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Abstract

My dissertation is composed of three chapters that are unified by their exploration of asset

prices and macroeconomic news announcements. With respect to asset prices, my main

focus is on the price discovery process: how do asset prices reveal information relevant for

asset fundamentals? Through my research, I provide new answers to this question. My

work gets at core issues in asset pricing: whether financial markets are informationally

efficient; why some assets earn unconditionally high premia; and how the sensitivity of

prices to information varies over time and across assets. Specifically, chapter one shows

evidence that sophisticated traders with an informational advantage inefficiently impound

their edge into the aggregate U.S. stock market and U.S. Treasury bonds. In chapter two,

I explore a model in which investors are averse to ambiguity (Knightian uncertainty) to

explain why the equity premium is concentrated around specific events. Finally, chapter

three investigates how the Federal Reserve’s zero lower bound affects the response of asset

prices, in particular interest rates, to information.

Each of the three chapters explores the price discovery process using the unique setting

of U.S. macroeconomic news announcements, which are made by government agencies

and private-sector organizations and cover macroeconomic data on inflation, output, and

unemployment. Analyzing financial markets in this setting deepens our understanding of

how asset prices reflect information about macroeconomic fundamentals. At the same time,

the results have macroeconomic implications; for example, the assumptions of monetary

policy models in theory and the effectiveness of unconventional monetary policy in practice.
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Introduction

My dissertation is composed of three chapters that are unified by their exploration of asset

prices and macroeconomic news announcements (MNAs). With respect to asset prices, my

main focus is on the price discovery process: how do asset prices reveal information relevant

for asset fundamentals? Through my research, I provide new answers to this question. My

work gets at core issues in asset pricing: whether financial markets are informationally

efficient; why some assets earn unconditionally high premia; and how the sensitivity of

prices to information varies over time and across assets.

Each of the three chapters explores the price discovery process using the unique setting

of U.S. MNAs, which are made by government agencies and private-sector organizations

and cover macroeconomic data on inflation, output, and unemployment. Analyzing financial

markets in this setting deepens our understanding of how asset prices reflect information

about macroeconomic fundamentals. At the same time, the results have macroeconomic

implications; for example, the assumptions of monetary policy models in theory and the

effectiveness of unconventional monetary policy in practice.

Chapter one studies how the views of sophisticated traders are impounded into stocks

and bonds around MNAs. I find evidence that sophisticated traders trade on predictions

of macroeconomic news reports before announcements and obtain their informational

advantage using public information. Specifically, consensus forecasts of upcoming data

releases suffer from anchoring bias and overweight past data releases. By correcting this

bias, sophisticated traders can predict news reports. The results suggest that stock and

bond markets are inefficient in this setting. Over time, there is a “late trading puzzle”:

1



sophisticated traders can predict news reports days before announcements but appear to

trade these predictions into stock and bond prices just hours before announcements. Across

assets, there is a related puzzle: the predictable component of news reports is eventually

fully impounded into bonds but only partially impounded into stocks. Stocks but not bonds

react to announcements of the predictable component and display return momentum. I

develop a model showing that market inefficiency can arise when unsophisticated traders

neglect public information that predicts news reports, and risk management concerns deter

sophisticated traders from acting on their informational edge. Trading earlier and trading

riskier assets such as stocks exposes sophisticated traders to greater risk. As a result,

sophisticated traders wait to trade and trade safer assets such as bonds.

In chapter two, I argue that the behavior of ambiguity-averse investors in response to

ambiguous macroeconomic data can account for stock market dynamics around MNAs.

Using a representative agent model in which the investor is averse to ambiguity (Knightian

uncertainty) and sees an ambiguous piece of news about the fundamental value of a risky

asset, I show a number of predictions for the dynamics of stocks around news: stocks

respond more strongly to bad news than to good news, respond positively to neutral news,

and increase on average through news. In times of high ambiguity, the magnitudes of

each effect is larger, and the volatility of stocks around news changes in a predictable

manner as well. I provide empirical evidence consistent with the model by analyzing the

high-frequency behavior of the aggregate stock market around MNAs from November, 1997

to March, 2014. The model helps to understand features of the data that challenge existing

frameworks; e.g., the findings that the stock market reacts especially strongly to bad news

versus good news during crisis periods and that about 1/3 of equity returns in the 17 year

sample accrues in the 10 minutes around the release of macroeconomic data. In addition

to providing evidence for the role of ambiguity in financial markets generally and in how

financial assets reflect macroeconomic shocks specifically, the empirical results also have

implications for the behavior of investors. Investors treat bad news as more relevant in bad

times than in good times but treat good news the same in good and bad times.

2



The third chapter analyzes the reaction of interest rates and the stock market to MNAs at

the zero lower bound (ZLB). I start by using a shadow rate term structure model to formulate

three predictions for the sensitivity of interest rates to MNAs. First, “better”-than-expected

macroeconomic data increases interest rates. Second, as the expected duration of the ZLB

increases, whether because economic conditions are worse or because monetary policy

changes, interest rates become less sensitive to macroeconomic data. Third, this attenuation

in the sensitivity of interest rates is largest for intermediate-maturity rates. I verify these

predictions by using a broad sample of MNAs and high-frequency intraday futures data on

interest rates. Turning to stocks, I show that the stock market’s reaction to MNAs can be

decomposed into an interest rate news term that is directly related to interest rates’ reaction

to MNAs and a cash flow plus risk premium news term. Using the same sample of MNAs

and high-frequency intraday futures data on the stock market, I empirically estimate the

stock market’s sensitivity to macroeconomic data as well as that of the constituent news

terms. Based on the interest rate news term alone, the expected duration of the ZLB should

increase the sensitivity of stocks to macroeconomic news. The data furthermore suggests

that the expected duration of the ZLB decreases the magnitude of the cash flow plus risk

premium news term.

3



Chapter 1

Sophisticated Trading and Market

Efficiency: Evidence from

Macroeconomic News

Announcements

1.1 Introduction

Are markets efficient or inefficient? This question is central to economics. In efficient

markets, asset prices quickly and completely reflect public information relevant for asset

fundamentals. Conversely, asset prices slowly and partially incorporate such information in

inefficient markets. In this paper, I study sophisticated trading around U.S. macroeconomic

news announcements (MNAs) and show how and why the aggregate U.S. stock and bond

markets are inefficient in this setting.

Government agencies and private-sector organizations regularly make MNAs and release

macroeconomic data on inflation, output, and unemployment. To assess the informational

content of an announcement, observers look at the difference between the announced

value of the data release and economists’ forecasts. Consistent with common practice, I
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define this difference as the “news report” such that a positive news report corresponds

to higher-than-expected inflation and output and lower-than-expected unemployment. A

negative news report is the opposite. As documented in an extensive and active literature,

MNAs substantially impact the prices of many assets; in particular, the U.S. aggregate stock

market, or “stocks,” and U.S. Treasury bonds, or “bonds.”1 Stocks increase {decrease} and

bonds decrease {increase} on announcements of positive {negative} news reports about the

economy.2

In the first part of this paper, I present evidence that sophisticated traders predict

macroeconomic news reports and trade on this informational advantage in stocks and bonds

in the hours prior to the official release times. For a comprehensive sample of 18 MNAs

from July 2003 to March 2014, stocks increase {decrease} and bonds decrease {increase} before

positive {negative} news reports. More specifically, in the hours prior to positive {negative}

news reports of greater than 1 standard deviation in magnitude, the E-mini S&P 500 futures

contract increases up to 7.8 basis points {decreases up to 3.1 basis points}, and the 10-Year

U.S. Treasury Note futures contract decreases up to 2.8 basis points {increases up to 3.8 basis

points}. This pre-announcement conditional drift is sizable relative to the announcement

return: up to 57% and 26% of the price adjustment of stocks and bonds, respectively, to

news reports occurs in the pre-announcement window.

What is the source of sophisticated traders’ informational advantage? In the second part

1Many papers have explored how asset prices reflect macroeconomic risk; for example, Jones, Lamont,
and Lumsdaine (1998), Andersen, Bollerslev, Diebold, and Vega (2003, 2007), Boyd, Hu, and Jagannathan
(2005), Faust, Rogers, Wang, and Wright (2007), Faust and Wright (2012), and Savor and Wilson (2013, 2014).
These studies have investigated an assortment of assets (such as stocks, bonds, and currencies) in various
sample periods (for instance, expansionary and contractionary states). How asset prices vary in response to
macroeconomic data can give insight into other areas of economics as well. Swanson and Williams (2013,
2014) and Zhou (2014), for example, show that the Federal Reserve’s zero lower bound attenuates interest rate
sensitivity to news about the economy. Zhou (2015) argues that the behavior of ambiguity-averse investors in
response to ambiguous macroeconomic data can explain stock market dynamics around MNAs.

2Throughout this paper, I use curly braces to distinguish between the cases of positive news reports and
negative news reports. A sentence without the braced words corresponds to the case of positive news reports;
in this instance, “Stocks increase and bonds decrease on announcements of positive news reports about the
economy.” A sentence that replaces the words before braces with the words inside braces corresponds to the
case of negative news reports; in this instance, “Stocks decrease and bonds increase on announcements of
negative news reports about the economy.”
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of this paper, I provide an answer to this natural follow-up question. The data suggest that

sophisticated traders are able to obtain at least some of their informational advantage via

the “homework channel.” That is, sophisticated traders skillfully process public information

to predict macroeconomic news reports and trade on these predictions. I first demonstrate

that homework is doable by showing an example in which public information predicts

news reports. In my sample of MNAs, economists’ forecasts display anchoring bias and are

systematically biased to the values of past releases. When forecasts are higher than past data

realizations, forecasts are not high enough due to overweighting of prior data, and conversely

for forecasts lower than past data realizations. As such, differences between forecasts and

past data realizations positively predict news reports. Since this predictor variable is

common knowledge prior to the release of macroeconomic data, public information predicts

news reports. Second, I find support that the homework is being acted on. There is a

strong relationship between the predictability of news reports based on anchoring bias and

the pre-announcement conditional drift. Stocks increase {decrease} and bonds decrease

{increase} before news reports predicted to be positive {negative}. It is striking that public

information based on the straightforward example of anchoring bias predicts news reports

and explains so much of the pre-announcement conditional drift. Market participants have

the incentives and resources to analyze a more comprehensive set of public information

using more advanced techniques. Thus, sophisticated traders in practice likely obtain an

even greater informational advantage via the homework channel than shown in my research.

Based on the above results, I show in the third part of this paper that stock and bond

markets are inefficient both over time and across assets. Over time, there is a “late trading

puzzle”: the public information that predicts macroeconomic news reports is impounded

into stocks and bonds with a significant lag. More precisely, the public information that

predicts news reports is available days prior to the official release times of MNAs. Contrary

to the logic of market efficiency, however, the predictable component of news reports is

impounded into asset prices just hours prior to the official release times.

Across assets, there is a related puzzle: by the announcement times, the public in-
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formation that predicts news reports is fully incorporated into bonds but only partially

incorporated into stocks. That is, the bond market eventually becomes efficient, while

the stock market remains inefficient. Stocks but not bonds react to announcements of the

predictable component of news reports based on anchoring bias. A 1 standard deviation

positive {negative} value of the predictable component elicits a statistically significant 1.5

basis points increase {decrease} in stocks. Bonds are more efficient than stocks in another

way: stocks but not bonds display return momentum between pre-announcement and

announcement returns. For stocks, a 10 basis points higher pre-announcement return is

statistically significant in predicting up to 0.6 basis point higher announcement return.

In the fourth part of this paper, I provide a model-based explanation for why stocks and

bonds are inefficient around MNAs. In the model, all traders see a public announcement

of a news report that provides information about risky asset values. Sophisticated traders

obtain advance knowledge of this news report, possibly through the skillful processing of

public information. The model makes three key assumptions. First, unsophisticated traders

do not know beforehand the news report and thus neglect public information that predicts

the news report. Second, sophisticated traders have risk management concerns, as modeled

through risk aversion. Third, traders do not extract each others’ information from prices.

In the baseline version of the model, there is one risky asset. Sophisticated traders

have two opportunities to trade on their informational advantage before the announcement:

during an early period and during a late period. In each period, holders of the risky asset

face fundamental risk. If the fundamental risk is large in the early period relative to the

late period, risk-averse sophisticated traders recognize that they can achieve a higher risk-

adjusted return by trading little on their information early on and instead waiting to trade

a lot later on. As a result, the advance knowledge of sophisticated traders is inefficiently

impounded into the risky asset with a delay.

Just as sophisticated traders avoid risk in the time series by trading later, the model

predicts that sophisticated traders avoid risk in the cross section by trading less risky assets.

In an extension of the model, the public announcement of a news report provides information
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about the values of two risky assets. Prior to the announcement, the fundamental risk

associated with holding one of the assets versus the other is higher (in both early and late

periods). Risk-averse sophisticated traders recognize that they can achieve a higher risk-

adjusted return by trading the less risky asset than the riskier one. In doing so, sophisticated

traders impound more of their informational edge in the former than the latter, which

makes the less risky asset more efficiently priced than the riskier asset. Compared to the

riskier asset, the less risky asset reacts less strongly to the public announcement of the news

report already known to sophisticated traders and displays less return momentum between

pre-announcement and announcement returns.

The data are consistent with the model’s explanation of market inefficiency. Sophisticated

traders with advance knowledge of macroeconomic news reports find it less attractive to

trade stocks and bonds in the days versus hours before announcements due to higher

risk. These sophisticated traders also find it less attractive to trade stocks versus bonds

before announcements because of greater risk. As evidence, I consider hypothetical trading

strategies that go long {short} stocks and short {long} bonds before positive {negative} news

reports above {below} a given threshold. For both assets, the Sharpe ratios are lower when

the strategies are implemented in the days before announcements than the hours before

announcements. The reason is that the return standard deviations are higher and not that

the return means are lower. Similarly, before announcements, the Sharpe ratios are lower

for strategies implemented in stocks versus bonds. Once again, the reason is that the return

standard deviations are higher and not that the return means are lower.

In the fifth and final part of this paper, I investigate whether the inefficiency of stock

and bond markets creates attractive trading opportunities in practice. To do so, I construct

implementable trading strategies using the predictable component of macroeconomic news

reports derived from anchoring bias. These strategies go long {short} stocks and short

{long} bonds before news reports predicted to be above {below} a given threshold. Even

after transaction costs, the Sharpe ratios are sizable: the Sharpe ratio is as high as 0.82 for

stocks and 1.12 for bonds. These risk-adjusted returns are consistent with the interpretation
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that sophisticated traders are deterred by risk from trading the predictable component into

prices and consequently leave money on the table.

This paper builds on the broader informed trading literature in which some, sophisticated

traders have an informational advantage.3 A number of studies empirically document

settings in which there is or appears to be informed trading; for example, Meulbroek (1992)

around ex-post insider trading events based on U.S. Securities and Exchange Commission

(SEC) charges, Acharya and Johnson (2007) in the credit default swap market, Irvine, Lipson,

and Puckett (2007) around sell-side analysts’ recommendations, and Campbell, Ramadorai,

and Schwartz (2009) around earnings announcements. Many of these papers focus on

traders acting upon an informational edge relevant for the values of individual securities.

Recently, a few researchers have presented evidence of traders with advance knowledge

of macroeconomic events who trade in aggregate markets. Cieslak, Morse, and Vissing-

Jorgensen (2014) and Bernile, Hu, and Tang (2015) find patterns in the U.S. stock market

consistent with sophisticated traders acting on information concerning the Federal Reserve.

Bernile, Hu, and Tang (2015) and Kurov, Sancetta, Strasser, and Wolfe (2015) also look

for evidence of informed trading around MNAs.4 Much of the aforementioned literature

either attributes informed trading to (illegal) information leakage or is unable to specify the

mechanism by which sophisticated traders obtain their information.

My research contributes to a separate strand of the informed trading literature that is

concerned with how traders optimally trade and impound their informational advantage

into asset prices. A number of theories provide insights into optimal trade timing. Kyle

(1985) and Back (1992) show in multi-period microstructure models that a single, risk-neutral

informed trader spreads his trading out over time such that private information is gradually

3I use the terms “informed” and “sophisticated” interchangeably.

4Bernile, Hu, and Tang (2015) were unable to find evidence of informed trading. This no result is likely due
to their small sample of MNAs (3 types of announcements versus 18 in my analysis) and their focus on the last
30 minutes prior to the official release times. Using an expanded set of MNAs, Kurov, Sancetta, Strasser, and
Wolfe (2015) do find evidence of informed trading in the last 30 minutes prior to the official release times. This
result is a subset of my finding in the first part of this paper that sophisticated trading appears to take place in
the hours prior to the official release times.
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incorporated into asset prices. Holden and Subrahmanyam (1992, 1994) demonstrate that

when there are multiple informed traders, even if they are risk-averse, competition ensues,

which precipitates a rush to trade. Traders aggressively front-run each other, and private

information is quickly incorporated into asset prices. On the other hand, Foster and

Viswanathan (1996) and Back, Cao, and Willard (2000) argue that informed traders with

heterogeneous private information wait to trade. Each informed trader is incentivized to

wait in order to conserve his information monopoly and prevent others from using prices to

infer his private information. Under this scenario, private information is slowly incorporated

into asset prices. While there is a sizable theoretical literature on optimal trade timing, there

is little complementary empirical work on whether sophisticated traders actually rush to

trade, wait to trade, or spread out their trading. One example of such a study is Di Mascio,

Lines, and Naik (2015) who document the gradual alpha decay of stocks purchased by

institutional investors and argue that this phenomenon is indicative of sophisticated traders

waiting to trade on their information. Other frameworks analyze aspects of optimal trade

aside from timing. In De Long, Shleifer, Summers, and Waldmann (1990) and Brunnermeier

(2005), for example, sophisticated traders take advantage of unsophisticated traders. The

sophisticated front-run the unsophisticated before public announcements and then flip

their positions after public announcements. Kadan, Michaely, and Moulton (2014) find

supportive empirical evidence in the trading of institutional investors around sell-side

analysts’ recommendations. Some of the predictions of the above theories are outside of

my model. At the end of this paper, I show features of the data that offer new evidence for

the existing theories in the literature and motivate a more comprehensive extension of my

model.

Finally, my research is related to the substantial body of work concerning news about

the economy. As discussed in the beginning of this paper, MNAs are frequently used to

measure the impact of macroeconomic shocks on financial assets. The standard approach

is to regress returns in narrow announcement windows on macroeconomic news reports,

which proxy for the informational content of announcements. If traders informed about
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news reports act on this information prior to announcements, however, the aforementioned

regression inaccurately estimates the extent to which asset prices reflect macroeconomic risk.

The presence of sophisticated traders around MNAs has monetary policy implications as

well. Romer and Romer (2000) show that Federal Reserve forecasts of the economy are more

accurate than those of private-sector economists. The authors interpret the result as evidence

that the Federal Reserve has an informational advantage about the economy over market

participants. Yet my research suggests that some market participants, the sophisticated

traders, also have superior information about the economy versus private-sector economists.

When properly accounting for sophisticated traders, the Federal Reserve may have a smaller

or possibly no informational advantage about the economy over market participants. Such

a conclusion calls into question the asymmetric information assumption of monetary policy

models that central banks have better knowledge of the economy than other agents.

The organization of this paper is as follows. Section 1.2 introduces the sample of MNAs

as well as the data on stocks and bonds. Section 1.3 presents evidence of sophisticated

trading in the hours ahead of official release times, as shown by the pre-announcement

conditional drift of stocks and bonds. The results in Section 1.4 suggest that sophisticated

traders obtain their informational advantage via the homework channel. In Section 1.5, I

outline how stock and bond markets are inefficient over time and across assets. Section

1.6 provides a model-based explanation of the documented market inefficiency. Section 1.7

shows that trading on market inefficiency yields sizable risk-adjusted returns. Section 1.8

concludes.

1.2 Empirical Setting

The empirical setting in which I analyze sophisticated trading and market efficiency is the

stock and bond markets around MNAs. The first subsection introduces the data on MNAs,

and the second subsection introduces the data on stocks and bonds.
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1.2.1 MNAs

Table 1.1 shows the sample of MNAs considered in this paper. For each data series, the

table presents the name, units, number of observations, start date, end date, frequency,

government agency or private-sector organization responsible, and intraday announcement

timestamp. In all, I analyze 18 announcements, which cover the lion’s share of important

MNAs. Data for the majority of announcements begin in July 2003, when the data on stocks

and bonds begin, as discussed further down, and extend to March 2014. The Existing Home

Sales and Pending Home Sales data series start in 2005. All of the announcements occur

once a month excluding Initial Jobless Claims, which is a weekly data release. The data

in my sample are released at either 8:30 AM, 9:15 AM, or 10:00 AM ET. Macroeconomic

news releases are pre-scheduled and occur precisely at those pre-scheduled times. The

former feature ensures that if sophisticated trading were to occur, it would start prior to

well-defined release times. The latter feature means that evidence suggestive of sophisticated

trading is unlikely to be contaminated by early data releases. For days on which multiple

announcements occur, I keep in my sample the announcements that occur first and drop

the other announcements. By ensuring no MNAs occur prior to the MNAs in my sample,

the selection criteria removes a source of noise from the analysis of asset returns prior to

macroeconomic releases.5

Investigating sophisticated trading around MNAs requires defining the informational

content of MNAs that traders attempt to predict. I quantify the informational content of a

given economic indicator by calculating the difference between the announced value of the

data release and economists’ forecasts. Specifically, I construct the news report variable

NRt =
At − Ft

σ̂
, (1.1)

with At the announced value of the data release and Ft the median forecasted value of the

data release from a survey of economists. σ̂ is the sample standard deviation of At − Ft.

I obtain both At and Ft from Bloomberg, which is the standard source of such data for

5Extending my sample to the full set of announcements does not substantively alter the results.
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both academics and practitioners. The news report variable is identical to the measure of

the informational content of MNAs employed by Balduzzi, Elton, and Green (2001) and

subsequent papers in the literature of asset price reactions to MNAs. Consistent with

the literature, I define the news report variable such that a positive value corresponds to

higher-than-expected inflation and output and lower-than-expected unemployment. For

this reason, I multiply the Initial Jobless Claims and Unemployment Rate data by −1 while

keeping the signs of the other data unchanged, as shown by the sign column of Table 1.1.

As constructed, the news report variable provides a single metric that is standardized

across different types of news about macroeconomic fundamentals and allows for compara-

bility. This is important because different types of news are released with different units.

Figure 1.1 plots the time series of all the news reports in my sample. NRt is well-behaved in

the sense that it has a mean around zero and is symmetric. On average, macroeconomic

news reports are neutral, and positive news reports are as likely as negative news reports.

Moreover, the distribution of news reports appears stable in the time series.

1.2.2 Stocks and Bonds

I study sophisticated trading and market efficiency in the U.S. aggregate stock market and

U.S. Treasury bonds. I proxy for stock and bond markets using the front E-mini S&P 500 (ES)

futures contract and 10-Year U.S. Treasury Note (TY) futures contract, respectively. There are

several reasons for my choice of assets and securities. First, as discussed in the beginning of

this paper, stocks and bonds reflect market-wide risk, and, in particular, macroeconomic

risk. Traders with an informational advantage concerning MNAs can profitably express

their views in both assets. Second, stock and bonds futures are available for trading around

the clock.6 Importantly, futures are available for trading in the hours around MNAs, which

is when I find the strongest evidence of sophisticated trading. Third, ES and TY futures are

among the most liquid securities. As such, these securities are attractive to traders seeking

6For weekday t, the ES futures contract is available for trading from 5:00 PM CT of day t− 1 to 4:15 PM CT
of day t with a halt from 3:15 PM CT to 3:30 PM CT. The TY futures contract is available for trading from 5:00
PM CT of day t− 1 to 4:00 PM CT of day t.
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to minimize trading costs and price impact. Other proxies for stocks and bonds such as

ETFs are much less liquid and unavailable for trading for most of the overnight trading

session in the U.S. Fourth, ES and TY have low margins and thus offer easy leverage for

sophisticated traders wanting to maximize the value of their information.

Investigating trading in the hours around MNAs necessitates high-frequency, intraday

data. I obtain minute-level price and volume data on ES and TY futures from Tick Data, a

data vendor. The data are available from July 2003 to March 2014.7

In Figure 1.2, I use the volume data to substantiate my claims about ES and TY liquidity.

Panels A and B plot the intraday, minute-by-minute and cumulative dollar volumes for

stocks and bonds, respectively. The values are averaged across all days in the sample

that have MNAs. The three dashed vertical lines correspond to the 8:30 AM, 9:15 AM,

and 10:00 AM ET announcement times. For both assets, there are substantial spikes in

trading activity corresponding to these timestamps.8 For stocks, the jumps in volume are

comparable in magnitude to the well-known surges in trading associated with the 9:30

AM ET open and 4:00 PM ET close of the U.S. stock market. It is clear that when they are

announced, macroeconomic data command the attention of market participants who react

by trading ES and TY. Figure 1.2 also highlights the abundant liquidity of stock and bond

futures. The average daily cumulative dollar volumes are on the order of $100 billion. There

is even liquidity in the early morning hours around MNAs: by 8:30 AM ET, the average

cumulative dollar volume is over $7 billion for ES futures and over $17 billion for TY futures.

Appendix A.1 compares the stock and bond dollar volumes on days with MNAs to those

on days without MNAs. ES and TY are more liquid in the former case than the latter case,

in particular on and immediately after timestamps associated with MNAs.

7Data prior to July 2003 are missing information on overnight trading in the U.S. Since MNAs occur
during morning trading in the U.S., the overnight data are important for studying trading in the hours prior to
announcements.

8There is no noticeable spike associated with the middle dashed vertical line. This is because only one of
the MNAs in my sample, Industrial Production, is announced at 9:15 AM ET. All the others are announced at
8:30 AM or 10:00 AM ET.
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Panel A: Stocks

Panel B: Bonds

Figure 1.2: Intraday Stock and Bond Dollar Volumes on Days with MNAs

Notes: Panels A and B plot the intraday minute-by-minute and cumulative dollar volumes for stocks (front ES
futures contract) and bonds (front TY futures contract), respectively. The values are averaged across all days
in the sample that have MNAs. The three dashed vertical lines correspond to 8:30 AM, 9:15 AM, and 10:00
AM ET.
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1.3 Sophisticated Trading around MNAs

1.3.1 Pre-Announcement Conditional Drift

The first set of results shows evidence consistent with sophisticated traders predicting

macroeconomic news reports and trading on this informational advantage in stocks and

bonds in the hours prior to official release times. In Panels A and B of Figure 1.3, I plot

the mean cumulative return (in basis points or bps) starting 360 minutes before MNAs for

stocks and bonds, respectively. I do so for three samples of MNAs: the “Full Sample” of

announcements, those announcements with “News Report > 1” or greater than 1 standard

deviation positive news reports, and those announcements with “News Report < −1” or less

than 1 standard deviation negative news reports. The news report variable is constructed

based on Eq. (1.1). First, consider the results for stocks in Panel A. Upon announcements of

positive {negative} macroeconomic news reports, stocks increase {decrease}. In the hours

before announcements, stocks also increase {decrease}. Parallel results hold for bonds in

Panel B. Upon announcements of positive {negative} macroeconomic news reports, bonds

decrease {increase}. In the hours before announcements, bonds also decrease {increase}. This

pre-announcement conditional drift is the key piece of support for sophisticated trading in

stocks and bonds around MNAs.

To quantify the conditional drift, I calculate summary statistics in Table 1.2. Row −x

corresponds to the cumulative pre-announcement return (in bps) from x minutes to 5

minutes before MNAs, and row 0 corresponds to the ±5 minute announcement return (in

bps) around MNAs. For Table 1.2 and subsequent results in this paper, I define the end of

the pre-announcement window and the start of the announcement window to be 5 minutes

before MNAs. This demarcation minimizes the risk that early releases of macroeconomic

data are contributing to pre-announcement findings.9,10 Symmetrically, I define the end of

9Some MNAs in my sample have been accidentally released earlier than scheduled, but, to the best of my
knowledge, only at most a few seconds before the official release times.

10Stipulating that the pre-announcement window ends 5 minutes before MNAs may understate the mag-
nitude of sophisticated trading if sophisticated traders literally wait until the last moment to act on their
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Panel A: Stocks

Panel B: Bonds

Figure 1.3: The Pre-Announcement Conditional Drift in Stocks and Bonds

Notes: Panels A and B plot the mean cumulative return (in bps) starting 360 minutes before MNAs for stocks
(front ES futures contract) and bonds (front TY futures contract), respectively. “Full Sample” includes the
full sample of MNAs. “News Report > 1” includes only the MNAs with greater than 1 standard deviation
positive news reports; that is, NRt > 1. “News Report < −1” includes only the MNAs with less than 1
standard deviation negative news reports; that is, NRt < −1. NRt measures the informational content of
MNAs and is defined in Figure 1.1.
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Table 1.2: Summary Statistics of the Pre-Announcement Conditional Drift in Stocks and Bonds

Panel A: Stocks
Full Sample News Report > 1 News Report < −1
(n = 2179) (n = 291) (n = 286)

Mean Std. Dev. t-stat Mean Std. Dev. t-stat Mean Std. Dev. t-stat

-720 4.5 52.0 4.1 10.4 60.3 2.9 2.3 57.0 0.7
-660 4.3 51.2 3.9 9.1 60.0 2.6 2.4 53.8 0.8
-600 4.3 48.9 4.1 9.5 57.2 2.8 2.8 51.2 0.9
-540 4.7 48.4 4.5 10.4 57.3 3.1 2.9 50.4 1.0
-480 4.5 48.3 4.4 10.9 55.7 3.4 1.8 48.6 0.6
-420 3.7 48.4 3.5 10.8 55.2 3.3 0.2 45.2 0.1
-360 2.9 46.3 2.9 7.7 54.8 2.4 -0.5 41.9 -0.2
-300 1.8 42.7 1.9 8.3 50.2 2.8 -1.6 40.5 -0.7
-240 1.2 40.0 1.4 6.7 47.6 2.4 -1.4 38.0 -0.6
-180 0.5 34.6 0.7 5.1 39.5 2.2 -2.2 33.6 -1.1
-120 0.9 30.4 1.4 3.6 38.8 1.6 -0.6 30.8 -0.3
-60 0.3 23.3 0.6 3.0 29.1 1.8 0.7 24.2 0.5

0 1.1 26.7 1.9 8.7 29.3 5.1 -15.5 34.2 -7.7

Panel B: Bonds

Full Sample News Report > 1 News Report < −1
(n = 2179) (n = 291) (n = 286)

Mean Std. Dev. t-stat Mean Std. Dev. t-stat Mean Std. Dev. t-stat

-720 -0.5 19.8 -1.2 -3.1 19.4 -2.8 2.6 20.4 2.1
-660 -0.7 19.3 -1.6 -3.4 19.3 -3.0 2.6 19.7 2.2
-600 -0.9 19.0 -2.2 -3.7 19.1 -3.3 2.1 19.3 1.9
-540 -1.0 18.9 -2.4 -3.7 19.3 -3.3 2.3 19.0 2.1
-480 -1.2 18.4 -3.0 -4.0 19.2 -3.6 2.1 18.5 1.9
-420 -1.0 17.9 -2.7 -3.9 18.4 -3.6 2.0 18.4 1.9
-360 -0.8 16.8 -2.2 -3.0 16.7 -3.1 2.8 17.3 2.7
-300 -0.8 16.0 -2.2 -3.4 16.6 -3.5 2.5 17.6 2.6
-240 -0.8 15.0 -2.5 -3.0 15.8 -3.3 2.0 17.2 2.0
-180 -0.8 14.0 -2.6 -3.2 15.9 -3.4 1.3 15.8 1.4
-120 -0.7 12.5 -2.7 -2.3 14.0 -2.8 1.5 14.5 1.8
-60 -0.7 9.2 -3.7 -2.0 10.4 -3.3 0.3 10.3 0.6

0 0.2 19.3 0.5 -8.5 21.0 -6.9 11.4 23.6 8.2

Notes: Panels A and B present summary statistics for stocks (front ES futures contract) and bonds (front
TY futures contract), respectively. Row −x corresponds to the cumulative pre-announcement return (in bps)
from x minutes to 5 minutes before MNAs. Row 0 corresponds to the ±5 minute announcement return
(in bps) around MNAs. The “Full Sample” columns include the full sample of MNAs. The “News Report
> 1” columns include only the MNAs with greater than 1 standard deviation positive news reports; that is,
NRt > 1. The “News Report < −1” columns include only the MNAs with less than 1 standard deviation
negative news reports; that is, NRt < −1. NRt measures the informational content of MNAs and is defined
in Figure 1.1.
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the announcement window and start of the post-announcement window to be 5 minutes

after MNAs. After 5 minutes, the vast majority of activity in response to announcements is

completed, as reflected in the renormalization of trading volumes and return volatilities. The

±5 minute announcement window is an interval comparable to announcement windows

used in the previously cited literature.

Panel A presents summary statistics for stocks. In the “Full Sample” of MNAs, stocks

unconditionally increase both in the 10-minute window around announcements (mean

of 1.1 bps) and in the pre-announcement period (mean of up to 4.7 bps).11,12 While this

unconditional pattern is interesting, I concentrate on the conditional results. As shown

in the “News Report > 1” and “News Report < −1” columns, the announcement return

of stocks is positive (mean of 8.7 bps) for greater than 1 standard deviation positive news

reports and negative (mean of −15.5 bps) for less than 1 standard deviation negative news

reports. The announcement return is preceded by the pre-announcement return in the same

direction. Stocks increase (up to 10.9 bps on average) in the hours prior to greater than 1

standard deviation positive news reports and decrease (up to −2.2 bps on average) in the

hours prior to less than 1 standard deviation negative news reports.

Panel B presents analogous summary statistics for bonds. In the “Full Sample” of

MNAs in Panel B of Table 1.2, bonds are flat through announcements (mean of 0.2 bps) and

unconditionally decrease before announcements (mean of up to −1.2 bps).13 Opposite of

stocks, bonds decrease (mean of −8.5 bps) on announcements of greater than 1 standard

informational advantage.

11The announcement premium earned by stocks around MNAs is related to Savor and Wilson (2013),
who show the same result using daily data, and to Frazzini and Lamont (2007), who document an earnings
announcement premium for individual stocks. Zhou (2015) explains the announcement premium around MNAs
as partly resulting from ambiguity-averse investors facing ambiguous macroeconomic news.

12The pre-announcement drift of stocks before MNAs is related to the pre-FOMC announcement drift
documented by Lucca and Moench (2015). They show that the U.S. aggregate stock market unconditionally
increases in the hours prior to FOMC meetings. My finding of the pre-announcement drift of stocks before
MNAs, which the authors were unable to find, suggests that the unconditional increase of stocks prior to
macroeconomic events may be a more widespread phenomenon.

13In other words, there is no announcement premium for bonds around MNAs, but there is a pre-
announcement drift of bonds before MNAs.
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deviation positive news reports and increase (mean of 11.4 bps) on announcements of less

than 1 standard deviation negative news reports. Identical to the case of stocks, however, the

announcement return of bonds is preceded by the pre-annnouncement return of bonds in

the same direction. Bonds decrease (up to −4.0 bps on average) in the hours prior to greater

than 1 standard deviation positive news reports and increase (up to 2.8 bps on average) in

the hours prior to less than 1 standard deviation negative news reports.

Table 1.3 shows that the pre-announcement conditional drift in stocks and bonds is

statistically and economically significant. Panel A runs regressions of pre-announcement

and announcement returns on the news report variable NRt:

Rt = α + βNRt + εt.

In row −x, the left-hand-side variable Rt is the cumulative pre-announcement return (in bps)

from x minutes to 5 minutes before MNAs. In row 0, Rt is the ±5 minute announcement

return (in bps) around MNAs. The coefficient β measures the return sensitivity to a 1

standard deviation news report. For both assets, β̂ in row 0 is statistically significant:

stocks increase {decrease} 6.7 bps more and bonds decrease {increase} 5.3 bps more in

the 10 minutes around announcements of 1 standard deviation positive {negative} news

reports. For rows −x, the majority of the β̂ for stocks and all the β̂ for bonds are statistically

significant: stocks increase {decrease} up to 2.3 bps more and bonds decrease {increase} up

to 1.5 bps more before announcements of 1 standard deviation positive {negative} news

reports. The ratio of the pre-announcement β̂ to the sum of the pre-announcement β̂ and

announcement β̂ demonstrates the economic magnitude of the results. For stocks and bonds,

up to 26% and 23%, respectively, of the impact of macroeconomic news reports takes place

in the pre-announcement window.

In Panel B, I evaluate how news reports impact returns in a different regression specifi-

cation:

Rt = α + β+D+
t + β−D−t + εt.
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Table 1.3: Regressions of the Pre-Announcement Conditional Drift in Stocks and Bonds

Panel A: Regressions of the Form Rt = α + βNRt + εt

Stocks Bonds

β̂ (bps) α̂ (bps) R2
adj (%) β̂ (bps) α̂ (bps) R2

adj (%)

-720 1.8 4.5*** 0.07 -1.4*** -0.5 0.50
-660 1.5 4.3*** 0.04 -1.5*** -0.7 0.60
-600 1.4 4.3*** 0.04 -1.5*** -0.9** 0.58
-540 1.5 4.7*** 0.05 -1.5*** -1.0** 0.63
-480 2.0* 4.5*** 0.13 -1.5*** -1.2*** 0.67
-420 2.3** 3.6*** 0.18 -1.5*** -1.0*** 0.71
-360 1.9* 2.8*** 0.12 -1.5*** -0.8** 0.74
-300 2.3*** 1.7* 0.26 -1.5*** -0.7** 0.84
-240 1.9** 1.1 0.19 -1.3*** -0.8** 0.70
-180 1.8** 0.5 0.24 -1.2*** -0.8** 0.75
-120 1.0 0.9 0.06 -1.1*** -0.7*** 0.75
-60 0.8* 0.3 0.08 -0.7*** -0.7*** 0.60

0 6.7*** 1.0* 6.34 -5.3*** 0.3 7.66

Panel B: Regressions of the Form Rt = α + β+D+
t + β−D−t + εt

Stocks Bonds

β̂+ (bps) β̂− (bps) α̂ (bps) R2
adj (%) β̂+ (bps) β̂− (bps) α̂ (bps) R2

adj (%)

-720 6.6** -1.5 3.9*** 0.12 -2.6** 3.1** -0.6 0.47
-660 5.4* -1.3 3.7*** 0.05 -2.6** 3.3*** -0.8 0.54
-600 5.8* -0.9 3.7*** 0.08 -2.8** 3.0** -0.9* 0.54
-540 6.4** -1.1 4.0*** 0.13 -2.7** 3.4*** -1.1** 0.61
-480 7.1** -2.1 3.9*** 0.20 -2.8** 3.3*** -1.3*** 0.64
-420 7.8** -2.7 3.0** 0.28 -2.8** 3.1*** -1.1** 0.63
-360 5.1* -3.1 2.6** 0.13 -2.0* 3.8*** -1.0** 0.77
-300 7.2*** -2.8 1.2 0.32 -2.6** 3.3*** -0.8** 0.81
-240 6.1** -2.0 0.6 0.23 -2.1** 2.9*** -0.9** 0.67
-180 4.9** -2.4 0.2 0.23 -2.5*** 2.1** -0.7** 0.60
-120 3.0 -1.2 0.7 0.05 -1.5* 2.4*** -0.8*** 0.56
-60 3.3** 1.0 -0.3 0.13 -1.3** 1.0* -0.7*** 0.35

0 6.0*** -18.2*** 2.7*** 6.38 -8.2*** 11.6*** -0.2 7.08

Notes: The table shows results from regressions of pre-announcement and announcement stock (front ES futures
contract) and bond (front TY futures contract) returns on the news report variable NRt. Regressions are run
on the full sample of MNAs, and n = 2179. Panels A and B represent different regression specifications:
Rt = α + βNRt + εt, and Rt = α + β+D+

t + β−D−t + εt, respectively. In row −x, the left-hand-side
variable Rt is the cumulative pre-announcement return (in bps) from x minutes to 5 minutes before MNAs. In
row 0, the left-hand-side variable Rt is the ±5 minute announcement return (in bps) around MNAs. NRt

measures the informational content of MNAs and is defined in Figure 1.1. D+
t and D−t are dummy variables

equal to 1 if NRt > 1 and NRt < −1, respectively, and zero otherwise. t-statistics (not shown) are based on
heterosckedasticity-consistent standard errors. *** denotes significance at the 1% level, ** denotes significance
at the 5% level, and * denotes significance at the 10% level.
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D+
t and D−t are dummy variables equal to 1 if NRt > 1 and NRt < −1, respectively, and

Rt is as defined above. The coefficients β+ and β− measure the return sensitivity to large

magnitude news reports that are positive and negative, respectively. For both assets, β̂+

and β̂− in row 0 are statistically significant: stocks increase 6.0 bps {decrease 18.2 bps}

more and bonds decrease 8.2 bps {increase 11.6 bps} more for announcements of greater

than 1 standard deviation positive {negative} news reports.14 For rows −x, the majority

of the β̂+ but none of the β̂− for stocks and all the β̂+ and β̂− for bonds are statistically

significant: stocks increase up to 7.8 bps {decrease up to 3.1 bps} more and bonds decrease

up to 2.8 bps {increase up to 3.8 bps} more before announcements of greater than 1 standard

deviation positive {negative} news reports.15 For each of β̂+ and β̂−, I compute the ratio of

the pre-announcement coefficient to the sum of the pre-announcement and announcement

coefficients. In the stock market, up to 57% {15%} of the impact of large, positive {negative}

macroeconomic news reports takes place in the pre-announcement window. In the bond

market, the analogous number is 26% {25%}.16

Insofar as the results in Figure 1.3 and Tables 1.2 and 1.3 group all types of MNAs

together, the magnitude of sophisticated trading is likely to be underestimated. The reason

is that the intensity of sophisticated trading is likely to be greater around some types of

announcements than others. For example, traders may only be able to predict macroeco-

nomic news reports for some types of announcements. Jointly analyzing announcements

with and without sophisticated trading thus downward biases the magnitude of the pre-

announcement conditional drift.

14Stocks react more strongly to negative macroeconomic news reports than to positive ones. Zhou (2015)
discusses this asymmetry. Bonds appear to react more similarly to positive and negative news reports.

15It is unclear the reason for the stronger pre-announcement reaction of stocks to positive news reports than
negative news reports.

16Though I do not focus on the α̂ results in Table 1.3, the regression intercepts have economic content. For
stocks in Panels A and B, the row 0 α̂ is positive and statistically significant. This is the announcement premium
for stocks around MNAs referenced in Fn. (11). The row −x α̂ is also positive and generally statistically
significant. This is the pre-announcement drift of stocks before MNAs referenced in Fn. (12). For bonds, the row
0 α̂ is statistically insignificant, but the row −x α̂ is negative and generally statistically significant. As discussed
in Fn. (13), there is no announcement premium for bonds around MNAs, but there is a pre-announcement drift
of bonds before MNAs.
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The pre-announcement conditional drift is difficult to rationalize with explanations

other than that of sophisticated trading. One alternative explanation, for example, is

that of underreaction. Suppose that positive {negative} macroeconomic news reports are

preceded by public announcements that elicit positive {negative} stock returns and negative

{positive} bond returns. If stocks and bonds underreact to such public announcements,

the pre-announcement conditional drift could result from the gradual correction of this

underreaction. Such an explanation is improbable: MNAs in my sample occur from 8:30

AM to 10:00 AM ET, and the conditional drift begins in the hours before during overnight

trading in the U.S. It is unlikely that important public announcements occur at those times.

1.3.2 Order Imbalances and Sophisticated Trading Profits

Analysis of order imbalances provides further support for sophisticated trading around

MNAs. In Appendix A.2, I use the bulk volume classification algorithm of Easley, López

de Prado, and O’Hara (2013) to impute order flow and split trade volume into buys and

sells.17 On announcements of positive {negative} macroeconomic news reports, there are

order imbalances of buys {sells} in stocks and sells {buys} in bonds. In the hours before

announcements, there are also imbalances of buys {sells} in stocks and sells {buys} in bonds.

This pre-announcement conditional pattern in the order imbalance is analogous to the

pre-announcement conditional drift.

The data on order imbalances make possible a back of the envelope calculation that

reveals the magnitude of sophisticated trading profits. Consider the case of stocks first. As

indicated in Table 1.2, there are 291 announcements with greater than 1 standard deviation

positive news reports and 286 announcements with less than 1 standard deviation negative

news reports. Thus, there are about 50 such announcements per year from July 2003 to

March 2014. Based on Panel B of Table 1.3, a greater than 1 standard deviation magnitude

news report is associated with a combined pre-announcement and announcement return

17Based on papers such as Easley, López de Prado, and O’Hara (2013) and Panayides, Shohfi, and Smith
(2014), the bulk volume classification approach often outperforms other trade classification algorithms such as
that of Lee and Ready (1991). See Appendix A.2 for details.
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on the order of 10 bps in magnitude. From Figure 1.2, there is an average of about $10

billion in dollar volume traded by the time of the first announcements at 8:30 AM ET.

Finally, Appendix A.2 shows that a greater than 1 standard deviation magnitude news

report leads to a change in the order imbalance on the order of 50 bps in magnitude.

There is thus ($10 billion) × (50 bps) = $50 million of excess buy or sell dollar volume.

This value represents a conservative lower bound of capital used for sophisticated trading.

Per announcement, the profits to sophisticated trading are estimated to be ($50 million)×

(10 bps) = $50, 000. Over the course of a year, the profits are around $50, 000 × 50 =

$2.5 million. A calculation using the same numbers applies to bonds.

The overall profits to sophisticated trading in stocks and bonds are higher than indicated

by the above calculation. Two reasons are that I only consider announcements with greater

than 1 standard deviation magnitude news reports and that I only attribute the order

imbalance portion of dollar volume to sophisticated traders’ capital. A reasonable estimate

of the profits to sophisticated trading in stock and bond futures is on the order of $10

million a year in each security. Sophisticated traders likely also profit from trading other

securities and assets.

1.4 Source of Informational Advantage

The previous section’s results lead to a natural follow-up question: what is the source of

sophisticated traders’ informational advantage? The first subsection below discusses (illegal)

information leakage as one possible source. The second subsection considers the homework

done by skilled traders as another possible source. The empirical evidence supports the

latter channel of information flows.

1.4.1 (Illegal) Information Leakage Channel

Regulators have expressed concerns that some market participants may obtain an infor-

mational advantage about upcoming macroeconomic news reports through an (illegal)
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information leakage channel.18 One concern of regulators centers on the role of the media.

For many types of MNAs, data are initially released to media organizations during lockup

periods prior to public releases. While locked up, these organizations are embargoed from

communicating with the outside. Yet there have been accounts of media circumventing the

lockup process both unintentionally and intentionally. Another concern of regulators is

more standard and centers on the role of insiders working at data-releasing institutions who

leak macroeconomic data. Security procedures around the release of macroeconomic data

have been scrutinized by the SEC, the Federal Bureau of Investigation, the U.S. Commodity

Futures Trading Commission, and even Sandia National Laboratories, which is responsible

for the safety of U.S. nuclear weapons.

Thus, it is plausible that those who I call sophisticated traders actually obtain their

informational edge via an (illegal) information leakage channel. While there is concrete

evidence of idiosyncratic leaks, however, there is little evidence of systematic leaks. I also

do not find evidence of systematic leaks that can explain the pre-announcement conditional

drift. I do find that information leakage by the media during lockups cannot account for

all of the sophisticated trading around MNAs. Based on results from Section 1.3, stocks

and bonds begin conditionally drifting at least hours prior to announcements, while media

lockups begin only 30 minutes to 60 minutes prior to announcements. Relatedly, the

pre-announcement conditional drift cannot be explained by certain media organizations’

business strategy of releasing macroeconomic data early to paying customers. This pay

to play practice takes place anywhere from a few seconds to a few minutes before official

release times and thus occurs within the ±5 minute announcement window, not the pre-

announcement period.

18See, for example, the following press reports in order of publication date: the March 7, 2012 CNBC article
“Labor Dept. Asks Nuclear Guardians for Help Keeping Jobs Data Secret”; the April 10, 2013 The Wall Street
Journal article “A Probe on Data Releases is Revived”; the August 5, 2013 The Wall Street Journal article “FBI
Finds Holes in System Protecting Economic Data”; the January, 2, 2014 The Wall Street Journal article “Labor
Department Panel Calls for Ending Lockup for Jobs Data”; and the December 1, 2014 Bloomberg News article
“Fed Leak Handed Traders Profitable Tip, Prompted Secret Inquiry.”
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1.4.2 Homework Channel

Though absence of evidence does not rule out (illegal) information leakage, I show that

sophisticated traders can obtain their informational advantage via a more innocent mecha-

nism: the homework channel. It is not altogether surprising that skilled traders are able

to do their homework and use public information to predict macroeconomic news reports.

These traders have a strong incentive: money. They moreover have the necessary resources

to predict news reports: traders can combine an array of predictor variables including

proprietary data with cutting-edge forecasting algorithms.19

Romer and Romer (2000) in effect appeal to the homework channel in order to explain

their finding that the Federal Reserve is able to produce better forecasts about the economy

than private-sector economists. By committing resources to the forecasting process, the

central bank is able to do so using only “publicly available information.” Given that there is

a well-trodden path from the Federal Reserve to the financial services industry, perhaps the

sophisticated traders analyzed in my paper even get homework help from former central

bank officials or are former central bank officials themselves.

Section 1.4.2.1 provides an example of how skilled traders might do their homework

and use public information to predict macroeconomic news reports. Section 1.4.2.2 shows

that the predictable component of news reports is able to explain a significant portion of the

pre-announcement conditional drift.

1.4.2.1 Doing Homework: Public Information Predicts Macroeconomic News Reports

To illustrate the broader idea that sophisticated traders can use public information to

predict macroeconomic news reports, I show a simple example. Traders are able to do their

homework and predict the news report of an upcoming MNA using the difference between

economists’ forecasts of and past realizations of the data to be released.

19PriceStats and State Street provide examples of such proprietary data. PriceStats uses online prices to
track inflation daily in multiple countries including the U.S. Per its official website, the State Street Investor
Confidence Index “measures investor confidence or risk appetite quantitatively by analyzing the actual buying
and selling patterns of institutional investors.” These proprietary data are potentially useful for forecasting
news reports of CPI, Consumer Confidence, and other types of MNAs.
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The success of this method rests on the systematic bias of economists’ forecasts of

macroeconomic data. Utilizing a different sample of MNAs, Campbell and Sharpe (2009) find

that forecasts are “anchored toward the recent past values of the series being forecasted.”20

Viewed through the lens of Tversky and Kahneman (1974) and related studies, this anchoring

phenomenon manifests a behavioral bias: the human tendency to overweight a reference

point or anchor when making decisions. Alternatively, economists may strategically anchor

their macroeconomic forecasts as an optimal response to incentives.

If economists’ forecasts also display anchoring bias in my sample of MNAs, it is straight-

forward to use public information to predict news reports. To see this, consider the following

unstandardized version of the news report variable defined in Eq. (1.1):

ÑRt = σ̂NRt = At − Ft. (1.2)

As before, At is the announced value of the data release, and Ft is the median forecasted

value of the data release from a survey of economists. If there is anchoring bias, the forecast

Ft puts weight λ < 1 on the unbiased predicted value of the data release E [At] and weight

1− λ > 0 on some anchor Ah:

Ft = λE [At] + (1− λ) Ah. (1.3)

I define Ah as the historical average of the past h actual data releases of the economic

indicator being forecasted. From the definition of the unstandardized news report variable

in Eq. (1.2), E [At] = E
[
ÑRt

]
+ Ft. Plugging this expression into that of the biased forecast

in Eq. (1.3) yields E
[
ÑRt

]
= γ

(
Ft − Ah

)
, with

γ =
1− λ

λ
. (1.4)

When there is anchoring bias, λ < 1 =⇒ γ > 0. In this case, Ft − Ah positively predicts

20Their sample runs from 1991 to 2006, and they collect economists’ forecasts from surveys by Money Market
Services.
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ÑRt in the regression

ÑRt = κ + γ
(

Ft − Ah
)
+ εt. (1.5)

Since both the forecast Ft and the anchor Ah are in the public domain before a MNA, public

information predicts the news report variable. The intuition here is that if the forecast is

higher than the anchor, it is not high enough due to overweighting of the lower value of the

anchor, and conversely if the forecast is lower than the anchor.

Whether there is anchoring bias in my sample is an empirical question. In each row of

Table 1.4, I run the regression in Eq. (1.5) for each type of MNA and for the two specifications

h = 1 (anchor is the last actual data release) and h = 3 (anchor is the average of the last

3 actual data releases). To avoid look-ahead bias, I estimate the regression in a dynamic

manner over a changing window.21 The coefficient of interest is γ. For each type of MNA,

the output is two series of γ̂, which correspond to the h = 1 and h = 3 specifications.

As indicated in the “Anchor” column, Table 1.4 displays the results corresponding to the

anchor specification that more frequently has a higher adjusted R2. Table 1.4 shows the

mean, standard deviation, maximum, and minimum of γ̂. In most cases, the mean of γ̂ is

positive and large relative to the standard deviation. Economists’ forecasts exhibit anchoring

bias. Equivalently and more importantly, differences between economists’ forecasts and

past data realizations predict macroeconomic news reports. The results in Table 1.4 are

economically significant as well. Using Eq. (1.4) to translate between γ̂ and the implied λ, I

find that forecasts are substantially weighted to historical data realizations. For example,

with a mean γ̂ of 0.69 in the case of the Consumer Confidence data series with h = 1, the

implied λ = 0.59. On average, forecasts place 59% weight on the previous month’s data and

only 41% weight on the unbiased predicted value of the upcoming data release. As shown

in Appendix A.3, the anchoring bias results are robust to a battery of tests. In particular,

the results hold when I estimate Eq. (1.5) using different anchors, different windows, and

21My sample begins in 2003 for 16 out of 18 types of MNAs and 2005 for the other 2 types of MNAs (see
Table 1.1). For the portion of my sample beginning in 2003, data are available extending back to 1997, 1998, or
1999. I make use of this data to predict news reports starting from 2003 and thus do not lose any observations.
For the portion of my sample beginning in 2005, I use the first 4 years to predict news reports starting from
2009 and thus lose 4 years of observations.
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Table 1.4: Predicting Macroeconomic News Reports

Event Name Anchor Mean γ̂ Std. Dev. γ̂ Max. γ̂ Min. γ̂

Change in Nonfarm Payrolls 1 -0.12 0.01 -0.09 -0.16
Consumer Confidence 1 0.69 0.06 0.87 0.57
CPI 3 0.17 0.02 0.24 0.14
Durable Orders 3 0.41 0.03 0.48 0.35
Existing Home Sales 1 0.31 0.08 0.54 0.13
Factory Orders 3 0.05 0.02 0.08 0.03
Housing Starts 1 0.31 0.05 0.38 0.16
Industrial Production 3 0.31 0.06 0.47 0.20
Initial Jobless Claims 1 -0.12 0.02 -0.08 -0.16
ISM Manufacturing 3 0.17 0.07 0.37 0.09
ISM Non-Manufacturing 1 0.47 0.08 0.61 0.34
Leading Index 3 0.21 0.02 0.27 0.18
New Home Sales 1 0.40 0.13 0.88 0.29
Pending Home Sales 3 0.28 0.09 0.46 -0.08
Personal Income 3 0.04 0.05 0.17 0.00
PPI 3 0.33 0.03 0.42 0.28
Retail Sales 1 0.18 0.02 0.22 0.16
Unemployment Rate 3 -0.01 0.09 0.11 -0.17

Notes: For each type of MNA, the corresponding row runs the regression ˜NRt = κ + γ
(

Ft − Ah
)
+ εt. The

unstandardized news report variable ÑRt = σ̂NRt measures the informational content of a given data release,
with σ̂ and NRt both defined in Figure 1.1. For the same data release, Ft is the median forecasted value from a
survey of economists, and Ah is the historical average of the past h realizations. Regressions are run for the
specifications h = 1 and h = 3. To avoid look-ahead bias, I estimate the regression in a dynamic manner over
a changing window (see Fn. (21) for details). For each type of MNA, the output is two series of γ̂, which
correspond to the h = 1 and h = 3 specifications. As indicated in the “Anchor” column, the table displays the
results corresponding to the specification that more frequently has a higher adjusted R2.

grouping all types of MNAs together.

1.4.2.2 Trading on the Homework: Explaining the Pre-Announcement Conditional Drift

The previous subsection shows that market participants can do their homework to predict

macroeconomic news reports. This subsection goes a step further and provides evidence

that market participants trade on this homework, which can explain the documented asset

price patterns around MNAs. To do so, I first use the results of Table 1.4 to split the news

report variable NRt into a predictable component NRp,t and an unpredictable component
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NRu,t:

NRt = NRp,t + NRu,t.

For each type of MNA, NRp,t is the one-step-ahead forecast of the corresponding regression

in Table 1.4 divided by the σ̂ defined in Eq. (1.1). NRu,t is the regression residual divided

by σ̂.

Table 1.5 shows that the predictable component of news reports explains much of the

pre-announcement conditional drift in stocks and bonds. Consider the results corresponding

to rows −x. Each row runs regressions of pre-announcement returns on the predictable and

unpredictable components of news reports:

Rt = α + βpNRp,t + βuNRu,t + εt. (1.6)

As in previous tables, Rt is the cumulative pre-announcement return (in bps) from x minutes

to 5 minutes before MNAs. Focusing on β̂p, all the estimated coefficients are positive for

stocks (with some statistically significant) and negative for bonds (with all statistically

significant). Stocks increase {decrease} and bonds decrease {increase} in the hours before

news reports predicted to be positive {negative}. To quantify the results, I multiply the

standard deviation of NRp,t (0.29) with β̂p to find that before a 1 standard deviation positive

{negative} value of the predictable component of the news report, stocks increase {decrease}

up to 1.7 bps and bonds decrease {increase} up to 1.8 bps. In Appendix A.4, I construct the

predictable and unpredictable components of news reports using alternative estimates of

Eq. (1.5). These different constructions of the predictable component continue to explain the

pre-announcement conditional drift in stocks and bonds via Eq. (1.6).

The evidence is consistent with the interpretation that sophisticated traders skillfully

predict macroeconomic news reports with public information and then trade on these

predictions. In doing so, these traders contribute to the pre-announcement conditional drift.

Of course, the results are based on a specific prediction method that relies on anchoring

bias. Practitioners probably have more advanced ways of predicting news reports using

more comprehensive public information. This likelihood can explain why β̂u in Table
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1.5 is positive for stocks (and sometimes statistically significant) and negative for bonds

(and always statistically significant). Based on the results, stocks and bonds conditionally

drift before the release of the unpredictable component of news reports. What I call the

unpredictable component of news reports, however, is only unpredictable when news reports

are predicted with a technique utilizing anchoring bias. The unpredictable component

of news reports may actually be predictable if news reports are predicted using superior

methods that practitioners likely employ. Alternatively, if the unpredictable component of

news reports is truly unpredictable with public information, β̂u could be picking up signs

of (illegal) information leakage. The bottom line is that even though using anchoring bias to

predict news reports is simple, this method nonetheless makes successful predictions and is

able to account for a significant portion of the pre-announcement conditional drift.

1.5 Market Efficiency around MNAs

Based on the above results, stock and bond markets are inefficient around MNAs. In the two

subsections below, I elaborate on how markets are inefficient over time and across assets,

respectively.

1.5.1 Over Time

Over time, there is a late trading puzzle: the public information that predicts macroeconomic

news reports is impounded into stocks and bonds with a significant lag. Section 1.4,

supplemented by Appendix A.3, argues that sophisticated traders’ informational advantage

arises from the homework channel. Traders are able to do their homework days before

MNAs: most types of public information predictive of news reports are available at that time.

For example, predicting news reports based on anchoring bias requires only economists’

forecasts and historical data realizations. Sections 1.3 and 1.4 and Appendix A.4, however,

provide evidence of sophisticated trading hours before MNAs. At least some of this

trading appears to be on the predictable component of news reports obtainable from public

information. Contrary to the logic of market efficiency, the public information that predicts
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news reports days before announcements is impounded into stocks and bonds just hours

before announcements.

1.5.2 Across Assets

Across assets, there is a related puzzle: by the official release times of MNAs, the public

information that predicts news reports is fully incorporated into bonds but only partially

incorporated into stocks. As a result, the bond market eventually becomes efficient, while

the stock market remains inefficient. Table 1.5 shows that the predictable component

of news reports based on anchoring bias is completely impounded into bonds but only

partially impounded into stocks. Stocks but not bonds react to announcements of the

predictable component. Row 0 of Table 1.5 runs regressions of the ±5 minute stock or

bond announcement return around MNAs (in bps) on the predictable and unpredictable

components of news reports:

Rt = α + βpNRp,t + βuNRu,t + εt. (1.7)

β̂p is positive and statistically significant for stocks but smaller in magnitude and statistically

insignificant for bonds. Multiplying the standard deviation of NRp,t (0.29) with β̂p, I

find that, on the announcement of a 1 standard deviation positive {negative} value of the

predictable component of the news report, stocks increase {decrease} 1.5 bps while bonds

decrease {increase} 0.7 bp.22 In Appendix A.4, I run regressions based on Eq. (1.7) using

alternative constructions of NRp,t and NRu,t and find similar results. The two components

are derived from varying the specifications of the anchoring bias regression in Eq. (1.5).

Table 1.6 provides additional evidence that bonds are more efficient than stocks: stocks

but not bonds display return momentum between pre-announcement and announcement

returns. The table runs regressions of return momentum in both assets:

22Note that, as expected, stocks and bonds react to announcements of the unpredictable component of news
reports: β̂u is positive for stocks, negative for bonds, and statistically significant for both assets.

35



Table 1.6: Regressions of Return Momentum in Stocks and Bonds

Stocks Bonds

β̂ (bps) α̂ (bps) R2
adj (%) β̂ (bps) α̂ (bps) R2

adj (%)

-720 0.03** 1.06* 0.26 0.00 -0.04 -0.06
-660 0.03** 1.05* 0.30 0.01 -0.03 -0.05
-600 0.02** 1.07* 0.20 0.00 -0.03 -0.06
-540 0.03** 1.04* 0.28 0.01 -0.03 -0.04
-480 0.03*** 1.02* 0.42 0.02 -0.02 -0.02
-420 0.05*** 1.00* 0.94 0.02 -0.02 -0.02
-360 0.06*** 1.00* 1.34 0.03 -0.02 0.01
-300 0.06*** 1.06* 1.10 0.03 -0.02 0.05
-240 0.06*** 1.11* 0.94 0.03 -0.02 0.00
-180 0.05*** 1.17* 0.38 0.03 -0.02 -0.01
-120 0.02 1.17* -0.01 0.03 -0.02 0.01
-60 0.05** 1.17* 0.18 0.01 -0.03 -0.05

Notes: The table shows results from regressions of announcement returns on pre-announcement returns
for stocks (front ES futures contract) and bonds (front TY futures contract): evtRt = α + βpreRt + εt.
Regressions are run on the full sample of MNAs, and n = 1705. The left-hand-side variable evtRt is the ±5
minute announcement return (in bps) around MNAs. The right-hand-side variable preRt in row −x is the
cumulative pre-announcement return (in bps) from x minutes to 5 minutes before MNAs. t-statistics (not
shown) are based on heterosckedasticity-consistent standard errors. *** denotes significance at the 1% level, **
denotes significance at the 5% level, and * denotes significance at the 10% level.

evtRt = α + βpreRt + εt.

The left-hand-side variable evtRt is the ±5 minute announcement return (in bps) around

MNAs. The right-hand-side variable preRt in row −x is the cumulative pre-announcement

return (in bps) from x minutes to 5 minutes before MNAs. β̂ is positive and statistically

significant for stocks. A 10 bps higher pre-announcement return predicts up to 0.6 bp higher

announcement return. In contrast, the estimated coefficient is smaller in magnitude and

statistically insignificant for bonds.
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1.6 Model

To understand why stock and bond markets are inefficient around MNAs, I construct a

model. In the model, all traders see a public announcement of a news report, which can be

thought of as a MNA, that provides information about the values of risky assets, which can

be thought of as stocks and bonds. Consistent with empirical observations, a minority of

traders in the model are sophisticated and obtain advance knowledge of the news report,

possibly through the skillful processing of public information.

The model has three key assumptions that are justified by the literature. The first

assumption of the model is that the majority of traders are unsophisticated and do not have

advance knowledge of the news report. Unsophisticated traders neglect public information

that predicts the news report. In the parlance of the inattention literature, we can think

of unsophisticated traders as being inattentive to such public information; in contrast,

sophisticated traders are attentive. Two related examples of the inattention literature are

Tetlock (2011) and Gilbert, Kogan, Lochstoer, and Ozyildirim (2012), which show that asset

prices react to stale information. The difference in attention between the two types of

traders may reflect a difference in incentives and resources. For example, suppose that

sophisticated traders work at funds that employ trading strategies based on predicting news

reports. These traders then have the incentives (such as money) and institutional resources

to pay close attention to public information potentially useful for making predictions. Other,

unsophisticated traders may lack such incentives and resources.

The second assumption of the model is that sophisticated traders have risk management

concerns and dislike risk. Risk impedes sophisticated traders from acting on their infor-

mational advantage and, consequently, impedes the extent to which their informational

advantage is incorporated into asset prices. I model risk management concerns with risk

aversion, which is sufficient but not necessary: some other limit to arbitrage could work just

as well. For example, sophisticated traders could be risk-neutral but capital constrained as

in Shleifer and Vishny (1997).

The third assumption of the model is that traders do not extract each others’ information
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from asset prices. In particular, no trader, sophisticated or unsophisticated, extracts from

pre-announcement prices the advance knowledge of (other) sophisticated traders. As a

result, there is no strategic front-running that could unravel the equilibrium. Other papers

in the literature have similar assumptions. Each newswatcher in Hong and Stein (1999), for

example, obtains information but fails to infer other newswatchers’ information from prices.

Eyster, Rabin, and Vayanos (2015) model the equilibrium outcome in a financial market

in which traders are differentially informed and are cursed in the sense of failing to fully

account for what prices signal about each others’ information. In a laboratory experiment,

Carrillo and Palfrey (2011) show evidence that traders neglect asymmetric information.

The first subsection below outlines the baseline model with one risky asset. The second

subsection extends the model to include two risky assets.

1.6.1 Model with One Risky Asset

The baseline model has one risky asset that corresponds to stocks or bonds and one risk-free

asset. By assumption, the risk-free rate is zero, and the risky asset is in zero net supply.

Agents in the model are split into two types of traders, with measure i sophisticated and

measure 1− i unsophisticated. I assume that there is no time discounting and that all

traders have constant absolute risk aversion (CARA) utility. The coefficients of absolute risk

aversion for sophisticated and unsophisticated traders are AS and AU , respectively. Given

the assumptions, both types of traders seek the maximum risk-adjusted return.

Panel A of Figure 1.4 shows the timeline of the model. There are five dates: t = 0, 1,

2, 3, and 4. At t = 4, the end of the model, the risky asset pays a liquidating dividend

d ∼ N
(
0, σ2

d

)
. At t = 3, there is a public announcement of a news report that is seen by all

traders and that is interpreted as a noisy signal of d:

n = d + ε,

with ε ∼ N
(
0, σ2

ε

)
and independent from d. Unsophisticated traders see the news report

for the first time, but sophisticated traders already know the news report. Specifically, at
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Panel A: Model with One Risky Asset

Panel B: Model with Two Risky Assets

Figure 1.4: Timelines of Events in the Model

Notes: Panels A and B plot the timelines of events in the model with one risky asset and two risky assets,
respectively.
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t = 1, sophisticated traders obtain advance knowledge of the news report and infer n.23

Immediately after, both types of traders have the first opportunity to trade in the “early

period” before the public announcement. At t = 2, the sophisticated traders still have an

informational advantage over the unsophisticated traders. Both types of traders have the

second opportunity to trade in the “late period” before the public announcement. Trading

in both periods is risky due to information flows about the fundamental value of the risky

asset. To model this risk, I assume that between t = 1 and t = 2, there is a shock to holding

the risky asset in the form of dividend payout se ∼ N
(
0, σ2

s,e
)
. Similarly, in between t = 2

and t = 3, there is another shock in the form of dividend payout sl ∼ N
(

0, σ2
s,l

)
. By

assumption, se and sl are independent from each other and from ε and d.

Sections 1.6.1.1 and 1.6.1.2 below describe the average cum-dividend price of the risky

asset in two specifications of the model. I first consider the efficient-market specification

in which all traders are sophisticated; that is, i = 1. I then consider the inefficient-market

specification in which some traders are unsophisticated; that is, i ∈ (0, 1). Without loss of

generality, the discussion below takes the case of a news report that is good for the risky

asset: n > 0. Appendix A.5 provides details including derivations.

1.6.1.1 Efficient-Market Specification: All Traders are Sophisticated, and i = 1

The solid i = 1 line in Panel A of Figure 1.5 plots the average cum-dividend price of the

risky asset when all traders are sophisticated. The price of the risky asset starts at 0. All

traders obtain advance knowledge of the news report at t = 1, so the price increases to the

rational expectation of the liquidating dividend. The price remains at this efficient-market

level at t = 2, 3, and 4:

p1 = p2 = p3 = p4 = αn, (1.8)

23I assume that sophisticated traders have perfect foresight of the public announcement. The source of the
informational advantage is left unmodeled and could be due to the homework channel, as the evidence in this
paper suggests, or the (illegal) information leakage channel.
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Panel A: Model with One Risky Asset

Panel B: Model with Two Risky Assets

Figure 1.5: Price(s) of the Risky Asset(s) in the Model

Notes: Panels A and B plot the average cum-dividend price(s) of the risky asset(s) in the model with one risky
asset and the model with two risky assets (a and b), respectively. I assume that the news report is good for
the risky asset(s): n > 0 in Panel A, and na > 0 and nb > 0 in Panel B; otherwise, flip the figures. In both
panels, the i = 1 and i ∈ (0, 1) lines correspond to the case when all traders are sophisticated and the case
when measure i of traders are sophisticated, respectively. In Panel A, the risky asset price starts at 0 and ends
at the efficient-market level αn. In Panel B, the prices of a and b start at 0 and end at the efficient-market levels
αana and αbnb, respectively. I scale the parameters such that αana = αbnb (see Section 1.6.2). α, αa, and αb
are defined in Appendices A.5 and A.6 as functions of model parameters.
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with α defined in Appendix A.5 as a function of model parameters. In particular, the price

does not change on the public announcement, as no new information arrives. When i = 1,

the market is efficient: once the news report is knowable to traders, the news report is

immediately and completely impounded into the price of the risky asset.

1.6.1.2 Inefficient-Market Specification: Some Traders are Unsophisticated, and i ∈

(0, 1)

The dashed i ∈ (0, 1) line in Panel A of Figure 1.5 plots the average cum-dividend price of

the risky asset when only measure i of traders are sophisticated. The price of the risky asset

starts at 0. It increases at t = 1 and t = 2 as sophisticated traders impound their advance

knowledge of a good news report. At t = 3, the unsophisticated also see the news report.

The price increases to that in Eq. (1.8) and stays there at t = 4.

As the figure clearly shows, the pre-announcement price of the risky asset does not

increase all the way to the post-announcement efficient-market level: the market is inefficient.

The price of the risky asset at t = 2 is a fraction of that at t = 3:

p2 =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,l

(α2(σ2
d+σ2

ε )+σ2
s,l)

p3. (1.9)

p2 is at a discount to p3 because sophisticated traders are risk-averse (positive As) and face

fundamental risk in the late trading period (positive σ2
s,l). As risk aversion or fundamental

risk increase, the discount increases. Similarly, the price of the risky asset at t = 1 is a

fraction of that at t = 2 because risk-averse sophisticated traders hold back their trading

due to fundamental risk in the early trading period:

p1 =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,e

(k2
2α2(σ2

d+σ2
ε )+σ2

s,e)

p2, (1.10)

with k2 defined in Appendix A.5 as a function of model parameters.

The above analysis leads to the following proposition that describes how the model

accounts for the late trading puzzle.
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Proposition 1 Sophisticated traders obtain advance knowledge of the news report at t = 1. They

can trade immediately at t = 1 and/or wait to trade at t = 2 right before the announcement. Suppose

that the risk faced by sophisticated traders in the early trading period is large relative to that faced

by sophisticated traders in the late trading period: σ2
s,e > σ2

s,l . If so, sophisticated traders recognize

that they can achieve a higher risk-adjusted return by optimally timing their trading and trading

little immediately at t = 1 and instead waiting to trade a lot at t = 2. As a result, the price of the

risky asset changes in the direction of the news report before the public announcement at both t = 1

and t = 2, but the change is small at t = 1 and large at t = 2. The market is inefficient over time:

the advance knowledge of sophisticated traders is inefficiently impounded into the risky asset with a

delay.

It is a simplistic assumption that sophisticated traders, after acquiring their informational

advantage, have only two pre-announcement trading opportunities and face greater risk

trading early than trading late. Yet this assumption is also realistic. In practice, traders

are boundedly rational. Cognitive and time limitations likely prevent traders from trading

too frequently and instead compel traders to use heuristics such as trading in early and

late periods. Whether there actually is greater risk from trading early versus trading late is

ultimately an empirical question, which I tackle in Section 1.6.3.

1.6.2 Model with Two Risky Assets

In the model above, risk-averse sophisticated traders dislike risk in the time series and

consequently vary their trading intensity over time. I introduce a second risky asset into the

model and show that risk-averse sophisticated traders also dislike risk in the cross section

and consequently vary their trading intensity across assets.

The timeline of the model with two risky assets is shown in Panel B of Figure 1.4. At

t = 4, risky assets a and b pay liquidating dividends da ∼ N
(

0, σ2
d,a

)
and db ∼ N

(
0, σ2

d,b

)
,

respectively. At t = 3, the public announcement of a news report is separately interpreted
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as noisy signals of da and db:

na =da + εa, and

nb =db + εb.

εa ∼ N
(
0, σ2

ε,a
)
, and εb ∼ N

(
0, σ2

ε,b

)
. In the early trading period between t = 1 and

t = 2, there are two shocks to holding risky assets a and b in the form of dividend payouts

se,a ∼ N
(
0, σ2

s,e,a
)

and se,b ∼ N
(

0, σ2
s,e,b

)
, respectively. Similarly, in between t = 2 and

t = 3 in the late trading period, there are two shocks in the form of dividend payouts for

assets a and b: sl,a ∼ N
(

0, σ2
s,l,a

)
and sl,b ∼ N

(
0, σ2

s,l,b

)
, respectively. All the above random

variables are independent.

Assuming independence simplifies the analysis. Sophisticated traders operate in com-

pletely segmented asset markets, so the results of the model with one risky asset apply

to each of assets a and b separately. Analogous to Panel A of Figure 1.5, Panel B shows

the average cum-dividend price of both risky assets in two specifications of the model. I

consider the case in which the news report is good for both risky assets: na > 0, and nb > 0.

The efficient-market levels for assets a and b are given in Eq. (1.8) after substituting na and

nb, respectively, for n and αa and αb, respectively, for α. αa and αb are defined in Appendix

A.6 as functions of model parameters. For illustrative purposes, I scale the parameters such

that the efficient-market levels of assets a and b are the same. I do so by setting σ2
ε,a = σ2

ε,b,

σ2
d,a = σ2

d,b, and na = nb.

1.6.2.1 Efficient-Market Specification: All Traders are Sophisticated, and i = 1

The “i = 1, Assets a and b” solid line corresponds to the baseline version of the two risky

assets model in which all traders are sophisticated. As in the case with one risky asset

described in Section 1.6.1.1, the prices of risky assets a and b start at 0 before jumping to the

efficient-market levels upon traders obtaining advance knowledge of the news report.
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1.6.2.2 Inefficient-Market Specification: Some Traders are Unsophisticated, and i ∈

(0, 1)

The “i ∈ (0, 1), Asset a” dotted line and “i ∈ (0, 1), Asset b” dashed line correspond to the

version of the two risky assets model in which measure i of traders are sophisticated. As in

the case with one risky asset described in Section 1.6.1.2, the prices of risky assets a and b

start at 0. Trading based on advance knowledge of the good news report pushes prices up

at t = 1 and t = 2, but not all the way due to fundamental risk: σ2
s,e,a, σ2

s,e,b, σ2
s,l,a, σ2

s,l,b are all

positive. Eqs. (1.9) and (1.10) still hold after substituting for the appropriate asset-specific

parameters. For each asset, the price at t = 1 is at a discount to that at t = 2, which is in

turn at a discount to that at t = 3. Only after the public announcement of the news report

do both assets obtain the (same) efficient-market levels.

To capture the notion that traders face different levels of risk over time, I assume that it

is riskier to trade early than late: σ2
s,e,a, σ2

s,e,b > σ2
s,l,a, σ2

s,l,b. There is little trading in the early

period, so the prices of a and b increase modestly at t = 1. Most of the trading occurs in the

late period, so the prices of a and b increase more sharply at t = 2. These time series results

follow directly from the one risky asset version of the model.

To capture the notion that traders face different levels of risk trading different assets, I

assume that asset a is riskier than asset b. Holding a position in the former entails weathering

more fundamental risk in both early and late trading periods than holding a position in the

latter: σ2
s,e,a > σ2

s,e,b, and σ2
s,l,a > σ2

s,l,b. Risk-averse sophisticated traders recognize that they

can achieve a higher risk-adjusted return by trading the safer asset than the riskier one. As

a result, sophisticated traders trade asset b more intensely than asset a, impound more of

their informational advantage into b than a, and make b more efficient than a before the

public announcement. Plugging in σ2
s,l,a and σ2

s,l,b for σ2
s,l in Eq. (1.9), p2,b > p2,a. Similarly,

plugging in σ2
s,e,a and σ2

s,e,b for σ2
s,e in Eq. (1.10), p1,b > p1,a. The safer asset increases more

than the riskier asset at t = 1 and t = 2 and reflects more of the good news report. Since

most sophisticated trading in both assets takes place in the late period, the discrepancy

between a and b is particularly noticeable then.
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Two propositions emerge from the above analysis. First, both assets react to the public

announcement of the news report: p3,a − p2,a > 0, and p3,b − p2,b > 0. This reaction occurs

despite the fact that sophisticated traders can perfectly predict the news report in advance.

The nature of the reaction differs for assets a and b, however.

Proposition 2 The safer asset b reacts less strongly than the riskier asset a to the public announce-

ment of the news report: p3,b − p2,b < p3,a − p2,a.

Risk prevents sophisticated traders from bidding up the pre-announcement prices of a and

b to the efficient-market levels. The greater risk of a impedes market efficiency more than

the lower risk of b.

Second, there is return momentum in each asset between the respective pre-announcement

and announcement returns: p2,a − p1,a > 0 is followed by p3,a − p2,a > 0, and p2,b − p1,b > 0

is followed by p3,b − p2,b > 0.24 The response of risky assets to the public announcement is

preceded by pre-announcement returns in the same direction due to sophisticated traders

impounding their advance knowledge of the good news report. The return momentum

differs for assets a and b, however.

Proposition 3 Under a general condition, the safer asset b has less return momentum between

pre-announcement and announcement returns than the riskier asset a.25

Proposition 3 is directly related to Proposition 2. The pre-announcement return in assets a

and b are followed by larger and smaller announcement returns, respectively.

24Pre-announcement here refers specifically to the late trading period immediately prior to the public
announcement.

25The condition is that σ2
s,l,a cannot be too large. Otherwise the price of a changes little at t = 2 due to the

high risk of trading a during the late period, and the return momentum of a is small. Since the model assumes
that the risk of trading any asset in the late period is low (and consequently incentivizes sophisticated traders to
wait to trade), this condition seems reasonable.
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1.6.3 Data are Consistent with the Model

To summarize, Proposition 1 of the model says that the news report is inefficiently im-

pounded into the price of the risky asset with a delay. The empirical analog from Section

1.5.1 is that the public information that predicts macroeconomic news reports is available

days before MNAs but impounded into stocks and bonds just hours before MNAs. Propo-

sitions 2 and 3 of the model say that the news report is more efficiently impounded into

the safer asset than the riskier asset. The empirical counterpart from Section 1.5.2 is that

the public information that predicts news reports is fully incorporated into bonds but only

partially incorporated into stocks before MNAs.

A key idea underlying the model propositions is that sophisticated traders recognize that

they can achieve a higher risk-adjusted return due to lower risk by trading late instead of

early and by trading the safer asset instead of the riskier asset. This idea holds in the data as

well: there is evidence that sophisticated traders with advance knowledge of macroeconomic

news reports find it more attractive to trade stocks and bonds closer to announcements and

stocks versus bonds before announcements. One piece of evidence is based on the following

thought experiment in which sophisticated traders have perfect foresight of macroeconomic

news reports. Nobody in practice has perfect foresight, so the real-world data on stocks

and bonds does not reflect trading on perfect foresight. How should sophisticated traders

exploit perfect foresight given that this informational advantage has not been traded in

stocks and bonds?

To answer this question, I construct hypothetical trading strategies that go long {short}

stocks and short {long} bonds before positive {negative} news reports above {below} a given

threshold.26 Panel A of Figure 1.6 plots the annualized Sharpe ratios from the strategies

starting some number of days or minutes before MNAs, as indicated on the x-axis. In

both stocks and bonds, positions are unwound 5 minutes after MNAs. The risk-adjusted

returns from trading stocks and bonds are low in the days prior to MNAs, much higher

26The results shown are for news reports of greater than 0.7 standard deviation in magnitude. Changing the
threshold does not substantively alter the results.
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Figure 1.6: Trading on Perfect Foresight of Macroeconomic News Reports

Notes: See Appendix A.7.1. Panels A, B, and C from top to bottom correspond to annualized Sharpe ratios,
annualized standard deviations, and annualized means, respectively.
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in the hours prior to MNAs, and highest in the moments just prior to MNAs. In Panels B

and C of Figure 1.6, I decompose the annualized Sharpe ratios into their two components:

the annualized standard deviations in the denominators and the annualized means in the

numerators, respectively. The increases in the Sharpe ratios from trading closer to MNAs

are completely due to the decreases in the return standard deviations. The return means

actually decrease but not as quickly as the return standard deviations. On some level, this

finding is obvious: trading earlier entails holding risky positions for longer. Since risk

scales with time, there has to be more risk from trading earlier. Trading in the hours before

MNAs, however, is especially low risk because announcements occur in the morning Eastern

Time, and there is little volatility in stocks and bonds during the overnight trading session.

Based on Figure 1.6, sophisticated traders are incentivized to trade closer to MNAs and

obtain higher risk-adjusted returns by avoiding risk. Viewed through the lens of the model,

markets are inefficient over time in the manner described in Section 1.5.1.

Panel A of Figure 1.6 also presents evidence that the risk-adjusted returns from trading

bonds are higher than those from trading stocks and particularly so in the hours prior to

MNAs. Panels B and C of Figure 1.6 show that the higher Sharpe ratios of bonds versus

stocks are completely driven by the lower return standard deviations of bonds versus

stocks, which offset the lower return means of the former asset. The data suggest that

bonds are a safer asset than stocks for the purpose of expressing an informational edge

on macroeconomic news reports. Such a conclusion is consistent with the intuition that

orthogonal sources of volatility play a more important role in stocks than bonds. For example,

around the time MNAs are released in the morning Eastern Time, earnings announcements

are often also released. Earnings announcements are unlikely to be related to the MNAs

explored in this paper. Earnings announcements are, however, much more likely to impact

stocks than bonds. Sophisticated traders acting on predictions of macroeconomic news

reports are plausibly more wary of trading stocks than bonds and being exposed to volatility

from earnings surprises. Based on Figure 1.6, sophisticated traders are incentivized to trade

bonds more intensely than stocks before MNAs and obtain higher risk-adjusted returns by
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avoiding risk. Viewed through the lens of the model, markets are inefficient across assets in

the manner described in Section 1.5.2.

1.7 Trading on Market Inefficiency

1.7.1 Trading on the Predictable Component of Macroeconomic News Reports

Market inefficiency is commonly associated with money being left on the table. How much

money do sophisticated traders leave on the table as a result of being deterred by risk from

trading their predictions of macroeconomic news reports into prices? Figure 1.7 plots the

annualized Sharpe ratios from implementable trading strategies that use the predictable

component of macroeconomic news reports derived from anchoring bias. The strategies

take positions in stocks (Panels A and B) and bonds (Panels C and D) starting some number

of days (Panels A and C) or minutes (Panels B and D) before MNAs. In stocks, the strategies

go long {short} before announcements of the top {bottom} x percentile of the predictable

component, with x indicated in the “Trade Threshold” axis. In bonds, the strategies go the

opposite direction. Positions are unwound 5 minutes after MNAs for stocks and 5 minutes

before MNAs for bonds.27 To account for transaction costs, I include the round-trip bid-ask

spread into calculations of the Sharpe ratios.28

The Sharpe ratios in Figure 1.7 are sizable. The maximum Sharpe ratio in stocks is 0.82

for trading strategies initiated in the days before MNAs and 0.65 for strategies initiated in

the hours before MNAs. For bonds, the maximum Sharpe ratio is even higher: 1.12 and 0.82

for strategies starting in the days and hours, respectively, before MNAs. It is notable that a

simple algorithm based on anchoring bias can present viable trading strategies. For market

participants with more powerful ways to predict macroeconomic news reports, the Sharpe

27Based on Table 1.5, stocks but not bonds react to announcements of the predictable component. Thus,
optimal trading strategies based on the predictable component should hold through announcements for stocks
but not for bonds.

28For stocks (ES futures contract), the round-trip bid-ask spread is 0.25 point. For bonds (TY futures contract),
the round-trip bid-ask spread is 1/64 = 0.015625 point.
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ratios in Figure 1.7 represent a lower bound of achievable risk-adjusted returns.

The results pose the question of why more traders do not go from being unsophisticated

to being sophisticated. Increasing the measure i of sophisticated traders in the model makes

asset prices more efficient and reduces the amount of money left on the table. A more

comprehensive extension of the model in which traders endogenously choose to become

sophisticated may shed light on this question. Alternatively, it is also possible that the

seemingly attractive risk-adjusted returns in Figure 1.7 are in fact misleading. First, the

plotted Sharpe ratios fluctuate considerably depending on the trade threshold and time of

entry. In that sense, the trading strategies are not particularly robust. Second, there are

uncalculated transaction costs such as price impact and trading commissions. Third, the

Sharpe ratio may not adequately capture the risk involved in trading around MNAs; for

example, higher return moments may reveal hidden risks.

1.7.1.1 Optimal Trade Timing

In addition to showing the profitability of trading on market inefficiency, Figure 1.7 illustrates

an important point about optimal trade timing. Front running is central to all the strategies

that have high Sharpe ratios: strategies that take positions right before MNAs have low or

negative risk-adjusted returns. In other words, it is better to trade earlier than to wait until

the last moment to trade the predictable component of macroeconomic news reports.

This result may seem at odds with a mantra of this paper that sophisticated traders with

an informational advantage about news reports are incentivized to trade later. In the model,

sophisticated traders recognize that they can obtain a higher risk-adjusted return by trading

late on information not yet impounded into prices. To this point, Figure 1.6 shows that perfect

foresight trading strategies yield the highest Sharpe ratios when implemented immediately

before MNAs. These Sharpe ratio calculations are based on real-world stock and bond data

in which perfect foresight has not been traded into prices.

In the model, after sophisticated traders trade, they make prices more efficient in the

late period than the early period. To an econometrician observing this equilibrium in
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which information is already impounded into prices, the difference between the risk-adjusted

returns from trading late and trading early is diminished. Trading early is still riskier than

trading late. Trading early, however, also gives a higher return mean than trading late, since

sophisticated traders drive the return mean down more in the late period. The Sharpe ratios

calculated in Figure 1.7 are from trading the predictable component of news reports. The

predictable component is already (partly) impounded into stock and bond prices and more

so closer to MNAs. Though there is less risk from trading the predictable component later,

there is even less reward. Hence, the most attractive risk-adjusted returns arise from front

running.

The above discussion gives insight to models of optimal trade timing in the informed

trading literature. One factor that affects timing is the number of informed traders. As

the number increases, strategic considerations come into play: each informed trader wor-

ries about being front-run and is consequently incentivized to trade earlier (Holden and

Subrahmanyam (1992, 1994)). Another factor is the heterogeneity of private information.

As heterogeneity increases, each informed trader benefits from delaying trades to prevent

others from using prices to infer that part of the private information known only to him

(Foster and Viswanathan (1996) and Back, Cao, and Willard (2000)).

Consider the Sharpe ratios based on perfect foresight in Figure 1.6. These Sharpe ratios

are available to an informed trader who is the only possessor of his informational advantage.

The reason is that nobody in practice knows the exact values of unreleased news reports.

Thus, this scenario describes the case in which there is only the single informed trader, or

the informed trader has private information unrelated to that of other informed traders.

Existing models predict that, qualitatively, there is little rush to trade, which is borne out in

the data. Not rushing to trade is different from waiting to trade, however: these models

predict that trading is spread out over time, which is at odds with the data. My model

suggests that risk compels traders to wait to trade.

Now consider the Sharpe ratios based on the predictable component of news reports in

Figure 1.7. These Sharpe ratios are available to an informed trader who is one of many who
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possess the same informational advantage. The reason is that other market participants can

and do trade the predictable component. Thus, this scenario describes the case in which

there are multiple informed traders and informed traders have homogeneous (or at least

not very heterogeneous) private information. The aforementioned literature predicts that,

qualitatively, there is a rush to trade, which is evidenced by the data. The rush to trade is

so strong in these models, however, that informed traders immediately and fully impound

their private information into prices. In contrast, the data reveal that even if trading the

predictable component immediately before announcements is unprofitable, doing so a few

hours earlier is still attractive. Once again, my model’s explanation is that traders are

influenced by risk to wait to trade.

1.7.2 Trading on Overreaction and Return Reversal

There is intriguing evidence of another form of market inefficiency in the data. Table 1.7

tests for overreaction around MNAs using regressions of return reversal in stocks and bonds:

postRt = α + βevtRt + εt.

In row x, the left-hand-side variable postRt is the cumulative post-announcement return

(in bps) from 5 minutes to x minutes after MNAs. The right-hand-side variable evtRt is

the ±5 minute announcement return (in bps) around MNAs. β̂ is negative and statistically

significant for stocks but close to zero and generally insignificant for bonds. Stocks decrease

{increase} up to 4.0 bps after a 10 bps positive {negative} announcement return. Bonds,

however, are essentially flat in the hours following a 10 bps positive {negative} announcement

return. The data show that stocks are less efficient than bonds in another important manner:

stocks display overreaction and subsequent return reversal, but bonds do not. Overreaction

creates attractive trading opportunities. Analogous to Figure 1.7, Figure 1.8 plots the

annualized Sharpe ratios inclusive of transaction costs from trading strategies that go short

{long} each asset after announcement returns above {below} positive {negative} thresholds.

The strategies initiate positions 5 minutes after MNAs and unwind positions some number
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Table 1.7: Regressions of Return Reversal in Stocks and Bonds

Stocks Bonds

β̂ (bps) α̂ (bps) R2
adj (%) β̂ (bps) α̂ (bps) R2

adj (%)

60 -0.04 -0.32 0.04 0.03* 0.41 0.12
120 -0.20*** -1.24 0.89 0.00 0.85* -0.06
180 -0.29*** -1.87 1.39 0.04 1.11** 0.01
240 -0.27*** -1.06 1.00 0.06 0.96 0.09
300 -0.30*** 0.35 1.01 0.06 0.63 0.08
360 -0.40*** 0.58 1.18 0.04 1.06 -0.01
420 -0.37*** 0.60 0.84 0.05 1.26 0.02
480 -0.35*** 1.38 0.62 0.05 1.49* 0.01
540 -0.35*** 0.30 0.60 0.04 1.29 -0.01
600 -0.34*** 0.22 0.56 0.04 1.33* -0.02
660 -0.34*** 0.15 0.55 0.03 1.51* -0.03
720 -0.32*** 0.25 0.50 0.03 1.58** -0.04

Notes: The table shows results from regressions of post-announcement returns on announcement returns
for stocks (front ES futures contract) and bonds (front TY futures contract): postRt = α + βevtRt + εt.
Regressions are run on the full sample of MNAs, and n = 1705. In row x, the left-hand-side variable
postRt is the cumulative post-announcement return (in bps) from 5 minutes to x minutes after MNAs. The
right-hand-side variable evtRt is the ±5 minute announcement return (in bps) around MNAs. t-statistics (not
shown) are based on heterosckedasticity-consistent standard errors. *** denotes significance at the 1% level, **
denotes significance at the 5% level, and * denotes significance at the 10% level.

of minutes later. The Sharpe ratio is as high as 1.21 for stocks but zero or negative for bonds.

The above finding motivates a more comprehensive model. Brunnermeier (2005) provides

intuition for how such a model might look. In his work, sophisticated traders impound their

informational advantage into prices prior to a public announcement. Other, unsophisticated

market participants attempt to learn from pre-announcement prices what the sophisticated

traders know but are not able to do so perfectly, which leads to an overreaction to the

announcement. Sophisticated traders take advantage by front-running pre-announcement

and flipping post-announcement; that is, they follow the well-known Wall Street adage and

“buy the rumor and sell the news.”29 Kadan, Michaely, and Moulton (2014) find support in

the data for the theory: institutional investors buy before sell-side analyst upgrades and

29If sophisticated traders’ advance knowledge indicates the value of the risky asset should be higher, they
buy the rumor and sell the news. Otherwise, they “sell the rumor and buy the news.”
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Panel A: Stocks

Panel B: Bonds

Figure 1.8: Trading on Return Reversal after MNAs with Transaction Costs

Notes: The figure plots the annualized Sharpe ratios from trading strategies based on return reversal after
MNAs. The strategies take positions in stocks (front ES futures contract) and bonds (front TY futures contract)
starting 5 minutes after MNAs. In both assets, the strategies go short {long} after the top {bottom} “Trade
Threshold” percentile of ±5 minute announcement returns. Positions are unwound the indicated number of
minutes after MNAs.
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sell when the upgrades are publicly announced. If, in my model, unsophisticated traders

attempt to extract from pre-announcement prices the information of sophisticated traders,

there is also overreaction and return reversal. The intuition is similar to that of Brunnermeier

(2005). The challenge, however, is to construct a model that simultaneously incorporates

overreaction and return reversal while preserving the other results shown in my research.

1.8 Conclusion

In this paper, I find novel evidence of sophisticated trading in a unique setting: stocks and

bonds around MNAs. The data suggest that sophisticated traders acquire their informational

advantage via the homework channel and skillfully process public information to predict

macroeconomic news reports. In contrast, the literature generally attributes sophisticated

trading in various settings to (illegal) information leakage or is unable to specify the

mechanism by which sophisticated traders obtain their information.

Using these results, I show that stock and bond markets are inefficient around MNAs.

Over time, there is a late trading puzzle: the public information that predicts macroeconomic

news reports is available days before announcements but inefficiently impounded into

stocks and bonds just hours before announcements. Across assets, there is a related puzzle:

by the announcement times, the public information that predicts news reports is fully

impounded into bonds but only partially impounded into stocks. Bonds eventually become

efficient, while stocks remain inefficient: stocks but not bonds react to announcements

of the predictable component of news reports and display return momentum between

pre-announcement and announcement returns.

I construct a model to explain the documented market inefficiency. The model provides

new insights into how sophisticated traders optimally trade and impound their informational

advantage into asset prices. In the model, sophisticated traders have risk management

concerns. If trading earlier is riskier than trading later, sophisticated traders wait to trade. If

trading one asset is riskier than trading another asset, sophisticated traders trade the safer

asset more intensely than the riskier asset. Consistent with the data, the model implies that,
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in the time series, the information of sophisticated traders is impounded into asset prices

later when it is safer. Similarly, in the cross section, the information is impounded more

fully into safer assets such as bonds than riskier assets such as stocks.

My results are directly relevant for practitioners as well. As a result of being deterred by

risk from trading their predictions of macroeconomic news reports into prices, sophisticated

traders leave money on the table. Implementable trading strategies that exploit market

inefficiency yield sizable Sharpe ratios in bonds and stocks.

This paper has three other implications. First, any research that uses MNAs as the

empirical setting should take into account the presence of sophisticated traders. For exam-

ple, looking at the price adjustment of stocks and bonds in response to announcements of

macroeconomic news reports is misleading when a sizable fraction of the price adjustment

takes place before announcements. Second, market participants may be more knowledge-

able about the state of the economy than thought otherwise. How realistic, then, is the

asymmetric information assumption of monetary policy models that central banks have

an informational advantage about the economy over other agents? Finally, if markets are

inefficient in a controlled setting such as around MNAs, markets may be similarly inefficient

in many other settings. The two ingredients for market inefficiency in my research are

that unsophisticated traders fail to recognize market inefficiency, and sophisticated traders

recognize market inefficiency but fail to act due to risk. It is plausible that both ingredients

are present in other settings.

There are a number of directions for future work. Most intriguingly, features of the data

suggest that factors aside from risk influence informed trading: the number of informed

traders, the heterogeneity of private information, and the strategic behavior of the informed

who take advantage of the uninformed. Incorporating all these factors into a more sophisti-

cated theory is challenging but promises to deepen our understanding of the price discovery

process.
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Chapter 2

The Good, the Bad, and the

Ambiguous: The Aggregate Stock

Market Dynamics around

Macroeconomic News1

2.1 Introduction

Uncertainty plays a central role in determining asset prices. How investors interpret news

and impound that information into financial assets is a likewise important topic in asset

pricing. These two themes are very much related, for investors are routinely exposed to

news of uncertain value and must pass judgement on the relevance of said news for financial

markets. The first focus of this paper is the use of a representative agent model based off

Epstein and Schneider (2008) to investigate how investors process news that has a specific

type of uncertainty, Knightian uncertainty or ambiguity, and the resulting implications

for asset pricing. In the model, the investor sees a piece of news about the fundamental

1I thank Geert Bekaert, Itamar Drechsler, and Marie Hoerova for helpful discussions and suggestions.
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value of a risky asset, but this news is ambiguous in the sense that the investor knows

the variance of the noise component only within a range. If the investor believes that the

variance is low, the news is precise or relevant; otherwise, the news is imprecise or irrelevant.

The investor is furthermore ambiguity-averse and picks the worst-case belief for the noise

variance that minimizes expected utility. This setup yields four predictions for the behavior

of stocks around ambiguous news, the first three of which are (i) the asymmetry effect or

asymmetrically strong response of stocks to bad news versus good news, (ii) the no news

is good news effect or the positive response of stocks to no (neutral) news, and (iii) the

ambiguity premium or the average positive return of stocks around news. As the amount

of ambiguity, equivalent to the range of the noise variance, increases, the model further

conjectures that the magnitude of each of these three phenomonon increases. There is

an additional (iv) risky asset volatility effect or corresponding increase or decrease in the

volatility of stocks around news depending on the source of the increase in ambiguity.

Much of the work involving Knightian uncertainty is theoretical in nature.2 The second

focus of this paper is thus empirical and shows that the aforementioned model with ambigu-

ity accurately captures the real-world behavior of stocks in a way that existing frameworks in

the literature cannot. To arrive at this conclusion, I investigate the behavior of the aggregate

stock market around macroeconomic news announcements (MNAs) concerning inflation,

output, and the labor market. The results demonstrate that ambiguity can contribute to our

understanding of how asset markets price macroeconomic shocks. Using high-frequency

intraday data on the S&P 500 futures contract in the ±5 minutes around a comprehensive

sample of macroeconomic data releases from November, 1997 to March, 2014, I show whole

sample evidence consistent with the asymmetry effect, the no news is good news effect, and

the ambiguity premium. In the 10-minute window around MNAs, stocks increase 2.416

bps to a unit of good news but decrease 8.557 bps to a unit of bad news, which results in

a meaningful 6.141 bps asymmetry effect.3 At the same time, stocks increase 3.204 bps to

2It is not without reason that another name for Knightian uncertainty or ambiguity is unmeasurable
uncertainty.

3News is a standardized variable such that good news corresponds to “better”-than-expected data; i.e.,
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no (neutral) news. All of the referenced numbers are statistically significant. Strikingly, the

stock market increases a significant 1 bp on average through the 3,194 10-minute return

intervals that contain macroeconomic news releases yet only an insignificant 0.014 bps on

average through the other 588,671 10-minute return intervals during the sample period.

In other words, stocks compounded 36.250% around MNAs and 66.267% otherwise such

that about 1/3 of the stock market return over 17 years accrues in that tiny fraction of time

around macroeconomic news releases. The standard deviation of returns is, however, only

modestly higher in intervals containing MNAs relative to all other intervals, so this set of

empirical observations is hard to reconcile with standard risk-based stories. The ambiguity

premium provides an explanation for this puzzle.

The model makes several sharper predictions for how the aggregate stock market

dynamics around macroeconomic data releases depends on the amount of ambiguity.

Motivated by earlier academic studies such as Drechsler (2013), I use the variance risk

premium, the difference between risk-neutral and physical expectations of stock market

return variance, as a state variable for ambiguity in empirical tests. Existing measures of

the variance risk premium, however, are problematic as proxies for ambiguity. To overcome

these issues, I construct my own time series which behaves as a more reasonable proxy. The

variance risk premium is elevated during well-known times of market stress such as the

2008 financial crisis when investors are plausibly less sure about the relevance of a piece of

macroeconomic news for the fundamental value of the stock market; i.e., ambiguity is high.

In less turbulent times, such as the mid-2000s, the variance risk premium is lower, consistent

with the intuition that investors are more certain about the salience of macroeconomic data

for stocks; i.e., ambiguity is low. As a consequence of how the variable is constructed, the

variance risk premium predicts stock returns at long horizons but not short horizons in

contrast to results in the literature.

Using the variance risk premium time series as a proxy for ambiguity, I find that,

consistent with the model, the stock market reacts most asymmetrically to bad news versus

higher-than-expected inflation or output and lower-than-expected unemployment. See Section 2.3.1 for details.
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good news during times of high ambiguity and progressively less so during times of lower

ambiguity. The reaction of stocks to signed news is essentially symmetric when ambiguity is

at its lowest. Intriguingly, the stronger reaction of stocks to bad news relative to good news

in times of high ambiguity comes from the increased sensitivity of stocks to bad news and

not from the decreased sensitivity of stocks to good news. This result, interpreted through

the model, says that ambiguity, defined as the range of news noise variance, changes due to

changes in the lower bound of the range instead of the upper bound of the range. The real-

world implication for the behavior of investors is that during times of high ambiguity, which

also tend to be times of panic in financial markets, investors think that bad macroeconomic

news is more relevant for the stock market but good macroeconomic news is not any less

relevant for the stock market. Phrased simply, investors focus more on bad news in bad

times than in good times but treat good news the same in good and bad times.

The data also corroborate the no news is good news effect: Stocks react more strongly to

neutral MNAs during times of high ambiguity than during times of low ambiguity. The

evidence for the ambiguity premium is less clear-cut. True to the model, stocks earn a

positive average return around macroeconomic data releases, but this average return is

not increasing in ambiguity. Indeed, there is little time-variation in the average return of

stocks around MNAs. The implication is that the ambiguity premium exists but is not

time-varying. Based on the asymmetry effect, we know that changes in ambiguity occur in

a specific way, and how ambiguity changes helps to reconcile the lack of time-variation in

the ambiguity premium with the model. Moreover, the way in which ambiguity changes

implies, though the risky asset volatility effect, that the volatility of stocks around MNAs

should be higher in times of high ambiguity. This result shows up in the data.

How does the model generate the predictions that it does? When the investor sees a

piece of news with noise variance known only within a range, ambiguity aversion dictates

that the investor believes the actual noise variance is the one that minimizes his expected

utility. If the news is positive for the fundamental value of the risky asset, the investor

believes that the noise variance is high; hence, the news has low relevance and the risky
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asset responds weakly. If the news is negative, the investor believes that the noise variance

is low; hence, the news has high relevance and the risky asset responds strongly. This is the

asymmetry effect. Prior to the arrival of news, the investor knows that ambiguous news

is coming. Because the investor dislikes ambiguity, he must be compensated for holding

the risky asset. Neutral news provides no information on the value of the risky asset but

does resolve the ambiguity, so the rise of the risky asset in response to no news measures

this compensation. This is the no news is good news effect. The average change in the

price of the risky asset around news is equal to the sum of the no news is good news and

asymmetry effects. This sum is positive and is equal to the ambiguity premium. Finally, if

ambiguity or the range of news noise variance increases because the lower (upper) bound

of the range decreases (increases), the risky asset responds more (less) strongly to negative

(positive) news. As such, the volatility of the risky asset around news increases (decreases).

This is the risky asset volatility effect.

While we must always exercise caution in interpreting the implications of a representative

agent model for the real-world, there are several reasons why the behavior of the aggregate

stock market (the risky asset) around news about macroeconomic conditions (the news) is

an appropriate environment to test the model. Investors care about the fundamental value

of the stock market, which is ultimately a stream of dividends, but can only infer future

dividends from various news reports. One important type of news is that concerning the

macroeconomy, for it is well-established that market participants pay close attention to and

actively trade such reports. As a result, the aggregate stock market reacts in a systematic

manner to MNAs: Stocks react positively to news of higher-than-expected inflation or

output and lower-than-expected unemployment. MNAs are not, however, precise pieces of

news about stock market fundamentals. A piece of news about macroeconomic conditions

does not lay out the future stream of dividends with certainty, and there is considerable

freedom in interpreting the relevance of such news. In other words, MNAs are ambiguous

pieces of news about the stock market. Taking the model literally, investors have a set of

beliefs encoded in the set of precisions of a given macroeconomic news release and its
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relevance for the fundamental value of the stock market. The amount of ambiguity can

vary over time with high levels of ambiguity corresponding to environments in which

investors have a great deal of uncertainty in interpreting the salience of macroeconomic

news for stocks; that is, the precision of the news in investors’ minds could be anywhere

from very low to very high. When ambiguity is low, however, investors are more sure of how

informative macroeconomic news is for the stock market, so investors have a narrower range

of precisions in mind. Ex ante, we might expect that ambiguity is highest at identifiable times

such as during the 2008 financial crisis or the 2011 height of the European sovereign-debt

crisis and concurrent U.S. debt-ceiling crisis. At other times, such as the few years before

the financial crisis when economic and financial conditions were relatively stable, we might

expect lower levels of ambiguity. Introspection suggests that such a narrative is reasonable.

This paper builds on the literature at the intersection of ambiguity and finance. In

particular, the model with ambiguity follows from Epstein and Schneider (2008) who use

the max-min expected utility theory of Gilboa and Schmeidler (1989) to capture the idea of

ambiguity aversion. Hansen and Sargent (2010) among other papers by the two co-authors

represents an alternative but related way to formulate aversion to ambiguity using robust

control theory. A few studies have looked at how ambiguity can aid in explaining various

phenomena in financial markets. For example, Illeditsch (2011) shows that ambiguity can

account for portfolio inertia and excess volatility, Boyarchenko (2012) attributes spikes in

CDS spreads during the 2008 financial crisis to increases in ambiguity, and Drechsler (2013)

calibrates a model with ambiguity that matches the variance risk premium and implied

volatility surface of stock index options as well as other properties of stocks. Related to

my findings, Williams (2014) provides empirical evidence that individual stocks respond

more strongly to bad earnings news than to good earnings news and especially so when

the VIX, used as a proxy for ambiguity, is elevated. To my knowledge, however, no existing

research explores the broad set of equity characteristics addressed in this paper and how

these features in the data provide evidence for a model with ambiguity.

The behavior of the aggregate stock market around macroeconomic data releases is a
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novel setting in which to evaluate the impact of ambiguity. Many papers in the literature

have used this setting to explore topics related to how financial assets reflect macroeco-

nomic risk; e.g., Jones, Lamont, and Lumsdaine (1998), Andersen, Bollerslev, Diebold, and

Vega (2003, 2007), Boyd, Hu, and Jagannathan (2005), Faust, Rogers, Wang, and Wright

(2007), Faust and Wright (2012), and Savor and Wilson (2013, 2014). These studies have

investigated an assortment of assets (e.g., stocks, bonds, and currencies) in various sample

periods (e.g., expansionary and contractionary states). How asset prices vary in response to

macroeconomic news can give insight into other areas of economics as well. Swanson and

Williams (2013, 2014) and Zhou (2014), for example, show that the Federal Reserve’s zero

lower bound attenuates interest rate sensitivity to news about the macroeconomy.

An integral part of my research is the construction of an appropriate proxy for ambiguity.

The state variable for ambiguity that I choose, the variance risk premium, has been analyzed

from a number of different angles. Evidence from Bollerslev, Tauchen, and Zhou (2009),

Faust and Wright (2012), Drechsler (2013), and Bekaert and Hoerova (2014) shows that the

variance risk premium is a significant predictor of stock returns in the time series. Bekaert,

Hoerova, and Lo Duca (2013) also find interesting lead-lag relationships between the

variance risk premium and the stance of monetary policy. Importantly, academic work such

as Bekaert, Hoerova, and Lo Duca (2013) and, especially, Drechsler (2013), have discussed

and provided justification for the variance risk premium as a measure of ambiguity. There is

no data series in the literature that serves as the gold standard for the variance risk premium,

however, so much work on the subject is necessarily methodological in nature; e.g., Carr

and Wu (2009) in addition to some of the aforementioned studies. One of the contributions

of my paper is the construction of a variance risk premium series that behaves as a more

reasonable metric of ambiguity in the time series. This data series differs meaningfully from

those in the literature in other ways, for example in the predictive power for stock returns.

The predictions that the model with ambiguity makes and that I subsequently verify

empirically are related to several strands of research. Consistent with the asymmetry effect,

Barberis, Shleifer, and Vishny (1998) and Veronesi (1999) have models that imply that
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stocks react more strongly to bad news than to good news. In their models, however, the

asymmetry occurs in good times and decreases (or even flips) in bad times. Conrad, Cornell,

and Landsman (2002) find that individual stocks do indeed react asymmetrically stronger

to bad earnings announcements versus good earnings announcements in good times, as

measured by the equity market valuation, but not in bad times. Brown, Harlow, and Tinic

(1988) and Campbell and Hentschel (1992) are alternative explanations for the asymmetric

response of stocks to signed news. None of these frameworks involve ambiguity, however,

and I show in Section 2.7 of this paper that the behavior of stocks around macroeconomic

news supports an ambiguity-based explanation for the asymmetry effect over some of these

existing explanations. Note that, as mentioned previously, Williams (2014) shows additional

evidence that ambiguity drives the asymmetry effect using the response of individual stocks

to earnings announcements.

My finding of a large, positive average return of stocks around MNAs is most closely

related to work by Savor and Wilson (2013) who show a similar result using daily data

instead of intraday data. Instead of interpreting this positive return as evidence of an

ambiguity premium, the co-authors construct a model in which macroeconomic data

releases reveal important information about the state of the economy. Stocks do poorly if

the state of the economy is bad, which creates a large risk premium on days with MNAs.

Faust and Wright (2012) find that standard return predictability regressions cannot predict

the amount stocks earn around MNAs, which suggests that the premium earned is not time-

varying. The increase of the aggregate stock market around macroeconomic announcements

also parallels the earnings announcement premium for individual stocks for which there

are various explanations. Frazzini and Lamont (2007), for example, reason that earnings

announcements grab the attention of investors who are short-sale constrained or otherwise

have a predisposition to be long.

Finally, the risky asset volatility effect is related to the well-documented time-variation

of stock return volatility. Campbell and Hentschel (1992) and Veronesi (1999) are two of the

papers that propose mechanisms generating the volatility fluctuations seen in the data.
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The organization of this paper is as follows. Section 2.2 introduces the representative

agent model with ambiguity and highlights the predictions for the behavior of the risky asset

around ambiguous news. Section 2.3 describes the data on macroeconomic news releases

and high-frequency stock prices used to empirically evaluate the model. Through analysis

of the aggregate stock market around MNAs, Section 2.4 presents whole sample evidence

supportive of the asymmetry effect, no news is good news effect, and ambiguity premium.

Section 2.5 discusses the variance risk premium, its properties, and its suitability as a state

variable for ambiguity. Using the variance risk premium to proxy for ambiguity, Section 2.6

shows how the asymmetry effect, no news is good news effect, ambiguity premium, and

risky asset volatility effect vary with ambiguity. Section 2.7 address alternative explanations

for the model predictions. Section 2.8 concludes.

2.2 Model with Ambiguity

2.2.1 Utility Function

To illustrate the impact of ambiguity on financial markets, I consider a model with a

representative agent based off Epstein and Schneider (2008). The agent is ambiguity-averse

in the sense of having recursive multiple-priors utility with utility function Ut at time t:

Ut = min
mt∈Mt

Emt [u (Ct) + βUt+1] . (2.1)

u (·), Ct, and β are the familiar notations for the Bernoulli utility function, consumption at

time t, and the discount factor, respectively. I introduce the notationMt and mt to denote

the set of models considered by the investor at time t and a specific model within that set,

respectively. Finally, Emt [·] is the expectation given the beliefs generated by model mt.

The utility function in Eq. (2.1) captures both risk-aversion and ambiguity-aversion. The

former shows up through the Bernoulli utility function u (·). To see the latter, note that if

Mt consists of a single model, we are back in a standard framework, and hence there is no

ambiguity-aversion. As the size ofMt increases, ambiguity-aversion plays an increasingly
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important role. The reason is that the investor contemplates a range of models withinMt

and picks the model mt that generates worst-case beliefs and leads to the lowest expected

utility.

2.2.2 Three Period Model

The stylized model has three dates: t = 0, 1, and 2. The investor can invest in either a

risky asset, the aggregate stock market, or a risk-free asset. The risky asset is a claim on

a dividend d that is revealed at t = 2, while the risk-free rate is zero by assumption. As

such, wealth at t = 2 is W2 = W0 + (d− p) θ, in which W0 is starting wealth at t = 0, p is

the price of the risky asset, and θ is the amount invested in the risky asset. The investor

cares only about consumption at t = 2 and consumes all of his wealth C2 = W2. I assume

that there is no time discounting and that period utility is exponential; that is, β = 1, and

u (Ct) = − exp (−ACt), with A the coefficient of absolute risk aversion.

Working backward in time, at t = 2, the dividend

d = d + εd

is revealed. d is the mean dividend, and εd ∼ N
(
0, σ2

d

)
is a normal, mean-zero shock.

At t = 1, a piece of news arrives about the dividend:

n = αεd + εn. (2.2)

α ∈ [0, 1] measures the relevance of the news. For example, if α = 1, the news is just a

noisy estimate of εd. On the other hand, if α = 0, the news provides no information on

the dividend to be paid in one period. εn ∼ N
(
0, σ2

n
)

is a normal, mean-zero shock that is

independent from εd. The news is ambiguous in the sense that the agent only knows that

the variance of εn is within an interval: σ2
n ∈

[
σ2

n, σ2
n
]
. As the range σ2

n − σ2
n of this interval

increases, there is a greater amount of ambiguity and the agent is less confident about the

news’ precision. Referring to prior notation,
[
σ2

n, σ2
n
]

maps toM1, and σ2
n maps to m1. From
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Eq. (2.1), the utility function at t = 1 is

U1 = min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n
[− exp (−A (W0 + (d− p) θ)) |n] . (2.3)

I ignore the u (C1) term because the investor only cares about consumption at t = 2, and I

substitute U2 = − exp (−A (W0 + (d− p) θ)) to reflect that final period utility is simply the

utility from consuming all available wealth W2. Finally, the utility function in Eq. (2.3) is

conditional on observing the news n in Eq. (2.2).

At t = 0, the agent knows that ambiguous news will arrive in one period. His utility

function at t = 0 is thus

U0 = min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

σ2
n∈[σ2

n,σ2
n]

Eσ2
n
[− exp (−A (W0 + (d− p) θ)) |n]

]
. (2.4)

This expression comes from straightforward substitution of Eq. (2.3) into Eq. (2.1). M0 =[
σ2

n, σ2
n
]

is the range of the noise variance from the first period perspective and is equal

toM1. FromM0, the agent at t = 0 selects the σ2
n that results in the worst-case expected

utility.

2.2.3 Equilibrium Prices at t = 0 and t = 1 with Ambiguity-Aversion

We are interested in finding the price of the risky asset at t = 0, before the arrival of the

news, and at t = 1, after the arrival of the news, in the case when the news is ambiguous, as

well as in the case when the news is not ambiguous. To focus on the effect of ambiguity in

the model, I assume that the investor is risk-neutral (A = 0). Consider the case of ambiguous

news first, with σ2
n > σ2

n.
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2.2.3.1 Price at t = 1 with Ambiguity-Aversion

At t = 1, the investor’s optimization problem based on Eq. (2.3) is

max
θ

U1 =max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n
[− exp (−A (W0 + (d− p) θ)) |n]

=max
θ

min
σ2

n∈[σ2
n,σ2

n]
− log

(
Eσ2

n
[exp (−A (W0 + (d− p) θ)) |n]

)
. (2.5)

The second equality comes from the fact that the log (·) function is monotonic. Since the

joint distribution of d and n is given by n

d

 =

 αεd + εn

d + εd

 ∼ N

 0

d

 ,

 α2σ2
d + σ2

n ασ2
d

ασ2
d σ2

d


 , (2.6)

following the formula in Appendix B.1 gives the result that dividend d given news n is

conditionally normally distributed:

d|n ∼ N
(

d + φn, σ2
d (1− αφ)

)
, (2.7)

with

φ =
ασ2

d
α2σ2

d + σ2
n

. (2.8)

Note that the conditional distribution in Eq. (2.7) depends on σ2
n through φ. In particular,

φ ∈
[
φ, φ

]
⊂ [0, 1], with

φ =
ασ2

d

α2σ2
d + σ2

n
, and (2.9)

φ =
ασ2

d
α2σ2

d + σ2
n

. (2.10)
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Since I assume that σ2
n > σ2

n, φ > φ. Using Eq. (2.7), I rewrite the optimization problem in

Eq. (2.5):

max
θ

U1 =max
θ

min
φ∈[φ,φ]

−Eφ [−A (W0 + (d− p) θ) |n]− 1
2

Vφ [−A (W0 + (d− p) θ) |n]

=max
θ

min
φ∈[φ,φ]

θEφ [d− p|n]− 1
2

Aθ2Vφ [d− p|n]

=max
θ

min
φ∈[φ,φ]

θEφ [d− p|n] . (2.11)

The first equality uses the fact that for a log-normal variable z, log (E [z]) = E [log (z)] +

1
2 V [log (z)]. I also replace σ2

n with φ and
[
σ2

n, σ2
n
]

with
[
φ, φ

]
due to the one-to-one mapping

between the variables in Eqs. (2.8), (2.9), and (2.10). φ− φ thus proxies for the amount of

ambiguity in the same way that σ2
n − σ2

n does. The second step simplifies the optimization

problem by dropping additive and multiplicative constants. The final step sets A = 0 to

reflect that the agent is risk-neutral.

Solving Eq. (2.11) for the equilibrium price at t = 1 yields

p1 (n) = min
φ∈[φ,φ]

Eφ [d|n] = min
φ∈[φ,φ]

d + φn =


d + φn if n > 0

d + φn if n ≤ 0
. (2.12)

Since the investor evaluates actions under the worst-case scenario, the price at t = 1

minimizes the conditional mean dividend and depends on the news value. Because φ < φ,

the result is that the price of the risky asset is asymmetric in the value of the news. Moreover,

the extent of this asymmetry is larger as the difference between φ and φ grows and there

is greater ambiguity. If the news is good and n > 0, p1 (n) has sensitivity φ to n. On the

other hand, if the news is bad and n ≤ 0, p1 (n) has sensitivity φ to n. When the investor

sees positive news, he thinks that it has high variance σ2
n (which corresponds to φ) and is

therefore not particularly informative about the dividend in the next period. Upon seeing

a negative piece of news, however, the investor thinks that it has low variance σ2
n (which

corresponds to φ) and contains precise information about the dividend.

While Eq. (2.12) gives the price conditional on the news value, we are also interested in
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the average price of the risky asset after the investor sees the news. To derive this quantity, I

use the distribution of n from Eq. (2.6), and make the key assumption that the true variance

of εn is σ̃2
n ∈

[
σ2

n, σ2
n
]
. The average price p1 is then

p1 =Eσ̃2
n

[
d + φn|n > 0

]
×Pσ̃2

n
[n > 0] + Eσ̃2

n

[
d + φn|n ≤ 0

]
×Pσ̃2

n
[n ≤ 0]

=d +
1
2

φEσ̃2
n
[n|n > 0] +

1
2

φEσ̃2
n
[n|n ≤ 0]

=d− 1
2

(
φ− φ

)
Eσ̃2

n
[n|n > 0]

=d− 1√
2π

(
φ− φ

)√
α2σ2

d + σ̃2
n . (2.13)

The second and third steps use the fact that the news is symmetric around zero, and the

last step uses the property of the normal distribution shown in Appendix B.2 that for

z ∼ N
(
0, σ2

z
)
, E [z|z > 0] = σz

√
2/
√

π. If the news value equals zero, the price at t = 1

equals p1 (0) = d from Eq. (2.12). The average price, however, is below d due to the

asymmetric reaction of the price to the news. A visual way to see this result is that the price

is concave in the news, so averaging over the price creates a Jensen’s inequality effect. With

greater ambiguity and a larger magnitude of φ− φ, the average price is discounted more

relative to d due to the stronger price reaction to a negative piece of news versus a positive

piece of news. The size of this asymmetry discount is

p1 − p1 (0) = −
1√
2π

(
φ− φ

)√
α2σ2

d + σ̃2
n . (2.14)

2.2.3.2 Price at t = 0 with Ambiguity-Aversion

Moving back to t = 0, the agent’s optimization problem based on Eq. (2.4) is

max
θ

U0 =max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

σ2
n∈[σ2

n,σ2
n]

Eσ2
n
[− exp (−A (W0 + (d− p) θ)) |n]

]

=max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

σ2
n∈[σ2

n,σ2
n]
− log Eσ2

n
[exp (−A (W0 + (d− p) θ)) |n]

]
. (2.15)
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I once again utilize the fact that the log (·) function is monotonic. Parallel to Eq. (2.11),

the steps below simplify the optimization problem in Eq. (2.15) using the property of the

log-normal distribution and the assumed risk-neutral nature of the investor:

max
θ

U0 =max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

φ∈[φ,φ]
−Eφ [−A (W0 + (d− p) θ) |n]− 1

2
Vφ [−A (W0 + (d− p) θ) |n]

]

=max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

φ∈[φ,φ]
θEφ [d− p|n]− 1

2
Aθ2Vφ [d− p|n]

]

=max
θ

min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

φ∈[φ,φ]
θEφ [d− p|n]

]
. (2.16)

For notational purposes, I replace the σ2
n variables with the φ counterparts only in the inner

minimization procedure. Solving Eq. (2.16) for the price at t = 0, we see that

p0 = min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
min

φ∈[φ,φ]
Eφ [d|n]

]

= min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n
[p1 (n)] .

p0 minimizes the average price at t = 1 with the appropriate choice of σ2
n. Plugging in for

p1 (n) using Eq. (2.12), we see that

p0 = min
σ2

n∈[σ2
n,σ2

n]
Eσ2

n

[
d + φn|n > 0

]
×Pσ2

n
[n > 0] + Eσ2

n

[
d + φn|n ≤ 0

]
×Pσ2

n
[n ≤ 0]

= min
σ2

n∈[σ2
n,σ2

n]
d +

1
2

φEσ2
n
[n|n > 0] +

1
2

φEσ2
n
[n|n ≤ 0]

= min
σ2

n∈[σ2
n,σ2

n]
d− 1

2

(
φ− φ

)
Eσ2

n
[n|n > 0]

= min
σ2

n∈[σ2
n,σ2

n]
d− 1√

2π

(
φ− φ

)√
α2σ2

d + σ2
n

=d− 1√
2π

(
φ− φ

)√
α2σ2

d + σ2
n. (2.17)

The first four steps in the derivation correspond exactly the four steps leading to the

derivation of p1 in Eq. (2.13), with the only difference the minσ2
n∈[σ2

n,σ2
n]

operation. The final

step substitutes in σ2
n as the εn variance that minimizes the expression.
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p0 is equal to the mean dividend d less a positive term that represents a no news is

good news effect. The investor earns exactly this term from before the arrival of the news

to after the arrival of the news when the news is equal to zero, or there is no news. In

other words, this term measures the compensation that the investor receives for weathering

ambiguity in the case when the news itself is not informative for the fundamental value

of the risky asset. More precisely, the t = 0 investor knows that an ambiguous piece of

news will arrive in one period and that he will interpret the news in an asymmetric fashion.

As noted, this asymmetry implies that the price of the risky asset at t = 1 is a concave

function of the news. By Jensen’s inequality, the worst-case belief for the investor at t = 0

that minimizes the expected price of the risky asset at t = 1 is that the news yet to arrive

has high variance. That is, the variance of εn is at the upper end of the range σ2
n. As the

amount of ambiguity or φ− φ increases, the no news is good news effect increases, and p0

correspondingly decreases.

Having established the price p0 before the news and the average price p1 after the news,

I show that the price of the risky asset increases on average through the news; that is, the

ambiguity premium p1 − p0 > 0. The result is immediate from Eqs. (2.13) and (2.17):

p1 − p0 =

(
d− 1√

2π

(
φ− φ

)√
α2σ2

d + σ̃2
n

)
−
(

d− 1√
2π

(
φ− φ

)√
α2σ2

d + σ2
n

)
=

1√
2π

(
φ− φ

)(√
α2σ2

d + σ2
n −

√
α2σ2

d + σ̃2
n

)
. (2.18)

Since I have already assumed that φ− φ > 0, p1 − p0 > 0 as long as σ2
n > σ̃2

n; that is, the

true variance of εn is less than the upper range of the variance considered by the investor.

The ambiguity premium depends on φ− φ and is consequently increasing in the amount

of ambiguity. There are two competing effects at work in p1 − p0: the no news is good

news effect and the asymmetry effect. As we have seen, the no news is good news effect

decreases p0 to compensate the investor for the news ambiguity. Upon the arrival of the

news, however, the price of the risky asset decreases more for a negative piece of news than

the price increases for a positive piece of news, and this asymmetric reaction has a negative

effect on p1. It turns out that the impact of the no news is good news effect is greater (in an
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absolute sense) than that of the asymmetry effect, so the price of the risky asset rises on net

through the arrival of the news. The reason is that the magnitude of the asymmetry effect is

related to a Jensen’s inequality effect for the average price of the risky asset at t = 1 using σ̃2
n

as the actual variance of εn. The magnitude of the no news is good news effect, however, is

related to a Jensen’s inequality effect using σ2
n as the investor’s belief for the variance of εn.

Since σ2
n > σ̃2

n by assumption, Jensen’s inequality has a stronger influence on the no news is

good news effect than on the asymmetry effect, so the ambiguity premium is positive.

2.2.3.3 Volatility of the Risky Asset with Ambiguity-Aversion

Using the expressions for the equilibrium prices of the risky asset, I show that the volatility

of the change in the price of the risky asset through the news is increasing or decreasing in

news ambiguity depending on the driver of the change in the amount of ambiguity. The

variance of the change in the risky asset price from t = 0 to t = 1 is

Vσ̃2
n
[p1 (n)− p0] = Vσ̃2

n
[p1 (n)] = Eσ̃2

n

[
p2

1 (n)
]
− p2

1. (2.19)

The first component of Eq. (2.19) is

Eσ̃2
n

[
p2

1 (n)
]
=Eσ̃2

n

[(
d + φn

)2
|n > 0

]
×Pσ̃2

n
[n > 0] + Eσ̃2

n

[(
d + φn

)2
|n ≤ 0

]
×Pσ̃2

n
[n ≤ 0]

=
1
2
×Eσ̃2

n

[
d

2
+ φ2n2 + 2dφn|n > 0

]
+

1
2
×Eσ̃2

n

[
d

2
+ φ

2n2 + 2dφn|n ≤ 0
]

=d
2
+

1
2

(
φ

2
+ φ2

)
×Eσ̃2

n

[
n2|n > 0

]
− d

(
φ− φ

)
×Eσ̃n [n|n > 0]

=d
2
+

1
2

(
φ

2
+ φ2

) (
α2σ2

d + σ̃2
n
)
− d

(
φ− φ

) √2√
π

√
α2σ2

d + σ̃2
n .

The first equality substitutes in for p1 (n) from Eq. (2.12), and the final equality uses

the math formulas in Appendix B.2 that, for z ∼ N
(
0, σ2

z
)
, E [z|z > 0] = σz

√
2/
√

π and

E
[
z2|z > 0

]
= σ2

z . The second component of Eq. (2.19) simply squares p1, which we already

know from Eq. (2.13):
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p2
1 =

(
d− 1√

2π

(
φ− φ

)√
α2σ2

d + σ̃2
n

)2

=d
2
+

1
2π

(
φ− φ

)2 (
α2σ2

d + σ̃2
n
)
− d
√

2√
π

(
φ− φ

)√
α2σ2

d + σ̃2
n .

The variance of the risky asset price change is thus

Vσ̃2
n
[p1 (n)− p0] =Eσ̃2

n

[
p2

1 (n)
]
− p2

1

=
1
2
(
α2σ2

d + σ̃2
n
) (

φ
2
+ φ2 − 1

π

(
φ− φ

)2
)

=
1
2
(
α2σ2

d + σ̃2
n
) ((

1− 1
π

)
φ

2
+

(
1− 1

π

)
φ2 +

2
π

φφ

)
. (2.20)

Simple comparative statics on the variance show that the risky asset volatility is increasing

in φ and φ:

∂

∂φ
Vσ̃2

n
[p1 (n)− p0] =

1
2
(
α2σ2

d + σ̃2
n
) (

2
(

1− 1
π

)
φ +

2
π

φ

)
> 0

∂

∂φ
Vσ̃2

n
[p1 (n)− p0] =

1
2
(
α2σ2

d + σ̃2
n
) (

2
(

1− 1
π

)
φ +

2
π

φ

)
> 0

If, on the one hand, an increase in φ (decrease in σ2
n) drives an increase in ambiguity, the

volatility of the risky asset increases. If, on the other hand, a decrease in φ (increase in σ2
n)

drives an increase in ambiguity, the volatility of the risky asset decreases. The reason for

this result is that the volatility of the risky asset depends on how the risky asset responds to

the news, and φ and φ control the sensitivity of the risky asset price to negative and positive

news, respectively. A larger φ means the asset responds more strongly to bad news, which

increases volatility, whereas a smaller φ means the asset responds less strongly to good

news, which decreases volatility. Note that the variance in Eq. (2.20) is more sensitive to φ

than φ:
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∂

∂φ
Vσ̃2

n
[p1 (n)− p0] >

∂

∂φ
Vσ̃2

n
[p1 (n)− p0] .

To see this, I simplify the left- and right-hand sides in the following steps and arrive at an

obviously true inequality:

2
(

1− 1
π

)
φ +

2
π

φ > 2
(

1− 1
π

)
φ +

2
π

φ

⇐⇒ φ− 1
π

(
φ− φ

)
> φ− 1

π

(
φ− φ

)
⇐⇒ φ− φ >

2
π

(
φ− φ

)
.

Thus, even if an increase in ambiguity, as proxied by φ− φ, is driven equally by increases in

φ and decreases in φ, the volatility of the risky asset still increases.

2.2.4 Equilibrium Prices at t = 1 and t = 0 under an Unambiguous Benchmark

To arrive at the unambiguous benchmark, all we have to consider is the case of σ2
n = σ2

n = σ2
n;

or, equivalently, φ = φ = φ. With an unambiguous piece of news, the investor has only one

model in mind with which to interpret any given piece of news. Based on Eq. (2.12), the

price at t = 1 in response to a piece of news n is

p1 (n) = d + φn.

There is no more asymmetry in the reaction of the risky asset to the news: The price

increases as much for a positive piece of news as it decreases for a negative piece of news. It

follows that the average price of the risky asset after the news arrival is just the mean of the

dividend:

p1 = d.

From Eq. (2.17), we see that the price at t = 0 before the news arrival is also equal to the

mean of the dividend:

p0 = d.
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There is no longer a no news is good news effect, because the investor at t = 0 knows

that the news to arrive in one period is unambiguous. Finally, it is obvious that the risky

asset price on average does not change in response to the news, so there is no ambiguity

premium:

p1 − p0 = 0.

2.2.5 Summary of Model Predictions

To summarize, the model leads to the following four propositions, three of which are

illustrated in Figure 2.1.

Proposition 1: The asymmetry effect The price of the risky asset reacts asymmetrically to

a piece of news about asset fundamentals (dividend payment). That is, the price decreases more

for a given negative piece of news than the price increases for a positive piece of news of the same

magnitude. Time-variation in the amount of news ambiguity drives time-variation in the extent of

this asymmetry, with times of high ambiguity corresponding to times of large asymmetry.

The investor is uncertain of how to interpret the news; in particular, how precise the news is

about the fundamental value of the asset. Since the investor conducts worst-case scenario

evaluation, he views positive news as being imprecise and negative news as being precise,

which leads to the asymmetry effect. News ambiguity is defined as the range of precisions

about the news that the investor considers, so greater ambiguity is equivalent to a greater

range of precisions and a more pronounced asymmetry effect. Note that greater asymmetry

could be due to either positive news being viewed as less relevant, negative news being

viewed as more relevant, or both.

Figure 2.1 illustrates the asymmetry effect. Under ambiguity in Panel B, the solid blue

line p1 (n)− p0 has a gentler slope φ < φ to the right of the y-axis (corresponding to positive

news) and a steeper slope φ > φ to the left of the y-axis (corresponding to negative news).

The point of intersection of the solid blue line and the y-axis is equal to p1 (0)− p0, the
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price change of the risky asset for a neutral piece of news. Due to the concavity of the solid

blue line, the dashed blue line, which connects the ends of the solid blue lines at symmetric

points around the y-axis, intersects the y-axis at a lower value equal to p1 − p0, the average

price change of the risky asset through a piece of news. The gap between the two points

of intersection is thus equal to p1 − p1 (0), the asymmetry discount from Eq. (2.14). As a

result of the risky asset reacting more strongly to negative pieces of news than positive ones,

the average price of the risky asset decreases below the price obtained under neutral news.

In contrast, Panel A of Figure 2.1 shows the unambiguous benchmark in which the solid

blue line has equal slopes φ = φ to the left and right of the y-axis. Without asymmetry, a

dashed blue line (not shown) that connects the ends of the solid blue lines at symmetric

points around the y-axis must intersect the y-axis at the same point as the solid blue line.

There is thus no asymmetry discount.

Proposition 2: The no news is good news effect The investor in the risky asset earns a

positive return when no news (neutral or value zero) is released. This no news is good news effect

is exactly equal to the increase in the price of the risky asset in response to a neutral piece of news.

Time-variation in the amount of news ambiguity drives time-variation in the magnitude of the no

news is good news effect, with times of high ambiguity corresponding to times of a large no news is

good news effect.

Before the arrival of the news, the investor knows that ambiguous information about the

risky asset will arrive in the future. The arrival of a neutral piece of news contains no

information for inferring the fundamental value of the asset but does resolve the ambiguity

associated with the news. As a result, the price of the risky asset still rises in response to a

neutral piece of news and rises more when there is more ambiguity.

Turning to Figure 2.1, each solid blue line intersects the y-axis at p1 (0)− p0, which is

the change in the price of the risky asset if the news is neutral. The distance between the

point of intersection and the origin thus measures the size of the no news is good news
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effect. In the case of ambiguity in Panel B, p1 (0)− p0 > 0, so the no news is good news

effect is positive, whereas with no ambiguity in Panel A, p1 (0)− p0 = 0, and there is no no

news is good news effect.

Proposition 3: The ambiguity premium On average, the price of the risky asset increases

from before the arrival of the news to after the arrival of the news. That is, the ambiguity premium is

positive.

The ambiguity premium has two components: the no news is good news effect and the

asymmetry effect. The former leads to an increase in the price of the risky asset with the

arrival of the news, but the latter on average leads to a decrease in the price of the asset

after the news is revealed. On balance, the magnitude of the asymmetry effect is larger than

that of the no news is good news effect, which leads to a positive ambiguity premium.

In Panel B of Figure 2.1, we have already graphically identified the no news is good

news effect as the distance between the intersection of the solid blue line and the origin

(equal to p1 (0)− p0) and the asymmetry effect as the distance between the intersections

of the solid and dashed blue lines (equal to p1 − p1 (0)). The ambiguity premium should

then just be the distance between the intersection of the dashed blue line and and the origin:

(p1 (0)− p0) + (p1 − p1 (0)) = p1 − p0, the average price of the risky asset after the arrival

of the news less the price before the arrival of the news. In the unambiguous benchmark

of Panel A, the ambiguity premium is necessarily zero because the no news is good news

effect and asymmetry effect are both zero.

Proposition 4: The risky asset volatility effect The volatility of the change in the price of

the risky asset from before the news to after the news is increasing in news ambiguity if the increase in

ambiguity is due to the investor allowing for a smaller lower bound for the variance of the news noise.

The volatility is decreasing in news ambiguity if the increase in ambiguity is due to the investor

allowing for a larger upper bound for the variance of the news noise.
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A smaller lower bound for the variance of the news noise leads to a stronger reaction of the

asset to bad news (since a smaller σ2
s leads to a larger φ, which determines the sensitivity of

the risky asset to negative news). A larger upper bound for the variance of the news noise

leads to a weaker reaction of the asset to good news (since a larger σ2
s leads to a smaller φ,

which determines the sensitivity of the risky asset to positive news).

2.3 The Stock Market Response to Macroeconomic News

To demonstrate how the model with ambiguity-aversion can accurately describe real-

world financial markets, I explore the dynamics of the aggregate stock market around

macroeconomic news releases; i.e., news about inflation, output, or the labor market. The

first section below introduces the sample of MNAs, and the second section discusses the

data on the aggregate stock market.

2.3.1 Data on MNAs

Table 2.1 shows the full sample of MNAs considered in this paper. For each data release, the

table presents the name, units, number of observations, start date, end date, frequency, gov-

ernment agency or private-sector firm responsible, and intraday announcement timestamp.

In all, I analyze 18 economic announcements, which cover the lion’s share of important

MNAs. Data for the majority of the announcements begin in late-1997 and extend to

early-2014, with the primary expections being Existing Home Sales and Pending Home

Sales, which start in 2005. All of the announcements occur once a month excluding Initial

Jobless Claims, which is a weekly data release. The data in my sample are released at either

8:30 AM, 9:15 AM, or 10:00 AM ET.

While the macroeconomic announcements are officially produced and released by various

government agencies (e.g., the Bureau of Labor Statistics), and private-sector firms (e.g., the

National Association of Realtors), I collect the data from Bloomberg. Specifically, for each

event, I download both the actual data release and the expected data release, the latter of

82



Ta
bl

e
2.

1:
Fu

ll
Sa

m
pl

e
of

M
N

A
s

Ev
en

t
N

am
e

U
ni

ts
N

St
ar

t
En

d
Fr

eq
.

So
ur

ce
Ti

m
e

(E
T)

Si
gn

C
ha

ng
e

in
N

on
fa

rm
Pa

yr
ol

ls
T

ho
us

an
ds

19
6

11
/0

7/
19

97
03

/0
7/

20
14

M
BL

S
8:

30
A

M
1

C
on

su
m

er
C

on
fid

en
ce

In
de

x
19

7
11

/2
5/

19
97

03
/2

5/
20

14
M

C
B

10
:0

0
A

M
a

1
C

PI
%

ch
.m

om
19

7
11

/1
8/

19
97

03
/1

8/
20

14
M

BL
S

8:
30

A
M

1
D

ur
ab

le
O

rd
er

s
%

ch
.m

om
19

7
11

/2
6/

19
97

03
/2

6/
20

14
M

C
en

su
s

8:
30

A
M

1
Ex

is
ti

ng
H

om
e

Sa
le

s
M

ill
io

ns
10

9
03

/2
3/

20
05

03
/2

0/
20

14
M

N
A

R
10

:0
0

A
M

1
Fa

ct
or

y
O

rd
er

s
%

ch
.m

om
19

6
11

/0
5/

19
97

03
/0

6/
20

14
M

C
en

su
s

10
:0

0
A

M
1

H
ou

si
ng

St
ar

ts
M

ill
io

ns
18

9
03

/1
7/

19
98

03
/1

8/
20

14
M

C
en

su
s

8:
30

A
M

1
In

du
st

ri
al

Pr
od

uc
ti

on
%

ch
.m

om
19

4
11

/1
7/

19
97

03
/1

7/
20

14
M

Fe
d

9:
15

A
M

1
In

it
ia

lJ
ob

le
ss

C
la

im
s

T
ho

us
an

ds
85

2
11

/0
6/

19
97

03
/2

7/
20

14
W

ET
A

8:
30

A
M

-1
IS

M
M

an
uf

ac
tu

ri
ng

In
de

x
19

7
11

/0
3/

19
97

03
/0

3/
20

14
M

IS
M

10
:0

0
A

M
b

1
IS

M
N

on
-M

an
uf

ac
tu

ri
ng

In
de

x
18

2
01

/0
6/

19
99

03
/0

5/
20

14
M

IS
M

10
:0

0
A

M
1

Le
ad

in
g

In
de

x
In

de
x

19
7

11
/0

4/
19

97
03

/2
0/

20
14

M
C

B
10

:0
0

A
M

1
N

ew
H

om
e

Sa
le

s
T

ho
us

an
ds

19
5

12
/0

3/
19

97
03

/2
5/

20
14

M
C

en
su

s
10

:0
0

A
M

1
Pe

nd
in

g
H

om
e

Sa
le

s
%

ch
.m

om
10

7
06

/0
1/

20
05

03
/2

7/
20

14
M

N
A

R
10

:0
0

A
M

1
Pe

rs
on

al
In

co
m

e
%

ch
.m

om
19

6
11

/0
3/

19
97

03
/2

8/
20

14
M

BE
A

8:
30

A
M

1
PP

I
%

ch
.m

om
19

3
12

/1
2/

19
97

03
/1

4/
20

14
M

BL
S

8:
30

A
M

1
R

et
ai

lS
al

es
%

ch
.m

om
19

5
11

/1
4/

19
97

03
/1

3/
20

14
M

C
en

su
s

8:
30

A
M

1
U

ne
m

pl
oy

m
en

t
R

at
e

%
ra

te
19

6
11

/0
7/

19
97

03
/0

7/
20

14
M

BL
S

8:
30

A
M

-1

N
ot

es
:F

re
q.

re
fe

rs
to

m
on

th
ly

(M
)o

r
w

ee
kl

y
(W

).
So

ur
ce

us
es

th
e

fo
llo

w
in

g
ac

ro
ny

m
s:

BE
A

,B
ur

ea
u

of
Ec

on
om

ic
A

na
ly

si
s;

BL
S,

Bu
re

au
of

La
bo

r
St

at
is

tic
s;

C
B,

C
on

fe
re

nc
e

Bo
ar

d;
C

en
su

s,
C

en
su

s
Bu

re
au

;E
TA

,E
m

pl
oy

m
en

ta
nd

Tr
ai

ni
ng

A
dm

in
is

tr
at

io
n;

Fe
d,

Fe
de

ra
lR

es
er

ve
Bo

ar
d

of
G

ov
er

no
rs

;I
SM

,I
ns

tit
ut

e
fo

r
Su

pp
ly

M
an

ag
em

en
t;

an
d

N
A

R
,N

at
io

na
lA

ss
oc

ia
tio

n
of

R
ea

lto
rs

.T
ab

le
ab

ov
e

co
ve

rs
th

e
w

ho
le

pe
ri

od
fr

om
N

ov
em

be
r,

19
97

to
M

ar
ch

,2
01

4.

a O
n

7/
31

/2
00

1,
da

ta
w

as
re

le
as

ed
at

9:
36

A
M

.

b O
n

8/
1/

20
00

,d
at

a
w

as
re

le
as

ed
at

9:
26

A
M

.

83



which comes from a survey of economists. The difference between the actual number and

the expected number constitutes the news that impacts the stock market.

The metric of the news surprise that I use in this paper is the conventional standardized

news variable employed by Balduzzi, Elton, and Green (2001) as well as many subsequent

papers in the literature of asset price reactions to MNAs. For a given economic indicator,

the standardized news variable at time t is

St =
At −Et− [At]

σ̂
. (2.21)

At is the actual data, Et− [At] is the expectation of the data from the Bloomberg survey,

and σ̂ is the sample standard deviation of At − Et− [At]. Consistent with the model, I

define the variable such that a positive value corresponds to “better”-than-expected data;

i.e., higher-than-expected inflation or output and lower-than-expected unemployment. For

this reason, I multiply the Initial Jobless Claims and the Unemployment Rate data by −1

while keeping the sign of the other data unchanged, as shown by the sign column of Table

2.1. As the name suggests, the standardized news variable provides a single metric that

is standardized across different types of news about macroeconomic fundamentals and

allows for comparability. This is important because different types of news are released

with different units.

The standardized news variable St in Eq. (2.21) is the empirical counterpart to the

theoretical news n in Eq. (2.2) of the model. A positive (negative) news surprise with

St > 0 (St < 0), like positive (negative) news n > 0 (n < 0), suggests a higher (lower)

fundamental value of the stock market in the form of higher (lower) dividends. A neutral

news release with St = 0, like neutral news n = 0, provides no new information on stock

market fundamentals, since investors’ expectations are exactly met.

The use of the standardized news variable in conjunction with data from Bloomberg

is common in testing the effect of macroeconomic news surprises on asset prices. Many

financial market participants use Bloomberg to get a sense of the consensus forecast for any

given MNA and to see how the actual data compares to the forecasted data at the time of
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the release. The survey expectation is furthermore unbiased and unlikely to be stale, since

economists can adjust their forecasts until the very last moment.

2.3.2 Data on High-Frequency Stock Prices

I use the front E-mini S&P 500 (ES) futures contract as the primary source for stock market

price data and obtain intraday tick data from Tick Data, a data vendor. The data are available

from late-1997 to mid-2014. High-frequency data are important because they allow me

to consider the reaction of the stock market in a narrow window (±5 minutes) around

each macroeconomic news event. Stocks likely vary over the window only due to any

surprise embedded in the news announcement. By extension, lower frequency data can be

problematic because events unrelated to MNAs are more likely to influence prices. As an

example of the importance of high-frequency data, the scatterplot in Figure 2.2 compares the

10-minute return of the stock market around a MNA (based on ES data) and the daily return

of the stock market for the day of the MNA (based on S&P 500 index data). The correlation

between the intraday return and the daily return is a positive 0.159, which suggests that the

intraday response of stocks to macroeconomic news tends to influence the daily return of

stocks in the expected manner. That is, when stocks do well (poorly) intraday in response

to good (bad) news, the daily return also tends to to be higher (lower). Nonetheless, the

correlation is far from one, and the scatterplot clearly shows many instances in the 2nd

and 4th quadrants in which stocks react positively (negatively) to macroeconomic news in

the short interval around the news release but fall (rise) for the day. The annotated arrow

in Figure 2.2 points to the example of the 10/16/2008 9:15 AM ET release of industrial

production data. A worse-than-expected industrial production data release led to a −1.024%

return of ES between 9:10 AM ET and 9:20 AM ET. For the day, however, the S&P 500 rallied

4.251% as a bounceback from the pummeling that stocks had taken earlier in the month as

the 2008 financial crisis spread. The use of daily data in this instance and many others would

lead to the erroneous observation that good (bad) macroeconomic news counterintuitively

results in negative (positive) stock performance. I show in unreported robustness tests that
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the use of daily price data on the stock market in the form of the S&P 500 index weakens

the empirical results in this paper due to the lower resolution of the data.

While high-frequency data are available for instruments aside from futures, the use of

futures data is important because many MNAs are released early in the morning before

equity markets officially open at 9:30 AM ET. Whereas some markets (most relevantly, the

traditional stock market) are less liquid at that early hour, futures markets are already active.

Not surprisingly, financial market participants also tend to react to data surprises by trading

in these futures directly.

2.4 Empirical Results: Whole Sample

The following two sections present empirical results in support of Propositions 1-3 using the

whole sample. That is, I show that the asymmetry effect, no news is good news effect, and

ambiguity premium exist using the entire sample period from November, 1997 to March,

2014.

2.4.1 The Asymmetry Effect and No News is Good News Effect

To assess the reaction of the stock market to macroeconomic news, I rely on the regression

specification below:

Rt = α + β+D+
t St + β−

(
1− D+

t
)

St + εt, (2.22)

in which Rt is the % change in the price level (measured in bps) associated with the front

ES futures contract in a ±5 minute window around a given MNA, St is the standardized

news for that data release defined in Eq. (2.21), and Dt is a dummy variable equal to one if

St > 0 and zero otherwise. β+ measures the reaction of the stock market to positive news

surprises, β− measures the reaction of the stock market to negative news surprises, and α

measures the reaction of the stock market in the case of neutral news.

Table 2.2 shows the results from running Eq. (2.22) over the whole sample as defined in
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Table 2.1. Each row of Table 2.2 corresponds to a different regression with the specified event,

and the last row aggregates all the MNAs together. If there is news ambiguity and investors

are averse to this ambiguity, Propositions 1 and 2 imply the existence of the asymmetry

effect and the no news is good news effect.

The asymmetry effect is that β̂+ − β̂− < 0, so that a unit of bad macroeconomic news

lowers the stock market more than a unit of good macroeconomic news increases the stock

market. We see from the last column of Table 2.2 that most of the β̂+ − β̂− are negative, and

of the numbers that are significantly different from zero based on a Wald test, all are negative.

The last row says that β̂+ − β̂− = −6.141 bps, which has the economic interpretation that

a one unit positive MNA surprise increases the stock market by 6.141 bps less than a one

unit negative MNA surprise decreases the stock market. In particular, the positive surprise

increases stocks by β̂+ = 2.416 bps, but the negative surprise decreases stocks by a larger

β̂− = 8.557 bps.

The no news is good news effect is that α̂ > 0, so that the stock market rises in response

to neutral news as the arrival of the news resolves ambiguity. We see that most of the α̂

in the corresponding column of Table 2.2 are greater than zero, and all of the significant

parameter estimates are greater than zero, with the exception of the weakly significant α̂

corresponding to Leading Index data releases. From the last row, α̂ = 3.204 bps, so on

average the stock market increases by 3.204 bps due to the resolution of ambiguous but

neutral macroeconomic news.

To ensure that the covariate St used in the regressions is well-behaved, I plot the time

series of standardized news in Figure 2.3 and calculate accompanying summary statistics

in Panel A of Table 2.3. St behaves in the manner one would expect a news variable to

behave in that it is unbiased and symmetric. In fact, MNA surprises look like normal shocks.

Importantly, Figure 2.3 shows visual evidence that the distribution of standardized news is

stable in the time series.
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Table 2.3: Summary Statistics of MNA Surprises

Panel A: Whole Sample

Mean Median Std. Dev. Max. Min. Skewness Kurtosis N

Whole Sample 0.030 0.000 1.010 8.018 -5.514 0.181 2.973 3985

Panel B: Sample Bucketed into Variance Risk Premium Quintiles

VRPt Quintile Mean Median Std. Dev. Max. Min. Skewness Kurtosis N

1 0.042 0.000 1.005 6.257 -4.171 0.254 2.786 796
2 0.003 0.000 0.962 4.866 -3.452 0.042 2.331 780
3 0.027 0.000 0.920 3.907 -4.315 0.137 1.616 815
4 0.034 0.000 0.966 5.214 -4.006 -0.113 1.872 781
5 0.044 0.000 1.176 8.018 -5.514 0.368 3.818 813

Notes: Panel A shows summary statistics for the standardized news variable St for the whole sample of
MNAs. Panel B shows summary statistics for St bucketed according to VRPt quintiles, with the 1st quintile
corresponding to the smallest values and the 5th quintile corresponding to the largest values. St aggregates the
news surprises of all MNAs, as defined in Table 2.2. VRPt is the “Monthly Averages” variance risk premium
series, which corresponds to the monthly time series in Panel B of Figure 2.4. Tables above cover the whole
period from November, 1997 to March, 2014.

2.4.2 The Ambiguity Premium

Moving on to Proposition 3, I evaluate whether there is an ambiguity premium over the

whole sample from November, 1997 to March, 2014. Under risk-neutrality, the model defines

the ambiguity premium as the average return of the stock market around news. In reality,

this average return also reflects various types of risk premia. Since I do not focus on these

risk premia, I equate the ambiguity premium with the average return of the stock market

around news and show that this quantity is positive and too large to be explained by

conventional stories.

Panel A of Table 2.4 calculates the arithmetic sum of returns in the 10-minute window

around MNAs in the first row (expressed in %) and the mean of returns in the bottom row

(expressed in bps). Stocks increase a cumulative sum of 43.903% around MNAs or 1.102 bps

on average per macroeconomic news release, which is suggestive evidence for a positive

ambiguity premium. Panel A of Table 2.4 further decomposes the ambiguity premium
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Table 2.4: The Ambiguity Premium and its Decomposition

Panel A: Whole Sample

Return No News + News - News Asymm. N

Sum (%) Whole Sample 43.903 127.688 37.011 -120.795 -83.784 3985

Mean (bps) Whole Sample 1.102 3.204 0.929 -3.031 -2.102 3985

Panel B: Sample Bucketed into Variance Risk Premium Quintiles

VRPt Quintile Return No News + News - News Asymm. N

1 20.026 22.516 1.877 -4.368 -2.491 796
2 8.237 11.848 12.024 -15.635 -3.612 780

Sum (%) 3 2.695 19.470 5.726 -22.502 -16.776 815
4 7.256 36.758 -5.389 -24.113 -29.502 781
5 5.690 38.489 18.186 -50.985 -32.798 813

1 2.516 2.829 0.236 -0.549 -0.313 796
2 1.056 1.519 1.541 -2.005 -0.463 780

Mean (bps) 3 0.331 2.389 0.703 -2.761 -2.058 815
4 0.929 4.706 -0.690 -3.087 -3.777 781
5 0.700 4.734 2.237 -6.271 -4.034 813

Notes: Panel A considers the whole sample of MNAs, and Panel B buckets the whole sample into variance risk
premium quintiles as in Table 2.3. The “Sum (%)” row(s) of each panel present(s) arithmetic sum of returns in
%. The “Mean (bps)” row(s) of each panel present(s) mean of returns in bps. “Return” is the actual return of
the front ES contract around MNAs and is equal to the ambiguity premium. Other columns depend on the
estimated α̂, β̂+, and β̂− from Table 2.2 (Panel A) and Table 2.8 (Panel B). “No News” is that portion of the
ambiguity premium attributed to the no news is good news effect and is equal to α̂× N for the “Sum (%)”
row(s) and just α̂ for the “Mean (bps)” row(s). “+ News” is that portion of the ambiguity premium attributed
to the reaction of the stock market to positive news and is equal to the sum of β̂+ × St for St > 0 for the “Sum
(%)” row(s) and the same quantity divided by N for the “Mean (bps)” row(s). “- News” is that portion of the
ambiguity premium attributed to the reaction of the stock market to negative news and is equal to the sum
of β̂− × St for St < 0 for the “Sum (%)” row(s) and the same quantity divided by N for the “Mean (bps)”
row(s). “Asymm.” is that portion of the ambiguity premium attributed to the asymmetric reaction of the stock
market to positive news versus negative news and simply sums the “+ News” and “- News” columns. “Return”
is equal to “No News” plus “Asymm.” N is the number of MNAs, and St aggregates the news surprises of all
MNAs, as defined in Table 2.2. Tables above cover the whole period from November, 1997 to March, 2014.
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into two components using the estimated α̂, β̂+, and β̂− from the last row of Table 2.2: the

positive no news is good news effect and the negative asymmetry effect. The “No News”

column is that portion of the ambiguity premium attributed to the no news is good news

effect and is equal to α̂× N for the top row, in which N is the number of MNAs, and just

α̂ for the bottom row. The “+ News” column is that portion of the ambiguity premium

attributed to the reaction of the stock market to positive news and is equal to the sum of

β̂+ × St for St > 0 for the top row and the same quantity divided by N for the bottom row.

The “- News” column is that portion of the ambiguity premium attributed to the reaction

of the stock market to negative news and is equal to the sum of β̂− × St for St < 0 for the

top row and the same quantity divided by N for the bottom row. The “Asymm.” column is

that portion of the ambiguity premium attributed to the asymmetric reaction of the stock

market to positive news versus negative news and simply sums the “+ News” and “- News”

columns. As would be expected in a decomposition, the “Return” column is equal to the

“No News” column plus the “Asymm.” column. In sum (on average), the 43.903% (1.102 bps)

ambiguity premium can be attributed to a positive no news is good news effect of 127.688%

(3.204 bps) which is greater in magnitude than the −83.784% (−2.102 bps) asymmetry effect.

While Panel A of Table 2.4 is useful for understanding how the ambiguity premium can

be decomposed into its two components, the results double count some return intervals

when multiple MNAs occur at the exact same time. I address this issue by presenting

additional evidence for the ambiguity premium in Table 2.5, which calculates unique return

intervals that include MNAs.4 In particular, I compute 10-minute return intervals for the

whole November, 1997 to March, 2014 sample and split these intervals into those that contain

MNAs (“MNA”) and those that do not (“nMNA”). The table presents summary statistics

on the 3,194 “MNA” return intervals, 588,671 “nMNA” return intervals, and the difference

between these two types of intervals.

Methodology-wise, returns are calculated as the % change in the price level (measured in

bps) associated with the front ES futures contract. I calculate return intervals only for those

4All results in the paper are robust to dropping MNA observations that occur at the exact same time.
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Table 2.5: Summary Statistics of 10-minute Stock Market Returns for Periods with and without MNAs

MNA nMNA Diff. MNA nMNA Diff.

All Observations Winsorized (1% and 99%)

Total 3624.966 6626.671 -3001.705 3510.359 6757.771 -3247.412
Mean 1.000** 0.014 0.986** 0.983*** 0.012 0.972***
t-statistic (2.245) (1.035) (2.212) (2.632) (1.208) (2.600)
1st Percentile -76.543 -31.627 -44.915 -60.426 -23.354 -37.072
25th Percentile -9.025 -2.208 -6.817 -8.819 -2.163 -6.657
Median 0.000 0.000 0.000 0.000 0.000 0.000
75th Percentile 10.549 2.246 8.303 10.271 2.210 8.061
99th Percentile 78.233 30.665 47.568 61.183 22.779 38.404
Std. Dev. 25.179 10.460 20.899 7.300
Skewness 0.143 0.568 0.101 -0.071
Kurtosis 5.826 68.635 2.107 3.625
N 3194 588671 3130 576899

Notes: Table splits 10-minute ES return intervals into those that contain MNAs (“MNA”) and those that do
not (“nMNA”) and presents summary statistics. Returns are calculated as the % change in the price level (bps)
associated with the front ES futures contract. I calculate ES return intervals only on those days that the S&P
500 was open as well as the following dates on which the S&P 500 was closed but futures markets were open:
4/2/1999, 4/6/2007, 4/2/2010, and 4/6/2012 (all corresponding to Good Friday); and 10/29/2012 (corresponding
to Hurricane Sandy). For each day, I forward fill in price data for all 1440 minutes and attempt to split the
day into 144 10-minute increments. For any MNA, I ensure that there is a corresponding 10-minute interval
formed from the ±5 minutes window around the MNA, consistent with the event window used elsewhere in
the paper. If doing so prevents the formation of 144 evenly spaced 10-minute intervals for that day, I allow the
intervals surrounding the interval containing the MNA to be slightly longer. For example, if the MNA occurs
at 8:30 AM, the interval that contains the MNA is from 8:25 AM to 8:35 AM. The preceding interval is from
8:10 AM to 8:25 AM, and the following interval is from 8:35 AM to 8:50 AM; both surrounding intervals
cover 15 minutes instead of 10 minutes. The rest of the intervals for that day are then exactly 10 minutes. The

“Total” row shows returns compounded over all intervals, expressed in bps. Leftmost three columns include the
whole sample, and rightmost three columns winsorize returns at the 1% and 99%. *** denotes significance at
the 1% level, ** denotes significance at the 5% level, and * denotes significance at the 10% level. Table above
covers the whole period from November, 1997 to March, 2014.
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days that the S&P 500 was open as well as on the following dates on which the S&P 500 was

closed but futures markets were open: 4/2/1999, 4/6/2007, 4/2/2010, and 4/6/2012 (all

corresponding to Good Friday); and 10/29/2012 (corresponding to Hurricane Sandy). For

each day, I forward fill in price data for all 1440 minutes and attempt to split the day into

144 10-minute increments. For any MNA, I ensure that there is a corresponding 10-minute

interval formed from the ±5 window around the MNA, consistent with the event window

used elsewhere in the paper. If doing so prevents the formation of 144 evenly spaced

10-minute intervals for that day, I allow the intervals surrounding the interval containing

the MNA to be slightly longer. For example, if the MNA occurs at 8:30 AM, the interval

that contains the MNA is from 8:25 AM to 8:35 AM. The preceding interval is from 8:10

AM to 8:25 AM, and the following interval is from 8:35 AM to 8:50 AM; both surrounding

intervals cover 15 minutes instead of 10 minutes. The rest of the intervals for that day are

then exactly 10 minutes.

Focusing on the first three columns of Table 2.5 and the “Mean” row, we see that the

stock market rises on average a statistically significant 1 bp in the 10-minute window around

MNAs, which is consistent with Proposition 3. Interestingly, however, the stock market,

rises a statistically insignificant 0.014 bps in all other 10-minute windows. The difference in

means of 0.986 bps is statistically significant. The “Total” row shows returns compounded

over all intervals, expressed in bps. Over the whole sample period, the stock market rises a

compounded 36.250% over the 10-minute windows containing MNAs and 66.267% in all

other 10-minute windows.5 That is, approximately 1/3 of the stock market return from

November, 1997 to March, 2014 accrues in the tiny fraction of time around macroeconomic

news releases. Despite the much higher mean of “MNA” return intervals versus “nMNA”

return intervals, the standard deviation is only about 2.5 times greater in the former (25.179

bps) than the latter (10.460 bps). The Sharpe ratio of “MNA” intervals is consequently much

higher than that of “nMNA” intervals. As the rightmost three columns demonstrate, the

5This total return differs from that reported in Panel A of Table 2.4 for two reasons. First, as already noted,
Panel A of Table 2.4 double counts some return intervals. Second, Panel A of Table 2.4 presents the arithmetic
sum of returns as opposed to the compounded total return.
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results are robust to winsorizing “MNA” and “nMNA” return intervals separately at the 1%

and 99%.

Note that the above methodology ignores certain days in which there are ES futures

price data (for example, Sundays) and thus understates the number of “nMNA” return

intervals. Since these days tend to have more stale prices, forward filling the price data

to compute return intervals would create additional “nMNA” return intervals with zero

returns. Including these extra days would thus lower both the mean return and standard

deviation of “nMNA” intervals. The impact on results, however, is unlikely to be significant.

2.5 State Variable for Ambiguity

Aside from stating the existence of the asymmetry effect, no news is good news effect, and

ambiguity premium, Propositions 1-3 have the more nuanced prediction that the magnitudes

of these behaviors should be larger at times of greater ambiguity. Similarly, Proposition 4

predicts that the volatility of the stock market around MNAs depends on the amount of

ambiguity. It is consequently vital to have a state variable for ambiguity in order to fully

test the model. Below, I construct such a proxy for ambiguity, the variance risk premium,

explore some of its properties for the predictability of stock returns, and discuss alternate

state variables for ambiguity.

2.5.1 Variance Risk Premium

The variance risk premium VRPt,T is the difference between risk-neutral (Q-measure) and

physical (P-measure) expectations of stock market return variance over a given horizon

RVt+1,T:

VRPt,T = E
Q
t [RVt+1,T]−EP

t [RVt+1,T] . (2.23)

Expectations are taken at time t for realized variance from the period t + 1 to T.

One way to interpret the variance risk premium is that it measures the premium
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embedded in an option on the equity market. The premium exists because investors not

only care about uncertainty of the stock market return, as embodied by the return variance,

but also uncertainty about the return variance itself. An option on the stock market hedges

against high realized variance and thus demands a positive variance risk premium for this

insurance.

Alternatively, consider a variance swap, an over-the-counter derivative. An investor

who is long the swap receives the realized variance over the maturity of the swap less a

fixed quantity, the variance swap rate. It is costless to enter such a swap, so by no arbitrage,

the variance swap rate has to equal E
Q
t [RVt+1,T], the first component of the variance risk

premium. By being long the variance swap, an investor protects himself against high

realized variance. The price of this protection is simply the variance swap rate less the

true/statistical expectation of variance or the variance risk premium.

As previewed, I use the variance risk premium as a proxy for ambiguity. The motivation

for this choice of state variable is Drechsler (2013). In that paper, a representative investor

has a range of models in mind about the dynamics of economic fundamentals (e.g., the

frequency and magnitude of jump shocks to expected growth and growth volatility processes

for consumption and dividends). That is, the investor is uncertain about the true model

governing economic fundamentals. Because the investor is ambiguity-averse, he evaluates

decisions under the worst-case model, a model in which realized variance is high and thus

options have high payoffs. Options hedge the investor’s model uncertainty, which results in

a price premium, the variance risk premium. Drechsler (2013) shows that the size of the

variance risk premium is directly linked to ambiguity in the model.

I construct a daily empirical measure of the variance risk premium in the time series for a

one-month horizon (the interval between t + 1 and T is one month). For the sake of notation,

I set T = t + 22 and assume that there are 22 trading days in a month. Britten-Jones and

Neuberger (2000) and Carr and Wu (2009), among others, have shown that, in continuous

time, the risk-neutral expectation of stock market realized variance is equal to the value of a

portfolio of European options on the stock market. A natural proxy for E
Q
t [RVt+1,t+22] is
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then the daily Chicago Board Options Exchange (CBOE) VIX index which is a risk-neutral

expectation of S&P 500 variance over 30 calendar days or about 22 trading days, consistent

with my assumption. The VIX produces this measure of implied volatility in a model-free

manner (without relying on an option-pricing model) by calculating a weighted average

of a portfolio of S&P 500 calls and puts. Since the VIX is quoted as an annual volatility

variable, I create a squared VIX variable VIX2
t /12 that simply squares the day-end VIX and

divides by 12. This squared VIX quantity is a monthly variance variable that I use to proxy

for E
Q
t [RVt+1,t+22].

To create a daily series for EP
t [RVt+1,t+22], I first calculate a daily time series of monthly

realized variances RVt+1,t+22. For a given t, RVt+1,t+22 is the sum of the 22 daily realized

variances between the two dates (inclusive). Daily realized variance is the sum of squared

five-minute log returns on ES futures from 9:30 AM ET to 4:00 PM ET and the squared

close-to-open log return. Calculating realized variance by summing high-frequency squared

returns is a well-established procedure. Papers as early as French, Schwert, and Stambaugh

(1987) and Schwert (1989) estimate monthly realized variance by summing daily squared

returns. The literature has subsequently provided formal justification for this practice; e.g.,

Andersen, Bollerslev, Diebold, and Ebens (2001). Sampling returns at a higher frequency

increases the accuracy of estimated realized variance at a lower frequency. Sampling returns

at too-high of a frequency, however, can be problematic due to market microstructure issues

such as the presence of the bid-ask spread, so a five-minute frequency is a reasonable

compromise.

With a daily series for RVt+1,t+22 in hand, I construct EP
t [RVt+1,t+22] using the standard

variance forecasting technique of projecting realized variance onto variables in a lagged

information set. That is, I run a daily time series regression of RVt+1,t+22 on one-month

lagged realized variance Rt−21,t and one-month lagged squared VIX, VIX2
t−22/12. The

regression covers the period from late-1997 (when my sample of intraday ES futures data

for constructing RVt+1,t+22 begins) to mid-2014. The regression with heterosckedasticity-
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consistent standard errors is below:

RVt+1,t+22 = 2.130
(1.145)

+ 0.310
(0.047)

× Rt−21,t + 0.464
(0.050)

×VIX2
t−22/12 + et. (2.24)

I subsequently construct EP
t [RVt+1,t+22] from the one-step-ahead forecasts of this regression.

Several considerations motivate the specification of Eq. (2.24). First, the use of Rt−21,t and

VIX2
t−22/12 as covariates stems from the persistence of realized variance and evidence in

the literature that implied volatility has bearing on future stock market variance. These

covariates do a good job of forecasting future realized variance as evidenced by the high

adjusted R2 = 0.519. Second, Bekaert, Hoerova, and Lo Duca (2013) and Bekaert and

Hoerova (2014) have tested a number of different regression specifications for forecasting

realized variance. They find that the simple model in Eq. (2.24) does well on a number of

criteria such as subsample coefficient stability and out-of-sample root-mean-squared error.

Differencing VIX2
t /12 and EP

t [RVt+1,t+22] yields a daily time series for the variance risk

premium VRPt,t+22. The first set of rows indexed by “Daily” in Table 2.6 and Panel A of

Figure 2.4 show summary statistics and plot the three series, respectively, from November,

1997 to March, 2014. VRPt,t+22 is generally positive, persistent, right-skewed, and has

significant excess kurtosis. We expect the variance risk premium to be positive because it

represents a premium paid to hedge realized variance, and it appears that approximately

a quarter of the risk-neutral expectation of realized variance is attributed to the premium.

Panel A of Figure 2.4 provides more color on the non-normality of the variance risk premium

as well as that of the squared VIX and the physical expectation of realized variance. We see

that all three time series spike dramatically at events such as the 2008 financial crisis.

The daily time series of the variance risk premium has two drawbacks as a proxy

for ambiguity. First, while the variance risk premium is mostly positive, it clearly goes

negative at times; e.g., the premium obtains a minimum value of -64.363 on 11/4/2008.

These negative values violate the intuition and theoretical restriction that the premium

should be positive. Relatedly, while the time series fluctuates in a well-behaved manner

most of the time, the variance risk premium can fluctuate wildly at times; e.g., just a few
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Figure 2.4: Time Series of Variance Risk Premium and Components

Notes: See Appendix B.3.1. Panels A, B, and C from top to bottom correspond to "Daily," "Monthly Averages,"
and "Monthly End-of-Month" time series, respectively.
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days after hitting its minimum value, the premium obtains a maximum value of 179.842

on 11/20/2008. It is unreasonable to infer that, during a period of high ambiguity such

as the 2008 financial crisis, investors faced the lowest amount of ambiguity on record on

11/4/2008 and subsequently faced the highest amount of ambiguity on record just two

weeks later on 11/20/2008. Instead, the fact that both drawbacks of the daily time series

present themselves at times when the variance risk premium is elevated suggests a more

straightforward explanation. As surmised by Bekaert and Hoerova (2014), crisis periods

lead to spikes in realized variance which in turn affect the physical expectation of realized

variance through Eq. (2.24). Fluctuations in the physical expectation then drive fluctuations

in the variance risk premium and result in the premium sometimes turning negative. The

time series model for forecasting variance in Eq. (2.24) is likely too simple to capture the

reality that realized variance has different components, some of which should be allowed

to mean-revert more quickly and therefore not affect the physical expectation of realized

variance as much. To my knowledge, the literature has not established more sophisticated

econometric models that adequately address the aforementioned drawbacks.

Instead of attempting to fix the daily time series, I instead construct monthly time series

for the variance risk premium as well as its two components by taking a simple average

of corresponding daily data in each month. Smoothing the data in this manner results

in a well-behaved estimate of the variance risk premium at the monthly frequency. The

“Monthly Averages” index in Table 2.6 and Panel B of Figure 2.4 show summary statistics

and plot the three series, respectively, from November, 1997 to March, 2014. The monthly

VRPt,t+22 has similar properties to the daily VRPt,t+22, as both are persistent and display

non-normal properties due to large moves during times of crisis. The key difference and

major improvement is that the monthly variance risk premium series is never negative and

fluctuates in a reasonable manner; that is, the two drawbacks associated with the daily

series no longer present problems. As such, I use this monthly time series of the variance

risk premium as my main proxy for ambiguity.

Figure 2.5 magnifies the monthly variance risk premium series from Panel B of Figure
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2.4 and annotates the plot based on identifiable events. Peaks in the time series correspond

to various crises: LTCM/Russian financial crisis, September 11, the corporate scandals of

2002, the 2008 financial crisis, and the European sovereign debt and U.S. debt ceiling crises.

Troughs correspond to times of relative economic and financial stability such as during

the mid-2000s. This time series behavior of the variance risk premium suggests that the

premium is an appropriate proxy for ambiguity. That is, it is reasonable to think that during

crisis periods, investors are highly unsure of how informative macroeconomic news is for

the stock market; the news could be very relevant, very irrelevant, or somewhere in the

middle. On the flipside, during placid times, investors are more certain of how to interpret

the significance of macroeconomic news for stocks.

My monthly variance risk premium series is a more reasonable proxy for ambiguity than

estimates of the premium on the stock market in the literature; e.g., Carr and Wu (2009),

Bollerslev, Tauchen, and Zhou (2009), Drechsler (2013), and Bekaert and Hoerova (2014). The

reason is that the estimates in the literature suffer from the drawbacks of my daily variance

risk premium metric discussed above: The premium is at times highly volatile and liable to

turn negative, especially during crisis periods. Consider the following result representative

of variance risk premium estimates in the literature. I directly estimate a monthly time

series by first using end-of-month squared VIX VIX2
t to proxy for E

Q
t [RVt+1,t+22], with t

the last trading day of a given month. Note that I keep all notation the same as before,

but obviously some months have more trading days than other months. Monthly realized

variance RVt+1,t+22 is the sum of daily realized variances for the month that includes days

t + 1 to t + 22. Analogous to Eq. (2.24), I estimate EP
t [RVt+1,t+22] from one-step-ahead

forecasts of the monthly regression of realized variance on one-month lagged realized

variance and one-month lagged squared VIX:

RVt+1,t+22 = 0.195
(2.762)

+ 0.282
(0.144)

× Rt−21,t + 0.511
(0.098)

×VIX2
t−22/12 + et (2.25)

Though the adjusted R2 = 0.437 of Eq. (2.25) is high, it is substantially lower than that of the

daily regression in Eq. (2.24), which suggests that the daily regression provides substantially
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more statistical power than the monthly regression. The monthly variance risk premium

VRPt,t+22, for the month with t as its last trading day, is still VIX2
t /12− EP

t [RVt+1,t+22].

The third set of rows indexed by “Monthly End-of-Month” in Table 2.6 and Panel C of

Figure 2.4 show summary statistics and plot the three series, respectively, from November,

1997 to March, 2014. We see that the variance risk premium once again obtains a negative

value some of the time; e.g., the premium is at its lowest value of -5.235 for 10/2008. The

monthly estimate is also unreasonably volatile: Just one month later, the the premium is

near its maximum value at 48.858 for 11/2008. As a proxy for ambiguity, this time series

says that ambiguity was at an all-time low in one month of the 2008 financial crisis and at

an all-time high in the next month of the crisis. This behavior is problematic and justifies

my construction of a different monthly series for the variance risk premium.

2.5.2 Does the Variance Risk Premium Predict Stock Returns?

To illustrate the impact of methodology choice in constructing the variance risk premium, I

explore how the premium predicts stock returns in the time series. A number of papers

in the literature including Bollerslev, Tauchen, and Zhou (2009), Faust and Wright (2012),

Drechsler (2013), and Bekaert and Hoerova (2014) have found evidence suggesting that

the variance risk premium predicts stock returns even when controlling for traditional

predictor variables such as the price-to-earnings or dividend-to-price ratios. Does the

“Monthly Averages” variance risk premium that I construct and argue is a better proxy for

ambiguity than existing variance risk premium measures in the literature also predict stock

returns? To address this question, I run basic predictability regressions using the “Monthly

Averages” variance risk premium as a predictor variable and compare the results to the

same regressions using the “Monthly End-of-Month” variance risk premium, which suffers

similar drawbacks to extant series in the literature.

The return predictability regressions, using monthly data from November, 1997 to March,

2014, are of the form

rt,t+h = a + bXt + εt,t+h, (2.26)
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in which rt,t+h is the continuously compounded return of the stock market over a h-month

horizon from the end of month t to the end of month t + h, and Xt is the set of predictor

covariates known at month t. I calculate rt,t+h as the annualized log return of the front ES

futures contract from 4:00 PM ET of the last trading day (in which the S&P 500 is open)

of month t to the same time of the last trading day of month t + h. Most predictability

regressions in the literature use excess returns of spot stock prices over a measure of the

risk-free rate on the left-hand-side of Eq. (2.26). Assuming no-arbitrage between spot

and future prices and ignoring the distinction between futures and forwards, the return

calculated using futures data is equivalent to the excess return calculated using spot data.6

To adjust for serial correlation from overlapping stock returns, I use max {3, 2h} Newey-West

lags as in Bekaert and Hoerova (2014).

Table 2.7 shows b̂, associated t-statistics, and adjusted R2 for varying horizons h and

5 different combinations of covariates Xt. The first set of rows corresponds to Xt =

{log (P/E)t}, the log of the cyclically adjusted price-to-earnings ratio obtained from Robert

Shiller’s website. In this benchmark regression, the price-to-earnings ratio negatively

predicts stock returns, though only starting at h = 12 months are the coefficient estimates

statistically significant. Note that the adjusted R2 and magnitude of the parameter estimate

increase with h. Boudoukh, Richardson, and Whitelaw (2008) point out that in return

predictability regressions with persistent regressors and overlapping returns, even under

the null hypothesis of no predictability, it is possible to observe this increasing pattern for

the adjusted R2 and magnitude of the parameter estimate. Thus it is important to be careful

in interpreting the results of these and subsequent predictability regressions.

In the second set of rows, I set Xt = {VRPt}, the “Monthly Averages” variance risk

premium. From h = 6 on, the “Monthly Averages” variance risk premium is significant in

positively predicting stock returns. In the third set of rows, I include both the “Monthly

6Suppose the stock market is worth St at t and St+h at t + h, and r is the continuously compounded risk-free
rate. Assuming no dividends, the respective forward prices to be paid at time T are Ster(T−t) and St+her(T−t−h).

The log return calculated from the two forward prices is ln
(

St+her(T−t−h)/Ster(T−t)
)

= ln (St+h/St) − rh,
which is identical to the excess return.
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Averages” variance risk premium and the price-to-earnings ratio; Xt = {log (P/E)t , VRPt}.

Neither variable is significant at short horizons, with log (P/E)t first significant at h = 18

and VRPt first significant at h = 24. Comparing the adjusted R2 of the regression with

both predictors to those with an individual predictor, we see that there are significant

improvements in the adjusted R2 for nearly all horizons. For example, at h = 6, the

regression with Xt = {log (P/E)t , VRPt} has an adjusted R2 of 5.453 versus an adjusted

R2 of 3.572 for Xt = {log (P/E)t} and 3.736 for Xt = {VRPt}. The “Monthly Averages”

variance risk premium that I argue is a state variable for ambiguity thus has some predictive

power for stock returns, especially at longer horizons.

How does the “Monthly End-of-Month” variance risk premium compare in predicting

stock returns? The fourth and fifth set of rows in Table 2.7 are analogous to the second

and third set of rows, respectively, with the exception of using the “Monthly End-of-Month”

variance risk premium instead of the “Monthly Averages” one. With only Xt = {VRPt}

in the fourth set of rows, we see that the “Monthly End-of-Month” variance risk premium

is a strong predictor of stock returns at all horizons. The fifth set of rows includes the

price-to-earnings ratio for the regression with Xt = {log (P/E)t , VRPt}. log (P/E)t is

significant only at long horizons, but VRPt is highly significant at short horizons, less

significant at intermediate horizons, and significant again at long horizons. From an

adjusted R2 perspective, the regressions with both covariates are significantly better than

the corresponding regressions with only one of the covariates.

The strong predictive power of the “Monthly End-of-Month” variance risk premium at

short horizons is consistent with findings in the literature; e.g., Bollerslev, Tauchen, and

Zhou (2009), Faust and Wright (2012), and Drechsler (2013). This is unsurprising given that

I construct the “Monthly End-of-Month” variance risk premium to mimic the properties

of the series in the literature. Why is it that the “Monthly End-of-Month” variance risk

premium predicts returns so well at short horizons, but the “Monthly Averages” variance

risk premium does not? The reason is that the former series is volatile and sometimes

negative during crisis periods, the two justifications I gave for ruling the series out as a
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proxy for ambiguity. For example, as discussed, the “Monthly End-of-Month” variance risk

premium is at its lowest value of -5.235 for 10/2008. Stocks dropped for the remainder of

2008 and the early part of 2009, which leads to a high degree of short-run predictability.

In contrast, the “Monthly Averages” variance risk premium is near its highest value for

10/2008, which, while sensible for the interpretation of the variable as a metric of ambiguity,

reduces the short-run predictive power for stock returns.

2.5.3 Alternate State Variables for Ambiguity

I consider several alternate state variables for ambiguity but ultimately reject these proxies

in favor of the “Monthly Averages” variance risk premium. From an empirical perspective,

both the squared VIX and the physical expectation of realized variance constructed in the

previous section seem like plausible proxies for ambiguity. Williams (2014), for example,

explicitly uses the VIX to measure ambiguity. Based on Figure 2.4, the time series of these

two variables spike at the “right” times; that is, during crisis episodes when the variance

risk premium also spikes. Whereas there is theoretical justification for why the variance risk

premium measures ambiguity, however, there is no such justification for the true/statistical

expectation of variance. By extension, the VIX, which incorporates the physical expectation

of realized variance as one of its two components, is a less-ideal metric of ambiguity than

the variance risk premium.

Another measure of ambiguity that feels plausible is the dispersion of forecasts about

macroeconomic conditions. This intuition seems especially relevant since this paper assesses

how the stock market responds to news about macroeconomic conditions. To explore this

idea further, I obtain dispersion data from Bloomberg on the standard deviation and the

range (maximum minus minimum) of the professional forecasts for each of the MNAs

in the sample. In order to allow for comparison across different events with different

units, I separately standardize the two types of dispersion data for each event to have

standard deviations equal to one over the entire sample. A daily simple moving average

of the standardized dispersion data for all MNAs in a one year window yields the two
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Panel A: Short-Horizon Forecast Dispersion Time Series

Panel B: Long-Horizon Forecast Dispersion Time Series

Figure 2.6: Time Series of Macroeconomic Forecast Dispersions

Notes: Panel A plots two forecast dispersion series at a short forecast horizon. I obtain dispersion data from
Bloomberg on the standard deviation and the range (maximum minus minimum) of forecasts for all MNAs in
the sample (see Table 2.1). To allow for comparison across events with different units, I separately standardize
the two types of dispersion data for each event to have standard deviations equal to one over the entire sample.
For each day t in the plotted series, I average the dispersion data for all MNAs contained in the 1-year window
centered at t to produce dispersion series based on the standard deviation of forecasts (“stdev”) and the range of
forecasts “range.” The centered window ranges from 3/12/1998 to 12/19/2013. Panel B plots forecast dispersion
series at long forecast horizons ranging from 1 quarter (“1q”) to 4 quarters (“4q”). Data are quarterly from
1997Q1 to 2014Q3 for q/q real GDP growth and come from the Philadelphia Fed’s SPF. Dispersion is measured
as the 75th percentile minus the 25th percentile.
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candidate daily time series in Panel A of Figure 2.6: one based on the standard deviation

of forecasts (“stdev”) and one based on the range of forecasts (“range”). As evident from

the figure, the dispersion series behave quite differently from the variance risk premium

series and do not seem to be good empirical proxies for ambiguity. On the one hand, the

dispersion series increase significantly during the 2008 financial crisis consistent with the

rise of the variance risk premium during a time of heightened stress. On the other hand,

the dispersion series also spike in the fall of 2005 (due to Hurricane Katrina), whereas the

variance risk premium remains low, and the dispersion series remain low in the fall of 2011,

whereas the variance risk premium spikes. Patton and Timmermann (2010) provide some

intuition for why the dispersion series do not proxy for ambiguity. They suggest that at

short forecast horizons, dispersion in forecasts about some macroeconomic fundamental

is driven primarily by heterogeneity in private information related to that fundamental as

opposed to heterogeneity in models about the evolution of that fundamental, the latter of

which corresponds more closely with the idea of ambiguity. At long horizons, however, the

opposite is true. The rationale is that forecasters have access to and use different information

to form short-horizon forecasts. At longer horizons, these informational differences are

likely to be less important. More important are modeling differences such as the econometric

structure or the choice of sample period for model estimation. Since my entire sample of

MNAs concerns forecasts at very short horizons (on the order of one week to one month),

the resulting dispersion series may reflect forecasters’ different information signals instead

of any notion of ambiguity. That the dispersion series diverge from the variance risk

premium series in the fall of 2005 is evidence in support of short-horizon forecast dispersion

representing informational differences instead of ambiguity. As a result of Hurricane Katrina,

forecasters may have disagreed on an informational basis such as whether unemployment

insurance initial claims would be filed in a timely manner. It is less likely that a one-off

event could significantly increase modeling disagreement among forecasters.

The Patton and Timmermann (2010) reasoning implies that dispersion in longer-horizon

forecasts on macroeconomic conditions do represent model uncertainty and hence could
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better serve as a proxy for ambiguity. To explore this implication, I look at the dispersion

(75th percentile minus 25th percentile) in forecasts of a number of macroeconomic variables

from the Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters (SPF).

In particular, I look at the quarterly time series of dispersion for q/q real GDP growth for

forecast horizons ranging from 1 quarter to 4 quarters. Panel B of Figure 2.6 plots this

series for all four forecast horizons from 1997Q1 to 2014Q3. We see that the series spike

during the 2008 financial crisis, consistent with the time series behavior of short-horizon

forecast dispersions and the variance risk premium. Moreover, in line with the Patton and

Timmermann (2010) intuition, the long-horizon forecast dispersions appear to proxy for

model uncertainty better than the short-horizon series; e.g., the former do not increase

in the fall of 2005 as a result of Hurricane Katrina. Other papers in the literature also

interpret long-horizon dispersions as proxying for model uncertainty. Drechsler (2013), for

example, shows that the 1-quarter forecast dispersion for q/q real GDP growth from the

SPF correlates well with his measure of the variance risk premium.

Nonetheless, I find the long-horizon forecast dispersions in Panel B of Figure 2.6 to be

lacking as measures of ambiguity. Take the European sovereign debt and U.S. debt ceiling

crises episode during the later part of 2011. As noted, the variance risk premium rose

significantly during that period, consistent with the intuition that ambiguity must also have

been high at that time. It is clear, however, that the long-horizon forecast dispersions do

not rise during that time (neither do the short-horizon dispersions). I find broadly similar

results when plotting (unreported) q/q growth time series of the GDP price index and

nominal GDP from the SPF. Note that Drechsler (2013) does not address this divergence

between the long-horizon dispersions and his variance risk premium because his time series

end in 2009.

What explains this divergence? While long-horizon forecast dispersions capture model

uncertainty, the uncertainty is that experienced by economic forecasters who do not know

the right model for predicting the evolution of macroeconomic conditions. In contrast, I

focus on the model uncertainty that investors experience when interpreting news about

112



macroeconomic conditions for the fundamental value of the stock market. These two types of

ambiguity, while plausibly correlated, do not have to move in lockstep. In 2011, the European

sovereign debt and U.S. debt ceiling crises may have led investors to become less sure of

their interpretation of macroeconomic news for stocks without forcing forecasters to become

less sure of how macroeconomic variables would evolve in the short- and long-horizons.

The final proxy for ambiguity that I consider is the Baker, Bloom, and Davis (2013) index

for economic policy uncertainty. Their monthly index has three underlying components:

newspaper article mentions of words related to economic policy uncertainty, upcoming

expirations of federal tax code provisions, and dispersion of macroeconomic forecasts based

on the SPF. In unreported results, I look at the time series behavior of the overall index as

well as its components. Though the empirical behavior of the various series suggest some

ability to track ambiguity (e.g., increases during the 2008 financial crisis), two concerns

prevent serious consideration of the series. First, the overall index includes dispersion of

macroeconomic forecasts, which, as discussed, is a problematic proxy for the ambiguity that

I model. Second, there is no good theoretical justification for why newspaper references to

economic policy uncertainty or expirations of federal tax code provisions should measure

investors’ uncertainty about the impact of macroeconomic news on the stock market. As

such, I stick with the variance risk premium as my measure of ambiguity.

2.6 Empirical Results: Time-Varying Ambiguity

Using the “Monthly Averages” variance risk premium as a state variable for ambiguity,

I test the sharper predictions of the model that the behavior of stocks in response to

macroeconomic news depends on the amount of news ambiguity. The first section shows

that the asymmetry effect and the no news is good news effect are greater in magnitude

when there is greater ambiguity. The increased strength of the asymmetry effect is due

to a stronger response of the stock market to bad news as opposed to a weaker response

to good news. When viewed through the lens of the model, this finding implies that

increases in ambiguity come from investors thinking that the lower bound for the noise of
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macroeconomic news in determining the fundamental value of the stock market is smaller as

opposed to the upper bound being larger. In the second section, I show that the ambiguity

premium exists independent of the amount of ambiguity, a result which can be reconciled

with the model. Finally, the third section finds that the volatility of stocks around MNAs is

greater in times of higher ambiguity.

2.6.1 The Asymmetry Effect and No News is Good News Effect

If Propositions 1 and 2 are true, the magnitudes of the asymmetry effect and no news is

good news effect should be increasing in the amount of ambiguity. Running Eq. (2.22)

over the sample of MNAs that occur at times of high ambiguity should lead to a larger α̂

and a more negative β̂+ − β̂− compared to the same regression over a sample of MNAs

that occur at times of lower ambiguity. To this end, I use the variance risk premium time

series to proxy for ambiguity and associate each MNA with the corresponding value of

the variance risk premium in the month of the data release. I then split the full sample

of MNAs into five variance risk premium quintiles, with the first quintile consisting of

macroeconomic news announced when the variance risk premium is at its lowest and the

fifth quintile consisting of news announced when the premium is at its highest. Panel B

of Table 2.3 provides summary statistics on the standardized news variable St across the

quintiles. We see that for each quintile, the distribution of news is unbiased and symmetric.

Moreover, the distribution of St is similar across the five quintiles. One might expect that

at certain times, such as during the 2008 financial crisis, the frequency or magnitude of

negative news about the macroeconomy should increase. Since the variance risk premium

time series also spikes at these times based on Figure 2.5, the above logic suggests that St

may be negatively-biased in the higher variance risk premium quintiles. The reason that this

effect is not present in Panel B of Table 2.3 is that St is calculated as the actual data release

relative to expectations. While times of crisis do result in more negative data releases of

macroeconomic variables, economic forecasters correspondingly revise lower expectations

for data releases. This downward revision of expectations offsets the poorer data, so St is
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Table 2.8: Stock Market Reaction to MNAs Bucketed into Variance Risk Premium Quintiles

VRPt Quintile α̂ (bps) β̂+ (bps) β̂− (bps) Adj. R2 N β̂+ − β̂− (bps)

1 2.829*** 0.596 1.551 0.229 796 -0.955
(3.748) (0.589) (1.614) (0.322)

2 1.519 4.407*** 5.784*** 4.606 780 -1.377
(1.568) (3.181) (2.912) (0.341)

3 2.389** 1.980 8.431*** 4.188 815 -6.451**
(2.085) (0.962) (4.576) (5.858)

4 4.706*** -1.837 9.032*** 2.953 781 -10.869***
(3.418) (-1.017) (3.776) (12.759)

5 4.734*** 5.030*** 15.648*** 10.497 813 -10.618***
(2.756) (2.602) (7.718) (11.715)

Notes: The table shows results from regressions bucketed by variance risk premium VRPt quintiles, with
the 1st quintile corresponding to the smallest values and the 5th quintile corresponding to the largest
values. The regression in each quintile is of ES returns on standardized news grouping all events together:
Rt = α + β+D+

t St + β−
(
1− D+

t
)

St + εt. Rt is the stock market return, St aggregates the news surprises
of all MNAs, and D+

t is a dummy variable. All regression variables are as defined in Table 2.2. VRPt is the
“Monthly Averages” variance risk premium series, which corresponds to the monthly time series in Panel B
of Figure 2.4. t-statistics (shown in parentheses) are based on heterosckedasticity-consistent standard errors.
Rightmost column presents β̂+ − β̂− and performs a Wald test that the difference is not zero (F-statistics
shown in parentheses). *** denotes significance at the 1% level, ** denotes significance at the 5% level, and *
denotes significance at the 10% level. Table above covers the whole period from November, 1997 to March,
2014.

distributed symmetrically in each quintile and comparably across quintiles.

Table 2.8 shows results from the regression in Eq. (2.22) for each quintile of the variance

risk premium, and Figure 2.7 plots the regression parameters against the quintiles. Together,

Table 2.8 and Figure 2.7 provide the main evidence in support of Propositions 1 and 2.

Looking at the last column of Table 2.8 and Panel B of Figure 2.7, we see that, consistent with

Proposition 1, the stock market exhibits little asymmetry to macroeconomic news in times

of low ambiguity but large asymmetry in times of high ambiguity. β̂+ − β̂− = −0.955 bps is

statistically indistinguishable from zero in the first variance risk premium quintile based on

a Wald test, so the stock market reacts by a similar amount to a unit of positive surprise

versus a unit of negative surprise. Moving to higher variance risk premium quintiles,

β̂+ − β̂− decreases consistently and becomes statistically different from zero. In the fifth
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Figure 2.7: Stock Market Reaction to MNAs Bucketed into Variance Risk Premium Quintiles

Notes: See Appendix B.3.2. Panels A, B, and C from top to bottom correspond to β̂+ and β̂− versus VRPt,
β̂+ − β̂− versus VRPt, and α̂ versus VRPt plots, respectively.
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quintile, β̂+ − β̂− = −10.618 bps; that is, the stock market falls 10.618 bps more for a unit of

negative macroeconomic news than it rises for a unit of positive news.

The increase in the asymmetry effect comes entirely from the increased sensitivity of the

stock market to negative news as opposed to the decreased sensitivity of the stock market

to positive news. From the β̂+ and β̂− columns of Table 2.8 and Panel A of Figure 2.7, we

see that β̂+ shows no clear pattern across the variance risk premium quintiles, whereas β̂−

increases consistently from 1.551 bps in the first quintile to 15.648 bps in the fifth quintile. In

the context of the model and Eq. (2.12), the results imply that while greater news ambiguity

increases φ− φ (equivalently, σ2
s − σ2

s ), this increase comes primarily through an increase

in φ (decrease in σ2
s ) and not through a decrease in φ (increase in σ2

s ). The representative

investor has a range of variances in mind for the noisiness of a given piece of news about

the fundamental value of the risky asset. With greater ambiguity, this range of variances

expands, but it expands in a skewed manner such that the lower end of the range decreases,

but the upper end of the range stays approximately the same. When the investor sees a

positive piece of news, he believes that the variance of the noise component is at the upper

end of the range, which reduces the impact of the good news on the risky asset. Since the

upper end of the range is similar for times of low and high ambiguity, the risky asset has a

similarly subdued response to good news in both states of the world. When the investor

sees a negative piece of news, he believes that the variance of the noise component is at the

lower end of the range, which amplifies the impact of the bad news on the risky asset. The

lower end of the range is lower for times of high ambiguity versus low ambiguity, however,

so the risky asset responds more strongly to the negative news in the former case versus

the latter case. Since ambiguity, as proxied by the variance risk premium in Figure 2.5, is

generally high during times of market stress, another way of stating the above result is that

investors believe that good news is equally relevant (or irrelevant) for stocks in good and

bad times. Investors believe that bad news, however, is more relevant for stocks in bad

states than in good states.

From the α̂ column of Table 2.8 and Panel C of Figure 2.7, we see that α̂ increases from
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the first variance risk premium quintile to the fifth quintile, which supports Proposition

2. The magnitude of α̂ averages to 2.174 bps in the first two quintiles and 4.720 bps in the

last two quintiles, an increase of 2.546 bps. That is, in times of high news ambiguity, the

stock market increases 2.546 bps more in response to no news than in times of low news

ambiguity.

2.6.2 The Ambiguity Premium

Based on the model, the ambiguity premium from Eq. (2.18) should, all else equal, be

increasing in the news ambiguity φ− φ, which is the first term in parentheses. Taking the

data from Panel A of Table 2.4, Panel B of the same table breaks the stock market return

through MNAs into quintiles by the variance risk premium. The top set of rows presents

the arithmetic sum of returns (expressed in %), and the bottom set of rows presents the

mean of returns (expressed in bps). Focusing on the “Return” column, which is the actual

return of the front ES contract around MNAs, we see that returns are positive in each of the

variance risk premium quintiles. The ambiguity premium is thus not only positive over the

whole sample, but also when the sample is split in five by the variance risk premium. It is

clear from Table 2.4, however, that there is not much of a pattern in the “Return” column

across variance risk premium quintiles. To better understand this result, I decompose the

ambiguity premium in each quintile of Panel B into two components, as in Panel A, using

the estimated α̂, β̂+, β̂− from Table 2.8: the positive no news is good news effect and the

negative asymmetry effect. Consistent with earlier results, the asymmetry effect exerts a

more negative effect on the average return of the stock market around MNAs as ambiguity

increases. The no news is good news effect has the counterbalancing role of exerting a

more positive effect on the average return of the stock market around MNAs as ambiguity

increases. These two results depend on the verification of Propositions 1 and 2 in Table 2.8

as well as the similar distribution of MNA surprises across variance risk premium quintiles

documented in Table 2.3. The asymmetry effect and the no news is good news effect both

change in such a way across variance risk premium quintiles that their sum, the ambiguity
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premium, exhibits no discernable pattern across quintiles.

An alternate method to assess whether the ambiguity premium is time-varying is to

conduct predictability regressions as in Eq. (2.26). Instead of forecasting rt,t+h, the stock

return from month t to month t + h, I forecast rMNA
t,t+h , that portion of the stock return

attributed to the release of macroeconomic news. If the ambiguity premium varies over

time, rMNA
t,t+h should be predictable. More specifically, if the ambiguity premium is higher

at times of greater ambiguity, the variance risk premium should be a positive, significant

predictor of rMNA
t,t+h . My regression specification is

rMNA
t,t+h = aMNA + bMNAXt + εMNA

t,t+h , (2.27)

in which rMNA
t,t+h is the annualized sum of the continuously compounded return of the stock

market in the ±5 minutes around MNAs from the end of month t to the end of month

t + h. As discussed previously, rMNA
t,t+h can be thought of as an excess return due to the

use of futures data in calculating returns. Panel A of Table 2.9 shows b̂MNA, associated

t-statistics, and adjusted R2 for a range of horizons and three sets of covariates Xt. When

Xt = {log (P/E)t}, there is little evidence of predictability except at the longest horizons.

Setting Xt = {VRPt}, the “Monthly Averages” variance risk premium, no coefficients

are significant. Similarly, incorporating both the price-to-earnings ratio and variance risk

premium for Xt = {log (P/E)t , VRPt} yields no significant coefficients. There is some

suggestive evidence that the variance risk premium positively predicts stock returns at

short horizons. For example, at h = 3 months, the coefficient for the Xt = {VRPt}

regression has a t-statistic of 1.457, which is significant at the 15% level, and an adjusted

R2 of 1.324. The presence of the variance risk premium also improves the adjusted R2 of

the Xt = {log (P/E)t , VRPt} regression specification to 1.581 versus the -0.326 with only

Xt = {log (P/E)t}. On the whole, however, the return of stocks around macroeconomic

news does not appear to vary much over time, which suggests that the ambiguity premium

is not increasing in the amount of ambiguity as measured by the variance risk premium.

Since we know from Table 2.7 and the extensive literature on return predictability that stock
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returns in general are predictable yet find stock returns around MNAs are not predictable, a

natural follow-up is to check if stock returns in times excluding MNAs are predictable. In

Panel B of Table 2.9, I run regressions of the form

rnMNA
t,t+h = anMNA + bnMNAXt + εnMNA

t,t+h , (2.28)

in which rnMNA
t,t+h = rt,t+h − rMNA

t,t+h , the annualized sum of the continuously compounded

return of the stock market outside of the ±5 minutes around MNAs from the end of month

t to the end of month t + h. We see evidence for predictability at various horizons and

specifications of Xt. Thus, the predictability of stock returns comes almost entirely from

returns earned in times excluding macroeconomic data releases, a result consistent with

Faust and Wright (2012).

Can the lack of time-variation in the ambiguity premium be reconciled with the model?

Consider the expression for the ambiguity premium in Eq. (2.18), specifically the second

term in parentheses
(√

α2σ2
d + σ2

s −
√

α2σ2
d + σ̃2

s

)
. Based on the fact that the asymmetry

effect is due primarily to the increased sensitivity of the stock market to negative news

as opposed to the decreased sensitivity of the stock market to positive news, we have

inferred in the previous section that increases in φ (decreases in σ2
s ) drive increases in

news ambiguity φ− φ, not decreases in φ (increases in σ2
s ). As such, the second term in

parentheses in the expression for the ambiguity premium does not increase with news

ambiguity unlike in the case if news ambiguity were driven by decreases in φ (increases

in σ2
s ). This result dampens the positive relationship between the ambiguity premium and

ambiguity. A second explanation for the stability of the ambiguity premium centers on σ̃2
s ,

the true variance of the εs component of the news. If σ̃2
s were close to σ2

s , the second term

in parentheses of the ambiguity premium would be close to zero, which would make it

difficult to see an increasing relationship between the ambiguity premium and ambiguity.

The investor thinks that the news could be a very noisy indicator of the fundamental value

of the risky asset (σ2
s ), and it turns out that the news is in fact a quite noisy indicator (σ̃2

s ).

Alternatively, if σ̃2
s were increasing in news ambiguity for some reason, the second term in
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parentheses would be decreasing in ambiguity, which would offset the rise in φ− φ and

sever the link between the ambiguity premium and ambiguity.

2.6.3 Risky Asset Volatility

The final prediction of the model, Proposition 4, says that the volatility of the stock market

around macroeconomic news releases can be either increasing or decreasing in the amount

of ambiguity depending on what drives increases in ambiguity. If, as implied by the results

corroborating the asymmetry effect, increases in ambiguity in the model are due to investors’

allowing for smaller lower bounds for the variance of the news noise, stock market volatility

around MNAs should be increasing in ambiguity. Panel A of Figure 2.8 plots the time

series of the 10-minute return of the stock market in the ±5 minutes around MNAs. We

see that this return is heteroscedastic and is highly variable at predictable episodes such as

the 2008 financial crisis. Table 2.10 splits this return time series into variance risk premium

quintiles and calculates the standard deviation of returns in each quintile in the “10-Minute

Std.” column. As suggested by Panel A of Figure 2.8 and consistent with Proposition 4, the

standard deviation of stock returns around macroeconomic news increases substantially

as the amount of ambiguity increases. This standard deviation is 14.791 bps in the lowest

quintile versus 36.587 bps in the highest quintile.

The observation that the volatility of stock returns around MNAs increases with am-

biguity is related to the well-studied phenomenon that the volatility of stock returns in

general fluctuates substantially in the time series. Panel B of Figure 2.8 plots the time series

of daily stock market returns for days with MNAs.7 There is substantial heteroscedasticity,

and the volatility of daily returns appears to increase at the same time that the volatility of

intraday returns increases. The “1-Day Std.” column of Table 2.10 calculates the standard

deviation of daily returns when separated into variance risk premium quintiles. Similar to

the result for the volatility of intraday returns, the volatility of daily returns also increases

7Since there are macroeconomic data releases on most days, this time series is essentially equivalent to the
time series of daily stock returns.
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Panel A: Intraday Returns around MNAs

Panel B: Daily Returns around MNAs

Figure 2.8: Time Series of Intraday and Daily Returns around MNAs

Notes: Panel A plots the 10-minute return of the stock market in the ±5 minutes around a MNA. Panel B
plots the daily return of the stock market for the day of the MNA. The data in Panels A and B are the same as
those plotted on the horizontal and vertical axes of Figure 2.2, respectively. Refer to the Figure 2.2 caption for
details. Figures above cover the whole period from November, 1997 to March, 2014.
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Table 2.10: Stock Market Volatility around MNAs Bucketed into Variance Risk Premium Quintiles

VRPt Quintile 10-Minute Std. 1-Day Std. Fraction of Std. N

1 14.791 64.703 0.229 632
2 20.407 89.368 0.228 636
3 21.994 108.013 0.204 636
4 26.375 137.742 0.191 643
5 36.587 205.910 0.178 642

Notes: Table takes the 10-minute return of the stock market in the ±5 minutes around a MNA and the daily
return of the stock market for the day of the MNA and calculates standard deviations (bps) in the “10-Minute
Std.” and “1-Day Std.” columns, respectively. Standard deviations are calculated for each VRPt quintile, with
the 1st quintile corresponding to the smallest values and the 5th quintile corresponding to the largest values.
The “Fraction of Std.” column divides the “10-Minute Std.” column by the “1-Day Std.” column. VRPt is
the “Monthly Averages” variance risk premium series, which corresponds to the monthly time series in Panel
B of Figure 2.4. The intraday and daily return data are the same as those plotted on the horizontal and vertical
axes of Figure 2.2, respectively. Refer to the Figure 2.2 caption for details. Table above covers the whole period
from November, 1997 to March, 2014.

in ambiguity from a low of 64.703 bps in the first quintile to a high of 205.910 bps in the

fifth quintile. Together, Figure 2.8 and Table 2.10 provide suggestive evidence that some of

the time variation in the volatility of stock returns more generally can be attributed to the

impact of ambiguity on the volatility of stock returns around MNAs.

2.7 Alternative Explanations

To my knowledge, no explanation in the literature provides a unified story for the full

set of empirical patterns exhibited by the aggregate stock market around MNAs. There

are, however, stories not related to ambiguity that could plausibly explain a subset of the

findings. In the two sections below, I investigate different narratives that have the prediction

that the stock market reacts asymmetrically to good news versus bad news. The data

support the model based on ambiguity over these alternative explanations.
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2.7.1 Good Times versus Bad Times

Veronesi (1999) presents a rational, regime-switching framework in which the aggregate

stock market can react asymmetrically to news depending on whether the news is good

or bad. In his model, investors are uncertain about the state of the market and must infer

whether times are good or bad. During good times, bad news has a large impact on stocks

by both decreasing the probability investors place on the state of the world being good and

increasing uncertainty about the state of the world. In contrast, good news has a small

impact on stocks because investors already place a high probability on being in the good

state of the world. During bad times, bad news has a small impact on stocks because

investors believe they are already in the bad state of the world. The impact of good news on

stocks is also muted, however, because while good news increases the probability investors

place on the state of the world being good, good news also increases uncertainty about the

state of the world. Altogether, one implication of Veronesi (1999) is that the aggregate stock

market reacts more strongly to bad news than to good news during good times, and this

asymmetry diminishes or is nonexistent during bad times.

The model based on investor sentiment in Barberis, Shleifer, and Vishny (1998) has a

related prediction to that of Veronesi (1999) for the response of individual stocks to earnings

news. In their model, investors extrapolate good (bad) times, characterized by strings of

good (bad) earnings news, and expect future good (bad) earnings news. During good times,

bad earnings news is unexpected and generates a large effect, but good earnings news

is expected and generates a small effect. In contrast, during bad times, bad earnings is

expected and generates a small effect, but good earnings news is unexpected and generates

a large effect. The Barberis, Shleifer, and Vishny (1998) framework thus suggests that

individual stocks react more strongly to bad earnings news than to good earnings news

during good times, but this asymmetry flips during bad times.

Conrad, Cornell, and Landsman (2002) document empirical evidence in support of

Veronesi (1999) and Barberis, Shleifer, and Vishny (1998) through investigating the response

of individual stocks to earnings announcements. By using a relative price-to-earnings ratio
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as a proxy for good times versus bad times, Conrad, Cornell, and Landsman (2002) find

that stocks indeed react most strongly to bad earnings news versus good earnings news

when the relative value of the market is high (good times), with the asymmetry diminishing

in magnitude when the market valuation is lower (bad times).8

The results of the aforementioned three papers suggest that the state variable that

drives asymmetry is some measure of how good or bad the state of the world is. I assess

whether this alternative explanation can account for the stock market behavior around

macroeconomic news releases. To do so, I roughly follow Conrad, Cornell, and Landsman

(2002) and use the cyclically-adjusted price-to-earnings ratio (CAPEt) from Robert Shiller’s

website to create a proxy for how good or bad times are. I then replicate my results using

this state variable instead of the variance risk premium. Panel A of Figure 2.9 shows the time

series of CAPEt from November, 1997 to March, 2014, and Panel A of Table 2.11 provides

summary statistics. Conrad, Cornell, and Landsman (2002) argue that using the absolute

price-to-earnings ratio is problematic. People may not care, for example, about how good

or bad times are on an absolute scale but relative to recent experience. Moreover, as the

figure shows, using CAPEt as the state variable is essentially the same as just using a time

dummy. The market valuation is highest in the early part of the sample around the dot-com

bubble, intermediate during the mid-2000s, and lowest during and subsequent to the 2008

financial crisis. Categorizing the whole sample into good times, mediocore times, and bad

times in that chronological order seems both simplistic and inaccurate. Similar to Conrad,

Cornell, and Landsman (2002), I address this issue by creating a relative price-to-earnings

ratio (DCAPEt) in Panel B of Figure 2.9 by taking CAPEt and subtracting its own trailing

12-month average. The time series of DCAPEt exhibits more reasonable dispersion that is

not solely based on time. Summary statistics for DCAPEt appear in Panel A of Table 2.11.

To assess how relative market valuation drives the differential response of the stock

market to macroeconomic news, I run regressions as before based on Eq. (2.22). I use

8On a related note, papers such as Boyd, Hu, and Jagannathan (2005) suggest that the relationship between
stocks and macroeconomic news depends on the phase of the business cycle; i.e., whether the news arrives
during NBER recessions or expansions.
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Panel A: Cyclically-Adjusted Price-to-Earnings Ratio

Panel B: Relative Cyclically-Adjusted Price-to-Earnings Ratio

Figure 2.9: Time Series of Absolute and Relative Price-to-Earnings Ratios

Notes: Panel A plots the time series of the cyclically adjusted price-to-earnings ratio CAPEt from Robert
Shiller’s website. Panel B plots the time series of the relative cyclically adjusted price-to-earnings ratio
DCAPEt calculated as CAPEt less its own trailing 12-month average. Figures above cover the whole period
from November, 1997 to March, 2014.
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Table 2.11: Replication of Results Using the Relative Price-to-Earnings Ratio to Bucket the Data

Panel A: Summary Statistics of CAPEt and DCAPEt

Mean Median Std. Dev. Max. Min. Skewness Kurtosis AC(1)

CAPEt 27.016 25.650 7.300 44.190 13.320 0.871 0.009 0.990
DCAPEt -0.225 0.241 2.808 5.158 -8.282 -0.671 0.136 0.927

Panel B: Summary Statistics of MNA Surprises, with Sample Bucketed into DCAPEt
Quintiles

DCAPEt Quintile Mean Median Std. Dev. Max. Min. Skewness Kurtosis N

1 -0.019 0.000 1.227 8.018 -5.514 0.391 3.495 779
2 0.009 0.000 1.016 4.866 -4.315 0.311 2.537 802
3 0.044 0.000 0.970 6.257 -3.527 0.533 3.198 805
4 0.014 0.052 0.912 3.303 -4.171 -0.495 1.437 788
5 0.100 0.017 0.895 3.332 -3.452 -0.141 0.749 811

Panel C: Stock Market Reaction to MNAs Bucketed into DCAPEt Quintiles

DCAPEt Quintile α̂ (bps) β̂+ (bps) β̂− (bps) Adj. R2 N β̂+ − β̂− (bps)

1 4.443** 3.763* 14.080*** 9.958 779 -10.317***
(2.533) (1.941) (7.293) (12.473)

2 2.346* 4.217** 7.445*** 4.272 802 -3.228
(1.848) (2.473) (4.079) (1.387)

3 3.983*** 1.356 5.318** 1.765 805 -3.962
(3.875) (1.120) (2.136) (2.570)

4 1.651 3.876** 5.079*** 3.270 788 -1.203
(1.572) (2.024) (3.268) (0.212)

5 3.314*** -1.836 7.032*** 2.108 811 -8.869***
(3.200) (-1.141) (3.883) (11.759)

Notes: Panel A shows summary statistics for CAPEt and DCAPEt, the two variables plotted in Panels A and
B of Figure 2.9, respectively. Panel B replicates Panel B of Table 2.3 and provides summary statistics for the
standardized news variable St bucketed according to DCAPEt quintiles, with the 1st quintile corresponding
to the smallest values and the 5th quintile corresponding to the largest values. Panel C replicates Table 2.8
and shows the stock market reaction to MNAs bucketed into DCAPEt quintiles. Tables above cover the whole
period from November, 1997 to March, 2014.
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DCAPEt to split my sample of MNAs into five quintiles with the first quintile consisting of

macroeconomic news occuring when the relative market valuation is lowest and the fifth

quintile consisting of macroeconomic news occuring when the relative market valuation is

highest. Analogous to Panel B of Table 2.3, Panel B of Table 2.11 shows summary statistics

for standardized news St across the DCAPEt quintiles. St is unbiased and symmetric in

each quintile and seems to be distributed similarly across quintiles. Analogous to Table 2.8,

Panel C of Table 2.11 shows regression results for each quintile. From the rightmost column,

β̂+ − β̂− is most negative in the first quintile at −10.317 bps, statistically indistinguishable

from zero in the middle three quintiles, and second-most negative in the fifth quintile at

−8.869 bps. This pattern is inconsistent with the story that how good or bad the state of the

world is, as measured by the relative market valuation, drives the differential response of

the stock market to good news versus bad news. If that state variable were the driving force,

we would expect β̂+ − β̂− to be most negative in the fifth quintile and progressively less

negative moving down to the first quintile. The response of the aggregate stock market to

macroeconomic news provides conflicting evidence for the implications of Veronesi (1999)

and Barberis, Shleifer, and Vishny (1998) in contrast with the support that I find in the data

for the framework based on ambiguity. This outcome is not particularly surprising given

that times of high ambiguity, as measured by the variance risk premium, tend to be bad

times, yet these are also times in which the stock market responds more strongly to bad

news than to good news.

There are several reasons why my empirical results differ so significantly from those of

Conrad, Cornell, and Landsman (2002). First, I look at the aggregate market response to

macroeconomic news instead of the individual stock response to earnings news.9 A second

explanation for the discrepancy is my use of high-frequency intraday data instead of daily

data, which I have stressed makes a significant difference for the empirical results in this

paper.

9Note that the Veronesi (1999) model applies to the aggregate market, the Barberis, Shleifer, and Vishny
(1998) model applies to individual stocks, and the model based on ambiguity in my paper can apply to either
the stock market as a whole or individual stocks (though I focus on the former).
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2.7.2 Volatility Feedback

Volatility feedback can also lead to the asymmetric response of the stock market to good

news versus bad news. Campbell and Hentschel (1992) have such a model in which large

pieces of news tend to be followed by large pieces of news, which reflects the persistence

of volatility. This phenomenon dampens the effect of good news on stocks and amplifies

the effect of bad news, thus providing a potential explanation for why the aggregate stock

market responds more strongly to bad news than to good news. Volatility feedback is

unlikely, however, to explain the asymmetry effect exhibited by stocks around MNAs.

The reason is that MNAs are anticipated. If there is a large surprise in a given piece of

macroeconomic news, investors take this information into account in forecasting the next

piece of macroeconomic news. This self-corrective mechanism means that there is little

persistence in the magnitude of the surprise of MNAs. Consistent with this notion, the

distribution of MNA surprises is time-invariant as shown in Figure 2.3, Table 2.3, and Panel

B of Table 2.11.

2.8 Conclusion

Using a theoretical framework with ambiguity as its centerpiece, this paper has shown a

number of testable predictions for the behavior of stocks around ambiguous news. Stocks

react asymmetrically stronger to bad news than to good news, increase in response to neutral

news, and have a positive average return through news. Times of higher ambiguity coincide

with larger magnitudes for the aforementioned effects and moreover coincide with either

higher or lower volatility of stocks around news depending on the driver of the increase in

ambiguity. I find that these predictions receive considerable empirical support based on the

dynamics of the aggregate stock market around news about the macroeconomy. To fully

test the model, I construct a variance risk premium time series that is a more reasonable

proxy for ambiguity than existing data series. Among the observations that corroborate

the model with ambiguity, I find that stocks react more strongly to bad macroeconomic
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news than good macroeconomic news and especially so during crisis periods. I also show

that about 1/3 of the equity return from 1997 to 2014 accrues in just 10 minutes around

MNAs. Viewed through the model, these results suggest that investors behave in such a

way that they treat bad news as more salient in bad times than in good times but good

news as equally salient in both times. The empirical results are hard to reconcile with

existing models and suggest that ambiguity is an important factor in asset pricing and, in

this specific setting, how financial assets reflect macroeconomic risks. As such, ambiguity

warrants further consideration in finance and macrofinance models.
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Chapter 3

Asset Price Reactions to News at the

Zero Lower Bound

3.1 Introduction

A fundamental question in economics is how asset prices impound news about macroeco-

nomic fundamentals. When news arrives of higher-than-expected inflation or output and

lower-than-expected unemployment, do asset prices appreciate or depreciate and by how

much? I tackle this question by analyzing the sensitivity of interest rates and the stock

market in the U.S. to a broad sample of macroeconomic news announcements (MNAs). By

considering the time period from December 17th, 2008 to March 6th, 2014 during which the

federal funds (FF) rate was at the zero lower bound (ZLB), I find that the extent to which

the ZLB binds drives the reaction of interest rates and stocks to data surprises.

We can think of the extent to which the ZLB binds as the expected duration of the ZLB,

which varies significantly from the end of 2008 to 2014 even though the nominal short rate

is fixed at the lower bound throughout. Figure 3.1 shows two proxies for the expected

duration of the ZLB. The right-hand graph plots the median anticipated number of quarters

until the first rate hike based on primary dealer surveys by the Federal Reserve Bank of New

York (FRBNY). We see large variations in the anticipated time until the first rate hike from
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Figure 3.1: Proxies for the expected duration of the ZLB

Notes: The left-hand plot is of the implied FF rate (%) from FF futures with maturities 1 month to 24 months
out. Higher-value lines correspond to longer-maturity FF futures. The right-hand plot is the median number
of quarters until the first rate hike based on primary dealer surveys by the FRBNY. The two vertical lines
correspond to the dates of the August, 2011 FOMC meeting (when calendar guidance was introduced) and the
December, 2012 FOMC meeting (when data thresholds was introduced), respectively.
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a low of 4 quarters in mid-2011 to a high of 12 quarters in late 2012. The left-hand graph

plots implied FF rates from FF futures contracts with 1 month to 24 months maturities. As

the expected duration of the ZLB increases, we expect FF rates in the future to decrease,

and it indeed appears that implied FF rates are negatively correlated with the surveyed

time until the first rate hike. The expected duration of the ZLB can change either because

economic conditions change or because the monetary policy reaction function that sets the

nominal short rate changes. For example, the first vertical line in both graphs of Figure 3.1

corresponds to the August, 2011 Federal Open Market Committee (FOMC) meeting during

which the Federal Reserve decided to implement “exceptionally low levels for the federal funds

rate at least through mid-2013.” This decision was clearly a surprise as evidenced by the sharp

drop in implied FF rates and the sharp increase in the surveyed time until the first rate hike.

This increase in the expected duration of the ZLB could have been due to pessimism about

the state of the economy or beliefs that monetary policy changed. This paper shows that

regardless of whether the expected duration of the ZLB changes due to economic conditions

or to monetary policy, asset price sensitivities to news change in a certain manner.

Focusing on interest rates first, I employ a shadow rate term structure model that

incorporates the ZLB to make three predictions about the sensitivity of interest rates to

MNAs. The first prediction is that “better”-than-expected or “positive” macroeconomic news

(e.g., higher-than-expected inflation or output and lower-than-expected unemployment)

increases interest rates at all maturities. The second prediction is that as the expected

duration of the ZLB increases, whether because economic conditions are worse or because

monetary policy is less responsive to economic conditions, the reaction of interest rates to

MNAs decreases at all maturities. The third and final prediction is that this attenuation in

the sensitivity of interest rates to news is initially increasing in maturity and then decreasing

in maturity. In other words, the attenuation in the sensitivity of interest rates is greatest

for intermediate maturity rates. I verify each of these predictions in the data using a

representative sample of 18 MNAs and high-frequency data on interest rate futures at

various maturities. To do so, I measure the reactions of various interest rates in a tight
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±5 minute window around MNAs and then compare time variation in these estimated

reactions to the aforementioned proxies for the expected duration of the ZLB. As expected,

“positive” MNAs increase interest rates, but greater expected duration of the ZLB (e.g., after

the August, 2011 FOMC meeting) moderates this reaction. The extent of this moderation is

moreover greatest for interest rates with maturities that are not too short and not too long.

For stocks, I initially measure the time-varying sensitivity of the stock market to data

using the same sample of MNAs and high-frequency data on the S&P 500 futures contract.

Based off the ideas of Campbell (1991) and Campbell and Ammer (1993), we know that

when the stock market reacts to macroeconomic news, it must be due to a combination of a

change in expected future dividends (cash flow news), a change in expected future interest

rates (interest rate news), and a change in expected future excess returns (risk premium

news). Using a simple Gordon growth model as in Boyd, Hu, and Jagannathan (2005), I

decompose the reaction of the stock market to MNAs into an interest rate news term and a

cash flow plus risk premium news term. The interest rate news term is exactly the sensitivity

of interest rates to MNAs (adjusted by a factor). Based on this news term alone, I show

that as the expected duration of the ZLB increases, we expect the sensitivity of stocks to

macroeconomic data to increase as well. The empirical relationship between the expected

duration of the ZLB and the sensitivity of stocks is less clear-cut because of time-variation in

the offsetting cash flow and risk premium news terms. Intriguingly, the expected duration

of the ZLB is negatively correlated with the magnitude of the cash flow and risk premium

news terms.

The ideas presented above connect to several research areas in the literature. Many

papers have looked at how the release of macroeconomic news affects asset prices; e.g.,

Andersen, Bollerslev, Diebold, and Vega (2003, 2007), Boyd, Hu, and Jagannathan (2005),

and Faust, Rogers, Wang, and Wright (2007). These papers have asked nuanced questions

about various aspects of asset price reactions to MNAs. How are the reactions different for

stocks versus bonds versus foreign exchange? Do asset prices react differently to “better”-

than-expected news compared to “worse”-than-expected news? And do asset reactions
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depend on whether the economy is in an expansionary state or a contractionary state?

My research agenda explores asset price reactions to news from a different angle by

considering the effect of the ZLB and monetary policy. Prior work taking this approach is

necessarily limited due to the recentness of the ZLB. Swanson and Williams (2013, 2014),

as the first papers to study how the ZLB influences interest rate sensitivities to MNAs,

focus attention to this research area. They find that the sensitivity of interest rates to

macroeconomic data during the ZLB was lower than in normal times, though longer

maturity interest rates were still surprisingly responsive to data. The results presented in

this paper differ from those of Swanson and Williams (2013, 2014) in a few ways. First,

I focus on how variation throughout the ZLB, specifically the expected duration of the

ZLB, drives asset sensitivities to MNAs as opposed to comparing sensitivities during the

ZLB to that during normal times. Second, I utilize a shadow rate term structure model to

analytically derive comparative statics on interest rate reactions to macroeconomic news

and how these reactions should depend on the expected duration of the ZLB. As such,

I am able to relate the findings to the large literature on term structure models and test

precise predictions for how interest rates should react to MNAs. Third, I use high-frequency

intraday data on asset prices to measure the effect of data surprises on assets instead of

daily data. By focusing on a tight ±5 minute window around news announcements, I am

able to more cleanly measure any asset reactions to data without worrying about events

throughout the day that are unrelated to macroeconomic news. Finally, I analyze not only

interest rates but also the stock market. I show through a decomposition how the reaction of

interest rates to MNAs has direct implications for the reaction of the stock market to MNAs.

In related work, Raskin (2013) uses the reaction of interest rate options to macroeconomic

data at the ZLB to assess how actions of the Federal Reserve altered perceptions of the

monetary policy reaction function. Instead of focusing on specific Federal Reserve events

such as the FOMC meeting in August, 2011 and testing how asset sensitivities change

before and after these events, I choose to exploit the richer variation in asset sensitivities

throughout the ZLB period.

136



The work of Swanson and Williams (2013, 2014) and Raskin (2013) suggest several

reasons for why we might care about how the ZLB affects the sensitivity of assets to MNAs.

One reason is that the sensitivity of interest rates to macroeconomic news measures the

effectiveness of monetary policy. The existence of the ZLB prevents the Federal Reserve from

using its traditional instrument of monetary policy, the federal funds rate, which is locked at

the lower bound. A number of papers such as Eggertsson and Woodford (2003) argue that a

central bank can still conduct monetary policy at the ZLB by influencing expectations of

short rates in the future, which in turn can affect other asset prices and the broader economy.

The Federal Reserve has indeed employed this strategy of forward guidance extensively

such as with the previously mentioned action taken at the August, 2011 FOMC meeting. If

interest rates are reasonably sensitive to MNAs despite the ZLB, then monetary policy can

still be effective because it is still possible for monetary policy to meaningful move around

expectations of short rates as well as longer-maturity rates. On the other hand, if interest

rates are insensitive to MNAs at the ZLB, then the ZLB constrains the ability of monetary

policy to influence interest rates.

The sensitivity of interest rates to MNAs is also informative about the effectiveness of

fiscal policy. Work by Christiano, Eichenbaum, and Rebelo (2011) among others shows that

the fiscal multiplier may be larger at the ZLB because interest rates do not “crowd out” fiscal

spending as much. If interest rates are less sensitive to MNAs at the ZLB, then it may be

true that a government spending shock does not increase interest rates much, so the fiscal

multiplier is indeed larger. On the other hand, if interest rates are still reasonably sensitive

to MNAs, the “crowding out” effect of rising interest rates in response to government

spending may diminish the fiscal multiplier.

Finally, my results on the stock market’s reaction to macroeconomic news at the ZLB

continue an avenue of inquiry on the relationship between monetary policy and the stock

market. Papers that address this area include Rigobon and Sack (2003), Bernanke and

Kuttner (2005), and Campbell, Pflueger, and Viceira (2014). Better understanding this

relationship between stocks and monetary policy is important because monetary policy
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often has to work through financial assets such as the stock market in order to ultimately

influence the macroeconomy.

The organization of the paper is as follows. Section 3.2 introduces the shadow rate term

structure model and links the model to three predictions about the sensitivity of interest

rates to macroeconomic news surprises. Section 3.3 first describes the data for MNAs

and high-frequency asset prices before discussing the basic regression that tests the effect

of MNAs on asset prices. Section 3.4 takes the model predictions about the sensitivity

of interest rates to the data and presents supporting evidence. Section 3.5 analyzes the

sensitivity of stocks to macroeconomic data and performs a decomposition of this sensitivity.

Section 3.6 concludes.

3.2 Shadow Rate Term Structure Model

I start by building a basic term structure model and analytically exploring its implications

for the sensitivity of interest rates to MNAs. The presence of the ZLB prevents the use

of the canonical Gaussian affine term structure model to establish relationships among

interest rates at various maturities. As such, I follow the literature in utilizing a shadow rate

term structure model that incorporates the ZLB. Introduced by Black (1995), the idea of the

shadow rate has become particularly relevant since the 2008 financial crisis as the nominal

short rate has remained stuck at the ZLB in the U.S. and other countries. Shadow rate term

structure models have been approximately solved in both continuous time by Ichiue and

Ueno (2013) and Krippner (2013) and in discrete time by Wu and Xia (2014).

The model I develop and analyze is a one-factor version of Wu and Xia (2014). I first

set up the model and solve for the forward rate, which is the interest rate of interest. The

focus of the analysis is not on the forward rate itself but rather on how the forward rate

changes in response to news about macroeconomic fundamentals and the role of the ZLB

therein. To clarify the role of the ZLB, I next show in the model that the expected duration

of the ZLB increases when economic conditions deteriorate and/or when monetary policy

is less responsive to the economy. Finally, I highlight three predictions of the model for the
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sensitivity of interest rates to MNAs.

3.2.1 Setup and Forward Rate

Let the nominal short rate it equal the maximum of the shadow rate st and some lower

bound i:

it = max {st, i} (3.1)

with 0 < i ≤ 0.25 reflecting the reality that the Federal Reserve still pays interest on excess

reserves. If the shadow rate is higher than the lower bound, the short rate equals the shadow

rate; otherwise, Eq. (3.1) restricts the short rate from venturing below the lower bound.

Analogous to the eponymous Taylor rule discussed in Taylor (1993), the shadow rate is

linear in a general state variable xt:

st = δ0 + δ1xt. (3.2)

The magnitude of δ1 determines how strongly policy makers respond to the state variable

in setting the short rate. For tractability purposes, I assume that xt is a one-dimensional

proxy for economic conditions. In a Taylor rule, there are two state variables corresponding

to the output gap and inflation relative to some benchmark, so we can also think of xt as

reflecting some combination of the output gap and inflation. Low-dimensionality is justified

by Bernanke and Boivin (2003) who show that a few factors (e.g., corresponding to principal

components) can summarize the large number of data series in a data-rich environment.

The state variable xt follows an AR(1) process under the physical measure (P):

xt+1 = µ + ρxt + σεεt+1

with εt+1 ∼ N (0, 1). Assuming that the price of risk λt is linear in the state variable (such

that there is a constant risk premium term and a time-varying risk premium term)

λt = λ0 + λ1xt,
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and the log stochastic discount factor is essentially affine

Mt+1 = exp
(
−it −

1
2

λ2
t − λtεt+1

)
,

the state variable xt also follows an AR(1) process under the risk neutral measure (Q):

xt+1 = µQ + ρQxt + σεεQ
t+1 (3.3)

with εQ
t+1

Q∼ N (0, 1).

Given this setup, the forward rate fn,t, defined as the interest rate on a 1-period invest-

ment to be made at t + n, is approximately

fn,t ≈ i + σQ
n

((
an + bnxt − i

σQ
n

)
Φ
(

an + bnxt − i
σQ

n

)
+ φ

(
an + bnxt − i

σQ
n

))
. (3.4)

Φ and φ are the standard normal CDF and pdf, respectively. Appendix C.1 sketches the

derivation for the forward rate and provides expressions for an, bn, and σQ
n in terms of

model parameters.

3.2.2 Expected Duration of the ZLB

In addition to observing the forward rate, we can see how the model illustrates the extent to

which the ZLB binds, loosely termed the expected duration of the ZLB. In particular, the

probability the ZLB still binds at time t + n is simply measured by the probability that the

shadow rate at that time is still below the lower bound:

PrQ
t [st+n < i] = Φ

(
i− an − bnxt

σQ
n

)
. (3.5)

Appendix C.1 expresses an in terms of model parameters and shows the conditional distri-

bution of st+n, which directly implies the above probability. The expected duration of the

ZLB in the model can change either because economic conditions change or because the

responsiveness of monetary policy changes.

Proposition 1 As economic conditions worsen (xt is more negative), the probability that the ZLB
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is binding in the future increases: ∂/∂xt

(
PrQ

t [st+n < i]
)
< 0. Symmetrically, as monetary policy

becomes less responsive to economic conditions (δ1 is smaller), the probability that the ZLB is binding

in the future increases: ∂/∂δ1

(
PrQ

t [st+n < i]
)
< 0.

Appendix C.2 works out the comparative statics in the above proposition, but the

intuition is fairly straightforward. First, as economic conditions worsen at t, the shadow

rate is set lower in Eq. (3.2), which increases the probability that the shadow rate in the

future remains below the lower bound. Second, consider a small Taylor rule coefficient in

Eq. (3.2), which implies that the shadow rate is set close to δ0 and largely independent of

economic conditions. Assuming that i > δ0 such that it is still possible for the ZLB to bind

in this scenario, an unresponsive policy rule means that the shadow rate in the future is

also set close to δ0 and relatively less influenced by economic conditions then. This insight

in turn explains the increased probability that the ZLB still binds.

3.2.3 Predictions for Forward Rate Sensitivity to MNAs

Finally, the model delivers three predictions on the sensitivity of interest rates to news about

macroeconomic fundamentals and how this sensitivity interacts with the expected duration

of the ZLB. This sensitivity is defined by ∂ fn,t/∂xt, which quantifies how a change in our

proxy for economic conditions affects the forward rate defined in Eq. (3.4). Though I focus

on the forward rate, the predictions below hold more generally. For example, the predictions

hold for the yield to maturity of a zero-coupon bond, which we can mechanically see by

expressing the yield to maturity in terms of a series of forward rates. Proofs for each of the

three propositions below are in Appendix C.2.

Proposition 2 News that economic conditions are “better”-than-expected (xt is more positive)

increases forward rates at all maturities: ∂ fn,t/∂xt > 0.

Examples of “better”-than-expected macroeconomic news include higher-than-expected
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inflation or output and lower-than-expected unemployment. Such a surprise increases the

shadow rate today via Eq. (3.2) and, through the persistent AR(1) process for xt, leads to a

more positive state variable in the future that increases the shadow rate at that time as well.

The resulting effect is higher interest rates.

Proposition 3 As the ZLB is expected to bind for longer (probability that the shadow rate will

be below the lower bound increases), whether because economic conditions are worse (xt is more

negative) or because monetary policy is less responsive to economic conditions (δ1 is smaller), the

sensitivity of forward rates to news about macroeconomic fundamentals decreases at all maturities:

∂/∂xt (∂ fn,t/∂xt) > 0 and ∂/∂δ1 (∂ fn,t/∂xt) > 0.

We know from Proposition 1 that poorer economic conditions and a less responsive

monetary policy reaction function both lead to an increase in the expected duration of the

ZLB. Because the shadow rate is more likely to remain below the lower bound, Eq. (3.1)

says that the nominal short rate is more likely to stay anchored at i. This anchoring of the

nominal short rate prevents interest rates at all maturities from reacting as strongly to MNA

surprises. Consider an edifying example in which the expected duration of the ZLB binds

completely for a short time such that the nominal short rate is guaranteed to equal the lower

bound within this time period. Then a small macroeconomic news surprise has no effect on

short-dated interest rates, which are set as a constant. As I show in the data, this example

corresponds to reality. Over the ZLB period, the Federal Reserve has credibly committed to

setting the federal funds rate close to zero for at least a quarter or two. The near-perfect

certainty of short maturity interest rates has resulted in essentially no sensitivity of these

rates to data surprises.

Proposition 4 The attenuation in the sensitivity of forward rates to news in Proposition 3 is

greater for longer maturity forward rates (n is larger) provided that the ZLB is sufficiently

binding (probability that the shadow rate will be below the lower bound is sufficiently large):

142



∂/∂n (∂/∂xt (∂ fn,t/∂xt)) > 0 and ∂/∂n (∂/∂δ1 (∂ fn,t/∂xt)) > 0. Otherwise, if the ZLB does not

bind sufficiently, the attenuation in the sensitivity of rates to news is decreasing in maturity n.

In other words, if the expected duration of the ZLB is sufficiently long, shorter maturity

interest rates are essentially set equal to the lower bound and are thus insensitive to

macroeconomic news. As the expected duration of the ZLB increases, the sensitivity of short

rates to data has little room to decrease. The sensitivity of longer maturity interest rates,

however, has more room to fall, since long rates are less bound by the ZLB to begin with.

Conversely, if the expected duration of the ZLB is relatively short, neither short-dated

nor long-dated interest rates are significantly constrained by the ZLB. As the expected

duration of the ZLB increases, the sensitivity of both types of interest rates has room to

decrease. Since short rates represent rates of interest over shorter time periods while long

rates represent rates of interest over longer time periods, an increase in the expected duration

of the ZLB has a more noticeable impact on the former than on the latter. For example, the

sensitivity of a 100-year bond to MNAs should not change much because the nominal short

rate is expected to stay at zero for six months instead of three months. Thus, the magnitude

of the sensitivity decrease is larger in short rates than in long rates.

3.3 Data and Basic Regressions

3.3.1 MNAs

Model predictions in hand, I turn to the data to assess how various assets react to macroe-

conomic news at the ZLB. Table 3.1 shows the full sample of MNAs considered in this

paper from December, 2008 to March, 2014. For each data release, the table presents the

name, units, number of observations, frequency, government agency or private-sector firm

responsible, and timestamp. In all, I analyze 18 economic announcements, which cover the

lion’s share of important MNAs. All of the announcements occur once a month with the

exception of Initial Jobless Claims, which is a weekly data release. The data in my sample
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Table 3.1: Full sample of MNAs from 12/17/08 to 3/6/14

Event Name Units N Freq. Source Time (ET) Sign

Change in Nonfarm Payrolls Thousands 62 M BLS 8:30 AM 1
Consumer Confidence Index 63 M CB 10:00 AM 1
CPI % ch. mom 62 M BLS 8:30 AM 1
Durable Orders % ch. mom 63 M Census 8:30 AM 1
Existing Home Sales Millions 63 M NAR 10:00 AM 1
Factory Orders % ch. mom 62 M Census 10:00 AM 1
Housing Starts Millions 60 M Census 8:30 AM 1
Industrial Production % ch. mom 62 M Fed 9:15 AM 1
Initial Jobless Claims Thousands 273 W ETA 8:30 AM -1
ISM Manufacturing Index 63 M ISM 10:00 AM 1
ISM Non-Manufacturing Index 63 M ISM 10:00 AM 1
Leading Index Index 63 M CB 10:00 AM 1
New Home Sales Thousands 62 M Census 10:00 AM 1
Pending Home Sales % ch. mom 63 M NAR 10:00 AM 1
Personal Income % ch. mom 63 M BEA 8:30 AM 1
PPI % ch. mom 61 M BLS 8:30 AM 1
Retail Sales % ch. mom 62 M Census 8:30 AM 1
Unemployment Rate % rate 62 M BLS 8:30 AM -1

Notes: Freq. refers to monthly (M) or weekly (W). Source uses the following acronyms: BEA, Bureau of
Economic Analysis; BLS, Bureau of Labor Statistics; CB, Conference Board; Census, Census Bureau; ETA,
Employment and Training Administration; Fed, Federal Reserve Board of Governors; ISM, Institute for Supply
Management; and NAR, National Association of Realtors.

are released at either 8:30 AM, 9:15 AM, or 10:00 AM ET.

While the economic announcements are officially produced and released by various

government agencies (e.g., the Bureau of Labor Statistics), and private-sector firms (e.g., the

National Association of Realtors), I collect the data from Bloomberg. Specifically, for each

event, I download both the actual data release and the expected data release, the latter of

which comes from a survey of economists. The difference between the actual number and

the expected number constitutes the news that impacts asset prices.

The metric of the news surprise that I use in this paper is the conventional standardized

news variable employed by Balduzzi, Elton, and Green (2001) as well as many subsequent

papers in the literature of asset price reactions to MNAs. For economic indicator i, the
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standardized news variable at time t is

Si,t =
Ai,t −Et− [Ai,t]

σ̂i
. (3.6)

Ai,t is the actual data, Et− [Ai,t] is the expectation of the data from the Bloomberg survey,

and σ̂i is the sample standard deviation of Ai,t −Et− [Ai,t]. Consistent with the model, I

define the variable such that a positive value corresponds to “better”-than-expected data;

i.e., higher-than-expected inflation or output and lower-than-expected unemployment. For

this reason, I multiply the Initial Jobless Claims and the Unemployment Rate data by -1

while keeping the sign of the other data unchanged, as shown by the sign column of Table

3.1. As the name suggests, the standardized news variable provides a single metric that

is standardized across different types of news about macroeconomic fundamentals and

allows for comparability. This is important because different types of news are released

with different units.

The use of the standardized news variable in conjunction with data from Bloomberg

is common in testing the effect of macroeconomic news surprises on asset prices. Many

financial market participants use Bloomberg to get a sense of the consensus forecast for any

given MNA and to see how the actual data compares to the forecasted data at the time of

the release. The survey expectation is furthermore unbiased and unlikely to be stale, since

economists can adjust their forecasts until the very last moment.

3.3.2 High-Frequency Asset Prices

I consider three different futures contracts for the asset prices in my analysis: Eurodollar

Futures (ED), 10-Year U.S. Treasury Note Futures (TY), and E-mini S&P 500 Futures (ES). I

obtain intraday tick data from Tick Data, a data vendor. The use of futures data is important

because many MNAs are released early in the morning before equity markets officially open

at 9:30 AM ET. Whereas some markets are less liquid at that early hour, futures markets

are already active. Not surprisingly, financial market participants also tend to react to data

surprises by trading in these futures directly.
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I use ED and TY futures data to evaluate the impact of MNAs on interest rates. ED

futures settle at maturity based on the spot 3-month LIBOR rate, so the ED future with

a certain maturity corresponds roughly to the 3-month forward rate at that maturity. I

construct series of generic ED contracts with different maturities in a straightforward manner.

For EDn, the n-quarter(s) out ED future is simply the nth contract with n = 1, 2, . . . , 16.

Each contract is rolled over a few days before maturity. The ED1 contract thus corresponds

roughly to the 3-month forward rate that is 1 quarter out, while the ED16 contract is the

3-month forward rate that is 16 quarters out. By considering how the full range of ED1 to

ED16 futures responds to MNA surprises, I am able to distinguish interest rate reactions

at different maturities. Since the longest maturity I consider for ED futures is 16 quarters

or approximately 4 years, I also analyze the front TY futures, which corresponds to a

longer-dated interest rate.

Assessing the reaction of the stock market to macroeconomic news surprises is more

straightforward: I directly use the front ES futures contract.

3.3.3 Basic Regressions for All Assets

The motivating regression in evaluating the impact of a MNA surprise on asset prices is

simply to regress asset returns Rt in a window around event i on the Si,t standardized news

variable defined in Eq. (3.6):

Rt = αi + βiSi,t + εt. (3.7)

βi measures the reaction of the asset to a news surprise and is the object of focus. The

availability of high-frequency asset prices allows me to set the event window to ±5 minutes

around the event, which is an interval comparable to other studies that have used intraday

return data. It is thus likely that asset prices vary over the window only due to any surprise

embedded in the news announcement.

Table 3.2 documents the β̂i from estimating Eq. (3.7) for various asset-MNA combinations

over the ZLB date range. For example, consider Housing Starts and the ED16 futures

contract. A one unit positive standardized news surprise in Housing Starts increases the
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Table 3.2: Reactions to news during the ZLB

Event Name ED1 ED4 ED8 ED16 TY ES

β̂ (bps) β̂ (bps) β̂ (bps) β̂ (bps) β̂ (%) β̂ (%)

Change in NFP -0.340** -1.58 0.110 2.511 -0.116 0.158
Consumer Confidence 0.059 0.486*** 0.855*** 0.868*** -0.053*** 0.196***
CPI 0.017 0.316* 0.494** 0.657** -0.037*** -0.046
Durable Orders -0.004 0.332** 0.834*** 1.383*** -0.058*** 0.123***
Existing Home Sales 0.027 0.264** 0.579*** 0.704*** -0.036*** 0.143***
Factory Orders 0.037 0.148 0.239 0.347* -0.016 0.035*
Housing Starts -0.066 0.393*** 1.110*** 2.153*** -0.080*** 0.095***
Industrial Production 0.032 0.132 0.288** 0.323** -0.017** 0.052***
Initial Jobless Claims 0.007 0.293*** 0.563*** 0.561** -0.037*** 0.088***
ISM Manufacturing 0.017 0.608*** 1.451*** 2.065*** -0.110*** 0.228***
ISM Non-Manufacturing 0.061 0.893*** 1.628*** 2.004*** -0.098*** 0.162***
Leading Index 0.088* 0.148 0.305* 0.187 -0.014 0.074**
New Home Sales -0.051 0.835*** 1.410*** 1.523*** -0.084*** 0.237***
Pending Home Sales -0.015 0.327*** 0.690*** 0.822*** -0.037*** 0.101***
Personal Income 0.034 0.090 0.054 0.118 -0.006 0.019**
PPI 0.052 0.552*** 0.662** 0.694* -0.039** 0.041
Retail Sales 0.222*** 0.992*** 1.672*** 1.659*** -0.096*** 0.215***
Unemployment Rate 0.014 0.294 0.560 0.980 -0.027 0.037

All 0.017 0.268*** 0.617*** 0.831*** -0.043*** 0.097***

Notes: Regressions of asset returns on standardized news for each event i and then grouping all events together
(last row): Rt = αi + βiSi,t + εt. The left-hand side variable Rt is the asset return in a ±5 minute window
around a MNA (basis points change in the forward rate associated with ED futures or % change in the price
level associated with TY and ES futures). The right-hand side variable Si,t is defined as the actual data less the
expected data based on a Bloomberg survey of economists, all normalized by the sample standard deviation
of the actual less the expected difference: Si,t = (Ai,t −Et− [Ai,t]) /σ̂i. t-statistics (not shown) are based on
heterosckedasticity-consistent standard errors. *** denotes significance at 1%, ** denotes significance at 5%,
and * denotes significance at 10%.
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3-month forward rate 4 years out approximately 2.15 bps, which is both statistically and

economically significant. Examining Table 3.2, we clearly see that the reaction of ED1 to a

news surprise is muted, as β̂i is generally small and statistically insignificant. This finding

is not surprising given that interest rates are almost certain to remain fixed near zero for

the next several months due to the ZLB. Results for ED4, ED8, and ED16 futures contracts

show that the reactions of longer-dated interest rates to a news surprise is both statistically

and economically significant and in the predicted direction: a positive standardized news

surprise increases interest rates. The column corresponding to the TY futures tells the same

story: the TY futures data is left in terms of prices instead of yields, so a positive news

surprise that increases yields decreases prices. The final column of Table 3.2 shows that a

positive data surprise also has a positive, significant impact on the stock market across a

broad range of economic indicators.

Finally, the last row of Table 3.2 displays the results of running Eq. (3.7) grouping

together all 18 MNAs. A one unit positive standardized news surprise in any macroeconomic

announcement leads to a 0.017 bps, 0.268 bps, 0.617 bps, and 0.831 bps increase in the

forward rate implied from the ED1, ED4, ED8, and ED16 contracts, respectively. This same

surprise leads the TY futures contract to decrease by 0.043% and the ES futures contract to

increase by 0.097%.

3.4 Empirical Test of Model Predictions for Interest Rates

While Table 3.2 shows the responses of interest rates to macroeconomic news surprises,

the table is insufficient to formally demonstrate the three predictions of the shadow rate

term structure model. In particular, Table 3.2 does not make use of time variation in the

sensitivity of interest rates to MNAs; rather, it presents one number to summarize the

estimated sensitivity of a given interest rate to economic data over the entire ZLB period. I

formally test the model predictions for interest rates by focusing on ED futures and using

TY futures as a robustness check.
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3.4.1 Methodology

For an ED future with maturity n, I perform a daily 1-year rolling regression over the ZLB

period analogous to Eq. (3.7):

∆ fn,t = αn + βnSt + εn,t, (3.8)

with the regression grouping together all 18 MNAs identical to the last row of Table 3.2.

The result of the rolling regression is a time series of β̂n,t, the estimated sensitivity of the

3-month forward rate n-quarter(s) out over a 1-year window centered at t. By grouping

together all the MNAs together, Eq. (3.8) artificially imposes the constraint that fn,t reacts

in the same manner to surprises in different data releases. This constraint is clearly an

oversimplification; e.g., it is well known that the Change in NFP (nonfarm payrolls) data

release is the most closely watched economic indicator with the greatest impact on financial

markets. The upshot of forcing interest rates to react the same to different macroeconomic

series is the greater statistical power from estimating Eq. (3.8) over more observations.

Furthermore, the time series of β̂n,t from estimating the regression over any specific data

release without grouping has a similar shape to the time series of β̂n,t from estimating

the regression over all 18 MNAs. Swanson and Williams (2014) suggest a nonlinear least

squares regression to measure the time-varying sensitivity of interest rates in a way that

does allow for differential reactions to different macroeconomic news. Their methodology

imposes that the relative magnitudes of the sensitivity of interest rates to different data

releases are constant over time. I choose to not employ their technique for two reasons. The

first is that their method requires choosing a benchmark time period when interest rates

react “normally” to macroeconomic data. The choice of this benchmark period can affect

the sensitivity of interest rates to data outside of the benchmark period. More importantly,

the time-varying sensitivity of interest rates from simply grouping together all the MNAs

as I have done is similar in shape to that produced by the Swanson and Williams (2014)

methodology.

Using the time series of β̂n,t, I regress β̂n,t on a proxy for the expected duration of the
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ZLB:

β̂n,t = γn + δnZLBt + ηn,t. (3.9)

δn measures how the estimated sensitivity of fn,t to MNAs changes as the expected duration

of the ZLB changes. The three model predictions then map neatly to the following testable

implications.

Proposition 2 implies that β̂n,t > 0 for all n and for all 1-year windows centered at t:

positive news surprises increase interest rates. This result is well-established empirically,

and we have already seen some evidence in Table 3.2. In the table, forward rates implied

from ED contracts clearly jump higher in reaction to positive macroeconomic news. At the

same time, prices fall (yields rise) of TY futures. The rolling regression methodology in this

section confirms the prediction for all 1-year windows.

Proposition 3 implies that δ̂n < 0 for all n assuming that ZLBt is a positive proxy for

the expected duration of the ZLB. As the ZLB is expected to bind for longer, which could

be because economic conditions are worse or because monetary policy is less responsive

to economic conditions, the sensitivity of interest rates to MNAs decreases. If ZLBt is a

negative proxy for the expected duration of the ZLB, then the prediction mechanically

switches to δ̂n > 0.

Proposition 4, the last of the three predictions, implies that
∣∣δ̂n
∣∣, the magnitude of δ̂n, is

hump-shaped in n (first increasing, then decreasing). Consider four interest rates with the

following maturities: n1 < n2 � n3 < n4. The attenuation in the sensitivity of interest rates

to data is greater for the n2-maturity rate than for the n1-maturity rate because the sensitivity

of the n1-maturity rate is more constrained by the ZLB and has little room to decrease. In

contrast, the sensitivity of the n2-maturity rate has more room to fall as the ZLB becomes

more binding. The attenuation in the sensitivity of interest rates to data is smaller for the

n4-maturity rate than for the n3-maturity rate because neither rates are greatly constrained

by the ZLB to begin with. Both the n3- and n4-maturity rates encompass a time period over

which the ZLB is binding. As the expected duration of the ZLB increases incrementally,

the ZLB is binding for more of the period encompassed by the n3-maturity rate than for
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that encompassed by the n4-maturity rate, which explains why the sensitivity of the former

is attenuated more than that of the latter. For example, if the expected duration of the

ZLB increased s.t. all rates out to n3 flattened to the lower bound, the sensitivity of the

n3-maturity rate would drop to zero, while the sensitivity of the n4-maturity rate would still

be non-zero.

3.4.2 Survey Proxy for Expected Duration of the ZLB

Figure 3.2 illustrates the results of applying the abovementioned methodology. In particular,

the figure shows the time-varying sensitivities of various interest rates to MNAs and how

the expected duration of the ZLB affects these sensitivities. Focusing first on Panels A, B, C,

and D, which correspond to the interest rates associated with the ED1, ED4, ED8, and ED16

futures contracts, respectively, the right-hand plots shows two time series. “fcsts,” plotted on

the right y-axis, is the same variable shown in the right-hand plot of Figure 3.1: the median

anticipated number of quarters until the first rate hike based on primary dealer surveys by

the FRBNY. Since the FRBNY surveys primary dealers only once every month or every other

month, I create a daily variable with a simple forward fill. The result is the “fcsts” variable

that I use as the survey proxy for the expected duration of the ZLB; i.e., ZLBt in Eq. (3.9).

The second time series plotted in each right-hand plot is the time-varying sensitivity of a

given interest rate to MNAs β̂n,t in Eq. (3.9). The FRBNY started publishing primary dealer

surveys in January, 2011, so I necessarily restrict my analysis such that the earliest t in Eq.

(3.9) is 1/1/11. For each panel, the left-hand plot is simply a scatterplot of “beta” on “fcsts”

that graphically demonstrates the relationship in Eq. (3.9). Each point in the scatterplot

is color-coded based on the timestamp: red for 12/17/08 to 8/9/11 corresponding to the

period of general forward guidance (“fwd”); green for 8/10/11 to 12/12/12 corresponding

to the period of calendar guidance (“cdr”); and blue for 12/13/12 to 3/6/14 corresponding

to the period of data thresholds (“dat”).

Verifying Proposition 2, we see in Panels A to D of Figure 3.2 that β̂n,t > 0: the dots in

the left-hand scatterplots, or equivalently the time-series of “beta” in the right-hand plots,
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are generally positive. Positive MNA surprises increase interest rates at all maturities and

at all points in time. That some of the β̂n,t are essentially at zero is entirely plausible and

corresponds with the second prediction that a binding ZLB reduces the sensitivity of interest

rates to MNAs. In the few cases that β̂n,t is negative (Panel A of Figure 3.2), the magnitudes

are economically small and statistically indistinguishable from zero.

Verifying Proposition 3, we see in the scatterplots that there is a negative relationship

between β̂n,t and ZLBt; i.e., δ̂n < 0 in Eq. (3.9). Table 3.3 presents the δ̂n for n = 1, . . . , 16:

all the δ̂n < 0 and are statistically significant. As primary dealers expect the ZLB to bind

for longer and the first rate hike to be later, the sensitivity of interest rates at all maturities

to MNAs becomes smaller. This link is particularly apparent in Panels B, C, and D for

longer-maturity interest rates. In Panel A, on the other hand, the negative relationship is less

clear for a simple reason: the ZLB binds to such an extent that the 1 quarter out 3-month

forward rate is essentially fixed at the lower bound, and β̂1,t is therefore approximately zero.

Nonetheless, δ̂1 is negative and significantly different from zero in Table 3.3. The economic

magnitudes of δ̂n are significant as well. For example, δ̂8 = −0.116 in Table 3.3 implies

that a one quarter increase in the expected duration of the ZLB lowers the sensitivity of

the 8 quarters out 3-month forward rate 0.116 bps. As the scatterplot in Panel C shows,

increasing the expected duration of the ZLB from 0 quarters to 10 quarters thus flattens

the sensitivity of this forward rate from around 1.2 bps to a unit of standardized news to

essentially nothing. Figure 3.2 also provides color on the effect of a monetary policy move

such as the introduction of calendar guidance in August, 2011, a date marked by the first

vertical line in the right-hand plots. By declaring that the federal funds rate would be held

at exceptionally low levels until mid-2013, the Federal Reserve increased primary dealers’

expected duration of the ZLB approximately 4 quarters, from around 5 quarters to around 9

quarters. As predicted, the sensitivity of interest rates to MNAs subsequently plummeted.

Finally, verifying Proposition 3, we see in Table 3.3 that the magnitude of δ̂n is first

increasing in n and then decreasing. The attenuation in the sensitivity of interest rates to

macroeconomic news is greatest for intermediate maturity rates, as the ZLB has already
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Table 3.3: Attenuation in the sensitivity of ED futures due to the ZLB using the survey proxy

Rate δ̂n Rate δ̂n Rate δ̂n Rate δ̂n

ED1 -0.007*** ED5 -0.079*** ED9 -0.124*** ED13 -0.093***
ED2 -0.003*** ED6 -0.107*** ED10 -0.122*** ED14 -0.094***
ED3 -0.027*** ED7 -0.112*** ED11 -0.117*** ED15 -0.078***
ED4 -0.050*** ED8 -0.116*** ED12 -0.091*** ED16 -0.082***

Notes: First-stage regression is a daily 1-year rolling regression over the ZLB period that aggregates all 18
MNAs: ∆ fn,t = αn + βnSt + εn,t. ∆ fn,t is the basis points change in the forward rate implied from the EDn
contract in a ±5 minute window around a MNA. The right-hand side variable St aggregates Si,t for MNA i.
Si,t is defined as the actual data less the expected data based on a Bloomberg survey of economists, all normalized
by the sample standard deviation of the actual less the expected difference: Si,t = (Ai,t −Et− [Ai,t]) /σ̂i.
Second-stage regression takes the estimated β̂n,t corresponding to the first-stage regression over a 1-year
window centered at t and regresses β̂n,t on ZLBt: β̂n,t = γn + δnZLBt + ηn,t. ZLBt is the median number of
quarters until the first rate hike based on primary dealer surveys by the FRBNY. t-statistics (not shown) are
based on heterosckedasticity-consistent standard errors. *** denotes significance at 1%, ** denotes significance
at 5%, and * denotes significance at 10%.

constrained the sensitivity of short-term rates yet is not particularly relevant for long-term

rates.

Panel E of Figure 3.2 provides a sanity check of the results using the TY futures contract

instead of ED futures. The main difference is that the left-hand-side variable ∆ fn,t in Eq.

(3.8) is replaced by Rt, the % change in the price level of the TY contract in the ±5 minute

window around a MNA. This switch reverses the signs of Propositions 2 and 3, as we now

expect β̂n,t < 0 and δ̂n > 0. This is indeed what Panel E demonstrates: positive MNA

surprises decrease TY prices (increase TY yields), and the extent of this reaction declines as

the expected duration of the ZLB increases.

3.4.3 Fed Funds Futures Proxy for Expected Duration of the ZLB

Figure 3.3 provides additional support for the model predictions using a different proxy

for the ZLB: the implied FF rate from the FF24 futures contract, which is also one of the

variables shown in the left-hand plot of Figure 3.1. The only difference between Figures 3.2

and 3.3 is that “FF24” replaces “fcsts” as a plotted variable in the right-hand plots and as

the independent variable in the scatterplots. As the expected duration of the ZLB increases,
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the FF rate 24 months out should decrease. For example, after the introduction of calendar

guidance in August, 2011, “FF24” decreases significantly consistent with the increase in

the surveyed time until the first rate hike. Though not as direct a measure of the expected

duration of the ZLB, the implied FF rate is never a stale proxy in the way that the survey

proxy for the ZLB could be due to the infrequency of surveys. The implied FF rate is also

available before January, 2011, which allows the analysis to begin further back in time,

though Figure 3.3 covers the same period as Figure 3.2 for the sake of comparability.

Since the β̂n,t are the same in Figures 3.2 and 3.3, Panels A to D of Figure 3.3 support

Proposition 2 in the same way: β̂n,t > 0 for most (n, t) pairs and is otherwise indistinguish-

able from zero. The relationship between β̂n,t and ZLBt in Figure 3.3 is positive in the

scatterplots, which corroborates Proposition 3. The reason that Proposition 3 implies δ̂n > 0

in Figure 3.3 is that the implied FF rate from the FF24 futures contract is a negative proxy

for the expected duration of the ZLB: as the latter increases, the former decreases. Table 3.4

produces the quantitative estimates of δ̂n from performing the regression in Eq. (3.9). I drop

the constant (restrict γn = 0) based on the economic intuition that if “FF24” were to equal

zero, then the ZLB must be acutely binding and the 3-month forward rate n-quarter(s) out

must be fixed at the lower bound. Consequently, these interest rates must be insensitive

to MNAs. Though not explicitly stated, this logic is also at play in Figure 3.2. If primary

dealers expect the first rate hike to be sufficiently far in the future, the predicted sensitivity

of a given interest rate to macroeconomic news is zero, because the downward sloping

regression line intersects the x-axis. As we see in Table 3.4, the δ̂n are greater than zero with

statistically and economically significant magnitudes. A 100 bps drop in the implied FF rate

decreases the reaction of the 16 quarters out 3-month forward rate to a unit of standardized

news by 1.285 bps.

A seemingly incongruent feature of Table 3.4 is that the magnitude of δ̂n is monotonically

increasing in n, which is at odds with the hump-shaped pattern implied by Proposition 4.

That is, Table 3.4 suggests that the ZLB attenuates the sensitivity to MNAs of long-dated

rates more than that of shorter-dated rates. This result is in fact supportive of Proposition 4.
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Table 3.4: Attenuation in the sensitivity of ED futures due to the ZLB using the FF24 proxy

Rate δ̂n Rate δ̂n Rate δ̂n Rate δ̂n

ED1 0.019*** ED5 0.463*** ED9 0.988*** ED13 1.231***
ED2 0.056*** ED6 0.624*** ED10 1.067*** ED14 1.251***
ED3 0.155*** ED7 0.750*** ED11 1.124*** ED15 1.263***
ED4 0.304*** ED8 0.883*** ED12 1.185*** ED16 1.285***

Notes: First-stage regression is a daily 1-year rolling regression over the ZLB period that aggregates all 18
MNAs: ∆ fn,t = αn + βnSt + εn,t. ∆ fn,t is the basis points change in the forward rate implied from the EDn
contract in a ±5 minute window around a MNA. The right-hand side variable St aggregates Si,t for MNA i.
Si,t is defined as the actual data less the expected data based on a Bloomberg survey of economists, all normalized
by the sample standard deviation of the actual less the expected difference: Si,t = (Ai,t −Et− [Ai,t]) /σ̂i.
Second-stage regression takes the estimated β̂n,t corresponding to the first-stage regression over a 1-year
window centered at t and regresses β̂n,t on ZLBt: β̂n,t = γn + δnZLBt + ηn,t with the constraint that
γn = 0. ZLBt is the implied FF rate (%) from the FF24 futures contract. t-statistics (not shown) are based on
heterosckedasticity-consistent standard errors. *** denotes significance at 1%, ** denotes significance at 5%,
and * denotes significance at 10%.

The reason is that by setting γn = 0 in Eq. (3.9), I anchor each scatterplot with a point at the

origin that corresponds to the ZLB binding “forever” such that the sensitivity of interest

rates to data is zero. As “FF24” decreases, the sensitivity of short-dated rates falls quickly

to zero and remains there, which leads to a small magnitude of δ̂n. As “FF24” decreases,

the sensitivity of long-dated rates initially remains above zero. As “FF24” nears zero and

the ZLB binds for an increasingly longer time, the sensitivity of these long-dated rates

must eventually collapse to zero by construction, and the suddenness of this attenuation is

reflected in the larger magnitude of δ̂n. The pattern in δ̂n thus comes from using the linear

specification in Eq. (3.9) to analyze the nonlinear relationship between “beta” and “FF24”.

In results not shown, estimating an unconstrained Eq. (3.9) without restricting γn = 0 does

lead to the magnitude of δ̂n having a hump-shaped pattern in n.

As in Figure 3.2, Panel E of Figure 3.3 provides a sanity check of the results using the TY

futures contract instead of ED futures. We see that β̂n,t < 0 and δ̂n < 0 as expected: positive

MNA surprises decrease TY prices (increase TY yields), and the extent of this reaction

declines as the implied FF rate decreases.
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3.5 Stock Market’s Sensitivity to MNAs

3.5.1 Methodology and Results

Having looked at the sensitivity of interest rates to MNAs and how the ZLB may have

affected this sensitivity, I turn the analysis to another important asset: the stock market. I

first use the empirical framework already presented for interest rates and let the data speak

for itself. That is, I run a daily 1-year rolling regression over the ZLB period replacing the

left-hand variable of Eq. (3.8) with Rt, the % change in the price level of the ES contract

in the ±5 minute window around a MNA. Using the resulting time series of β̂s,t, I run Eq.

(3.9) using the two proxies for the expected duration of the ZLB: the median surveyed time

until the first rate hike and the implied FF rate from the FF24 futures contract.

Analogous to Figures 3.2 and 3.3, Figure 3.4 shows the results of this methodology for

stocks. Panel A presents findings using the survey proxy “fcsts” for ZLBt, and Panel B

uses the future FF rate “FF24” for ZLBt. Focusing on the “beta” in the right-hand plots, we

see that from early 2011 to mid-2012, stocks reacted on the order of 10 to 15 bps for every

unit of standardized news. Starting in mid-2012, the sensitivity of stocks started dropping

significantly, reaching a level of around 2 bps for every unit of standardized news in 2014.

The scatterplots do not show a clear relationship between “beta” and the expected duration

of the ZLB. Up until mid-2012, the sensitivity of stocks to MNAs seemed to increase as the

ZLB became more binding. The subsequent sharp drop in the sensitivity of stocks to data

does not have a clear explanation, however, for the expected duration of the ZLB stayed

stable before moderately decreasing.

3.5.2 Decomposition: Interest Rate News vs. Cash Flow and Risk Premium

News

To better understand the time-varying sensitivity β̂s,t of stocks to economic data in Figure

3.4, I utilize a standard decomposition of stock returns. When stocks jump in response

to economic data, we know based on the work of Campbell (1991) and Campbell and
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Panel A: Survey proxy for the ZLB

Panel B: FF24 proxy for the ZLB

Figure 3.4: Time-varying sensitivities of stocks to MNAs and the impact of the ZLB

Notes: See Appendix C.3.3.
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Ammer (1993) that the reaction could be due to any combination of a change in expected

future dividends (cash flow news), a change in expected future interest rates (interest rate

news), and a change in expected future excess returns (risk premium news). To see this

decomposition algebraically, I follow Boyd, Hu, and Jagannathan (2005) in using a simple

Gordon growth model:

P =
D (1 + G)

R + Π− G
(3.10)

with P the price level of the stock market, D the current dividends of constituent stocks, G

a constant growth rate in the dividends, R a long-dated risk-free rate, and Π the equity risk

premium. Defining S as the surprise in a given MNA, (dP/P) /dS is the percentage change

in the stock market in response to a data surprise and maps to β̂s,t. Using the Gordon

growth model, we see that

1
P

dP
dS

=
1
P

D dG
dS (R + Π− G)−

(
dR
dS + dΠ

dS −
dG
ds

)
D (1 + G)

(R + Π− G)2

=− P
D

1
1 + G

(
dR
dS

+
dΠ
dS
−
(

1 +
D
P

)
dG
dS

)
≈− P

D

(
dR
dS

+
dΠ
dS
− dG

dS

)
(3.11)

with the approximation in the last step holding for small G and small D/P. As qualitatively

stated previously, the reaction of stocks to macroeconomic news is due to a combination

of cash flow news (dG/dS term), interest rate news (dR/dS term), and risk premium news

(dΠ/dS term).

Focusing on the interest rate channel, the interest rate news term

NR ≡ −
(

P
D

)(
dR
dS

)
(3.12)

has two components: P/D, the price-to-dividend ratio, and dR/dS, the sensitivity of interest

rates to MNAs. In general, the interest rate channel attenuates the sensitivity of stocks to

economic data such that the absence of this channel would increase the magnitude of the

stock market reaction to data. To see this, consider a positive MNA surprise. Based on
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Figure 3.4 and Table 3.2 in addition to the literature on the reaction of stocks to MNAs, we

know that positive MNA surprises tend to increase the stock market, so the left-hand side of

Eq. (3.11) is positive. We also know from Proposition 2 that positive MNA surprises increase

interest rates, so dR/dS > 0. Thus the interest rate news term NR < 0, which reduces

the magnitude of the stock market reaction to positive MNA surprises. The intuition is

simply that higher interest rates discount dividends more heavily, which reduces stock

prices. The exact same reasoning works for negative MNA surprises: stocks tend to decrease

((dP/P) /dS < 0) as do interest rates (dR/dS < 0), so the interest rate news term (NR > 0)

has an offsetting effect on the stock market due to the discounting of dividends at lower

interest rates.

If the reaction of interest rates to MNAs offsets the reaction of stocks to MNAs, logic

dictates that, all else equal, when the sensitivity of interest rates to MNAs is lower, the

sensitivity of stocks to MNAs is higher. Since we have already seen from Proposition 3 that

the sensitivity of interest rates to macroeconomic news decreases as the ZLB is expected to

bind for longer, we might expect to see that longer expected duration of the ZLB increases

the sensitivity of stocks to macroeconomic news. Turning to the data, the right-hand plots

of Figure 3.4 suggest that this positive relationship between the expected duration of the

ZLB and the sensitivity of stocks holds only from early 2011 to mid-2012 (“early period”)

but not from mid-2012 to the end of the sample (“late period”). In the early period, the

surveyed time until the first rate hike rose and the implied FF rate 24 months out fell, so

the sensitivity of interest rates to data decreased. At the same time, the sensitivity of stocks

to data increased, as we would expect if the interest rate news term were dominant in Eq.

(3.11). In the late period, the expected duration of the ZLB was stable before decreasing

modestly, which resulted in a stable and then modestly increasing sensitivity of interest

rates to data. The sensitivity of the stock market to data, however, decreased continuously

and precipitously throughout this period.

We can actually calculate the magnitude of the interest rate news term NR in the data.

To proxy for P/D in Eq. (3.12), I use the price-to-dividend ratio of the S&P 500 shown as
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“dp” in the right-hand plot of Figure 3.5 (right y-axis). dR/dS in Eq. (3.12) is the number

of basis points that R changes by due to a data surprise. Since R is the interest rate on a

long-term risk-free bond, I measure dR/dS using the sensitivity of the forward rate from

the ED16 contract; i.e., “beta” β̂16,t in Panel D of Figures 3.2 and 3.3. The right-hand plot of

Figure 3.5 plots β̂16,t as “betas_ED16” (left y-axis). I use the ED16 contract because it is the

longest-maturity ED futures contract in my data, and β̂16,t is conveniently already measured

in basis points. Note that while the TY futures contract corresponds to a longer maturity

interest rate than the ED16 contract, converting TY prices to yields is a complicating step.

Figure 3.5 plots the interest rate news term in the right y-axis of the left-hand plot as

“only_R.” We see a hump-shaped pattern in the interest rate news term, consistent with our

intuition. The expected duration of the ZLB increased in the early period before decreasing

in the late period, which resulted in the interest rate news term decreasing in magnitude

(from 75 bps to 25 bps per unit of standardized news) and then increasing (back to 75 bps).

It is clear that if only the interest rate news term were time-varying in Eq. (3.11), we would

expect a positive relationship between the expected duration of the ZLB and the reaction of

stocks to MNAs.

We cannot, however, ignore the reality that the change in the stock market in response

to a data surprise also depends on cash flow and risk premium news. Time variation in

the two former terms must offset time variation in interest rate news to produce the final

time-varying sensitivity of stocks to data. I back out the cash flow and risk premium news

terms by substracting the interest rate news term from the overall reaction of stocks to data:

NCF+RP ≡
1
P

dP
dS
− NR ≈ −

P
D

(
dΠ
dS
− dG

dS

)
.

In the data, NCF+RP is just the β̂s,t of stocks, plotted as “beta” in the right-hand graph of

Figure 3.5, less the “only_R” interest rate news term. The left-hand graph of Figure 3.5 plots

the resulting cash flow and risk premium news terms as “PI_G” on the right y-axis. As

expected, these two news terms demonstrate time-varying sensitivity to MNAs; in particular,

a hump-shaped pattern that is almost a reflection of the hump-shaped pattern in the interest
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Figure 3.5: Decomposition of the stock market reaction to MNAs into interest rate news versus cash flow and
risk premium news

Notes: The right-hand plot shows two time series. “dp,” plotted on the right y-axis, is the dividend-to-price
ratio of the S&P 500. “beta_ED16,” plotted on the left y-axis, is the sensitivity of the forward rate from the
ED16 contract; i.e., “beta” β̂16,t in Panel D of Figures 3.2 and 3.3. The left-hand plot shows three time series.
“beta,” plotted on the left y-axis, is the sensitivity of the stock market from the ES contract; i.e., “beta” β̂s,t in
Figure 3.4. “only_R,” plotted on the right y-axis, is the portion of the stock market reaction to MNAs attributed
to interest rate news: NR ≡ − (P/D) (dR/dS). I compute “only_R” by using “dp” to proxy for P/D and
β̂16,t to proxy for dR/dS. “PI_G,” also plotted on the right y-axis, is the portion of the stock market reaction to
MNAs attributed to cash flow and risk premium news: NCF+RP ≡ − (P/D) (dΠ/dS− dG/dS). I compute
“PI_G” simply by subtracting “only_R” from β̂s,t, as it is an accounting identity that a change in the stock
market must come from either interest rate news or cash flow and risk premium news (or a combination). The
two vertical lines correspond to the dates of the August, 2011 FOMC meeting (when calendar guidance was
introduced) and the December, 2012 FOMC meeting (when data thresholds was introduced), respectively.
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rate news term. At the beginning of the early period, a standardized unit of news changed

the combined expectations of future dividends and excess returns by 90 bps. This reaction

decreased steadily to less than 50 bps by mid-2012 before increasing back to 75 bps toward

the end of the sample.

The decomposition in Figure 3.5 yields a few interesting observations. First, the magni-

tudes of the interest rate news term and the combined cash flow and risk premium news

terms are an order larger than the magnitude of β̂s,t. Second, while NCF+RP appears to be

a reflection of NR, the symmetry is clearly not perfect. For example, at the beginning of

2011, cash flow and risk premium news reacted more strongly to data than interest rate

news, so stocks on net increased by 10 to 15 bps to a positive unit of surprise. Toward

the beginning of 2014, the magnitude of NCF+RP and NR terms were nearly identical, so

stocks on net increased by only 2 bps to a positive unit of surprise. Finally, relating the

expected duration of the ZLB to time-variation in the cash flow and risk premium news

terms is intriguing. As the expected duration of the ZLB increased over the early period,

the magnitude of NCF+RP decreased. Then, as the expected duration of the ZLB stabilized

before decreasing over the late period, the magnitude of NCF+RP increased again. The

result is a negative correlation between the expected duration of the ZLB and magnitude of

the combined change in expected future dividends and expected future excess returns in

response to macroeconomic news.

An obvious extension is to break NCF+RP into its constituent cash flow news and risk

premium news terms. This step would allow us to separately analyze time variation in how

expectations of dividends react to macroeconomic news and how expectations of excess

returns react to macroeconomic news. The challenge is finding reliable empirical measures of

changes in expected dividends and expected excess returns over short time periods around

MNAs. Boyd, Hu, and Jagannathan (2005) attempt to decompose the reaction of stocks to

unemployment news into each of the three news components by using monthly proxies

for cash flow news and risk premium news. A primary concern with this strategy is that

unemployment news only arrives once a month, so any monthly proxy necessarily captures
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information aside from unemployment releases. As I consider many MNAs throughout

a month, it would be challenging to map the impact of a given MNA to monthly proxies

for cash flow and risk premium news. Bernanke and Kuttner (2005) attempt a different

decomposition of stocks to surprises in the FF rate. They use a monthly VAR based off the

methodology of Campbell (1991) and Campbell and Ammer (1993). A monthly VAR for my

purposes, however, would run into the same problems just mentioned.

3.6 Conclusion

This paper has shown how the reactions of interest rates and stocks to macroeconomic

news have changed over the ZLB period. A key reason for these time-varying reactions

is the expected duration of the ZLB. In a shadow rate term structure model, I analytically

derive predictions for how interest rates should react to data surprises. First, “positive” data

surprises increases interest rates. Second, as the expected duration of the ZLB increases,

whether because economic conditions deteriorate or because monetary policy shifts, interest

rates become less sensitive to data surprises. Third and finally, this attenuation in the

sensitivity of interest rates is greater for medium-maturity rates. Each of these three

predictions is statistically and economically significant in the data. Insofar as the extent to

which interest rates move in response to MNAs contains information on the effectiveness of

monetary policy and fiscal policy, my results provide policy insights.

The sensitivity of interest rates to news further affects the sensitivity of the stock market

to news. If the former were the only factor influencing the latter, greater expected duration

of the ZLB would increase the responsiveness of stocks to MNAs. This result does not

appear to hold in the data because the reaction of the stock market to news also depends on

changes in expected future dividends and changes in expected future excess returns. The

expected duration of the ZLB does, however, correlate negatively with the magnitude of this

cash flow plus risk premium news term. An interesting idea going forward is to separate

cash flow news from risk premium news and see how the magnitude of each term varies

over time.

165



References

Acharya, Viral V. and Timothy C. Johnson, 2007, “Insider Trading in Credit Derivatives,”
Journal of Financial Economics 84, 110-141.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Heiko Ebens, 2001,
“The Distribution of Stock Return Volatility,” Journal of Financial Economics 61, 43-76.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Clara Vega, 2003,
“Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange,”
American Economic Review 93, 38-62.

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Clara Vega, 2007,
“Real-Time Price Discovery in Global Stock, Bond and Foreign Exchange Markets,” Journal
of International Economics 73, 251-277.

Back, Kerry, 1992, “Insider Trading in Continuous Time,” Review of Financial Studies 5,
387-409.

Back, Kerry, C. Henry Cao, and Gregory A. Willard, 2000, “Imperfect Competi-
tion among Informed Traders,” Journal of Finance 55, 2117-2155.

Baker, Scott R., Nicholas Bloom, and Steven J. Davis, 2013, “Measuring Economic Policy
Uncertainty,” unpublished paper, Stanford University, Stanford University, and the
University of Chicago.

Balduzzi, Pierluigi, Edwin J. Elton, and Clifton T. Green, 2001, “Economic News
and Bond Prices: Evidence from the U.S. Treasury Market,” Journal of Financial and
Quantitative Analysis 36, 523-43.

Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, “A Model of In-
vestor Sentiment,” Journal of Financial Economics 49 307-343.

Bekaert, Geert and Marie Hoerova, 2014, “The VIX, the Variance Premium and
Stock Market Volatility,” forthcoming Journal of Econometrics.

Bekaert, Geert, Marie Hoerova, and Marco Lo Doca, 2013, “Risk, Uncertainty
and Monetary Policy,” Journal of Monetary Economics 60 771-788.

166



Bernanke, Ben S. and Jean Boivin, 2003, “Monetary Policy in a Data-Rich Envi-
ronment,” Journal of Monetary Economics 50, 525-546.

Bernanke, Ben S. and Kenneth N. Kuttner, 2005, “What Explains the Stock Mar-
ket’s Reaction to Federal Reserve Policy?” The Journal of Finance 60, 1221-1257.

Bernile, Gennaro, Jianfeng Hu, and Yuehua Tang, 2015, “Can Information Be
Locked Up? Informed Trading Ahead of Macro-News Announcements,” unpublished
paper, Singapore Management University, Singapore Management University, and
Singapore Management University.

Black, Fischer, 1995, “Interest Rates as Options,” The Journal of Finance 50, 1371-
1376.

Bollerslev, Tim, George Tauchen, and Hao Zhou, 2009, “Expected Stock Returns
and Variance Risk Premia,” Review of Financial Studies 22, 4463-4492.

Boudoukh, Jacob, Matthew Richardson, and Robert F. Whitelaw, 2008, “The Myth of
Long-Horizon Predictability,” Review of Financial Studies 21, 1577-1605.

Boyarchenko, Nina, 2012, “Ambiguity Shifts and the 2007-2008 Financial Crisis,”
Journal of Monetary Economics 59, 493-507.

Boyd, John H., Jian Hu, and Ravi Jagannathan, 2005, “The Stock Market’s Reac-
tion to Unemployment News: Why Bad News Is Usually Good for Stocks,” Journal of
Finance 60, 649-672.

Britten-Jones, Mark and Anthony Neuberger, 2000, “Option Prices, Implied Price
Processes, and Stochastic Volatility,” Journal of Finance 55, 839-866.

Brown, Keith C., W.V. Harlow, and Seha M. Tinic, 1988, “Risk Aversion, Uncer-
tain Information, and Market Efficiency,” Journal of Financial Economics 22, 355-385.

Brunnermeier, Markus K., 2005, “Information Leakage and Market Efficiency,”
Review of Financial Studies 18, 417-457.

Carr, Peter and Luiren Wu, 2009, “Variance Risk Premiums,” Review of Financial
Studies 22, 1311-1341.

Campbell, John Y., 1991, “A Variance Decomposition for Stock Returns,” The Eco-
nomic Journal 101, 157-179.

Campbell, John Y. and John Ammer, 1993, “What Moves the Stock and Bond
Markets? A Variance Decomposition for Long-Term Asset Returns,” The Journal of Finance

167



48, 3-37.

Campbell, John Y. and Ludger Hentschel, 1992, “No News is Good News,” Jour-
nal of Financial Economics 31, 281-318.

Campbell, Sean D. and Steven A. Sharpe, 2009, “Anchoring Bias in Consensus
Forecasts and Its Effect on Market Prices,” Journal of Financial and Quantitative Analysis 44
369-390.

Campbell, John Y., Carolin E. Pflueger, and Luis M. Viceira, 2014, “Monetary
Policy Drivers of Bond and Equity Risks,” unpublished paper, Harvard University, The
University of British Columbia, and Harvard University.

Campbell, John Y., Tarun Ramadorai, and Allie Schwartz, 2009, “Caught on Tape:
Institutional Trading, Stock Returns, and Earnings Announcements,” Journal of Financial
Economics 92 66-91.

Carrillo, Juan D. and Thomas R. Palfrey, 2011, “No Trade,” Games and Economic
Behavior 71, 66-87.

Christiano, Lawrence, Martin Eichenbaum, and Sergio Rebelo, 2011, “When is
the Government Spending Multiplier Large?” Journal of Political Economy 119, 78-121.

Cieslak, Anna, Adair Morse, and Annette Vissing-Jorgensen, 2014, “Stock Re-
turns over the FOMC Cycle,” unpublished paper, Northwestern University, University of
California, Berkeley, and University of California, Berkeley.

Conrad, Jennifer, Bradford Cornell, and Wayne R. Landsman, 2002, “When Is
Bad News Really Bad News?”, Journal of Finance 57, 2507-2532.

De Long, J. Bradford, Andrei Shleifer, Lawrence H. Summers, and Robert J. Waldmann,
1990, “Positive Feedback Investment Strategies and Destabilizing Rational Speculation,”
Journal of Finance 45, 379-395.

Di Mascio, Rick, Anton Lines, and Narayan Y. Naik, 2015, “Alpha Decay,” un-
published paper, Inalytics, London Business School, and London Business School.

Drechsler, Itamar, 2013, “Uncertainty, Time-Varying Fear, and Asset Prices,” Jour-
nal of Finance 68, 1843-1889.

Easley, David, Marcos López de Prado, and Maureen O’Hara, 2013, “Bulk Classi-
fication of Trading Activity,” unpublished paper, Cornell University, Hess Energy Trading
Company, and Cornell University.

Eggertsson, Gauti B., and Michael Woodford, 2003, “The Zero Interest-Rate Bound and

168



Optimal Monetary Policy,” Brookings Papers on Economic Activity 1, 139-211.

Epstein, Larry G. and Martin Schneider, 2008, “Ambiguity, Information Quality,
and Asset Pricing,” Journal of Finance 63, 197-228.

Eyster, Erik, Matthew Rabin, and Dimitri Vayanos, 2015, “Financial Markets where
Traders Neglect the Informational Content of Prices,” unpublished paper, The London
School of Economics, Harvard University, and The London School of Economics.

Faust, Jon, John H. Rogers, Shing-Yi B. Wang, and Jonathan H. Wright, 2007,
“The High-Frequency Response of Exchange Rates and Interest Rates to Macroeconomic
Announcements,” Journal of Monetary Economics 54, 1051-1068.

Faust, Jon and Jonathan H. Wright, 2012, “Risk Premia in the 8:30 Economy,”
unpublished paper, The Johns Hopkins University and The Johns Hopkins University.

Foster, F. Douglas and S. Viswanathan, 1996, “Strategic Trading When Agents
Forecast the Forecasts of Others,” Journal of Finance 51, 1437-1478.

Frazzini, Andrea and Owen Lamont, 2007, “The Earnings Announcement Pre-
mium and Trading Volume,” unpublished paper, Yale University and the University of
Chicago.

French, Kenneth R., G. William Schwert, and Robert F. Stambaugh, 1987, “Ex-
pected Stock Returns and Volatility,” Journal of Financial Economics 19, 3-30.

Gilbert, Thomas, Shimon Kogan, Lars Lochstoer, and Ataman Ozyildirim, 2012, “Investor
Inattention and the Market Impact of Summary Statistics,” Management Science 58, 336-350.

Gilboa, Itzhak and David Schmeidler, 1989, “Maxmin Expected Utility with Non-
Unique Prior,” Journal of Mathematical Economics 18, 141-153.

Hansen, Lars Peter and Thomas J. Sargent, 2010, “Fragile Beliefs and the Price
of Uncertainty,” Quantitative Economics 1, 129-162.

Holden, Craig W. and Avanidhar Subrahmanyam, 1992, “Long-Lived Private In-
formation and Imperfect Competition,” Journal of Finance 47, 247-270.

Holden, Craig W. and Avanidhar Subrahmanyam, 1994, “Risk Aversion, Imper-
fect Competition, and Long-Lived Information,” Economic Letters 44, 181-190.

Hong, Harrison and Jeremy C. Stein, 1999, “A Unified Theory of Underreaction,
Momentum Trading, and Overreaction in Asset Markets,” Journal of Finance 54, 2143-2184.

Ichiue, Hibiki and Yoichi Ueno, 2013, “Estimating Term Premia at the Zero Bound: An

169



Analysis of Japanese, US, and UK Yields,” unpublished paper, Bank of Japan and Bank of
Japan.

Illeditsch, Philipp K., 2011, “Ambiguous Information, Portfolio Inertia, and Ex-
cess Volatility,” Journal of Finance 66, 2213-2247.

Irvine, Paul, Marc Lipson, and Andy Puckett, 2007, “Tipping,” Review of Finan-
cial Studies 20, 741-768.

Jones, Charles M., Owen Lamont, and Robin L. Lumsdaine, 1998, “Macroeco-
nomic News and Bond Market Volatility,” Journal of Financial Economics 47 315-337.

Kadan, Ohad, Roni Michaely, and Pamela C. Moulton, 2014, “Speculating on Pri-
vate Information: Buy the Rumor, Sell the News,” unpublished paper, Washington
University in St. Louis, Cornell University, and Cornell University.

Krippner, Leo, 2013, “A Tractable Framework for Zero Lower Bound Gaussian
Term Structure Models,” unpublished paper, Reserve Bank of New Zealand.

Kurov, Alexander, Alessio Sancetta, Georg Strasser, and Marketa Halova Wolfe,
2015, “Price Drift before U.S. Macroeconomic News: Private Information about Public
Announcements?,” unpublished paper, West Virginia University, University of London,
Boston College, and Washington State University.

Kyle, Albert S., 1985, “Continuous Auctions and Insider Trading,” Econometrica
53, 1315-1335.

Lee, Charles M. C. and Mark J. Ready, 1991, “Inferring Trade Direction from In-
traday Data,” Journal of Finance 46, 733-746.

Lucca, David O. and Emanuel Moench, 2015, “The Pre-FOMC Announcement
Drift,” Journal of Finance 70, 329-371.

Mehra, Rajnish and Edward C. Prescott, 1985, “The Equity Premium: A Puzzle,”
Journal of Monetary Economics 15, 145-161.

Meulbroek, Lisa K., 1992, “An Empirical Analysis of Illegal Insider Trading,”
Journal of Finance 47, 1661-1699.

Panayides, Marios, Thomas Shohfi, and Jared Smith, 2014, “Comparing Trade
Flow Classification Algorithms in the Electronic Era: The Good, the Bad, and the
Uninformative,” unpublished paper, University of Pittsburgh, University of Pittsburgh,
and Clemson University.

Patton, Andrew J. and Allan Timmermann, 2010, “Why Do Forecasters Disagree? Lessons

170



from the Term Structure of Cross-Sectional Dispersion,” Journal of Monetary Economics 57
803-820.

Raskin, Matthew D., 2013, “The Effects of the Federal Reserve’s Date-Based For-
ward Guidance,” unpublished paper, Federal Reserve Board

Rigobon, Roberto and Brian Sack, 2003, “Measuring the Reaction of Monetary
Policy to the Stock Market,” Quarterly Journal of Economics 118, 639-670.

Romer, Christina D. and David H. Romer, 2000, “Federal Reserve Information
and the Behavior of Interest Rates,” American Economic Review 90 429-457.

Savor, Pavel and Mungo Wilson, 2013, “How Much Do Investors Care About
Macroeconomic Risk? Evidence from Scheduled Economic Announcements,” Journal of
Financial and Quantitative Analysis 48 343-375.

Savor, Pavel and Mungo Wilson, 2014, “Asset Pricing: A Tale of Two Days,” Journal of
Financial Economics 113 171-201.

Schwert, G. Williams, 1989, “Why Does Stock Market Volatility Change Over
Time?”, Journal of Finance 44, 1115-1153.

Shleifer, Andrei and Robert W. Vishny, 1997, “The Limits of Arbitrage,” Journal
of Finance 52, 35-55.

Swanson, Eric T. and John C. Williams, 2013, “Measuring the Effect of the Zero
Lower Bound on Yields and Exchange Rates in U.K. and Germany,” Journal of International
Economics 73, 251-277.

Swanson, Eric. T. and John C. Williams, 2014, “Measuring the Effect of the Zero
Lower Bound on Medium- and Longer-Term Interest Rates,” American Economic Review
104, 3154-3185.

Taylor, John B., 1993, “Discretion versus Policy Rules in Practice,” Carnegie-Rochester Series
on Public Policy 39, 195-214.

Tetlock, Paul C., 2011, “All the News That’s Fit to Reprint: Do Investors React
to Stale Information?,” Review of Financial Studies 24, 1481-1512.

Tversky, Amos, and Daniel Kahneman, 1974, “Judgement under Uncertainty:
Heuristics and Biases,” Science 185 1124-1131.

Veronesi, Pietro, 1999, “Stock Market Overreaction to Bad News in Good Times:
A Rational Expectations Equilibrium Model,” Review of Financial Studies 12, 975-1007.

171



Williams, Christopher D., 2014, “Asymmetric Responses to Earnings News: A
Case for Ambiguity,” forthcoming Accounting Review.

Wu, Jing Cynthia and Fan Dora Xia, 2014, “Measuring the Macroeconomic Im-
pact of Monetary Policy at the Zero Lower Bound,” unpublished paper, The University of
Chicago and University of California, San Diego.

Zhou, John C., 2014, “Asset Price Reactions to News at the Zero Lower Bound,”
unpublished paper, Harvard University.

Zhou, John C., 2015, “The Good, the Bad, and the Ambiguous: The Aggregate
Stock Market Dynamics around Macroeconomic News,” unpublished paper, Harvard
University.

172



Appendix A

Appendix to Chapter 1

A.1 Intraday Stock and Bond Dollar Volume

Figure A.1 uses volume data to illustrate ES and TY liquidity on days without MNAs. Panels

A and B plot the intraday, minute-by-minute and cumulative dollar volumes for stocks and

bonds, respectively. The values are averaged across all days in the sample without MNAs.

The three dashed vertical lines correspond to 8:30 AM, 9:15 AM, and 10:00 AM ET when

MNAs are announced on the days that have such announcements. For both assets, there are

negligible or moderate increases in trading activity corresponding to these timestamps.1

Days without MNAs have substantial liquidity: the average daily cumulative dollar volumes

for stock and bond futures are on the order of $100 billion.

Figure A.2 compares the liquidity between days in the sample with and without MNAs.

For both ES and TY, the dollar volumes are greater in the former case than the latter case.

The differences in liquidity are particularly large on and immediately after timestamps

associated with MNAs; for example, the differences are over $250 million per minute for

ES futures and over $700 million per minute for TY futures around 8:30 AM ET. Days with

MNAs are more liquid even in the early morning hours, though the differences are small in

1The fact that there are any increases at all is due to the sample selection. What I call days without MNAs
are actually days without MNAs from Table 1.1. There are a few types of MNAs not included in Table 1.1 that
occur on these days and drive increases in trading activity.
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Panel A: Stocks

Panel B: Bonds

Figure A.1: Intraday Stock and Bond Dollar Volumes on Days without MNAs

Notes: Panels A and B plot the intraday minute-by-minute and cumulative dollar volumes for stocks (front ES
futures contract) and bonds (front TY futures contract), respectively. The values are averaged across all days
in the sample without MNAs. The three dashed vertical lines correspond to 8:30 AM, 9:15 AM, and 10:00
AM ET.
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Panel A: Stocks

Panel B: Bonds

Figure A.2: Differences in Intraday Stock and Bond Dollar Volumes between Days with and without MNAs

Notes: Panels A and B plot the average differences in the intraday minute-by-minute and cumulative dollar
volumes for stocks (front ES futures contract) and bonds (front TY futures contract), respectively. The
differences are taken between all days in the sample with and without MNAs. The three dashed vertical lines
correspond to 8:30 AM, 9:15 AM, and 10:00 AM ET.

175



magnitude. The average daily cumulative dollar volumes for days with MNAs are over $8

billion higher for stock futures and $14 billion higher for bond futures compared to those

for days without MNAs.

A.2 Order Imbalances

To classify trades into buys and sells and compute order imbalances, I use the bulk volume

classification (BVC) approach developed by Easley, López de Prado, and O’Hara (2013).

This trade classification algorithm addresses the challenges presented by modern financial

markets dominated by high frequency trading. For example, buying and selling pressure

are increasingly less likely to be manifest in aggressive trades (lifting the offer or hitting the

bid) and more likely to be manifest in passive trades (such as sitting on the bid or offer).

Based on papers such as Easley, López de Prado, and O’Hara (2013) and Panayides, Shohfi,

and Smith (2014), the BVC algorithm often outperforms other trade classification algorithms

such as that of Lee and Ready (1991). The BVC technique compares favorably in both the

correct classification of trades into buys and sells and in identifying order flow linked to

underlying information.

The implementation of the BVC algorithm is straightforward: aggregate trades over

some interval and split the trades into buys and sells based on the standardized price change

between the start and end of the interval. Specifically, for every minute interval τ in which

there are trades, I split the volume Vτ into estimated buys V̂B
τ and sells V̂S

τ :

V̂B
τ =V × t

(
Pτ − Pτ−1

σ∆P
, d f
)

, and

V̂B
τ =V − V̂S

τ .

Pτ is the close price of interval τ, σ∆P is the standard deviation of Pτ − Pτ−1 estimated from

July 2003 to March 2014, and t (·) is the CDF of the Student’s t distribution with d f degrees

of freedom. Consistent with Easley, López de Prado, and O’Hara (2013), I set d f = 0.25.

For a longer interval T that covers some number of minute intervals τi, the estimated buys
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V̂B
T = ∑i V̂B

τi
, the estimated sells V̂S

T = ∑i V̂S
τi

, and the total volume VT = V̂B
T + V̂S

T . The order

imbalance for interval T is

ÔIT =
V̂B

T − V̂S
T

VT
.

The order imbalance multiplied by the volume gives the estimated excess volume of buys or

sells.

Analogous to Table 1.2, I calculate summary statistics of order imbalances in Table A.1.

Row −x corresponds to the pre-announcement order imbalance (in bps) from x minutes

to 5 minutes before MNAs. Row 0 corresponds to the ±5 minute announcement order

imbalance (in bps) around MNAs. Panel A presents summary statistics for stocks. In the

“Full Sample of MNAs,” there are unconditionally positive buy order imbalances both in the

10-minute window around announcements (mean of 50.6 bps) and in the pre-announcement

period (mean of up to 22.0 bps).2 As shown in the “News Report > 1” and “News Report

< −1” columns, the announcement order imbalance of stocks is positive (mean of 453.3 bps)

for greater than 1 standard deviation positive news reports and negative (mean of −808.5

bps) for less than 1 standard deviation negative news reports. The announcement order

imbalance is preceded by the pre-announcement order imbalance in the same direction.

There is a positive buy order imbalance (up to 60.7 bps on average) in the hours prior to

greater than 1 standard deviation positive news reports and a negative sell order imbalance

(up to −4.7 bps on average) in the hours prior to less than 1 standard deviation negative

news reports.

Panel B presents analogous summary statistics for bonds. In the “Full Sample” of

MNAs in Panel B of Table A.1, there are unconditionally negative sell order imbalances

on announcements (mean of −21.1 bps) and before announcements (mean of up to −35.2

bps).3 Opposite that of stocks, the order imbalance of bonds is negative (mean of −787.8

2These two results correspond to the announcement premium of stocks around MNAs and pre-
announcement drift of stocks before MNAs, respectively. See Fn. (11) and Fn. (12), respectively, from
chapter one.

3The former result is statistically insignificant, consistent with the lack of an announcement premium
for bonds around MNAs. The latter result is statistically significant, consistent with the presence of the
pre-announcement drift of bonds before MNAs. See Fn. (13) from chapter one.
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Table A.1: Summary Statistics of Pre-Announcement and Announcement Order Imbalances in Stocks and
Bonds

Panel A: Stocks
Full Sample News Report > 1 News Report < −1
(n = 2179) (n = 291) (n = 286)

Mean Std. Dev. t-stat Mean Std. Dev. t-stat Mean Std. Dev. t-stat

-720 18.2 218.9 3.9 45.0 228.7 3.4 -0.6 191.1 -0.1
-660 18.3 220.9 3.9 43.7 231.2 3.2 -1.6 192.5 -0.1
-600 18.1 222.6 3.8 44.9 234.5 3.3 -1.5 195.1 -0.1
-540 18.5 224.4 3.9 46.6 236.3 3.4 0.0 198.2 0.0
-480 18.9 226.7 3.9 47.6 239.9 3.4 -0.8 200.0 -0.1
-420 18.0 229.9 3.7 47.4 244.1 3.3 -2.1 203.3 -0.2
-360 17.6 236.7 3.5 45.9 251.9 3.1 -3.7 210.8 -0.3
-300 17.5 250.9 3.3 50.8 268.1 3.2 -3.8 228.1 -0.3
-240 17.7 267.3 3.1 50.9 286.4 3.0 -0.1 252.2 0.0
-180 18.2 284.2 3.0 55.7 304.9 3.1 -4.7 272.0 -0.3
-120 21.7 310.6 3.3 55.0 335.1 2.8 5.6 306.0 0.3
-60 22.0 361.1 2.8 60.7 368.9 2.8 17.1 362.7 0.8

0 50.6 1277.2 1.8 453.3 1360.2 5.7 -808.5 1403.0 -9.7

Panel B: Bonds

Full Sample News Report > 1 News Report < −1
(n = 2179) (n = 291) (n = 286)

Mean Std. Dev. t-stat Mean Std. Dev. t-stat Mean Std. Dev. t-stat

-720 -19.7 190.1 -4.8 -48.3 189.6 -4.3 6.9 201.6 0.6
-660 -20.0 192.4 -4.9 -48.9 190.4 -4.4 7.5 204.6 0.6
-600 -21.1 194.9 -5.0 -50.2 193.4 -4.4 6.2 207.7 0.5
-540 -21.4 196.5 -5.1 -50.6 196.2 -4.4 6.7 207.6 0.5
-480 -23.0 199.1 -5.4 -52.2 198.1 -4.5 5.6 211.1 0.4
-420 -23.6 202.2 -5.5 -53.5 202.3 -4.5 3.5 214.7 0.3
-360 -24.4 209.8 -5.4 -53.2 211.5 -4.3 5.5 222.1 0.4
-300 -26.4 225.3 -5.5 -61.3 227.0 -4.6 3.7 244.4 0.3
-240 -29.5 246.7 -5.6 -66.4 243.5 -4.7 -0.5 265.8 0.0
-180 -31.2 270.8 -5.4 -75.0 270.8 -4.7 -0.1 287.3 0.0
-120 -34.3 304.1 -5.3 -72.4 301.0 -4.1 0.7 325.8 0.0
-60 -35.2 373.4 -4.4 -91.4 368.2 -4.2 -5.9 397.5 -0.2

0 -21.1 1319.8 -0.7 -787.8 1245.3 -10.8 868.2 1284.8 11.4

Notes: Panels A and B present summary statistics for stocks (front ES futures contract) and bonds (front TY
futures contract), respectively. Row −x corresponds to the pre-announcement order imbalance (in bps) from x
minutes to 5 minutes before MNAs. Row 0 corresponds to the ±5 minute announcement order imbalance
(in bps) around MNAs. The “Full Sample” columns include the full sample of MNAs. The “News Report
> 1” columns include only the MNAs with greater than 1 standard deviation positive news reports; that is,
NRt > 1. The “News Report < −1” columns include only the MNAs with less than 1 standard deviation
negative news reports; that is, NRt < −1. NRt measures the informational content of MNAs and is defined
in Figure 1.1.
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bps) on announcements of greater than 1 standard deviation positive news reports and

positive (mean of 868.2 bps) on announcements of less than 1 standard deviation negative

news reports. Identical to the case of stocks, however, the announcement order imbalance of

bonds is preceded by the pre-announcement order imbalance of bonds in the same direction.

There is a negative sell order imbalance (up to −91.4 bps on average) in the hours prior to

greater than 1 standard deviation positive news reports and a positive buy order imbalance

(up to 7.5 bps on average) in the hours prior to less than 1 standard deviation negative news

reports.

Table A.2 shows that the pre-announcement conditional pattern in the order imbalance

is statistically significant. Panel A runs regressions of pre-announcement and announcement

order imbalances on the news report variable NRt:

ÔIT,t = α + βNRt + εt.

In row −x, the left-hand-side variable ÔIT,t is the pre-announcement order imbalance

(in bps) for interval T from x minutes to 5 minutes before MNAs. In row 0, ÔIT,t is the

announcement order imbalance (in bps) for interval T covering the ±5 minutes around

MNAs. The coefficient β measures the order imbalance sensitivity to a 1 standard deviation

news report. For both assets, β̂ in row 0 is statistically significant: the order imbalance of

stocks increases {decreases} 357.7 bps more and that of bonds decreases {increases} 498.4 bps

more in the 10 minutes around announcements of 1 standard deviation positive {negative}

news reports. For rows −x, the majority of the β̂ for stocks and all the β̂ for bonds are

statistically significant: the order imbalance of stocks increases {decreases} up to 15.9 bps

more and that of bonds decreases {increases} up to 24.4 bps more before announcements of

1 standard deviation positive {negative} news reports.

In Panel B, I evaluate how news reports impact order imbalances in a different regression

specification:

ÔIT,t = α + β+D+
t + β−D−t + εt.
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Table A.2: Regressions of Pre-Announcement and Announcement Order Imbalances in Stocks and Bonds

Panel A: Regressions of the Form ÔIT,t = α + βNRt + εt

Stocks Bonds

β̂ (bps) α̂ (bps) R2
adj (%) β̂ (bps) α̂ (bps) R2

adj (%)

-720 12.0** 18.0*** 0.26 -13.3*** -19.5*** 0.45
-660 11.8** 18.1*** 0.24 -13.5*** -19.7*** 0.46
-600 12.0** 17.9*** 0.25 -13.6*** -20.8*** 0.45
-540 11.7** 18.3*** 0.23 -13.7*** -21.1*** 0.45
-480 12.0** 18.6*** 0.24 -13.9*** -22.7*** 0.45
-420 12.1** 17.8*** 0.23 -14.2*** -23.4*** 0.46
-360 12.4** 17.4*** 0.23 -14.7*** -24.1*** 0.45
-300 13.4** 17.3*** 0.24 -17.1*** -26.1*** 0.54
-240 13.8** 17.4*** 0.22 -17.2*** -29.2*** 0.44
-180 15.9*** 17.9*** 0.27 -19.5*** -30.8*** 0.48
-120 13.4** 21.4*** 0.14 -20.6*** -33.9*** 0.42
-60 15.2** 21.7*** 0.13 -24.4*** -34.7*** 0.38

0 357.7*** 44.0* 7.89 -498.4*** -11.9 14.40

Panel B: Regressions of the Form ÔIT,t = α + β+D+
t + β−D−t + εt

Stocks Bonds

β̂+ (bps) β̂− (bps) α̂ (bps) R2
adj (%) β̂+ (bps) β̂− (bps) α̂ (bps) R2

adj (%)

-720 28.3** -17.3 16.7*** 0.21 -29.0** 26.2** -19.3*** 0.47
-660 26.4* -18.9 17.3*** 0.19 -29.2** 27.2** -19.7*** 0.48
-600 28.1** -18.2 16.8*** 0.21 -29.5** 26.8** -20.7*** 0.46
-540 29.9** -16.7 16.7*** 0.21 -29.5** 27.8** -21.1*** 0.47
-480 30.4** -17.9 17.2*** 0.23 -29.5** 28.3** -22.8*** 0.47
-420 31.1** -18.4 16.3*** 0.23 -30.5** 26.5** -23.0*** 0.44
-360 29.6** -19.9 16.3*** 0.21 -28.7** 30.0** -24.5*** 0.43
-300 35.5** -19.0 15.3** 0.24 -35.7** 29.2** -25.5*** 0.46
-240 36.1** -14.9 14.8** 0.18 -38.4** 27.5* -28.0*** 0.39
-180 40.2** -20.2 15.5** 0.23 -46.3*** 28.6* -28.7*** 0.44
-120 36.5* -12.9 18.5** 0.10 -38.7** 34.4* -33.7*** 0.29
-60 44.8* 1.2 15.8* 0.09 -61.2** 24.3 -30.2*** 0.31

0 322.4*** -939.3*** 130.8*** 7.47 -747.2*** 908.8*** -40.6 10.41

Notes: See Appendix A.7.3.
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D+
t and D−t are dummy variables equal to 1 if NRt > 1 and NRt < −1, respectively, and

ÔIT,t is as defined above. The coefficients β+ and β− measure the order imbalance sensitivity

to large magnitude news reports that are positive and negative, respectively. For both assets,

β̂+ and β̂− in row 0 are statistically significant: the order imbalance of stocks increases

322.4 bps {decreases 939.3 bps} more and that of bonds decreases 747.2 bps {increases 908.8

bps} more for announcements of greater than 1 standard deviation positive {negative} news

reports.4 For rows −x, the majority of the β̂+ but none of the β̂− for stocks and almost all

the β̂+ and β̂− for bonds are statistically significant: the order imbalance of stocks increases

up to 44.8 bps {decreases up to 20.2 bps} more and that of bonds decreases up to 61.2 bps

{increases up to 34.4 bps} more before announcements of greater than 1 standard deviation

positive {negative} news reports.5

Panels A and B of Figure A.3 graphically illustrate the pre-announcement conditional

pattern in the order imbalance for stocks and bonds, respectively. I plot the mean order

imbalance (in bps) for the indicated time intervals on the x-axes starting 360 minutes before

MNAs. First, consider the results for stocks in Panel A. In the hours before announcements,

the order imbalance is lowest before less than 1 standard deviation negative news reports,

intermediate before announcements in general, and highest before greater than 1 standard

deviation positive news reports. Parallel results hold for bonds in Panel B. In the hours

before announcements, the order balance is highest before less than 1 standard deviation

negative news reports, intermediate before announcements in general, and lowest before

greater than 1 standard deviation positive news reports. The pre-announcement conditional

pattern in the order imbalance, in addition to the pre-announcement conditional drift,

provides support for sophisticated trading in stocks and bonds around MNAs.

4See Fn. (14) from chapter one for discussion of the asymmetry in stocks.

5For stocks in Panels A and B, the row 0 α̂ is positive and statistically significant. This corresponds to
the announcement premium for stocks around MNAs referenced in Fn. (11) from chapter one. The row −x
α̂ is also positive and generally statistically significant. This is the pre-announcement drift of stocks before
MNAs referenced in Fn. (12) from chapter one. For bonds, the row 0 α̂ is statistically insignificant, but the
row −x α̂ is negative and generally statistically significant. As discussed in Fn. (13) from chapter one, there is
no announcement premium for bonds around MNAs, but there is a pre-announcement drift of bonds before
MNAs.
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Panel A: Stocks

Panel B: Bonds

Figure A.3: Pre-Announcement Order Imbalances in Stocks and Bonds

Notes: Panels A and B plot the mean order imbalances (in bps) for the indicated time intervals on the x-axes
starting 360 minutes before MNAs for stocks (front ES futures contract) and bonds (front TY futures contract),
respectively. “Full Sample” includes the full sample of MNAs. “News Report > 1” includes only the MNAs
with greater than 1 standard deviation positive news reports; that is, NRt > 1. “News Report < −1” includes
only the MNAs with less than 1 standard deviation negative news reports; that is, NRt < −1. NRt measures
the informational content of MNAs and is defined in Figure 1.1
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A.3 Alternative Tests for Anchoring Bias

In Section 1.4, I estimate the anchoring bias regression in Eq. (1.5) for each type of MNA

separately. The results are robust to a battery of tests. In particular, the results hold when I

estimate the the regression using different anchors and different windows. As indicated in

the “Anchor” columns of Table A.3, the alternative tests use the h = 1 anchor (last actual

data release), h = 3 anchor (average of the last 3 actual data releases), or “Best” anchor

(anchor that more frequently has a higher adjusted R2 or anchor that has a higher adjusted

R2 in each iteration). As indicated in the “Window” columns of Table A.3, the alternative

tests extend the rolling regression window back the listed number of years, with “All”

corresponding to the earliest available date with data. The results in Table 1.4 covered in

the body of this paper correspond to the “Best” anchor (anchor that more frequently has a

higher adjusted R2), “All” window specification. Other specifications yield results similar to

those in Table 1.4: for most types of MNAs, the mean of γ̂ is positive and large relative to

the standard deviation.

I also estimate the anchoring bias regression grouping all MNAs together. To do so, I

standardize the independent and dependent variables in Eq. (1.5) by dividing by σ̂ such

that the variables are in the same (standardized) units across different types of MNAs:

NRt = κ + γ

(
Ft − Ah

σ̂

)
+ εt. (A.1)

The left-hand-side variable is just the news report variable NRt. I estimate the above

regression using the different anchors and different windows listed in Table A.3. Table A.4

shows the mean, standard deviation, maximum, and minimum of γ̂ for the various tests.6

As in the case without grouping all MNAs together, the case with grouping yields positive

γ̂ means that are large relative to the standard deviations. Based on both cases, economists’

forecasts exhibit anchoring bias, and differences between economists’ forecasts and past

data realizations predict macroeconomic news reports.

6The “Best” anchor specifications use the anchor that has a higher adjusted R2 in each iteration.
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Table A.3: Alternative Tests for Anchoring Bias

Anchor Window Anchor Window Anchor Window

Best All 1 All 1 3 years
Best 1 year 3 All 3 3 years
Best 2 years 1 1 year 1 4 years
Best 3 years 3 1 year 3 4 years
Best 4 years 1 2 years 1 5 years
Best 5 years 3 2 years 3 5 years

Notes: The table lists different specifications for running the anchoring bias regressions in Eqs. (1.5) and (A.1).
As indicated in the “Anchor” columns, the alternative tests use the h = 1 anchor (last actual data release),
h = 3 anchor (average of the last 3 actual data releases), or “Best” anchor (anchor that more frequently has a
higher adjusted R2 or anchor that has a higher adjusted R2 in each iteration). As indicated in the “Window”
columns, the alternative tests extend the rolling regression window back the listed number of years, with “All”
corresponding to the earliest available date with data.

A.4 Alternative Constructions of the Predictable and Unpredictable

Components of News Reports

Appendix A.3 shows that various specifications of the anchoring bias regression predict

macroeconomic news reports. Accordingly, there are many ways to construct the predictable

and unpredictable components of the news report variable. I run regressions of pre-

announcement (corresponding to Eq. (1.6)) and announcement (corresponding to Eq. (1.7))

stock and bond returns on alternative constructions of these two components.

When MNAs are not grouped together, the regression results are similar to those in

Table 1.5, so I do not report the estimated coefficients. In other words, the results in Table 1.5

are robust. In the pre-announcement return regressions, β̂p is positive for stocks, negative

for bonds, and statistically significant for both assets: stocks increase {decrease} and bonds

decrease {increase} in the hours before news reports predicted to be positive {negative}.

This finding suggests that, around MNAs, markets are inefficient over time, as I discuss

in Section 1.5.1. In the announcement return regressions, β̂p is statistically significant for

stocks but not for bonds: stocks but not bonds react to announcements of the predictable

component. This finding suggests that, around MNAs, markets are inefficient across assets,
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Table A.4: Predicting Macroeconomic News Reports Grouping All MNAs Together

Anchor Window Mean γ̂ Std. Dev. γ̂ Max. γ̂ Min. γ̂

Best All 0.11 0.01 0.13 0.10
Best 1 year 0.11 0.06 0.29 -0.03
Best 2 years 0.11 0.05 0.23 0.03
Best 3 years 0.11 0.03 0.16 0.05
Best 4 years 0.11 0.03 0.15 0.06
Best 5 years 0.11 0.02 0.15 0.06

1 All 0.07 0.01 0.09 0.06
3 All 0.11 0.01 0.13 0.10
1 1 year 0.06 0.04 0.17 -0.03
3 1 year 0.11 0.06 0.29 -0.01
1 2 years 0.06 0.03 0.14 0.00
3 2 years 0.11 0.05 0.23 0.03
1 3 years 0.06 0.02 0.10 0.02
3 3 years 0.11 0.03 0.16 0.05
1 4 years 0.06 0.02 0.10 0.03
3 4 years 0.11 0.02 0.15 0.06
1 5 years 0.06 0.02 0.09 0.03
3 5 years 0.11 0.02 0.15 0.06

Notes: For each “Anchor” and “Window” specification described in Table A.3, the corresponding row runs
the regression NRt = κ + γ

((
Ft − Ah

)
/σ̂
)
+ εt. The “Best” anchor specifications use the anchor that has a

higher adjusted R2 in each iteration. NRt measures the informational content of a given data release, and σ̂

and NRt are both defined in Figure 1.1. For the same data release, Ft is the median forecasted value from a
survey of economists, and Ah is the historical average of the past h realizations. To avoid look-ahead bias, I
estimate the regression in a dynamic manner over a changing window.
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as I discuss in Section 1.5.2.

When the MNAs are grouped together, the regression results are similar to those in

Table A.5. In this table, I construct NRp,t as the one-step-ahead forecast of the “Best” anchor

(anchor that has a higher adjusted R2 in each iteration), “1 year” window specification of

the anchoring bias regression. NRu,t is the regression residual. The results of Table A.5

are generally similar to those in Table 1.5. In the pre-announcement return regressions,

for example, β̂p is positive for stocks, negative for bonds, and statistically significant for

both assets. There is still a “late trading puzzle” over time. In the announcement return

regressions, however, β̂p is now statistically insignificant for stocks and bonds, so it appears

that neither asset reacts to announcements of the predictable component. This finding

(or lack thereof) calls into question whether it is the case that, before announcements, the

predictable component of news reports is fully impounded into bonds but only partially

impounded into stocks. It may be that the predictable component is fully impounded into

both assets. Nonetheless, there is other, independent evidence that stocks are less efficient

than bonds. As shown in Section 1.5.2, stocks but not bonds display return momentum

between pre-announcement and announcement returns.

A.5 Model with One Risky Asset

Section 1.6.1 sets up the model. Agents in the model at time t choose demand xt to maximize

utility over next period wealth Wt+1 = Wt + (pt+1 + dt+1 − pt) xt, with pt the ex-dividend

price of the risky asset, and dt+1 the dividend paid out by the risky asset between t and

t + 1. The standard framework of the model implies that the optimal demand xt for agents

with a given set of beliefs and information is

xt =
E [pt+1 + dt+1]− pt

AV [pt+1 + dt+1]
. (A.2)

Below, I show the derivation for equilibrium prices under the general case for measure

i ∈ [0, 1] of sophisticated traders and measure 1− i of unsophisticated traders.
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A.5.1 t = 4

Working backward in time, it is obvious that p4 = 0, and the efficient-market price of the

risky asset right before the payment of dividend d at t = 4 is

E [p4 + d|n] = αn,

with

α =
σ2

d
σ2

d + σ2
ε

. (A.3)

A.5.2 t = 3

At t = 3, sophisticated traders see the public news report n, which they already know. Their

demand is

xS,3 =
E [p4 + d|n]− p3

ASV [p4 + d|n] =
αn− p3

ASασ2
ε

.

Unsophisticated traders also see n and have demand

xU,3 =
E [p4 + d|n]− p3

AUV [p3 + d|n] =
αn− p3

AUασ2
ε

.

Imposing the market-clearing condition at t = 3 that

ixS,3 + (1− i) xU,3 = 0,

we get that the equilibrium price of the risky asset at t = 3 is

p3 = αn.

A.5.3 t = 2

At t = 2, sophisticated traders have advance knowledge of n and can trade on this informa-

tion in the “late period.” Doing so is risky, however, because there is a shock to holding the

risky asset in the form of dividend payout sl ∼ N
(

0, σ2
s,l

)
between t = 2 and t = 3. The
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sophisticated traders’ demand is

xS,2 =
E [p3 + sl |n]− p2

ASV [p3 + sl |n]
=

αn− p2

ASσ2
s,l

.

Unsophisticated traders are unaware of n, so their demand is

xU,2 =
E [p3 + sl ]− p2

AUV [p3 + sl ]
=

−p2

AU

(
α2
(
σ2

d + σ2
ε

)
+ σ2

s,l

)
Imposing the market-clearing condition at t = 2 that

ixS,2 + (1− i) xU,2 = 0

and solving for p2 yields

p2 =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,l

(α2(σ2
d+σ2

ε )+σ2
s,l)

αn =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,l

(α2(σ2
d+σ2

ε )+σ2
s,l)

p3,

which is Eq. (1.9). I define the coefficient in front of p3 as k2. In the efficient-market

specification in which all traders are sophisticated and i = 1, p2 = p3. Otherwise, in the

inefficient-market specification in which some traders are unsophisticated and i ∈ (0, 1),

p2 < p3.

A.5.4 t = 1

At t = 1, sophisticated traders first obtain advance knowledge of n and have an opportunity

to trade in the “early period.” Trading is risky, and there is a shock to holding the risky asset

in the form of dividend payout se ∼ N
(
0, σ2

s,e
)

between t = 1 and t = 2. The sophisticated

traders’ demand is

xS,1 =
E [p2 + se|n]− p1

ASV [p2 + se|n]
=

k2αn− p1

ASσ2
s,e

.
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Unsophisticated traders are unaware of n, so their demand is

xU,1 =
E [p2 + se]− p1

AUV [p2 + se]
=

−p1

AU
(
k2

2α2
(
σ2

d + σ2
ε

)
+ σ2

s,e
) .

Imposing the market-clearing condition at t = 1 that

ixS,1 + (1− i) xU,1 = 0

and solving for p1 yields

p1 =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,e

(k2
2α2(σ2

d+σ2
ε )+σ2

s,e)

k2αn =
1

1 +
( 1−i

i

) ( AS
AU

)
σ2

s,e

(k2
2α2(σ2

d+σ2
ε )+σ2

s,e)

p2,

which is Eq. (1.10). In the efficient-market specification in which all traders are sophisticated

and i = 1, p1 = p2 = p3. Otherwise, in the inefficient-market specification in which some

traders are unsophisticated and i ∈ (0, 1), p1 < p2 < p3.

A.5.5 t = 0

Since no information has arrived for either type of traders and all random variables have

zero mean,

p0 = 0.

A.6 Model with Two Risky Assets

Section 1.6.2 sets up the model. Agents in the model at time t choose demands xt,a and

xt,b for risky assets a and b, respectively, to maximize utility over next period wealth

Wt+1 = Wt + (pt+1,a + dt+1,a − pt,a) xt,a + (pt+1,b + dt+1,b − pt,b) xt,b. pt,a and pt,b are the ex-

dividend prices of the risky assets, and dt+1,a and dt+1,b are the dividends paid out by the

risky assets between t and t + 1. Since the random variables in the model corresponding to

assets a and b are independent across assets, the optimal demands xt,a and xt,b for agents

with a given set of beliefs and information are of the same form as Eq. (A.2), the optimal

demand in the model with one risky asset. Similarly, the derivation for equilibrium prices in
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the model with two risky assets parallels that for the model with one risky asset. The only

difference is the addition of asset-specific subscripts. For example, αa and αb are defined by

Eq. (A.3) as σ2
d,a/

(
σ2

d,a + σ2
ε,a

)
and σ2

d,b/
(

σ2
d,b + σ2

ε,b

)
, respectively.

A.7 Notes for Figures and Tables

A.7.1 Figure 1.6

Panel A plots the annualized Sharpe ratios from trading strategies based on perfect foresight

of macroeconomic news reports. Panel B decomposes the Sharpe ratios into the annualized

standard deviations and the annualized means. For a given −x on the x-axis, the trading

strategies take positions in stocks and bonds starting x days or minutes before MNAs. In

stocks (front ES futures contract), the strategies go long {short} before positive {negative}

news reports of greater than 0.7 standard deviation in magnitude; that is, |NRt| > 0.7. In

bonds (front TY futures contract), the strategies go the opposite direction. In both stocks

and bonds, positions are unwound 5 minutes after MNAs. NRt measures the informational

content of MNAs and is defined in Figure 1.1.

A.7.2 Figure 1.7

The figure plots the annualized Sharpe ratios from trading strategies based on the predictable

component of macroeconomic news reports NRp,t defined in Table 1.5. The strategies take

positions in stocks (Panels A and B) and bonds (Panels C and D) starting some number

of days (Panels A and C) or minutes (Panels B and D) before MNAs. In stocks (front ES

futures contract), the strategies go long {short} before the top {bottom} “Trade Threshold”

percentile of NRp,t. In bonds (front TY futures contract), the strategies go the opposite

direction. Positions are unwound 5 minutes after MNAs for stocks and 5 minutes before

MNAs for bonds.
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A.7.3 Table A.2

The table shows results from regressions of pre-announcement and announcement stock

(front ES futures contract) and bond (front TY futures contract) order imbalances on the

news report variable NRt. Regressions are run on the full sample of MNAs, and n = 2179.

Panels A and B represent different regression specifications: ÔIT,t = α + βNRt + εt, and

ÔIT,t = α + β+D+
t + β−D−t + εt, respectively. In row −x, the left-hand-side variable ÔIT,t

is the pre-announcement order imbalance (in bps) for interval T from x minutes to 5

minutes before MNAs. In row 0, the left-hand-side variable ÔIT,t is the announcement

order imbalance (in bps) for interval T covering the ±5 minutes around MNAs. NRt

measures the informational content of MNAs and is defined in Figure 1.1. D+
t and D−t are

dummy variables equal to 1 if NRt > 1 and NRt < −1, respectively, and zero otherwise.

t-statistics (not shown) are based on heterosckedasticity-consistent standard errors. ***

denotes significance at the 1% level, ** denotes significance at the 5% level, and * denotes

significance at the 10% level.
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Appendix B

Appendix to Chapter 2

B.1 Conditional Distribution

Let

X =

 X1

X2

 ∼ N

 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22


 .

Then the conditional distribution of X2 given X1 is

N
(

µ2 + Σ21Σ−1
11 (X1 − µ1) , Σ22 − Σ21Σ−1

11 Σ12

)
.

B.2 Conditional Means of Normal and Squared Normal Random

Variables

For z ∼ N
(
0, σ2

z
)
, the conditional mean of the normal random variable is
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E [z|z > 0] =
1

P [z > 0]
1

σz
√

2π

∫ ∞

0
z× exp

(
− z2

2σ2
z

)
dz

=

√
2

σz
√

π

∫ ∞

0
σ2

z × exp (−y) dy

=− σz
√

2√
π
× exp (−y) |∞0

=
σz
√

2√
π

.

The second step uses the change of variables, with y = z2/2σ2
z .

The conditional mean of the squared normal random variable is

E
[
z2|z > 0

]
=

1
P [z > 0]

1
σz
√

2π

∫ ∞

0
z2 × exp

(
− z2

2σ2
z

)
dz

=

√
2

σz
√

π

∫ ∞

0
z2 × exp

(
−az2) dz, a =

1
2σ2

z

=

√
2

σz
√

π

(
1
4

√
π

a3 × erf
(
z
√

a
)
− z

2a
× exp

(
−az2)) |∞0

=

√
2

σz
√

π

1
4

√
π

a3

=σ2
z .

The third step uses erf (·) to denote the error function.

B.3 Notes for Figures and Tables

B.3.1 Figure 2.4

Panel A plots a daily time series of the variance risk premium, “VRP,” or VRPt,t+22; the

squared VIX, “sq. VIX,” or VIX2
t /12; and the physical expectation of realized variance,

“cond. var.,” or EP
t [RVt+1,t+22]. VIX2

t /12 is the square of the day-end CBOE VIX index

divided by 12. EP
t [RVt+1,t+22] is the one-step-ahead forecasts from regressing realized

variance RVt+1,t+22 on lagged realized variance and lagged squared VIX in Eq. (2.24):
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RVt+1,t+22 = 2.130
(1.145)

+ 0.310
(0.047)

× Rt−21,t + 0.464
(0.050)

×VIX2
t−22/12 + et. I construct RVt+1,t+22 as the

sum of 22 daily realized variances between t + 1 and t + 22 (inclusive), with daily realized

variance calculated as the sum of squared five-minute log returns on ES futures from 9:30

AM ET to 4:00 PM ET and the squared close-to-open log return. The variance risk premium is

the difference between “sq. VIX” and “cond. var.”: VRPt,t+22 = VIX2
t /12−EP

t [RVt+1,t+22].

Panel B plots monthly time series of the same three variables as in Panel A taking a simple

average of daily data within each month. Panel C plots monthly time series of the same

three variables as in Panels A and B constructed in the following manner. “sq. VIX” is

the end-of-month squared VIX VIX2
t /12, with t the last trading day of a given month.

EP
t [RVt+1,t+22] is the one-step-ahead forecasts from the monthly regression of realized

variance on one-month lagged realized variance and one-month lagged squared VIX in

Eq. (2.25): RVt+1,t+22 = 0.195
(2.762)

+ 0.282
(0.144)

× Rt−21,t + 0.511
(0.098)

×VIX2
t−22/12 + et. Monthly realized

variance RVt+1,t+22 is the sum of daily realized variances for the month that includes days

t + 1 to t + 22. The variance risk premium for the month with t as its last trading day is

the difference between “sq. VIX” and “cond. var.”: VRPt,t+22 = VIX2
t /12−EP

t [RVt+1,t+22].

Note that I keep all notation the same as before, but obviously some months have more

trading days than other months. All three panels above cover the whole period from

November, 1997 to March, 2014.

B.3.2 Figure 2.7

All panels plot data from Table 2.8 with the y-axis denominated in bps and the x-axis

representing variance risk premium VRPt quintiles, with the 1st quintile corresponding to

the smallest values and the 5th quintile corresponding to the largest values. Panel A plots

β̂+ (“p_beta”) and β̂− (“n_beta”). Panel B plots β̂+ − β̂−. Panel C plots α̂.

B.3.3 Table 2.9

The tables show results from return predictability regressions using monthly data from

November, 1997 to March, 2014. Panel A presents results for the specification rMNA
t,t+h =
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aMNA + bMNAXt + εMNA
t,t+h , and Panel B presents results for the specification rnMNA

t,t+h = anMNA +

bnMNAXt + εnMNA
t,t+h . rMNA

t,t+h is the annualized sum of the continuously compounded return of

the stock market in the ±5 minutes around MNAs from the end of month t to the end of

month t + h. rnMNA
t,t+h = rt,t+h − rMNA

t,t+h , in which rt,t+h is defined in Table 2.7. Table displays

results for horizons h = 1, 3, 6, 9, 12, 15, 18, 21, 24 and three sets of covariates Xt drawn from

log (P/E)t, the log of the cyclically adjusted price-to-earnings ratio from Robert Shiller’s

website, and the “Monthly Averages” variance risk premium series from Panel B of Figure

2.4. Table reports estimated parameters b̂, associated t-statistics, and adjusted R2. t-statistics

(shown in parentheses) are based on Newey-West standard errors with max {3, 2h} lags. ***

denotes significance at the 1% level, ** denotes significance at the 5% level, and * denotes

significance at the 10% level.
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Appendix C

Appendix to Chapter 3

C.1 Forward Rate

We know that the forward rate

fn,t = (n + 1) yn+1,t − nyn,t

with yn,t the log of the yield to maturity of a zero-coupon bond of maturity n at time t. We

can write this statement as

fn,t =− log

(
exp (−it)×E

Q
t

[
exp

(
−

n

∑
j=1

it+j

)])
+ log

(
exp (−it)×E

Q
t

[
exp

(
−

n−1

∑
j=1

it+j

)])

≈E
Q
t

[
n

∑
j=1

it+j

]
− 1

2
V

Q
t

[
n

∑
j=1

it+j

]
−E

Q
t

[
n−1

∑
j=1

it+j

]
+

1
2

V
Q
t

[
n−1

∑
j=1

it+j

]

=E
Q
t [it+n]−

1
2

(
V

Q
t

[
n

∑
j=1

it+j

]
−V

Q
t

[
n−1

∑
j=1

it+j

])
. (C.1)

E
Q
t [·] is the conditional expectation and V

Q
t [·] is the conditional variance. The first

equality comes from the fact that −nyn,t = pn,t, with pn,t the log price that equals a

discounted expectation of the terminal payoff. The approximation comes from the fact that

log (E [exp (Z)]) ≈ E [Z] + 1
2 V [Z] for any random variable Z.
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Substituting Eq. (3.1) into the first term in Eq. (C.1), we see that

E
Q
t [it+n] =E

Q
t [max {st+n, i}]

=PrQ
t [st+n < i]× i + PrQ

t [st+n ≥ i]×E
Q
t [st+n|st+n ≥ i] . (C.2)

Based on Eqs. (3.2) and (3.3), the shadow rate has a conditional normal distribution:

st+n|It ∼ N
(

an + bnxt, σQ
n

)
(C.3)

with parameters defined as

an ≡δ0 + δ1µQ 1−
(
ρQ
)n

1− ρQ
,

bn ≡δ1

(
ρQ
)n

, and

σQ
n ≡

√√√√(δ1σε)
2 1− (ρQ)

2n

1− (ρQ)
2 .

By assumption that δ1 > 0 and ρQ > 0, we know that bn > 0. The standard deviation σQ
n > 0

as well. Using the conditional normal distribution of the shadow rate in Eq. (C.3) and the

formula for the first moment of the truncated normal distribution, Eq. (C.2) simplifies:

E
Q
t [it+n] =i + σQ

n

((
an + bnxt − i

σQ
n

)
Φ
(

an + bnxt − i
σQ

n

)
+ φ

(
an + bnxt − i

σQ
n

))
=i + σQ

n g
(

an + bnxt − i

σQ
n

)
(C.4)

for g (x) = xΦ (x) + φ (x). In order to derive the second term in Eq. (C.1), Wu and Xia

(2014) show and utilize the following approximations:

V
Q
t [it+n] ≈PrQ

t [st+n ≥ i]V
Q
t [st+n] and (C.5)

C
Q
t
[
it+n−j, it+n

]
≈PrQ

t
[
st+n−j ≥ i, st+n ≥ i

]
C

Q
t
[
st+n−j, st+n

]
≈PrQ

t [st+n ≥ i]C
Q
t
[
st+n−j, st+n

]
. (C.6)

C
Q
t [·] is the conditional covariance. The last approximation uses Bayes’ law and assumes
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that the shadow rate is persistent such that

PrQ
t
[
st+n−j ≥ i|st+n ≥ i

]
≈ 1.

Making use of the approximations in Eqs. (C.5) and (C.6), the second term in Eq. (C.1) is

1
2

(
V

Q
t

[
n

∑
j=1

it+j

]
−V

Q
t

[
n−1

∑
j=1

it+j

])
≈PrQ

t [st+n ≥ i]× 1
2

(
V

Q
t

[
n

∑
j=1

st+j

]
−V

Q
t

[
n−1

∑
j=1

st+j

])

=Φ
(

an + bnxt − i

σQ
n

)
× (an − an) (C.7)

with parameter an defined as

an ≡ an −
1
2
(δσε)

2

(
1−

(
ρQ
)n

1− ρQ

)2

.

Simplifying Eq. (C.1) by substituting in expressions for the first term derived in Eq. (C.4)

and second term derived in Eq. (C.7),

fn,t ≈i + σQ
n g
(

an + bnxt − i

σQ
n

)
+ Φ

(
an + bnxt − i

σQ
n

)
× (an − an)

=i + σQ
n g
(

an + bnxt − i
σQ

n

)
+ σQ

n

∂g
(

an+bnxt−i
σQ

n

)
∂an

× (an − an)

≈i + σQ
n g
(

an + bnxt − i
σQ

n

)
.

The last line comes from a first-order Taylor approximation. We thus obtain the forward

rate fn,t in Eq. (3.4).

C.2 Comparative Statics

I use the following definition in many of the proofs below:

z ≡ i− an − bnxt

σQ
n

.
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C.2.1 Proof of Proposition 1

Eq. (3.5) gives the probability that the ZLB binds at some time t + n. As xt decreases, this

probability increases:

∂

∂xt

(
PrQ

t [st+n < i]
)
= φ

(
i− an − bnxt

σQ
n

)
×
(
− bn

σQ
n

)
< 0.

As δ1 decreases, the probability that the ZLB is still binding also increases under certain

conditions:
∂

∂δ1

(
PrQ

t [st+n < i]
)
< 0.

To see this, expand this probability using the model parameters:

PrQ
t [st+n < i] =Φ

(
i− an − bnxt

σQ
n

)

=Φ

 i− δ0 + δ1µQ 1−(ρQ)
n

1−ρQ − δ1
(
ρQ
)n xt

δ1

√
(σε)

2 1−(ρQ)
2n

1−(ρQ)
2



=Φ

 i− δ0

δ1

√
(σε)

2 1−(ρQ)
2n

1−(ρQ)
2

+
µQ 1−(ρQ)

n

1−ρQ −
(
ρQ
)n xt√

(σε)
2 1−(ρQ)

2n

1−(ρQ)
2

 .

The second term in the CDF doesn’t depend on δ1. Assuming that i− δ0 > 0, the first term

becomes arbitrarily large as δ1 nears 0, which implies that the CDF becomes arbitrarily close

to 1 in value.

C.2.2 Proof of Proposition 2

To show that ∂ fn,t/∂xt > 0, I take the comparative static

∂ fn,t

∂xt
= Φ

(
an + bnxt − i

σQ
n

)
× bn > 0.
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C.2.3 Proof of Proposition 3

To show that ∂/∂xt (∂ fn,t/∂xt) > 0, I take the comparative static

∂

∂xt

(
∂ fn,t

∂xt

)
=φ

(
an + bnxt − i

σQ
n

)
× b2

n

σQ
n

> 0.

To show that ∂/∂δ1 (∂ fn,t/∂xt) > 0, I first make the following claim.

Claim 1 ∂z/∂δ1 > 0 for δ1 < δ for some δ.

The comparative static

∂

∂δ1

(
∂ fn,t

∂xt

)
=φ (z)× ∂z

∂δ1
bn + Φ (z)×

(
ρQ
)n

is guaranteed to be positive when δ1 < δ because ∂z/∂δ1 > 0 and the other terms are all

positive as well.

C.2.3.1 Proof of Claim 1

To sign ∂z/∂δ1, consider only the numerator since the denominator is positive:

∂

∂δ1
(an + bnxt − i)× σQ

n −
∂

∂δ1

(
σQ

n

)
× (an + bnxt − i) .

In the expressions below, the first line simplifies the above expression for the numerator

and each successive arrow ignores positive terms that are factored out.

∂

∂δ1
(an + bnxt − i)× σQ

n −
σQ

n

δ1
× (an + bnxt − i)

=⇒ µQ 1−
(
ρQ
)n

1− ρQ
− δ1σ2

ε

(
1−

(
ρQ
)n

1− ρQ

)2

+
(

ρQ
)n

xt

−

δ0

δ1
+ µQ 1−

(
ρQ
)n

1− ρQ
− 1

2
δ1σ2

ε

(
1−

(
ρQ
)n

1− ρQ

)2

+
(

ρQ
)n

xt −
i

δ1


=⇒ i− δ0

δ1
− 1

2
δ1σ2

ε

(
1−

(
ρQ
)n

1− ρQ

)2

.
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This last line must be positive in order for ∂z/∂δ1 > 0. This occurs when

i− δ0 >
1
2
(δ1)

2 σ2
ε

(
1−

(
ρQ
)n

1− ρQ

)2

=⇒ δ1 <

√
2
σε

(i− δ0)
1− ρQ

1− (ρQ)
n ≡ δ.

For δ1 that is not too large, we have ∂z/∂δ1 > 0. This proof also relies on the assumption in

Proposition 1 that i− δ0 > 0. Assuming that σε is not too large, there should be a sufficiently

large range of values for δ1 for which Claim 1 holds.

C.2.4 Proof of Proposition 4

The comparative static ∂/∂xt (∂/∂xt (∂ fn,t/∂xt)) is below:

∂

∂n

(
∂

∂xt

(
∂ fn,t

∂xt

))
=

∂

∂xt

(
∂

∂n

(
∂ fn,t

∂xt

))
=

∂

∂xt

(
Φ (z)× ln

(
ρQ
)
× δ1

(
ρQ
)n

+ φ (z)× ∂z
∂n

δ1

(
ρQ
)n
)

=δ1

(
ρQ
)n
(

φ (z)× ln
(

ρQ
)
× ∂z

∂xt
+ φ′ (z)× ∂z

∂xt

∂z
∂n

+ φ (z)× ∂

∂xt

(
∂z
∂n

))
=δ1

(
ρQ
)n
(

φ (z)× ln
(

ρQ
)
× bn

σQ
n
− zφ (z)× bn

σQ
n

∂z
∂n

+ φ (z)× ∂

∂xt

(
∂z
∂n

))
=δ1

(
ρQ
)n

φ (z)
(

ln
(

ρQ
)
× bn

σQ
n
− z× bn

σQ
n

∂z
∂n

+
∂

∂xt

(
∂z
∂n

))
. (C.8)

To sign this expression, I make the following claim.

Claim 2 ∂z/∂n > 0 for xt < x1 for some x1. Moreover, ∂/∂xt (∂z/∂n) < 0 and is independent of

xt.

Now consider the 3 terms inside the large parentheses in Eq. (C.8). The first term is

negative because ln
(
ρQ
)
< 0 and bn/σQ

n > 0. The third term is also negative because

∂/∂xt (∂z/∂n) < 0 by Claim 2. Moreover, the first and third terms are independent of xt by

Claim 2. Assume that xt < x1 such that ∂z/∂n > 0 by Claim 2. As xt decreases, z becomes

more negative, which implies that the second term is overall positive. For xt < x2, the
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overall expression is positive, as the second term outweighs the first and third terms, which

are independent of xt. Define x ≡ min {x1, x2}. Then we have the final result that

∂

∂n

(
∂

∂xt

(
∂ fn,t

∂xt

))
> 0 for xt < x. (C.9)

Evaluating the second part of Proposition 4, the comparative static ∂/∂xt (∂/∂xt (∂ fn,t/∂xt))

is

∂

∂n

(
∂

∂δ1

(
∂ fn,t

∂xt

))
=

∂

∂n

(
φ (z)× ∂z

∂δ1
bn + Φ (z)×

(
ρQ
)n
)

=
∂

∂n

(
φ (z)× ∂z

∂δ1
bn

)
+

∂

∂n

(
Φ (z)×

(
ρQ
)n)

. (C.10)

I make the following claims.

Claim 3 ∂/∂n
(

Φ (z)×
(
ρQ
)n
)
> 0 for xt < x3, for some x3.

Claim 4 ∂/∂n (φ (z)× (∂z/∂δ1) bn) > 0 for xt < x4 for some x4 and for δ1 < δ for the same δ in

Claim 1.

Assuming that δ1 < δ and xt < min {x3, x4} ≡ x∗, Claim 3 and Claim 4 imply that both

terms in Eq. (C.10) are positive. Then we have the final result that

∂

∂n

(
∂

∂δ1

(
∂ fn,t

∂xt

))
> 0 for xt < x∗ and δ1 < δ. (C.11)

Eqs. (C.9) and (C.11) show Proposition 4. When economic conditions are bad enough

and the ZLB is sufficiently binding by Proposition 1, the attenuation in the sensitivity of

forward rates to news in Proposition 3 is greater for longer maturity forward rates. On the

other hand, when economic conditions are good enough and the ZLB does not bind severely

by Proposition 1, the attenuation in the sensitivity of forward rates to news in Proposition 3

is smaller for longer maturity forward rates.
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C.2.4.1 Proof of Claim 2

The comparative static ∂z/∂n is

∂z
∂n

=
∂

∂n

(
an + bnxt − i

σQ
n

)

=

∂
∂n (an + bnxt − i)× σQ

n − ∂
∂n

(
σQ

n

)
× (an + bnxt − i)(

σQ
n

)2 .

We first show that ∂/∂xt (∂z/∂n) < 0 and is independent of xt by considering only the

numerator of ∂z/∂n and the terms involving xt since the denominator is positive and

independent of xt:
∂

∂n
(bnxt)× σQ

n −
∂

∂n

(
σQ

n

)
× bnxt.

In the expressions below, the first line expands the above expression for terms in the

numerator related to xt and each successive arrow ignores positive terms that are factored

out:

ln
(

ρQ
)
× δ1

(
ρQ
)n

xtσ
Q
n −

1
2

1

σQ
n
(δ1σε)

2 −2 ln
(
ρQ
)
×
(
ρQ
)2n

1− (ρQ)
2 δ1

(
ρQ
)n

xt

=⇒ ln
(

ρQ
)
× δ1

(
ρQ
)n

xt (δ1σε)
2 1−

(
ρQ
)2n

1− (ρQ)
2 + (δ1σε)

2 ln
(
ρQ
)
×
(
ρQ
)2n

1− (ρQ)
2 δ1

(
ρQ
)n

xt

=⇒ ln
(

ρQ
)
× xt

(
1−

(
ρQ
)2n
)
+ ln

(
ρQ
)
×
(

ρQ
)2n

xt

=⇒ ln
(

ρQ
)
× xt.

Since ρQ < 1 by assumption of stationarity, ln
(
ρQ
)
< 0 and ∂/∂xt (∂z/∂n) < 0 and is

moreover independent of xt. Since ∂z/∂n is decreasing in xt, for xt < x1 for some threshold

x1, ∂z/∂n > 0.
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C.2.4.2 Proof of Claim 3

Expand the comparative static ∂/∂n
(

Φ (z)×
(
ρQ
)n
)

:

∂

∂n

(
Φ (z)×

(
ρQ
)n)

=φ (z)× ∂z
∂n

(
ρQ
)n

+ Φ (z)× ln
(

ρQ
)
×
(

ρQ
)n

=
(

ρQ
)n
(

φ (z)× ∂z
∂n

+ Φ (z)× ln
(

ρQ
))

.

Thus,
∂

∂n

(
Φ (z)×

(
ρQ
)n)

> 0 ⇐⇒ Φ (z)
φ (z)

< − 1
ln (ρQ)

∂z
∂n

. (C.12)

We know from Claim 2 that ∂/∂xt (∂z/∂n) < 0 and is independent of xt, so the right-hand

side of the inequality in Eq. (C.12) becomes arbitrarily positive as xt becomes arbitrarily

negative. Moreover, as xt becomes arbitrarily negative, z becomes arbitrarily negative as

well. Using the relationship that

lim
z→−∞

Φ (z)
φ (z)

= lim
−z→∞

1−Φ (−z)
φ (z)

≈ 1
−z

,

it’s clear that at some point, the left-hand side of the inequality in Eq. (C.12) becomes an

arbitrarily small positive number. Thus the inequality in Eq. (C.12) holds for xt < x3 for

some x3, which proves Claim 3.

C.2.4.3 Proof of Claim 4

Expand the comparative static ∂/∂n (φ (z)× (∂z/∂δ1) bn):

∂

∂n

(
φ (z)× ∂z

∂δ1
bn

)
=

∂

∂n

(
φ (z)× δ1

(
ρQ
)n) ∂z

∂δ1
+
(

φ (z)× δ1

(
ρQ
)n) ∂

∂n
∂z
∂δ1

=

(
φ′ (z)× ∂z

∂n
δ1

(
ρQ
)n

+ φ (z)× δ1 ln
(

ρQ
)
×
(

ρQ
)n
)

∂z
∂δ1

+
(

φ (z)× δ1

(
ρQ
)n) ∂

∂n
∂z
∂δ1

=

(
−zφ (z)× ∂z

∂n
δ1

(
ρQ
)n

+ φ (z)× δ1 ln
(

ρQ
)
×
(

ρQ
)n
)

∂z
∂δ1

+
(

φ (z)× δ1

(
ρQ
)n) ∂

∂n
∂z
∂δ1

= δ1φ (z)×
(

ρQ
)n
(
−z

∂z
∂n

∂z
∂δ1

+ ln
(

ρQ
) ∂z

∂δ1
+

∂

∂n
∂z
∂δ1

)
. (C.13)
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The proof for Claim 1 shows that ∂z/∂δ1 is independent of xt, so the second and third terms

of Eq. (C.13) are likewise independent of xt. Claim 1 also says that δ1 < δ implies ∂z/∂δ1 > 0.

Then for xt < x4, we have z (increasing in xt) sufficiently negative and ∂z/∂n (decreasing in

xt based on Claim 2) sufficiently positive such that the first term in Eq. (C.13) is positive

and of large enough magnitude that the overall expression ∂/∂n (φ (z)× (∂z/∂δ1) bn) > 0,

which proves Claim 4.

C.3 Notes for Figures

C.3.1 Figure 3.2

Focusing on Panel A, the right-hand plot shows two time series. “fcsts,” plotted on the

right y-axis, is the median number of quarters until the first rate hike based on primary

dealer surveys by the FRBNY. “beta,” plotted on the left y-axis, comes from a daily 1-year

rolling regression that aggregates all 18 MNAs: ∆ fn,t = αn + βnSt + εn,t. ∆ fn,t is the basis

points change in the forward rate implied from the EDn contract in a ±5 minute window

around a MNA. The right-hand side variable St aggregates Si,t for MNA i. Si,t is defined

as the actual data less the expected data based on a Bloomberg survey of economists, all

normalized by the sample standard deviation of the actual less the expected difference:

Si,t = (Ai,t −Et− [Ai,t]) /σ̂i. “beta” is specifically the β̂n,t estimated parameter from running

the aforementioned regression on a 1-year window centered at t. The two vertical lines

correspond to the dates of the August, 2011 FOMC meeting (when calendar guidance was

introduced) and the December, 2012 FOMC meeting (when data thresholds was introduced),

respectively. The left-hand plot is simply a scatterplot of “beta” on “fcsts.” Each point

in the scatterplot is color-coded based on the timestamp: red for 12/17/08 to 8/9/11

corresponding to the period of general forward guidance (“fwd”); green for 8/10/11 to

12/12/12 corresponding to the period of calendar guidance (“cdr”); and blue for 12/13/12

to 3/6/14 corresponding to the period of data thresholds (“dat”). In a given period, lighter

colors indicate earlier dates. For Panels A, B, C, and D, n = 1, 4, 8, and 16, respectively.
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Panel E replaces ∆ fn,t with Rt, the % change in the price level of the TY contract. Thus, β̂n,t

is measured in basis points for Panels A, B, C, and D but in % for Panel E.

C.3.2 Figure 3.3

Focusing on Panel A, the right-hand plot shows two time series. “FF24,” plotted on the

right y-axis, is the implied FF rate (%) from the FF24 futures contract. “beta,” plotted on

the left y-axis, comes from a daily 1-year rolling regression that aggregates all 18 MNAs:

∆ fn,t = αn + βnSt + εn,t. ∆ fn,t is the basis points change in the forward rate implied from

the EDn contract in a ±5 minute window around a MNA. The right-hand side variable St

aggregates Si,t for MNA i. Si,t is defined as the actual data less the expected data based

on a Bloomberg survey of economists, all normalized by the sample standard deviation

of the actual less the expected difference: Si,t = (Ai,t −Et− [Ai,t]) /σ̂i. “beta” is specifically

the β̂n,t estimated parameter from running the aforementioned regression on a 1-year

window centered at t. The two vertical lines correspond to the dates of the August, 2011

FOMC meeting (when calendar guidance was introduced) and the December, 2012 FOMC

meeting (when data thresholds was introduced), respectively. The left-hand plot is simply a

scatterplot of “beta” on “FF24.” Each point in the scatterplot is color-coded based on the

timestamp: red for 12/17/08 to 8/9/11 corresponding to the period of general forward

guidance (“fwd”); green for 8/10/11 to 12/12/12 corresponding to the period of calendar

guidance (“cdr”); and blue for 12/13/12 to 3/6/14 corresponding to the period of data

thresholds (“dat”). In a given period, lighter colors indicate earlier dates. For Panels A, B, C,

and D, n = 1, 4, 8, and 16, respectively. Panel E replaces ∆ fn,t with Rt, the % change in the

price level of the TY contract. Thus, β̂n,t is measured in basis points for Panels A, B, C, and

D but in % for Panel E.

C.3.3 Figure 3.4

Focusing on Panel A, the right-hand plot shows two time series. “fcsts,” plotted on the

right y-axis, is the median number of quarters until the first rate hike based on primary
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dealer surveys by the FRBNY. “beta,” plotted on the left y-axis, comes from a daily 1-year

rolling regression that aggregates all 18 MNAs: Rt = αs + βsSt + εs,t. Rt is the % change in

the price level of the ES contract in a ±5 minute window around a MNA. The right-hand

side variable St aggregates Si,t for MNA i. Si,t is defined as the actual data less the expected

data based on a Bloomberg survey of economists, all normalized by the sample standard

deviation of the actual less the expected difference: Si,t = (Ai,t −Et− [Ai,t]) /σ̂i. “beta” is

specifically the β̂s,t estimated parameter from running the aforementioned regression on a

1-year window centered at t. The two vertical lines correspond to the dates of the August,

2011 FOMC meeting (when calendar guidance was introduced) and the December, 2012

FOMC meeting (when data thresholds was introduced), respectively. The left-hand plot

is simply a scatterplot of “beta” on “fcsts.” Each point in the scatterplot is color-coded

based on the timestamp: red for 12/17/08 to 8/9/11 corresponding to the period of general

forward guidance (“fwd”); green for 8/10/11 to 12/12/12 corresponding to the period of

calendar guidance (“cdr”); and blue for 12/13/12 to 3/6/14 corresponding to the period of

data thresholds (“dat”). In a given period, lighter colors indicate earlier dates. Panel B is

identical to Panel A, except the former replaces “fcsts” with “FF24,” the implied FF rate (%)

from the FF24 futures contract.
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