 1 Cas 2 2 0 

Dref 2 3 1 Rad23 2 2 0 

Ssb-c31a 2 3 0 alien 2 2 4 

CG4045 2 2 0 CG3689 2 2 1 

CG2947 2 3 0 Caf1-180-RB 2 2 4 

CG5899 2 2 1 CG6783 2 3 1 

CG5524 2 2 0 Dsp1 2 2 0 

Mi-2 2 3 0 mof 2 2 4 

nudC 2 2 0 Map60 2 2 2 

D1 2 3 1 Khc 2 2 5 

Klp10A 2 3 0 Psi 2 2 0 

cg 2 2 0 Caf1-105 2 2 0 

scra 2 2 0 barr 2 2 2 

CG3523 2 2 0 Kap-alpha3 2 2 4 

CG3011 2 2 0 Bap60 2 2 0 

SMC1 2 2 0 CG3523-RA 2 2 2 

sec13 2 2 0 Rcd5 2 2 0 

RnrL 2 3 0 CG6133 2 2 0 

Vha26 2 2 1 Asx 2 2 1 

CG6905 2 2 1 Pp4-19C 2 3 0 

CG11006 2 3 1 ImpL3-RA 2 2 0 

eIF-5A 2 3 1 sds22 2 2 8 

CG7194 2 2 1 His2A 2 6 2 
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RhoGAP92B-RA 2 2 0 CG1737 2 2 1 

sqh 2 2 1 mus209 2 2 4 

Cam-RB 2 2 1 CkIalpha 2 3 0 

Pros26.4 2 2 0 RnrS 2 2 8 

dom 2 2 0 sop 2 2 3 

DnaJ-1 2 2 1 ebi-RA 2 2 2 

Aac11 2 2 1 fs(1)h 2 2 0 

Pen 2 2 0 Aats-ala 2 2 0 

cora 2 2 0 pps-RA 2 2 4 

CG1972 2 2 1 CG16941 2 2 0 

awd 2 2 0 CG10600 2 2 0 

mts 2 3 0 pds5 2 2 0 

CG8223 2 2 0 GstE6 2 2 28 

CG6523 2 2 0 LamC 2 2 5 

Dhc64C 2 2 1 Pgk 2 2 0 

swm 2 2 1 Cat 2 2 2 

CG16817 2 2 0 SMC1 2 2 0 

CG17665 2 2 0 CG1972 2 3 2 

Elf 2 2 0 chic 2 2 0 

Prp19 2 3 1 L(2)04524 2 2 9 

MTA1-like 2 2 0 Cp190 2 2 1 

CG13887 2 2 0 CG6418 2 3 0 

CG2469 2 2 0 CG3680-RA 2 2 16 

128up 2 2 1 CG11107 2 2 0 

Vha55 2 4 0 CG12276 2 2 8 

CG13350 2 2 0 Cctgamma 2 2 0 

Prx2540-1 2 2 0 CG11980 2 2 0 

CG2852 2 2 0 enok 2 2 0 

Dsp1 2 2 0 CG6693 2 2 15 

smid 2 2 1 CG13096 2 2 10 

row 2 2 1 CG34422 2 2 2 

Prp8 2 2 1 AnnIX 2 2 0 

Nop60B-RC 2 2 1 Pros29 2 2 0 

CG2827-RA 2 2 0 Uch 2 2 0 

Rnp4F 2 2 0 EG:115C2.8 2 2 0 

CG10527 2 2 0 GstD1 2 2 2 

His2A 2 15 1 Rpn7 2 2 7 

Dip-B 2 3 0 cul-2 2 2 3 

CG5854 2 2 0 T-cp1 2 2 0 

GstE6 2 2 0 CG7338 2 2 2 

RhoGDI 2 2 0 DMAP1 2 2 3 

Cortactin 2 2 0 mts 2 2 0 

Cdc37-RA 2 2 0 CG6061 2 2 3 

srp 2 2 0 lark 2 2 9 

ScpX 2 2 0 RnrL 2 2 0 

cul-4 2 2 1 l(2)35Bg 1 1 9 

CG3909 2 3 0 CG30122 1 1 4 

Tudor-SN 2 2 1 Hsp70Ba-RA 1 1 4 

Top3alpha 2 2 0 Trap1 1 1 1 

mle 2 2 1 CG30122-RB 1 1 3 

Tm1-RA 2 2 0 CG5899 1 1 1 

CG12259 2 2 0 CG17950 1 1 3 

Gdi 2 2 0 betaTub97EF 1 1 0 

aru 2 2 0 Mnf 1 1 2 

Rcd1 2 2 1 Ubqn 1 1 0 

DNApol-
alpha60 

2 2 0 kay-RA 1 1 0 

CG5014 2 2 1 CG1910 1 1 2 

CG10333 2 2 1 Crc 1 1 7 

CG17493 2 2 0 Hsp27 1 1 1 

Ahcy13 2 2 0 dre4 1 1 2 

Past1 2 2 0 Pros28.1 1 1 0 

CG3983-RB 2 2 1 CG5355 1 1 3 
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CG6418 2 2 0 CG5641 1 1 0 

RpS18-RB 2 2 1 Map60 1 1 2 

east-RB 2 2 0 bic 1 1 3 

CG10080 2 2 0 Gp93 1 1 4 

CG40045 1 1 0 RfC3 1 1 3 

Hsp27 1 1 0 CG2446 1 1 0 

Rpb5 1 1 1 CG34422 1 1 1 

kay-RA 1 1 0 baf 1 1 1 

CG30122 1 1 0 skpA 1 1 4 

CG6995 1 1 1 Cbp80 1 1 5 

Hsp70Ba-RA 1 1 0 eEF1delta 1 1 1 

Trap1 1 1 0 CG6084 1 1 3 

Anp32a 1 1 0 Pros45 1 1 5 

mor 1 1 0 CG5525 1 1 0 

Hrb27C 1 1 1 CG17912 1 1 1 

CG6554 1 1 0 CG5355 1 1 11 

CG7477 1 1 0 Fs(2)Ket 1 1 0 

Gp93 1 1 1 vtd 1 1 0 

baf 1 1 1 CG3760 1 1 7 

msl-2 1 1 0 RpL24 1 1 1 

NELF-A 1 1 0 mor 1 1 0 

Aats-glupro 1 1 0 14-3-3zeta-RI 1 1 6 

Bap60 1 1 1 Hsp26 1 1 3 

CG4802 1 1 0 dalao 1 1 12 

CG15141 1 1 0 nito 1 1 4 

CG17273 1 1 0 Rpn9 1 1 0 

CG5355 1 1 0 CG32626-RD 1 1 10 

CG2862 1 1 0 RpS8 1 1 2 

MED21 1 1 0 U2af50 1 1 2 

Karybeta3 1 1 0 RpL11 1 1 2 

Crc 1 1 0 Aats-thr 1 1 0 

Df31 1 1 0 Rbp1-like 1 1 0 

Klp3A 1 1 0 lig 1 1 0 

dod-RA 1 1 0 Su(var)2-HP2 1 1 0 

Su(var)3-9 1 1 0 M(2)21AB 1 1 3 

alt 1 1 1 CG2469 1 1 3 

Pcd-RA 1 1 0 smid 1 1 2 

HmgZ 1 1 0 RpS12 1 1 0 

DNApol-delta 1 1 0 Dox-A2 1 1 0 

RpS7 1 1 0 U2af38 1 1 0 

CG5355 1 1 0 CG6673 1 1 2 

CG3760 1 1 0 CkIIbeta 1 1 1 

alt 1 1 1 Ald 1 1 5 

Fdh 1 1 0 Nipped-A 1 1 8 

RpL10Ab 1 1 1 eIF-5A 1 1 1 

Papss-RD 1 1 0 Sep1 1 1 15 

c12.1 1 1 0 Pen 1 1 2 

HP1c 1 1 1 CG1354-RB 1 1 8 

Pdi 1 1 1 alphaCop 1 1 0 

CG10139 1 1 1 tlk 1 1 1 

wal 1 1 0 CG11089 1 1 1 

dalao 1 1 1 mip130 1 1 0 

glu 1 1 0 Su(var)2-HP2 1 1 0 

RpL24 1 1 1 CG10990 1 1 6 

skpA 1 1 0 hts 1 1 6 

da-RA 1 1 0 Tm1-RA 1 1 0 

U2af38 1 1 0 PNUTS 1 1 0 

Set 1 1 0 CG6388 1 1 0 

RpLP1 1 1 1 Tango4 1 1 1 

Dp 1 1 0 CG12547 1 1 1 

ALiX 1 1 0 ytr 1 1 1 

Cpsf160 1 1 0 
BcDNA:GH1061

4 
1 1 0 
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emb 1 1 0 ftz-f1 1 1 6 

CG6197 1 1 0 eIF-2alpha 1 1 1 

Msh6 1 1 0 Vha44 1 1 2 

sip2-RD 1 1 0 TER94 1 1 1 

Kap-alpha3 1 1 1 Trx-2 1 1 0 

mle 1 1 0 CG9987 1 1 1 

Pros35 1 1 0 Cpsf160 1 1 1 

BcDNA:LD2211
8 

1 1 0 CG17255 1 1 1 

CG3353 1 1 0 Clc 1 1 5 

Pgd 1 1 0 CG7497-RB 1 1 2 

Mms19 1 1 0 exba 1 1 30 

smc1 1 1 1 Prp8 1 1 5 

CHES-1-like-RB 1 1 0 gammaCop 1 1 0 

TER94 1 1 0 CG9330 1 1 0 

Top2 1 1 1 nbs 1 1 0 

Prosbeta7 1 1 0 CG7375 1 1 0 

CG5077 1 1 1 Jra 1 1 0 

betaggt-II 1 1 0 mle 1 1 0 

CG9617 1 1 0 barr 1 1 0 

p38b 1 1 0 Rnp4F 1 1 0 

14-3-3zeta-RI 1 1 0 Rab1 1 1 12 

CG9232 1 1 0 beta-Spec 1 1 0 

CG6693 1 1 0 Df31 1 1 0 

Rpn1 1 1 0 swm 1 1 0 

CG6089 1 1 1 CG6776 1 1 1 

CG13185 1 1 1 Mcm7 1 1 15 

#VALUE! 1 1 0 SF2 1 1 3 

fs(1)h 1 1 1 Pabp2 1 1 4 

CG9641 1 1 0 Rpt4-RA 1 1 4 

Uba2 1 1 0 CG9156 1 1 1 

RpS28b 1 1 1 Cam-RB 1 1 1 

ash2 1 1 0 Chd3 1 1 2 

CG6891-RA 1 1 0 Uba2 1 1 0 

Lag1 1 1 1 CG32654 1 1 7 

Argk 1 1 0 Prp19 1 1 0 

LBR 1 1 1 Pros54 1 1 3 

Pp4-19C 1 1 0 CG5363 1 1 0 

Rpn9 1 1 0 CG4400 1 1 0 

cher 1 1 0 HP1b 1 1 0 

CG32955 1 1 0 CG10979 1 1 0 

Rab11-RB 1 1 0 Bub3 1 1 5 

Aats-asn 1 1 0 Arf79F 1 1 8 

CG5602 1 1 0 RpL5 1 1 4 

l(2)35Bg 1 1 0 Sym 1 1 0 

CG8142 1 1 1 SMC4 1 1 2 

r-l 1 1 0 CG5602 1 1 0 

CstF-64 1 1 1 CG2118 1 1 0 

Chd3 1 1 0 dom-RE 1 1 0 

CG5525 1 1 0 CG10565 1 1 1 

Nacalpha 1 1 0 CG4203 1 1 7 

CG7497-RB 1 1 1 Nopp140 1 1 0 

CG17259 1 1 0 CG6617 1 1 3 

CG1354-RB 1 1 0 su(f) 1 1 2 

eIF3-S4-1 1 1 0 Vha68-2 1 1 2 

CG13349 1 1 0 R 1 1 2 

M(2)21AB 1 1 0 Vinc 1 1 3 

CG1240 1 1 0 CG8801-RA 1 1 0 

cyp33 1 1 0 CG3415 1 1 0 

dlg1 1 1 0 CG2909 1 1 22 

Snx6 1 1 0 Hsc70-3 1 1 2 

shn 1 1 0 CG18591 1 1 0 

tum 1 1 0 MSBP 1 1 0 
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Taf6 1 1 1 CG7593 1 1 0 

vib 1 1 0 CG5482 1 1 0 

CG7375 1 1 0 dlg1 1 1 0 

bic 1 1 0 CG3162 1 1 0 

Klc 1 1 0 da-RA 1 1 0 

Jra 1 1 1 CG13350 1 1 0 

Jhd1 1 1 0 Prx2540-1 1 1 0 

BRWD3 1 1 1 XNP 1 1 0 

Trx-2 1 1 0 Gas41 1 1 5 

CG13690 1 1 0 RpL23a 1 1 9 

pelo 1 1 0 RpS18-RB 1 1 9 

Pros45 1 1 0 CG13900 1 1 2 

CG5222 1 1 0 Prosalpha5 1 1 0 

CG2118 1 1 0 cher 1 1 1 

CG9471 1 1 0 awd 1 1 1 

Asx 1 1 0 Su(var)2-10 1 1 5 

wapl 1 1 0 
BcDNA.GH0792

1 
1 1 0 

hyx 1 1 1 Cortactin 1 1 0 

Top1-RB 1 1 1 CG7878 1 1 0 

Drp1 1 1 0 Rrp42 1 1 3 

CG6776 1 1 0 CG12909 1 1 2 

Bub3 1 1 0 Akap200 1 1 0 

CG6379 1 1 0 VhaSFD 1 1 1 

CG8677-RA 1 1 0 CG32528 1 1 10 

CG1115 1 1 0 Eno 1 1 0 

Cct1 1 1 0 Tps1 1 1 0 

spel1 1 1 0 CG5174 1 1 0 

Rack1 1 1 1 CG6876 1 1 0 

mip130 1 1 0 e(y)1 1 1 0 

Vha68-2 1 1 1 CHES-1-like-RB 1 1 0 

sta-RD 1 1 1 CG14618 1 1 0 

Clc 1 1 0 hyd 1 1 1 

CG40801 1 1 0 pnut 1 1 0 

CG7770 1 1 0 Parp 1 1 4 

fs(1)N 1 1 0 eIF3-S4-1 1 1 5 

poe 1 1 0 SmB 1 1 1 

CG7182 1 1 0 CG7288 1 1 2 

CG11164 1 1 0 CG7246 1 1 6 

CG6061 1 1 1 xl6 1 1 5 

CG9934 1 1 0 CG11844-RB 1 1 0 

cactin 1 1 0 CG9934 1 1 9 

Hel89B 1 1 0 CG2691-RA 1 1 0 

CG1910 1 1 0 tum 1 1 5 

RpS26 1 1 1 RpL6 1 1 0 

eIF-2alpha 1 1 0 Uev1A 1 1 0 

CG9156 1 1 0 Rpn11 1 1 6 

Uev1A 1 1 0 r 1 1 0 

Rpn11 1 1 0 CG7324 1 1 12 

r 1 1 0 CG6543 1 1 15 

CG7324 1 1 0 CG13096 1 1 0 

CG6543 1 1 1 CG9286 1 1 0 

CG13096 1 1 1 CG9331-RA 1 1 0 

CG9286 1 1 0 Fcp1 1 1 0 

CG9331-RA 1 1 0 CG11334 1 1 8 

Fcp1 1 1 0 RpS14a 1 1 3 

CG11334 1 1 0 betaCop 1 1 0 

RpS14a 1 1 1 RpS8 1 1 0 

betaCop 1 1 0 Sod 1 1 11 

RpS8 1 1 1 Fs(2)Ket 1 1 0 

Sod 1 1 0 Tfb1 1 1 0 

Fs(2)Ket 1 1 1 CG11138 1 1 0 

Tfb1 1 1 0 Nedd8 1 1 0 
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CG11138 1 1 0 S6k 1 1 0 

Nedd8 1 1 0 CG1354 1 1 0 

S6k 1 1 0 CstF-64 1 1 0 

CG1354 1 1 0 CG12065 1 1 4 

CstF-64 1 1 0 CkIalpha 1 1 0 

CG12065 1 1 0 CG7154 1 1 0 

CkIalpha 1 1 0 TfIIA-L 1 1 0 

CG7154 1 1 0     

TfIIA-L 1 1 0     

 


