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Abstract

We introduce and study four q-randomized Robinson–Schensted–Knuth (RSK) insertion

tableau dynamics. Each of them is a discrete time Markov dynamics on two-dimensional

interlacing particle arrays (these arrays are in a natural bijection with semistandard Young

tableaux). For 0 < q < 1 each dynamics provides a two-dimensional extension of the

corresponding one-dimensional exactly solvable random dynamics of interacting particles.

We prove that our dynamics act nicely on a certain class of probability measures on arrays,

namely, on q-Whittaker processes. For q = 0 these dynamics degenerate to the classical

row or column RSK insertion tableau dynamics applied to a random input matrix with

independent geometric or Bernoulli entries. We prove that in a scaling limit as q ↗ 1,

two of our four dynamics on interlacing arrays turn into the geometric RSK dynamics

associated with log-Gamma and strict-weak directed random lattice polymers.
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1. Introduction

1.1. Overview. The classical Robinson–Schensted–Knuth (RSK) correspondence asso-

ciates to an integer matrix a pair (P,Q) of semistandard Young tableaux of the same

shape [43], [34], [70], [66]. It is informative to view an integer matrix M = (Mij) as a

configuration of points (“balls”) in cells of the lattice Z2
≥0, with Mij balls in the (i, j)-th

cell (see Fig. 1, left). There are also simpler correspondences obtained from the RSK if

j

i

1

1

2

2

3

3

M =

1 0 0
0 4 2
2 0 1

 w = (12313)

j cont.

i

1

2

3

σ = (514362)

j cont.

i cont.

Figure 1. Left: an integer matrix as an input to the RSK. Center: an integer
word as an input into the RS viewed as a matrix with the continuous j coordinate
(at most one ball at a given horizontal position is allowed; the word encodes
vertical positions of consecutive balls). Right: a permutation viewed as a matrix
with both continuous coordinates (at most one ball at a given horizontal or vertical
position is allowed; balls represent the graph of the permutation).

one makes one or both dimensions of the input continuous, see Fig. 1, center and right. In

particular, the Robinson–Schensted (RS) correspondence maps integer words into pairs of

Young tableaux of the same shape, but now one of them is standard.

The idea of applying the RSK correspondence to a random input can be traced back

to [72] where it was used in connection with the asymptotic theory of characters of the

infinite symmetric group (see also [16]). Together with combinatorial properties of the

RSK this idea has been extensively employed in studying various stochastic systems, e.g.,

TASEP (= totally asymmetric simple exclusion process), the last-passage percolation [40],

or longest increasing subsequences of random permutations [1], [2].

1



Reading the random input matrix column by column adds a dynamical perspective to

random systems (with j in all three cases on Fig. 1 playing the role of time). This direction

has been substantially developed in, e.g., [53], [54], [5].

The geometric version (also sometimes called “tropical”) of the RS and the RSK corre-

spondences1 has also been employed in the study of stochastic systems [55], [21], [59], [56].

The systems one obtains at this level are related to directed random polymers in random

media, in particular, to the O’Connell–Yor [60], log-Gamma [69], and strict-weak [57], [24]

random polymers. Each such polymer model can be viewed as a positive temperature

version of a certain last-passage percolation-like model.

In the stochastic systems mentioned above, the RSK and related constructions provide a

way to observe and understand their integrability. The integrability property refers to the

presence of concise and exact formulas describing observables, which allows to study the

asymptotic behavior of such systems, and also gives access to exact descriptions of limiting

universal distributions, such as the Tracy-Widom distributions which are features of the

Kardar–Parisi–Zhang (KPZ) universality class [19], [13], [15]

Random evolution of the insertion tableau P in (discrete) time j can be described by

using the concept of the plactic algebra. The plactic monoid of rank N is generated by

letters 1, 2, . . . ,N modulo certain relations, and its elements are in bijective correspon-

dence with the semistandard Young tableaux with entries from 1, 2, . . . , N , see §2.4. RSK

insertion of a random column corresponds to multiplication by the random element of the

plactic monoid. Multiplication on the right corresponds to the Schensted’s row insertion

and multiplication on the left corresponds to the Schensted’s column insertion, see §2.3.

Multiplication by a random element of a monoid can be thought of as the multiplication

1The geometric RSK maps arrays of positive real numbers into other such arrays in a birational way,
and is obtained from the classical RSK by a certain “detropicalization”, see [42], [52].
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by the corresponding linear combination from the monoid algebra. The situation is analo-

gous to the class of problems on randomly shuffling a deck of cards, where application of a

particular shuffling procedure can be thought of as multiplication by an element of C[Sn],

the group algebra of the symmetric group. Both the plactic algebra and C[Sn] are noncom-

mutative, but contain some explicit commutative subalgebras. Multiplication by elements

of such subalgebras in both cases leads to integrability of the corresponding stochastic

dynamics, although probabilistic implications are quite different 2. Random transpositions

shuffling of [26] can be thought of as multiplication by the particular linear combination of

the Jucys-Murphy elements of C[Sn], which commute with each other. The integrability

of the corresponding Markov chain allows to prove sharp upper bound on its mixing time.

The plactic algebra contains a family of commutative subalgebras generated by the

plactic Schur polynomials. Some particular products of elements from any one of these

subalgebras give rise to probability measures on the semistandard Young tableaux from the

family of Schur processes, see §2.5. In this case integrability allows to prove results about

limit shapes and fluctuations for the corresponding models of randomly growing surfaces.

The classical RSK is deeply connected to Schur symmetric functions [51, Ch. I], while

the geometric RSK is relevant to the gln Whittaker functions [47], [28]. Both families

of functions are degenerations of more general Macdonald symmetric functions depending

on two parameters (q, t) [51, Ch. VI]: the Schur functions correspond to q = t, and the

Whittaker functions arise in the limit as t = 0 and q ↗ 1, [37].

The definition of the Schur processes can be given without reference to the plactic

algebra. Substituting Macdonald functions instead of Schur functions in this definition

leads to a more general family of probability measures, the Macdonald processes, [8].

2Both the symmetric group and the plactic monoid can be presented by a finite set of generators
modulo finitley many relations, however, unlike the symmetric group, the plactic monoid is infinite.
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However, the plactic (dynamic) point of view on Macdonald processes remains much less

understood, and its further advancement is one of the main goals of the present paper.

In the recent years, there has been a progress in understanding analogues of the RS

insertion tableau dynamics at other levels of the Macdonald hierarchy: q-Whittaker (t = 0

and 0 < q < 1) [58], [64], [14] and Hall–Littlewood (q = 0 and 0 < t < 1) [17]. At these

levels, the maps become randomized, that is, the image of a deterministic word (as on

Fig. 1, center) is no longer a fixed Young tableau, but rather a random one. Because of

this randomness, an appropriate language for describing such RSK dynamics seems to be

that of Markov dynamics on two-dimensional interlacing integer arrays (these arrays are

in a natural bijection with semistandard tableaux, see §2.1 below for more detail). The

dynamics which are analogues of the RS insertion tableau dynamics evolve in continuous

time according to the j axis on Fig. 1, center.

The q-Whittaker level is relevant to integrable one-dimensional particle systems such

as (continuous time) q-TASEP and the stochastic q-Boson system [67], [8], [11], [9], [29],

and (continuous time) q-PushTASEP (= q-deformed pushing TASEP) [22].3 In particular,

continuous time Markov dynamics on interlacing arrays constructed in [58] and [14] are

two-dimensional extensions of, respectively, the q-TASEP and the q-PushTASEP. That

is, the latter one-dimensional processes are Markovian marginals of the dynamics on two-

dimensional interlacing arrays.4

In the present paper we advance further at the q-Whittaker level, and introduce four

q-randomized RSK dynamics, or, in other words, four discrete time Markov dynamics

3These systems are in fact quantum integrable in the sense of the coordinate Bethe ansatz [4], [48],
[3], [9].

4The two-dimensional dynamics at the Hall–Littlewood level [17], however, do not seem to lead to any
new one-dimensional integrable particle systems.
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on interlacing arrays which act nicely on q-Whittaker processes (these are Macdonald

processes with t = 0). These dynamics unify, generalize and extend all of the above

RSK-type constructions:

• When q = 0, our four q-randomized dynamics become usual or dual, row or column

classical RSK insertion tableau dynamics (four classical dynamics in total). The input

matrix M in the usual RSKs has Mij ∈ {0, 1, 2, . . .}, and in the dual RSKs one has

Mij ∈ {0, 1}. When one takes Mij to be independent geometric (for usual) or Bernoulli

(for dual) random variables and applies a suitable classical RSK insertion tableau map, the

shape of the resulting random Young diagram is distributed according to the Schur measure

[62].5 Similarly, our q-randomized correspondences applied to q-geometric or Bernoulli

random inputs (note that the Bernoulli input needs not to be q-deformed) give rise to

q-Whittaker distributed random Young diagrams. The latter property is an instance of

“acting nicely” on q-Whittaker processes (see also (4.1) in §3 for more detail).

• In a limit from discrete to continuous time, our q-randomized RSKs turn into the

(simpler) q-randomized RS insertion tableau dynamics introduced and studied in [58],

[14].

• The two discrete time q-TASEPs (associated with q-geometric or Bernoulli random

variables) studied by Borodin–Corwin [7] arise as one-dimensional marginals of our two

“column” dynamics on interlacing arrays. In a similar way, our two “row” dynamics lead

to discrete time q-PushTASEPs — new integrable particle systems in the KPZ universality

class.

• In a scaling limit as q ↗ 1, the dynamics on interlacing arrays associated with the

q-geometric random input (these are two out of our four q-randomized RSK insertion

5In the present paper, the word “geometric” is attached to two separate concepts — the geometric
RSKs, and the geometric and q-geometric random variables.
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tableau dynamics) converge to geometric RSK dynamics. The latter dynamics (which are

deterministic rational maps between arrays of positive reals) are relevant to the log-Gamma

[69], [21], [59] and strict-weak [24] random lattice polymers.

In §1.2 below we describe one of our four dynamics in detail, and in §1.3 we briefly

discuss other dynamics and results.

λ
(N)
N λ

(N)
N−1

. . . . . . . . . . . . λ
(N)
2 λ

(N)
1

λ
(N−1)
N−1 λ

(N−1)
N−2

. . . λ
(N−1)
2 λ

(N−1)
1

λ
(N−2)
N−2 λ

(N−2)
1

≤≤≤

≤ ≤

≤

≤

≥≥ ≥

≥

≥

≥

≥
. . . . . . . . . . . .

λ
(1)
1

1

2

3

4

5

0 1 2 3 4 5 6 7 8

Figure 2. Left: An interlacing array λ; we require that λ
(j)
i ∈ Z≥0. Right: A

configuration of particles corresponding to an interlacing array of depth N = 5
(right).

1.2. q-randomized row insertion with q-geometric input. Discrete time Markov dy-

namics (i.e., the q-randomized RSK insertion tableau dynamics) which we construct in

the present paper live on the space of integer arrays λ (see Fig. 2). Neighboring levels

of the array satisfy certain inequalities which we call the interlacing property (see 2.1 for

definition). Each level λ(j) = (λ
(j)
1 ≥ . . . ≥ λ

(j)
j ) of an array can be viewed as a partition

(equivalently, a Young diagram [51, I.1]), so λ is a sequence of interlacing Young diagrams.

Each λ can be also viewed as a semistandard Young tableau of shape λ(N) filled with num-

bers from 1 to N . Then each λ(j) is the portion of the semistandard tableau filled with

numbers from 1 to j, see Fig. 3.

Let us now define the (q-randomized) operation of inserting a word w = (1m12m2 . . . NmN )

(i.e., the word has m1 ones, m2 twos, etc.) into an array λ. The result is a new, random

array ν. At the first level we have ν
(1)
1 = λ

(1)
1 + m1. Then, sequentially at all levels
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1 1 1 1 3 4 4
2 2 2 5 5 5 5
3 3 3
4 4
5 5

Figure 3. A semistandard Young tableau corresponding to the array on Fig. 2,
right.

j = 2, . . . , N , given the existing change λ(j−1) → ν(j−1) at the previous level and the

old state λ(j) at the current level, construct the new state ν(j) as follows. Each move

ν
(j−1)
i − λ(j−1)

i , i = 1, . . . , j − 1, is randomly split into two pieces r
(j−1)
i + `

(j−1)
i , and the

piece r
(j−1)
i is added to the new move of the upper right neighbor λ

(j)
i , while the piece

`
(j−1)
i is added to the new move of the upper left neighbor λ

(j)
i+1. Moreover, λ

(j)
1 receives an

additional move of size mj. All these splittings and moves at level j happen in parallel.

That is (here and below 1··· stands for the indicator),

ν
(j)
i − λ(j)

i = mj1i=1 + r
(j−1)
i 1i<j + `

(j−1)
i−1 1i>1, i = 1, . . . , j

(see Fig. 4). To complete the definition, it now remains to describe the distribution of

the splitting of the move ν
(j−1)
i − λ

(j−1)
i = r

(j−1)
i + `

(j−1)
i . This is a certain q-deformed

version of the Beta-binomial distribution, namely, r
(j−1)
i is randomly chosen to be equal to

r ∈ {0, 1, 2, . . . , ν(j−1)
i − λ(j−1)

i } with probability

ϕq−1,qa,qb(r | c) := qar
(qb−a; q−1)r
(q−1; q−1)r

(qa; q−1)c−r
(q−1; q−1)c−r

(q−1; q−1)c
(qb; q−1)c

, (1.1)

where

a = λ
(j)
i − λ(j−1)

i , b = λ
(j−1)
i−1 − λ(j−1)

i , c = ν
(j−1)
i − λ(j−1)

i ,

we adopt convention λj−1
0 = ∞, and (u; q)m = (1 − u)(1 − uq) . . . (1 − uqm−1) are the

q-Pochhammer symbols. The quantity `
(j−1)
i is simply equal to ν

(j−1)
i − λ(j−1)

i − r(j−1)
i .
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The quantities (1.1) define a probability distribution in r for a ≤ b, c ≤ b (these condi-

tions follow from the interlacing). Moreover, this distribution is supported on {0, 1, . . . , c}∩
{c − a, c − a + 1, . . . , b − a − 1, b − a}, which in fact ensures that the new array ν is also

interlacing (see lemma 6.2 for details).

λ
(j−1)
i ν

(j−1)
i

λ
(j)
i+1 λ

(j)
iν

(j)
i+1 ν

(j)
i

`
(j−1)
i r

(j−1)
i

r
(j−1)
i+1 `

(j−1)
i−1

Figure 4. Splitting of the move at level j − 1 and its propagation to the level
j. Here we are using the particle interpretation of interlacing arrays as on Fig. 2,
right.

Now, let us take the insertion word w = (1m12m2 . . . NmN ) to be random itself. More

precisely, let mj, j = 1, . . . , N , be independent q-geometric random variables:

Prob(mj = k) =
αk

(q; q)k
(α; q)∞, k = 0, 1, 2, . . . , 0 < α < 1. (1.2)

Inserting this random word w into an array λ defines one step of a discrete time Markov

chain on interlacing arrays. We denote this Markov chain by Qqrow[α].

Theorem 1.1. Start the Markov dynamics Qqrow[α] from the interlacing array with all

λ
(j)
i (0) = 0. Then the distribution of the array λ(T ) after T steps of this dynamics is given

by the q-Whittaker process:

Prob(λ(T ) = λ) = (α; q)TN∞ Pλ(1)(1)Pλ(2)/λ(1)(1) . . . Pλ(N)/λ(N−1)(1)Qλ(N)(α, α, . . . , α︸ ︷︷ ︸
T

).

Here Pλ/µ and Qλ are the q-Whittaker polynomials, see §3 for more detail. Theorem 1.1

follows from Theorem 6.4 which we prove in §6.2.
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Remark 1.2. In fact, we can (and will) consider a more general situation when the pa-

rameters α in (1.2) may depend on j and on the time step as αtaj. Then the q-Whittaker

process above takes the form( N∏
j=1

T∏
t=1

(αtaj; q)∞

)
Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(N)/λ(N−1)(aN)Qλ(N)(α1, α2, . . . , αT ).

We omit the dependence on j and t in Introduction.

Let us now describe three degenerations of the dynamics Qqrow[α]:

• For q = 0, the splitting distributions (1.1) become supported at a single r ∈ {0, 1, . . . , c},
so the randomness in the insertion disappears, and the insertion itself turns into the classi-

cal RSK row insertion (we recall its definition in §2.6). The q-geometric random variables

mj (1.2) become geometric, and the q-Whittaker polynomials in Theorem 1.1 turn into

the Schur polynomials. This justifies our treatment of the dynamics Qqrow[α] as the q-

randomized row RSK insertion tableau dynamics.

• Fix 0 < q < 1. When α↘ 0 in (1.2) and one rescales time from discrete to continuous

(see §6.7 for more details), the random input matrix turns into N independent Poisson

processes running in parallel (i.e., we are passing from the left to the center situation on

Fig. 1). Then in the splitting distributions one has c = 0 or 1, and the dynamics Qqrow[α]

turns into a continuous time dynamics on q-Whittaker processes which was introduced in

[14]. The latter continuous time dynamics should be viewed as a q-randomized row RS

insertion tableau dynamics.

• Let q = e−ε and α = e−θε with ε↘ 0 and θ > 0. Define the positive random variables

R̂j
k(t, ε) via the following scaling:

λ
(j)
k (t) = (t+ j − 2k + 1)ε−1 log ε−1 + ε−1 log

(
R̂j
k(t, ε)

)
.

9



If the quantities λ
(j)
k evolve under the dynamics Qqrow[α] started from all λ

(j)
k (0) = 0, then

the rescaled quantities R̂j
k(t, ε) converge to certain ratios of partition functions in the

log-Gamma lattice polymer model (see §8.1 and Theorem 8.7 in particular for details).

Moreover, under this scaling the randomness in the splitting (1.1) disappears, and the

q-randomized insertion described above turns into the geometric RSK insertion.

Remark 1.3. It is worth noting that there is also a strong connection between the geomet-

ric RSK and representation theory, cf. [5], [18]. At the q-randomized level this connection

does not (yet) seem to be present.

When restricted to the rightmost particles λ
(j)
1 , j = 1, . . . , N , of the interlacing array,

the dynamics Qqrow[α] induces a marginally Markovian evolution which we call the (dis-

crete time) geometric q-PushTASEP. This is a new integrable particle system in the KPZ

universality class. In the shifted coordinates xi(t) := −λ(i)
1 (t) − i (so xN < . . . < x1),

the evolution of this system during time step t → t + 1 looks as follows. Sequentially for

i = 1, 2, . . . , N , each particle xi jumps to the left by mi+r
(i−1)
1 , where mi is an independent

q-geometric random variable (1.2), and r
(i−1)
1 is a random variable with distribution

ϕq−1,qa,0(r | c) = qar(qa; q−1)c−r
(q−1; q−1)c

(q−1; q−1)r(q−1; q−1)c−r
,

a = xi−1(t)− xi(t)− 1,

c = xi−1(t+ 1)− xi−1(t)

(this is simply the splitting distribution (1.1) with b = +∞). Note that if c > a, then

r
(i−1)
1 chosen according to the above distribution will be at least c− a. See Fig. 5.

In a continuous time limit as α ↘ 0, the geometric q-PushTASEP turns into the con-

tinuous time q-PushTASEP of [14], [22]. The q-moments of the form E qk(xn(t)+n) (and

more general such moments) of both q-PushTASEPs are given in terms of nested contour

integrals. For the geometric q-PushTASEP only finitely many such moments exist (i.e., the

expectation is infinite for sufficiently large k), and for the continuous time q-PushTASEP

10



xi−1(t+ 1) xi−1(t)xi(t)

a = xi−1(t)− xi(t)− 1 = 7

c = xi−1(t+ 1)− xi−1(t) = 4
r

(i−1)
1

mi

Figure 5. The discrete time geometric q-PushTASEP.

the moments grow too fast and also do not determine the distribution of xn(t). We refer

to §7 for further details.

1.3. Other dynamics and results. Besides the dynamics Qqrow[α] discussed in §1.2 above,

we introduce three other dynamics on q-Whittaker processes:

• Qqcol[α] (§6.4 and Theorem 6.11). At q = 0 this dynamics becomes the classical RSK

column insertion applied to a geometric random input Q
q=0
col [α] (§4.5). In a scaling limit

as q ↗ 1, Qqcol[α] turns into a geometric RSK associated with the strict-weak lattice poly-

mer introduced in [24] (Theorem 8.8). In a continuous time limit, Qqcol[α] turns into the

q-randomized column RS insertion tableau dynamics introduced in [58]. Under Q
q
col[α],

the leftmost particles λ
(j)
j of the interlacing array evolve according to the discrete time

geometric q-TASEP of [7].

• Qqrow[β̂] (§5.1 and Theorem 5.2). At q = 0 this dynamics becomes the dual RSK

row insertion applied to a Bernoulli random input Qq=0
row [β̂] (§4.5). In a continuous time

limit, Qqrow[β̂] turns into the q-randomized row RS insertion tableau dynamics [14]. Under

Qqrow[β̂], the rightmost particles λ
(j)
1 of the interlacing array evolve according to a new

particle system, the discrete time Bernoulli q-PushTASEP (Definition 7.1).

• Q
q
col[β̂] (§5.4 and Theorem 5.7). At q = 0 this dynamics becomes the dual RSK

column insertion applied to a Bernoulli random input Qq=0
col [β̂] (§4.5). In a continuous time

limit, Qqrow[β̂] turns into the q-randomized column RS insertion tableau dynamics of [58].
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Under Qqrow[β̂], the leftmost particles λ
(j)
j of the array evolve according to the discrete time

Bernoulli q-TASEP [7].6

Remark 1.4. We believe that the four dynamics we construct are the most “natural”

discrete time dynamics on q-Whittaker processes having all the desired properties and

prescribed degenerations:

• The update in the dynamics is sequential, from lower to upper levels of the inter-

lacing array.

• The dynamics act nicely on q-Whittaker measures and processes.

• The continuous time limits (α or β → 0) of the dynamics coincide with continuous

time RS dynamics of [58] or [14].

• For q = 0, the dynamics degenerate to the ones related to the classical RSK insertion

tableau dynamics.

• In the q ↗ 1 limit, the (α) dynamics converge to the ones related to the geometric

RSKs.

The dynamics Qqrow[β̂] and Q
q
col[β̂] are related to each other via a straightforward pro-

cedure we call complementation (§5.3) which shortens the proofs for Q
q
col[β̂]. Moreover,

one can say that this procedure provides a direct link between the column and the row

q-randomized RS insertion tableau dynamics of [58] and [14] (which are continuous time

limits of Qqcol[β̂] and Qqrow[β̂], respectively). This also provides a direct coupling between

the Bernoulli q-TASEP and q-PushTASEP (Proposition 7.2).

1.4. Outline. In §2 and §3 we recall the necessary background on plactic algebra, Schen-

sted’s insertions, Schur processes, Macdonald symmetric functions, and q-Whittaker pro-

cesses. In §4 and also write down and discuss main linear equations which must be satisfied

6In contrast with Qq
row[α] and Q

q
col[α], there is (yet) no known polymer-like limits of Qq

row[β̂] or Q
q
col[β̂].

12



by our Markov dynamics on interlacing arrays and discuss two particular types of Markov

dynamics, namely, push-block and RSK-type dynamics, and explain the differences between

them. In §5 and §6 we explain in detail the constructions of four discrete time RSK-type

dynamics on interlacing arrays, and prove that these dynamics act on the q-Whittaker pro-

cesses in desired ways. In §7 we briefly discuss moment formulas for our one-dimensional

interacting particle systems. In §8 we consider scaling limits as q ↗ 1 of our two (α)

dynamics on interlacing arrays, and show that they turn into the geometric RSK dynamics

associated with log-Gamma or strict-weak directed random lattice polymers.

2. Plactic Algebra and Schur Processes

2.1. Preliminaries. A signature7 of length N ≥ 1 is a nonincreasing collection of integers

λ = (λ1 ≥ . . . ≥ λN) ∈ ZN . We will work with signatures which have only nonnegative

parts, i.e., λN ≥ 0 (in which case they are also called partitions). Denote the set of all such

objects by GT+
N . Let also GT+ :=

⋃∞
N=1 GT+

N , with the understanding that we identify

λ ∪ 0 = (λ1, . . . , λN , 0, 0, . . . , 0) ∈ GT+
N+M (M zeros) with λ ∈ GT+

N for any M ≥ 1.

We will use two ways to depict signatures (see Fig. 6):

(1) Any signature λ ∈ GT+
N can be identified with a Young diagram (having at most

N rows) as in [51, I.1].

(2) A signature λ ∈ GT+
N can also be represented as a configuration of N particles on

Z≥0 (with the understanding that there can be more than one particle at a given

location).

We denote by |λ| := ∑N
i=1 λi the number of boxes in the corresponding Young diagram, and

by `(λ) the number of nonzero parts in λ (which is finite for all λ ∈ GT+). For µ, λ ∈ GT+

7These objects are also sometimes called highest weights, cf. [74], as they are the highest weights of
irreducible representations of the unitary group U(N).
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we will write µ ⊆ λ if µi ≤ λi for all i ∈ Z>0. In this case, the set difference of Young

diagrams λ and µ is denoted by λ/µ and is called a skew Young diagram.

Two signatures µ, λ ∈ GT+ are said to interlace if one can append them by zeros such

that µ ∈ GT+
N−1 and λ ∈ GT+

N for some N , and

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ λN−1 ≥ µN−1 ≥ λN . (2.1)

In terms of Young diagrams, this means that λ is obtained from µ by adding a horizontal

strip (or, equivalently, that the skew diagram λ/µ is a horizontal strip which is, by defi-

nition, a skew Young diagram having at most one box in each vertical column), and we

denote this by µ ≺h λ.

λ = 0 1 2 3 4 5 6

Figure 6. Young diagram λ = (5, 3, 3, 2) ∈ GT+
4 , and the corresponding particle

configuration. Note that there are two particles at location 3.

Let λ′ denote the transposition of the Young diagram λ. For the diagram on Fig. 6, we

have λ′ = (4, 4, 3, 1, 1). If λ/µ is a horizontal strip, then λ′/µ′ is called a vertical strip. We

will denote the corresponding relation by µ′ ≺v λ
′.

Definition 2.1. A Gelfand–Tsetlin array (sometimes also referred to as scheme, or pat-

tern) of depth N is a sequence of interlacing signatures λ = (λ(1) ≺h λ
(2) ≺h . . . ≺h λ

(N)),

where λ(j) ∈ GT+
j .

Such sequences first appeared in connection with representation theory of unitary groups

[36].8 We will depict sequences λ as interlacing integer arrays, and also associate to them

8This justifies the notation “GT” we are using.
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configurations of particles {(λ(k)
j , k) : k = 1, . . . , N, j = 1, . . . , k} on N horizontal copies of

Z≥0. See Fig. 2. Let us denote the set of all interlacing arrays λ of depth N with top level

λ by GT(N)(λ). Let GT(N) :=
⋃
λ∈GT+

N
GT(N)(λ).

Definition 2.2. A semistandard Young tableau of shape λ is a filling in the boxes of the

Young diagram λ with positive integers, which increase weakly along rows, and strictly

down columns.

There is a natural correspondence between the Gelfand-Tsetlin arrays of depth N and the

semistandard Young tableaux filled with numbers from 1 to N . Indeed, given λ ∈ GT(N)

we can produce a semistandard Young tableau of shape λ(N) by filling λ(j)/λ(j−1) with

numbers equal to j, see Fig. 3. Thus, by a slight abuse of notation we will also use

GT(N)(λ) to denote the set of semistandard Young tableaux of shape λ filled with numbers

from 1 to N .

2.2. Schur polynomials. We refer the reader to [51, Ch. I] for a more detailed overview

of the Schur polynomials.

Definition 2.3. Schur polynomials Sλ(x1, . . . , xN) indexed by λ ∈ GT+
N can be defined by

the following formula:

Sλ(x1, . . . , xN) :=
∑

λ∈GT(N)(λ)

N∏
j=1

x
|λ(j)|−|λ(j−1)|
j . (2.2)

Here and thereafter we use the convention λ(0) = ∅.

In representation theory Schur polynomials are the characters of polynomial irreducible

representations of the general linear groups. They also admit a nice determinantal formula:

Sλ(x1, . . . , xN) =
det[x

λj+N−j
i ]Ni,j=1

det[xN−ji ]Ni,j=1

. (2.3)
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It is clear from (2.3) that Sλ(x1, . . . , xN) is a symmetric polynomial in x1, . . . , xN . The

Schur polynomials are stable in the sense that for any λ ∈ GT+
N ,

Sλ∪0(x1, . . . , xN , 0) = Sλ(x1, . . . , xN).

Therefore, one may speak about Schur symmetric functions Sλ(x1, x2, . . .) in infinitely

many variables, indexed by arbitrary λ ∈ GT+. These are elements of the algebra of sym-

metric functions, which may be viewed as a polynomial ring Sym = C[p1, p2, . . .] generated

by the Newton power sums pk(x1, x2, . . .) =
∑∞

j=1 x
k
j . In other words, symmetric functions

can be viewed as usual polynomials in p1, p2, . . .. Note that Sλ(x1, . . . , xN) ≡ 0 if `(λ) > N .

Definition 2.4. A specialization of the algebra of symmetric functions Sym is an algebra

morphism Sym → C. This is a generalization of the operation of taking the value of

a symmetric function at a point. A specialization A is said to be Schur-nonnegative, if

Sλ(A) ≥ 0 for any λ ∈ GT+.

Schur-nonnegative specializations are completely described by the Thoma’s theorem [71],

see also [41]. Namely, these are specializations A = (α;β; γ), where α = (α1 ≥ α2 ≥ . . . ≥
0) β = (β1 ≥ β2 ≥ . . . ≥ 0), γ ≥ 0, and

∑
i(αi + βi) < ∞, which may be defined via the

generating function corresponding to signatures (n) ∈ GT+
1 :

∞∑
n=0

S(n)(A) · un = eγu
∞∏
i=1

1 + βiu

1− αiu
:= Π(u; A). (2.4)

The left hand side of (2.4) is equal to exp
(∑∞

k=1
1
k
pk(A)uk

)
, so alternatively we can say

that A is defined by setting

p1(A) =
∞∑
i=1

αi +
∞∑
i=1

βi + γ, pk(A) =
∞∑
i=1

αki + (−1)k−1

∞∑
i=1

βki for k = 2, 3, . . . .

Remark 2.5. The specialization with all βi = 0 and γ = 0 is the same as assigning values

to the formal variables, xj = αj, and we refer to the parameters αj as usual parameters.
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In this case, if there are only finitely many nonzero aj, we refer to the corresponding

specialization as a finite length specialization. The specialization with all αj = 0 and

γ = 0 sends Sλ to Sλ′(β) (value of the usual (β) specialization at Sλ′), so we refer to the

parameters βi as the dual parameters. γ is the Plancherel parameter.

Let A∪B denote the union of specializations (a generalization of concatenating the sets

of variables). Formally it is defined as pk(A ∪B) = pk(A) + pk(B), k ≥ 1.

We will also need the Cauchy identity

∑
λ∈GT+

Sλ(~x)Sλ(~y) = exp

(
∞∑
k=1

1

k
pk(~x)pk(~y)

)
(2.5)

for ~x = (x1, x2, . . .) and ~y = (y1, y2, . . .). By applying a A = (α;β; γ) specialization to

functions in y-variables and setting xN+1 = xN+2 = · · · = 0 we can get the following

corollary:

∑
λ∈GT+

Sλ(x1, . . . , xN)Sλ(A) = Π(x1; A) · · ·Π(xN ; A)

= eγ(x1+···+xN )

(
∞∏
i=1

∞∑
m=0

αmi S(m)(x1, . . . , xN)

)(
∞∏
i=1

N∑
m=0

βmi S1m(x1, . . . , xN)

)
. (2.6)

2.3. Schensted’s insertions. Schensted’s row and column insertions ([68]) are combina-

torial constructions serving as the building blocks of the RSK algorithms, see [43], [34].

Each insertion can be described in the language of semistandard Young tableaux as a

sequence of row and column bumpings. In the language of interlacing arrays these bump-

ings correspond to elementary operations of deterministic long-range pulling and pushing,

which involve only two consecutive levels of an array.

Definition 2.6. (Deterministic long-range pulling, Fig. 7)
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Let j = 2, . . . , N , and signatures λ̄, ν̄ ∈ GT+
j−1, λ ∈ GT+

j satisfy λ̄ ≺h λ, ν̄ = λ̄ + ēi,

where ēi = (0, 0, . . . , 0, 1, 0, . . . , 0) (for some i = 1, . . . , j − 1) is the ith basis vector of

length j − 1. Define ν ∈ GT+
j to be

ν = pull(λ | λ̄→ ν̄) :=


λ+ ei, if λ̄i = λi;

λ+ ei+1, otherwise.

Here ei and ei+1 are basis vectors of length j.

In words, the particle λ̄i at level j − 1 which moved to the right by one generically pulls

its upper left neighbor λi+1, or pushes it upper right neighbor λi if the latter operation is

needed to preserve the interlacing. Note that the long-range pulling mechanism does not

encounter any blocking issues.

2 + 1 4

1 2 + 1 7

+1

2 + 1 4

1 + 1 3 7

+1

Figure 7. An example of pulling mechanism for i = 2 at levels 2 and 3 (i.e.,
j = 3). Left: λ̄2 = λ2, which forces the pushing of the upper right neighbor.
Right: in the generic situation λ̄2 < λ2 the upper left neighbor is pulled.

Definition 2.7. (Deterministic long-range pushing, Fig. 8) As in the previous definition,

let j = 2, . . . , N , λ̄, ν̄ ∈ GT+
j−1, λ ∈ GT+

j be such that λ̄ ≺h λ and ν̄ = λ̄ + ēi. Define

ν ∈ GT+
j to be

ν = push(λ | λ̄→ ν̄) := λ+ em, where m = max{p : 1 ≤ p ≤ i and λp < λ̄p−1}.

In words, the particle λ̄i at level j − 1 which moved to the right by one, pushes its

first upper right neighbor λm which is not blocked (and therefore is free to move without
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violating the interlacing). Generically (when all particles are sufficiently far apart) λm = λi,

so the immediate upper right neighbor is pushed.

Remark 2.8 (Move donation). It is useful to equivalently interpret the mechanism of

Definition 2.7 in a slightly different way. Namely, let us say that when the particle λ̄i at

level j − 1 moves, it gives the particle λi at level j a moving impulse. If λi is blocked (i.e.,

if λi = λ̄i−1), this moving impulse is donated to the next particle λi−1 to the right of λi. If

λi−1 is blocked, too, then the impulse is donated further, and so on. Note that the particle

λ1 cannot be blocked, so this moving impulse will always result in an actual move.

1 2 + 1 4 6

0 1 4 6 7 + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1block block

Figure 8. An example of pushing mechanism for i = 3 at levels 4 and 5 (i.e.,
j = 5). Since the particles λ3 = λ̄2 and λ2 = λ̄1 are blocked, the first particle
which can be pushed is λ1.

Definition 2.9. The Schensted’s row insertion is an algorithm that takes a semistandard

tableau λ ∈ GT(N), and an integer 1 ≤ x ≤ N , and constructs a new tableau λ ← x

according to the following procedure:

• If x is at least as large as all the entries in the first row of λ, add x in a new box to

the end of the first row. In this case the algorithm terminates.

• Otherwise find the leftmost entry y in the first row that is strictly larger than x and

replace it by x.

• Repeat the same steps with y and the second row, then with the replaced entry z and

the third row, ..., and so on until the replaced entry can be put in the end of the next row,

possibly by forming a new row of one entry. Then the algorithm terminates.
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In terms of arrays and long-range pulling we can describe this insertion in the following

way:

• Levels λ(1), . . . , λ(x−1) remain unchanged.

• Rightmost particle on the level x moves by 1 to the right, i.e λ(x) → λ(x) + ē1.

• Then pull operations are consecutively performed for j = x+ 1, . . . , N .

3

4 + 1

4 + 1

6

6

2

32

3 4 + 12

2 53 + 12 1 1 1 2
2 2 3
3 3

4 4
4

4
4 4

5

5 5

1 1 1 2
2 2 3
3 3

2 4
4

4
4 4

4

5 5

1 1 1 2
2 2 3
3 3

2 4
4

4
4 4

5

5 5

1 1 1 2
2 2 3
3 3

2 4
4

4
4 4

4

5 5

5

2 4 5

Figure 9. An example of Schensted’s row insertion in terms of semistandard
tableaux and particle arrays for N = 5.

In words, this push-pull chain of movements starts on the right edge of the array and

progresses upwards until it reaches the top level. This is the same as saying that shape

of a tableau is augmented by one cell after row insertion of a single entry. One can also

row-insert a word X = x1x2 . . . x` in a tableau λ by consecutively inserting its entries one

by one:

λ← X := λ← x1 ← x2 ← · · · ← x`

Definition 2.10. The Schensted’s column insertion is an algorithm that takes a semistan-

dard tableau λ ∈ GT(N), and an integer 1 ≤ x ≤ N , and constructs a new tableau x→ λ

according to the following procedure:

• If x is strictly larger than all the entries in the first column of λ, add x in a new box

at the bottom of the first column. In this case the algorithm terminates.

• Otherwise find the topmost entry y in the first column that is at least large as x and

replace it by x.

20



• Repeat the same steps with y and the second column, then with the replaced entry z

and the third column, ..., and so on until the replaced entry can be put at the bottom of the

next column, possibly by forming a column of one entry. Then the algorithm terminates.

In terms of arrays and long-range pushing we can describe this insertion in the following

way:

• Levels λ(1), . . . , λ(x−1) remain unchanged.

• Leftmost particle on the level x moves by 1 to the right, i.e λ(x) → λ(x) + ēx.

• Then push operations are consecutively performed for j = x+ 1, . . . , N .

3

4

4

6 + 1

6 + 1

2

3 + 12

3 42

2 532 1 1 1 2
2 2 3
3 3

4 4
4

4
4 4

5

5 5 3 4

1 1 1 2
2 2 3
3 3

4 4
3

4
4 4

5

5 5

1 1 1 2
2 2 3
3 3

4 4
3

4
4 4

5

5 5

4

Figure 10. An example of Schensted’s column insertion in terms of semistan-
dard tableaux and particle arrays for N = 5. Only steps that change the tableau
are shown.

As in the case of the row insertion, on each of the levels from x-th to N -th precisely one

particle moves to the right by 1. The sequence of moves progresses upwards and to the

right until it reaches the top level. One can also column-insert a word X = x1x2 . . . x` in

a tableau λ by consecutively inserting its entries one by one in reverse order:

X → λ := x1 → x2 → · · · → x` → λ

2.4. Plactic algebra. The plactic monoid discovered by Knuth provides one natural

framework for thinking about Schensted’s insertions, see [50] for an excellent exposition.
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Definition 2.11. The plactic monoid PlN of rank N is a monoid generated by letters

1, 2, . . . ,N modulo the Knuth relations:

xzy ≡ zxy (x ≤ y < z), yxz ≡ yzx (x < y ≤ z). (2.7)

We define the plactic algebra C[[PlN ]] to be the algebra of formal countable linear combi-

nations over C of elements of PlN with absolutely summable sets of nonzero coefficients.

The algebra multiplication is extended from the monoid multiplication.

Remark 2.12. The plactic algebra is usually defined by allowing only finite linear combi-

nations, as in the general definition of the monoid algebra, however it will be useful in our

setting to sometimes consider infinite sums.

To a semistandard tableau λ ∈ GT(N) one can associate an element w(λ) ∈ PlN repre-

sented by a word obtained by reading entry letters of λ first in the bottom row from left to

right, then in the second row from the bottom from left to right, and so on. For instance,

for a tableau on Fig. 3 the corresponding word will be 554433322255551111344. The fol-

lowing proposition explains basic connections between the plactic monoid and Schensted

insertions.

Proposition 2.13. (see [50]).

(1) For every a ∈ PlN there exists a unique tableau λ, such that a = w(λ).

(2) w(λ← x) = w(λ) · x.

(3) w(x→ λ) = x · w(λ).

Hence consecutively inserting x1, x2, . . . , xr via the Schensted’s row insertion into a

tableau λ leads to the the same result as multiplication of w(λ) by X = x1x2 · · · xr on

the right, while multiplication of w(λ) by X on the left amounts to the same result as

consecutively inserting xr, . . . , x2, x1 in λ via the Schensted’s column insertion.

22



The plactic algebra is noncommutative for N ≥ 2, but it contains nice families of com-

muting elements. More precisely, for λ ∈ GT+
N and a1, a2, . . . , aN ∈ C define the plactic

Schur polynomial

SPlλ (a1 · 1, a2 · 2, , . . . , aN · N) :=
∑

λ∈GT(N)(λ)

w(λ) · a|λ(1)|
1 a

|λ(2)|−|λ(1)|
2 · · · a|λ(N)|−|λ(N−1)|

N . (2.8)

Proposition 2.14. (see [50]). Sλ(a1 · 1, . . . , aN ·N) and Sµ(a1 · 1, . . . , aN ·N) commute for

arbitrary λ and µ, and their product can be expressed as

SPlλ (a1 · 1, . . . , aN · N)SPlµ (a1 · 1, . . . , aN · N) =
∑
ν

cνλ,µS
Pl
ν (a1 · 1, . . . , an · N), (2.9)

where cνλ,µ is the Littlewood-Richardson coefficient, i.e the coefficient of Sν in the expansion

of SλSµ in the basis of Schur functions.

Remark 2.15. A homomorphism C[[PlN ]] → C defined by sending every generator k to

1 sends (2.9) to

Sλ(a1, . . . , aN)Sµ(a1, . . . , aN) =
∑
ν

cνλ,µSν(a1, . . . , aN),

which is the defining relation for the Littlewood-Richardson coefficients.

Remark 2.16. If bi = bai for some b ∈ C and all 1 ≤ i ≤ N , then SPlλ (b1 · 1, . . . , bN ·N) =

b|λ|SPlλ (a1 · 1, . . . , aN · N), so Sµ(a1 · 1, . . . , aN · N) and Sλ(b1 · 1, . . . , bN · N) commute also

for proportionate ~a and ~b. For non-proportionate ~a and ~b this is in general not true.

2.5. Schur processes. We will say that an element U ∈ C[[PlN ]], U =
∑
λ∈GT(N) uλw(λ)

is stochastic if uλ ≥ 0 for all λ and
∑
λ∈GT(N) uλ = 1. Clearly, a product of several

stochastic elements is also stochastic. Each such U gives rise to two infinite stochastic

matrices L[U ] and R[U ] with rows and columns indexed by elements of GT(N). R[U ] is

defined as a matrix representing operator of plactic multiplication by U on the right, while
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L[U ] is defined as a matrix representing operator of plactic multiplication by U on the left.

Matrices L[U ] and R[U ] give rise to Markov dynamics on interlacing arrays, which will be

of interest for us for certain special U .

Remark 2.17. Matrices L[U1] and R[U2] commute for all stochastic U1, U2 ∈ C[[PlN ]].

Matrices L[U1] and L[U2] (R[U1] and R[U2]) commute if and only if U1 and U2 commute.

Definition 2.18. For a1, . . . , aN > 0

(1) For α ≥ 0 such that αaj < 1 for all j = 1, 2, . . . , N , let

U(~a, α) :=

(
N∏
j=1

(1− αaj)
)
∞∑
m=0

αmS(m)(a1 · 1, . . . , aN · N). (2.10)

(2) For β ≥ 0, let

U(~a, β̂) :=

(
N∏
j=1

1

1 + βaj

)
N∑
m=0

βmS1m(a1 · 1, . . . , aN · N). (2.11)

(3) For γ ≥ 0, let

UPlancherel(~a, γ) = e−γa1−···−γan exp(γa1 · 1 + · · ·+ γan · n) := (2.12)

e−γa1−···−γan
∞∑
k=0

γk

k!
S(1)(a1 · 1, . . . , aN · N)k (2.13)

U(~a, α), U(~a, β̂) and UPlancherel(~a, γ) are stochastic elements of the plactic algebra, which

commute with each other for fixed ~a and different α, β, γ. This follows from the Proposition

(2.14). Then the Proposition (2.6) implies the following corollary:

Proposition 2.19. For a1, . . . , aN > 0 and a Schur-nonnegative specialization A = (α;β; γ),

such that ajαi < 1 for all i, j

1

Π(~a; A)

∑
λ∈GT+

N

SPlλ (a1 · 1, . . . , aN · N)Sλ(A) = UPlancherel(~a, γ) ·
∞∏
i=1

U(~a, αi) ·
∞∏
i=1

U(~a, β̂i),
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where Π(~a; A) = Π(a1,A) · · ·Π(aN ,A) (2.14)

The left hand side of (2.14) is a stochastic element of C[[PlN ]], so it can be viewed as

a probability measure on GT(N) depending on ~a and A. Such measure is called a Schur

process and was first defined in [63]. It attaches to λ the probability weight 9

M
~a;q=0
A (λ) =

1

Π(~a; A)
Sλ(N)(A)

N∏
j=1

a
|λ(j)|−|λ(j−1)|
j . (2.15)

For fixed ~a Markov dynamics

Qq=0
row [α] := R[U(~a;α)], Q

q=0
col [α] := L[U(~a;α)],

Qq=0
row [β̂] := R[U(~a; β̂)], Q

q=0
col [β̂] := L[U(~a; β̂)],

Q
q=0
Plancherel, row[γ] := R[UPlancherel(~a, γ)], Q

q=0
Plancherel, col[γ] := L[UPlancherel(~a, γ)]

preserve the family of Schur processes. More precisely, we will deal with matrices Q[B] ∈
GT(N) such that

M
~a;q=0
A Q[B] = M

~a;q=0
A∪B ,

∑
λ∈

M
~a;q=0
A (λ)Q[B](λ→ ν) = M

~a;q=0
A∪B (ν), ν ∈ GT(N),

(2.16)

where the specialization B is as in one of the following elementary cases:

(1) B = (α) is a specialization into one usual parameter α.

(2) B = (β̂) is a specialization into one dual parameter β.

(3) B is a specialization with α = β ≡ 0 and γ > 0.

(2.17)

9The reason for such notation will become clear from the next section, in which we define the more
general q-Whittaker processes.
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Remark 2.20. Operators Q
q=0
Plancherel, row[γ] (respectively Q

q=0
Plancherel, col[γ]) form a Markov

semigroup for γ ∈ R≥0. We can regard the Plancherel parameter γ as time, so these

operators give rise to the continuous-time Markov processes, which can be described in

the following way. Each letter j has an exponential clock with rate aj for 1 ≤ j ≤ N .

Once the clock rings (with probability 1 two clocks never ring at the same time), the

corresponding letter is inserted into the tableau via the row (respectively column) insertion.

This continuous time dynamics can be seen as a continuous time limits of the discrete time

dynamics Qq=0
row [α] and Qq=0

row [β̂] (respectively Q
q=0
col [α] and Q

q=0
col [β̂]). More precisely, take

α = β = ∆, let each discrete time step correspond to the continuous time interval ∆, and

take ∆→ 0.

2.6. RSK dynamics. Let us now discuss four dynamics Qq=0
row [α], Qq=0

row [β̂], Qq=0
col [α], Qq=0

col [β̂]

in more detail. The former two dynamics arise from the row RSK algorithm10 applied to

geometric or Bernoulli random input, respectively (cf. Remark 2.22 below). All of these

four dynamics belong to the following class of dynamics on interlacing arrays.

Definition 2.21. A dynamics Q on interlacing arrays will be called a sequential update

dynamics if its one-step transition probabilities from λ to ν, λ,ν ∈ GT(N), have a product

form

Q(λ→ ν) =

U1(λ(1) → ν(1))U2(λ(2) → ν(2) | λ(1) → ν(1)) . . .UN(λ(N) → ν(N) | λ(N−1) → ν(N−1)),

(2.18)

10The row RSK is the most classical version of the Robinson–Schensted–Knuth algorithm.
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where Uj’s are conditional probabilities of transitions at levels j = 1, . . . , N satisfying11

Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1)) ≥ 0,

∑
ν(j)∈GT+

j

Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1)) = 1.

(2.19)

In words, the transition λ → ν looks as follows. First, update λ(1) → ν(1) at the bot-

tom level GT+
1 according to the distribution U1. Then for each j = 2, . . . , N , given the

transition λ(j−1) → ν(j−1) at the previous level, update λ(j) → ν(j) at level GT+
j accord-

ing to the conditional distribution Uj. We see that the evolution of several first levels

λ(1), . . . , λ(k) of the interlacing array does not depend on what is happening at the upper

levels λ(k+1), . . . , λ(N).

Under each of these RSK dynamics at each step of the discrete time corresponding to

an update λ → ν, new randomness is introduced via N independent random variables

V1, . . . , VN , which are either geometric random variables (belonging to Z≥0) with parame-

ters αa1, . . . , αaN in the case of Qq=0
row [α] and Q

q=0
col [α], or Bernoulli random variables ∈ {0, 1}

with parameters βa1, . . . , βaN in the case of Qq=0
row [β̂] and Q

q=0
col [β̂]. These random variables

are resampled during each time step.

Remark 2.22. We see that all randomness in each of the four RSK-type dynamics can

be organized into a matrix (V
(t)
j )1≤j≤N, t=1,2,... (with appropriate distribution of the V

(t)
j ’s).

Such matrices containing nonnegative integers are usually thought of as inputs for classical

Robinson–Schensted–Knuth correspondences.

Under each of the four dynamics, the particle at the first level of the array is updated

as ν
(1)
1 = λ

(1)
1 + V1. Then, for each j = 2, . . . , N , assume that we are given signatures

11By agreement, for j = 1 we mean Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1)) ≡ U1(λ(1) → ν(1)).
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λ̄, ν̄ ∈ GT+
j−1, λ ∈ GT+

j satisfying relations as on Fig. 15 (note that these relations depend

on the type (α) or (β̂) of the dynamics). Let us represent the movement λ̄ → ν̄ at level

j − 1 as

ν̄ − λ̄ =

j−1∑
i=1

ciēi,


ci ∈ Z≥0 in the case of Qq=0

row [α] and Q
q=0
col [α];

ci ∈ {0, 1} in the case of Qq=0
row [β̂] and Q

q=0
col [β̂]

(recall that ēi is the ith basis vector of length j − 1). Also denote |c| := ∑j−1
i=1 ci.

Depending on the dynamics, we will construct the signature ν ∈ GT+
j (which also fits

into relations on Fig. 15) as follows:

• (Qq=0
row [α], Fig. 11) First, do |c| operations pull (Definition 2.6) in order from left to right,

starting from position j−1 all the way up to position 1. In more detail, let µ(j−1, 0) := λ

and for p = 1, . . . , cj−1 let

µ(j − 1, p) := pull(µ(j − 1, p− 1) | λ̄+ (p− 1) ēj−1 → λ̄+ p ēj−1),

then let µ(j − 2, 0) := µ(j − 1, cj−1) and for p = 1, . . . , cj−2 let

µ(j − 2, p) := pull(µ(j − 2, p− 1) | λ̄+ cj−1ēj−1 + (p− 1) ēj−2 → λ̄+ cj−1ēj−1 + p ēj−2),

etc., all the way up to µ(1, c1) := pull(µ(1, c1 − 1) | ν̄ − ē1 → ν̄). (Clearly, if some ci = 0,

then the steps corresponding to µ(i, ·) should be omitted.)

After these |c| operations, define ν := µ(1, c1)+Vje1. That is, let the rightmost particle at

level j jump to the right by Vj (which is a geometric random variable with parameter αaj).

• (Qq=0
row [β̂], Fig. 12) First, define µ(1, 0) := λ+Vje1. That is, let the rightmost particle at

level j jump to the right by Vj (which is a Bernoulli random variable with parameter βaj).
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3 + 2 6 6 + 1 7 + 3

1 + 1 4 + 1 6 6 + 3 9 + 1 + Vj

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1 +1 +1 +2 +1

Figure 11. An example of a step of Qq=0
row [α] at levels 4 and 5. Propagation steps

(represented by numbers on arrows) are performed from left to right, according
to pull operation. After that, the rightmost particle at level j jumps to the right
by Vj.

After that, perform |c| operations pull (Definition 2.6) in order from right to left, starting

from position 1 all the way up to position j−1 (details are analogous to the above dynamics

Qq=0
row [α]). Then set ν := µ(j − 1, cj−1).

3 5 + 1 6 + 1 7 + 1

1 4 + 1 6 + 1 6 + 1 7 + Vj

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1+1+1

3 5 + 1 6 + 1 7 + 1

1 4 + 1 6 6 + 1 7 + Vj + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1+1+1

Figure 12. An example of a step of Qq=0
row [β̂] at levels 4 and 5. Propagation steps

are performed from right to left, according to pull operation. Above: Vj = 1,
below: Vj = 0.

• (Qq=0
col [α], Fig. 13) First, the leftmost particle λj at level j receives Vj moving impulses

(here Vj is a geometric random variable with parameter αaj). Each moving impulse means

that λj tries to jump to the right by one, and if it is blocked (i.e., if λj = λ̄j−1), then the

moving impulse is donated to λj−1, etc. (see Remark 2.8). Denote the signature at level j

arising after these Vj moving impulses by µ(j − 1, 0).
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After that, perform |c| operations push (Definition 2.7), in order from left to right, start-

ing from position j − 1 all the way up to position 1 (details are analogous to the above).

Then we set ν := µ(1, c1).

3 + 2 6 6 + 3 9 + 1

1 + 2 4 + (Vj − 2) + 1 6 7 + 1 + 1 11 + 2 + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)+1

+1 +1 +1 +2 +1

Figure 13. An example of a step of Qq=0
col [α] at levels 4 and 5. We have Vj = 3,

which means that initially the particle λ5 jumps to the right by 2 and the particle
λ4 jumps by 1 (because of move donation). After that, propagation steps are
performed from left to right, according to push operation.

• (Qq=0
col [β̂], Fig. 14) First, perform |c| operations push (Definition 2.7), in order from

right to left, starting from position 1 all the way up to position j−1 (details are analogous

to what is done above). Let µ(j − 1, cj−1) be the signature at level j arising after these |c|
operations.

After that, let the leftmost particle at level j receives Vj moving impulses (here Vj is

a Bernoulli random variable with parameter βaj). That is, if Vj = 0, then set ν :=

µ(j− 1, cj−1). Otherwise, if Vj = 1, the jth particle at level j tries to jump to the right by

one. If it is blocked, the impulse is donated to the (j − 1)th particle at level j, etc. In this

case, denote by ν the signature at level j arising after this moving impulse.

3 6 + 1 6 7 + 1

3 6 + Vj 6 6 + 1 8 + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1+1

+1

Figure 14. An example of a step of Qq=0
col [β̂] at levels 4 and 5. Propagation steps

are performed from right to left, according to push operation. We have Vj = 1,
and the jump of the rightmost particle at level j is donated to the right.

30



The above four rules of constructing the signature ν ∈ GT+
j complete the description of

the RSK-type dynamics Qq=0
row [α], Qq=0

row [β̂], Qq=0
col [α], and Q

q=0
col [β̂], respectively.

Remark 2.23. By the very construction, at each step of any of the four above RSK-type

dynamics the quantity |λ(N)| is increased by V1+. . .+VN , as it should be (cf. the discussion

before Remark 4.8).

Remark 2.24. In RSK-type dynamics on q-Whittaker processes considered in §5 and §6
below, a part of new randomness at each step also comes from independent random vari-

ables V1, . . . , VN (having q-geometric or Bernoulli distribution, cf. Remark 4.2). Moreover,

for q > 0 the mechanisms of particle interactions will be q-randomized (i.e. will no longer

be deterministic). This would lead to four q-randomized RSK insertion tableau dynamics :

the row and column (α), and the row and column (β̂). In fact, for q > 0 the step-by-

step nature of the q = 0 case (when push or pull operations are performed one at a time)

will be broken, and certain series of push or pull operations will be clumped together and

q-randomized as a whole. This will make the dynamics at the q-Whittaker level more

complicated.

Each of the four RSK-type dynamics possesses a marginally Markovian projection (onto

the leftmost or the rightmost particles of the interlacing array) leading to a certain dis-

crete time particle system on Z. Namely, Qq=0
row [α] and Qq=0

row [β̂] give rise to the geometric

and Bernoulli PushTASEPs, respectively, on the rightmost particles λ
(j)
1 , j = 1, . . . , N .

Similarly, Qq=0
col [α] and Q

q=0
col [β̂] lead to the geometric and Bernoulli TASEPs, respectively,

on the leftmost particles λ
(j)
j . The q-deformed dynamics of §5 and §6 below would lead to

q-deformations of these four particle systems.
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3. q-Whittaker processes

Schur processes can be generalized to the Macdonald processes, of which the q-Whittaker

processes are a special case when we set the value of the deformation parameter t to 0. The

definition of the Macdonald processes is based on Macdonald polynomials. Let us briefly

recall their definition and properties which are essential for us. An excellent exposition

and much more details may be found in [51, Ch. VI].

3.1. q-Whittaker and Macdonald polynomials.

Definition 3.1. Let q, t be two parameters. Consider the first order q-difference operator

acting on functions in N variables:

(D(1)f)(x1, . . . , xN) :=
N∑
i=1

∏
j 6=i

txi − xj
xi − xj

f(x1, . . . , xi−1, qxi, xi+1, . . . , xN).

This operator preserves the space C(q, t)[x1, . . . , xN ]S(N) of symmetric polynomials with

coefficients which are rational functions in q and t.

Eigenfunctions of D(1) are given by the Macdonald symmetric polynomials Pλ(x1, . . . , xN |
q, t) indexed by λ ∈ GT+

N , with eigenvalues

D(1)Pλ = (qλ1tN−1 + qλ2tN−2 + . . .+ qλN−1t+ qλN )Pλ

(which are pairwise distinct for generic q, t). The polynomials Pλ are homogeneous, and

form a linear basis for Q(q, t)[x1, . . . , xN ]S(N).

For q = t Macdonald polynomials become the Schur polynomials, and, in particular,

their coefficients no longer depend on q. Similarly to the Schur polynomials, the Macdonald

polynomials are stable in the sense that for any λ ∈ GT+
N ,

Pλ∪0(x1, . . . , xN , 0 | q, t) = Pλ(x1, . . . , xN | q, t),
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so one may also speak about Macdonald symmetric functions Pλ(x1, x2, . . . | q, t). The

Macdonald symmetric functions admit an equivalent alternative definition:

Definition 3.2. Let (·, ·)q,t be the scalar product on Sym 12 defined on products of power

sums pλ = pλ1pλ2 . . . as

(pλ, pµ)q,t = 1λ=µzλ(q, t), zλ(q, t) :=

(∏
i≥1

imi(mi)!

)
·
( `(λ)∏

i=1

1− qλi
1− tλi

)
,

where λ = (1m12m2 . . .) means that λ has m1 parts equal to 1, m2 parts equal to 2, etc.

The Pλ’s form a unique family of homogeneous symmetric functions such that:

(1) They are pairwise orthogonal with respect to the scalar product (·, ·)q,t.
(2) For every λ, we have

Pλ(x1, x2, . . . | q, t) = xλ1
1 x

λ2
2 . . . x

λ`(λ)

`(λ) + lower monomials in lexicographic order.

The dependence on the parameters (q, t) is in coefficients of the lexicographically

lower monomials.13

Set bλ(q, t) := 1/(Pλ, Pλ)q,t; this is an explicit quantity determined via the shape of the

Young diagram λ. Then the symmetric functions Qλ(· | q, t) := bλ(q, t)Pλ(· | q, t) are

biorthonormal with the Pλ’s: (Pλ, Qµ)q,t = 1λ=µ.

Definition 3.3. The skew Macdonald symmetric functions Qλ/µ, µ, λ,∈ GT+, are defined

as the only symmetric functions for which (Qλ/µ, Pν)q,t = (Qλ, PµPν)q,t for any ν ∈ GT+.

12In this definition the algebra Sym of symmetric functions is considered over the field C(q, t), rather
than C, as we had before.

13Lexicographic order means that, for example, x21 is higher than const · x1x2 which is in turn higher
than const · x22.
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The “P” versions are given by Pλ/µ = (bµ(q, t)/bλ(q, t))Qλ/µ. These skew functions are

identically zero unless µ ⊆ λ. By setting q = t we can also talk about skew Schur functions.

The skew Macdonald symmetric functions enter the following recurrence relations:

Pλ(x1, . . . , xN) =
∑

µ∈GT+
N−K

Pλ/µ(x1, . . . , xK)Pµ(xK+1, . . . , xN), λ ∈ GT+
N , 1 ≤ K ≤ N

(3.1)

(and similarly for the Qλ’s). This may be viewed as an alternative definition of the skew

Macdonald polynomials Pλ/µ in finitely many variables. If K = 1 in (3.1), then the

summation is over the interlacing signatures µ ≺h λ. In this case Pλ/µ(x1) is proportional

to x
|λ|−|µ|
1 by homogeneity (cf. (3.3) below), and (3.1) is also sometimes referred to as the

branching rule for the Macdonald polynomials.

From now on let us set the second Macdonald parameter t to zero. Then Pλ(· | q, 0) are

known as the q-Whittaker functions, i.e., the q-deformed gln Whittaker functions, cf. [37]

and [8, §3]. This degeneration should also include changing the ground field from C(q, t)

to C(q). In fact, from now on we will just take q to be a number from [0, 1) and change

the ground field back to C.

Remark 3.4. Other notable degenerations of the Macdonald polynomials include the

Hall–Littlewood polynomials (for q = 0, t 6= 0). We refer to [51] and [41] for details.

We will use q-binomial coefficients and q-Pochhammer symbols

(
n

k

)
q

:=
(q; q)n

(q; q)k(q; q)n−k
, (a; q)m :=


(1− a)(1− aq) . . . (1− aqm−1), m > 0;

1, m = 0;

(1− aq−1)−1(1− aq−2)−1 . . . (1− aqm)−1, m < 0

(3.2)
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to record certain explicit q-dependent quantities related to q-Whittaker functions.14 We

have

Pλ/µ(x1 | q, 0) = ψλ/µx
|λ|−|µ|
1 , ψλ/µ = ψλ/µ(q) := 1µ≺hλ

`(µ)∏
i=1

(
λi − λi+1

λi − µi

)
q

; (3.3)

Qλ/µ(x1 | q, 0) = φλ/µx
|λ|−|µ|
1 , φλ/µ = φλ/µ(q) :=

1µ≺hλ

(q; q)λ1−µ1

`(λ)∏
i=1

(
µi − µi+1

µi − λi+1

)
q

. (3.4)

By iteratively applying (3.1) we can get the following summation formula:

Pλ(x1, . . . , xN | q, 0) =
∑

λ∈GT(N)(λ)

ψλ

N∏
j=1

x
|λ(j)|−|λ(j−1)|
j , ψλ :=

N∏
j=1

ψλ(j)/λ(j−1) . (3.5)

Definition 3.5. A specialization A of the algebra Sym is said to be q-Whittaker nonneg-

ative if Pλ(A) ≥ 0 for any λ ∈ GT+. Such are the specializations A = (α;β; γ)q, where

α = (α1 ≥ α2 ≥ . . . ≥ 0) β = (β1 ≥ β2 ≥ . . . ≥ 0), γ ≥ 0, and
∑

i(αi + βi) < ∞, which

may be defined via the generating function corresponding to signatures (n) ∈ GT+
1 :

∞∑
n=0

Q(n)(A) · un = eγu
∞∏
i=1

1 + βiu

(αiu; q)∞
:= Πq(u; A). (3.6)

The left hand side of (3.6) is equal to exp
(∑∞

k=1
1
k

1
1−qk pk(A)uk

)
, so alternatively we can

say that A is defined by setting

p1(A) =
∞∑
i=1

αi + (1− q)
(
∞∑
i=1

βi + γ

)
, pk(A) =

∞∑
i=1

αki + (−1)k−1(1− qk)
(
∞∑
i=1

βki

)

for k = 2, 3, . . .. The Kerov’s conjecture (see [41], section 2.9.3) states that the specializa-

tions of the form A = (α;β; γ)q exhaust all q-Whittaker nonnegative specializations. In

[41] this conjecture is stated at the Macdonald level.

14In the q-Pochhammer symbol, m may be +∞ since 0 ≤ q < 1. Note also that in all cases, (a; q)m =
(a; q)∞/(aqm; q)∞
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As before, we will refer to parameters αi, βi and γ as usual, dual and Plancherel param-

eters respectively. We will also stop specifying the dependence on q in the subscript of a

specialization. Note that Pλ/µ(β̂) = Qλ′/µ′(β). An obvious generalization of the recurrence

relation (3.1) allows to express Pλ(A ∪ B) through Pλ/µ(A) and Pµ(B). Thus, we can

equivalently say that the specialization into usual parameters is completely determined by

(3.3) (or (3.4)) and (3.1). Similarly, the specialization into dual parameters is determined

by the same recurrence (3.1), but with a different one-parameter formula:

Qλ/µ(β̂1 | q, 0) = ψ′λ/µβ
|λ|−|µ|
1 , ψ′λ/µ = ψ′λ/µ(q) := 1µ≺vλ

∏
i≥1: λi=µi, λi+1=µi+1+1

(1− qµi−µi+1).

(3.7)

We will also need Cauchy identities for q-Whittaker symmetric functions recorded below.

Similar identities (involving t) also exist for the general Macdonald symmetric functions.

∑
λ∈GT+

Pλ(a1, . . . , aN)Qλ(A) = Πq(a1; A) . . .Πq(aN ; A); (3.8)

∑
κ∈GT+

Pκ/λ(A)Qκ/ν(B) = Πq(A; B)
∑

µ∈GT+

Qλ/µ(B)Pν/µ(A). (3.9)

In (3.9), Πq(A; B) is given by

Πq(A; B) = exp

( ∞∑
n=1

1

n

1

1− qn pn(A)pn(B)

)
. (3.10)

For the proofs see [51], VI.2.6 and VI.7.(Example 6). This definition agrees with (3.6) when

one of the specializations is into a single usual parameter. Note also that Πq(A ∪B; C) =

Πq(A; C)Πq(B; C).

Finally, we will need the Pieri rules: For any r ≥ 1,

P(1r)Pµ =
∑

λ : λ/µ is a vertical r-strip

ψ′λ/µPλ, Q(r)Pµ =
∑

λ : λ/µ is a horizontal r-strip

φλ/µPλ
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P(r)Pµ =
∑

λ : λ/µ is a horizontal r-strip

ψλ/µPλ (3.11)

(an r-strip means a strip consisting of r boxes). Here P(1r) = er is in fact equal to the r-th

elementary symmetric function er(x1, x2, . . .) =
∑

i1<...<ir
xi1 . . . xir (note that e1 = p1),

and the Q(r)’s are the quantities entering the generating function (3.6).

3.2. q-Whittaker measures and processes. The (depth N) q-Whittaker processes (first

introduced in [8]) are probability measures on λ ∈ GT(N) defined in the following way.

The q-Whittaker process M~a
A depends on a q-Whittaker nonnegative specialization15 A =

(α;β; γ)q (Definition 3.5) and on additional parameters ~a = (a1, . . . , aN) with aj > 0,

satisfying αiaj < 1 for all possible i and j (this ensures the finiteness of the normalizing

constant Πq(~a; A) in (3.12) below). It attaches to λ ∈ GT(N) the probability weight

M~a
A(λ) =

1

Πq(~a; A)
Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(N)/λ(N−1)(aN)Qλ(N)(A), (3.12)

These weights sum to one as a corollary of (3.8). For q = 0 we recover the Schur processes.

Alternativley, the probability weights M~a
A(λ) may be defined via the generating func-

tion16

∑
λ=(λ(1)≺h...≺hλ(N))

M~a
A(λ)

(
u1

a1

)|λ(1)|(
u2

a2

)|λ(2)|−|λ(1)|

. . .

(
uN
aN

)|λ(N)|−|λ(N−1)|

=
Πq(~u; A)

Πq(~a; A)
,

(3.13)

15In the rest of the paper, we will speak only about q-Whittaker nonnegative specializations, and omit
the words “q-Whittaker nonnegative”.

16In (3.13), Πq(~u;A) = Πq(u1;A) . . .Πq(uN ;A), and similarly for the denominator (cf. (3.6), (3.10)).
Here the aj ’s are regarded as constants, and the uj ’s as variables.
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plus a certain q-Gibbs property requiring that the quantities

M~a
A(λ)

Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(N)/λ(N−1)(aN)
(3.14)

depend only on the top row λ(N), and not on λ(1), . . . , λ(N−1). Note that setting ~u = ~a

turns (3.13) into an identity stating that the sum of all probability weights is 1.

Remark 3.6. It is natural to call the property involving quantities (3.14) “q-Gibbs” be-

cause for q = 0 and a1 = . . . = aN = 1 it reduces to the following Gibbs property : The

conditional distribution of the interlacing array λ under M~a
A(λ)|q=0, aj≡1 obtained by fixing

the top row λ(N) ∈ GT+
N is the uniform distribution on the set of all interlacing arrays

λ ∈ GT(N) with fixed top row λ(N) (note that the latter set is finite). For general q and

~a, the conditional distribution will not be uniform, but instead each interlacing array will

have the conditional weight proportional to Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(N)/λ(N−1)(aN).

By the Cauchy identity (3.8) and the fact that the q-Whittaker polynomials form a linear

basis, both definitions (3.13)–(3.14) are equivalent. To see this, one also has to note that
P
λ(1) (u1)...P

λ(N)/λ(N−1) (uN )

P
λ(1) (a1)...P

λ(N)/λ(N−1) (aN )
is equal to the product of (uj/aj)

|λ(j)|−|λ(j−1)| in the left-hand side

of (3.13) (provided that the λ(j)’s satisfy the interlacing constraints).

The marginal distribution of the top row λ(N) under M~a
A is the q-Whittaker measure

MM~a
A which is defined by either of the following equivalent ways:

∑
λ∈GT+

N

MM~a
A(λ)

Pλ(~u)

Pλ(~a)
=

Πq(~u; A)

Πq(~a; A)
, (3.15)

MM~a
A(λ) =

Pλ(~a)Qλ(A)

Πq(~a; A)
. (3.16)

4. Markov dynamics

One of the main goals of the present paper is the construction of Markov dynamics

preserving the family of q-Whittaker processes. More precisely, we will deal with infinite
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matrices Q[B] (with rows and columns indexed by interlacing arrays) such that

M~a
AQ[B] = M~a

A∪B,
∑
λ

M~a
A(λ)Q[B](λ→ ν) = M~a

A∪B(ν), ν ∈ GT(N), (4.1)

where the specialization B is as in one of the following cases:

(1) B = (α) is a specialization into one usual parameter α.

(2) B = (β̂) is a specialization into one dual parameter β.

(3) B is a specialization with α = β ≡ 0 and γ > 0.

(4.2)

In the Schur case q = 0 we already know such operators Qq=0
row [α], Qq=0

row [β̂], Q
q=0
col [α],

Q
q=0
col [β̂], Q

q=0
Plancherel, row[γ], Q

q=0
Plancherel, col[γ], see (2.16). Our goal is to construct their q-

deformations in the q-Whittaker case. As in Remark (2.20), the third case in (4.2) leads to

continuous time Markov dynamics, in which the parameter γ plays the role of time. These

continuous time dynamics Q
q
Plancherel, row[γ] and Q

q
Plancherel, col[γ] were constructed for the

first time in [58] and [14] respectively. They are simpler than the discrete time processes

(corresponding to the fist two cases in (4.2)) considered in the present paper, and in fact

arise as their continuous time limits (similar to the way it happens in Remark (2.20) for

the Schur case), see subsections (5.6) and (6.7).

We will thus not focus on continuous time dynamics, and will deal with construction

of matrices Q[α] and Q[β̂] whose elements Q[α](λ → ν) and Q[β̂](λ → ν) are transition

probabilities from λ to ν (where λ,ν ∈ GT(N)) in one step of the discrete time. It is

also helpful to view Q[α] and Q[β̂] as (Markov) operators acting on functions in the spatial

variables λ (e.g., these operators act in the space of bounded functions).

Adding a specialization B = (α) or (β̂) to A as in (4.1) corresponds to multiplying the

right-hand side of (3.13) by

N∏
j=1

(αaj; q)∞
(αuj; q)∞

or
N∏
j=1

1 + βuj
1 + βaj

, (4.3)
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respectively, since Πq(u;A)Πq(u;α) = Πq(u,A∪(α)) and Πq(u;A)Πq(u; β̂) = Πq(u,A∪(β̂)).

(Factors containing aj correspond to normalization, and it is the dependence on uj in these

expressions which is crucial.) The problem of finding Markov operators Q[α] and Q[β̂] can

thus be informally restated as the problem of turning (by virtue of (3.13)) the multiplication

operators in the variables ~u (4.3) into operators acting in the spatial variables λ.

4.1. Univariate dynamics. A similar problem of turning multiplication operators (4.3)

into operators acting in the spatial variables λ ∈ GT+
N may be posed for the generating

function for the q-Whittaker measures (3.15), (3.16). In this case, the problem of finding

the corresponding matrices P[α] and P[β̂] (with rows and columns indexed by signatures

λ ∈ GT+
N) has a unique solution:

Proposition 4.1. There exist unique transition matrices P[α] and P[β̂] which add special-

izations (α) or (β̂), respectively, to the q-Whittaker measure MM~a
A for every nonnegative

specialization A, in the sense similar to (4.1):

MM~a
AP[α] = MM~a

A∪(α), MM~a
AP[β̂] = MM~a

A∪(β̂)
.

Their matrix elements are given by

P[α](λ→ ν) =
N∏
j=1

(αaj; q)∞
Pν(~a)

Pλ(~a)
φν/λα

|ν|−|λ| (4.4)

P[β̂](λ→ ν) =
N∏
j=1

1

1 + βaj

Pν(~a)

Pλ(~a)
ψ′ν/λβ

|ν|−|λ|, (4.5)

where φν/λ and ψ′ν/λ are explicit quantities given in (3.4) and (3.7), respectively.

Transition operators P[α] and P[β̂] were introduced in [8], see also [6] for a similar

construction for the Schur measures (cf. §4.1 below).

Proof. Let us consider only the case of (β̂), the case of (α) is analogous.
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Multiply both sides of (3.15) by
∏N

j=1
1+βuj
1+βaj

. By the very definition of the q-Whittaker

measures, the right-hand side can be rewritten as

Πq(~u; A ∪ (β̂))

Πq(~a; A ∪ (β̂))
=
∑

ν∈GT+
N

MM~a
A∪(β̂)

(ν)
Pν(~u)

Pν(~a)
.

In the left-hand side, use the well-known property
∏N

j=1(1 + βuj) =
∑N

r=0 er(u1, . . . , uN)βr

of the elementary symmetric functions [51, I.(2.2)] together with the first Pieri rule (3.11)

to write

Pλ(~u)
N∏
j=1

(1 + βuj) =
∑

ν : λ≺vν

Pν(~u)ψ′ν/λβ
|ν|−|λ|.

(In the (α) case, one needs to use the generating function (3.6) and the second Pieri rule.)

Then the left hand side becomes

N∏
j=1

1

1 + βaj

∑
λ∈GT+

N

∑
ν : λ≺vν

MM~a
A(λ)

Pν(~u)ψ′ν/λβ
|ν|−|λ|

Pλ(~a)
.

Collecting the coefficients by Pν(~u)/Pν(~a) in the left-hand side, one can rewrite it as

∑
ν∈GT+

N

Pν(~u)

Pν(~a)

∑
λ : λ≺vν

MM~a
A(λ)P[β̂](λ→ ν),

where the operator P[β̂] is given by (4.5). Since Pν(~u)/Pν(~a) are linearly independent as

polynomials in ~u

MM~a
A∪(β̂)

(ν) =
∑

λ : λ≺vν

MM~a
A(λ)P[β̂](λ→ ν) =

∑
λ

MM~a
A(λ)P[β̂](λ→ ν)

for all ν ∈ GT+
N . To show uniqueness suppose there is another operator P[β̂]′ that satisfies

MM~a
AP[β̂]′ = MM~a

A∪(β̂)
.
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Pick λ0 and ν0, such that P[β̂](λ0 → ν0) 6= P[β̂]′(λ0 → ν0). For any specialization A

∑
λ∈GT+

N

MM~a
A(λ)

(
P[β̂](λ→ ν0)− P[β̂]′(λ→ ν0)

)
= 0.

Take A to be a finite length specialization into usual parameters (α1, . . . , αN) and multiply

both sides by Πq(~a; A) to get that

∑
λ∈GT+

N

Pλ(~a)Qλ(α1, . . . , αN)
(
P[β̂](λ→ ν0)− P[β̂]′(λ→ ν0)

)
= 0

for any α1, . . . , αN ≥ 0, which contradicts the fact that Qλ(α1, . . . , αN) are linearly inde-

pendent as polynomials in α1, . . . , αN .

�

It follows from (3.9) that both operators P[β̂] and P[α] are stochastic, i.e. for any

λ ∈ GT+
N ∑

ν∈GT+
N

P[β̂](λ→ ν) =
∑

ν∈GT+
N

P[α](λ→ ν) = 1. (4.6)

Remark 4.2. If N = 1 in Proposition 4.1, then both dynamics P[α] and P[β̂] (living on

Z≥0 = GT+
1 ) are rather simple. Namely, under both dynamics, at each discrete time step

the only particle λ
(1)
1 ∈ Z≥0 = GT+

1 jumps to the right according to

(1) the q-geometric distribution with parameter αa1, i.e., pαa1(n) := (αa1; q)∞
(αa1)n

(q;q)n
,

n = 0, 1, 2, . . .,17 in the case of dynamics P[α], or

17The fact that this is indeed a probability distribution follows from the q-binomial theorem.
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(2) the Bernoulli distribution with parameter βa1 in the case of dynamics P[β̂]: the

particle jumps to the right by one with probability βa1/(1 + βa1), and stays put

with the complementary probability 1/(1 + βa1).18

More generally, one can show that under the dynamics on GT+
N , the quantities |λ(N)|

evolve as follows. For P[α], at each discrete time step |λ(N)| is increased by the sum of

N independent q-geometric random variables with parameters αa1, . . . , αaN . For P[β̂], at

each discrete time step |λ(N)| is increased by the sum of N independent Bernoulli random

variables with parameters βa1, . . . , βaN . To see this, use (4.6) to write

∑
ν∈GT+

N

Pν(~a)

Pλ(~a)
φν/λα

|ν|−|λ| =
N∏
j=1

1

(αaj; q)∞
,

∑
ν∈GT+

N

Pν(~a)

Pλ(~a)
ψ′ν/λβ

|ν|−|λ| =
N∏
j=1

(1 + βaj)

for any λ ∈ GT+
N . Substituting αu instead of α (or βu instead of β) in these equalities

leads to

∑
ν∈GT+

N

P[α](λ→ ν)u|ν|−|λ| =
N∏
j=1

(αaj; q)∞
(αaju; q)∞

,

∑
ν∈GT+

N

P[β̂](λ→ ν)u|ν|−|λ| =
N∏
j=1

1 + βaju

1 + βaj
.

The observation follows, since both left hand sides are the probability generating functions

of |ν| − |λ| in formal variable u.

We will call the dynamics P[α] and P[β̂] the univariate dynamics, and the corresponding

dynamics on interlacing arrays Q[α] and Q[β̂] (which we aim to construct) the multivariate

18This parametrization of Bernoulli random variables will be used throughout the paper.
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dynamics. In a way, multivariate dynamics on arrays λ = (λ(1) ≺h . . . ≺h λ
(N)) stitch

together univariate dynamics on all levels λ(j), j = 1, . . . , N : Namely, started from a q-

Gibbs distribution, the multivariate evolution of the array λ reduces to the corresponding

univariate dynamics on each of the levels λ(j), j = 1, . . . , N . See §4.2 below and also [14,

§2], for more discussion.

Instead of the case of univariate dynamics (driven by identity (3.15)), the problem

of constructing multivariate dynamics (involving identity (3.13)) has a whole family of

solutions. This phenomenon was known in the Schur (q = 0) case for some time, with the

presence of the RSK-type (e.g., see [53], [54]) and the push-block [12] dynamics (see §4.4

below for more detail). A similar phenomenon was investigated in [14] for continuous time

dynamics increasing the parameter γ in the q-Whittaker processes.

Remark 4.3. Since the q-Whittaker polynomials Pλ(~a) entering (4.4) and (4.5) are not

given by an especially nice formula, transition probabilities of the univariate dynamics

are harder to analyze. On the other hand, RSK-type multivariate dynamics which we

construct in the present paper turn out to have simpler transition probabilities. Note

also that multivariate dynamics on q-Gibbs distributions can be used to “simulate” the

univariate ones, cf. the above discussion about “stitching”.

When q = 0, we have ψλ/µ = φλ/µ = 1µ≺hλ and ψ′λ/µ = 1µ≺vλ. Univariate discrete time

dynamics on the first level GT+
1 = Z≥0 look as in Remark 4.2 with the understanding that

the q-geometric distribution in the case of P[α] has to be replaced by the usual geometric

distribution pαa1(n)|q=0 = (1− αa1)(αa1)n, n = 0, 1, 2, . . ..

Remark 4.4. The continuous time dynamics on GT+
1 increasing the parameter γ of the

specialization is the usual Poisson process which can be obtained from either of the discrete

time dynamics P[α] or P[β̂] in a small α or small β limit, respectively. In fact, this

observation is also true in the general q > 0 case.
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The univariate dynamics P[α] and P[β̂] at any higher level GT+
N , N = 2, 3, . . . (described

in a q = 0 version of Proposition 4.1), can be obtained from the N = 1 dynamics via the

Doob’s h-transform procedure. Informally, to get the dynamics of N distinct particles

(x1 > . . . > xN) on Z≥0 (this state space is the same as GT+
N up to a shift xi = λi+N − i),

one should consider the dynamics of N independent particles xj each of which evolves

according to the corresponding N = 1 dynamics, and then impose the condition that the

particles never collide and have relative asymptotic speeds a1, . . . , aN , respectively. This

conditioning gives rise to the presence of the factors sν(~a)/sλ(~a) in transition probabilities

(cf. Proposition 4.1). We refer to, e.g., [46], [45], [54], [61] for details on noncolliding

dynamics.

It is worth noting that the Dyson’s Brownian motion coming from N ×N GUE random

matrices [27] arises via a similar procedure by considering noncolliding Brownian particles.

One may thus think that the univariate dynamics P[α] and P[β̂] on GT+
N are certain discrete

analogues of the Dyson’s Brownian motion.

4.2. Main equations. Here we write down linear equations whose solutions correspond to

multivariate discrete time Markov dynamics on q-Whittaker processes. We will be looking

within the class of sequential update dynamics (2.21), which includes all four dynamics

Qq=0
row [α], Qq=0

row [β̂], Qq=0
col [α], Qq=0

col [β̂]. For a sequential update dynamics it suffices to describe

the evolution at any two consecutive levels j − 1 and j.

Theorem 4.5. A sequential update dynamics Q defined via (2.18)–(2.19) preserves the

class of q-Whittaker processes M~a
A and adds a new usual parameter α to the specialization

A if and only if

∑
λ̄∈GT+

j−1

Uj(λ→ ν | λ̄→ ν̄)(αaj)
|λ|−|ν|−(|λ̄|−|ν̄|)ψλ/λ̄φν̄/λ̄ = (αaj; q)∞ψν/ν̄φν/λ (4.7)
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for any j = 1, 2, . . . , N and any λ, ν ∈ GT+
j , ν̄ ∈ GT+

j−1, such that the four signatures

λ̄, ν̄, λ, ν are related as on Fig. 15, left (in particular, the above summation is taken only

over λ̄ satisfying λ̄ ≺h ν̄, λ̄ ≺h λ). For j = 1 we take λ̄ = ν̄ = ∅ in this equation and it

becomes equivalent to U1 = P[α] at level GT+
1 (as in Remark 4.2).

Similarly, a dynamics Q preserves the class of q-Whittaker processes and adds a new

dual parameter β to the specialization A if and only if

∑
λ̄∈GT+

j−1

Uj(λ→ ν | λ̄→ ν̄)(βaj)
|λ|−|ν|−(|λ̄|−|ν̄|)ψλ/λ̄ψ

′
ν̄/λ̄ =

1

1 + βaj
ψν/ν̄ψ

′
ν/λ (4.8)

for any j = 1, 2, . . . , N and any λ, ν ∈ GT+
j , ν̄ ∈ GT+

j−1, such that the four signatures

λ̄, ν̄, λ, ν are related as on Fig. 15, right (in particular, the above summation is taken only

over λ̄ satisfying λ̄ ≺v ν̄, λ̄ ≺h λ). For j = 1 we take λ̄ = ν̄ = ∅ in this equation and it

becomes equivalent to U1 = P[β̂] at level GT+
1 (as in Remark 4.2).

(α)

j − 1

j λ ν

λ̄ ν̄

≺
h

≺
h

≺h

≺h

−−−−−−−−−−→
time

(β̂)

j − 1

jλ ν

λ̄ ν̄
≺

h

≺
h

≺v

≺v

−−−−−−−−−−→
time

Figure 15. Squares of four signatures on two consecutive levels relevant to con-
ditional transition λ → ν on the upper level given the transition λ̄ → ν̄ on the
lower level, under dynamics Q[α] (left) and Q[β̂] (right). Note the similarity to
blocks in Fomin’s growth diagrams (about the latter, see [30], [31], [32], [33]).

The proof of these equations was established in [14, §2.2] using a more general framework

of Gibbs-like measures. However, for the sake of completeness, we reproduce it here in our

particular setting of the q-Whittaker processes.

Proof. Let us consider only the case of adding (α), as the case of (β̂) is analogous.
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The fact that a sequential update dynamics Q defined via (2.18)–(2.19) preserves the

class of q-Whittaker processes M~a
A and adds a new usual parameter α to the specialization

A means that

∑
λ

1

Πq(~a; A)
Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(N)/λ(N−1)(aN)Qλ(N)(A)

U1(λ(1) → ν(1))U2(λ(2) → ν(2) | λ(1) → ν(1)) . . .UN(λ(N) → ν(N) | λ(N−1) → ν(N−1)) =

=
1

Πq(~a; A ∪ (α))
Pν(1)(a1)Pν(2)/ν(1)(a2) . . . Pν(N)/ν(N−1)(aN)Qν(N)(A ∪ (α)) for every ν and A.

(4.9)

Using (3.1), we can rewrite (4.9) as

∑
λ

(
N∏
j=1

Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1))a

(|λ(j)|−|ν(j)|)−(|λ(j−1)|−|ν(j−1)|)
j ψλ(j)/λ(j−1)

)
Qλ(N)(A) =

=

(
N∏
j=1

(αaj; q)∞ψν(j)/ν(j−1)

) ∑
ν∈GT+

N

Qν(A)α|ν
(N)|−|ν|φν(N)/ν for every ν and A.

Since Qλ(A) are linearly independent as polynomials in u1, . . . , uN for a finite length spe-

cialization A into usual variables (u1, . . . , uN), this is equivalent to saying that

∑
λ:λ(N)=λ

N∏
j=1

Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1))(αaj)

(|λ(j)|−|ν(j)|)−(|λ(j−1)|−|ν(j−1)|)ψλ(j)/λ(j−1) =

= φν(N)/λ(N)

N∏
j=1

(αaj; q)∞ψν(j)/ν(j−1) for all ν and λ. (4.10)

Suppose that U1 = P[α] at level GT+
1 , and Uj(λ

(j) → ν(j) | λ(j−1) → ν(j−1)) satisfy (4.7)

for 2 ≤ j ≤ N . Then we can show by induction on k, that

∑
λ:λ(k)=λ

k∏
j=1

Uj(λ
(j) → ν(j) | λ(j−1) → ν(j−1))(αaj)

(|λ(j)|−|ν(j)|)−(|λ(j−1)|−|ν(j−1)|)ψλ(j)/λ(j−1) =
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= φν(k)/λ(k)

k∏
j=1

(αaj; q)∞ψν(j)/ν(j−1) for all 1 ≤ k ≤ N,ν = (ν(1) ≺h ν
(2) ≺h . . . ≺h ν

(k)), λ ∈ GT+
k .

(4.11)

Base for k = 1 follows from the fact that U1 = P[α] at level GT+
1 , while the inductive step

follows from (4.7). So (4.10) holds.

For the other direction, suppose that (4.10) (and hence (4.9)) holds. For 1 ≤ k ≤ N by

summing (4.9) over ν(k+1), . . . , ν(N) and applying (3.9) we get

∑
λ

1

Πq(a1, . . . , ak; A)
Pλ(1)(a1)Pλ(2)/λ(1)(a2) . . . Pλ(k)/λ(k−1)(ak)Qλ(k)(A)

U1(λ(1) → ν(1))U2(λ(2) → ν(2) | λ(1) → ν(1)) . . .Uk(λ
(k) → ν(k) | λ(k−1) → ν(k−1)) =

=
1

Πq(a1, . . . , ak; A ∪ (α))
Pν(1)(a1)Pν(2)/ν(1)(a2) . . . Pν(k)/ν(k−1)(ak)Qν(k)(A ∪ (α))

for every ν and A, which implies (4.11). For k = 1 it means that U1 = P[α] at level GT+
1 ,

while for k ≥ 2 using (4.11) for both k and k − 1 implies (4.7).

�

In a continuous time setting, there also exist linear equations governing multivariate

dynamics, cf. [14, §2.4]. In fact, the latter equations arise as small α or small β limits of

(4.7) or (4.8), respectively. Markov dynamics on q-Whittaker processes corresponding to

solutions to these continuous time equations were constructed in [58], [14], [17].

4.3. Discussion of main equations. Let us make a number of general remarks about

the main equations of Theorem 4.5.

4.3.1. The paper [14] contains a classification result in continuous time setting, which was

achieved by further restricting the class of dynamics by imposing certain nearest neighbor

interaction constraints. Under these constraints, putting together continuous time linear

equations (which look similarly to (4.7) and (4.8)) with fixed λ and ν̄ in a generic position,
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at level j one arrives at a system of j linear equations with 3j − 2 variables. Solutions of

such a system admit a reasonable classification.

It remains unclear how to impose (preferably, natural) constraints on solutions of discrete

time equations (4.7) or (4.8) so that the family of all solutions would admit a reasonable

description. Indeed, for example, in the case of a usual parameter (4.7), the number of

variables is infinite while the number of available equations is finite. Therefore, in §5 and

§6 below we devote our attention to constructing certain particular multivariate discrete

time dynamics satisfying equations (4.8) and (4.7), respectively.

4.3.2. Note that summing (4.7) or (4.8) over ν ∈ GT+
j leads to the skew Cauchy identity

with both specializations being into one parameter (cf. (3.9)):

∑
λ̄∈GT+

Pλ/λ̄(aj)Qν̄/λ̄(B) =
1

Πq(aj; B)

∑
ν∈GT+

Pν/ν̄(aj)Qν/λ(B), B = (α) or (β̂). (4.12)

Identity (4.12) may also be interpreted as a certain commutation relation between the

univariate Markov operators P[α] or P[β̂] (of Proposition 4.1) and Markov projection op-

erators (or links)19

Λj
j−1(λ, λ̄) :=

Pλ̄(a1, . . . , aj−1)

Pλ(a1, . . . , aj)
Pλ/λ̄(aj), λ ∈ GT+

j , λ̄ ∈ GT+
j−1,

in the sense that

P[α](j)Λj
j−1 = Λj

j−1P[α](j−1), (4.13)

and similarly for P[β̂]. Indices j and j − 1 in P[α] above mean the level of the interlacing

array at which the transition operator of the univariate dynamics acts.

19These links in fact determine the q-Gibbs property (3.14); e.g., see [14, §2] for more detail.
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One can thus say that each solution to the main equations (4.7) or (4.8) (and, therefore,

each discrete time Markov dynamics on q-Whittaker processes) corresponds to a refinement

of the skew Cauchy identity (4.12) (or of the commutation relation (4.13)).

4.3.3. The parameters a1, . . . , aj−1 (but not aj) essentially do not contribute to the main

equations (4.7), (4.8): they enter the equations only as a requirement that ν̄ ∈ GT+
j−1

and λ, ν ∈ GT+
j . Thus, equations (4.7), (4.8) essentially depend on two specializations:

a specialization into one usual parameter Λ = (aj) which corresponds to increasing the

level number, and a specialization B = (α) or (β̂) which corresponds to time evolution.

This allows to think of diagrams as on Fig. 15, as well as of main equations, for any

specializations Λ and B (see Fig. 16). It suffices to consider three elementary cases for

λ ν

λ̄ ν̄

≺
Λ

≺
Λ

≺B

≺B

−−−−−−−−−−→
time

le
v
el

−−
−−
−−
−−
−→

Figure 16. A square of four signatures corresponding to arbitrary specializations
Λ and B. Notation λ̄ ≺Λ λ means that Pλ/λ̄(Λ) > 0, and similarly for ≺B. When
the specialization Λ is into a single usual or dual parameter, ≺Λ reduces to ≺h or
≺v, respectively.

Λ and B as in (4.2). This yields 9 possible systems of equations for dynamics. If one of

the specializations is pure Plancherel (case (3) in (4.2)), then the corresponding Markov

dynamics on q-Whittaker processes were essentially constructed in [14], [17]. This leaves

four systems of equations in which both Λ and B are specializations into a single usual or

dual parameter. In this paper we address two of these four cases corresponding to Λ =

(aj), which in particular give rise to two new discrete time q-PushTASEPs (as marginally

Markovian projections of dynamics on interlacing arrays, see §5.2 and §6.3).
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4.3.4. In fact, one can define the quantities ψλ/µ(q, t), φλ/µ(q, t), ψ′λ/µ(q, t) for the general

Macdonald parameters (q, t) (see [51, Ch. VI]), and thus write down the correspond-

ing main linear equations for any specializations Λ and B. (In particular, for t 6= 0

the right-hand side of the identity (3.6) defining a specialization should be multiplied by∏∞
i=1(tαiu; q)∞.) It is not known whether there exist other solutions to the main equa-

tions for general (q, t) yielding honest Markov dynamics (i.e., having nonnegative transition

probabilities) except the push-block solution (see §4.4 below for the definition). We do not

address this question in the present paper.

There is a rather simple transformation of the main equations for general (q, t) (re-

lated to transposition of Young diagrams) which interchanges q ↔ t and swaps usual and

dual parameters in both specializations Λ and B [17]. This transformation relates the

q-Whittaker (t = 0) and the Hall–Littlewood (q = 0) settings.

The remaining two cases of the (q-Whittaker) main equations mentioned above (corre-

sponding to Λ = (b̂), a specialization into a dual parameter) should thus be thought of

as discrete time versions of the continuous time equations of [17] (relevant to the Hall–

Littlewood setting). As such, (conjectural) solutions to the former equations leading to

discrete time dynamics on interlacing arrays are unlikely to produce new marginally Mar-

kovian TASEP-like particle systems in one space dimension (see also discussion in [14,

§8.3]). In the present paper, we do not address these two remaining cases corresponding

to the Hall–Littlewood setting.

4.4. Push-block dynamics. There is a rather straightforward general construction (dat-

ing back to an idea of [25]) leading to certain particular multivariate dynamics. Namely,

assume that the conditional probabilities Uj(λ → ν | λ̄ → ν̄) entering the main equa-

tions (Theorem 4.5) do not depend on λ̄. Then each equation (corresponding to fixed

λ, ν ∈ GT+
j , and ν̄ ∈ GT+

j−1) contains only one unknown Uj(λ → ν | ν̄). Thus, the main

equations admit a unique solution. Let us consider the case of a usual parameter α (4.7).

51



Observe that the left-hand side of (4.7) takes the following form (where signatures satisfy

conditions on Fig. 15, left):

Uj(λ→ ν | ν̄)
∑

λ̄∈GT+
j−1

(αaj)
|λ|−|ν|−(|λ̄|−|ν̄|)ψλ/λ̄φν̄/λ̄

= Uj(λ→ ν | ν̄)α|λ|−|ν|a
−|ν|+|ν̄|
j

∑
λ̄∈GT+

j−1

Pλ/λ̄(aj)Qν̄/λ̄(α)

= Uj(λ→ ν | ν̄) (αaj; q)∞
∑

κ∈GT+
j

(αaj)
|κ|−|ν|ψκ/ν̄φκ/λ,

where we have used the skew Cauchy identity (4.12). Then (4.7) yields the solution

Uj(λ→ ν | ν̄) =
(αaj)

|ν|ψν/ν̄φν/λ∑
κ∈GT+

j
(αaj)|κ|ψκ/ν̄φκ/λ

. (4.14)

In (4.14) as well as in the above computation, it should be λ ≺h ν, ν̄ ≺h ν and λ ≺h κ,

ν̄ ≺h κ, see Fig. 15, left.

Similarly, the solution of (4.8) not depending on λ̄ looks as

Uj(λ→ ν | ν̄) =
(βaj)

|ν|ψν/ν̄ψ
′
ν/λ∑

κ∈GT+
j

(βaj)|κ|ψκ/ν̄ψ
′
κ/λ

. (4.15)

The signatures have to be related as on Fig. 15, right, i.e., λ ≺v ν, ν̄ ≺h ν, and λ ≺v κ,

ν̄ ≺h κ.

Definition 4.6. We will call the multivariate dynamics defined by (4.14) or (4.15) the

(discrete time) push-block dynamics on q-Whittaker processes adding a specialization (α)

or (β̂), respectively. We denote these dynamics by Q
q
pb[α] and Q

q
pb[β̂].

The construction of push-block dynamics can be equivalently described as follows. Recall

the commutation relation between the univariate dynamics P and the stochastic links Λj
j−1

(4.13). Then one can say that the multivariate dynamics chooses ν at random according
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to the distribution of the middle signature in a chain of Markov operators

λ
P

(j)

−−−−→ ν
Λjj−1−−−−→ ν̄,

conditioned on the first signature λ and the last signature ν̄. Denominators in formulas

(4.14) and (4.15) reflect this conditioning.

Setting q = 0 greatly simplifies formulas (4.14) and (4.15) thus leading to nice push-

block multivariate dynamics on interlacing arrays. They were introduced and studied in

[12]. For the analogous dynamics in the case of Dyson’s Brownian motions see [73].

Due to the sequential nature of multivariate dynamics (2.18), we will consider evolution

at consecutive levels j − 1 and j. Assuming that the movement λ̄ → ν̄ at level j − 1 and

the old configuration λ at level j are given, we will describe the probability distribution of

ν ∈ GT+
j corresponding to Uj(λ→ ν | λ̄→ ν̄).

1 1 2 + 1 4 + 1

0 + Y3 1 + 0 2 + Y2 2 + 1 7 + Y1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1block

Figure 17. An example of a step of Q
q=0
pb [β̂] at levels 4 and 5. Here λ =

(7, 2, 2, 1, 0), λ̄ = (4, 2, 1, 1), and ν̄ = (5, 3, 1, 1). The move λ2 = 2→ ν2 = 2+1 on
the upper level is dictated by the corresponding move λ̄2 = 2→ ν̄2 = 2 + 1 on the
lower level (due to the short-range pushing mechanism), so no further move of ν2

is possible. The particle λ4 = 1 cannot move because it is blocked by ν̄3 = λ4. All
other particles are free to move (including λ3 which was blocked before the move-
ment at the lower level), and their jumps Y1, Y2, Y3 are independent identically
distributed Bernoulli random variables with P (Y1 = 0) = 1/(1 + βaj).
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Let us first focus on the case of Qq=0
pb [β̂] (see Fig. 17).20 In this case (4.15) simplifies to

Uj(λ→ ν | ν̄) =
(βaj)

|ν|1ν̄≺hν1λ≺vν∑
κ∈GT+

j
(βaj)|κ|1ν̄≺hκ1λ≺vκ

,

i.e. for any ν ′, ν ′′ ∈ GT+
j , such that ν̄ ≺h ν

′, λ ≺v ν
′ and ν̄ ≺h ν

′′, λ ≺v ν
′′,

Uj(λ→ ν ′ | ν̄)

Uj(λ→ ν ′′ | ν̄)
= (βaj)

|ν′|−|ν′′|.

It is clear that the only dynamics with such property fits the following description. During

one step of the dynamics, each particle λi, 1 ≤ i ≤ j, can either stay, or jump to the right

by one, according to the rules:

(1) (short-range pushing) If ν̄i = λi + 1, then the move λi → νi = λi + 1 is mandatory

to restore the interlacing (which was broken by the move λ̄→ ν̄) during the same

step of the discrete time.

(2) (blocking) If λi = ν̄i−1, then the particle λi is blocked and must stay, i.e., νi is forced

to be equal to λi.

(3) (independent jumps) All other particles λi which are neither pushed nor blocked,

jump to the right by 0 or 1 according to an independent Bernoulli random variable

with probability of staying 1/(1 + βaj).

By the same explanation the dynamics Qq=0
pb [α] at two consecutive levels looks as follows

(see Fig. 18). Each particle λi, 1 ≤ i ≤ j, independently jumps to the right by a random

distance which has the geometric distribution with parameter αaj conditioned to stay in

20To simplify pictures, here and below we will display interlacing arrays of integers (cf. Fig. 2), but will
still speak about particles jumping to the right.
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1 1 2 + 2 4 + 4

0 + Y4 1 + 0 2 + Y3 2 + 2 + Y2 7 + 1 + Y1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+2 +1block

Figure 18. An example of a step of Qq=0
pb [α] at levels 4 and 5. The move λ̄1 =

4 → ν̄1 = 4 + 4 forces λ1 to move to the right by 1, and similarly the move
λ̄2 = 2 → ν̄2 = 2 + 2 forces λ2 to move to the right by 2 (short-range pushing);
note that these forced moves do not exhaust all possible distance traveled by λ1

or λ2. The particle λ4 = 1 is blocked by ν̄3 = λ4 and thus cannot move. All
other parts of the movement λ → ν are determined by independent identically
distributed geometric random variables Yi, 1 ≤ i ≤ 4 with parameter αaj, where
each variable is conditioned to stay in the maximal interval not breaking the
interlacing: Y1 ≥ 0 (i.e., no conditioning), 0 ≤ Y2 ≤ 4, 0 ≤ Y3 ≤ 2, 0 ≤ Y4 ≤ 1.

the interval from (ν̄i − λi)+ := max{0, ν̄i − λi} to ν̄i−1 − λi (with the agreement that

λ0 = +∞).21 This conditioning corresponds to the denominator in (4.14).

4.5. RSK-type dynamics. Let us now define an important subclass of multivariate dy-

namics which is central to the present paper.

Definition 4.7. A multivariate sequential update dynamics Q (which corresponds to con-

ditional probabilities Uj(λ→ ν | λ̄→ ν̄) satisfying (2.19) and the main equations (4.7) or

(4.8)) is called RSK-type if

Uj(λ→ ν | λ̄→ ν̄) = 0 unless |ν| − |λ| ≥ |ν̄| − |λ̄|, for all λ, ν ∈ GT+
j , λ̄, ν̄ ∈ GT+

j−1.

In the above definition, |ν̄| − |λ̄| is the total distance traveled by particles at level j − 1,

and similarly |ν|−|λ| is the total distance traveled by particles at level j. Informally, under

an RSK-type dynamics all movement at level j− 1 must propagate further to level j (and,

consequently, to all upper levels of the array).

21Due to the memorylessness of the geometric distribution, this description is equivalent to what is
illustrated on Fig. 18.
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By Remark 4.2, under an RSK-type dynamics the quantity |λ(j)| − |λ(j−1)| (for any

j = 1, . . . , N) at each step of the discrete time is increased by adding a q-geometric random

variable with parameter αaj (in the case of Q[α]), or a Bernoulli random variable with

parameter βaj (in the case of Q[β̂]).

Remark 4.8. This feature of RSK-type dynamics separates them from the push-block

dynamics of §4.4. Indeed, under a push-block dynamics movements at level j−1 generically

do not propagate upwards because the quantities Uj(λ→ ν | λ̄→ ν̄) do not depend on λ̄.

More precisely, the only steps at level j − 1 that can propagate to level j correspond to

the situation ν̄ 6≺h λ. Then a part of the movement λ→ ν is mandatory, as it is dictated

by the need to immediately (i.e., during the same time step of the multivariate dynamics)

restore the interlacing between the levels j − 1 and j.

RSK-type dynamics on q-Whittaker processes that we construct in §5 and §6 give rise

to discrete time q-TASEPs and q-PushTASEPs as their Markovian marginals. On the

other hand, discrete time push-block dynamics do not seem to produce any TASEP-like

processes.22 Note also that in general the denominator in (4.14) or (4.15) does not seem to

be given by an explicit formula, so the discrete time push-block dynamics are not easy to

work with (cf. Remark 4.3). This provides an additional motivation for constructing and

studying RSK-type dynamics.

22The continuous time push-block dynamics on q-Whittaker processes has lead to the discovery of the
continuous time q-TASEP in [8]. A continuous time RSK-type dynamics on q-Whittaker processes was
later employed in [14] to discover the continuous time q-PushTASEP, a close relative of the q-TASEP (see
also §5.6 below). In fact, q-PushTASEP and q-TASEP can be unified to produce another nice particle
system on Z, namely, the q-PushASEP, which also extends to a certain dynamics on interlacing arrays
[22].
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5. RSK-type dynamics Qqrow[β̂] and Q
q
col[β̂] adding a dual parameter

In this section we explain the construction of two RSK-type dynamics on q-Whittaker

processes adding a dual parameter β to the specialization (in the sense of (4.1)). For

q = 0, these dynamics degenerate to (β̂) dynamics on Schur processes arising from row and

column RSK insertion. We also discover that for 0 < q < 1, the row and column dynamics

Qqrow[β̂] and Q
q
col[β̂] are related by a certain transformation (we call it complementation).

Moreover, in a small β limit the complementation provides a direct connection between

continuous time RSK-type dynamics on q-Whittaker processes introduced in [58] (column

version) and [14] (row version).

5.1. Row insertion dynamics Qqrow[β̂]. Let us now describe one time step λ → ν

of the multivariate Markov dynamics Qqrow[β̂] on q-Whittaker processes of depth N . A

part of randomness during this step comes from independent Bernoulli random variables

V1, . . . , VN ∈ {0, 1} with parameters βa1, . . . , βaN , respectively (these random variables

are resampled during each time step).

The bottommost particle of the interlacing array is updated as ν
(1)
1 = λ

(1)
1 + V1 (as it

should be, cf. Remark 4.2). Next, sequentially for each j = 2, . . . , N , given the movement

λ̄→ ν̄ at level j − 1, we will randomly update λ→ ν at level j. To describe this update,

write

ν̄ − λ̄ =

j−1∑
i=1

ciēi, ci ∈ {0, 1}, ēi are basis vectors of length j − 1,

and say that numbers (k,m), where 1 ≤ k ≤ m ≤ j − 1, form island(k,m) if

ck−1 = 0 (or k = 1), ck = ck+1 = . . . = cm = 1, and cm+1 = 0 (or m = j − 1).
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That is, all particles that have moved at level j − 1 split into several disjoint islands. Also

denote for any i = 1, . . . , j − 1:

fi = fi(ν̄, λ) :=
1− qλi−ν̄i+1

1− qν̄i−1−ν̄i+1
, gi = gi(ν̄, λ) := 1− qλi−ν̄i+1 (5.1)

(by agreement, let ν̄0 := +∞). Note that all these quantities are between 0 and 1.

2 + 1 3 + 1 5 5 + 1 6 + 1

2 + 1 3 3 + 1 5 + 1 5 + 1 7 + Vj

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1+1+1+1

2 + 1 3 + 1 5 5 + 1 6 + 1

2 + 1 3 + 1 5 5 6 + 1 8 + Vj + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1+1+1+1

Figure 19. An example of a step of Qqrow[β̂] at levels 5 and 6. There are two
islands, (1, 2) and (4, 5), moving at level j−1. Above: Vj = 1, and the probability
of the displayed transition is 1 · (1 − f4)g5 = 1 − q (note that here the particle
λ4 = 3 cannot be chosen not to move because f4 = 0). Below: Vj = 0, and the
probability of the displayed transition is (1 − f1)(1− g2) · f4 = q3 (note that here
the particle λ4 = 5 must be chosen not to move because f4 = 1).

The update λ → ν at level j goes as follows (see Fig. 19). First, the rightmost particle

jumps to the right by Vj, i.e., ν1 = λ1 + Vje1. Then, independently for every island(k,m)

of particles that have moved at level j − 1, perform the following updates:

(1) If Vj = 1 and k = 1 (i.e., the particle λ1 has already moved, and the island contains

the first particle at level j − 1), then move the particles λ2, . . . , λm+1 at level j to

the right by one with probability 1.

(2) If Vj = 1 and k > 1, or Vj = 0 (i.e., island(k,m) does not interfere with the

movement of λ1 coming from Vj, or there is no independent movement of λ1), then
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island(k,m) triggers the movement (to the right by one) of all particles λk, . . . , λm+1

except one. The particle which does not move is chosen at random:

• λk is chosen not to move with probability

fk =
1− qλk−ν̄k+1

1− qν̄k−1−ν̄k+1
; (5.2)

• each λs, k + 1 ≤ s ≤ m, is chosen not to move with probability

(1− fk)(1− gk+1) . . . (1− gs−1)gs =
qλk−ν̄k+1 − qν̄k−1−ν̄k+1

1− qν̄k−1−ν̄k+1
q
∑s−1
i=k+1(λi−ν̄i+1)(1− qλs−ν̄s+1);

(5.3)

• λm+1 is chosen not to move with probability

(1− fk)(1− gk+1) . . . (1− gm−1)(1− gm) =
qλk−ν̄k+1 − qν̄k−1−ν̄k+1

1− qν̄k−1−ν̄k+1
q
∑m
i=k+1(λi−ν̄i+1). (5.4)

Probabilities (5.2), (5.3), and (5.4) are nonnegative, and their sum telescopes to 1.

This completes the description of the (β̂) row insertion RSK-type dynamics Qqrow[β̂]. Clearly,

thus defined conditional probabilities Uj, j = 1, . . . , N , for this dynamics satisfy (2.19).

Remark 5.1. The q-deformed probabilities (5.2), (5.3), and (5.4) ensure that mandatory

pushing and blocking mechanisms (built into Definitions 2.6 and 2.7) work automatically:

• If λs = ν̄s − 1 for any k ≤ s ≤ m, then the particle λs cannot be chosen not to

move. This agrees with the mandatory pushing of λs by the move of λ̄s = λs which

is necessary to restore the interlacing.

• If λk = ν̄k−1 (i.e., λk is blocked), then fk = 1, so λk must be chosen not to move.

This means that in this dynamics no move donations ever arise (cf Remark 2.8).

Theorem 5.2. The dynamics Qqrow[β̂] defined above satisfies the main equations (4.8), and

hence preserves the class of q-Whittaker processes and adds a new dual parameter β to the

specialization A as in (4.1).
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Proof. We need to prove (4.8) for any fixed j = 2, . . . , N and λ, ν ∈ GT+
j , ν̄ ∈ GT+

j−1,

where λ ≺v ν �h ν̄ (cf. Fig. 15, right). For a subset I ⊆ {1, 2, . . . , j − 1}, set

UI := (1 + βaj)Uj(λ→ ν | λ̄→ ν̄)
ψλ/λ̄ψ

′
ν̄/λ̄

ψν/ν̄ψ
′
ν/λ

,

where λ̄ = ν̄ −∑i∈I ēi, i.e., λ̄ ∈ GT+
j−1 is obtained from ν̄ by shifting back (by one) all

particles with indices belonging to I. By agreement, if I is such that λ̄ does not satisfy

λ �h λ̄ ≺v ν̄ (cf. Fig. 15, right), then UI = 0. With this notation, the desired identity (4.8)

turns into

∑
I⊆{1,2,...,j−1}

UI(βaj)
|λ|−|ν|−(|λ̄|−|ν̄|) = 1. (5.5)

Note that the denominator (1 + βaj) coming from the Bernoulli distribution of Vj will

always cancel the corresponding factor in all UI ’s.

First, let us consider a particular case when ν = λ+
∑m

i=k ei, i.e., the movement λ→ ν

involves a consecutive group of particles from k to m, where 1 ≤ k ≤ m ≤ j − 1. There

are four subcases:

1. If k > 1 and m < j, then necessarily Vj = 0, and (5.5) becomes

U[k−1,m−1] +
m−1∑
s=k

U[k−1,s−1]∪[s+1,m] + U[k,m] = 1 (5.6)

(here and below by [k− 1,m− 1], etc., we mean the corresponding interval of indices). See

Fig. 20. Using (3.3), (3.7), we have (as before, here and below in the proof we agree that

λ̄m+1 λ̄m + 1
. . .

λ̄s+1 + 1 λ̄s λ̄s−1 + 1
. . .

λ̄k−1 + 1

λm+1 λm + 1 . . . λs+1 + 1 λs + 1 . . . λk + 1 λk−1

+1+1+1+1+1+1

Figure 20. Situation corresponding to the s-th term in (5.6).
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ν̄0 = +∞)

U[k−1,m−1] = fk−1(ν̄, λ)︸ ︷︷ ︸
Uj

·
(
λm−λm+1

λm−ν̄m

)
q(

λm+1−λm+1

λm+1−ν̄m

)
q

(
λk−1−λk

λk−1−ν̄k−1+1

)
q(

λk−1−λk−1
λk−1−ν̄k−1

)
q︸ ︷︷ ︸

ψλ/λ̄/ψν/ν̄

· 1− q
ν̄k−2−ν̄k−1+1

1− qλk−1−λk︸ ︷︷ ︸
ψ′
ν̄/λ̄

/ψ′
ν/λ

=
1− qλk−1−ν̄k−1+1

1− qν̄k−2−ν̄k−1+1

1− qλm−ν̄m+1

1− qλm−λm+1+1

1− qλk−1−λk

1− qλk−1−ν̄k−1+1

1− qν̄k−2−ν̄k−1+1

1− qλk−1−λk

=
1− qλm−ν̄m+1

1− qλm−λm+1+1
.

Also for any k ≤ s ≤ m− 1,

U[k−1,s−1]∪[s+1,m]

= fk−1(ν̄, λ) · (1− fs+1(ν̄, λ))(1− gs+2(ν̄, λ)) . . . (1− gm(ν̄, λ))︸ ︷︷ ︸
Uj

×
(
λm−λm+1

λm−ν̄m+1

)
q(

λm+1−λm+1

λm+1−ν̄m

)
q

(
λs−λs+1

λs−ν̄s

)
q(

λs−λs+1

λs+1−ν̄s

)
q

(
λk−1−λk

λk−1−ν̄k−1+1

)
q(

λk−1−λk−1
λk−1−ν̄k−1

)
q︸ ︷︷ ︸

ψλ/λ̄/ψν/ν̄

· (1− q
ν̄k−2−ν̄k−1+1)(1− qν̄s−ν̄s+1+1)

1− qλk−1−λk︸ ︷︷ ︸
ψ′
ν̄/λ̄

/ψ′
ν/λ

=
1− qλk−1−ν̄k−1+1

1− qν̄k−2−ν̄k−1+1

qλs+1−ν̄s+1+1 − qν̄s−ν̄s+1+1

1− qν̄s−ν̄s+1+1
q
∑m
i=s+2(λi−ν̄i+1)

× 1− qν̄m−λm+1

1− qλm+1−λm+1

1− qλs+1−ν̄s

1− qν̄s−λs+1

1− qλk−1−λk

1− qλk−1−ν̄k−1+1

(1− qν̄k−2−ν̄k−1+1)(1− qν̄s−ν̄s+1+1)

1− qλk−1−λk

=
(1− qλs+1−ν̄s)(1− qν̄m−λm+1)

1− qλm+1−λm+1
q
∑m
i=s+1(λi−ν̄i+1),

and

U[k,m] = (1− fk(ν̄, λ))(1− gk+1(ν̄, λ)) . . . (1− gm(ν̄, λ))︸ ︷︷ ︸
Uj

×
(
λm−λm+1

λm−ν̄m+1

)
q(

λm+1−λm+1

λm+1−ν̄m

)
q

(
λk−1−λk
λk−1−ν̄k−1

)
q(

λk−1−λk−1
λk−1−ν̄k−1

)
q︸ ︷︷ ︸

ψλ/λ̄/ψν/ν̄

· 1− q
ν̄k−1−ν̄k+1

1− qλk−1−λk︸ ︷︷ ︸
ψ′
ν̄/λ̄

/ψ′
ν/λ
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=
qλk−ν̄k+1 − qν̄k−1−ν̄k+1

1− qν̄k−1−ν̄k+1
q
∑m
i=k+1(λi−ν̄i+1) 1− qν̄m−λm+1

1− qλm+1−λm+1

1− qλk−1−λk

1− qν̄k−1−λk

1− qν̄k−1−ν̄k+1

1− qλk−1−λk

=
1− λν̄m−λm+1

1− qλm+1−λm+1
q
∑m
i=k(λi−ν̄i+1).

The summation in (5.6) thus telescopes and gives 1 as desired (similarly to the sum of

expressions (5.2), (5.3), and (5.4)).

2. If k > 1 and m = j, then also necessarily Vj = 0, and there is only one I, namely,

[k − 1, j − 1], contributing to (5.5). We have

U[k−1,j−1] = fk−1(ν̄, λ) ·
(

λk−1−λk
λk−1−ν̄k−1+1

)
q(

λk−1−λk−1
λk−1−ν̄k−1

)
q

· 1− qν̄k−2−ν̄k−1+1

1− qλk−1−λk

=
1− qλk−1−ν̄k−1+1

1− qν̄k−2−ν̄k−1+1

1− qλk−1−λk

1− qλk−1−ν̄k−1+1

1− qν̄k−2−ν̄k−1+1

1− qλk−1−λk
= 1,

so we see that (5.5) holds.

3. If k = 1 and m < j, then Vj can be either 0 or 1, and (5.5) now looks as

U[1,m] + (ajβ)−1

m−1∑
s=1

U[1,s−1]∪[s+1,m] + (ajβ)−1U[1,m−1] = 1.

This identity is established similarly to the subcase 1. Namely, one readily sees that

U[1,m] =
1− qν̄m−λm+1

1− qλm−λm+1+1
q
∑m
i=1(λi−ν̄i+1);

U[1,s−1]∪[s+1,m] = (ajβ)
(1− qν̄m−λm+1)(1− qλs−ν̄s+1)

1− qλm−λm+1+1
q
∑m
i=s+1(λi−ν̄i+1);

U[1,m−1] = (ajβ)
1− qλm−ν̄m+1

1− qλm−λm+1+1
,

and the sum of these quantities telescopes and gives 1.

4. If k = 1 and m = j, this means that necessarily Vj = 1, and the only term that enters

(5.5) is U[1,j−1] = βaj, so the desired identity also holds.
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We have now established the desired identity in the particular case ν = λ+
∑m

i=k ei. In

the general case there could be several consecutive groups of particles forming the move

λ→ ν at level j. Let there be gaps of at least two not moving particles between neighboring

moving groups. Then, by the product nature of the quantities ψ and ψ′ (3.3), (3.7), as

well as by the independence of propagation for different islands at level j − 1, cf. Fig. 19,

the sum in the left-hand side of (5.5) can clearly be represented as a product of sums

corresponding to individual groups of moving particles. Each such individual sum is the

same as in one of the subcases 1–4 above, and therefore is equal to 1. This implies (5.5)

in the case when moving groups at level j are sufficiently far apart.

λ̄m−1 + 1 λ̄s + 1 λ̄s−1 + 1
. . .

λ̄k + 1

λm + 1 . . . λs . . . . . . λk + 1

+1+1+1+1+1

Figure 21. Two islands at level j corresponding to a single island at level j− 1.

λ̄m−1 + 1 λ̄s + 1 λ̄s−1

λm + 1 λs+1 + 1 λs . . .

+1+1

λ̄s λ̄s−1 + 1
. . .

λ̄k + 1

. . . λs λs−1 + 1 . . . λk + 1

+1+1+1

Figure 22. Two configurations giving the same contribution as the one on
Fig. 21.

Finally, it remains to check (5.5) in the case when there could be moving groups at level

j separated by one not moving particle. Consider two such neighboring groups. The only

configuration of moves at level j−1 (corresponding to these two groups at level j) that could

prevent the sum in (5.5) to be of product form is given on Fig. 21. However, one readily

sees that the contribution of this configuration is the same as the product of contributions

of two configurations on Fig. 22. Indeed, factors involving the quantities ψ are already in
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a product form, and the remaining factors (coming from Uj and the quantities ψ′) are

qλk−λ̄k − qλ̄k−1−λ̄k

1− qλ̄k−1−λ̄k
q
∑s−1
i=k+1(λi−λ̄i)(1− qλs−λ̄s)︸ ︷︷ ︸

(1− fk)(1− gk+1) . . . (1− gs−1)gs on Fig. 21

· 1− qλ̄k−1−λ̄k

(1− qλk−1−λk)(1− qλs−λs+1)

=
1− qλs−λ̄s

1− qλ̄s−1−λ̄s︸ ︷︷ ︸
fs on Fig. 22, left

·1− q
λ̄s−1−λ̄s

1− qλs−λs+1
× qλk−λ̄k − qλ̄k−1−λ̄k

1− qλ̄k−1−λ̄k
q
∑s−1
i=k+1(λi−λ̄i)︸ ︷︷ ︸

(1− fk)(1− gk+1) . . . (1− gs−1) on Fig. 22, right

·1− q
λ̄k−1−λ̄k

1− qλk−1−λk
.

Note that we have expressed everything in terms of signatures λ and λ̄ because the signa-

tures ν̄ differ on Fig. 21 and Fig. 22.

Therefore, in the last remaining case we can still rewrite (5.5) in a product form. This

completes the proof of the theorem. �

Remark 5.3 (Schur degeneration). If one sets q = 0, then in a generic situation (when

particles at levels j − 1 and j are sufficiently far apart from each other) all quantities fi

and gi become equal to one, see (5.1). One readily sees that the dynamics Qqrow[β̂] reduces

to the dynamics Qq=0
row [β̂] on Schur processes. The latter dynamics is based on the classical

Robinson–Schensted–Knuth row insertion (§2.6).

5.2. Bernoulli q-PushTASEP. One can readily check that under the dynamics Qqrow[β̂]

we have just constructed, the rightmost N particles λ
(j)
1 of the interlacing array evolve in

a marginally Markovian manner (i.e., their evolution does not depend on the dynamics

of the rest of the interlacing array). Namely, at each discrete time step t → t + 1 the

bottommost particle is updated as λ
(1)
1 (t+ 1) = λ

(1)
1 (t) + V1, and for any j = 2, . . . , N :

• If λ
(j−1)
1 has not moved, then the rightmost particle at level j is updated as

λ
(j)
1 (t+ 1) = λ

(j)
1 (t) + Vj;
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• If λ
(j−1)
1 has moved to the right by one, then the same particle is updated as

λ
(j)
1 (t+ 1) = λ

(j)
1 (t) + Vj + (1− Vj) · 1pushing by λ

(j−1)
1

,

where pushing by λ
(j−1)
1 happens with probability 1 − f1 = qλ

(j)
1 (t)−λ(j−1)

1 (t) which

depends only on the rightmost particles of the array.

(Recall that the Vi’s are independent Bernoulli random variables which are independently

resampled each step of the discrete time.) This evolution of the rightmost particles λ
(j)
1 ,

1 ≤ j ≤ N , leads to a new interacting particle system on Z which we call the (discrete

time) Bernoulli q-PushTASEP. We discuss this process in detail in §7 below.

+1 +1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 +1 +1 +1 +1 +1 +1

Figure 23. Complementation of propagation rules turning the dynamics Qqrow[β̂]

(with move propagation given by thin solid arrows) into Q
q
col[β̂] (corresponding to

thick dashed arrows).

5.3. Complementation. Let us take another look at propagation rules employed in the

definition of the row insertion dynamics Qqrow[β̂] on q-Whittaker processes (see the beginning

of §5.1). These rules state that, generically, an island of moving particles at level j−1 splits

(at random) into two moving islands at level j separated by exactly one staying particle

(either of two moving islands at level j is allowed to be empty). Now consider the pattern

of staying particles at levels j − 1 and j. We see that an island(k,m) (where k ≤ m) of

staying particles at level j − 1 always gives rise to an island(k + 1,m) of staying particles

at level j, plus one more staying particle somewhere to the right of k (but to the left of

the next staying particle at level j). The latter staying particle (whose index is chosen at

random) is precisely the one separating the two moving islands at level j. See Fig. 23.
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The transformation of propagation rules of Qqrow[β̂] that we just described informally in

fact leads to a new RSK-type multivariate dynamics on q-Whittaker processes. Let us

work in a more general setting:

Definition 5.4 (Complementation of a dynamics). Assume that Q is a multivariate se-

quential update dynamics on q-Whittaker processes adding a specialization (β̂). For

j = 2, . . . , N and signatures λ, ν ∈ GT+
j , λ̄, ν̄ ∈ GT+

j−1 satisfying conditions on Fig. 15,

right, let Uj(λ→ ν | λ̄→ ν̄) be the corresponding conditional probabilities. Assume that

the dynamics is translation invariant, i.e., that the values Uj(λ → ν | λ̄ → ν̄) do not

change if one adds the same number to all coordinates of all four signatures.

For S a sufficiently large positive integer, define the complement conditional probabilities

as

U′j(λ→ ν | λ̄→ ν̄) := (ajβ)−2(|λ|−|ν|−|λ̄|+|ν̄|)−1Uj

(
[S − λ]→ [S + 1− ν]

∣∣∣ [S − λ̄]→ [S + 1− ν̄]
)
,

where

[S − λ] :=
(
S − λj ≥ S − λj−1 ≥ . . . ≥ S − λ1

)
is the complement of the Young diagram λ in the j×S rectangle, and similarly for [S+1−ν],

[S − λ̄], and [S + 1 − ν̄] (hence the name “complementation”). Note that these four new

signatures also satisfy conditions on Fig. 15, right.

Let us denote by Q′ the dynamics on interlacing arrays corresponding to U′j, j = 2, . . . , N .

Note that due to translation invariance, the complement dynamics Q′ does not depend on

S provided that S is large enough.
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Lemma 5.5. Let S be sufficiently large. For µ̄ ∈ GT+
k−1, µ ∈ GT+

k such that µ̄ ≺h µ, we

have

ψ[S−µ]/[S−µ̄] = ψµ/µ̄.

For µ,κ ∈ GT+
k such that µ ≺v κ, we have

ψ′[S+1−κ]/[S−µ] = ψ′κ/µ.

Proof. A straightforward verification using definitions (3.3), (3.7). �

Proposition 5.6. If Q is a multivariate sequential update dynamics adding a specialization

(β̂), then so is the complement dynamics Q′.

Proof. One can show that the complement dynamics Q′ satisfies the same main equations

(4.8) as the original dynamics Q. Indeed, Lemma 5.5 ensures that the coefficients ψλ/λ̄ψ
′
ν̄/λ̄

and ψν/ν̄ψ
′
ν/λ do not change under complementation, and powers of (ajβ) also transform

as they should:

U′j(λ→ ν | λ̄→ ν̄)(ajβ)|λ|−|ν|−|λ̄|+|ν̄|

= (ajβ)−|λ|+|ν|+|λ̄|−|ν̄|−1Uj

(
[S − λ]→ [S + 1− ν]

∣∣∣ [S − λ̄]→ [S + 1− ν̄]
)

= (ajβ)

∣∣[S−λ]

∣∣−∣∣[S+1−ν]

∣∣−∣∣[S−λ̄]

∣∣+∣∣[S+1−ν̄]

∣∣
Uj

(
[S − λ]→ [S + 1− ν]

∣∣∣ [S − λ̄]→ [S + 1− ν̄]
)
.

This establishes the main equations for the complement dynamics. �

5.4. Column insertion dynamics Q
q
col[β̂]. Clearly, the row insertion dynamics Qqrow[β̂]

on q-Whittaker processes is translation invariant (in the sense of Definition 5.4), so one

can define the complement dynamics. Denote it by Q
q
col[β̂]. Let us describe (in an explicit

way) the evolution of the interlacing array under this new dynamics during one step of the

discrete time. See Fig. 24 for an example.
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As before, a part of randomness comes from independent Bernoulli random variables

Vj ∈ {0, 1} with P (Vj = 0) = 1/(1 + βaj), j = 1, . . . , N . The bottommost particle of the

interlacing array is updated as ν
(1)
1 = λ

(1)
1 + V1. Sequentially for each j = 2, . . . , N , given

the movement λ̄ → ν̄ at level j − 1, we will randomly update λ → ν at level j. Let us

denote (as usual, ν̄0 = +∞)

f ′k = f ′k(ν̄, λ) :=
1− qν̄k−1−λk

1− qν̄k−1−ν̄k+1
, g′s = g′s(ν̄, λ) := 1− qν̄s−1−λs . (5.7)

2 3 + 1 3 + 1 6 7 + 1

0 3 3 + 1 5 7 + 1 7 + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1 +1 +1

2 3 + 1 3 + 1 6 7 + 1

0 3 + Vj 3 + 1 6 7 + 1 7 + 1

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+1 +1 +1

Figure 24. An example of a step of Qqcol[β̂] at levels 5 and 6. Above: Vj = 0, and
the probability of the displayed transition is 1− f ′3 = (q+ q2)/(1 + q+ q2). Below:
Vj = 1, and the probability of the displayed transition is (1 − g′6)(1 − f ′3) = q2.
Note that in the latter case the particle λ3 = 6 cannot be chosen to move because
it is blocked by λ̄2 = λ3 which is not moving; this agrees with f ′3 = 0.

The update λ→ ν looks as follows:

(1) Consider a pair of moved particles (λ̄r, λ̄k) at level j − 1, where 0 ≤ r < k ≤ j − 1,

such that the particles λ̄r+1, . . . , λ̄k−1 in between did not move (by agreement, r = 0

corresponds to λ̄k being the rightmost moved particle at level j− 1). Regardless of

the value of Vj, each such pair of moved particles at level j−1 triggers the move (to

the right by one) of exactly one particle λs, r + 1 ≤ s ≤ k, between them at level

j. If r + 1 = k, then there is only one choice s = k, so λk must move. Otherwise,
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the moving particle λs is chosen at random (independently of everything else) with

the following probabilities:

• If s = k, then λs is chosen to move with probability

f ′k =
1− qν̄k−1−λk

1− qν̄k−1−ν̄k+1
; (5.8)

• If r + 1 < s < k, then λs is chosen to move with probability

(1− f ′k)(1− g′k−1) . . . (1− g′s+1)g′s =
qν̄k−1−λk − qν̄k−1−ν̄k+1

1− qν̄k−1−ν̄k+1
q
∑k−2
i=s (ν̄i−λi+1)(1− qν̄s−1−λs);

(5.9)

• If s = r + 1, then λs is chosen to move with probability

(1− f ′k)(1− g′k−1) . . . (1− g′r+3)(1− g′r+2) =
qν̄k−1−λk − qν̄k−1−ν̄k+1

1− qν̄k−1−ν̄k+1
q
∑k−2
i=r+1(ν̄i−λi+1). (5.10)

Clearly, these probabilities are nonnegative, and their sum telescopes to 1.

(2) If Vj = 1, then in addition to the moves described above, exactly one more particle

at level j is chosen to move (to the right by one). Namely, let λ̄m be the leftmost

moved particle at level j − 1. If m = j − 1, then the additional moving particle at

level j is λj, the leftmost particle. If m < j − 1, then one of the particles λs with

m+ 1 ≤ s ≤ j is randomly chosen to move (independently of everything else) with

the following probabilities:

• If s = j, then λs is chosen to move with probability

g′j = 1− qν̄j−1−λj ; (5.11)

• If m+ 1 < s < j, then λs is chosen to move with probability

(1− g′j)(1− g′j−1) . . . (1− g′s+1)g′s = (1− qν̄s−1−λs)q
∑j−1
i=s (ν̄i−λi+1); (5.12)
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• If s = m+ 1, then λs is chosen to move with probability

(1− g′j)(1− g′j−1) . . . (1− g′m+3)(1− g′m+2) = q
∑j−1
i=m+1(ν̄i−λi+1). (5.13)

The sum of these probabilities also telescopes to 1.

This completes the description of the (β̂) column insertion RSK-type dynamics Q
q
col[β̂].

Theorem 5.7. The dynamics Q
q
col[β̂] defined above satisfies the main equations (4.8), and

hence preserves the class of q-Whittaker processes and adds a new dual parameter β to the

specialization A as in (4.1).

Proof. One can readily check that Q
q
col[β̂] is the complement of Qqrow[β̂]. Then the desired

statement follows from Theorem 5.2 and Proposition 5.6. �

Remark 5.8. Similarly to Qqrow[β̂] (cf. Remark 5.1), probabilities (5.8)–(5.13) employed

in the definition of Q
q
col[β̂] ensure the mandatory pushing, blocking, and move donation

mechanisms (described in Definitions 2.6 and 2.7 and Remark 2.8). Namely, observe that

• If λ̄k = λk for some k and λ̄k has moved at level j − 1, then f ′k = 1, which means

that λk is chosen to move with probability 1.

• If λs = λ̄s−1, and λ̄s−1 has not moved, then g′s = f ′s = 0, so according to (5.8), (5.9)

the particle λs at level j cannot be chosen to move. If, moreover, λ̄s has moved at

level j− 1, then this move will trigger some other particle to the right of λs at level

j to move. In other words, the moving impulse coming from λ̄s → ν̄s = λ̄s + 1 will

be donated further to the right of λs.

Remark 5.9 (Schur degeneration). When q = 0, one readily sees from (5.7) that generi-

cally (i.e., when particles at levels j−1 and j are sufficiently far apart) we have f ′k = g′s = 1.

This implies that the dynamics Qqcol[β̂] degenerates to the multivariate dynamics Qq=0
col [β̂] on
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Schur processes. The latter is based on the classical Robinson–Schensted–Knuth column

insertion (§2.6).

5.5. Bernoulli q-TASEP. Under the dynamics Q
q
col[β̂], the leftmost N particles λ

(j)
j of

the interlacing array evolve in a marginally Markovian manner. Indeed, one can readily

check that at each discrete time step t → t + 1 the bottommost particle is updated as

λ
(1)
1 (t+ 1) = λ

(1)
1 (t) + V1, and for any j = 2, . . . , N :

• If λ
(j−1)
j−1 has moved, then the leftmost particle at level j is updated as

λ
(j)
j (t+ 1) = λ

(j)
j (t) + Vj;

• If λ
(j−1)
j−1 has not moved, then the same particle is updated as

λ
(j)
j (t+ 1) = λ

(j)
j (t) + Vj · 1λ(j)

j is chosen to move
,

where λ
(j)
j is chosen to move with probability g′j = 1−qλ

(j−1)
j−1 (t)−λ(j)

j (t) which depends

only on the leftmost particles of the array.

This evolution of the leftmost particles λ
(j)
j , 1 ≤ j ≤ N , is the (discrete time) Bernoulli

q-TASEP which was introduced and studied in [7].

5.6. Small β continuous time limit. If one sends the parameter β to zero and simulta-

neously rescales time from discrete to continuous, then both dynamics Qqrow[β̂] and Q
q
col[β̂]

turn into certain continuous time Markov dynamics on q-Whittaker processes. At the level

j = 1 (cf. Remark 4.2), this limit transition coincides with the one bringing the (one-

sided) discrete time random walk to the continuous time Poisson process. In continuous

time setting, at most one particle can move at each level j = 1, . . . , N during an instance

of continuous time.
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The continuous time limit Q
q
Plancherel, row[γ] of Qqrow[β̂] looks as follows. Each rightmost

particle λ
(j)
1 of the interlacing array has an independent exponential clock with rate aj.

When the clock rings, the particle jumps to the right by one.

There is also a jump propagation mechanism present: If at level j − 1 some particle

λ
(j−1)
m has moved (to the right by one), then this move instantaneously triggers the move

of the upper left neighbor λ
(j)
m+1 with probability fm = 1−qλ

(j)
m −λ

(j−1)
m

1−qλ
(j−1)
m−1 −λ

(j−1)
m

,23 or the move of the

upper right neighbor λ
(j)
m with the complementary probability 1 − fm. This dynamics was

introduced in [14] (Dynamics 8). Under it, the rightmost particles of the array also evolve

in a marginally Markovian manner. This leads to the continuous time q-PushTASEP on

Z [14, §8.3], [22].

The continuous time limit Q
q
Plancherel, col[γ] of Qqcol[β̂] looks as follows. Each particle λk,

1 ≤ k ≤ j, at level j has an independent exponential clock with rate
ajg
′
j, k = j;

aj(1− g′j)(1− g′j−1) . . . (1− g′k+1)g′k, 1 < k < j;

aj(1− g′j)(1− g′j−1) . . . (1− g′3)(1− g′2), k = 1.

These quantities correspond to (5.11)–(5.13) with ν̄ = λ̄ (because if an independent jump

occurs at level j then at level j − 1 there could be no movement). When the clock of λk

rings, this particle jumps to the right by one. Note that the move donation mechanism

described in Remark 2.8 follows from the above probabilities.

There is also a jump propagation mechanism: If a particle λ̄k has moved at level j − 1,

then it triggers the move (to the right by one) of exactly one particle λs, 1 ≤ s ≤ k, at

23Note that this formula is written using particle coordinates before the move at level j − 1, cf. (5.1).
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level j, where s is chosen at random with probabilities
f ′k, s = k;

(1− f ′k)(1− g′k−1) . . . (1− g′s+1)g′s, 1 < s < k;

(1− f ′k)(1− g′k−1) . . . (1− g′3)(1− g′2), s = 1.

The above probabilities are given by (5.8)–(5.10) where ν̄ differs from λ̄ as ν̄ = λ̄ + ēk.

This dynamics on q-Whittaker processes was introduced in [58]. Under it, the leftmost

particles of the interlacing array evolve in a marginally Markovian manner as a q-TASEP.

This continuous time particle system was introduced in [8]. See also, e.g., [11], [9], [29] for

further results on the q-TASEP.

Thus, the two continuous time dynamics on q-Whittaker processes (or, in other words,

q-randomized Robinson–Schensted insertion tableau dynamics) introduced in [58] and [14]

are the β → 0 degenerations of Q
q
col[β̂] and Qqrow[β̂], respectively. On the other hand,

complementation (§5.3) provides a straightforward link between the two latter discrete

time dynamics.

6. RSK-type dynamics Qqrow[α] and Q
q
col[α] adding a usual parameter

In this section we explain the construction of two RSK-type dynamics Qqrow[α] and Q
q
col[α]

on q-Whittaker processes adding a usual parameter α to the specialization (as in (4.1)).

For q = 0, these dynamics degenerate to (α) dynamics on Schur processes arising from row

and column RSK insertion. As in the case of Qqrow[β̂] and Q
q
col[β̂] dynamics, in a small α

limit the dynamics Qqrow[α] and Q
q
col[α] degenerate to continuous time RSK-type dynamics

from [58] (column version) and [14] (row version).

6.1. The q-deformed Beta-binomial distribution. We will use the following quanti-

ties:
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Definition 6.1. Let y ∈ {0, 1, 2, . . .}∪{+∞}, and s ∈ {0, 1, . . . , y}. Recall the q-notation

from (3.2). Let

ϕq,ξ,η(s | y) := ξs
(η/ξ; q)s(ξ; q)y−s

(η; q)y

(q; q)y
(q; q)s(q; q)y−s

. (6.1)

If y = +∞, the limits of the above quantities are

ϕq,ξ,η(s | +∞) = ξs
(η/ξ; q)s
(q; q)s

(ξ; q)∞
(η; q)∞

. (6.2)

An important property of the quantities (6.1) and (6.2) is that for all y ∈ {0, 1, 2, . . .} ∪
{+∞}, we have

y∑
s=0

ϕq,ξ,η(s | y) = 1. (6.3)

This statement may be rewritten as the q-Chu-Vandermonde identity for the basic hyper-

geometric series 2φ1. For the proof and more details see [35], [20]. Recall that in general

the unilateral basic hypergeometric series jφk is defined via

jφk

 a1 . . . aj

b1 . . . bk

; q, z

 :=
∞∑
n=0

(a1, . . . , aj; q)n
(b1, . . . , bk, q; q)n

(
(−1)nq(

n
2)
)1+k−j

zn, (6.4)

where (c1, . . . , cm; q)n =
∏m

i=1(ci; q)n. Later on in this section to prove some identities we

will need to apply transformation formulas for certain hypergeometric series.

Therefore, for all values of the parameters (q, ξ, η) for which ϕq,ξ,η(s | y) is well-

defined and nonnegative for every 0 ≤ y ≤ s, (6.1) defines a probability distribution

on {0, 1, . . . , y}. One such family of parameters is 0 ≤ q < 1, 0 ≤ η ≤ ξ < 1, cf. [65],

[20]. Another choice of parameters leading to a probability distribution which we will use

is ϕq−1,qa,qb(· | c), where a ≤ b, c ≤ b are nonnegative integers.

The distribution ϕq,ξ,η appears (under a simple change of parameters) as the orthogo-

nality weight of the classical q-Hahn orthogonal polynomials [44], and is also related to a
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very natural q-deformation of the Polya urn scheme [39]. As such, ϕq,ξ,η may be regarded

as a q-deformed Beta-binomial distribution, since the latter is the orthogonality weight for

the Hahn orthogonal polynomials, and also arises from the ordinary Polya urn scheme. We

can also directly see by taking q = e−ε, ξ = e−αε, η = e−(α+β)ε and letting ε → 0+, that

ϕq,ξ,η(s | y) converges to

Γ(α + y − s)Γ(β + s)Γ(α + β)Γ(y + 1)

Γ(α)Γ(β)Γ(α + β + y)Γ(s+ 1)Γ(y − s+ 1)
,

which is the probability of s under the beta-binomial distribution with parameters y, α, β.

Let us now record two straightforward observations which we will be using below. First,(
n

k

)
q−1

= q−k(n−k)

(
n

k

)
q

. (6.5)

Second, if a ≤ b, c ≤ b are nonnegative integers (b might also be +∞), then for any

s ∈ {0, 1, . . . , c} one has

lim
q↘0

ϕq−1,qa,qb(s | c) = 1s=max{c−a,0}. (6.6)

Indeed, in this case

ϕq−1,qa,qb(s | c) = qs(a−c+s)
(qa; q−1)c−s(q

b−a; q−1)s
(qb; q−1)c

(
s

c

)
q

.

If a > c, as q → 0 this converges to 1 for s = 0 and to 0 for s > 0. If a ≤ c, as q → 0

this converges to 0 for 0 ≤ s < c− a, since (qa; q−1)c−s vanishes, to 0 for s > c− a, since a

positive power of q tends to 0, and to 1 for s = c− a.

6.2. Row insertion dynamics Qqrow[α]. Let us now describe one time step λ→ ν of the

multivariate Markov dynamics Qqrow[α] on q-Whittaker processes of depth N . A part of

randomness a time step comes from independent q-geometric random variables V1, . . . , VN ∈
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Z≥0 with parameters αa1, . . . , αaN , respectively (these random variables are resampled

during each time step).

The bottommost particle of the interlacing array is updated as ν
(1)
1 = λ

(1)
1 + V1. Next,

sequentially for each j = 2, . . . , N , given the movement λ̄ = λ(j−1) → ν̄ = ν(j−1) at level

j − 1, we will randomly update λ = λ(j) → ν = ν(j) at level j. To describe this update,

write

ν̄ − λ̄ =

j−1∑
i=1

ciēi, ci ∈ Z≥0, ēi are basis vectors of length j − 1.

Note that by interlacing, it must be that ci ≤ λ̄i−1 − λ̄i.
Sample independent random variables W1, . . . ,Wj−1, such that each Wi ∈ {0, 1, . . . , ci}

is distributed according to

ϕq−1,ξi,ηi
(· | ci), where ξi := qλi−λ̄i and ηi := qλ̄i−1−λ̄i (6.7)

(this is a probability distribution because λi − λ̄i ≤ λ̄i−1 − λ̄i and ci ≤ λ̄i−1 − λ̄i, cf. §6.1).

We will use the conventions λ̄0 = +∞ and η1 = 0. Define a sequence of signatures

λ = µ(0), µ(1), . . . , µ(j − 1)

via

µ(i) := µ(i− 1) +Wj−iej−i + (cj−i −Wj−i)ej−i+1 for 1 ≤ i ≤ j − 1

(where ei are basis vectors of length j). Finally, define ν := µ(j − 1) + Vje1, this is our

new signature at level j.

In words, each ith particle on the (j − 1)-st level which has moved by ci, must trigger a

total of ci moves (to the right by one) at level j (this the RSK-type property, see Definition

4.7). Each such particle at level j − 1 independently from the others, in parallel, splits
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contribution from its jump between its nearest neighbors on the level j, according to the

distribution (6.7). After this pushing, the rightmost particle on the j-th level additionally

performs an independent jump according to the q-geometric distribution with parameter

αaj. Clearly, thus defined conditional probabilities Uj, j = 1, . . . , N , for this dynamics are

nonnegative and satisfy (2.19). See Fig. 25.

One must verify that the interlacing properties (as on Fig. 15, left) are preserved by this

dynamics:

Lemma 6.2. If λ̄ ≺h ν̄, λ̄ ≺h λ and Uj(λ→ ν | λ̄→ ν̄) > 0, then ν̄ ≺h ν and λ ≺h ν.

Proof. Observe that for a ≤ b and c ≤ b

ϕq−1,qa,qb(s | c) = 0, if s > b− a or c− s > a. (6.8)

Apply this for a = λi − λ̄i, b = λ̄i−1 − λ̄i, c = ci to get ci − λi + λ̄i ≤ Wi ≤ λ̄i−1 − λi.
Since νi = λi +Wi + ci−1 −Wi−1, we have

νi ≤ λi + λ̄i−1 − λi + ci−1 −Wi−1 = λ̄i−1 + ci−1 −Wi−1 = ν̄i−1 −Wi−1 ≤ ν̄i−1,

ν̄i = λ̄i + ci ≤ λi +Wi ≤ νi,

so ν �h ν̄. Moreover, we can also write

νi ≤ λi + λ̄i−1 − λi + λi−1 − λ̄i−1 = λi−1, λi ≤ νi

which implies that ν �h λ. �

This verification completes the description of the (α) row insertion RSK-type dynamics

Qqrow[α].

77



Remark 6.3. (Schur degeneration). If one sets q = 0, then the dynamics Qqrow[α] reduces

to the dynamics Qq=0
row [α] on Schur processes based on the classical Robinson–Schensted–

Knuth row insertion (§2.6). To see this, observe that (6.6) implies

ϕq−1,ξi,ηi
(s | ci)→ 1s=max{ci−λi+λ̄i,0} as q → 0,

that is, each Wi becomes equal to max{ci − λi + λ̄i, 0} in the q ↘ 0 limit. Therefore,

the update λ→ ν is reduced to applying ci operations pull at positions i from j − 1 to 1,

plus an additional independent jump of the rightmost particle according to the geometric

distribution with parameter αaj.

2 + 3 8 12 + 4 19 + 5 29 + 4

0 + 2 6 + 1 9 + 2 15 + 5 25 + 5 35 + 1 + Vj

λ̄+ (ν̄ − λ̄)

λ+ (ν − λ)

+2 +1 +2 +2 +3 +2 +3 +1

Figure 25. An example of a step of Qqrow[α] at levels 5 and
6, with Vj = 3. The probability of this update is equal to

ϕq−1,q4,q6(1 | 3)ϕq−1,q3,q7(2 | 4)ϕq−1,q6,q10(2 | 5)ϕq−1,q6,0(1 | 4)(αa6; q)∞
(αa6)3

(q;q)3
.

Note that, e.g., ϕq−1,q3,q7(0 | 4) = 0, which ensures the mandatory pushing (by at

least 1) of λ3 by the move of λ̄3.

Theorem 6.4. The dynamics Qqrow[α] defined above satisfies the main equations (4.7), and

hence preserves the class of q-Whittaker processes and adds a new usual parameter α to

the specialization A as in (4.1).

Proof. We will prove (4.7) by induction on j. Case j = 1 is straightforward because λ̄ is

empty (cf. Remark 4.2).

Assume now that (4.7) holds for signatures λ, ν having length j−1, and let us prove this

identity for λ, ν or length j. The idea is to expand each term in the sum in the left-hand

side of (4.7) with respect to what happens to the leftmost particle on the (j − 1)-st level
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(and its neighborhood), and then use the inductive assumption and the fact that the ϕ’s

sum to 1.

For a signature µ = (µ1 ≥ . . . ≥ µm) we denote by µ− the signature (µ1 ≥ . . . ≥ µm−1)

obtained by deleting the smallest part of µ, and by µ + [s]lm the signature (µ1 ≥ . . . ≥
µm−1 ≥ µm + s) obtained by adding s to the smallest part of µ (for s ≤ µm−1 − µm). To

simplify certain notations below, also denote

Vj(λ→ ν | λ̄→ ν̄) := Uj(λ→ ν | λ̄→ ν̄)
(αaj)

|λ|−|λ̄|−|ν|+|ν̄|

(αaj; q)∞
. (6.9)

Temporarily let t stand for cj−1 = ν̄j−1− λ̄j−1 which is the move of the leftmost particle

on the (j − 1)-st level. In order to have at least one nonzero summand in the left-hand

side of (4.7), we need to have (see Fig. 26):

• t ≥ νj − λj, since the jump of the leftmost particle on the j-th level happens due

to contribution of a part of the jump of the leftmost particle on the (j− 1)-st level.

• t ≥ νj − λj + ν̄j−1 − λj−1, since ϕq−1,ξj−1,ηj−1
(t − νj + λj | t) > 0 implies by (6.8)

that νj − λj ≤ λj−1 − ν̄j−1 + t.

• t ≤ ν̄j−1 − λj, since we must have λ̄j−1 ≥ λj.

• t ≤ νj−1 − λj−1 + νj − λj, since the contribution from the jump of the leftmost

particle on the (j − 1)-st level is split between particles λj and λj−1 at the level j.

Denote the interval of t satisfying the above inequalities by I. We also must have

• t ≤ λ̄j−2 − λj−1 + νj − λj, since ϕq−1,ξj−1,ηj−1
(t − νj + λj | t) > 0 implies by (6.8)

that t− νj + λj ≤ λ̄j−2 − λj−1. For j = 2 this last inequality should be omitted.

We will use the notation λ̃ := λ̄−. Denote by J(t) the set of signatures λ̃ of length j − 2,

such that λ̃ ≺h ν̄, λ̃ ≺h λ
−, and λ̃j−2 ≥ t + λj−1 − νj + λj. For j = 2 this set consists of

just the empty signature. If λ̄ is such that λ̄ ≺h ν̄, λ̄ ≺h λ and Vj(λ → ν | λ̄ → ν̄) 6= 0,

then λ̄− ∈ ⊔t∈I J(t).
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· · ·
j − 1

j

λj νj λj−1 νj−1 λ1

λ̄j−1 ν̄j−1 λ̄j−2 λ̄1ν̄j−2

t

· · ·

Figure 26. We expand sum with respect to the jump t = cj−1 = ν̄j−1 − λ̄j−1 of
the leftmost particle on the (j − 1)-st level. Note that the signatures ν, λ, ν̄ are
fixed, while the positions of particles λ̄i vary in the sum.

The left-hand side of (4.7) divided by the right-hand side of the same equation is equal

to

∑
λ̄

Vj(λ→ ν | λ̄→ ν̄)
ψλ/λ̄φν̄/λ̄
ψν/ν̄φν/λ

=
∑
t∈I

∑
λ̃∈J(t)

(
t

νj − λj

)
q−1

(qλj−1−ν̄j−1+t; q−1)νj−λj(q
λ̃j−2−λj−1 ; q−1)t−νj+λj

(qλ̃j−2−ν̄j−1+t; q−1)t
q(λj−1−ν̄j−1+t)(t−νj+λj)︸ ︷︷ ︸

ϕ
q−1,q

λ̃j−2−λj−1 ,q
λ̃j−2−ν̄j−1+t (t−νj+λj |t)

× Vj−1(λ− + [t− νj + λj]lm → ν− | λ̃→ ν̄−) ·
ψλ−+[t−νj+λj ]lm/λ̃φν̄−/λ̃

ψν−/ν̄−φν−/λ−+[t−νj+λj ]lm

×
(
λj−1−λj
ν̄j−1−t−λj

)
q(

νj−1−νj
ν̄j−1−νj

)
q

·
(
λ̃j−2−ν̄j−1+t

t

)
q(

λj−1−λj
νj−λj

)
q

· (qνj−1−λj−1 ; q−1)t−νj+λj

(qλ̃j−2−λj−1 ; q−1)t−νj+λj︸ ︷︷ ︸
ψλ/λ̄ψν−/ν̄−

ψ
λ−+[t−νj+λj ]lm/λ̃

ψν/ν̄
·
φν̄/λ̄φν−/λ−+[t−νj+λj ]lm

φν/λφν̄−/λ̃

=
∑
t∈I

(
ϕq−1,qνj−1−ν̄j−1 ,qνj−1−νj (t− νj + λj | νj−1 − λj−1)

×
∑
λ̃∈J(t)

Vj−1(λ− + [t− νj + λj]lm → ν− | λ̃→ ν̄−) ·
ψλ−+[t−νj+λj ]lm/λ̃φν̄−/λ̃

ψν−/ν̄−φν−/λ−+[t−νj+λj ]lm

)

=
∑
t∈I

ϕq−1,qνj−1−ν̄j−1 ,qνj−1−νj (t− νj + λj | νj−1 − λj−1) = 1.
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Above Vj−1 and Vj have the same value of the parameter a = aj. We have also used the

fact that

|ν| − |λ| − |ν̄|+ |λ̄| = |ν−| − |λ−|+ νj − λj − |ν̄−|+ |λ̄−| − ν̄j−1 + λ̄j−1

= |ν−| − |λ− + [t− νj + λj]lm| − |ν̄−|+ |λ̄−|,

hence Vj(λ → ν | λ̄ → ν̄) involves the same power of αaj as Vj−1(λ− + [t − νj + λj]lm →
ν− | λ̄− → ν̄−). Also, (6.8) implies that ϕq−1,qνj−1−ν̄j−1 ,qνj−1−νj (t− νj + λj | νj−1 − λj−1) is

nonzero only for t ∈ I, hence one gets 1 after summing these quantities over t ∈ I.

This concludes the proof, and also establishes Theorem 1.1 from Introduction. �

6.3. Geometric q-PushTASEP. Under the dynamics Qqrow[α] we have just constructed,

the rightmost N particles λ
(j)
1 of the interlacing array evolve in a marginally Markovian

manner (i.e., their evolution does not depend on the dynamics of the rest of the interlacing

array). Namely, at each discrete time step t → t + 1 the bottommost particle is updated

as λ
(1)
1 (t+ 1) = λ

(1)
1 (t) + V1, and for any j = 2, . . . , N if we let gapj(t) = λ

(j)
1 (t)− λ(j−1)

1 (t)

be the gap between the rightmost particles on the (j − 1)-st and the j-th levels at time t,

then

λ
(j)
1 (t+ 1) = λ

(j)
1 (t) + Vj +Wj,t

for an independent random variable Wj,t distributed according to

ϕ
q−1,qgapj(t),0

(
· | λ(j−1)

1 (t+ 1)− λ(j−1)
1 (t)

)
.

The random variable Vj (recall that it has the q-geometric distribution with parameter αaj

which is resampled during each time step) represents an independent jump of λ
(j)
1 . The

variable Wj,t represents the pushing of λ
(j)
1 by the move of λ

(j−1)
1 .
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This evolution of the rightmost particles λ
(j)
1 , 1 ≤ j ≤ N , leads to a new interacting

particle system on Z which we call the (discrete time) geometric q-PushTASEP.

6.4. Column insertion dynamics Q
q
col[α]. Description and discussion. Let us now

describe one time step λ→ ν of the multivariate Markov dynamics Qqcol[α] on q-Whittaker

processes of depth N . As in the previous case, the bottommost particle of the interlacing

array is updated as ν
(1)
1 = λ

(1)
1 + X for a q-geometric random variable X with parameter

αa1. Next, sequentially for each j = 2, . . . , N , given the movement λ̄ → ν̄ at level j − 1,

we will randomly update λ→ ν at level j. To describe this update we write, as usual,

ν̄ − λ̄ =

j−1∑
i=1

ciēi, ci ∈ Z≥0.

All randomness during this update comes from a collection of 3j dependent random

variables X1, . . . , Xj, Y1, . . . , Yj, Z1, . . . , Zj (they are resampled during each time step), and

νj−i+1 − λj−i+1 = Xi︸︷︷︸
voluntary jump

+ Yi︸︷︷︸
push from λ̄j−i+1

+ Zi︸︷︷︸
push from the “stabilization fund”

, i = 1, . . . , j.

(It will be convenient to let i represent the position of the particle counted from the left.)

Observe that Y1 must be identically zero. The “stabilization fund” means the leftover push

from the first i − 2 particles from the left at level j − 1 (i.e., from λ̄j−1, . . . , λ̄j−i+2) (in

particular, Z1 and Z2 are identically zero).

Let us first formally define the distribution of all the parts of the jumps:

(1) Set θ1 := 1. For i from 1 to j sample Xi according to

Xi ∼ ϕq,αajθi,0(· | λ̄j−i − λj−i+1) (6.10)

and set

θi+1 := θiq
λ̄j−i−λj−i+1−Xi .
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Xi comes from the input Vj, see Remark (6.7). Here the convention λ̄0 = +∞
applies when i = j.

(2) Set Y1 := 0. For i from 2 to j − 1 take Yi = y with probability

Yi ∼ ϕq−1,qcj−i+1 ,qλ̄j−i−λ̄j−i+1 (λ̄j−i − λj−i+1 −Xi − y | λ̄j−i − λj−i+1 −Xi). (6.11)

Finally, set Yj := c1.

(3) Set r1 = r2 = 1 and Z1 = Z2 := 0. Set r3 := r2q
cj−1−Y2 . For i from 3 to j − 1 take

Zi = z with probability

Zi ∼ ϕq−1,ri,0
(λ̄j−i − λj−i+1 −Xi − Yi − z | λ̄j−i − λj−i+1 −Xi − Yi) (6.12)

and set

ri+1 := riq
cj−i+1−Yi−Zi .

Finally, let Zj := logq rj.

Remark 6.5. For fixed s, u, d ≥ 0 (possibly u =∞) and D →∞ observe that

ϕq−1,qs,qu+D(D − d | D) = q(s−d)(D−d)(qs; q−1)d

(
D

d

)
q

(qu+D−s; q−1)D−d
(qu+D; q−1)D

→ 1d=s.

Therefore, the definitions of Zj = logq rj and Yj = c1 are consistent with the definitions of

Zi and Yi (i < j), respectively. In words, the consistency for Zj means that the stabilization

fund is depleted for the push of the rightmost particle on the j-th level. The consistency

for Yj means that the whole value of the jump of the rightmost particle on the (j − 1)-st

level is transferred to the rightmost particle on the j-th level via immediate pushing.

Lemma 6.6. If λ̄ ≺h ν̄, λ̄ ≺h λ and Uj(λ→ ν | λ̄→ ν̄) > 0, then ν̄ ≺h ν and λ ≺h ν.
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stabilization fund

2 + 4 7 + 5 15 + 5 28 + 4

1

3 2

3 4

1

0 + 1 3 + 2 + 1 8 + 1 + 3 + 2 30 + 0 + 4 + 317 + 3 + 4 + 1

4
2 1 3

Figure 27. An example of a step of Qqcol[α] at levels 4 and 5.

Proof. It is straightforward from the definition of the dynamics Qqcol[α] that νj−i+1 ≤ λ̄j−i ≤
min(ν̄j−i, λj−i). Also for 2 ≤ i ≤ j (6.11) together with (6.8) implies that λ̄j−i − λj−i+1 −
Xi − Yi ≤ λ̄j−i − λ̄j−i+1 − cj−i+1, hence νj−i+1 ≥ λj−i+1 +Xi + Yi ≥ ν̄j−i+1. It follows that

the interlacing properties are preserved. �

In the rest of this subsection we will describe the column insertion dynamics in words,

and also discuss its various properties. The (rather involved) proof that this dynamics acts

on q-Whittaker processes in a desired way is postponed to the next subsection.

There are two stages of the update of particle positions λj, λj−1, . . . , λ1, performed in

order from left to right, which we will describe below.

During the first stage of the update, the particles at level j level make voluntary jumps

in order from left to right. The value Xi of the voluntary jump of λj+1−i depends on the

previous jump Xi−1, where 2 ≤ i ≤ j. Indeed, this dependence comes from the parameters

θi (note that they are nonincreasing in i), see (6.10). Note that unlike the Qqrow[α] case, in

which all random movements not coming from pushing are restricted to the right edge, in

the case of Qqcol[α] any particle might make a voluntary jump.

Remark 6.7. The random variable X1 + . . . + Xj has the q-geometric distribution with

parameter αaj, as it should be by Remark 4.2 and the discussion of §4.5. This is seen by

applying inductively the following lemma:
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Lemma 6.8. Let A and B be random variables such that A is distributed according to

ϕq,α,0(· | a), and B given A is distributed according to ϕq,αqa−A,0(· | b) (where b might be

+∞). Then A+B is distributed according to ϕq,α,0(· | a+ b).

Proof. Indeed, we have

Prob(A+B = y) =

y∑
s=0

Prob(A = s)Prob(B = y − s|A = s)

=

y∑
s=0

αs(α; q)a−s

(
a

s

)
q

(αqa−s)y−s(αqa−s; q)b−y+s

(
b

y − s

)
q

= αy(α; q)a+b−yq
a(y−s) (qa; q−1)s(q

b; q−1)y−s
(q; q)y

q−s(y−s)
(
y

s

)
q

= αy(α; q)a+b−y

(
a+ b

y

)
q

·
y∑
s=0

ϕq−1,qa,qa+b(y − s | y)

= ϕq,α,0(y | a+ b),

which establishes the desired statement. �

The second stage of the update consists of pushing, in order from left to right. We start

an initially empty stabilization fund, which will collect impulses not immediately used for

pushing, and will be a source of the pushes Zi. The value of the stabilization fund just

before the movement of λj+1−i is logq ri (by agreement, r1 = r2 = 1 always). For each i
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ranging from 2 to j, the following three steps happen:

(1) The particle λj+1−i gets a push Yi from its lower left neighbor λ̄j+1−i. The

size of this push (distributed according to (6.11)) is at most cj−i+1.

(2) Then λj+1−i gets a push from the stabilization fund (if it is not empty) of

size not exceeding the current value of the stabilization fund. This push is

distributed according to Zi (6.12).

(3) Finally, the amount of pushing not used in (1) above, i.e., cj−i+1 − Yi, is

added to the stabilization fund.

(6.13)

One can also think that the above two update stages are performed together for each

particle λj, λj−1, . . . , λ1.

Proposition 6.9. One can switch the order of the lower left neighbor pushing and sta-

bilization fund pushing (i.e., steps (1) and (2) in (6.13)) without changing the dynamics.

24

Proof. Fix k = 2, . . . , j. Suppose that after the voluntary displacement stage the distance

from the k-th particle from the left at level j (denote this particle by P ) to λ̄j+1−k is

h := λ̄j−k − λj−k+1 − Xj−k+1. Also set ` := ν̄j−k+1 − λ̄j−k+1, b := λ̄j−k − λ̄j−k+1, and let

the current size of the stabilization fund be R.

If the steps (1) and (2) in (6.13) are not interchanged, then the probability that P jumps

by s ≥ 0 is

s∑
y=0

ϕq−1,q`,qb(h− y | h)ϕq−1,qR,0(h− s | h− y).

24Here for the version with interchanged steps (1) and (2) we would have Zi ∼ ϕq−1,ri,0(λ̄j−i−λj−i+1−
Xi−· | λ̄j−i−λj−i+1−Xi) and Yi ∼ ϕq−1,qcj−i+1 ,qλ̄j−i−λ̄j−i+1 (λ̄j−i−λj−i+1−Xi−Zi−· | λ̄j−i−λj−i+1−
Xi − Zi).
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If the steps (1) and (2) in (6.13) are interchanged, then the same probability is given by

s∑
y=0

ϕq−1,qR,0(h− s+ y | h)ϕq−1,q`,qb(h− s | h− s+ y).

After dividing each of these two expressions by q(R+`)(h−s)(qb−`;q−1)h−s
(qb;q−1)h−s

(
h
s

)
q−1 we arrive to

the following identity we need to verify

s∑
y=0

(
s

y

)
q−1

q`(s−y)(q`; q−1)y(q
R; q−1)s−y(q

b−`−h+s; q−1)s−y

=
s∑

y=0

(
s

y

)
q−1

qRy(q`; q−1)y(q
R; q−1)s−y(q

b−h+1; q)s−y. (6.14)

We are very grateful to Christian Krattenthaler for providing us with a proof of the q-

binomial identity (6.14), which we reproduce below.

First, use a transformation formula for 3φ2 series [35, (III.12)]:

3φ2

 q−n, b, c

d, e
; q, q

 =
(e/c; q)n
(e; q)n

cn3φ2

 q−n, c, d/b

d, cq1−n/e
; q,

bq

e


Sending b→ 0 we obtain

3φ2

 q−n, 0, c

d, e
; q, q

 =
(e/c; q)n
(e; q)n

cn2φ2

 q−n, c

d, cq1−n/e
; q,

dq

e

 (6.15)

Multiply both sides of (6.15) by c−n(d; q)n(e; q)n to obtain

c−n
n∑
y=0

(q−n; q)y
(q; q)y

(c; q)y(dq
n−1; q−1)n−y(eq

n−1; q−1)n−yq
y =

n∑
y=0

(q−n; q)y(e/c; q)n
(q; q)y(cq1−n/e; q)y

(c; q)y(dq
n−1; q−1)n−y(−1)yqy(y−1)/2(dq/e)y.
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This equality can be rewritten as

n∑
y=0

(
n

y

)
q−1

cy−n(c−1; q−1)y(dq
n−1; q−1)n−y(eq

n−1; q−1)n−y =

n∑
y=0

(
n

y

)
q−1

(e/c; q)n−y(c
−1; q−1)y(dq

n−1; q−1)n−y(dq
n−1)y.

Now make the substitution n := s, d := q1+R−s, c := q−`, e := q1+b−h−` to arrive to

(6.14). �

Remark 6.10. (Schur degeneration) If one sets q = 0, then the dynamics Qqcol[α] reduces to

the dynamics Qq=0
col [α] on Schur processes based on the classical Robinson–Schensted–Knuth

column insertion (§2.6). Indeed, observe that

lim
q→0

ϕq,uqt,0(s | g) = 1s=0 for t > 0, and lim
q→0

ϕq,u,0(s | g) = (1− u+ u1s=g)u
s.

Thus, the first update stage (voluntary movements) reduces to the propagation of the

impulse the leftmost particle receives (which has geometric distribution with parameter

αaj). The lower left neighbor pushing due to (6.6) and the stabilization fund pushing

together degenerate to performing cj−1 + · · ·+ c1 operations push (Definition 2.7) in order

from left to right.

6.5. Column insertion dynamics Q
q
col[α]. Proof.

Theorem 6.11. The dynamics Q
q
col[α] defined above satisfies the main equations (4.7),

and hence preserves the class of q-Whittaker processes and adds a new usual parameter α

to the specialization A as in (4.1).

Proof. We aim to prove the desired statement by induction on j. To apply this induction,

we will need a more general statement. To describe it, introduce the following notation. For

a nonnegative integer h, use Uh
j (λ → ν | λ̄ → ν̄) to denote the probability that transition
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λ̄ → ν̄ on the (j − 1)-st level spurs a transition λ → ν on the j-th level according to the

rules of Qqcol[α] specified above, but modified so that Z2 = z with probability

ϕq−1,r2,0(λ̄j−2 − λj−1 −X2 − Y2 − z | λ̄j−2 − λj−1 −X2 − Y2), r2 := qh.

Note that the original dynamics Q
q
col[α] has r2 = 1. In other words, the modification

Uh
j means that we introduce an additional impulse of size h which is distributed among

particles at level j (except for λj), as if coming from (nonexistent) particles preceding the

leftmost particle on the (j − 1)-st level.

Let σ := |ν−| − |λ−| − |ν̄| + |λ̄| (recall that the notation µ− means µ without the last

coordinate). Under the modified probabilities Uh
j as above, σ − h is a sum of voluntary

movements of particles on the j-th level except for the leftmost one. Note also that Uh
j (λ→

ν | λ̄→ ν̄) = 0 for h > σ.

To further simplify the notation, let (see Fig. 28)

a := λj, k := νj − λj, b := ν̄j−1, t := ν̄j−1 − λ̄j−1,

c := λj−1, d := ν̄j−2, s := ν̄j−2 − λ̄j−2,

` := νj−1 − λj−1, x := X2 y := Y2.

For a nonnegative integer H define

ŨH
j (λ→ ν | λ̄→ ν̄) :=

H∑
h=0

(
H

h

)
q−1

q(H−h)σ+h(b−t−a−k)Uh
j (λ→ ν | λ̄→ ν̄). (6.16)

In particular, Ũ0
j(λ → ν | λ̄ → ν̄) = Uj(λ → ν | λ̄ → ν̄). In general, the quantities ŨH

j

are not probability distributions in ν. Their only meaning is that they come up in the

inductive proof below.

89



With all the above notation we are now able to describe and prove the generalized

statement which we will prove by induction:

∑
λ̄∈GT+

j−1

ṼHj (λ→ ν | λ̄→ ν̄)
ψλ/λ̄φν̄/λ̄
ψν/ν̄φν/λ

= 1 for any H ≥ 0. (6.17)

Here and below ṼHj is related to ŨH
j as in (6.9). For H = 0 this statement gives us (4.7).

For j = 1 we have σ = 0, so only the term h = 0 contributes to (6.16). Therefore,

checking this induction base is the same as in the proof for Qqrow[α] dynamics.

· · ·
j − 1

j

a a + k c λ1

b− t b λ̄1

· · ·c + x c + x + y c + `

d− s d

impulse h

Figure 28. We expand sum with respect to jump t = cj−1 = ν̄j−1 − λ̄j−1 of
the leftmost particle on the (j − 1)-st level, voluntary movement x of the second
leftmost particle on the j-th level and push y from the leftmost particle on the
(j − 1)-st level.

Let us now perform the inductive step. Denote by I the range of (t, x, y, h), such that

t, x, y, h ≥ 0, x+ y ≤ `, h+ t+ x− ` ≥ 0, t ≤ b− a− k.

Then we may write (see Fig. 28)

∑
λ̄∈GT+

j−1

ṼHj (λ→ ν | λ̄→ ν̄)
ψλ/λ̄φν̄/λ̄
ψν/ν̄φν/λ

=
∑

(t,x,y,h)∈I

(q; q)H
(q; q)h(q; q)H−h

(q; q)c−a
(q; q)b−t−a(q; q)c−b+t

(q; q)b−a−k(q; q)c+`−b
(q; q)c+`−a−k

(q; q)d−s−b+t
(q; q)t(q; q)d−s−b

× (q; q)k(q; q)c−a−k
(q; q)c−a

(q; q)b−t−a
(q; q)k(q; q)b−t−a−k

(q; q)d−s−c
(q; q)x(q; q)d−s−c−x

(q; q)d−s−c−x
(q; q)y(q; q)d−s−c−x−y

× (qt; q−1)y(q
d−s−b; q−1)d−s−c−x−y

(qd−s−b+t; q−1)d−s−c−x

(q; q)d−s−c−x−y
(q; q)`−x−y(q; q)d−s−c−`

(qh; q−1)`−x−y

90



× q−h(H−h)−y(d−s−c−x−y)−(d−s−c−`)(`−x−y)+t(d−s−c−x−y)

× qh(d−s−c−`)+(H−h)σ+h(b−t−a−k)+(b−t−a−k)x+(b−t−a−k+`−x)(σ−x−h)

×
∑

λ̃∈GT+
j−2

Vh+t+x−`
j (λ− → ν− | λ̃→ ν̄−)

ψλ−/λ̃φν̄−/λ̃
ψν−/ν̄−φν−/λ−

=
H+B∑
r=0

(
H +B

r

)
q−1

q(H+B−r)(σ−`+t)+r(d−s−c−`)

×
∑

λ̃∈GT+
j−2

Vrj(λ
− → ν− | λ̃→ ν̄−)

ψλ−/λ̃φν̄−/λ̃
ψν−/ν̄−φν−/λ−

=
∑

λ̃∈GT+
j−2

ṼH+B
j (λ− → ν− | λ̃→ ν̄−)

ψλ−/λ̃φν̄−/λ̃
ψν−/ν̄−φν−/λ−

= 1.

Here we have applied Proposition 6.12 (see below) with A = H, B = b−a−k, C = c−b+`,
where r := h+t−`+x is the value of the stabilization fund just before the push of the third

leftmost particle on the j-th level plus the value of the additional impulse in the inductive

assumption. This completes the inductive step in proving (6.17), and thus implies the

theorem. �

Proposition 6.12. For A,B,C, `, r ≥ 0, such that A+B ≥ r and B + C ≥ `, one has

B∑
t=0

∑̀
x=0

`−x∑
y=0

[(
`

x, y

)
q−1

(
B

t

)
q−1

(qt; q−1)y(q
r+`−x; q−1)t(q

r+`−t−x; q−1)`−x−y
(q; q)r

(q; q)r+`−x

× (q; q)A
(q; q)A+B

(qA+B−r; q−1)B−t+`−x(q
C+t; q−1)`(q

C ; q−1)`−x−y
(qB+C ; q−1)`(qC+t; q−1)`−x

× qt(`−x−y)+(r+`−x)(B−t)+(A+B−r)x

]
= 1.

Here and thereafter we use q-multinomial notation

(
n

m, k

)
q

:=
(q; q)n

(q; q)k(q; q)m(q; q)n−m−k
.
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We are extremely grateful to Christian Krattenthaler for providing us with a proof of

this proposition. We reproduce the proof below.

Proof. The left hand side of the equality can be expressed as a power series in qA, qr, qC ,

hence we can set α = qA, β = qr, γ = qC and prove a more general equality:

B∑
t=0

∑̀
x=0

`−x∑
y=0

[(
`

x, y

)
q−1

(
B

t

)
q−1

(qt; q−1)y
(βq`−x; q−1)t+`−x−y

(βq`−x; q−1)`−x

× (αqB/β; q−1)B−t+`−x(γq
t; q−1)`(γ; q−1)`−x−y

(αqB; q−1)B(γqB; q−1)`(γqt; q−1)`−x
× αxβB−t−xq−ty+B`

]
= 1.

By first summing over y, the left hand side can be written as

B∑
t=0

∑̀
x=0

[
3φ2

 q−t, 0, q−`+x

βq1−t, γq1−`+x
; q, q

(`
x

)
q−1

(
B

t

)
q−1

(βq`−x; q−1)t+`−x
(βq`−x; q−1)`−x

× (αqB/β; q−1)B−t+`−x(γq
t; q−1)`(γ; q−1)`−x

(αqB; q−1)B(γqB; q−1)`(γqt; q−1)`−x
× αxβB−t−xqB`

]
.

We now apply transformation formula (6.15) to rewrite this as

=
B∑
t=0

∑̀
x=0

[
2φ2

 q−t, q−`+x

βq1−t, q−t/γ
; q, βq1+`−t−x/γ

(`
x

)
q−1

(
B

t

)
q−1

(βq`−x; q−1)t+`−x
(βq`−x; q−1)`−x

(γq; q)t
(γq1−`+x; q)t

× (αqB/β; q−1)B−t+`−x(γq
t; q−1)`(γ; q−1)`−x

(αqB; q−1)B(γqB; q−1)`(γqt; q−1)`−x
× αxβB−t−xqB`−`t+tx

]

=
B∑
t=0

∑̀
x=0

min{t,`−x}∑
y=0

[
(−1)y

(q−t; q)y(q
−`+x; q)y

(q−t/γ; q)y(βq1−t; q)y(q; q)y

(
`

x

)
q−1

(
B

t

)
q−1

(γq; q)t
(γq1−`+x; q)t

× (β; q−1)t(αq
B/β; q−1)B−t+`−x(γq

t; q−1)`(γ; q−1)`−x
(αqB; q−1)B(γqB; q−1)`(γqt; q−1)`−x

× αxβB−t−x+yγ−yqB`+`y−`t+tx+y2/2+y/2−ty−xy

]
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=
B∑
t=0

∑̀
y=0

[
1φ1

 q−`+y

αq1−`+t/β
; q, αq1+t−y/β

 (−1)y
(q−`; q)y(q

−t; q)y
(q−t/γ; q)y(βq1−t; q)y(q; q)y

×
(
B

t

)
q−1

(β; q−1)t(αq
B/β; q−1)B−t+`(γq

t; q−1)`
(αqB; q−1)B(γqB; q−1)`

× βB−t+yγ−yqB`−`t+`y+y2/2+y/2−ty

]
.

The last equality is obtained by summing over x. We now use the summation formula [35,

(II.5)]:

1φ1

 a

c
; q, c/a

 =
(c/a; q)∞
(c; q)∞

,

and by summing over y rewrite our expression as

=
B∑
t=0

[
3φ2

 q−`, βq−t/α, q−t

βq1−t, q−t/γ
; q, αq1+`/γ


×
(
B

t

)
q−1

(β; q−1)t(αq
B/β; q−1)B−t+`(γq

t; q−1)`
(αqt/β; q−1)`(αqB; q−1)B(γqB; q−1)`

× βB−tqB`−`t
]
.

We now aim to use the transformation formula [35, (III.13)]:

3φ2

 q−n, b, c

d, e
; q, deqn/bc

 =
(e/c; q)n
(e; q)n

3φ2

 q−n, c, d/b

d, cq1−n/e
; q, q

 . (6.18)

Applying it, we can rewrite our expression as

=
B∑
t=0

[
3φ2

 q−`, q−t, αq

βq1−t, γq1−`
; q, q


×
(
B

t

)
q−1

(1/γ; q)`(β; q−1)t(αq
B/β; q−1)B−t+`(γq

t; q−1)`
(αqt/β; q−1)`(αqB; q−1)B(γqB; q−1)`(q−t/γ; q)`(q; q)y

× βB−tqB`−`t
]

=
B∑
t=0

∑̀
y=0

[(
B

t

)
q−1

(q−`; q)y(q
−t; q)y(αq; q)y(γ; q−1)`−y(βq

y; q−1)t(αq
B/β; q−1)B−t+`

(αqt/β; q−1)`(αqB; q−1)B(γqB; q−1)`(βqy; q−1)y(q; q)y
× βB−tqB`+y

]
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=
∑̀
y=0

B∑
t=y

[(
B − y
t− y

)
q−1

βB−t(β; q−1)t−y(αq
B/β; q−1)B−t

(αqB; q−1)B−y
×
(
`

y

)
q−1

qB(`−y)(γ; q−1)`−y(q
B; q−1)y

(γqB; q−1)`

]
.

The fact that this expression is equal to 1 now follows by applying (6.3) twice. �

6.6. Geometric q-TASEP. Under the dynamics Q
q
col[α], the leftmost N particles λ

(j)
j of

the interlacing array evolve in a marginally Markovian manner.

Namely, let gapj(t) := λ
(j−1)
j−1 (t) − λ

(j)
j (t) be the gap between the consecutive leftmost

particles at time t. We assume gap1(t) = +∞. Then at each discrete time step t → t + 1

the leftmost particle on the j-th level is updated as

λ
(j)
1 (t+ 1) = λ

(j)
1 (t) +Wj,t

for an independent random variable Wj,t distributed according to ϕq,αaj ,0(· | gapj(t)).
This evolution of λ

(j)
j , 1 ≤ j ≤ N , is the (discrete time) geometric q-TASEP which was

introduced and studied in [7].

6.7. Small α continuous time limit. Let us send the parameter α to zero and simulta-

neously rescale time from discrete to continuous. Namely, set α := (1− q)∆, and let each

discrete time step correspond to continuous time ∆. In the limit ∆ → 0, both dynamics

Qqrow[α] and Q
q
col[α] turn into the same continuous time Markov dynamics on q-Whittaker

processes as in §5.6 above. That is, the limit of Qqrow[α] is the dynamics introduced in [14],

same as for Qqrow[β̂]. The limit of Qqcol[α] is the dynamics introduced in [58], same as for

Q
q
col[β̂].

7. Moments

In this section we briefly discuss moment formulas for the Bernoulli q-PushTASEP

started from the step initial configuration (corresponding to λ
(j)
1 (0) = 0, j = 1, . . . , N).
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7.1. Bernoulli q-PushTASEP on the line. In this section it will be convenient to work

in the shifted coordinates

xi := −λ(i)
1 − i, i = 1, . . . , N,

so that x1 > . . . > xN . We will think that the xj’s encode positions of particles on the line

Z which jump to the left. Let us reformulate the definition of the Bernoulli q-PushTASEP

(§5.2) in these terms.

Definition 7.1. Each discrete time step t→ t+ 1 of the Bernoulli q-PushTASEP consists

of the following sequential updates (see Fig. 29):

(1) The first particle x1 jumps to the left by one with probability a1β
1+a1β

, and stays put

with the complementary probability 1
1+a1β

.

(2) Sequentially for j = 2, . . . , N :

(a) If the particle xj−1 has not jumped, then xj jumps to the left by one with

probability
ajβ

1+ajβ
, and stays put with the complementary probability 1

1+ajβ
.

(b) If the particle xj−1 has jumped (to the left by one), then xj jumps to the

left by one with probability
ajβ+qgapj(t)

1+ajβ
, and stays put with the complementary

probability 1−qgapj(t)

1+ajβ
, where gapj(t) := xj−1(t)−xj(t)−1 is the distance between

the particles before the jump of xj−1.25

We will assume that the Bernoulli q-PushTASEP starts from the step initial configuration

xi(0) = −i, i = 1, . . . , N .

25Note that if xj−1 has jumped and xj(t) = xj−1(t)− 1, then the probability that xj jumps is equal to
one, as it should be.
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(1) Update x1(t+ 1) first: (2a), (2b) Then update x2(t+ 1) based on whether x1 has jumped:

x2(t) x1(t)

Prob = a1β
1+a1β

x2(t) x1(t+ 1)

Prob = a2β
1+a2β

x2(t) x1(t+ 1)

Prob = a2β+q6

1+a2β

Figure 29. Bernoulli q-PushTASEP (on this picture, gap2(t) = 6).

7.2. Connection to the Bernoulli q-TASEP. The Bernoulli q-PushTASEP looks quite

similar to the Bernoulli q-TASEP introduced in [7] (see also §5.5 above for an explanation

of how the latter process arises from the dynamics Q
q
col[β̂] on q-Whittaker processes).

Moreover, there exists a direct coupling between the two processes which we now explain.

Recall that under the Bernoulli q-TASEP (we will denote its particles with tildes: x̃1(t) >

. . . > x̃N(t)) particles jump to the right by one according to the rules on Fig. 30. Let this

process also start from the step initial configuration x̃i(0) = −i, i = 1, . . . , N .

(1̃) Update x̃1(t+ 1) first: (2̃a), (2̃b) Then update x̃2(t+ 1) based on whether x̃1 has jumped:

x̃2(t) x̃1(t)

Prob = a1β
1+a1β

x̃2(t) x̃1(t+ 1)

Prob = a2β(1−q6)
1+a2β

x̃2(t) x̃1(t+ 1)

Prob = a2β
1+a2β

Figure 30. Bernoulli q-TASEP (on this picture, gap2(t) = 6).

Proposition 7.2. Let {xi(t)}t=0,1,... be the Bernoulli q-PushTASEP started from the step

initial configuration and depending on parameters {ai} and β.

Then the evolution of the process {t+xi(t)}t=0,1,... coincides with the Bernoulli q-TASEP

{x̃i(t)}t=0,1,... started from the step initial configuration and depending on the parameters

{a−1
i } and β−1.

Proof. The process {t + xi(t)} jumps to the right, and, moreover, each of its particles

makes a jump precisely when the corresponding q-PushTASEP particle xi(t) stays put. In
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particular, the first particle x1(t) stays put with probability 1/(1 + a1β) = (a−1
1 β−1)/(1 +

a−1
1 β−1). Next, if x1(t) stayed put, then x2(t) stays put with probability 1/(1 + a2β) =

(a−1
2 β−1)/(1 + a−1

2 β−1). Otherwise, if x1(t) jumped to the left, then x2(t) stays put with

probability

1− a2β + qgap2(t)

1 + a2β
=

1− qgap2(t)

1 + a2β
=
a−1

2 β−1(1− qgap2(t))

1 + a−1
2 β−1

.

We see that the particles {t+xi(t)} indeed perform the Bernoulli q-TASEP evolution with

the desired parameters. �

One can think that this coupling between the two particle systems on Z comes from the

complementation procedure (§5.3) relating the corresponding two-dimensional dynamics.

7.3. Nested contour integral formulas for q-moments. The above coupling between

the Bernoulli q-PushTASEP and the Bernoulli q-TASEP allows to readily write down

moment formulas for the former process:

Theorem 7.3. Let {xi(t)}t=0,1,... be the Bernoulli q-PushTASEP jumping to the left, started

from the step initial configuration. Fix k ≥ 1. For all t = 0, 1, 2, . . . and all integers

N ≥ n1 ≥ n2 ≥ . . . ≥ nk ≥ 0,

Estep

( k∏
i=1

qxni (t)+ni
)

=
(−1)kq

k(k−1)
2

(2πi)k

∮
. . .

∮ ∏
1≤A<B≤k

zA − zB
zA − qzB

k∏
j=1

(
nj∏
i=1

1

1− aizj

)(
1 + q−1βz−1

j

1 + βz−1
j

)t
dzj
zj
,

(7.1)

where the contour of integration for each zA contains a−1
1 , . . . , a−1

N , and the contours {qzB}B>A,

but not poles 0 or (−β).

Proof. Immediately follows from Proposition 7.2 and [7, Theorem 2.1.(3)]. �
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Remark 7.4. Since xi(t) + i ≥ −t for any i = 1, . . . , N and any t ≥ 0, the q-moments in

(7.1) admit an a priori bound. Therefore, for a fixed t ≥ 0 they determine the distribution

of the random variables (x1(t), . . . , xN(t)).

Remark 7.5. One can also establish the nested contour integral formula (7.1) directly,

similarly to [7] (see also [23]). Indeed, denote

It(~y) := qt(y1+y2+...+yN ) Estep

( N∏
i=0

qyi(xi(t)+i)
)
,

where (y0, . . . , yN) ∈ ZN≥0 and, by agreement, the product is zero if y0 > 0.26 One can

directly show that these quantities satisfy certain linear equations in the yj’s. For each

i = 1, . . . , N , consider the following difference operators acting on functions in ~y:

[Hq,ξ]if(~y) :=

yi∑
si=0

ϕq,a−1
i ξ,0(si | yi)f(y0, y1, . . . , yi−2, yi−1 + si, yi − si, yi+1, . . . , yN). (7.2)

Here the quantities ϕ are defined in (6.1).

Also, denote by Hq,ξ the operator which acts as [Hq,ξ]i in each variable yi:

Hq,ξ := [Hq,ξ]N [Hq,ξ]N−1 . . . [Hq,ξ]1. (7.3)

Applying operators [Hq,ξ]i in this order corresponds to first changing y1 (by decreasing it

by s1), then y2 (by sending s2 to y1 − s1), etc., up to yN . In other words, these changes

(encoded by s1, . . . , sN) happen in parallel, simultaneously with each of y1, y2, . . . , yN .

One can then show that for any t = 0, 1, 2, . . . and any ~y = (y0, y1, . . . , yN) ∈ ZN+1
≥0 , the

quantities It(~y) satisfy

Hq,−β−1

It+1(~y) = Hq,−qβ−1

It(~y).

26One should think that the variables yj encode the ni’s in (7.1): each yj denotes the number of ni’s
which are equal to j.
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These linear equations can then be solved by the coordinate Bethe ansatz technique,

because the action of each of the operators Hq,−β−1
and Hq,−qβ−1

reduces to the action of a

free operator (i.e., which acts on each of the variables ni separately; note the identification

of the yj’s and ni’s in the previous footnote) plus two-body boundary conditions. This

immediately leads to the desired nested contour integral formula.

7.4. Remark. Geometric q-PushTASEP formulas. There are also nested contour

integral formulas for q-moments of the geometric q-PushTASEP (§6.3). They can be ob-

tained directly using the definition of the dynamics, similarly to the approach outlined in

Remark 7.5. The moment formulas (for the geometric q-PushTASEP jumping to the left)

will have the same form as in (7.1), with the following replacement of factors:

k∏
j=1

(
1 + q−1βz−1

j

1 + βz−1
j

)t

−→
k∏
j=1

1

(1− αq−1z−1
j )t

.

However, because particles in the geometric q-PushTASEP can jump arbitrarily far to

the left (at least as far as by independent q-geometric jumps), only a finite number of

q-moments of the form Estep
(∏k

i=1 q
xni (t)+ni

)
exists. Therefore, these q-moments do not

determine the distribution of the geometric q-PushTASEP.

8. Polymer limits of (α) dynamics on q-Whittaker processes

In this section we explain how the two (α) dynamics on q-Whittaker processes behave

in the limit as q ↗ 1. This leads to discrete time stochastic processes related to geometric

RSK correspondences and directed random polymers.

8.1. Polymer partition functions. Let us first describe the polymer models we will be

dealing with. They are based on inverse-Gamma random variables:
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Definition 8.1. A positive random variable X has Gamma distribution with shape pa-

rameter θ > 0 if it has probability density

P (X ∈ dx) =
1

Γ(θ)
xθ−1e−xdx.

We abbreviate this by X ∼ Gamma(θ). Then X−1 has probability density

P (X−1 ∈ dx) =
1

Γ(θ)
x−θ−1e−1/xdx,

which is called inverse-Gamma distribution and denoted by Gamma−1(θ).

We recall partition functions of two models of log-Gamma polymers in 1 + 1 dimen-

sions studied previously in [69], [10], [21], [59], [57], [24] (see also [55] for a continuous

time version). Both models are defined on the lattice strip {(t, j) | t ∈ {0, 1, 2, . . .}, j ∈
{1, 2, . . . , n}}. One should think of t as time. Suppose we have two collections of real

numbers θj for j ∈ {1, 2, . . . , n} and θ̂t for t ∈ {0, 1, 2, . . .}, such that θj + θ̂t > 0 for all j

and t.

Definition 8.2 (Log-Gamma polymer [69]; Fig. 31, left). Each vertex (t, j) in the strip

is equipped with a random weight dt,j. These weights are independent, and dt,j is dis-

tributed according to Gamma−1(θj + θ̂t). The log-Gamma polymer partition function with

parameters θj, θ̂t is given by

Rj
1(t) :=

∑
π:(1,1)→(t,j)

∏
(s,i)∈π

ds,i, (8.1)

where the sum is over directed up/right lattice paths π from (1, 1) to (t, j), which are made

of horizontal edges (s, i) → (s + 1, i) and vertical edges (s, i) → (s, i + 1). Extend this

definition to denote by Rj
k(t) for t ≥ k the weighted sum over all k-tuples of nonintersect-

ing up/right lattice paths starting from (1, 1), (1, 2), . . . , (1, k) and going respectively to

(t, j − k + 1), (t, j − k + 2), . . . , (t, j). The weight of a tuple of paths is defined by taking
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a product of weights of vertices of these paths. The inequality t ≥ k ensures that Rj
k(t) is

positive.

Definition 8.3 (Strict-weak polymer [24], [57];27 Fig. 31, right). Each horizontal edge e

in the strip is equipped with a random weight de. These weights are independent, and

d(t−1,j)→(t,j) is distributed according to Gamma(θj + θ̂t). The strict-weak polymer partition

function with parameters θj, θ̂t is given by

Lj1(t) :=
∑

π:(0,1)→(t,j)

∏
e∈π

de, (8.2)

where the sum is over directed lattice paths from (0, 1) to (t, j) which are made of horizontal

edges (s, i)→ (s+1, i) and diagonal moves (s, i)→ (s+1, i+1). The product is taken only

over horizontal edges of the path. Extend this definition to denote by Ljk(t) for t ≥ j−k the

weighted sum over all k-tuples of the corresponding nonintersecting lattice paths starting

from (0, 1), (0, 2), . . . , (0, k) and going respectively to (t, j − k + 1), (t, j − k + 2), . . . , (t, j).

The weight of a tuple of paths is defined by taking a product of weights of horizontal edges

of these paths. The inequality t ≥ j − k ensures that Ljk(t) is positive.

Distributions of ratios of the polymer partition functions defined above are sometimes

called Whittaker processes (or, to be more precise, α-Whittaker processes), cf. [8]. They

arise as limits (as q, the aj’s and the αt’s simultaneously go to 1) of suitably rescaled

particle positions in an interlacing integer array distributed according to the q-Whittaker

process M~a
A (§3.2), where

A = (α1, . . . , αt), ~a = (a1, . . . , an).

27These two papers independently introduce essentially the same model. We will be using the notation
of [24].
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(1, 1) (0, 1)

(9, 6) (8, 6)

(1, 1)

(1, 2)

(1, 3)

(9, 6)

(9, 5)

(9, 4)

(0, 1)

(0, 2)

(0, 3)

(8, 4)

(8, 5)

(8, 6)

Figure 31. Paths and tuples of paths that contribute to the polymer partition
functions: R5

1(9) (top left), R5
3(9) (bottom left), L6

1(8) (top right), L6
3(8) (bottom

right).

The convergence of q-Whittaker processes to Whittaker processes is known in the literature,

see [8, Thm. 4.2.4]. Since both dynamics Qqrow[α] and Q
q
col[α] constructed in §6 sample the

q-Whittaker processes, we can employ them to give another proof of this limit transition.

Moreover, we also establish the convergence of the corresponding stochastic dynamics.

Let us first define the appropriately scaled pre-limit dynamics. In what follows, for ε > 0

and θj, θ̂t as above, we set q := e−ε, aj = e−θjε and αt := e−θ̂tε.

Definition 8.4 (Scaled Qqrow[α] dynamics). Start the dynamics Qqrow[α] from the zero initial

condition (that is, λ
(j)
i (0) ≡ 0). Denote by rj,k(t, ε) the position of the k-th particle from

the right on the j-th level of the array after t steps of the dynamics (at each time step

t → t + 1, apply the dynamics Qqrow[α] with parameter α = αt+1). For t ≥ k, define the
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random variables R̂j
k(t, ε) via

rj,k(t, ε) = (t+ j − 2k + 1)ε−1 log ε−1 + ε−1 log(R̂j
k(t, ε)).

The reason for the restriction t ≥ k comes from the fact that rj,k(t, ε) = 0 for t < k.

We will view the collection of random variables {R̂j
k(t, ε)} as a stochastic process R̂(t, ε)

which at a fixed time t becomes an array R̂j
k(t, ε), 1 ≤ k ≤ j ≤ n for t ≥ n, or a truncated

array R̂j
k(t, ε), 1 ≤ k ≤ min{t, j} ≤ n for 0 < t < n.

Definition 8.5 (Scaled Q
q
col[α] dynamics). Start the dynamics Qqcol[α] from the zero initial

condition, and denote by `j,k(t, ε) the position of the k-th particle from the left on the j-th

level of the array after t steps of the dynamics (again, at each time step t → t + 1, apply

the dynamics Q
q
col[α] with parameter α = αt+1). For t ≥ j − k + 1, define the random

variable L̂jk(t, ε) via

`j,k(t, ε) = (t− j + 2k − 1)ε−1 log ε−1 − ε−1 log(L̂jk(t, ε)).

The reason for the restriction t ≥ j − k + 1 comes from the fact that `j,k(t, ε) = 0 for

t < j − k + 1.

We will view the collection of random variables {L̂jk(t, ε)} as a stochastic process L̂(t, ε),

which at a fixed time t becomes an array L̂jk(t, ε), 1 ≤ k ≤ j ≤ n for t ≥ n, or a truncated

array L̂jk(t, ε), 1 ≤ k ≤ j ≤ min{n, k + t− 1} for 0 < t < n.

Remark 8.6. Observe that for a fixed time t, the array rj,k(t, ε) has the same distri-

bution as the array `j,j−k+1(t, ε) (by Theorems 6.4 and 6.11, they are distributed as q-

Whittaker processes). Hence the (possibly truncated) arrays R̂j
k(t, ε) and 1/L̂jj−k+1(t, ε) for

1 ≤ k ≤ min{t, j} ≤ n have the same distribution. However, these arrays will not be iden-

tically distributed as stochastic processes in t since they come from different multivariate

dynamics.
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In the setting of polymer partition functions, define random processes R̂(t) and L̂(t) on

(possibly truncated) arrays via

R̂j
k(t) := Rj

k(t)/R
j
k−1(t), for 1 ≤ k ≤ min{t, j} ≤ n

and

L̂jk(t) := Ljk(t)/L
j
k−1(t), for 1 ≤ k ≤ j ≤ min{n, k + t− 1}.

They are well defined, because Rj
k(t), R

j
k−1(t) > 0 for t ≥ k and Ljk(t), L

j
k−1(t) > 0 for

t ≥ j − k + 1.

We are now in a position to formulate results on the limiting behavior of dynamics

Qqrow[α] and Q
q
col[α]. In this section we prove the following:

Theorem 8.7. As ε→ 0, the process R̂(t, ε) of Definition 8.4 converges in distribution to

the process R̂(t).

Theorem 8.8. As ε→ 0, the process L̂(t, ε) of Definition 8.5 converges in distribution to

the process L̂(t).

Corollary 8.9. The (possibly truncated) arrays R̂j
k(t) and 1/L̂jj−k+1(t) for 1 ≤ k ≤

min{t, j} ≤ n have the same distribution.

In particular, 1/R̂j
j(t) and L̂j1(t) have the same distribution. The latter fact was proven in

[57], and was used to analyze the strict-weak polymer partition function via the geometric

RSK row insertion (see §8.2.1 below), and to establish the Tracy-Widom asymptotics for

the strict-weak polymer. See also [57] for the close relation between the log-gamma and

strict week polymers, where it is explained that one is the complement of the other. To

the best of our knowledge, the full statement of Corollary 8.9 has not previously appeared

in the literature.
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Let us provide a brief outline of our proofs of Theorems 8.7 and 8.8 which are presented

in the rest of this section. First, in §8.2 we describe the constructions of the geometric RSK

dynamics, which will serve as ε → 0 limits of elementary steps used in dynamics Qqrow[α]

and Q
q
col[α]. Then in §8.3 we prove a number of lemmas concerning ε→ 0 behavior of the

q-distributions from §6.1. Finally, in §8.4 we use these ingredients to establish the desired

statements.

8.2. Geometric RSKs. As we already know, the dynamics on q-Whittaker processes

constructed in §6 degenerate for q = 0 into the dynamics Qq=0
row [α] and Q

q=0
col [α] based on

the classical RSK row or column insertion, respectively. In this subsection we describe

the corresponding geometric Robinson–Schensted–Knuth insertions, which will serve as

building blocks for understanding q ↗ 1 limits of the dynamics on q-Whittaker processes.

The q = 0 and q ↗ 1 pictures (i.e., the classical and the geometric RSK insertion

tableau maps) are related via a certain procedure called detropicalization. Namely, the

geometric RSK row insertion introduced in [42] is obtained by detropicalizing the classical

RSK row insertion by replacing the (max,+) operations in its definition by (+,×). About

the geometric RSK row insertion see also, e.g., [52], [21], [59], and [18].

By analogy with the geometric RSK row insertion, one can define the geometric RSK

column insertion, by detropicalizing the classical RSK column insertion, this time replacing

the (min,+) operations by (+,×).

Remark 8.10 (Names and notation). The geometric RSK correspondences are also some-

times called tropical RSK correspondences [42], [52], [21], despite the fact that they come

from the process of detropicalization. We adopt a convention of calling them the geometric

RSK correspondences (following, e.g., [59], [18], [56]). The latter name arises in connection

with geometric crystals (see [18] for more background).
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Note that the word “geometric” in the name of the geometric RSK correspondences

should be distinguished from the same word in the names of the geometric q-PushTASEP

and the geometric q-TASEP (described in §6.3 and §6.6, respectively). The former refers

to detropicalization of the classical RSK correspondences, while the latter is attached to

the q-geometric jump distribution.

Below in this section, by λ, ν, . . . we will denote vectors (words) with continuous com-

ponents, and not signatures as before. To indicate the difference, we will use superscripts

to denote their components.

8.2.1. Geometric RSK row insertion. Consider a triangular array zjk (1 ≤ k ≤ j ≤ n) of

nonnegative real numbers, such that a word zk = (zkk , . . . , z
n
k ) either has all positive entries

or is equal to (1, 0, . . . , 0) (in which case we call it an empty word).

First, define the geometric row insertion of a nonempty word a = (ak, . . . , an) into a

nonempty word λ = (λk, . . . , λn) as an operation that takes the pair {λ, a} as input, and

produces a pair of words {ν = (νk, . . . , νn), b = (bk+1, . . . , bn)} as output via the following

rule:

a

b

λ ν

νj =

j∑
i=k

λiai . . . aj

bj = aj
λjνj−1

λj−1νj

If λ is an empty word, then by definition b is not produced, while

ν := (ak, akak+1, . . . , akak+1 · · · an)

is produced according to the same rule. The word b is also not produced for k = n. Observe

that always νj = (λj + νj−1)aj for k < j ≤ n and νk = λkak.
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z1

z2

...

zn

a = a(0)

z′1

z′2

z′n

a(1)

a(2)

a(n− 1)

...

...

Figure 32. Geometric RSK row insertion.

Definition 8.11. The geometric RSK row insertion of a word a = (a1, . . . , an) into an

array zjk is defined by consecutively modifying the words z1, . . . , zn via the insertion ac-

cording to the diagram on Fig. 32. The bottom output word a(1), a(2), . . . of each insertion

is then used as a top input word for the next insertion. If after some insertion no bottom

output word is produced, then no further insertions are performed.

z11

zn−1
1

zn1

z22

zn−1
2

zn2znn−1znn

zn−1
n−1

· · ·

· · ·

. . . · · ·

a11

a21

an1

a12

a22

an2

a1t

a2t

ant

...
...

...

· · ·

· · ·

· · ·

Figure 33. Array and strip for the geometric RSK row insertion.

The geometric RSK row insertion is related to the polymer partition functions of §8.1

in the following way:

Proposition 8.12 ([52]). If we start with an array z of empty words, and consecutively

insert into it nonempty fixed words a1, . . . , at, ai = (a1
i , . . . , a

n
i ), via the geometric RSK row
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insertion, then in the obtained array we have

zjk(t) =
Rj
k(t)(a1, . . . , at)

Rj
k−1(t)(a1, . . . , at)

for all t ≥ k.

Here with a slight abuse of notation we denote by Rj
k(t)(a1, . . . , at) the same weighted sum

over k-tuples of nonintersecting paths as in Definition 8.2, but in a strip in which each

node (s, i) has a deterministic weight ais (see Fig. 33).

8.2.2. Geometric RSK column insertion. Consider a triangular array yjk (1 ≤ k ≤ j ≤ n)

of nonnegative real numbers, such that in each word yk = (ykk , . . . , y
n
k ) either all entries are

positive, or there is k ≤ j ≤ n, such that yjk = 1, yik = 0 for j < i ≤ n and yik > 0 for

k ≤ i ≤ j. We again call (1, 0, . . . , 0) an empty word.

To define the geometric RSK column insertion first define the insertion of a word a =

(ak, . . . , an) with positive entries into a word λ = (λk, . . . , λn) as an operation that takes

the pair {λ, a} as input, and produces a pair of words {ν = (νk, . . . , νn), b = (bk+1, . . . , bn)}
as output via the following rule:

a

b

λ ν

νk = akλk

νj = λjaj + λj−1 for k < j ≤ n

bj =


aj
λjνj−1

λj−1νj
, if λj > 0,

ajνj−1, if λj = 0 and λj−1 > 0,

aj, if λj−1 = 0.

Definition 8.13. The geometric RSK column insertion of a word into an array is defined

similarly to the row insertion (Definition 8.11), by consecutively performing the column

insertion operations defined above, in order as on Fig. 32.

Note that yjk in this definition corresponds to λ
(j)
j−k+1 in classical RSK column insertion.

We will need the following fact which is analogous to Proposition 8.12
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y11

yn−1
n−1

ynnynn−1yn2yn1

yn−1
1

· · ·

. . .
· · ·

a11

a21

an1

a12

a22

an2

a1t

a2t

ant

...
...

...

· · ·

· · ·

· · ·

. . .

yn−1
2

y22

· · ·

0 1 t

Figure 34. Array and strip for the geometric RSK column insertion.

Proposition 8.14. If we start with an array y of empty words, and consecutively insert

into it words a1, . . . , at with positive entries via the geometric RSK column insertion, then

in the obtained array we have

yjk(t) =
Ljk(t)(a1, . . . , at)

Ljk−1(t)(a1, . . . , at)
for all t ≥ j − k + 1.

Here again we denote by Ljk(t)(a1, . . . , at) the same weighted sum over k-tuples of nonin-

tersecting paths as in Definition 8.3, but in a strip in which each edge (s − 1, i) → (s, i)

has a deterministic weight ais (see Fig. 34).

Proof. Our proof is similar to that of Proposition 8.12 (the latter is given in [52]).

For a = (a1, . . . , an), denote by H(a) the n×n matrix such that H(a)i,i := ai, H(a)i,i+1 =

1, and other entries are 0. For a = (ak, . . . , an), denote by Hk(a) the n × n matrix of the

form

 Idk−1 0

0 H(a)

 . For λ = (λk, . . . , λn) such that λi > 0 for k ≤ i ≤ j and λi = 0

for j < i ≤ n, denote by G(λ) the n× n matrix of the form
Idk−1 0 0

0 G 0

0 0 Idn−j

 ,
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where G is the upper-triangular (j − k + 1)× (j − k + 1) matrix with

Gp,r =
λr+k−1

λp+k−2
for 1 ≤ p ≤ r ≤ j − k + 1.

Assume λk−1 = 1.

The key to the proof is the commutation relation

G(λ)Hk(a) = Hk+1(b)G(ν), (8.3)

whenever a pair of words ν = (νk, . . . , νn), b = (bk+1, . . . , bn) is obtained by inserting

a = (ak, . . . , an) into λ = (λk, . . . , λn).

To check (8.3), denote its left-hand side by L and right-hand side by R. Clearly, Li,i =

Ri,i = 1 for 1 ≤ i ≤ k−1 and Li,i = Ri,i = ai for j+ 2 ≤ i ≤ n, and Lj+1,j+2 = Rj+1,j+2 = 1.

Otherwise Li,m = Ri,m = 0 unless k ≤ i ≤ j + 1 and k ≤ m ≤ j + 1. Let us thus assume

that the two latter inequalities hold. On the diagonal, for k < i < j + 1, we have

Li,i = ai
λi

λi−1
= bi

νi

νi−1
= Ri,i, Lk,k = akλk = νk = Rk,k,

and

Lj+1,j+1 = aj+1 =
bj+1

νj
= Rj+1,j+1.

Above the diagonal, for k < i < m ≤ j + 1, we have

Li,m =
λm−1

λi−1
+

λm

λi−1
am =

νm

λi−1
= bi

νm

νi−1
+
νm

νi
= Ri,m,

since bi

νi−1 + 1
νi

= 1
νi

(ai λi

λi−1 + 1) = 1
λi−1 , and finally

Lk,m = λm−1 + λmam = νm = Rk,m.

This completes the proof of the commutation relation (8.3).
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By applying the commutation relation multiple times according to the geometric column

RSK insertion (Definition 8.13), we get

G(yn(t)) · · · · ·G(y1(t)) = H(a1) · · · · ·H(at). (8.4)

Observe that the (i, j)-entry of the right-hand side above is equal to the sum of weights of

all directed strict-weak (as on Fig. 31, right) paths from (0, i) to (t, j), where the weight of

a path is given by the product of weights of horizontal edges, as before. Indeed, this entry

is equal to

∑
1≤i1,...,it+1≤n: i1=i,it+1=j

t∏
`=1

H(a`)i`,i`+1
=

∑
1≤i1,...,it+1≤n:i1=i,it+1=j

t∏
`=1

(1i`=i`+1−1 + a`1i`=i`+1
).

By the Lindström-Gessel-Viennot principle [49], [38], the determinant of the minor of the

right-hand side at the intersection of the first k rows, and columns from (j − k + 1)-st to

j-th, is Ljk(t)(a1, . . . , at).

Next, observe that for 1 ≤ s ≤ k, j− k+ 1 ≤ p ≤ j, the (s, p)-entry of the left-hand side

of (8.4) is equal to the sum of weights of directed up/right (as on Fig. 31, left) lattice paths

from (k+ 1− s, s) to (min{k+ t+ 1− p, k}, p) in the array as on Fig. 35 (the left picture if

t ≥ j, and the right one if j − k+ 1 ≤ t < j). The weight of each path is defined to be the

product of weights of all nodes along the path. By Lindström-Gessel-Viennot principle, the

determinant of the minor of the left-hand side of (8.4) at the intersection of the first k rows,

and columns from (j−k+1)-st to j-th, is equal to the sum of weights of all k-tuples of non-

intersecting paths from (k, 1), . . . , (2, k − 1), (1, k) to (min{2k + t− j, k}, j − k + 1), . . . ,

(min{k + t+ 2− j, k}, j − 1), (min{k + t+ 1− j, k}, j). There is only one such tuple,

which covers all points on Figure (35) and has weight
k∏
i=1

y
min{i+t,j}
i .
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Figure 35. Arrays used in the proof of Proposition 8.14.

Therefore,

Ljk(t)(a1, . . . , at) =
k∏
i=1

y
min{i+t,j}
i , t ≥ j − k + 1,

which establishes the desired statement. �

8.3. Asymptotics of q-deformed Beta-binomial distributions. We will need several

lemmas about the limiting properties of the distributions ϕq,ξ,η(s | y) (6.1).

Lemma 8.15. Let Xε be a Z≥0-valued random variable with

Prob(Xε = j) = (α; q)∞
αj

(q; q)j
for α = e−θε and q = e−ε.

Then as ε→ 0, ε exp{εXε} converges in distribution to Gamma−1(θ).
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Lemma 8.16. Let n(ε) be a function R≥0 → Z≥0, such that

lim
ε→0

ε−1 exp{−εn(ε)} = ϕ.

Let Xε be a Z≥0-valued random variable with

Prob(Xε = j) = ϕq,α,0(j | n(ε)) for α = e−θε and q = e−ε.

Then as ε→ 0, ε−1 exp{−εXε} converges in distribution to ϕ + Gamma(θ).

These two lemmas were both proven in [24] (Lemma 2.1 and a part of proof of Theo-

rem 1.4, respectively). In the next three lemmas, parameters of distributions which are

not explicitly fixed are assumed to depend on ε, and sometimes might also be random

themselves.

Lemma 8.17. Fix C and 0 < σ < 1. Let Y ε be a Z≥0-valued random variable distributed

according to ϕq−1,ξ,η(· | n) with q = e−ε, ξq−n → σ, n ≥ ε−1 log ε−1−ε−1C, and log η+2nε ≤
log σ. Then as ε→ 0, εY ε → log(1 + σ).

Proof. The fact that ϕq−1,ξ,η with such parameters is indeed a probability distribution

for ε small enough follows from inequalities in the statement of the lemma. Let A(ε) :=

(e−ε; e−ε)∞. By [8, Corollary 4.1.10],

(e−ε; e−ε)bε−1 log ε−1−Cε−1c ≤ A(ε)C ′

for all ε small enough and some constant C ′ that depends only on C. As ε→ 0,

ε log(e−ε; e−ε)dr/εe →
∫ r

0

log(1− e−x)dx,

since the left-hand side is a Riemann sum for the right-hand side integral, hence we have

ε log
(e−ε; e−ε)∞
(e−r; e−ε)∞

→
∫ r

0

log(1− e−x)dx.
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(Note that although this integral blows up at 0, it is still finite and convergence holds.)

Fix δ > 0. For ε small enough,

Prob(Y ε = k) = (ξq−n+k)k
(η/ξ; q−1)k(ξ; q

−1)n−k
(η; q−1)n

(
n

k

)
q

≤ (ξq−n)ke−εk
2
C ′

(e−ε; e−ε)k

≤ (2σ)ke−εk
2
C ′

(e−ε; e−ε)k
≤ C ′ exp

(
k log 2σ − εk2 − 1

ε

∫ kε

0

log(1− e−x)dx
)

≤ e−T
2/2ε for T large enough and k ≥ T/ε.

Hence

Prob(Y ε ≥ T/ε) ≤
∞∑

k=dT/εe

e−εk
2/2 ≤ e−T

2/2ε

∞∑
i=0

e−T i,

which can be made less than δ/2 for all ε small enough by choosing sufficiently large T .

Observe that for k ≤ T/ε and ε small enough there is some constant C0 that depends

only on C and T , such that

C−1
0 ≤

(η/ξ; q−1)k
(ξq; q)∞(η; q−1)n

(q; q)n
(q; q)n−k

≤ C0.

Let

f(ψ) := −ψ2 + (log σ)ψ −
∫ ψ

0

log(1− e−x)dx−
∫ ψ−log σ

0

log(1− e−x)dx

for ψ ≥ 0. Then

f ′(ψ) = −2ψ + log σ − log(1− e−ψ)− log(1− e−ψ+log σ),

which is strictly decreasing, and f ′(log(1 + σ)) = 0. Hence f attains a unique maximum

at log(1 + σ), so one can choose M1 > M2 > M3 > M4 such that

f(ψ) > M1 for ψ ∈ (log(1 + σ)− δ/2, log(1 + σ) + δ/2)
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and

f(ψ) < M4 for ψ /∈ (log(1 + σ)− δ, log(1 + σ) + δ),

and for ε small enough

Prob(εY ε ∈ (log(1 + σ)− δ/2, log(1 + σ) + δ/2)) ≥ C−1
0

(
δ

ε
− 1

)
A(ε)eM2/ε

and

Prob(εY ε /∈ (log(1 + σ)− δ, log(1 + σ) + δ) ∪ [T,∞)) ≤ C0

(
T − 2δ

ε
+ 2

)
A(ε)eM3/ε.

Therefore, for ε small enough

Prob(εY ε ∈ (log(1 + σ)− δ, log(1 + σ) + δ)) ≥ 1− δ,

and this completes the proof. �

Lemma 8.18. Fix C and 0 ≤ σ < 1. Let Y ε be a Z≥0-valued random variable with

Prob(Y ε = j) = ϕq,α,0(j | n)

for α → σ as ε → 0, q = e−ε and n ≥ ε−1 log ε−1 − ε−1C. Then as ε → 0, εY ε →
− log(1− σ).

Proof. Suppose σ > 0 and fix δ > 0. We can write

Prob(Y ε = k) =
αk

(e−ε; e−ε)k

(α; e−ε)n−k(e
−ε, e−ε)n

(e−ε; e−ε)n−k
≤ αk

(e−ε; e−ε)k

≤ exp

(
1

ε
((

1

2
log σ)T −

∫ T

0

log(1− e−x)dx)

)
≤ e(log σ)T/4ε
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for T large enough and ε small enough, such that k ≥ T/ε. Hence

Prob(Y ε ≥ T/ε) ≤ e(log σ)T/4ε

∞∑
i=0

e
i log σ

4

which is less than δ/2 for T large enough.

For ε small enough, k ≤ T/ε, and some constant C0 that depends only on C, T , and σ,

one can write

C−1
0 (α; e−ε)∞ ≤

(α; e−ε)n−k(e
−ε; e−ε)n

(e−ε; e−ε)n−k
≤ C0(α; e−ε)∞.

Let

f(ψ) := (log σ)ψ −
∫ ψ

0

log(1− e−x)dx

for ψ ≥ 0. Then

f ′(ψ) = log σ − log(1− e−ψ),

which is strictly decreasing, and f ′(− log(1− σ)) = 0. Hence f attains a unique maximum

at − log(1− σ), so one can choose M1 > M2 > M3 > M4 such that

f(ψ) > M1 for ψ ∈ (− log(1− σ)− δ/2,− log(1− σ) + δ/2)

and

f(ψ) < M4 for ψ /∈ (− log(1− σ)− δ,− log(1− σ) + δ),

and for ε small enough

Prob(εY ε ∈ (− log(1− σ)− δ/2,− log(1− σ) + δ/2)) ≥ C−1
0

(
δ

ε
− 1

)
(α; e−ε)∞e

M2/ε

and

Prob(εY ε /∈ (− log(1−σ)−δ,− log(1−σ)+δ)∪[T,∞)) ≤ C0

(
T − 2δ

ε
+ 2

)
(α; e−ε)∞e

M3/ε.
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Therefore, for ε small enough we can write

Prob(εY ε ∈ (− log(1− σ)− δ,− log(1− σ) + δ)) ≥ 1− δ,

and this completes the proof for the case σ > 0.

If σ = 0, fix arbitrary u > 0. For all large enough U , such that Uu > 1
2
Uu−

∫∞
0

log(1−
e−x)dx, ε small enough, and k ≥ u

ε
,

Prob(Y ε = k) ≤ αk

(e−ε; e−ε)k
≤ exp

(
1

ε
(−Ukε−

∫ ∞
0

log(1− e−x)dx)

)
≤ e−

Uu
2ε .

So,

Prob(εY ε ≥ u) ≤ e−
Uu
2ε

∞∑
i=0

e−Ui/2,

which can be made less than any given δ > 0 for U large enough. Thus, we have convergence

εY ε → 0 in distribution. �

Lemma 8.19. Fix α, σ ∈ (0, 1) such that α(1 + σ) < 1. Let Y ε be a Z≥0-valued random

variable with Prob(Y ε = j) = ϕq−1,α,0(j | n) for nε→ log(1 + σ) as ε→ 0, q = e−ε. Then

as ε→ 0, εY ε → log(1 + ασ).

Proof. α(1+σ) < 1 ensures that this is indeed a probability distribution for ε small enough.

This distribution looks as

Prob(Y ε = k) =
(q; q)n

(q; q)k(q; q)n−k
(αqk−n)k(α; q−1)n−k.

Let

f(ψ) := −
∫ ψ

0

log(1− e−x)dx−
∫ log(1+σ)−ψ

0

log(1− e−x)dx+ ψ logα− ψ2 + ψ log(1 + σ)

+

∫ − logα

− logα−log(1+σ)+ψ

log(1− e−x)dx for log(1 + σ) ≥ ψ ≥ 0.
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Then

f ′(ψ) = − log(1− e−ψ) + log(1− eψ

1 + σ
) + logα− 2ψ + log(1 + σ)− log(1− α(1 + σ)e−ψ),

which is strictly decreasing, and f ′(log(1 + ασ)) = 0. Hence f attains a unique maximum

at log(1 + ασ), so one can choose M1 > M2 such that

f(ψ) > M1 for ψ ∈ (log(1 + ασ)− δ/2, log(1 + ασ) + δ/2)

and

f(ψ) < M2 for ψ /∈ (log(1 + ασ)− δ, log(1 + ασ) + δ).

Hence for ε small enough,

Prob(εY ε ∈ (log(1 + ασ)− δ/2, log(1 + ασ) + δ/2)) ≥
(
δ

ε
− 1

)
(e−ε; e−ε)ne

M1/ε,

and

Prob(εY ε /∈ (log(1 + ασ)− δ, log(1 + ασ) + δ)) ≤
(

log(1 + σ)− 2δ

ε
+ 2

)
(e−ε; e−ε)ne

M2/ε.

Thus, for ε small enough, we have

Prob(εY ε ∈ (log(1 + ασ)− δ, log(1 + ασ) + δ)) ≥ 1− δ,

and this completes the proof. �

8.4. Proofs of Theorems 8.7 and 8.8. In our proofs, we denote by

A(ε), B(ε), C(ε), D(ε), E(ε), F (ε)
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possibly random positive valued functions tending to deterministic constants A,B,C,D,E, F ,

respectively, as ε → 0. This notation will be repeatedly used in the arguments below for

defining conditional probabilities.

8.4.1. Proof of Theorem 8.7. We must show that for fixed (t, k, j), such that k ≤ min{t, j}
and j ≤ n, the random variable R̂j

k(t, ε) conditioned on R̂J
K(T, ε) → XJ

K(T ) for all

(T,K, J) < (t, k, j) in the lexicographic order,28 converges as ε → 0 to R̂j
k(t) conditioned

on R̂J
K(T ) = XJ

K(T ) for all (T,K, J) < (t, k, j) in the lexicographic order. Here XJ
K(T ) are

some fixed constants. In the rest of the proof we will always assume this conditioning.

Right edge (k = 1). The Markovian projection of the Qqrow[α] dynamics on the right

edge is the geometric q-PushTASEP (§6.3), hence the proof of the theorem for the right

edge is the same as showing that suitably rescaled positions of particles in the geometric

q-PushTASEP converge to the partition functions of the log-Gamma polymer (Definition

8.2).

a) If t = 1, then rj,1(1, ε) = rj−1,1(1, ε) + an independent random movement d distributed

according to ϕq,ajα1,0(d | ∞) (assume r0,1(1, ε) = 0 and X0
1 (1) = 1). By Lemma 8.15,

log(R̂j
1(1, ε)) = rj,1(1, ε)ε− j log ε−1

= rj−1,1(1, ε)ε− (j − 1) log ε−1 + dε− log ε−1

→ log(Xj−1
1 (1)) + log(Γ)

for an independent random variable Γ = aj1 distributed according to Gamma−1(θj + θ̂1),

which is consistent with R̂j
1(1) = Xj−1

1 (1)aj1.

28That is, T < t, or T = t and K < k, or T = t,K = k and J < j.
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b) If j = 1 and t ≥ 2, then r1,1(t, ε) = r1,1(t− 1, ε) + an independent random movement

d distributed according to ϕq,a1αt,0(d | ∞). By Lemma 8.15,

log(R̂1
1(t, ε)) = r1,1(t, ε)ε− t log ε−1

= r1,1(t− 1, ε)ε− (t− 1) log ε−1 + dε− log ε−1

→ log(X1
1 (t− 1)) + log(Γ)

for an independent random variable Γ = a1
t distributed according to Gamma−1(θ1 + θ̂t),

which is consistent with R̂1
1(t) = X1

1 (t− 1)a1
t .

c) Assume t ≥ 2 and j ≥ 2. Condition on

rj,1(t− 1, ε) = (t+ j − 2)ε−1 log ε−1 + ε−1 logA(ε), so Xj
1(t− 1) = A;

rj−1,1(t− 1, ε) = (t+ j − 3)ε−1 log ε−1 + ε−1 logB(ε), so Xj−1
1 (t− 1) = B;

rj−1,1(t, ε) = (t+ j − 2)ε−1 log ε−1 + ε−1 logC(ε), so Xj−1
1 (t) = C.

The movement of the rightmost particle on the j-th level during the time step t− 1→ t

which happens due to the pushing by the rightmost particle at level j − 1 behaves as

ε−1 log(1 + C
A

) (by Lemma 8.17). The independent movement of the rightmost particle

on the j-th level behaves as ε−1 log Γ + ε−1 log ε−1 (by Lemma 8.15), for an independent

random variable Γ = ajt distributed according to Gamma−1(θj + θ̂t). Therefore,

log(R̂j
1(t, ε))→ logA+ log(1 +

C

A
) + log Γ = log((A+ C)Γ),

which is consistent with R̂j
1(t) = (Xj

1(t− 1) +Xj−1
1 (t))ajt .

k-th edge from the right for k ≥ 2.
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a) Assume t = k. We have rj,k(k, ε) = rj−1,k(k, ε) + a movement due to pulling from

the (k − 1)-st particle from the right on the (j − 1)-st level (assume rk−1,k(k, ε) = 0 and

Xk−1
k (k) = 1). Condition on

rj−1,k−1(k − 1, ε) = (j − k + 1)ε−1 log ε−1 + ε−1 logD(ε), so Xj−1
k−1(k − 1) = D;

rj−1,k−1(k, ε) = (j − k + 2)ε−1 log ε−1 + ε−1 logE(ε), so Xj−1
k−1(k) = E;

rj,k−1(k − 1, ε) = (j − k + 2)ε−1 log ε−1 + ε−1 logF (ε), so Xj
k−1(k − 1) = F .

By Lemma 8.17, this movement times ε and minus log ε−1 converges to log(E/D)− log(1 + E/F ).

Therefore,

log(R̂j
k(k, ε)) = rj,k(k, ε)ε− (j − k + 1) log ε−1

→ log(Xj−1
k (k)) + log(E/D)− log(1 + E/F )

= log

(
Xj−1
k (k)EF

(F + E)D

)
,

which is consistent with

R̂j
k(k) =

Xj−1
k (k)Xj−1

k−1(k)Xj
k−1(k − 1)(

Xj
k−1(k − 1) + Xj−1

k−1(k)
)
Xj−1
k−1(k − 1)

.

Indeed, if we insert (via the geometric row insertion) a nonempty word b = (bk, . . . , bn)

into the empty word λk = (1, 0, . . . , 0), where b is itself the bottom output of the insertion

of a = (ak−1, . . . , an) into λk−1 = (λk−1
k−1, . . . , λ

n
k−1) = (Xk−1

k−1 (k − 1), . . . , Xn
k−1(k − 1)), then

we get

νjk = νj−1
k bj = νj−1

k

ajλjk−1ν
j−1
k−1

λj−1
k−1ν

j
k−1

= νj−1
k

λjk−1

λj−1
k−1

· νj−1
k−1

νj−1
k−1 + λjk−1

,

which is the same as the expression for R̂j
k(k) above.
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b) Assume t ≥ k + 1 and k < j ≤ n. Condition on

rj,k(t− 1, ε) = (t+ j − 2k)ε−1 log ε−1 + ε−1 logA(ε), so Xj
k(t− 1) = A;

rj−1,k(t− 1, ε) = (t+ j − 2k − 1)ε−1 log ε−1 + ε−1 logB(ε), so Xj−1
k (t− 1) = B;

rj−1,k(t, ε) = (t+ j − 2k)ε−1 log ε−1 + ε−1 logC(ε), so Xj−1
k (t) = C;

rj−1,k−1(t− 1, ε) = (t+ j − 2k + 1)ε−1 log ε−1 + ε−1 logD(ε), so Xj−1
k−1(t− 1) = D;

rj−1,k−1(t, ε) = (t+ j − 2k + 2)ε−1 log ε−1 + ε−1 logE(ε), so Xj−1
k−1(t) = E;

rj,k−1(t− 1, ε) = (t+ j − 2k + 2)ε−1 log ε−1 + ε−1 logF (ε), so Xj
k−1(t− 1) = F .

Movement of rj,k during time step t− 1→ t due to pushing by the k-th particle from the

right on the (j − 1)-st level behaves as ε−1 log(1 + C
A

) (by Lemma 8.17). The movement

due to the pulling (by the (k − 1)-st particle from the right on the (j − 1)-st level) times

ε−1 minus log ε−1 by the same lemma tends to log(E
D

)− log(1 + E
F

). Hence we may write

log(R̂j
k(t, ε))→ logA+ log

(
1 +

C

A

)
+ log

(
E

D

)
− log

(
1 +

E

F

)
= log

(
(A+ C)EF

(F + E)D

)
,

which is consistent with

R̂j
k(t) =

(
Xj
k(t− 1) + Xj−1

k (t)
)
Xj−1
k−1(t)Xj

k−1(t− 1)(
Xj
k−1(t− 1) + Xj−1

k−1(t)
)
Xj−1
k−1(t− 1)

.

Indeed, if we insert (via the geometric row insertion) a nonempty word b = (bk, . . . , bn)

into a nonempty word λk = (λkk, . . . , λ
n
k) = (Xk

k (t − 1), . . . , Xn
k (t− 1)), where b is itself

the bottom output of the insertion of a = (ak−1, . . . , an) into λk−1 = (λk−1
k−1, . . . , λ

n
k−1) =

(Xk−1
k−1 (t− 1), . . . , Xn

k−1(t− 1)), then we get

νjk = (νj−1
k + λjk)b

j = (νj−1
k + λjk)

ajλjk−1ν
j−1
k−1

λj−1
k−1ν

j
k−1

= (νj−1
k + λjk)

λjk−1

λj−1
k−1

· νj−1
k−1

νj−1
k−1 + λjk−1

,

which is the same as the expression for R̂j
k(t) above.
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c) Finally, if j = k and t ≥ k + 1, then the previous argument carries out with the

exception that in this case the leftmost particle on the j-th level experiences only pulling

of the leftmost particle on the (j − 1)-st level, hence we should take C = 0 in the formulas

from part b).

This completes the proof of Theorem 8.7.

8.4.2. Proof of Theorem 8.8. We must show that for fixed (t, k, j), such that k ≤ j ≤
t+ k− 1 and j ≤ n, the random variable L̂jk(t, ε), conditioned on L̂JK(T, ε)→ Y J

K(T ) for all

(T,K, J) < (t, k, j) in the lexicographic order, converges as ε→ 0 to L̂jk(t), conditioned on

L̂JK(T ) = Y J
K(T ) for (T,K, J) < (t, k, j) in the lexicographic order (here Y J

K(T ) are some

fixed constants). In the rest of the proof we will always assume this conditioning.

Left edge (k = 1). The Markovian projection of the Q
q
col[α] dynamics on the left edge is

the geometric q-TASEP (§6.6), hence the proof of the theorem for the left edge is the same

as showing that suitably rescaled positions of particles in the geometric q-TASEP converge

to the partition functions of the strict-weak polymer (Definition 8.3). This was already

done in [24], but we still include this part in the proof for the reader’s convenience.

a) If t = j = 1, then by Lemma 8.15, log(L̂1
1(1, ε)) = log ε−1 − `1,1(1, ε)ε converges in

distribution to log Γ for a random variable Γ = a1
1 distributed according to Gamma(θ1+θ̂1).

b) Assume t = j > 1. Then m = `j,1(j, ε) is distributed according to ϕq,ajαj ,0(m |
`j−1,1(j − 1, ε)). If we condition on

`j−1,1(j − 1, ε) = ε−1 log ε−1 − ε−1 logF (ε), so Y j−1
1 (j − 1) = F ,

then by Lemma 8.16,

log(L̂j1(j, ε)) = log ε−1 − `j,1(j, ε)ε→ log(F + Γ)
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for an independent random variable Γ = ajj distributed according to Gamma(θj+θ̂j), which

is consistent with L̂j1(j) = ajj + Y j−1
1 (j − 1).

c) Let t > j = 1. By Lemma 8.15, the quantities

log(L̂1
1(t, ε))− log(L̂1

1(t− 1, ε)) = log ε−1 − (`1,1(t, ε)− `1,1(t− 1, ε)) ε

converge in distribution to log Γ for a random variable Γ = a1
t distributed according to

Gamma(θ1 + θ̂t), which is consistent with L̂1
1(t) = a1

tY
1

1 (t− 1).

d) Assume t > j > 1. Condition on

`j,1(t− 1, ε) = (t− j)ε−1 log ε−1 − ε−1 logA(ε), so Y j
1 (t− 1) = A;

`j−1,1(t− 1, ε) = (t− j + 1)ε−1 log ε−1 − ε−1 logF (ε), so Y j−1
1 (t− 1) = F .

By Lemma 8.16, the movement of the leftmost particle on the j-th level during the time

step t − 1 → t times ε and minus log ε−1 converges to − log(F
A

+ Γ) for an independent

random variable Γ = ajt distributed according to Gamma(θj + θ̂t). Therefore,

log(L̂j1(t, ε))→ logA+ log(F/A+ Γ) = log(F + AΓ),

which is consistent with L̂j1(t) = Y j−1
1 (t− 1) + ajtY

j
1 (t− 1).

Second edge from the left (k = 2).

a) If j = 2, t = 1, then we have to look at `2,2(1, ε) = `1,1(1, ε) + a jump m distributed

according to ϕq,a2α1,0(m | ∞). By Lemma 8.15,

log(L̂2
2(1))− log(L̂1

1(1)) = log ε−1 −mε→ log Γ,

where Γ = a2
1 is an independent random variable distributed according to Gamma(θ2 + θ̂1),

which is consistent with L̂2
2(1) = a2

1Y
1

1 (1).
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b) Assume j > 2, t = j−1. We have `j,2(j−1, ε) = m1 +m2, where m1 is an independent

move distributed according to ϕq,ajαj−1,0
(m1 | `j−1,2(j− 2, ε)), and m2 is the push from the

leftmost particle on the (j − 1)-st level distributed according to

ϕ
q−1,q`j−1,1(j−1,ε),q`j−1,2(j−2,ε)(`j−1,2(j − 2, ε)−m1 −m2 | `j−1,2(j − 2, ε)−m1).

Condition on

`j−1,1(j − 1, ε) = ε−1 log ε−1 − ε−1 logE(ε), so Y j−1
1 (j − 1) = E;

`j−1,2(j − 2, ε) = 2ε−1 log ε−1 − ε−1 logF (ε), so Y j−1
2 (j − 2) = F .

By Lemma 8.16, log ε−1−m1ε→ log Γ, where Γ = ajj−1 is an independent random variable

distributed according to Gamma(θj + θ̂j−1). By Lemma 8.17,

log(L̂j2(j − 1, ε)) = 2 log ε−1 − `j,2(j − 1, ε)ε→ logF + log(1 +
EΓ

F
) = log(F + EΓ),

which is consistent with Y j
2 (j − 1) = Y j−1

2 (j − 2) + ajj−1Y
j−1

1 (j − 1).

c) Let j = 2, t > 1. Then

`2,2(t, ε) = `2,2(t− 1, ε) + `1,1(t, ε)− `1,1(t− 1, ε) +m,

where the jump m is distributed according to

ϕ
q,a2αtq

`1,1(t−1,ε)−`2,1(t,ε),0
(m | ∞).

Condition on

`2,2(t− 1, ε) = tε−1 log ε−1 − ε−1 logA(ε), so Y 2
2 (t− 1) = A;

`1,1(t− 1, ε) = (t− 1)ε−1 log ε−1 − ε−1 logB(ε), so Y 1
1 (t− 1) = B;
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`1,1(t, ε) = tε−1 log ε−1 − ε−1 logC(ε), so Y 1
1 (t) = C;

`2,1(t, ε) = (t− 1)ε−1 log ε−1 − ε−1 logE(ε), so Y 2
1 (t) = E.

By Lemma 8.18, mε→ − log
(
1− B

E

)
, hence

log(L̂2
2(t, ε)) = `2,2(t, ε)ε− (t+ 1) log ε−1 → log

(
A

(
1− B

E

)
C

B

)
,

which is consistent with L̂2
2(t) = Y 2

2 (t− 1)
(

1− Y 1
1 (t−1)

Y 2
1 (t)

)
Y 1

1 (t)

Y 1
1 (t−1)

. Indeed, we have

L̂2
2(t) = L̂2

2(t− 1)a2
t

L̂2
1(t− 1)L̂1

1(t)

L̂1
1(t− 1)L̂2

1(t)
= L̂2

2(t− 1)
L̂2

1(t)− L̂1
1(t− 1)

L̂2
1(t− 1)

L̂2
1(t− 1)L̂1

1(t)

L̂1
1(t− 1)L̂2

1(t)

= L̂2
2(t− 1)

(
1− L̂1

1(t− 1)

L̂2
1(t)

)
L̂1

1(t)

L̂1
1(t− 1)

.

d) Assume j > 2, t > j − 1. Condition on

`j,2(t− 1, ε) = (t− j + 2)ε−1 log ε−1 − ε−1 logA(ε), so Y j
2 (t− 1) = A;

`j−1,1(t− 1, ε) = (t− j + 1)ε−1 log ε−1 − ε−1 logB(ε), so Y j−1
1 (t− 1) = B;

`j−1,1(t, ε) = (t− j + 2)ε−1 log ε−1 − ε−1 logC(ε), so Y j−1
1 (t) = C;

`j,1(t, ε) = (t− j + 1)ε−1 log ε−1 − ε−1 logE(ε), so Y j
1 (t) = E;

`j−1,2(t− 1, ε) = (t− j + 3)ε−1 log ε−1 − ε−1 logF (ε), so Y j−1
2 (t− 1) = F .

Denote by m the independent move of the particle which is the second from the left on the

j-th level. This move is distributed according to

ϕ
q,ajαtq

`j−1,1(t−1,ε)−`j,1(t,ε),0
(m | `j−1,2(t− 1, ε)− `j,2(t− 1, ε)).

As in the previous case, by Lemma 8.18, mε→ − log
(
1− B

E

)
.
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Thus, we see that `j,2(t, ε) = `j−1,2(t− 1, ε)−M , where M is distributed according to

ϕ
q−1,q`j−1,1(t,ε)−`j−1,1(t−1,ε),q`j−1,2(t−1,ε)−`j−1,1(t−1,ε)(M | `j−1,2(t− 1, ε)− `j,2(t− 1, ε)−m).

Hence by Lemma 8.17, Mε→
(
1− B

E

)
1
F
C
B
A+ 1. Therefore,

log(L̂j2(t, ε)) = `j,2(t, ε)− (t− j + 3)ε−1 log ε−1 → log

((
1− B

E

)
C

B
A+ F

)
,

which is consistent with L̂j2(t) =
(

1− Y j−1
1 (t−1)

Y j1 (t)

)
Y j−1

1 (t)

Y j−1
1 (t−1)

Y j
2 (t− 1) + Y j−1

2 (t− 1). Indeed,

one checks that

L̂j2(t) = L̂j2(t− 1)ajt
L̂j1(t− 1)L̂j−1

1 (t)

L̂j−1
1 (t− 1)L̂j1(t)

+ L̂j−1
2 (t− 1)

= L̂j2(t− 1)
L̂j1(t)− L̂j−1

1 (t− 1)

L̂j1(t− 1)

L̂j1(t− 1)L̂j−1
1 (t)

L̂j−1
1 (t− 1)L̂j1(t)

+ L̂j−1
2 (t− 1)

= L̂j2(t− 1)

(
1− L̂j−1

1 (t− 1)

L̂j1(t)

)
L̂j−1

1 (t)

L̂j−1
1 (t− 1)

+ L̂j−1
2 (t− 1).

k-th edge from the left for k > 2.

a) Start with assuming that j = k, t = 1. We have `k,k(1, ε) = `k−1,k−1(1, ε) + a jump m

distributed according to ϕq,akα1,0(m | ∞). By Lemma 8.15,

log(L̂kk(1))− log(L̂k−1
k−1(1)) = log ε−1 −mε→ log Γ,

where Γ = ak1 is an independent random variable distributed according to Gamma(θk+ θ̂1),

which is consistent with L̂kk(1) = ak1Y
k−1
k−1 (1).

b) Let j > k, t = j − k + 1. We have `j,k(j − k + 1, ε) = m1 + m2, where m1 is an

independent move distributed according to ϕq,ajαj−k+1,0
(m1 | `j−1,k(j−k, ε)), and m2 is the

push from the (k− 1)-st particle from the left on the (j − 1)-st level distributed according
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to

ϕ
q−1,q

`j−1,k−1(j−k+1,ε)
,q
`j−1,k(j−k)(`j−1,k(j − k, ε)−m1 −m2 | `j−1,k(j − k, ε)−m1).

Condition on

`j−1,k−1(j − k + 1, ε) = (k − 1)ε−1 log ε−1 − ε−1 logE(ε), so Y j−1
k−1 (j − k + 1) = E;

`j−1,k(j − k, ε) = kε−1 log ε−1 − ε−1 logF (ε), so Y j−1
k (j − k) = F .

By Lemma 8.15, log ε−1 − m1ε → log Γ, where Γ = ajj−k+1 is an independent random

variable distributed according to Gamma(θj + θ̂j−k+1). By Lemma 8.17,

log(L̂jk(j−k+1, ε)) = k log ε−1−`j,k(j−k+1, ε)ε→ logF +log

(
1 +

EΓ

F

)
= log(F +EΓ),

which is consistent with Y j
k (j − k + 1) = Y j−1

k (j − k) + ajj−k+1Y
j−1
k−1 (j − k + 1).

c) Assume j = k, t ≥ k. Condition on (for 1 ≤ i ≤ k − 1)

`k−1,i(t− 1, ε) = (t− k + 2i− 1)ε−1 log ε−1 − ε−1 logBi(ε), so Y k−1
i (t− 1) = Bi;

`k−1,i(t, ε) = (t− k + 2i)ε−1 log ε−1 − ε−1 logCi(ε), so Y k−1
i (t) = Ci;

`k,i(t− 1, ε) = (t− k + 2i− 2)ε−1 log ε−1 − ε−1 logDi(ε), so Y k
i (t− 1) = Di;

`k,i(t, ε) = (t− k + 2i− 1)ε−1 log ε−1 − ε−1 logEi(ε), so Y k
i (t) = Ei;

By Lemma 8.18, the independent move of the rightmost particle on the k-th level times

ε converges to 0, while the push from the previous particles times ε and minus log ε−1

converges to

− log

(∏k−1
i=2 Di

∏k−1
i=1 Ci∏k−1

i=2 Ei
∏k−1

i=1 Bi

(
1− B1

E1

))
,
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which is consistent with

Y k
k (t) = L̂kk(t− 1)

∏k−1
i=1 Di

∏k−1
i=1 Ci∏k−1

i=1 Ei
∏k−1

i=1 Bi

· E1 − B1

D1

.

For t = k we take D1 = 1.

d) Let j = k, k > t > 1. Make the same conditioning as in the previous part, but with

different ranges of indices: k − t+ 1 ≤ i ≤ k − 1 for Di, Ei, and k − t ≤ i ≤ k − 1 for Bi,

Ci. Take Bk−t = Dk−t+1 = 1. The independent move of the rightmost particle on the k-th

level times ε converges to 0, while the push from the previous particles times ε and minus

log ε−1 converges to

− log

(∏k−1
i=k−t+1 Di

∏k−1
i=k−tCi∏k−1

i=k−t+1 Ei
∏k−1

i=k−tBi

akt

)
,

which is consistent with

Y k
k (t) = L̂kk(t− 1)

∏k−1
i=k−t+1 Di

∏k−1
i=k−t+1 Ci∏k−1

i=k−t+1 Ei
∏k−1

i=k−t+1 Bi

(Ek−t+1 − Bk−t+1).

e) Let j > k, t ≥ j. Condition on

`j−1,i(t− 1, ε) = (t− j + 2i− 1)ε−1 log ε−1 − ε−1 logBi(ε), so Y j−1
i (t− 1) = Bi for 1 ≤ i ≤ k;

`j−1,i(t, ε) = (t− j + 2i)ε−1 log ε−1 − ε−1 logCi(ε), so Y j−1
i (t) = Ci for 1 ≤ i ≤ k − 1;

`j,i(t− 1, ε) = (t− j + 2i− 2)ε−1 log ε−1 − ε−1 logDi(ε), so Y j
i (t− 1) = Di for 1 ≤ i ≤ k;

`j,i(t, ε) = (t− j + 2i− 1)ε−1 log ε−1 − ε−1 logEi(ε), so Y j
i (t) = Ei for 1 ≤ i ≤ k − 1.

The independent move of the k-th particle from the left on the j-th level times ε converges

to 0. Denote by m1 the distance from this particle to `j−1,k(t − 1, ε) after the push from

the (k − 1)-st particle from the left on the (j − 1)-st level. Let m2 be this distance after
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pushes from other particles. By Lemma 8.17, m1ε→ log
(

1 + Ck−1Dk
Bk−1Bk

)
. By Lemma 8.19,

m2ε→ log

(
1 +

Ck−1Dk

Bk−1Bk

∏k−1
i=2 Di

∏k−2
i=1 Ci∏k−1

i=2 Ei
∏k−2

i=1 Bi

(
1− B1

E1

))
.

This is consistent with

L̂jk(t) = Bk + Y j
k (t− 1)

∏k−1
i=1 Di

∏k−1
i=1 Ci∏k−1

i=1 Ei
∏k−1

i=1 Bi

E1 − B1

D1

.

f) Finally, assume that j > k, j > t > j − k + 1. Make the same conditioning as in the

previous part, but with different ranges of indices: j − t + 1 ≤ i ≤ k for Di, Dj−t+1 = 1,

j − t + 1 ≤ i ≤ k − 1 for Ei, j − t ≤ i ≤ k for Bi, Bj−t = 1, and j − t ≤ i ≤ k − 1 for Ci.

The independent move of the k-th particle from the left on the j-th level times ε converges

to 0. Denote by m1 the distance from this particle to `j−1,k(t − 1, ε) after the push from

the (k − 1)-st particle from the left on the (j − 1)-st level. Let m2 be this distance after

pushes from other particles. By Lemma 8.17, m1ε→ log
(

1 + Ck−1Dk
Bk−1Bk

)
. By lemma 8.19,

m2ε→ log

(
1 +

Ck−1Dk

Bk−1Bk

∏k−1
i=j−t+1 Di

∏k−2
i=j−tCi∏k−1

i=j−t+1 Ei
∏k−2

i=j−tBi

ajt

)
.

This is consistent with

L̂jk(t) = Bk + Y j
k (t− 1)

∏k−1
i=j−t+1 Di

∏k−1
i=j−t+1 Ci∏k−1

i=j−t+1 Ei
∏k−1

i=j−t+1 Bi

(Ej−t+1 − Bj−t+1).

This completes the proof of Theorem 8.8.
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