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Abstract 

Cooperation is abundant in the world around us, spanning all levels of biological and social 

organisation. Yet the existence and maintenance of cooperation is puzzling from an evolutionary 

perspective because the costs borne to cooperating individuals put them at an evolutionary 

disadvantage. We thus require an understanding of mechanisms and institutions that can enable 

cooperation to thrive and be maintained. In this dissertation, I discuss three issues that have 

presented, or currently present, a challenge to the sustenance of human cooperation. The first 

chapter addresses an issue of much contemporary debate – inequality. I ask how the well-

documented, widespread lack of knowledge of income inequality in society affects the use of 

costly punishment and costly reward in maintaining public cooperation. When income inequality 

in a group is not known, the poorest group members are punished (for their low absolute 

contributions) while the richest are rewarded (for their high absolute contributions). Conversely, 

when income inequality is revealed, this outcome reverses: the poorest are rewarded (for their high 

percentage of income contributed) and the richest are punished (for their low percentage 

contributed). In my next dissertation chapter, I turn to study the emergence of large-scale 

cooperation. How can cooperation arise and remain stable in large groups? Although it has been 

argued that the standard reciprocity mechanism weakens in large groups, a simple, scalable 
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intervention—dubbed “local-to-global” reciprocity—successfully maintains public cooperation in 

groups orders of magnitude larger than previously studied. Local-to-global reciprocity works to 

maintain group-level cooperation because individuals withhold cooperation from defectors in 

pairwise interactions as a form of punishment. In the last chapter, I investigate how we can 

cooperate with future generations: people today face the challenge that they must pay the cost of 

cooperation now to benefit people in the future who cannot reciprocate their actions. When people 

decide individually, the renewable resource quickly depletes leaving future generations empty-

handed. When decisions today are made by majority vote, however, the resource is sustained for 

many generations. Voting works because it allows a cooperative majority to restrain a minority of 

present-day defectors.  
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Chapter 1.  

Introduction 

From microbes to humans, cooperation is key to evolutionary success across all levels of biological 

organisation (Nowak 2006a; Nowak 2006b). Cooperation means incurring a personal cost to 

provide a benefit to someone else. This poses a challenge for evolutionary biologists to explain the 

emergence of cooperation in the face of natural selection, the selfish machinery of evolution: 

natural selection increases the frequency of successful strategies while unsuccessful ones die out. 

Cooperation, in its pursuit to help others at an individual cost, is thus not favoured by natural 

selection.  

And yet cooperation clearly abounds in the natural world: it ranges from bacteria and fish 

to ants and birds in the non-primate world, it is supremely prevalent in monkeys and apes, and it 

is the foundation upon which the lives and societies of humans are built. To explain the evolution 

of cooperation, five rules (or mechanisms) have been proposed and tested experimentally (Nowak 

2006b; Dal Bo 2005; Wedekind and Milinski 2000; Rand et al. 2014): direct reciprocity, indirect 

reciprocity, spatial selection, group selection, and kin selection. Although these mechanisms have 

been instrumental for our understanding of cooperative behaviour in humans and others species, 

there remains plenty to be explained. This dissertation, focused on human cooperation, aims to fill 

a gap in our understanding of “challenging” circumstances for cooperation.  

 Here, I discuss three major challenges for cooperation. These challenges are merely three 

vignettes pertaining to the human experience across its evolutionary history to the present day. The 

challenges discussed here are the effects of inequality in resources upon cooperation, the 
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emergence of large-scale cooperation, and the sustainability of renewable resources for future 

generations to come. While each of these vignettes has posed a challenge to human cooperation 

time and again, I believe they can be classified, if only suggestively, as particularly crucial issues 

that we face today, have faced in the past, or will face in the future. In keeping with this analogy, 

the first chapter investigates a particularly relevant contemporary issue—inequality—and its 

consequences on costly punishment and costly reward; the next chapter looks at the emergence of 

large-scale cooperation, an issue particularly pertaining to early human societies; and the last 

chapter asks what it takes to cooperate with the future. 

In addressing these challenges, I combine a theoretical approach using classical and 

evolutionary game theory with behavioural human experiments. On the one hand, I show that we 

can use behavioural experiments to test the theoretical predictions generated by previously 

proposed models as well as our own models. Classical (or rational) game theory does not always 

predict human behaviour well (Kahneman 2003; Ariely 2008; Camerer and Fehr 2006); in fact, 

much of our evidence suggests that an evolutionary, or behavioural, lens can be a more appropriate 

description of human behaviour in our experiments. The experiments described in Chapter 3 are 

examples of work deriving from, and testing, evolutionary theory; Appendix A introduces a new 

theoretical evolutionary framework to stimulate future experimental research. On the other hand, 

these behavioural experiments in turn feed back into the theoretical literature, prompting the 

creation of new models and predictions for future research. Chapters 2 and 4 present such 

experiments where new models will be generated from the empirical evidence. 

Chapter 2, entitled Punishing the poor and rewarding the rich, is a behavioural experiment 

studying the effects of visibility of inequality on cooperation, punishment, and reward. Inequality, 

and the accumulation of wealth across generations, is hardly a new phenomenon, and dates back 
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to early agricultural societies (Mulder et al. 2009). However, many societies have experienced a 

particularly strong increase in inequality since the industrialisation era and again since the 1970s, 

and nowhere (in the Global North) was this increase more pronounced than in the United States 

(Atkinson and Piketty 2007). Recent research suggests, however, that most people in the U.S. and 

elsewhere are largely unaware of the extent of inequality in their country (Norton and Ariely 2011). 

What would happen if this veil of ignorance were lifted? And what are the consequences right now 

of this “invisible” inequality? We conducted repeated Public Goods Games (PGGs) with the 

possibility of costly punishment, reward, or both after each round. Each participant in a group of 

five was at the start of the experiment assigned to a place in an income distribution that was derived 

from the most recent U.S. income distribution by quintiles. We manipulated whether or not 

participants in our experiment knew the income distribution, and observed participants’ 

contribution and sanctioning behaviour. When income was hidden, we found that participants 

punished the poor (for their low absolute contributions) and rewarded the rich (for their high 

absolute contributions). This reversed completely when incomes were revealed: the poor were 

rewarded (for their high percentage of income contributed) while the rich were punished (for their 

low percentage contributed). Importantly, revealing incomes had positive effects on sustaining 

contributions (especially from those with the greatest ability to give) and on reducing end-game 

inequality among participants. The research presented in Chapter 2 was conducted jointly with 

Gordon Kraft-Todd, David Rand, Martin Nowak and Michael Norton, and has not yet been 

published. Kraft-Todd, Norton and I planned the experiment; I performed the experiments, 

collected the data, and analysed the data; and Kraft-Todd, Rand, Norton, Nowak, and I wrote the 

paper.  
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In Chapter 3, entitled Preserving the global commons, I present a behavioural experiment 

that demonstrates how to sustain cooperation at any group size, small or large. At some point in 

the past, humans made an unprecedented leap from small-scale societies, in which a handful of 

people lived together in disparate tribes, to large-scale, agriculture-based and, more recently, 

industrialised societies covering the entire planet (Henrich et al. 2010). What made cooperation at 

this large scale possible? Some authors have argued that reciprocity-based mechanisms cannot 

explain the emergence of large-scale cooperation (Boyd and Richerson 1988): cooperation is after 

all no longer stable when interactions move from dyadic relationships to three or more people in a 

group (Grujić et al. 2012). What this line of argument fails to recognise, however, is that 

interactions in large groups can be—and, in fact, are in the real world—coupled with frequent 

dyadic interactions. For example, the neighbour who goes the extra mile to help out in a community 

project today is still your neighbour tomorrow: would you turn her away if she came asking for 

help the next day? Repeated interactions between pairs of individual allow for targeting reward at 

cooperators for good behaviour towards the group (and, conversely, for targeting punishment at 

defectors). Therefore, we designed a behavioural experiment, in which we manipulated the key 

aspect to sustaining cooperation in a large group – the ability to observe the contributions to the 

public good made by one’s neighbours. We coupled a repeated two-stage economic game: in the 

group contribution stage, all participants in our experiment could contribute in a large-scale PGG 

that benefitted everyone; in the pairwise cooperation stage, participants played a repeated 

Prisoner’s Dilemma (PD) with the same individuals (their “neighbours”) over the course of the 

experiment. In one of the largest public goods experiments to date (with over 1,000 people playing 

the same PGG), we found that contributions in the treatment condition, where participants could 

see their neighbours’ PGG contribution, were sustained over time, while contributions decayed 
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over time in the control condition, where participants did not know how much their neighbours 

contributed in the PGG. We further characterised the mechanism sustaining cooperation in the 

treatment condition: participants “punished” low-contributing neighbours by withholding 

cooperation from them in the PD, which subsequently led those neighbours to increase their PGG 

contributions in the future. The work presented in Chapter 3 was conducted jointly with Achim 

Hendriks, David Rand, and Martin Nowak, and has not yet been published. Rand, Nowak and I 

planned the study; Hendriks and I performed the experiments and collected the data; I performed 

the data analysis; and Rand, Nowak and I wrote the paper.  

Chapter 4, entitled Cooperating with the future, presents a behavioural experiment 

comparing mechanisms to successfully sustain a pool of resources between groups over time. 

Cooperating with the future requires making sacrifices today. However, unlike in other public 

goods games (Rand et al. 2009; Fehr and Gächter 2002; Ostrom 1990),  future generations cannot 

reciprocate our actions today. What mechanisms can maintain cooperation with the future? To 

answer this question, we devised a new economic game, called the “Intergenerational Goods 

Game” (IGG): a line-up of successive groups (generations) can each extract resources from the 

pool or leave something for the next group. If the group exhausts the pool beyond a (commonly 

known) threshold, the pool depletes completely and leaves all future generations empty-handed; 

otherwise it refills and the next group faces the same dilemma. When decisions were made 

individually, we found that most pools were destroyed quickly. This failure to cooperate with the 

future was driven by a minority of defectors who extracted far more than what was sustainable. To 

address this inefficiency, we introduced a social institution that has become a hallmark of many 

human societies today: democracy. When decisions were decided by median voting (Holcombe 

1989), where each individual in the acting generation proposed an amount to extract and the 
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median proposal was implemented for everyone, the resource was consistently sustained across 

many generations. What makes voting successful is (i) the ability of a majority of cooperators to 

restrain defectors and (ii) the reassurance for conditional cooperators (Fischbacher, Gächter, and 

Fehr 2001) that their efforts are not futile. The mechanisms that make voting work in the first place 

thus generated a new hypothesis: voting is only successful if it is binding for everyone. Indeed, we 

found that groups in which three out of five members voted on their decision while the other two 

made their decisions individually, were not able to sustain cooperation with the future. In fact, 

bootstrapping simulations based on our results demonstrate that “partial voting” does no better 

than no voting at all. Thus, for cooperation with the future to work effectively, decisions need to 

be binding and made as a collective. The work presented in Chapter 4 was conducted jointly with 

David Rand, Alexander Peysakhovich, and Martin Nowak, and was published in Nature in May 

2014. Rand, Peysakhovich, Nowak and I planned the study; I performed the experiments and 

collected the data; Rand and I analysed the data; and Rand, Peysakhovich, Nowak and I wrote the 

paper.  

Finally, I present an evolutionary game theoretic model of inequality in Appendix A, 

entitled Heterogeneity in background fitness acts as a suppressor of selection. This chapter is not 

focused on cooperation but instead looks at the spread of evolutionary strategies more generally. 

In particular, we seek to understand the effect of inequality, or heterogeneity, on fixation. While 

heterogeneity has been introduced to spatial structure, networks, and types of interactions, fitness 

advantages that are inherent to an individual (not an evolutionary strategy), or to a specific location 

used for breeding and reproduction, has not been considered. Combining an analytic Markov chain 

approach with agent-based evolutionary simulations, we introduced heterogeneity into the fitness 

function fi = bi + si where f is the net fitness of individual i which is made up of individual 
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background fitness b and the payoff derived from playing strategy s. We found that inequality in 

background fitness acts as a suppressor of new strategies in the population. In particular, we 

identified that, when a certain amount of wealth or resources is added to a population, the more 

unequal the distribution of allocated resources, the more selection is suppressed. We analytically 

calculated a strategy’s fixation probability under background heterogeneity in small populations. 

In addition, we found a simple analytical approximation that holds for small and medium-sized 

populations. The work in Appendix A was conducted jointly with Arne Traulsen and Martin 

Nowak, and was published in the Journal of Theoretical Biology in January 2014. Traulsen, 

Nowak, and I planned the project; Traulsen and I performed the analytical calculations; I 

conducted the agent-based simulations; and Traulsen, Nowak and I wrote the paper. 
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Chapter 2.  

Punishing the poor and rewarding the rich 

2.1 Main text 

Preferences for spending on public goods such as social programmes or the health care system are 

based, at least in part, on beliefs about income and wealth inequality (Alesina and Angeletos 2005; 

Charité, Fisman, and Kuziemko 2015; Durante, Putterman, and van der Weele 2014; Kuziemko et 

al. 2015). Yet recent cross-cultural evidence suggests that across the globe, many people are 

unaware of the true extent of inequality in their country (Norton and Ariely 2011; Kiatpongsan 

and Norton 2014; Davidai and Gilovich 2015).  

Here, we explore the implications of this lack of awareness of inequality, examining how 

hiding inequality affects societal outcomes and people’s behaviours towards the rich and the poor 

(relative to when inequality is revealed). We hypothesised that this lack of inequality information 

could have negative impacts on societal well-being: if people do not realise how little the poor 

have, and how much the rich have, they may be less sympathetic to low contributions from those 

who cannot afford to give more, and less likely to hold the rich to account for not contributing 

their “fair share.”  

To explore these predictions experimentally, we used a standard paradigm in experimental 

economics; an incentive-compatible, repeated public goods game (PGG) in groups of 5 players. In 

each of 10 rounds, every player was assigned an “income” and chose how much of that income to 

contribute to a common pool; all contributions were doubled and divided equally among the five 
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players (see Section 2.2.2 for more details about study design). We then showed each player the 

contributions of all other players (player IDs were shuffled every round), and gave each player the 

opportunity for costly sanctioning of all other players. In the punishment condition, participants 

could pay 1 unit to decrease any other participant’s payoff by 3 units; in the reward condition, 

participants could pay 1 unit to increase any other participant’s payoff by 3 units. Participants 

could spend up to 2 units on each other participant.  

Such sanctioning schemes have been widely used in previous work on cooperation (Fehr 

and Gächter 2002; Nikiforakis and Normann 2007; Rand et al. 2009; Sefton, Shupp, and Walker 

2007; Sutter, Haigner, and Kocher 2010; Gächter, Renner, and Sefton 2008). In many Western 

societies, results typically reveal that low contributors are punished, while high contributors are 

rewarded; anti-social punishment aimed at high contributors, on the other hand, is frequently 

observed in countries with a weak rule of law (Herrmann, Thöni, and Gächter 2008). In these 

studies, all players typically receive identical endowments in each round, and this equality is 

common knowledge to all players; thus the majority of these experiments, while highly 

informative regarding the maintenance of cooperation, shed little light on perceptions of, and 

reactions to, inequality.  

Recently, however, scholars have been investigating inequality in the provisioning of 

public goods. In these experiments, richer participants have been found to contribute less of their 

income than poorer ones, decreasing overall social efficiency (Buckley and Croson 2006; Isaac 

and Walker 1988; Keser et al. 2014; Keser, Markstädter, and Schmidt 2014). When punishment is 

introduced, participants punished others to express their preference for efficiency norms (everyone 

contributing their entire income) or relative contribution norms (everyone contributing the same 

relative share of their income), even when such behaviour led to reduction in average net earnings 
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(Reuben and Riedl 2013; Antinyan, Corazzini, and Neururer 2015; Gächter et al. 2014). Moreover, 

uncertainty around others’ actual contributions or incomes also elicited greater punishment 

(Ambrus and Ben Greiner 2012; Bornstein and Weisel 2010). (See Section 2.2.1.2 for details on 

previous literature.) 

Building on this previous research, we introduce three novel features to explore the impact 

of people’s recently demonstrated lack of knowledge regarding the distribution of income (Norton 

and Ariely 2011; Kiatpongsan and Norton 2014): (i) we experimentally vary whether the income 

distribution, as well as each participant’s specific income, is hidden or revealed to explore the 

causal effect of knowledge of inequality on behaviour toward the rich and poor; (ii) we use an 

income distribution that is extremely unequal (the actual United States distribution) to explore 

behaviour toward the rich and poor under conditions reflective of real-world inequality; and (iii) 

we allow participants to either punish, reward, or both punish and reward the poor and the rich to 

explore how these sanctions are utilised to address perceived inequity. Indeed, we expected 

sanctions to be crucial in addressing inequality and net payoffs. Absent sanctions, visibility of 

wealth inequality can actually increase inequality in social networks (Nishi et al. 2015). But in the 

presence of sanctions, we predicted that revealing incomes would be a solution, not an obstacle: 

when incomes are revealed, the ability to reward and punish allows participants to shape others’ 

future contributions and restore equity.    

Across both experiments, we used the United States pre-tax incomes by quintile to create 

incomes for the five players. In our first experiment, the top quintile participant received 55 units 

out of 100 units in the group (or 55% of all income), the next 19 units, the next 13 units, the next 

9 units, and the bottom quintile participant 4 units (Fig. 1a) (Congressional Budget Office 2007). 

Once assigned to an income level, participants received the same income each round for 10 rounds. 
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Figure 2.1. The income distribution in our game and the main experimental manipulation 

between the hidden and revealed conditions. a Each player in a group of five was randomly 

assigned to a position in an income distribution. In the first experiment, we used the 2007 U.S. 

pre-tax income distribution (Congressional Budget Office 2007): in each of ten rounds, the top 

quintile participant received 55 units, while the bottom quintile player received 4 units. b When 

making decisions to punish and reward, participants in the hidden condition saw their own income 

and the sum of all incomes. c In the revealed condition, participants viewed all players’ incomes.  

 

The design of our first experiment was a 2 (punishment versus reward) X 2 (hidden versus 

revealed) between-participants design (N = 600). In the hidden condition, players had no 

information about the incomes of the others in their group (Fig. 1b): they made contributions, 

viewed others’ contributions, and decided to punish or reward based only on the total amounts 

contributed by other players. In the revealed condition, in contrast, participants were shown the 

income of each player as they made their decisions to punish or reward – allowing them to base 

their decisions not only on the total amount contributed, but also the percentage of available 

income that each player chose to contribute (Fig. 1c). For example, a player who contributed just 
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three units in the hidden condition may look stingy; learning that this player had only four total 

units in the revealed condition may dramatically alter perceptions of their contribution. 

We expected that in the hidden condition, participants would generally view the (low total) 

contributions of bottom quintile players unfavourably, inducing punishment, and the (high total) 

contribution of the top quintile players favourably, inducing reward. In contrast, we expected that 

in the revealed condition, participants would generally view the (high percentage) contributions 

of bottom quintile players favourably, inducing reward, and the (low percentage) contribution of 

the top quintile players unfavourably, inducing punishment. 

We find that, indeed, participants in the hidden condition rewarded richer participants more 

(coeff = 0.636, p < 0.001), whereas those in the revealed condition rewarded poorer participants 

more (coeff = -0.720, p < 0.001; interaction between income and revealed dummy, coeff = -1.356, 

p < 0.001; Figure 2.2 and Table 2.1). We observe a mirror image of these results for decisions to 

punish: participants in the hidden condition punished poorer participants more (coeff = -0.282, p 

= 0.042), whereas those in the revealed condition punished richer subjects more (coeff = 0.692, p 

< 0.001; interaction between income and revealed dummy, coeff = 0.974, p < 0.001; Figure 2.2 

and Table 2.3). Thus, knowledge about economic inequality had a profound effect on sanctioning. 

(Unless otherwise noted, all statistical analyses use linear regression with standard errors clustered 

on group, taking income quintile as a continuous predictor variable; note that using log-

transformed income instead of income quintile as a predictor generates qualitatively equivalent 

results, see Section 2.2.2.)  
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Figure 2.2. Amount of received reward (top panels) and punishment (bottom panels) depends 

on income quintile and whether income was hidden (left panels) or revealed (right panels). a 

Participants rewarded higher income participants more in the hidden condition, but b less in the 

revealed condition. c Punishment behaviour is a mirror image of reward: participants punished 

poorer participants more in the hidden condition, while d punishing richer participants more in 

the revealed condition.  
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Figure 2.3. Who contributes more? a In the hidden condition, only absolute contributions could 

be assessed, such that richer participants appeared to contribute more. b In the revealed condition, 

where participants could view contributions relative to income, it was clear that lower income 

participants contributed a larger fraction of their income.  

 

Why did players sanction so differently in the hidden and revealed conditions? Across both 

conditions, richer players contributed larger total amounts (hidden: coeff = 3.172, p < 0.001; 

revealed: coeff = 4.734, p < 0.001; Table 2.5), but lower percentages of their income (hidden: 

coeff = -0.098, p < 0.001; revealed: coeff = -0.058, p < 0.001; Table 2.6) (Figure 2.3). Collapsing 

across conditions, top quintile participants contributed 20.49 out of 55 units (or 37% of their 

income) whereas bottom quintile participants contributed 2.83 out of 4 units (or 71% of their 

income). The pattern of sanctioning we observe therefore follows naturally if sanctions were 

assigned based on percentage of income contributed in the revealed condition but total amount 

contributed in the hidden condition. 
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contributed as the independent variable; predicting punishment, coeff = -4.664, p < 0.001, Figure 

2.4a; predicting reward, coeff = 6.320, p < 0.001, Figure 2.4b; Table 2.10), more so than on the 

absolute amount contributed (if anything, absolute contribution predicts the opposite direction 

from the overall observed pattern: using log-transformed total contribution as the independent 

variable; predicting punishment, higher absolute contributors are punished more, coeff = 1.365, p 

= 0.003; predicting reward, higher absolute contributors are rewarded marginally less, coeff = 

-0.980, p = 0.080; Table 2.10). In fact, in the revealed condition, participants not only rewarded 

and punished based on percentage contributed; they also targeted the richest players in particular, 

even when they contributed the same relative amount of their income (using percentage 

contributed and income as the independent variables; predicting punishment, coeff on quintile = 

0.563, p < 0.001; predicting reward, coeff on quintile = -0.309, p = 0.031; Tables 2.11 and 2.12). 

Thus, sanctions were used partly to encourage future contributions from the rich and partly to 

reduce the wealth gap in the group. 

In the hidden condition, conversely, where only total contribution amounts were known, 

sanctioning was based on total amount contributed (using log-transformed total contribution as the 

independent variable; predicting punishment, coeff = -1.863, p = 0.019, Figure 2.4c; predicting 

reward, coeff = 4.700, p < 0.001, Figure 2.4d; Table 2.9), but not on percentage of income 

contributed (using percentage contributed as the independent variable; predicting punishment, 

coeff = 0.030, p = 0.954; predicting reward, coeff = -0.216, p = 0.677; Table 2.9). 
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Figure 2.4. Received punishment and reward depends on percentage of income contributed in 

the revealed condition (top panels) and on absolute income contributed in the hidden condition 

(bottom panels). a,b When incomes were revealed, participants who contributed a higher 

percentage of their income were a punished less (p < 0.001) and b rewarded more (p < 0.001). 

c,d Conversely, when incomes were hidden, participants who contributed a higher absolute 

amount were c punished less (p = 0.042) and d rewarded more (p < 0.001). Bubble size is 

proportional to the fraction of corresponding participants. 
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We next consider the consequences of income transparency on total contributions. Overall, 

significantly more units were contributed in the revealed condition compared to the hidden 

condition (coeff = 1.745, p = 0.002; Table 2.15). Participants in the bottom (poorest) through fourth 

(second richest) quintiles maintained (or even increased) their contribution levels over the ten 

rounds in both the hidden and revealed conditions (no significant change in contribution over 

round, p = 1.00 bonferroni-corrected for all quintile-condition pairs, with the exception of the 

poorest quintile in the hidden condition, who actually increased over time: coeff = 0.047, p = 0.04 

corrected; Tables 2.17 and 2.18). However, although participants in the top (richest) quintile in the 

revealed condition also continued to contribute over time (coeff = -0.382, p = 1.000 corrected), 

top quintile players in the hidden condition decreased their contributions over the ten rounds (coeff 

= -1.077, p < 0.001 corrected) (Tables 2.17 and 2.18). Thus, in the hidden condition, sanctions 

were less effective at maintaining contributions among those with the greatest ability to contribute 

to the public good.  

Participants in our initial experiment were assigned their income randomly. However, 

incomes in the real world are not just the product of chance, but also of effort. In a second 

experiment, we assigned income based on participants’ performance in an individual effort task 

before playing the public goods game. The best-performing participant in a group earned the 

highest income, the 2nd-best performing participant earned the 2nd-highest income, and so on.  

In addition, we further increased the external validity of our results. We told participants 

(who had been recruited exclusively from the U.S.) that the income distribution used in the game 

was derived from the U.S. income distribution. Thus, if participants had an accurate estimate of 

U.S. inequality, they would be less likely to ‘punish the poor’ in the hidden condition. In addition, 

we gave participants a wider range of simultaneous actions towards other participants in the second 
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experiment: they could choose to reward or punish different participants in each round, paying 2 

unit to increase or decrease another participant’s payoff by 6 units, respectively. (For details about 

experiment 2, see Section 2.2.2.2.) 

We found qualitatively similar results in our second experiment: participants continued to 

reward the rich and punish the poor in the hidden condition (predicting number of units received: 

coeff = 0.053, p = 0.042), while this trend reversed completely in the revealed condition (coeff = 

-0.171, p < 0.001; interaction between income and revealed dummy: coeff = -0.225, p < 0.001; 

Table 2.20). Across conditions, richer participants contributed more in absolute terms (coeff = 

3.979, p < 0.001), but less as a percentage of their income (coeff = -0.078, p < 0.001), than poorer 

participants, a pattern linked to reward and punishment decisions: higher absolute contributions 

received more reward in the hidden condition (coeff = 0.571, p < 0.001, Table 2.26), but higher 

percentage of income contributed was more rewarded in the revealed condition (coeff = 1.775, p 

< 0.001, Table 2.26). Even when incomes were earned and when participants were informed that 

the income distribution was reflective of their own country’s distribution, participants continued 

to punish the poor and reward the rich when the income distribution was hidden, but reward the 

poor and punish the rich when incomes were revealed.  

In sum, revealing inequality had substantial effects on people’s decisions to reward or 

punish others, and on total contributions to the public good. Participants were more likely to punish 

poorer participants and reward richer participants when inequality was hidden; when income was 

revealed, participants became more sensitive to people’s ability to contribute – leading them to 

punish the rich and reward the poor. 

While income and wealth heterogeneity has long fascinated theorists and experimentalists 

alike, only recently have the effects of high levels of inequality representative of many real 
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countries been considered (Olson 1965; Baland and Platteau 1997; Dieckmann and Kun 2013; 

Hauser, Traulsen, and Nowak 2014). Here, we have shown experimentally that even high levels 

of inequality need not hinder contributions to the public good (Olson 1965), but lack of awareness 

of inequality can impede the ability of sanctions to sustain the commons – especially in soliciting 

contributions from the rich. 

While our income distribution was drawn from the real world, our paradigm necessarily 

offers a stylised examination of the impact of inequality on the public good. For example, we 

restricted the amount that all participants could pay to punish or reward other players to 2 units per 

player. The real world may not always provide such an upper bound: given their greater resources, 

the rich have much greater ability to inflict harm or bestow benefits on others. Still, there are some 

real-world situations in which all decisions count equally: for instance, casting a vote in democratic 

elections carries equal weight despite differences in income. 

Revealing incomes decreased inequality and increased total contributions in our 

experimental groups, with implications for policymakers concerned with the public good. While 

revealing all citizens’ incomes may seem challenging to implement—or even hard to imagine—in 

some countries, it is common practice in others. For example, the Norwegian government operates 

an online database which contains detailed information about all citizens’ income, wealth, and tax 

contributions (Norwegian Tax Administration 2015). Notably, Norwegians also have very high 

tax morale (I. Lago-Peñas and Lago-Peñas 2010); while anecdotal, this example suggests that 

revealing incomes can be associated with increased support for the public good – mirroring our 

results. In a world of income transparency, the “haves” may become more generous and the “have-

nots” less punished, with positive implications for the common good. 
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2.2 Supporting figures and data 

2.2.1. Motivation and relation to previous work 

2.2.1.1 Research motivation  

The central observation motivating the present work is that people, both in the U.S. and in 39 other 

countries, systematically underestimate the extent of inequality in their country (Norton and Ariely 

2011; Kiatpongsan and Norton 2014). We hypothesised that this misinformation regarding 

inequality can have major negative impacts on societal well-being: if people do not realise how 

little the poor have, and how much the rich have, they may be less sympathetic to low contributions 

from those who cannot afford to give more, and less able to hold the rich to account for not 

contributing their “fair share”.  

To explore these societal impacts experimentally, we used the standard paradigm from 

experimental economics for studying group social interactions: the public goods game (PGG). In 

particular, we built on the large body of prior work demonstrating that people tend to punish 

players who do not contribute in the PGG, and reward players who do (Fehr and Gächter 2000; 

Fehr and Gächter 2002; Rand et al. 2009; Sefton, Shupp, and Walker 2007; Sutter, Haigner, and 

Kocher 2010; Herrmann, Thöni, and Gächter 2008; Gächter, Renner, and Sefton 2008). (There 

are, however, cultural differences across countries: while punishment of low contributors is the 

norm in most Western countries, so-called ‘anti-social’ punishment aimed at high contributors is 

observed at high frequency in countries with a weak rule of law (Herrmann, Thöni, and Gächter 

2008).) While most prior PGG studies have focused on groups where incomes were equally 

distributed, several recent studies have begun to explore how inequality affects contribution and 

sanctioning behaviour (Buckley and Croson 2006; Reuben and Riedl 2013) (see Section 2.2.1.2 

for more details). 
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In the current paper, we add to our understanding of inequality by incorporating three key 

features of inequality that have received little prior attention. First, in most prior work, the income 

distribution was common knowledge among all PGG groups members. Thus, little is known about 

our central question of the consequences of the empirical observation that people do not have an 

accurate understanding of the level of inequality (Norton and Ariely 2011; Kiatpongsan and 

Norton 2014). To that end, we experimentally manipulate when the income distribution is known 

or hidden.  

Secondly, most prior studies focus on the impact of levels of inequality that were much 

lower than what is observed outside the laboratory. The Gini index is the most common measure 

of inequality (Allison 1978). Using the most recent country-level data from the World Bank 

(World Bank, n.d.), we found that globally, the Gini index ranges between 0.25 and 0.66. Almost 

no prior studies used endowments that reflected that level of inequality: while 90% of all countries 

had Gini indices higher than 0.29, 91% of previous PGG experiments we surveyed had a Gini 

index below 0.29. To better reflect the reality of income inequality, we used PGG endowments 

that match the actual U.S. income quintiles from 2007 having a Gini index of 0.440 (Experiment 

1), and 2013 having a Gini index of 0.444 (Experiment 2). 

Third, most prior studies have randomly assigned subjects to receive higher or lower 

incomes. Yet in reality, variation in income is (at least in part) determined by non-random factors 

such as effort. Thus we also explore the impact of earned vs random inequality, and how this 

interacts with knowledge about the distribution of incomes. 

Finally, while most prior experiments have either not allowed for sanctioning, or have 

focused exclusively on punishment, we examine both costly peer punishment and costly peer 
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rewarding. Rewards (e.g. “positive” sanctions) play a key role in much of human social life, and 

thus understanding whether inequality impacts rewards differently from punishment is important.  

2.2.1.2 Previous research  

The vast majority of prior literature using public goods game has focused on equally-endowed 

participants. In recent years, however, economists and psychologists have begun to study the 

effects of endowment (or income) inequality on cooperation. Here we provide a brief survey of 

prior literature on inequality and public goods. (While we focus on income inequality, we note that 

inequality can also be induced by varying the marginal per capita return (Fisher et al. 1995; Reuben 

and Riedl 2008; Cardenas, Stranlund, and Willis 2002), show-up fees for participants (Anderson, 

Mellor, and Milyo 2008), or marginal abatement costs (Brick and Visser 2012), or by taking 

advantage of endogenous variation in participants’ real-world wealth (Cardenas 2003; Cardenas 

2007).) 

One of the most consistent findings has been that exogenous inequality in incomes leads 

to lower levels of overall contributions in a group (Isaac and Walker 1988; Buckley and Croson 

2006; Keser et al. 2014; Cherry, Kroll, and Shogren 2005). The reduction in contributions is driven 

primarily by richer participants contributing less so as to match the level of contributions of the 

poorer participants (Buckley and Croson 2006). Consequently, wealthier participants contribute 

less relative to their income than do poorer participants (Buckley and Croson 2006; Chan et al. 

1996; Keser et al. 2014).  

Several researchers have aimed to introduce interventions to increase cooperation between 

unequal group members. Institutional fines for low contributors (Brick and Visser 2012), minimum 

contribution requirements (Keser, Markstädter, and Schmidt 2014), communication (Chan et al. 

1999; Hackett, Schlager, and Walker 1994; Brick and Visser 2012) and punishment (Bornstein 
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and Weisel 2010; Reuben and Riedl 2013; Antinyan, Corazzini, and Neururer 2015) can play an 

important role in sustaining contributions.  

Of particular relevance for the current paper, Reuben and Riedl (2013) demonstrated that 

punishment can stabilise contributions from participants with different incomes. In their 

experiments, participants used punishment in order to enforce both efficiency norms (everyone 

contributing their entire income) as well as relative contribution norms (everyone contributing the 

same fraction of their income); Carpenter and Matthews (2009) found similar results among 

equally-endowed players (Carpenter and Matthews 2009). Similarly, Antinyan et al. (2013) and 

Bornstein and Weisel (2010) showed that punishment was effective in sustaining contributions in 

unequal groups under fully informed condition. (Note that while Bornstein and Weisel (2010) also 

investigate a situation in which players’ incomes in each round were not observable, the 

distribution of incomes is always known in their experiment, and each subject typically has 

experience receiving each possible level of income.)  

Importantly, research using PGGs without inequality shows that incomplete information 

about contributions can lead to increased spending on punishment (Ambrus and Ben Greiner 2012) 

and lower average payoffs (Grechenig and Nicklisch 2010). Thus, it seems likely that prior 

conclusions about punishment and inequality may change when the income distribution is 

unknown.  

Furthermore, some research indicates that the origin of incomes can matter. Most studies 

randomly assign incomes to participants. However, various theories of fairness suggest that 

earning incomes by exerting individual effort can lead to more acceptance of inequality. The 

experimental literature has led to mixed results on this conjecture: Van Dijk and Wilke (1994) 

found that participants who were made to believe that their group members earned more money 
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by exerting more effort were more likely to contribute more to the public good, and vice versa 

(Van Dijk and Wilke 1994).  

In contrast, Cherry et al. (2005), Hofmeyr et al. (2007) and Antinyan et al. (2015) found 

that public goods contributions were not significantly different when endowments were earned or 

received as a ‘windfall’ (Cherry, Kroll, and Shogren 2005; Hofmeyr, Burns, and Visser 2007; 

Antinyan, Corazzini, and Neururer 2015). In some cases, punishment towards low contributors 

can be reduced when income was earned (Antinyan, Corazzini, and Neururer 2015). Thus, 

understanding how earned incomes affects cooperation and sanctioning, and how it might interact 

with (lack of) knowledge of the income distribution, remains an open question. 

 

2.2.2. Methods 

2.2.2.1 Data collection on Amazon Mechanical Turk 

We recruited U.S. residents to participate using the online labour market Amazon Mechanical Turk 

(AMT). AMT is an online market place in which employers can pay users for completing short 

tasks (generally about 10 minutes) – usually referred to as Human Intelligence Tasks (HITs) – for 

a relatively small payment (generally less than a $1). Workers who have been recruited on AMT 

receive a baseline payment and can be paid a bonus depending on their performance in the task. 

This setup lends itself to incentivised economic experiments: the baseline payment acts as the 

‘show up’ fee and the bonus payment may derive from the workers’ behaviour in the economic 

game and/or other tasks throughout the experiment. 

The sample of recruited participants on AMT has been shown to be more diverse and more 

nationally representative than subject pools at most research universities (Buhrmester, Kwang, and 

Gosling 2011). Numerous studies have been carried out to validate results collected using AMT 
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(Berinsky, Huber, and Lenz 2012; Crump, McDonnell, and Gureckis 2013; Paolacci and Chandler 

2014). Of particular relevance are studies showing quantitative agreement between play in 

economic games conducted on AMT and in the physical laboratory (Mason and Suri 2011; Horton, 

Rand, and Zeckhauser 2011; Amir et al. 2012; Rand, Greene, and Nowak 2012). 

All data was collected using Software Platform for Human Interaction Experiments 

(SoPHIE) (Hendriks 2012). Experiment 1 was carried out in summer 2014, while Experiment 2 

was conducted in summer 2015. SoPHIE is a novel experimental platform that enables participants 

to interact with one another in real time. Participants were recruited on the AMT website, were 

grouped together, and then made decisions simultaneously; their decisions were exchanged 

through an external server provided by SoPHIE Labs (www.sophielabs.net).  

The experiments were approved by the Harvard University Committee on the Use of 

Human Subjects in Research. 

 

2.2.2.2 Basic flow of the experiments 

2.2.2.2.1 Experiment 1: ‘windfall’ incomes 

All participants earned a $1.50 showup fee and had the opportunity to earn additional bonus 

payments between $0.00 and $3.88, depending on the outcome of the game. Participants took part 

in the experiment through an online survey provided by SoPHIE Labs. After participants had read 

the experiment instructions (see Section 2.2.4), they had to pass a comprehension quiz about the 

rules of the game in order to partake in the actual experiment. Participants who did not pass the 

comprehension quiz on the first attempt were given the chance to try again; no participants were 

thus removed from the experiment. After participants passed all comprehension questions, they 

waited for up to 10 minutes in a designated online ‘waiting room.’ As soon as five participants had 
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arrived in the waiting room, the public goods game (PGG) started automatically. A step-by-step 

account from the participants’ perspective in each condition can be found in Section 2.2.4.  

We recruited at least 30 groups of five participants who completed the experiment in each 

condition (N = 600; including drop-out groups, N = 855). At the beginning of the game, participants 

were randomly assigned to a position in the income distribution. This implied that participants 

earned a ‘windfall’ endowment, which can in some cases affect contribution behaviour in public 

goods games (Van Dijk and Wilke 1994). In experiment 2, we show, however, that assigning 

incomes based on performance, instead of randomly assigning incomes, does not alter our reward 

and punishment results.  

The income distribution was common knowledge to all participants in the revealed 

condition, but not in the hidden condition. Across conditions, the actual distribution 

(Congressional Budget Office 2007) is the same: the participant with the highest income (referred 

to as top quintile player) earns 55 units per round, the second-highest earner 19 units, the middle 

participant 13 units, the second-lowest 9 units and the bottom quintile player 4 units. That is, the 

sum of income units distributed each round is 100 units, and this total is also known to all players 

in all conditions (see Section 2.2.4 for screenshots). Once incomes had been assigned, participants 

received the same income in each of the 10 rounds. 

The game lasted 10 rounds and each round consisted of two stages. Participants were given 

no information about the length of the game to avoid any end-round effects, as in prior work (Rand 

et al. 2009; Rand et al. 2014). In stage 1, participants were asked how many units they wanted to 

contribute to the public good. All contributed units were doubled and then split equally among all 

five players. In stage 2, participants were either participating in a punishment-game or a reward-

game. In the punishment game, each player could pay 1 unit to take away 3 units from another 
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player. In the reward game, conversely, players could pay 1 units to increase another player’s 

payoff by 3 units.  

Across conditions, we limited the number of units that could be spent on punishment and 

reward to 2 per target player. In addition, no participant could spend more than they had 

accumulated with their income and their earnings from stage 1. In other words, participants could 

spend up to 8 units per round on the other 4 players but if they had less than 8 units in their account, 

the upper bound of spending was their remaining endowment. To examine whether this upper 

bound could affect the decisions participants were able to make (e.g., consistently prevented them 

from punishing or rewarding), we examined all players’ payoffs after stage 1 across all conditions. 

We find that only 0.84% of the time did a participant have less than 8 units available, and the 

number of affected participants does not vary by condition (χ²(21) = 23.16, p = 0.34). Given the 

small number of incidences in which participants were constrained in their decisions to punish and 

reward, it is unlikely that they affect our results. 

At the end of each round, participants were informed about the payoff they earned. At the 

end of 10 rounds, participants filled out a short demographics survey. If at any time a participant 

became unresponsive (because they quit the game or lost their Internet connection), the remaining 

participants in the group were automatically moved to an ‘early exit’ screen. They were informed 

that a participant had left the game unexpectedly and thus the experiment could not be continued. 

All remaining participants were asked to fill out a questionnaire and earn a bonus of $1.00 to 

compensate them for their time spent on the study.  

Across all conditions, in 29.8% of groups, a participant dropped out before the end of the 

game (which is consistent with previous studies carried out on AMT, e.g. (Rand, Greene, and 

Nowak 2012)). Dropout rates did not vary between conditions (χ²(3) = 2.74, p = 0.433). In half of 
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the groups that dropped out, one or more participants did not respond within the time available to 

them (up to two minutes per decision stage). In the other half, one of the participants in each 

dropout group quit their browser or tab (either by choice or due to a failed Internet connection). 

Dropout rates did not differ significantly between quintiles (χ²(12) = 7.89, p = 0.793). The majority 

of dropouts (73.9%) occurred in the first half of the game and the time of dropout did not differ by 

quintile (χ² (21) = 23.123, p = 0.337).  

We further analysed participants’ likelihood of dropping out based on the average sum of 

contributions in the group or the rewards and punishment a participant received. Across conditions, 

the sum of contributions did not affect whether a participant finished the game (logistic regression 

using sum of a group’s contributions to predict finishing the game: coeff = 0.007, p = 0.340). There 

was not interaction between the sum of contributions and income visibility (logistic regression 

using sum of contributions interacted with revealed dummy: coeff = 0.008, p = 0.614).  

The amount of reward or punishment received did not affect a participant’s likelihood of 

finishing the game (logistic regression using sanctions received to predict finishing the game; 

reward: coeff = 0.023, p = 0.618; punishment: coeff = -0.048, p = 0.093). Income visibility did not 

affect dropout rates: the amount a participant was rewarded or punished did not significantly affect 

their chances of finishing the game (logistic regression using sanctions received interacted with 

revealed dummy; reward: coeff = 0.135, p = 0.101; punishment: coeff = -0.028, p = 0.600). 

In our main analysis, we include groups that did not finish the game. However, we found 

qualitatively similar results when we dropout groups are not included in the analysis. 

 



Chapter 2. Punishing the poor and rewarding the rich 

29 

2.2.2.2.2 Experiment 2: earned incomes 

All participants earned a $2.00 show-up fee and had the opportunity to earn an additional in bonus 

payments between $0.00 and $4.26 depending on the outcome of the game. Participants took part 

in the experiment through SoPHIE. The experiment consists of two phases. 

In phase 1, participants completed an individual task (Abeler et al. 2011). They were asked 

to count the number of 0s in a matrix randomly made up of 0s and 1s. The goal was to complete 

as many such matrices as possible within 2 minutes. Each time, after they submitted a solution, a 

new matrix was presented to them. Participants were not informed of how many matrices they had 

solved correctly. However, they were told that their performance mattered for their income in the 

upcoming group task. The best performing participant in the individual task was assigned the 

highest income level; the second-best performing participant received the second-highest level of 

income, and so on. Participants were fully informed in both conditions about the assignment 

procedure of incomes. (See Section 2.2.4 for screenshots of the instructions.) 

In phase 2, participants then read instructions about an economic game. After reading the 

instructions, the were asked to answer several comprehension questions. Once participants had 

correctly answered the comprehension questions, they waited for four other participants to arrive 

in the ‘waiting room’. As soon as five participants were ready, the began the repeated two-stage 

economic game comprising of a public goods stage and a sanctioning stage. 

We collected 30 groups of five participants who completed the game in each condition (N 

= 300; including dropout groups, N = 440). We excluded participants from experiment 1 from 

participating in experiment 2. While conceptually similar, the economic game in experiment 2 

differed from the economic game in experiment 1 in several ways. First, the income distribution 

used in experiment 2 was updated to reflect the latest U.S. census data (U.S. Census Bureau 2013): 
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the top quintile player received 51 units, the player in the next quintile 23 units, the middle-quintile 

player 15 units, the second-lowest player 8 units and the lowest earner 3 units (Figure 2.5). 

 

 

Figure 2.5. The income distribution used in experiment 2: the income quintiles were derived from 

the latest available U.S. income distribution (U.S. Census Bureau 2013). 

 

In addition, participants in experiment 2 knew that the income distribution used in this game 

represented the current income distribution of the United States. Unlike in experiment 1, 

participants thus had an implicit reference point, which they could use to make informed reward 

and punishment decisions assuming that their estimate of U.S. income inequality is accurate. 

Participants in experiment 1 were not given any hint about the distribution used and only knew 

that their incomes would be different from one another. Based on previous research (Norton and 

Ariely 2011), our prediction was that participants in experiment 2 would, however, misestimate 

the extent of U.S. inequality and it would thus qualitatively not alter the way in which people 

punished or rewarded.  

Furthermore, the reward and punishment conditions in experiment 2 were collapsed into 

one combined treatment: it was thus possible for participants to punish or reward in all conditions 

in experiment 2. Each player could choose not to pay any units and thus leave another player’s 

All#othersTop#Quintile

51%

49%
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payoff unaffected; or they could choose to pay 2 units to reduce another player’s by 6 units or pay 

2 units to increase another player’s by 6 units.  Participants could spend up to 8 units on all four 

other players or up to as much as they had earned in stage 1. Only 2.33% of the time a participant 

was restricted in punishing or rewarding their group members because they had less than 8 units 

available in stage 2, which did not vary by condition (χ²(9) = 12.532, p = 0.185).  

Finally, we adopted the standard infinite-game paradigm used in economics (Dal Bo 2005): 

participants were told that the game would last at least 8 rounds and each additional round would 

occur with a probability of 50% to avoid end-game effects (Dal Bo 2005; Rand et al. 2009). Due 

to a programming error, we did not collect demographic information from participants in 

experiments 2. However, since participants were randomly assigned to the hidden or revealed 

condition, there should not be any systematic variation in demographics across conditions. 

Furthermore, when we controlled for demographics in experiment 1, we found that it did not affect 

our results. 

Dropout rates in experiment 2 were comparable to those in experiment 1: 31.82% of groups 

did not finish the game in experiment 2. Dropout rates did not differ by condition (χ²(1) = 0.098, 

p = 0.755). Across quintiles, there was no variation in the rate of dropout (χ²(4) = 3.280, p = 0.512). 

The majority of dropouts (71.4%) occurred in the first five rounds of the game; and the time of 

dropout did not differ by condition (χ²(4) = 4.278, p = 0.370).  

The behavioural history of participants did, however, matter to whether a group finished 

the game in experiment 2. While the sum of contributions across both condition did not affect a 

participant’s likelihood of finishing (logistic regression using sum of group contributions to predict 

finishing the game: coeff = 0.013, p = 0.112), there was an interaction between the sum of 

contributions and income visibility: participants in the revealed condition were more likely to 
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finish the game, the more the group contributed to the common pool, while there was no effect of 

sum of contributions in the hidden condition (logistic regression using sum of contributions as IV 

to predict finishing the game: coeff = -0.014, p = 0.186; sum of contributions interacted with 

revealed dummy: coeff = 0.043, p = 0.004).  

The amount of reward or punishment participants received also affected their dropout rates 

in experiment 2. Across both conditions, participants were not significantly affected by rewards 

and punishment received (logistic regression using number of units received to predict finishing 

the game: coeff = 0.180, p = 0.094). However, a difference emerged by condition: whereas groups 

in the revealed condition were more likely to finish the game when they received more rewards, 

whereas there was no effect of units received in the hidden condition (logistic regression using 

number of units received to predict finishing the game: coeff = -0.168, p = 0.287; sum of 

contributions interacted with revealed dummy: coeff = 0.66, p < 0.001).  

Since neither sum of contributions nor received reward or punishment predicted dropout 

rates in the hidden condition, we can be reasonably confident that selection effects are not driving 

our results in the hidden condition. However, in the revealed condition, groups in which fewer 

contributions were made altogether and groups in which fewer reward units were distributed were 

more likely to drop out. Thus, to mitigate concerns about potential selection effects, we include all 

groups in our main analyses, regardless of whether they completed the game or dropped out. 

However, we found qualitatively similar results when we did not include dropout groups. 
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2.2.3. Statistical details 

2.2.3.1 Experiment 1 

Unless otherwise noted, all statistics are linear regressions with income quintile as a continuous 

independent variable. Because participants’ decisions are not independent within each group over 

time, we cluster standard errors on the group. To check the robustness of our results, we also use 

log-transformed absolute income as continuous IV. We use log-transformed income, rather than 

absolute income, because the distribution of incomes is highly right skewed (the income of the 

rich participant is an outlier relative to the other 4 income levels). 

 

2.2.3.1.1 Received reward and punishment 

We first assessed whether income visibility affects participants’ reward and punishment behaviour. 

We examined which player(s) participants rewarded and punished when not informed about the 

income distribution (hidden condition) compared to when they were informed (revealed 

condition). The independent variable in our main analysis was the income quintile of the recipient 

of the sanctions (1 to 5). The higher the participant’s quintile, the higher her income: the participant 

in the first quintile was the poorest player (1 = bottom quintile) whereas the participant in the fifth 

quintile was the richest player (5 = top quintile). 

We found qualitatively similar results when we used amount of income of the recipient as 

the independent variable, rather than quintile. To account for the fact that the distribution of 

incomes is highly right skewed (the income of the top quintile player is an outlier), we used log-

transformed income amounts. We included the regression table of the log-transformed income 

models below each of the corresponding quintile models. 
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2.2.3.1.1.1 Reward 

In the hidden condition, participants could not take another player’s ability to contribute to the 

public good into account, since this information is not available to them. We thus expected 

participants to view the (high total) contributions of the top quintile participants favourably—

leading to more reward targeted toward them. In the revealed condition, conversely, we predicted 

that participants would view the (high percentage) contributions of the bottom quintile participants 

favourably, inducing higher reward. 

To test these hypotheses, we estimated the amount of reward that a participant receives as 

a function of their income quintile and whether the income distribution was hidden or revealed 

(Table 2.1). In the hidden condition, we found that higher income participants were rewarded 

significantly more (coeff = 0.636, p < 0.001, Table 2.1 col. 1), whereas in the revealed condition, 

lower income players were rewarded significantly more (coeff = -0.720, p < 0.001, Table 2.1 col. 

2). Furthermore, a regression including data from both hidden and revealed conditions together 

showed that this difference was itself significant (interaction between income and revealed 

dummy, coeff = -1.356, p < 0.001; Table 2.1).  

We also found qualitatively similar results when we included demographic information: 

higher income participants were rewarded more in the hidden condition (coeff = 0.629, p < 0.001, 

Table 2.1 col. 4) while, conversely, they were rewarded less in the revealed condition (interaction 

between income and revealed dummy: coeff = -1.320, p < 0.001, Table 2.1 col. 4). 

Finally, we repeated the same analysis with log-transformed income as independent 

variable. We found qualitatively similar results: higher income participants were rewarded more 

in hidden (coeff = 1.043, p < 0.001, Table 2.2 col. 1) but, conversely, they were rewarded less in 

revealed (coeff = -1.140, p < 0.001, Table 2.2 col. 2), and the interaction between condition and 
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income was significant (interaction between log-transformed income and revealed dummy, coeff 

= -2.183, p < 0.001, Table 2.2 col. 3). The results were qualitatively similar when demographics 

were included (Table 2.2 col. 4). 

 

Table 2.1: Linear regression model estimating the effect of a target’s income quintile (i.e., their 

position in the income distribution) on the amount of reward they received. Standard errors 

clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden  Revealed Interaction Interaction 
     
Quintile 0.636*** -0.720*** 0.636*** 0.629*** 
 (0.141) (0.134) (0.141) (0.143) 
1=Revealed   4.316*** 4.180*** 
   (0.957) (0.961) 
Quintile X Revealed   -1.356*** -1.320*** 
   (0.193) (0.199) 
1=Female    0.561 
    (0.468) 
Age    0.0368 
    (0.0279) 
Location    -0.809 
    (0.490) 
Constant 3.332*** 7.648*** 3.332*** 2.119* 
 (0.534) (0.801) (0.531) (0.917) 
     
Observations 1,735 1,690 3,425 3,381 
R-squared 0.038 0.038 0.039 0.051 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.2: Linear regression model estimating the effect of a target’s log-transformed income on 

the amount of reward they received. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Revealed Interaction Interaction 
     
Log(income) 1.043*** -1.140*** 1.043*** 1.014*** 
 (0.223) (0.226) (0.221) (0.228) 
1=Revealed   5.966*** 5.749*** 
   (1.130) (1.142) 
Log(income) X Revealed   -2.183*** -2.111*** 
   (0.315) (0.328) 
1=Female    0.553 
    (0.470) 
Age    0.0370 
    (0.0276) 
Location    -0.799 
    (0.489) 
Constant 2.509*** 8.475*** 2.509*** 1.345 
 (0.632) (0.945) (0.628) (0.976) 
     
Observations 1,735 1,690 3,425 3,381 
R-squared 0.038 0.036 0.037 0.049 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.1.2 Punishment 

We followed the same analysis procedure as above for punishment. We expected a mirror image 

of the results compared to reward. In the hidden condition, we predicted that participants would 

view the (low total) contributions of the bottom quintile participants unfavourably, leading them 

to punish them more. In the revealed condition, participants were able to take the participant’s 

ability to contribute into account and thus we expected that the (low percentage) contributions of 

the top quintile participants would be viewed disapprovingly, leading to higher punishment. 
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In our analysis, the dependent variable was the amount of punishment that a participant 

received. The independent variables are the income quintile and whether the income distribution 

was hidden or revealed (Table 2.3). In the hidden condition, we found that higher income 

participants were punished less (coeff = -0.282, p = 0.042, Table 2.3 col. 1), whereas in the 

revealed condition, in contrast, higher income participants were punished more (coeff = 0.692, p 

< 0.001, Table 2.3 col. 2). Furthermore, a regression including data from both hidden and revealed 

conditions together showed that this difference was itself significant (interaction between income 

and revealed dummy, coeff = 0.974, p < 0.001; Table 2.3 col 3).   

Qualitatively similar results were obtained when we included demographics in the 

regression: higher income participant in the hidden condition were punished marginally less (coeff 

= -0.258, p = 0.057), while, in the revealed condition, higher income participants were punished 

more (interaction between quintile and revealed dummy: coeff = 1.005, p < 0.001). 

We found qualitatively similar results with log-transformed income: higher income 

participants were punished marginally less in hidden (coeff = -0.417, p = 0.057, Table 2.4 col. 1) 

but were punished more heavily in revealed (coeff = 1.212, p < 0.001, Table 2.4 col. 2); a 

difference which was itself significant (interaction between log-transformed income and revealed 

dummy, coeff = 1.629, p < 0.001, Table 2.4 col. 3). Results are qualitatively similar when 

demographics were included (Table 2.4 col. 4). 
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Table 2.3: Linear regression model estimating the effect of a target’s income quintile on the 

amount of punishment they received. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden  Revealed  Interaction Interaction 
     
Quintile -0.282* 0.692*** -0.282* -0.258 
 (0.133) (0.0982) (0.132) (0.134) 
1=Revealed   -2.956*** -3.045*** 
   (0.640) (0.665) 
Quintile X Revealed   0.974*** 1.005*** 
   (0.164) (0.170) 
1=Female    -0.185 
    (0.273) 
Age    0.0129 
    (0.0153) 
Location    0.185 
    (0.307) 
Constant 4.056*** 1.099** 4.056*** 3.614*** 
 (0.513) (0.391) (0.509) (0.687) 
     
Observations 1,590 1,819 3,409 3,230 
R-squared 0.011 0.061 0.038 0.045 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.4: Linear regression model estimating the effect of a target’s log-transformed income on 

the amount of punishment they received. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Revealed Interaction Interaction 
     
Log(income) -0.417 1.212*** -0.417 -0.376 
 (0.212) (0.168) (0.210) (0.212) 
1=Revealed   -4.303*** -4.459*** 
   (0.798) (0.828) 
Log(income) X Revealed   1.629*** 1.690*** 
   (0.269) (0.277) 
1=Female    -0.182 
    (0.276) 
Age    0.014 
    (0.015) 
Location    0.181 
    (0.306) 
Constant 4.302*** -0.001 4.302*** 3.788*** 
 (0.635) (0.493) (0.630) (0.796) 
     
Observations 1,590 1,819 3,409 3,230 
R-squared 0.009 0.070 0.042 0.050 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.2 Absolute vs. relative contribution 

What caused participants to punish and reward other players so differently in the hidden and 

revealed conditions? Contribution behaviour provides a potential answer. We hypothesised that 

the hidden and revealed conditions enabled participants to view contributions differently: in the 

hidden condition, participants could not take another player’s ability to contribute into account 

since they did not know the income distribution. In the revealed condition, on the other hand, 

participants could evaluate the amount contributed relative to the player’s income before choosing 
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whom to punish or reward – in other words, participants could differentiate between absolute and 

relative contributions.  

The hypothesis that relative contributions were driving the difference in sanctions between 

hidden and revealed generated several predictions. First, we expected that absolute contributions 

would be higher for higher income participants while relative contributions (as a percentage of 

income) would be higher for lower income participants.  

Second, we expected absolute contributions to predict received reward and punishment 

when income is hidden, but relative contributions to predict received reward and punishment when 

income is revealed: participants would punish (reward) those who give little (a lot) in absolute 

terms more in hidden, while their sanctions would be driven by relative contributions in revealed. 

 

2.2.3.1.2.1 Absolute vs. relative contribution by quintile 

We first examined absolute contributions by quintile. We expected that higher income participants 

contributed a larger amount of units to the public good but a smaller fraction of their total income 

– such that lower income participants would contribute a larger percentage of their income. 

As predicted, we found that higher income participants in both the hidden (coeff = 3.172, 

p < 0.001, Table 2.5 col. 1) and revealed (coeff = 4.738, p < 0.001, Table 2.5 col. 3) conditions 

contributed a larger number of units. Conversely, we found that higher income participants made 

smaller relative contributions (percentage of income contributed) in both hidden (coeff = -0.098, 

p < 0.001, Table 2.6 col. 1) and revealed (coeff = -0.058, p < 0.001, Table 2.6 col. 3). All results 

are robust to inclusion of demographic variables (Tables 2.5 and 2.6 cols. 2 and 4). 

This variation in contribution across incomes can also be illustrated with an example: 

across all conditions, top quintile participants contributed 20.49 out of 55 units (or 37% of their 
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income) to the public good. In contrast, bottom quintile participants contributed 2.83 out of 4 units 

(or 71% of their income). In Tables 2.7 and 2.8, we repeated the same analysis with log-

transformed income as the independent variable; results were qualitatively similar. 

 

Table 2.5: Linear regression model estimating the effect of income on absolute contribution. 

Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Quintile 3.172*** 3.195*** 4.734*** 4.644*** 
 (0.257) (0.260) (0.341) (0.349) 
1=Female  -1.285*  0.367 
  (0.645)  (0.830) 
Age  0.065  -0.025 
  (0.038)  (0.035) 
Location  0.381  0.304 
  (0.571)  (0.752) 
Constant -0.923 -2.550 -3.853*** -3.097* 
 (0.476) (1.338) (0.637) (1.314) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.233 0.241 0.316 0.312 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.6: Linear regression model estimating the effect of income on percentage of income 

contributed (relative contribution). Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Quintile -0.098*** -0.097*** -0.058*** -0.061*** 
 (0.009) (0.009) (0.010) (0.011) 
1=Female  -0.050  0.025 
  (0.027)  (0.029) 
Age  0.002  -0.000 
  (0.001)  (0.001) 
Location  0.053  0.030 
  (0.032)  (0.036) 
Constant 0.850*** 0.788*** 0.773*** 0.762*** 
 (0.032) (0.055) (0.036) (0.059) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.141 0.153 0.047 0.053 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

Table 2.7: Linear regression model estimating the effect of log-transformed income on absolute 

contribution. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Log(income) 5.416*** 5.455*** 8.082*** 7.937*** 
 (0.464) (0.467) (0.611) (0.626) 
1=Female  -1.292*  0.472 
  (0.617)  (0.785) 
Age  0.060  -0.023 
  (0.037)  (0.034) 
Location  0.531  0.218 
  (0.551)  (0.734) 
Constant -5.598*** -7.155*** -10.827*** -10.068*** 
 (0.918) (1.539) (1.211) (1.639) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.253 0.261 0.344 0.339 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.8: Linear regression model estimating the effect of log-transformed income on percentage 

of income contributed. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Hidden Hidden Revealed Revealed 
     
Log(income) -0.163*** -0.160*** -0.101*** -0.105*** 
 (0.014) (0.015) (0.016) (0.017) 
1=Female  -0.050  0.023 
  (0.027)  (0.030) 
Age  0.002  -0.000 
  (0.001)  (0.001) 
Location  0.049  0.031 
  (0.032)  (0.036) 
Constant 0.981*** 0.914*** 0.863*** 0.857*** 
 (0.042) (0.063) (0.047) (0.067) 
     
Observations 3,412 3,343 3,655 3,461 
R-squared 0.144 0.156 0.052 0.059 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.2.2 Absolute vs. relative contribution predicted sanctioning behaviour 

Our hypothesis was that sanction behaviour followed from the contribution pattern. In the hidden 

condition, participants could only consider absolute contribution: thus, because richer participants 

contributed more units, they would be rewarded more and punished less. In the revealed condition, 

conversely, participants could consider the amount contributed relative to the amount players 

earn—that is, the percentage of income participants contributed. Because poorer participants 

contributed more relative to their income in the in the revealed condition, they would receive more 

reward and less punishment. 
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To test these hypotheses, we examined the effect on sanctioning of the target’s relative 

contribution (percentage of income contributed) and absolute contribution. We log-transformed 

absolute contribution because of the same right skew that also underlies absolute income, and we 

added 1 to all contributions prior to log-transforming as the log(0) is undefined (Rand, Greene, 

and Nowak 2012; McDonald 2014). 

In the hidden condition, as predicted, we found that higher absolute contributions led to 

less punishment (coeff = -1.863, p = 0.019, Table 2.9 col. 1) and more reward (coeff = 4.700, p < 

0.001, Table 2.9 col. 3) received. Because richer participants contributed a larger absolute number 

of units, they received less punishment and more reward in hidden. Relative contributions, in 

contrast, predicted neither punishment (p = 0.954, Table 2.9 col. 1) nor reward (p = 0.677, Table 

2.9 col. 4) received in the hidden condition; this is unsurprising, given that relative contributions 

were not observable in the hidden condition. We found qualitatively similar results when including 

demographics (Table 2.9 cols. 2 and 4). 

In the revealed condition, participants could assess both relative and absolute contributions, 

and we expected them to primarily pay attention to relative contribution. Indeed, we found that a 

higher percentage of income contributed led to less punishment (coeff = -4.664, p < 0.001, Table 

2.10 col. 1) and more reward (coeff = 6.782, p < 0.001, Table 2.10 col. 4) received. This is in line 

with our prediction: as we have shown before, poor participants contributed a larger percentage of 

their income and are thus punished less and rewarded more in the revealed condition. 

We also observed an effect of absolute contribution in the revealed condition, in the 

opposite direction of the effect in the hidden condition: higher absolute contributions led to more 

punishment (coeff = 1.365, p = 0.003, Table 2.9 col. 1) and marginally less reward (coeff = -0.980, 

p = 0.080, Table 2.9 col. 4). Although richer participants contributed a larger amount of units, they 



Chapter 2. Punishing the poor and rewarding the rich 

45 

made low relative contributions; because those larger absolute contributions were correlated with 

the lowest relative contributions, larger absolute contributions were punished more and rewarded 

less. 

 

Table 2.9: Linear regression model estimating the effect of absolute log-transformed contribution 

and relative contribution on received punishment (cols. 1 and 2) and reward (cols. 3 and 4) in the 

hidden condition. To deal with zero-contributions, a constant of 1 was added to all contributions 

before applying the log-transformation. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Punishment 

received 
Punishment 

received 
Reward 
received 

Reward 
received 

     
Log(contribution+1) -1.863* -1.730* 4.700*** 4.592*** 
 (0.755) (0.739) (0.659) (0.641) 
Relative contribution -0.030 -0.256 -0.216 -0.112 
 (0.515) (0.522) (0.514) (0.518) 
1=Female  -0.243  0.711 
  (0.306)  (0.366) 
Age  0.021  0.018 
  (0.021)  (0.023) 
Location  0.272  -0.719 
  (0.402)  (0.400) 
Constant 4.774*** 4.154*** 1.624** 0.960 
 (0.565) (0.835) (0.475) (0.818) 
     
Observations 1,590 1,553 1,735 1,713 
R-squared 0.033 0.037 0.188 0.198 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.10: Linear regression model estimating the effect of relative contribution and absolute 

log-transformed contribution on received punishment (cols. 1 and 2) and reward (cols. 3 and 4) in 

the revealed condition. To deal with zero-contributions, a constant of 1 was added to all 

contributions before applying the log-transformation. Standard errors clustered on group. 

 (1) (2) (3) (4) 
VARIABLES Punishment 

received 
Punishment 

received 
Reward 
received 

Reward 
received 

     
Relative contribution -4.664*** -4.782*** 6.320*** 6.420*** 
 (0.489) (0.532) (0.993) (1.034) 
Log(contribution+1) 1.365** 1.465** -0.980 -0.987 
 (0.434) (0.471) (0.545) (0.601) 
1=Female  -0.213  0.036 
  (0.401)  (0.692) 
Age  0.011  0.050 
  (0.019)  (0.036) 
Location  0.073  -1.542* 
  (0.403)  (0.759) 
Constant 4.889*** 4.636*** 2.641*** 1.351 
 (0.363) (0.613) (0.466) (0.994) 
     
Observations 1,819 1,677 1,690 1,668 
R-squared 0.122 0.128 0.182 0.205 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.2.3 Social preference or a desire to take from the rich? 

We hypothesised that the poor (rich) would be rewarded (punished) in the revealed condition 

because of their high (low) relative contributions. Next, we were interested in whether reward or 

punishment behaviour in the revealed condition was motivated by more than just eliciting higher 

relative contributions, such as potentially a desire to target and reduce the income of the rich. 
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To evaluate this prediction, we tested whether both relative contribution and income quintile both 

predicted punishment and reward received in the revealed condition. Indeed, holding constant the 

fraction of income contributed, richer participants were rewarded less (coeff = -0.309, p = 0.031, 

Table 2.11 col. 1) and punished more (coeff = 0.563, p < 0.001, Table 2.12 col. 1), indicating that 

participants were not only concerned with the higher income participant’s relative contribution but 

generally more willing to take units from, and less willing to give units to, the rich. 

Results were qualitatively similar when demographics are included. Holding constant 

relative contribution, higher quintiles were rewarded marginally less (coeff = -0.298, p = 0.052, 

Table 2.11 col. 2) and punished more (coeff = 0.604, p < 0.001, Table 2.12 col. 2). Similar results 

are obtained with log-transformed income as IV (Table 2.13 and S14). 

While our results shed light on the combined effect of relative contribution and income 

quintile, it remains an important question for future research to explore to what extent income rank 

alone motivates the targeting of sanctions. 
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Table 2.11: Linear regression model estimating the effect of relative contribution and quintile on 

received reward in the revealed condition. Standard errors clustered on group. 
 

 (1) (2) 
VARIABLES Reward received Reward received 
   

Relative contribution 5.209*** 5.318*** 
 (1.038) (1.031) 
Quintile -0.309* -0.298 
 (0.138) (0.148) 
1=Female  -0.016 
  (0.695) 
Age  0.049 
  (0.036) 
Location  -1.549* 
  (0.757) 
Constant 3.426*** 2.146 
 (0.727) (1.102) 
   
Observations 1,690 1,668 
R-squared 0.184 0.207 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.12: Linear regression model estimating the effect of relative contribution and income 

quintile on received punishment in revealed. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Punishment received Punishment received 
   
Relative contribution -3.224*** -3.212*** 
 (0.377) (0.394) 
Quintile 0.563*** 0.604*** 
 (0.096) (0.103) 
1=Female  -0.181 
  (0.402) 
Age  0.010 
  (0.019) 
Location  0.133 
  (0.414) 
Constant 3.501*** 3.107*** 
 (0.455) (0.593) 
   
Observations 1,819 1,677 
R-squared 0.147 0.156 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.13: Linear regression model estimating the effect of relative contribution and income 

quintile on received reward in revealed. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Reward received Reward received 
   
Relative contribution 5.239*** 5.346*** 
 (1.042) (1.038) 
Log(income) -0.441 -0.428 
 (0.234) (0.253) 
1=Female  -0.011 
  (0.697) 
Age  0.050 
  (0.036) 
Location  -1.547* 
  (0.757) 
Constant 3.639*** 2.350 
 (0.907) (1.193) 
   
Observations 1,690 1,668 
R-squared 0.182 0.205 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.14: Linear regression model estimating the effect of relative contribution and income 

quintile on received punishment in revealed. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Punishment received Punishment received 
   
Relative contribution -3.162*** -3.136*** 
 (0.380) (0.393) 
Log(income) 0.983*** 1.060*** 
 (0.162) (0.172) 
1=Female  -0.173 
  (0.402) 
Age  0.012 
  (0.019) 
Location  0.117 
  (0.408) 
Constant 2.577*** 2.045** 
 (0.553) (0.620) 
   
Observations 1,819 1,677 
R-squared 0.152 0.162 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.3 Public good provisioning and inequality 

We next explored the effect of revealed and hidden incomes on public good provisioning as well 

as subsequent inequality. We find that revealing incomes had a positive effect on total 

contributions to the public good that was provided – and from whom these contributions came.  

 

2.2.3.1.3.1 Revealing incomes increased contributions 

We assessed the effect of revealing incomes on total contributions and whether certain players in 

the income distribution were affected more than others. Overall, contributions were higher in the 

revealed than in the hidden condition (coeff = 1.745, p = 0.002, Table 2.15 col. 1). Examining how 
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income and condition interact, we saw that in the hidden condition, higher income participants 

contributed more than lower income participants (coeff = 3.172, p < 0.001, Table 2.15 col. 2); and 

that this difference became significantly larger when incomes were revealed (interaction between 

income and revealed dummy, coeff = 1.562, p < 0.001, Table 2.15 col. 2). We found qualitatively 

equivalent results when demographics (Table 2.15 col. 3) are included as well as when log-

transformed income is used as the independent variable (Table 2.16). 

 

Table 2.15: Linear regression model estimating the effect of income visibility (revealed dummy) 

and income on average contribution to the public good. Standard errors clustered on group. 

 (1) (2) (3) 
VARIABLES Contribution Contribution Contribution 
    
1=Revealed 1.745** -2.930*** -2.651** 
 (0.562) (0.793) (0.817) 
Quintile  3.172*** 3.190*** 
  (0.256) (0.257) 
Quintile X Revealed  1.562*** 1.434** 
  (0.426) (0.437) 
1=Female   -0.412 
   (0.533) 
Age   0.016 
   (0.026) 
Location   0.272 
   (0.473) 
Constant 8.592*** -0.923 -1.354 
 (0.353) (0.474) (1.009) 
    
Observations 7,067 7,067 6,804 
R-squared 0.007 0.291 0.286 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.16: Linear regression model estimating the effect of income visibility (revealed dummy) 

and log-transformed income on average contribution to the public good. Standard errors clustered 

on group. 

 (1) (2) (3) 
VARIABLES Contribution Contribution Contribution 
    
1=Revealed 1.745** -5.229*** -4.790** 
 (0.562) (1.515) (1.556) 
Log(income)  5.416*** 5.442*** 
  (0.463) (0.464) 
Log(income) X Revealed  2.666*** 2.462** 
  (0.765) (0.784) 
1=Female   -0.362 
   (0.507) 
Age   0.015 
   (0.025) 
Location   0.307 
   (0.460) 
Constant 8.592*** -5.598*** -6.043*** 
 (0.353) (0.915) (1.270) 
    
Observations 7,067 7,067 6,804 
R-squared 0.007 0.316 0.310 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.3.2 Revealing incomes reduced inequality 

Finally, we assessed the effect of revealing incomes on the level of inequality and the distribution 

of participant payoffs at the end of the game relative to when incomes were hidden. We computed 

the Gini index—a commonly used measure of inequality—of the final payoffs of each group. The 

Gini index is defined as (Allison 1978): 
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where n is the number of players with mean income µ over incomes x. The Gini takes a value 

between 0 and 1: the higher the value, the more unequal the set of incomes. 

We found that the Gini index at the end of the game is lower in the revealed condition 

(average 0.169) than in the hidden condition (average 0.238; Rank-sum, p < 0.001). Thus, 

revealing incomes decreased inequality relative to keeping incomes hidden. 

To explain this difference in inequality, we examined contributions over time. To account 

for multiple testing in these regressions, we report Bonferroni-corrected p-values. Participants in 

quintiles 1 (poorest) through 4 never decreased their contributions in either the hidden or revealed 

conditions. In fact, the poorest player in the hidden condition actually increased their contributions 

over time (coeff = 0.047, p = 0.04 bonferroni-corrected; all other bottom-to-4th quintiles in both 

conditions: ps = 1.000 corrected; Tables 2.17 and 2.18 cols. 1-4; all regressions were also robust 

to including demographics).   

The contributions of the top quintile participants did, however, differ substantially over 

time between the hidden and revealed conditions. In the revealed condition, rich participants 

maintained their contributions over time (coeff = -0.382, p = 1.000 corrected, Table 2.18 col. 5), 

whereas they decreased their contributions over time in the hidden condition (coeff = -1.077, p < 

0.001 corrected, Table 2.17 col. 5). In other words, when incomes were revealed, sanctions were 

effective in maintaining cooperation from all players, including those with the greatest ability to 

contribute. 
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Table 2.17: Linear regression model estimating the effect of round on contribution to the public 

good in the hidden condition. Standard errors clustered on group. 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.047* 0.087 0.092 -0.203 -1.077*** 
 (0.017) (0.043) (0.056) (0.092) (0.240) 
Constant 2.620*** 5.387*** 7.549*** 10.173*** 22.829*** 
 (0.137) (0.318) (0.482) (0.736) (1.781) 
      
Observations 683 683 681 682 683 
R-squared 0.008 0.006 0.003 0.009 0.039 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 

 

 

Table 2.18: Linear regression model estimating the effect of round on contribution to the public 

good in the revealed condition. Standard errors clustered on group. 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.024 0.037 0.032 0.024 -0.382 
 (0.021) (0.061) (0.073) (0.103) (0.266) 
Constant 2.663*** 5.700*** 7.721*** 11.385*** 25.626*** 
 (0.157) (0.369) (0.434) (0.587) (1.723) 
      
Observations 733 733 729 730 730 
R-squared 0.002 0.001 0.000 0.000 0.003 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 
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2.2.3.2 Experiment 2 

Following the procedures of the first experiment, we repeat the same statistical analysis for 

experiment 2. Unless otherwise noted, all statistics are linear regressions with income quintile as 

a continuous independent variable and standard errors are clustered on the group. To check the 

robustness of our results, we also use log-transformed absolute income as continuous IV.  

 

2.2.2.2.1 Individual performance 

In experiment 2, participants first completed an individual effort task before they were assigned to 

groups and received an income level based on their performance in the individual task. Their rank 

among their group members determined which income level they were assigned to: the best-

performing participant in the individual task was allocated the highest income level; the second-

best performing participant was assigned the second-highest income level; and so on.  

In the individual task, participants had to count the number of 0s in a random matrix of 0s 

and 1s (Abeler et al. 2011). The more matrices they solved correctly, the higher their performance 

score. There was no difference in the mean number of correctly solved matrices between the hidden 

(mean = 4.489, s.d. = 1.869) and revealed (mean = 4.544, s.d. = 2.029) conditions; t(438) = -0.298, 

p = 0.766. There were no significant differences in performance for any quintile between 

conditions (Table 2.19). 
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Table 2.19: The number of correctly solved matrices did not differ between conditions for any 

quintile. Mean values on top, standard deviation in parentheses. 

 Hidden condition Revealed condition Two-tailed t-test 

Top quintile 6.578 
(1.530) 

6.953 
(1.252) p = 0.212 

2nd highest quintile 5.267 
(1.074) 

5.627 
(0.976) p = 0.103 

Middle quintile 4.589 
(1.125) 

4.674 
(1.063) p = 0.951 

2nd lowest quintile 3.667 
(1.000) 

3.441 
(1.120) p = 0.323 

Bottom quintile 2.244 
(1.026) 

2.023 
(1.080) p = 0.327 

 

2.2.2.2.2 Received reward and punishment 

In our second experiment, reward and punishment are available in all conditions. Thus, the 

dependent variable is the number of units that a participant received: negative units represent 

punishment received, while positive units represent reward received. The independent variable is 

the income quintile of the recipient of the sanctions (1 to 5). We found qualitatively similar results 

when we used log-transformed income of the recipient as the independent variable.  

In the hidden condition, participants could not assess to what extent another player can 

contribute. Thus, we expected participants to punish the poor for their (low total) contributions 

and to reward the rich for their (high total) contributions. In the revealed condition, conversely, 

we predicted the mirror image: poorer participants would be rewarded more units for their (high 

percentage) contribution than wealthier ones. 

We estimated the number of units that a participant received as a function of their income 

quintile and whether the income distribution was hidden or revealed (Table 2.20). In the hidden 

condition, we found that higher income participants received more units (coeff = 0.053, p = 0.042, 

Table 2.20 col. 1), whereas in the revealed condition, higher income players received fewer units 
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(coeff = -0.171, p < 0.001, Table 2.20 col. 2). Furthermore, a regression including data from both 

hidden and revealed conditions together showed that this difference was itself significant 

(interaction between income and revealed dummy, coeff = -0.225, p < 0.001, Table 2.20 col. 3).  

We found qualitatively similar results with log-transformed income as independent 

variable: lower income participants received more units in hidden (coeff = 0.188, p = 0.037, Table 

2.21 col. 1) but, conversely, they received fewer units in revealed (coeff = -0.582, p < 0.001, Table 

2.21 col. 2), and the interaction between condition and income was significant (interaction between 

log-transformed income and revealed dummy, coeff = -0.771, p < 0.001, Table 2.21 col. 3). 

 

Table 2.20: Linear regression model estimating the effect of a target’s income quintile (i.e., their 

position in the income distribution) on the number of units they received. Standard errors clustered 

on group. 

 (1) (2) (3) 
VARIABLES Hidden  Revealed  Interaction 
    
Quintile 0.054* -0.171*** 0.054* 
 (0.026) (0.030) (0.025) 
1=Revealed   0.949*** 
   (0.193) 
Quintile X Revealed   -0.225*** 
   (0.039) 
Constant -0.054 0.895*** -0.054 
 (0.121) (0.151) (0.120) 
    
Observations 1,970 1,935 3,905 
R-squared 0.006 0.044 0.043 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.21: Linear regression model estimating the effect of a target’s log-transformed income on 

the number of units they received. Standard errors clustered on group. 

 (1) (2) (3) 
VARIABLES Hidden  Revealed  Interaction 
    
Log(income) 0.188* -0.582*** 0.188* 
 (0.087) (0.097) (0.087) 
1=Revealed   1.143*** 
   (0.217) 
Log(income) X Revealed   -0.771*** 
   (0.130) 
Constant -0.105 1.038*** -0.105 
 (0.139) (0.169) (0.138) 
    
Observations 1,970 1,935 3,905 
R-squared 0.006 0.044 0.043 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.2.2.3 Absolute vs. relative contribution 

Participants in the hidden condition could not take another player’s ability to contribute into 

account since they did not know the income distribution. In the revealed condition, on the other 

hand, participants could evaluate the amount contributed relative to the player’s income before 

choosing whom to punish or reward – in other words, participants could differentiate between 

absolute and relative contributions.  

We hypothesised that absolute contributions would predict the number of units received 

when income is hidden, but that relative contributions would predict units received when income 

is revealed. Thus we expected participants to take (give) more units those who give little (a lot) in 

absolute terms in hidden, while their sanctions would be driven by relative contributions in 

revealed. 
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2.2.2.2.3.1 Absolute vs. relative contribution by quintile 

As predicted, higher income participants contribute more in absolute terms in both the hidden 

(coeff = 3.465, p < 0.001, Table 2.22 col. 1) and revealed (coeff = 5.573, p < 0.001, Table 2.22 

col. 2) conditions. Conversely, we found that higher income participants contributed a smaller 

percentage of their income in the hidden condition (coeff = -0.064, p < 0.001, Table 2.23 col. 1).  

Surprisingly, in the revealed condition, there was only a weak trend of higher income 

participants contributing a lower percentage of their income (coeff = -0.0263, p = 0.108, Table 

2.23 col. 2). This is a slight departure from our previous results in experiment 1: while higher 

income participants in both experiments contributed more after being punished more and rewarded 

less in the revealed condition, it appears that sanctions were more effective in the revealed 

condition in experiment 2 to encourage richer participants to contribute a higher fraction of their 

income. These results were qualitatively similar when log-transformed income is used as the 

independent variable (Tables 2.24 and 2.25). 

 

Table 2.22: Linear regression model estimating the effect of income on absolute contribution. 

Standard errors clustered on group. 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Quintile 3.465*** 5.573*** 
 (0.346) (0.535) 
Constant -2.446** -5.640*** 
 (0.698) (0.921) 
   
Observations 1,581 1,598 
R-squared 0.236 0.381 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.23: Linear regression model estimating the effect of income on percentage of income 

contributed (relative contribution). Standard errors clustered on group. 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Quintile -0.064*** -0.026 
 (0.011) (0.016) 
Constant 0.664*** 0.671*** 
 (0.050) (0.054) 
   
Observations 1,581 1,598 
R-squared 0.055 0.009 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

Table 2.24: Linear regression model estimating the effect of log-transformed income on absolute 

contribution. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(income) 11.742*** 18.733*** 
 (1.151) (1.761) 
Constant -5.264*** -9.996*** 
 (0.937) (1.288) 
   
Observations 1,581 1,598 
R-squared 0.235 0.373 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.25: Linear regression model estimating the effect of log-transformed income on 

percentage of income contributed. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(income) -0.210*** -0.084 
 (0.037) (0.054) 
Constant 0.710*** 0.687*** 
 (0.058) (0.065) 
   
Observations 1,581 1,598 
R-squared 0.052 0.008 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.2.2.3.2 Absolute vs. relative contribution predicted sanctioning behaviour 

We hypothesised that participants in the hidden condition would reward those who give more in 

absolute terms (the rich) and punish those who give less in absolute terms (the poor). Conversely, 

participants in the revealed condition would reward those who give a high percentage of their 

income (poorer participants) but punish those who give a smaller percentage of their income (richer 

participants). 

As predicted, higher absolute contributions in the hidden condition led to receiving more 

reward units and fewer punishment units (coeff = 0.571, p < 0.001, Table 2.26 col. 1). This helped 

mostly richer participants because they contributed a larger absolute number of units. Relative 

contributions, in contrast, did not predict the number of units received (p = 0.098, Table 2.26 col. 

1) in the hidden condition since relative contributions were not observable. 

In the revealed condition, we found that higher relative contribution led to receiving more 

units (coeff = -1.775, p < 0.001, Table 2.26 col. 2). Since poorer participants contributed a larger 
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percentage of their income, they were punished less and rewarded more in the revealed condition. 

We also observed that absolute contribution had an effect in the revealed condition, in the opposite 

direction of the effect in the hidden condition: higher absolute contributions led to fewer units 

received (coeff = -0.461, p = 0.001, Table 2.26 col. 2). 

 

Table 2.26: Linear regression model estimating the effect of absolute log-transformed contribution 

and relative contribution on the number of units received in the hidden and revealed condition. To 

deal with zero-contributions, a constant of 1 was added to all contributions before applying the 

log-transformation. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Hidden Revealed 
   
Log(contribution+1) 0.571*** -0.461*** 
 (0.109) (0.123) 
Relative contribution 0.195 1.775*** 
 (0.115) (0.212) 
Constant -0.365** -0.211* 
 (0.117) (0.097) 
   
Observations 1,581 1,598 
R-squared 0.084 0.206 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.3.1.3.3 Social preference or a desire to take from the rich? 

We hypothesised that the poor (rich) would be rewarded (punished) in the revealed condition 

because of their high (low) relative contributions, for which we found evidence presented above. 

Next we investigated to what extent participants were motivated by more than just relative 
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contributions, such as a desire to reduce the income of the rich regardless of their relative 

contribution. 

Holding constant the fraction of income contributed, we found that richer participants 

indeed received fewer units (coeff = -0.173, p < 0.001, Table 2.27 col. 1). Results were 

qualitatively similar when we used log-transformed income as the independent variable (coeff = -

0.595, p < 0.001, Table 2.27 col. 2). Thus, participants gave fewer units to the rich, even when 

they contributed the same relative amount of their income. 

 

Table 2.27: Linear regression model estimating the effect of relative contribution and income 

quintile on units received in the revealed condition. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Units received Units received 
   
Relative contribution 1.291*** 1.294*** 
 (0.173) (0.172) 
Quintile -0.173***  
 (0.032)  
Log(income)  -0.595*** 
  (0.109) 
Constant 0.217 0.367* 
 (0.143) (0.161) 
   
Observations 1,598 1,598 
R-squared 0.225 0.226 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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2.2.2.2.4 Public good provisioning and inequality 

 
2.2.2.2.4.1 Revealing incomes increased contributions 

Contributions were higher in the revealed than in the hidden condition (coeff = 3.134, p < 0.001, 

Table 2.28 col. 1). We observed that higher income participants in the hidden condition contributed 

more than lower income participants (coeff = 3.194, p = 0.007, Table 2.28 col. 2); a difference that 

became significantly larger when incomes were revealed (interaction between income and 

revealed dummy, coeff = 2.109, p = 0.001, Table 2.28 col. 2). We found qualitatively equivalent 

results when using log-transformed income as the independent variable (Table 2.29). 

 

Table 2.28: Linear regression model estimating the effect of income visibility (revealed dummy) 

and income on average contribution to the public good. Standard errors clustered on group. 

 (1) (2) 
VARIABLES Contribution Contribution 
   
1=Revealed 3.134*** -3.194** 
 (0.877) (1.149) 
Quintile  3.465*** 
  (0.344) 
Quintile X Revealed  2.109** 
  (0.633) 
Constant 7.946*** -2.446*** 
 (0.467) (0.695) 
   
Observations 3,179 3,179 
R-squared 0.018 0.338 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2.29: Linear regression model estimating the effect of income visibility (revealed dummy) 

and log-transformed income on average contribution to the public good. Standard errors clustered 

on group. 

 (1) (2) 
VARIABLES Contribution Contribution 
   
1=Revealed 3.134*** -4.732** 
 (0.877) (1.583) 
Log(income)  11.742*** 
  (1.145) 
Log(income) X Revealed  6.992** 
  (2.092) 
Constant 7.946*** -5.264*** 
 (0.467) (0.932) 
   
Observations 3,179 3,179 
R-squared 0.018 0.333 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

 

2.2.2.2.4.2 Revealing incomes reduced inequality 

Finally, we assessed the effect that revealing incomes had on inequality. Using (1), we computed 

the Gini index of the final payoffs of each group. We found that the Gini index at the end of the 

game was lower in the revealed condition (average 0.124) than in the hidden condition (average 

0.255; Rank-sum, p < 0.001). Revealing incomes decreased inequality relative to keeping incomes 

hidden. 

What led to lower inequality in the revealed condition? We examined contributions over 

time. To account for multiple testing in these regressions, we report Bonferroni-corrected p-values. 

Participants in quintiles 1 (poorest) through 4 never decreased their contributions in either the 

hidden or revealed conditions (all ps > 0.5 corrected; Tables 2.30 and 2.31 cols. 1-4).  
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Contributions of the highest earners, however, did marginally differ over time between the 

hidden and revealed conditions. In the revealed condition, rich participants maintained their 

contributions over time (coeff = -0.056, p = 1.000 corrected, Table 2.30 col. 5), whereas they 

marginally decreased their contributions over time in the hidden condition (coeff = -1.105, p = 

0.080 corrected, Table 2.31 col. 5).  

 

Table 2.30: Linear regression model estimating the effect of round on contribution to the public 

good in the hidden condition. Standard errors clustered on group. 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.029 0.075 0.069 -0.240 -1.105 
 (0.021) (0.067) (0.203) (0.190) (0.442) 
Total # rounds 0.036 -0.450* -0.831*** -0.600 0.957 
 (0.105) (0.144) (0.211) (0.302) (1.591) 
Constant 1.287 7.873*** 15.421*** 15.727*** 13.124 
 (0.940) (1.330) (2.016) (3.120) (13.069) 
      
Observations 316 317 316 316 316 
R-squared 0.010 0.051 0.061 0.036 0.033 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 
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Table 2.31: Linear regression model estimating the effect of round on contribution to the public 

good in the revealed condition. Standard errors clustered on group. 

 (1) (2) (3) (4) (5) 
VARIABLES Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 
      
Round 0.025 0.112 0.347 0.192 0.056 
 (0.034) (0.088) (0.147) (0.219) (0.476) 
Total # rounds -0.032 -0.143 -0.360 -0.688 -0.714 
 (0.142) (0.254) (0.665) (0.813) (1.159) 
Constant 2.046 5.444* 11.876* 18.442* 31.846** 
 (1.266) (2.354) (5.782) (7.564) (11.144) 
      
Observations 320 320 318 320 320 
R-squared 0.003 0.011 0.030 0.012 0.003 

Robust standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 [Bonferroni corrected] 
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Chapter 3.  

Preserving the global commons 

3.1 Main text 

In 1968, Garrett Hardin posed a problem that has remained unsolved in large groups (Hardin 1968). 

If the success of a public activity depends on voluntary contributions of individuals, then free riders 

reap larger rewards than contributors and contribution will decline over time. In this seminal and 

influential paper, Hardin introduced the Public Goods Game, which is a multi-person Prisoner’s 

Dilemma; the latter is focused on two players. While several mechanisms have been described to 

promote cooperation in pairwise games or in very small groups (Rand and Nowak 2013; Nowak 

2006b; Levin 2009), no one has demonstrated a mechanism that allows for the maintenance of 

cooperation in larger groups. Thus, Hardin’s summary, “The population has no technical solution; 

it requires a fundamental extension of morality,” remains unchallenged.  Here we propose the first 

technical solution to this problem.  

Experiments focusing on interactions between pairs of people or within small groups (of 3 

to 5 people), have established the power of reciprocity for promoting cooperation, be it in the form 

of repetition (Dal Bo 2005; Fudenberg, Rand, and Dreber 2012), reputation (Wedekind and 

Milinski 2000; Milinski, Semmann, and Krambeck 2002; Rockenbach and Milinski 2006), 

shaming (Jacquet 2015; Perez-Truglia and Troiano 2015), network effects (Rand et al. 2014; 

Fowler and Christakis 2010), threat of expulsion (Cinyabuguma, Page, and Putterman 2005), or 

costly sanctions (Fehr and Gächter 2000; Gächter, Renner, and Sefton 2008; Rand et al. 2009; 

Sutter, Haigner, and Kocher 2010; Crockett et al. 2010; Rockenbach and Milinski 2006; Ule et al. 
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2009). The lever of reciprocity, however, diminishes as group size increases, and therefore these 

mechanisms, are hard-pressed to promote cooperation on a global scale (Olson 1965; Boyd and 

Richerson 1988). Although pairs of individuals interacting repeatedly will typically learn to 

cooperate (Dal Bo 2005), even very small groups interacting repeatedly almost always converge 

on defection (Grujić et al. 2012). 

The reason is that targeted reciprocity is impossible in group interactions: if you stop 

cooperating, this harms defectors in your group but also cooperators. The problem can be 

addressed by adding the opportunity for group members to punish or reward each other based on 

their contributions (Fehr and Gächter 2000; Gächter, Renner, and Sefton 2008; Rand et al. 2009; 

Sutter, Haigner, and Kocher 2010). Such pairwise interactions allow people to target their 

reciprocity and have been shown to stabilise cooperation in small groups.  

Targeted pairwise interactions, however, cannot scale effectively as groups become larger. 

With increasing group size, it becomes unlikely that a particular group member has the opportunity 

to interact with any given other member of the group (Carpenter 2007; Dubreuil 2008). Thus the 

situation modelled by most previous experiments (Fehr and Gächter 2000; Rand et al. 2009), in 

which all group members also interact in pairs (and use those pairwise interactions to enforce 

group cooperation), is untenable when groups are large. 

Does this reasoning imply that reciprocity cannot maintain cooperation in large groups? 

Here we show that the answer is “no.” We demonstrate that coupling a large group cooperative 

dilemma to a sparse network of pairwise reciprocal interactions averts the “tragedy of the 

commons,” and sustains cooperation in groups an order of magnitude larger than those studied 

previously. The number of pairwise interactions need not scale with the size of the group: a handful 

of local interactions can support cooperation on a global scale. 
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To assess the power of such “local-to-global” reciprocity, we developed a novel online 

software platform called SoPHIE (Software Platform for Human Interaction Experiments, freely 

available and fully customisable at www.sophielabs.net) to facilitate simultaneous interaction of 

large numbers of participants (Hendriks 2012). We then used this software to conduct large-scale 

economic game experiments.  

In our first experiment, group sizes were on average 39 people (min = 17, max = 60, sd = 

10.28; total N = 646), an order of magnitude larger than typical laboratory experiments with 4 

players per group (Fehr and Gächter 2000; Rand et al. 2009). Participants played a repeated 2-

stage economic game. In each round of the game, participants first took part in a group contribution 

stage, and then a pairwise cooperation stage in which they chose actions towards two other group 

members; for details, see Section 3.1. 

In the group contribution stage, participants received an endowment of 20 Monetary Units 

(MUs), and played a public goods game (PGG) with all other members of the group. In this global 

interaction, players chose how many of these MUs to contribute to the public good, and how many 

to keep for themselves. All contributions were doubled and distributed equally among all group 

members. Thus contributing benefitted the group as a whole, but was individually costly.  

For the pairwise cooperation stage, participants were arranged on a ring-structured network 

in which they were connected to one neighbour on each side (Figure 3.1). Participants played a 

separate Prisoner’s Dilemma (PD) game with each of their two neighbours, who remained the 

same throughout the experiment. In each PD, participants could cooperate by paying 6 MUs to 

give the other person 18 MUs, or defect by doing nothing. Participants did not have to take the 

same action towards both neighbours.  
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Our experiment had two conditions. In the control condition, local-to-global reciprocity 

was not possible: in the pairwise cooperation stage, participants were not informed about the group 

contribution behaviour of their neighbours (Figure 3.1c). Thus they could not use their pairwise 

relationships to enforce global cooperation, and we expected group contributions to decrease over 

time.  

In the treatment condition, conversely, participants were informed of their neighbours’ 

group contributions while making their pairwise cooperation decisions (Figure 3.1d). Thus local-

to-global reciprocity was possible, and we expected that (i) subjects would preferentially cooperate 

in the pairwise stage with neighbours that had contributed larger amounts in the group stage; and 

(ii) as a result, we would observe stable high levels of group contribution (in contrast to the 

control).   

To evaluate these predictions, we began by comparing contributions to the group across 

our two conditions (Figure 3.2a). Indeed, we observed significantly higher average contributions 

in the treatment compared to the control (coeff = -5.727, p < 0.001, Table 3.1; all p-values 

generated using linear regression with robust standard errors clustered on session, see Section 3.2 

for details). Furthermore, this difference in contribution emerged over time: while participants 

decreased their contributions from round to round in control (coeff = -0.345, p < 0.001), 

contributions in the treatment were stable (no significant decrease in contribution with round, coeff 

= -0.051, p = 0.098; difference between conditions is significant, as shown by the interaction 

between round and a dummy for the control treatment: coeff = -0.294, p < 0.001, Table 3.2). 
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Figure 3.1. The experimental setup consisted of a series of “global” and “local” interactions. 

a,b In each round, participants first took part in a global interaction stage and then in a pairwise 

local interaction stage. a In the global stage, groups of on average 39 participants (min = 17, max 

= 60, sd = 10.28, N = 646) played 20 rounds of the Public Goods Game (PGG). In each round, 

participants were endowed with 20 MUs: they chose how many of these MUs to contribute to a 

common pool and how many to keep for themselves. The contributed units were doubled and split 

equally among all group members. b In the pairwise interaction stage, participants were connected 

to two other group members on a ring-structured network (in experiment 1; for differences to 

experiment 2, see Section 3.1). In each round, participants played a Prisoner’s Dilemma (PD) 

with each neighbour: they could choose to cooperate by paying 6 units to give 18 units to their 

neighbours; or defect by doing nothing. Thus mutual cooperation yielded a benefit of 12 for both, 

unilateral cooperation cost cooperators 6 units while providing defectors with 18 units, and 

mutual defection did not alter the payoff of either participant. c,d The control and treatment 

conditions differed in what participants could observe about their neighbours. c In the control 

condition, participants were not told how many MUs their neighbours contributed in the PGG 

stage. d In the treatment condition, conversely, participants were informed of their neighbours’ 

contributions in the PGG while making their pairwise decisions in the PD. 

 

a Large public goods game b Pairwise Prisoner’s Dilemmas

c Control condition

d Treatment condition

18 units
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?
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Figure 3.2. Contributions in the PGG were maintained when participants knew their 

neighbours’ previous PGG contributions during the pairwise PD stage. a PGG contributions 

were maintained at high levels in the treatment condition when participants were informed of their 

neighbours’ previous PGG contributions. Conversely, in the control condition, the level of 

contributions in the group cooperation stage decreased quickly over time. b In the pairwise stage, 

the level of cooperation did not differ between the control and treatment conditions, but the ways 

in which the pairwise PDs were used differed substantially (see Figure 3.3). (Upper and lower 

bounds are +/- robust standard errors from the mean clustered on session.) 
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What explains the difference in contribution patterns between treatment and control? 

Participants’ pairwise cooperation behaviour provides an answer. While there was no significant 

difference in average levels of PD cooperation between conditions (Figure 3.2b; coeff = 0.031, p 

= 0.342, Table 3.3), the specific ways that PD cooperation was used did differ importantly (Figure 

3.3a). In the control, participants were unable to condition their PD cooperation on their 

neighbours’ PGG contributions (since this information was not available). All they could do was 

cooperate more with a neighbour who cooperated with them in the previous round (coeff = 0.540, 

p < 0.001, Table 3.5).   

In the treatment, on the other hand, participants took advantage of the contribution 

information available to them to engage in local-to-global reciprocity. In addition to cooperating 

more with those who previously cooperated with them in the local PD (coeff = 0.475, p < 0.001, 

Table 3.5), participants were also more likely to cooperate with neighbours who had contributed 

at least as much as them in the global PGG (coeff = 0.175, p < 0.001, Table 3.5). Moreover, a 

significant interaction occurred such that participants were most likely to cooperate with 

neighbours who cooperated in the PD and contributed at least as much as them in the PGG (coeff 

= 0.168, p = 0.002, Table 3.5). Participants in the treatment condition thus reciprocated not only 

their neighbour’s previous pairwise cooperation, but also their contributions in the group 

cooperation stage: they enacted local-to-global reciprocity. This created an incentive to contribute 

in the PGG that was absent from the control. 

There are two ways that this incentive might be used: did participants reward high 

contributors by cooperating with them, or punish low contributors by withholding cooperation? 

To find out, we compared average cooperation rates in control to cooperation rates towards low 

versus high contributors in treatment (Figure 3.3a). If participants were rewarding high 
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contributors, we would expect cooperation rates towards high contributors in the treatment to be 

higher than the baseline cooperation rate observed in the control. However, we found no such 

difference (coeff = 0.037, p = 0.303, Table 3.7). If, on the other hand, participants were punishing 

low contributors, we would expect less cooperation towards low contributors in the treatment 

compared to the control baseline; and this is precisely what we observed (coeff = -0.201, p < 0.001, 

Table 3.6). Thus we found evidence that participants in the treatment condition “punished” low 

contributing neighbours by withholding cooperation. 

Finally, we investigated whether this withholding of cooperation from low contributors 

was effective in eliciting higher PGG contributions in the next round (Figure 3.3b). Interestingly, 

while receiving PD defection from only one neighbour had no effect on PGG contribution (using 

number of defecting neighbour as independent variable to predict change in contributions; 1 

defecting neighbour: coeff = 0.069, p = 0.871), both neighbours defecting in the PD led to a 

significant increase in PGG contribution in the next round (2 defecting neighbours: coeff = 1.981, 

p = 0.001, for details see Section 3.2.4). Thus, withholding cooperation was only an effective 

punishment when both neighbours coordinated their withholding.  

In addition to disciplining low contributors, PD cooperation also effectively buttressed high 

contributors against the temptation to reduce their contributions in treatment: the more PD 

cooperation high contributors received from their neighbours, the less they reduced their 

contribution in the next round (coeff = 0.828, p < 0.001, Table 3.10). Thus we see a full 

characterisation of the mechanism by which local cooperation stabilised global contribution. 

 



Chapter 3. Preserving the global commons 

77 

 

Figure 3.3. Who is being punished in the pairwise PD stage? a Participants in the treatment 

condition were “punished” by not receiving rewards if they had contributed less than their 

neighbour, compared to the control group. However, participants were not rewarded more than 

in the control if they contributed at least as much as their neighbour. Thus, local-to-global 

reciprocity was enacted in local interactions by withholding cooperation from defectors. b 

Participants in the treatment condition respond to their neighbours’ decision to cooperate or 

defect in the pairwise cooperation stage: when both neighbours withheld cooperation from 

participants who contributed less in the PGG than their neighbours, participants increased their 

contributions in the PGG in the subsequent round. Conversely, local-to-global reciprocity was 

buttressing against the temptation to defect: the more PD cooperation high-contributing 

participants received from their neighbours, the less they decreased their contributions. (Error 

bars represent robust standard errors clustered on session.) 
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Importantly, these effects were unique to treatment: participant in the control condition did 

not change their contribution behaviour in response to amount of PD cooperation they received 

(low contributors: coeff = -0.048, p = 0.857, Table 3.8; high contributors: coeff = 0.253, p = 0.183, 

Table 3.9), and this differed significantly from what we observed in the treatment (interaction 

between number of cooperating neighbours and control dummy; low contributors: coeff = 1.105, 

p = 0.002, Table 3.8; high contributors: coeff = -0.575, p = 0.015, Table 3.9). 

Finally, we present evidence that the power of local-to-global reciprocity is scalable. First, 

we take advantage of random variation across sessions in the number of participants in the PGG. 

One might worry that as groups become larger, local interactions with just two neighbours would 

become less effective at maintaining global cooperation. However, we find no evidence of this: a 

threefold increase in the size of the group had no discernible impact on PGG contributions in the 

treatment (using group size of each session as independent variable to predict the average 

contribution in the final round of the game in treatment: coeff = -0.015, p = 0.782, Table 3.11). 

Our intervention was just as effective relative to the control (or perhaps even more effective) for 

preserving the global commons in large groups compared to small groups (Figure 3.4a). 

To further demonstrate the scalability of our intervention, we conducted a second 

experiment with a much larger PGG group of 1000 people. Participants in the second experiment 

played a repeated two-stage economic game that was identical to the first experiment, except that 

in the pairwise cooperation stage, participants played a PD with just one other member of the group 

(rather than two others, as in the first experiment). We reduced the number of PD partners to further 

assess the robustness of our “local-to-global” intervention; for details on the experimental design 

and differences to the first experiment, see Section 3.1. 
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Despite the extremely large group size of our second experiment, we replicated our earlier 

results. Average contributions were significantly higher in treatment than in control (coeff = 1.456, 

p = 0.005, Table 3.13), and this difference emerged over time (interaction between control dummy 

and round number, coeff = -0.1092, p = 0.017, Table 3.13): while contributions in the treatment 

were stable (coeff = -0.027, p = 0.429), contributions in the control condition decreased with round 

(coeff = -0.136, p < 0.001) (Figure 3.4b). 

In summary, we have shown that “local-to-global” reciprocity can maintain stable 

contributions in a large public goods game. Participants punished other group members who 

contributed less than them by withholding cooperation. Low contributors, in turn, increased their 

contributions when their neighbours jointly withheld cooperation from them, while high 

contributors continued to contribute when their neighbours cooperated with them. Thus, stable 

levels of contributions emerged in the group cooperation stage of the treatment. In the control, 

conversely, such local-to-global reciprocity was not possible, and PGG contributions collapsed.  

Across two experiment, we found that group size did not affect our results: contributions 

in treatment were sustained in groups several magnitudes larger than previously studied. Thus, we 

have demonstrated that targeted reciprocity need not be scaled with the size of the network: instead 

participants only need to be informed of what a small number of other participants in the network 

who they interact with did previously.  
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Figure 3.4. “Local-to-global” reciprocity is invariant to the size of the group. a We take 

advantage of random variation across sessions in the number of participants: the size of the group 

does not have an effect on the level of contributions in the final round of the game in the treatment 

condition. Indeed, a threefold increase in group size does not affect contributions when “local-to-

global” reciprocity is possible. b In a second experiment (see Section 3.1), we recruited 1,000 

participants to play the same large-scale PGG over 10 rounds. Participants in treatment, where 

“local-to-global” reciprocity with the PD partner was possible, made stable PGG contributions, 

while participants in control decreased their contributions over time. (Upper and lower bounds 

are +/- robust standard errors clustered on double-pairs; see Section 3.2 for statistical details.) 
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groups, if each individual has even a very small number of pairwise interactions. Developing 

theoretical models of the interaction between pairwise and group interactions is an important 

direction for future research.  

Our findings build on existing interventions to increase public goods contributions in the 

real world that have implications for policy-makers (Kraft-Todd et al. 2015; Weber and Johnson 

2012). Sign-ups among residents in apartment complexes to participate in a voluntary energy 

reduction program are higher when the sign-up sheet is publicly observable (Yoeli et al. 2013). 

The more tax evaders are aware that their neighbours know of their delinquency, the higher their 

compliance with tax repayments (Perez-Truglia and Troiano 2015). Our laboratory experiments 

provide tightly controlled evidence of the mechanism underpinning these field experiment results: 

when we are provided with information about other people’s cooperative actions, we will reward 

them for their contributions to our community and to the world at large, allowing us to finally 

answer Hardin’s challenge to preserve the global commons.  
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3.2 Supporting figures and data 

3.2.1. Methods 

3.2.1.1 Data collection 

We recruited U.S. participants for both experiments from the online labour market Amazon 

Mechanical Turk (AMT). AMT is an online market place in which employers can pay users for 

completing short tasks – usually referred to as Human Intelligence Tasks (HITs) – for a relatively 

small pay (generally about $1.00 for 10 minutes of work).  

AMT has been shown to be more diverse and more nationally representative than the 

typical college student sample at major research universities (Rand, Greene, and Nowak 2012; 

Amir et al. 2012; Horton, Rand, and Zeckhauser 2011). Workers who have been recruited on AMT 

receive a baseline payment and can also be paid a bonus depending on their performance in the 

task. This setup lends itself well to adopt incentivised economic experiments: the baseline payment 

acts as the ‘show-up’ fee and the bonus payment may derive from the workers’ behaviour in the 

economic game and/or other tasks throughout the experiment. 

There may, of course, exist potential issues on AMT that would not occur in a traditional 

laboratory setting. For instance, running an experiment online involves giving up some control 

over subjects, since they cannot be monitored, as is usually the case in laboratories. That is, it 

cannot be ruled out that more than a single person is taking part in the experiment or that one 

person is participating more than once in the experiment (although AMT has put extensive 

measures into place to avoid this from happening; in addition, we have also implemented ways to 

carefully screen out any possible re-takers). Finally, the participating subject sample, albeit more 

diverse and representative than the average college students sample, is biased towards those who 

participate in online labour markets in the first place. To address these possible concerns, 
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numerous studies have been carried out to validate results collected using AMT (Amir et al. 2012; 

Horton, Rand, and Zeckhauser 2011; Berinsky, Huber, and Lenz 2012).  

Our experiments (described in detail below) were implemented using the interactive 

experimental platform SoPHIE (Software Platform for Human Interaction Experiments), which is 

freely available and fully customisable at www.sophielabs.net (Hendriks 2012). 

In experiment 1, we recruited a total of 646 participants across 16 sessions. Each session 

lasted for approximately 35-40 minutes. All participants who completed the experiment earned a 

$3.00 show-up fee and had the opportunity to earn an additional “bonus” payment depending on 

their and others’ decisions in the public goods game and the prisoner’s dilemma. Average earnings 

from the game including bonus were $4.34.  

In experiment 2, a total of 1,352 participants were recruited across 15 sessions. Each 

session lasted for approximately 15-20 minutes. All participants who completed the experiment 

earned a $1.00 show-up and could earn a “bonus” payment depending on their decisions and those 

of other participants in the experiment. Average earnings from the game including bonus were 

$1.34. 

All experiments were approved by Harvard University Committee on the Use of Human 

Subjects in Research. 

 

3.2.1.2 Experimental design 

3.2.1.2.1 Experiment 1 

Participants on AMT joined the experiment by responding to our ‘HIT’ posted on the AMT 

website, and being redirected to our external website where the game was hosted. They then 

received instructions on the experimental game and had to pass a comprehension quiz about the 
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rules of the game (see Section 3.3.1 for screenshots of instructions and comprehension questions). 

Participants were not allowed to continue unless they answered all three comprehension questions 

correctly. Participants were then asked to wait up to 10 minutes for other participants to arrive 

before the experiment began; once the experiment did begin, all participants started at the same 

time. A countdown was displayed on their screen for the last three minutes and an audio feedback 

was played informing them about the remaining time until the experiment would start. Participants 

who did not respond within 40 seconds after the start of the experiment could not participate in the 

experiment. All participants were informed upfront that their presence was mandatory to be 

eligible to take part in this study. AMT workers who had taken part in a previous session of this 

experiment were not allowed to participate again. 

The experiment was conducted one session at a time. For each session, we aimed to 

maximise the number of participants. The average group size was 39 participants (min = 17, max 

= 60, sd = 10.28). We launched our experiment only during business hours (9am – 5pm Eastern 

Standard Time) on weekdays for every session. All participants were assigned to the same 

condition during a single session. We randomized the order of treatment and control conditions 

across sessions (8 treatment and 8 control) prior to the start of the experiment.  

All participants who were eligible to play (i.e., finished the instructions and the quiz in the 

allotted time) were arranged in a circular network so that every participant had exactly two 

neighbours (see Figure 3.1 of the main text). The network structure did not change over the course 

of the experiment, except as noted below.  

Prior to the beginning of the actual game, all participants took part in a practice round. The 

practice round was played with two neighbours simulated by a computer, which participants were 

informed about. The practice round took place simultaneously for all participants to ensure that all 
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participants were paying attention and were ready for the actual game. (See Section 3.3 for 

screenshots of the practice rounds.) During the practice round, all times to reach a decision were 

doubled, from 20 seconds to 40 seconds, to ease familiarisation with the setup.  

After the practice round, the real game began with participants interacting with their two 

neighbours. Due to a technical error, in all sessions neighbours were randomly reassigned after 

round 1 (but were not informed of this reshuffling). We believe this error is unlikely to have had 

any long-lasting consequences for our participants; and whatever consequences it might have had 

would have worked against our treatment effect, by undermining the power of local-to-global 

reciprocity after the first round.  

From the second round onwards, a participant’s neighbours stayed the same as long as 

neither the participant nor her neighbours dropped out of the game (participant dropouts are a 

common problem in online studies, unlike in the physical lab, and the solution we take here is 

standard procedure, see Ref. (Rand, Arbesman, and Christakis 2011; Rand et al. 2014)). Dropouts 

were eliminated from the circular network and the dropouts’ former neighbours were connected. 

Participants were not told if their neighbour dropped out to avoid a ‘restart’ effect which has been 

observed in repeated games (Andreoni 1988; RTA Croson 1996). Participants were told to pay full 

attention and to avoid dropping out, or else their payoff—show-up fee and bonus—would be zero.  

Since dropouts did occur, one might worry about potential selection effects. Most 

importantly, there was no difference between the treatment and control in dropout rate (logistic 

regression using treatment dummy to predict probability of dropout, standard errors clustered on 

session, p = 0.752) or average group size (t-test of group size between conditions using a single 

indicator variable per condition, p = 0.690). Thus, differences in behaviour between the treatment 

and control cannot be attributed to dropouts. Furthermore, we did not find evidence that the 
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behaviour of dropouts was systematically different from non-dropouts: there was no statistical 

difference in contributions between dropouts and non-dropouts (linear regression using dropout 

dummy to predict contributions clustered on session, p = 0.144), and contribution amount did not 

predict the probability of dropping out (logistic regression using contributions to predict likelihood 

of dropout clustered on session, p = 0.121).  

The experiment consisted of a series of 20 rounds. Participants were not told how many 

rounds they would be playing to avoid potential last-round effects and backwards induction (as in 

Ref. (Rand et al. 2009)). Each round was comprised of a public goods game (PGG; stage 1) with 

all participants in the session contributing to a shared pool, followed by pairwise Prisoner’s 

Dilemmas (PDs; stage 2) between the direct neighbours in the circular network.  

In stage 1, participants chose a contribution of between 0 and 20 units in the PGG. All 

contributions were doubled and every participant in the session received an equal share from the 

public good. After making their PGG contribution decision, participants in both conditions learned 

their individual payoff from the PGG. In the treatment condition, the participants were also 

informed of their neighbours’ contributions to the PGG, while participants in the control condition 

received no additional information.  

Across both conditions, participants in stage 2 then played two pairwise PDs with their two 

neighbours. They could choose between cooperation (paying a cost of 6 units to provide the 

neighbour with a benefit of 18 units) and defection (paying no cost and providing no benefit). Once 

all participants had made their choice, in both conditions the PD actions of the participant’s two 

neighbours were displayed and the participant’s payoffs in the current round were summarised. 

(See Section 3.3 for instructions and screenshots of the experiment.) 
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3.2.1.2.2 Experiment 2 

Participants on AMT joined the experiment by accepting our AMT ‘HIT’. They read the 

instructions (see screenshots in Section 3.3) and had to pass several comprehension questions. 

Participants waited in an online ‘waiting room’ for up to 5 minutes for three other participants to 

arrive. As soon as four participants were ready, the game began immediately. There was no 

practice round; however, the time to reach a decision in each stage was 10 seconds longer in the 

first round of the experiment than in later rounds. 

The two-stage economic game in the second experiment was similar in many ways to one 

in the first experiment: participants first made a decision in a group contribution stage—the large-

scale repeated PGG—and then in a pairwise cooperation stage—a repeated PD. However, there 

were also several differences between the two experiments. First, while participants in the first 

experiment interacted with two players in the PD stage, every participant in experiment 2 played 

a repeated PD with only one other participant.  

Furthermore, participants in this experiment were no longer recruited all at the same time; 

they were instead recruited in batches of 4 participants, which formed two pairs who played the 

game at the same time. (We refer to these two simultaneously playing pairs of players as “double 

pairs.”) We required two pairs of participants playing the game simultaneously due to a change to 

the control condition. Participants in the control in experiment 1 were not informed about anyone’s 

PGG contributions during the PD stage, while participants in the treatment condition always knew 

the PGG contributions of two other players (those with whom they also played the PD). We argued 

in experiment 1 that observing the PGG contributions of one’s PD partners is crucial to sustaining 

contributions; however, an alternative “social norm” explanation could be that seeing anyone 

else’s PGG contributions is sufficient to maintain contributions (i.e., without playing a repeated 
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PD with that same person). We rule out this “social norm” possibility with a new control condition 

in experiment 2.  

Participants in the control condition in experiment 2 saw the PGG contributions of another 

player who was part of the larger PGG. This player was not the same participant with whom they 

interacted in the PD stage of the game. They saw instead the contributions of one of the players of 

the pair that played the game simultaneously, and played a repeated PD with a participant whose 

contributions they did not see. In the treatment condition, conversely, participants continued to 

observe the contributions of the player with whom they also played the PD game. Thus, in both 

conditions, participants saw someone’s PGG contributions: any difference we observe between 

control and treatment thus cannot be attributed to a “social norm” of others’ contribution, but is 

caused by interacting directly with the person whose contributions were observable. (While we 

required four participants to be playing the game at the same time in the control, we only needed 

two players at the same time in the treatment condition. To avoid any differences in decision times 

or dropout rates between conditions, however, participants in the treatment condition also played 

the game in batches of 4 participants. Note though that each pair of players played their game 

independently and was not aware of another pair that played simultaneously.) 

Finally, participants in the second experiment did not learn about their payoff from the 

PGG. Because all 1,000 participants were not online simultaneously, it was not possible to 

calculate the payoff of each round of the PGG in real time. Participants were told that their earnings 

from the PGG would be calculated at the end of the study. Thus, participants in neither condition 

learned whether or not overall levels of contributions in the large group were stable, decreasing, 

or increasing. The lack of feedback from the PGG implies that conditionally cooperative players 

(Fischbacher, Gächter, and Fehr 2001) would not be able to respond to the changes in contributions 
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by the entire group. However, they would still be able to observe, and respond to, the PGG 

contributions of the player whose contributions they saw during the PD stage. Furthermore, 

although the lack of PGG feedback could potentially affect individuals’ contribution behaviour, 

this lack of feedback is the same across both conditions and it could thus not drive any difference 

between conditions. 

The experiment consisted of a series of 10 rounds of the two-stage economic game (as 

described in more detail above for experiment 1). To avoid end-game effects, participants were 

not told how many rounds would be played (e.g. see (Rand et al. 2014)). In stage 1, participants 

could contribute between 0 and 20 units in the PGG. In stage 2, participants played a PD with 

another player who remained the same throughout the game: each person could choose to 

cooperate (paying 12 units to increase the other player’s payoff by 36 units) or defect (no cost or 

benefit to either party) with the other player. 

The experiment was conducted one session at a time. For each session, we recruited as 

many as 200 participants per session, and recruitment continued until we had 500 participants per 

condition (total N = 1,000) who had completed the game. To keep with random assignment, the 

order of conditions was alternated across sessions. All participants were assigned to the same 

condition for every session. In total, we conducted 15 sessions (7 control, 8 treatment) and 

recruited 1,352 participants, of which 26% of groups did not complete the game due to one or more 

dropout. 

Dropouts in the second experiment were handled differently than in the first experiment. 

While in experiment 1 a participant who dropped out was simply “replaced” by his or her two 

nearest neighbours joining the cyclic network and playing the remainder of the game together, this 

was not possible in experiment 2, as there were only 4 participants in the same stage of the game 
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at the same time. Thus, if one participant dropped out (e.g., by closing his or her Internet browser, 

or losing Internet connection), the remaining three participants, who were part of the two pairs 

playing the game simultaneously, could not continue. Although those participants could not finish 

the game, they were compensated for their time by earning the $1.00 show-up fee and a bonus of 

$0.30. 

Across both conditions, 352 participants (26%) did not complete the game. There was no 

significant difference in the number of dropout groups between conditions (logistic regression 

using treatment dummy to predict probability of dropout at the “double pairs” level, with robust 

standard errors, p = 0.714). Neither did levels of contributions nor rates of pairwise cooperation 

predict the probability of dropping out (logistic regression to predict probability of dropout, 

clustered on double pair; using contribution: p = 0.473; using cooperation: p = 0.378). 

Our main analysis focuses on the 1,000 participants (500 per condition) who completed all 

10 rounds of the game. However, we find qualitative similar results when dropout groups are 

included (see Table 3.13). 

 

3.2.2. Statistical details 

In experiment 1, all games lasted 20 rounds. In each round of the game, participants had to make 

three choices. First, how many units they wanted to contribute to a group-wide PGG. Contributions 

in the PGG are measured on a continuous scale (i.e., integers from 0 to 20 where 0 is full defection 

and 20 is full cooperation). Then, they made two simultaneous decisions in the PD stage: whether 

or not to cooperate with each of their two neighbours. Cooperation in the PD is a binary measure 

(i.e., 1=cooperation, 0=defection).  
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In experiment 2, all games lasted 10 rounds. In each round of the game, participants made 

two choices: how many units (between 0 and 20) to contribute in a large-scale PGG and whether 

or not to cooperate with another participant in the PD.  

Unless otherwise indicated, we used linear regression models with robust standard errors 

clustered on session to account for the fact that decisions of players within a given session are not 

independent. 

 

3.2.2.1 Group contributions 

We first asked the basic question of how contributions in the group cooperation stage differed 

between conditions. We predicted contributions to the public good in the control condition to be 

less than in the treatment condition. This difference would grow as time passed: participants would 

maintain stable contributions in the treatment condition, while contributions in the control 

condition would decrease over time. The dependent variable in our analyses was the amount of 

units contributed per round. The independent variables were a dummy for the control condition 

(1=control, 0=treatment) and current round number. 

As predicted, we found that participants contributed less on average in the control condition 

than in the treatment condition, both in the first round (coeff = -1.491, p = 0.018, Table 3.1 col. 1) 

and averaged over all rounds (coeff = -5.727, p < 0.001, Table 3.1 col. 2). Furthermore, this 

difference in contributions emerged over time (interaction between round and control dummy, 

coeff = -0.294, p < 0.001, Table 3.2 col. 3): we observed a significant decrease in contribution over 

time in the control (coeff = -0.345, p < 0.001, Table 3.2 col. 1), but not in the treatment (coeff = -

0.051, p = 0.098, Table 3.2 col. 2).  
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Table 3.1: Linear regression model estimating the effect of treatment on contributions in the group 

cooperation stage. The treatment condition is taken as baseline. Standard errors clustered on 

session. 

 First round All rounds 
1=Control -1.491 -5.727 
 (0.561)* (0.633)*** 
Constant 14.231 14.484 
 (0.413)*** (0.409)*** 
R2 0.01 0.12 
N 646 11,552 

* p<0.05; ** p<0.01; *** p<0.001 

 

Table 3.2: Linear regression model estimating the effect of round and experimental condition on 

contributions in the group cooperation stage. In column 3, the treatment condition is taken as 

baseline. Standard errors clustered on session. 

 Control Treatment Both 
Round -0.345 -0.051 -0.051 
 (0.026)*** (0.027) (0.026) 
1=Control   -2.763 
   (0.546)*** 
1=Control X round   -0.294 
   (0.036)*** 
Constant 12.240 15.003 15.003 
 (0.460)*** (0.328)*** (0.317)*** 
R2 0.06 0.00 0.15 
N 5,981 5,571 11,552 

* p<0.05; ** p<0.01; *** p<0.001 

 



Chapter 3. Preserving the global commons 

93 

3.2.2.2 Pairwise cooperation 

We then turned to the question of how participants interacted in the pairwise cooperation stage. 

Participants could choose to cooperate or defect with each of their neighbours (They did not have 

to make the same choices for both.)  

Here, our unit of observation was the PD cooperation decision (2 observations per 

participant per round). The independent variable was PD choice (0=defect, 1=cooperate). The 

dependent variables were a dummy for the control condition (1=control, 0=treatment) and current 

round number. We use linear regression (despite having a binary DV) in order to have more easily 

interpretable coefficients; however, we note that using logistic regression instead does not 

qualitatively change any outcomes.  

Although we found that there was significantly more cooperation in the control condition 

than the treatment in period 1 (coeff = 0.075, p < 0.001, Table 3.3 col. 1), there was no significant 

difference when considering all rounds (coeff = 0.031, p = 0.342, Table 3.3 col. 2). Furthermore, 

there was no significant difference between conditions in how cooperation changed over time 

(interaction between round number and control dummy, coeff = -0.001, p = 0.492, Table 3.4 col. 

3): cooperation declined very slightly over time in both the control condition (coeff = -0.005, p = 

0.016, Table 3.4 col. 1) and treatment condition (coeff = -0.004, p = 0.006, Table 3.4 col. 2), at a 

modest rate of on average 0.4% per round.  
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Table 3.3: Linear regression model estimating the effect of treatment on levels of cooperation in 

the pairwise cooperation stage. The treatment condition is taken as baseline. Standard errors 

clustered on session. 

 First round All rounds 
1=Control 0.075 0.031 
 (0.015)*** (0.032) 
Constant 0.615 0.579 
 (0.012)*** (0.028)*** 
R2 0.01 0.00 
N 1,292 23,104 

* p<0.05; ** p<0.01; *** p<0.001 

 

Table 3.4: Linear regression model estimating the effect of round and experimental condition on 

PD cooperation. In column 3, the treatment condition is taken as baseline. Standard errors clustered 

on session. 

 Control Treatment Both 
Round -0.005 -0.004 -0.004 
 (0.002)* (0.001)** (0.001)** 
1=Control   0.044 
   (0.027) 
1=Control X round   -0.001 
   (0.002) 
Constant 0.661 0.617 0.617 
 (0.012)*** (0.026)*** (0.025)*** 
R2 0.00 0.00 0.00 
N 11,962 11,142 23,104 

* p<0.05; ** p<0.01; *** p<0.001 

 

3.2.2.3 Pairwise cooperation strategies 

While the average levels of cooperation in the PD stage did not differ between the two conditions, 

the ways in which the PD was used did differ between conditions. 
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In the control condition, participants could not condition their behaviour in the PD on their 

neighbours’ PGG contributions, because this information was not available to them. Thus, we only 

expected participants to condition their PD behaviour on their neighbours’ previous cooperation 

(i.e. to engage in “local” reciprocity). Indeed, we found that participants in the control condition 

were substantially more likely to cooperate if their partner had cooperated with them in the 

previous round (using neighbour’s action in prior PD round as independent variable with 0=defect, 

1=cooperate: coeff = 0.540, p < 0.001, Table 3.5 col. 1). 

Conversely, participants in the treatment condition were informed of their neighbours’ 

PGG contributions while making their PD decisions. They were thus able to enact local-to-global 

reciprocity: they could condition their local PD cooperation with a given neighbour on that 

neighbour’s contribution to the global PGG. Indeed, participants in the treatment were 

significantly more likely to cooperate with neighbours who were high contributors in the PGG 

(using neighbour’s action in PGG immediately prior to the given PD as independent variable with 

0=neighbour contributed less than the participant, 1=neighbour contributed at least as much as the 

participant, following the definition in (Rand et al. 2009): coeff = 0.175, p < 0.001, Table 3.5 col. 

2). 

Participants also engaged in traditional local reciprocity, cooperating more with neighbours 

who had cooperated with them in the previous PD round (coeff = 0.475, p < 0.001, Table 3.5 col. 

2). Furthermore, there was a synergistic interaction between local reciprocity and local-to-global 

reciprocity (interaction between neighbour’s cooperation dummy and neighbour’s contribution 

dummy, coeff = 0.168, p = 0.002; Table 3.5 col. 3), such that participants were most likely to 

cooperate with neighbours who both cooperated in the previous PD and were high contributors in 

the PGG. 
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Table 3.5: Linear regression model estimating the effect of a neighbour’s previous pairwise 

cooperation and her group contribution on the participant’s willingness to cooperate with her in 

the current round. Standard errors clustered on session. 

 Control Treatment Treatment 
1=Neighbour cooperated 0.540 0.475 0.356 
 (0.038)*** (0.014)*** (0.033)*** 

1=Neighbour contributed same or 
more than me 

 0.175 0.088 
 (0.021)*** (0.027)* 

1=Neighbour cooperated X 
contributed same or more 

  0.168 
  (0.035)** 

Constant 0.274 0.176 0.233 
 (0.026)*** (0.012)*** (0.017)*** 

R2 0.29 0.27 0.28 
N 11,294 10,518 10,518 

* p<0.05; ** p<0.01; *** p<0.001 

 

Two mechanisms could explain our results: either participants cooperated in the PD more with 

high-contributing neighbours in the PGG, or they punished low-contributing neighbours by 

withholding cooperation from them in the PD (or both). To find out which mechanism was at work 

in our data, we compared cooperation rates towards low and high contributors in the treatment 

condition to cooperation rates in the control condition (where the neighbour’s contribution was 

unknown).  

If punishment of low contributors was occurring, we would expect less PD cooperation 

with low contributors in the treatment than with unknown contributors in the control; and indeed, 

this is what we observe (regression including all PD choices from control and PD choices where 

neighbour contributed less than the participant from the treatment, using treatment dummy as 
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independent variable: coeff = -0.201, p < 0.001, Table 3.6 col. 1; controlling for previous 

cooperation behaviour does not affect this result, coeff = -0.135, p < 0.001, Table 3.6 col. 2). If 

reward of high contributors was occurring, conversely, we would expect more PD cooperation 

with high contributors in the treatment than with unknown contributors in the control; but we find 

no such effect (regression including all PD choices from control and PD choices where neighbour 

contributed as much as more than the participant from the treatment, using treatment dummy as 

independent variable: coeff = 0.037, p = 0.303, Table 3.7). 

In short, pairwise cooperation rates in the treatment condition differed towards low-

contributing neighbours relative to the control group, but not towards high contributors. Thus 

participants “punished” low contributors by withholding cooperation, rather than rewarding high 

contributors by increasing cooperation. This suggests a norm of where people are expected to 

contribute, such that deviations downward are punished. 

 

Table 3.6: Linear regression model estimating the effects of the treatment on a participant’s 

likelihood of cooperating in the pairwise cooperation stage with a neighbour who contributed less 

than the participant in the group cooperation stage. The baseline group are participants of any 

contribution level in the control condition. Standard errors clustered on session. 

 Neighbour contributed less Neighbour contributed less 
1=Treatment -0.201 -0.135 
 (0.026)*** (0.018)*** 

1=Neighbour 
cooperated 

 0.500 
 (0.034)*** 

Constant 0.610 0.299 
 (0.016)*** (0.024)*** 

R2 0.03 0.27 
N 15,141 14,270 

* p<0.05; ** p<0.01; *** p<0.001 
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Table 3.7: Linear regression model estimating the effects of the treatment on a participant’s 

likelihood of cooperating in the pairwise cooperation stage with a neighbour who contributed the 

same or more than the participant in the group cooperation stage. The baseline group are 

participants of any contribution level in the control condition. Standard errors clustered on session. 

 Neighbour contributed  
same or more 

Neighbour contributed  
same or more 

1=Treatment 0.037 0.036 
 (0.034) (0.019) 
1=Neighbour 
cooperated 

 0.534 
 (0.023)*** 

Constant 0.610 0.278 
 (0.016)*** (0.017)*** 

R2 0.00 0.29 
N 19,925 18,836 

* p<0.05; ** p<0.01; *** p<0.001 

 

3.2.2.4 Response in PGG to neighbours’ PD choices 

We observed that participants in the treatment condition were less likely to cooperate in the PD 

stage with neighbours who had contributed less than them in the PGG. They withheld cooperation 

to “punish” low contributors. Did this withholding work to elicit more contributions from low 

contributors in the future?  

Indeed, we found that in the treatment, the less a low contributor’s neighbours cooperated 

with her, the more she contributed in the next PGG round (change in contribution predicted by the 

number of neighbours withholding cooperation (i.e. defecting in PD): coeff = 1.153, p < 0.001, 

Table 3.8 col. 2). Interestingly, withholding had to be coordinated in order to be effective: having 

only one neighbour withhold cooperation did not increase subsequent contributions of the low 

contributor relative to having both neighbours cooperate (coeff = 0.069, p = 0.871); it was 



Chapter 3. Preserving the global commons 

99 

necessary to have both neighbours withhold cooperation in order to motivate low contributors to 

increase their contributions (0 vs. 2 withholding neighbours: coeff = 1.981, p = 0.001) (see Table 

3.9).  

Importantly, this effect was unique to the treatment. In the control, having cooperation 

withheld by one or both neighbours had no effect on low-contributing participants’ subsequent 

PGG contribution (using number of withholding neighbours as independent variable: coeff = 

0.048, p = 0.857, Table 3.8 col. 1; using discrete number of neighbours withholding: 0 vs 1 

neighbour withholding: coeff = -0.038, p = 0.920; 0 vs 2 cooperating withholding: coeff = 0.129, 

p = 0.804, Table 3.9 col. 1). Furthermore, when data from both conditions are taken together, a 

significant interaction between condition and the number of neighbours withholding cooperation 

demonstrated that the effect of withholding on future contributions was significantly larger in the 

treatment than the control (interaction between number of cooperating neighbours and treatment 

dummy: coeff = 1.105, p = 0.002, Table 3.8 col. 3; qualitatively similar results as above using 

interaction between treatment dummy and discrete number of neighbours, see Table 3.9 col. 3). 

In addition to disciplining low contributors, neighbours’ behaviour in PD mechanism also 

effectively buttressed high contributors against the temptation to reduce contributions in the 

treatment condition: the more PD cooperation high contributors received from their neighbours, 

the less they reduced their contributions in the next round (coeff = 0.828, p < 0.001, Table 3.10 

col. 2). In the control condition, however, there was no “buttressing effect”: receiving more 

cooperation from neighbours did not protect against declining contributions in control (coeff = 

0.253, p = 0.183, Table 3.10 col. 1); an observation that was also confirmed by a significant 

interaction for the treatment condition only (interacting number of cooperating neighbours with 

treatment dummy: coeff = 0.575, p = 0.015, Table 3.10 col. 3). 
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Table 3.8: Linear regression model estimating the effect of both neighbours’ defection in the PD 

stage on change in contributions of participants who contributed less than their neighbours 

previously in the PGG stage. Standard errors clustered on session. 

 Control Treatment Both 
# Neighbours withholding PD 
cooperation 

0.048 1.153 0.048 
(0.255) (0.183)*** (0.246) 

1=Treatment   -0.966 
   (0.369)* 

1=Treatment X neighbours withholding   1.105 
   (0.303)** 

Constant 1.840 0.874 1.840 
 (0.247)*** (0.291)* (0.239)*** 

R2 0.00 0.02 0.01 
N 2,586 1,663 4,249 

* p<0.05; ** p<0.01; *** p<0.001 

 

Table 3.9: Linear regression model estimating the effect of one or two neighbours’ defection in 

the PD on change in contributions of participants who contributed less than their neighbours 

previously in the PGG. Standard errors clustered on session. 

 Control Treatment Both 
1 neighbour withheld PD cooperation -0.038 0.069 -0.038 
 (0.365) (0.411) (0.353) 

2 neighbours withheld PD cooperation 0.129 1.981 0.129 
 (0.500) (0.393)** (0.483) 

1=Treatment   -0.430 
   (0.426) 

1=Treatment X 1 neighbour withheld   0.107 
   (0.531) 

1=Treatment X 2 neighbours withheld   1.852 
   (0.614)** 

Constant 1.869 1.439 1.869 
 (0.261)*** (0.355)** (0.252)*** 

R2 0.00 0.02 0.01 
N 2,586 1,663 4,249 

* p<0.05; ** p<0.01; *** p<0.001 
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Table 3.10: Linear regression model estimating the effect of both neighbours’ cooperation in the 

PD on change in contributions of participants who contributed the same or more than their 

neighbours previously in the PGG. Standard errors clustered on session. 

 Control Treatment Both 

# Neighbours cooperating in PD 0.253 0.828 0.253 

 (0.171) (0.132)*** (0.166) 

1=Treatment   0.319 

   (0.290) 

1=Treatment X neighbours cooperating   0.575 

   (0.209)* 

Constant -2.523 -2.205 -2.523 

 (0.217)*** (0.208)*** (0.209)*** 

R2 0.00 0.02 0.02 

N 3,061 3,596 6,657 

* p<0.05; ** p<0.01; *** p<0.001 

 

3.2.2.5 Scalability 

3.2.2.5.1 Random variation of group size 

Finally, we present evidence that our “local-to-global” reciprocity is scalable across different sized 

groups. We take advantage of random variation across sessions in the number of participants in 

the PGG to illustrate this. One might worry that as groups become larger, local interactions 

between just two neighbours might be ineffective at stabilising contributions in the global PGG.  

However, we find no evidence for this: contributions in the final round of the game do not 

decline as groups become larger in the treatment condition (coeff = -0.015, p = 0.782, Table 3.11 

col. 2; all regressions in this section take the group as the unit of observation, with one data point 
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per group). In fact, a threefold increase in the size of the group has no discernible impact on PGG 

contributions in the treatment.  

In contrast, final round contributions in the control do seem to decrease as groups grow 

larger, albeit only at a marginal level of statistical significance (coeff = -0.110, p = 0.069, Table 

3.11 col. 1). When data from both the control and treatment conditions are taken together, we 

correspondingly observe a positive interaction between a treatment dummy and group size (coeff 

= 0.095, p = 0.204, Table 3.11 col. 3), suggesting that our intervention if anything becomes more 

effective relative to the control as groups becomes larger, although this interaction does not achieve 

statistical significance (perhaps not surprisingly given that we have only 8 independent 

observations per condition and thus the statistical test has little power). Results when considering 

average PGG contributions over all rounds are qualitatively similar (Table 3.12). 

 

Table 3.11: Linear regression model estimating the effect of group size on PGG contributions in 

the final round of the game. Each session corresponds to one observation, and robust standard 

errors are used. 

 Control Treatment Both 
Group size -0.110 -0.015 -0.110 
 (0.050) (0.051) (0.050)* 
1=Treatment   3.521 
   (3.077) 
1=Treatment X group size   0.095 
   (0.071) 
Constant 11.125 14.646 11.125 
 (2.469)** (1.836)*** (2.469)*** 
R2 0.36 0.01 0.85 
N 8 8 16 

* p<0.05; ** p<0.01; *** p<0.001 
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Table 3.12: Linear regression model estimating the effect of group size on PGG contributions 

averaged over all rounds of the game. Each session corresponds to one observation, and robust 

standard errors are used. 

 Control Treatment Both 
Group size -0.052 -0.011 -0.052 
 (0.035) (0.029) (0.035) 
1=Treatment   -0.318 
   (2.003) 
1=Treatment X group size   0.041 
   (0.046) 
Constant 15.030 14.712 15.030 
 (1.672)*** (1.103)*** (1.672)*** 
R2 0.23 0.02 0.37 
N 8 8 16 

* p<0.05; ** p<0.01; *** p<0.001 

 

3.2.2.5.2 Large-scale PGG with 1,000 players 

To further address the question of scalability, we ran an additional experiment with 1,000 

participants playing one large PGG. In the treatment condition, participants were able to see the 

contributions of the player with whom they also played a repeated PD after each round of the PGG. 

Conversely, in the control condition, participants were not able to see the contributions of their PD 

partner. However, each player in the control condition saw the contributions of another player who 

was simultaneously playing the same game with someone else (see Section 3.1 for experimental 

details). 

This design required four participants playing the game simultaneously in two pairs in the 

control condition, and the decisions between those pairs are not independent. Thus, to account for 

this interdependence, we cluster standard errors at this “double pairs” level (i.e., four players in 

two pairs playing the game simultaneously). To keep decision decision times and dropout rates 
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constant between control and treatment, we also required that two pairs of participants played the 

game simultaneously in the treatment group and thus we also cluster on double pairs. 

As before, we predicted that contributions would be lower in control than treatment, and 

this difference would emerge over time. This is indeed what we found: overall levels of 

contribution were lower in control than treatment (coeff = -1.456, p = 0.005, Table 3.13 col. 1). 

Over time, participants in the control condition decreased their contributions (coeff = -0.136, p < 

0.001, Table 3.13 col. 2), while contributions remained stable in treatment (coeff = -0.027, p = 

0.429, Table 3.13 col. 3). This difference was significant when we combined the data from both 

conditions (interaction between number of rounds and control dummy, coeff = -0.109, p = 0.017, 

Table 3.13 col. 4). Furthermore, we found qualitatively similar results when we include dropout 

groups in our analysis (Table 3.13 col. 5). 

 

Table 3.13: Linear regression model estimating the effect of experimental condition and round on 

contributions in the large public goods game. Standard errors clustered on “double pairs” (groups 

of four simultaneous players). 

 Combined Control Treatment Interaction Interaction 

1=Control -1.456   -0.855 -0.886 
 (0.514)**   (0.504) (0.431)* 
Round  -0.136 -0.027 -0.027 -0.044 
  (0.030)*** (0.034) (0.034) (0.036) 
1=Control  
  X Round 

   -0.109 -0.098 
   (0.046)* (0.049)* 

Constant 11.912 11.206 12.061 12.061 12.194 
 (0.362)*** (0.361)*** (0.354)*** (0.353)*** (0.307)*** 
Dropouts 
included No No No No Yes 

R2 0.01 0.00 0.00 0.01 0.01 
N 10,000 5,000 5,000 10,000 11,620 

* p<0.05; ** p<0.01; *** p<0.001 
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Chapter 4.  

Cooperating with the future 

4.1 Main text 

Providing for future generations is central to the survival of genes, families, organizations, nations 

and the global ecosystem (Hardin 1968; Ostrom 1990; Levin 2007; Milinski and Semmann 2006; 

Wade-Benzoni and Tost 2009). Yet providing for the future poses a challenge, as it requires 

making sacrifices today. Institutions can play an important role in promoting such cooperative 

behaviour among large groups of people. Traditionally, institutional designers have assumed that 

people are rational and purely self-interested, and proposed incentives that induce selfish people 

to cooperate (Coase 1960; Mueller 1979; Williamson 1985).  

In recent years, however, a large body of evidence has demonstrated that many people are 

not purely selfish (Wade-Benzoni and Tost 2009; Forsythe et al. 1994; Camerer 2003; Charness 

and Rabin 2002; Fosgaard, Hansen, and Wengström 2011; Amir et al. 2012; Rand, Greene, and 

Nowak 2012). Here we consider the implications of these ‘social preferences’ for designing 

institutions that promote sustainability and intergenerational cooperation. We demonstrate that 

democracy can be a powerful institution for harnessing social preferences: while selfish people 

would vote for over-exploitation of resources, voting allows a prosocial majority to override a 

selfish minority. (See Supplementary Information, SI, Section 1 for further motivating discussion.)  

To do so, we introduce a laboratory model of cooperating with the future – the 

Intergenerational Goods Game (IGG) – that builds on previous work using Public Goods Games 

(Milinski et al. 2001; Fehr and Gächter 2002; Rand et al. 2009), Common Pool Resource games 
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(Ostrom, Walker, and Gardner 1992; Walker, Gardner, and Herr 2000) and Threshold games 

(Milinski and Semmann 2006; Jacquet et al. 2013; Cadsby and Maynes 1998). In these other 

games, selfishness creates social efficiency losses for the other members of one’s group. In 

contrast, the IGG is designed such that selfishness instead negatively impacts subsequent groups.  

In our IGG experiments, individuals form groups of five, which we refer to as generations. 

The first generation is endowed with a common pool of 100 units and each individual can extract 

between 0 and 20 units from the pool. If the total percentage of units extracted from the pool is at 

or below a commonly known extraction threshold, T, the pool will renew to 100 units for the next 

generation. If, however, the percentage extracted is above T, the pool is exhausted and all future 

generations receive no payoff (Figure 4.1). After each generation, another generation occurs with 

probability δ, and with probability 1-δ the game ends: the discount factor δ models the extent to 

which the current generation values the next generation. (See Section 4.2.2 for further 

experimental details.) 

In the game theoretic tradition, the IGG framework is a great simplification relative to real-

world intergenerational cooperation. For discussion of important aspects of intergenerational 

transfer which the IGG does yet not incorporate, as well as relation of our work to previous results 

on intergenerational transfer, see Section 4.2.3.  

To explore behaviour in the IGG, we begin with an ‘unregulated’ treatment: each group 

member individually chooses how many units to extract from the pool. We initialize 20 

unregulated IGGs, and pass each game’s pool across a series of generations with a discount factor 

of δ=0.8 (leading to an expected game length of five generations). For the pool to be replenished, 

each generation must extract 50 units or less (T=50%). Thus the socially efficient extraction (or 

‘fair share’) is 10 units per individual on average. We focus on symmetric strategies and refer to 
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individuals who extract 10 or fewer units as cooperators, and those who extract more than 10 units 

as defectors.  

 

 

Figure 4.1. An illustration of the intergenerational game (IGG): In each generation, a group of 

5 people makes a decision (individually or according to an institutional rule) about their level of 

extraction from a common resource. a If Generation 1’s extractions do not violate the commonly 

known threshold, the resource refills and the same dilemma is presented to Generation 2. After 

each generation, another generation occurs with probability δ. b If at any point the threshold 

requirement is not met, the resource does not renew and future generations receive no payoff. 

Maximal social welfare is achieved if no generation ever violates the threshold requirement by 

extracting too much from the common resource. 
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Figure 4.2. Solving the (intergenerational) tragedy of the commons through an institutional 

design. a When decisions are made at the individual level, the availability of the common pools 

drastically decreases over time; N=480. b The introduction of a democratic voting institution 

dramatically improves sustainability; N=370. c Decreasing the discount factor from δ=0.8 to 

δ=0.7 (N=355) or δ=0.6 (N=305) while holding T=50%, or the extraction threshold from 

T=50% to T=40% (N=600) or T=30% (N=460) while holding δ=0.8, increases the temptation 

to defect. Nonetheless, much less is extracted under median voting compared to the unregulated 

baseline. Errors bars indicate standard errors of the mean. 
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We find that a large majority of individuals cooperate (68%), in line with previous studies 

using non-student populations (Fosgaard, Hansen, and Wengström 2011; Amir et al. 2012; Rand, 

Greene, and Nowak 2012). Despite their good intentions, however, only 4 of the 18 games 

continuing on to a second generation have their pools sustained. These losses in sustainability 

compound quickly over time: in generation 3, the number of refilled pools is down to two, and not 

a single refilled pool is available to the 4th generation (Figure 4.2a). Notably, in most groups, only 

a minority of defectors is responsible for the exhaustion of the resource.  

To address this sustainability failure, we introduce an institution that is central to the 

Western world: democracy. Each group member votes for their generation’s extraction level, and 

the median vote is extracted by all players. Well studied by economists and political scientists 

(Holcombe 1989; Walker, Gardner, and Herr 2000; Ertan, Page, and Putterman 2009; Putterman, 

Tyran, and Kamei 2011; Kamei, Putterman, and Tyran 2014; Bernard et al. 2013), this ‘median 

voting’ rule guarantees socially optimal outcomes in a standard Public Goods Game, even with 

perfectly self-interested actors: the payoff-maximising vote is full cooperation (Kamei, Putterman, 

and Tyran 2014; Bernard et al. 2013). In the IGG, however, this is not true: because the current 

group does not reap the benefits of cooperation, selfish players would vote to deplete the resource 

fully. From a traditional ‘public choice’ perspective based on rational self-interest, therefore, 

median voting is not attractive for promoting sustainability. If, however, enough players have 

social preferences, voting may be able to support sustainability in the IGG by allowing prosocial 

players to reign in selfish players. Thus a ‘behavioural public choice theorem’ (Ertan, Page, and 

Putterman 2009; Putterman, Tyran, and Kamei 2011; Kamei, Putterman, and Tyran 2014) might 

favour median voting; see Section 4.2.1 for further discussion.   
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To explore the effects of median voting, we initialize another 20 IGGs using δ=0.8 and 

T=50%, and applied the voting rule. We find a dramatic increase in sustainability (Figure 4.2b): 

all 20 common pools are sustained across all generations (unregulated vs. voting: linear probability 

model (LPM) predicting pool sustainability at the generation level, p<0.001; see Section 4.2.4 for 

statistical details).  

Next we ask how robust the voting mechanism is to variation in the discount factor, δ, and 

the extraction threshold, T. In the experiments described above, there was an 80% chance that a 

future generation would exist (δ=0.8) and individuals had to sacrifice half of their possible payoff 

to extract a ‘fair share’ (T=50%). We now examine the effectiveness of voting in two treatments 

using lower δ values (δ=0.7 and δ=0.6, creating fewer future generations), and two other treatments 

using lower T values (T=40% and T=30%, leading to a higher cost of cooperation). Each treatment 

again started with 20 pools.  

We find that voting remains largely effective in promoting sustainability under these more 

adverse conditions (Figure 4.2c). Although sustainability does vary significantly with δ (LPM, 

p=0.037) and T (LPM, p<0.001), the size of these effects is relatively small: decreasing δ or T by 

0.1 decreases the probability of a pool being sustained by 4.6% or 14.6%, respectively. Moreover, 

under all conditions tested, voting leads to much higher levels of sustainability than the original 

unregulated IGG (LPM, p<0.001 for all comparisons). 

The success of voting is driven by two factors. First, the decision-making power differs in 

the voting and unregulated institutions (Figure 4.3a). In the voting institution, a majority of three 

cooperators who propose 10 unit extractions can overrule two defectors who propose 20 units. In 

contrast, if decisions are made at the individual level, a single defector can tip the balance of a 

group. In other words, voting allows a majority of cooperators to restrain a minority of defectors. 
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The second reason for the success of voting pertains to the psychology of social 

preferences. Median voting addresses the fears of players who care about future generations but 

worry that others (now or later) will exhaust the pool (i.e., conditional cooperators (Fischbacher, 

Gächter, and Fehr 2001)): since the outcome of the vote is applied to all players, everyone within 

a generation receives the same payoff and no one risks being the ‘sucker’. This, in turn, further 

increases the probability that a cooperative majority is formed and the pool is sustained, both in 

the current generation and in the future. Figure 4.3b is consistent with this assessment: the fraction 

of cooperators is 20% larger under voting than unregulated (LPM coef=0.201, p<0.001).  

 

 

Figure 4.3. The voting institution is robust to extreme decision-makers and thereby increases 

cooperative behaviour. a The pivotal decision-maker in the voting institution is different from the 

unregulated institution. For instance, assume that T=50%, and that a cooperator and a defector 

always extract 10 and 20 units, respectively. The unregulated institution is vulnerable to extreme 

decision-makers, whereas the voting institution is robust to a minority of defectors. This, in turn, 

bolsters the decision of those who are predisposed towards cooperation but fear to be exploited 

(e.g., future-oriented ‘conditional cooperators’). b This leads to an increase of cooperators in the 

voting institution (N=370) over the unregulated institution (N=480).  
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Both of these factors predict that voting is only successful if everyone is bound by the 

outcome: a partial implementation (Bernard et al. 2013) provides an opportunity both for defectors 

to derail sustainability, and for potential cooperators to switch to defection out of fear that others 

will over-exploit.  

We test this prediction by introducing a ‘partial voting’ treatment (another 20 pools, again 

using δ=0.8 and T=50%). Three of the five people in each generation are bound by the decision of 

a median vote among themselves. The other two people are not informed of the vote’s outcome, 

and decide freely how much to extract. The sum of all five extractions is then compared to the 

extraction threshold T.  

As predicted, the partial voting institution is significantly less successful than the full 

voting institution (Figure 4.4a, LPM p<0.001). This point is driven home by bootstrapping 

simulations: of 10,000 pools created by randomly sampling participant decisions each generation, 

only 1.5% of available pools are sustained after 15 generations under partial voting, compared to 

84% under full voting; see Figure 4.5 and Section 4.2.5 for details. We conclude that, for voting 

to effectively manage sustainability, it must be binding for all decision-makers.  
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Figure 4.4. We confirm the hypothesis that voting must be binding for all players to achieve 

high levels of sustainability. a In a partially implemented voting institution (N=495), three of the 

individuals are bound to a vote while the other two can extract at will. A partially implemented 

voting institution is not robust to a minority of defectors and also cannot reassure conditional 

cooperators. Thus, partial voting fails to lead to sustainable outcomes. b Three real sets of 

decisions from our data demonstrate a consequence of the pivotal extractor outside the voting 

group.  
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In this paper, we have introduced a new laboratory model for cooperation across 

generations, the Intergenerational Goods Game (IGG). We have shown that in the absence of 

regulation, a minority of selfish players consistently deplete available resources. By implementing 

median voting, however, this negative outcome can be prevented – but only if all players are bound 

by the outcome of the vote. Votes that are only partially binding, such as the international Kyoto 

protocol, have little power. 

More generally, our results emphasize the importance of institutional designers moving 

away from the assumption of universal self-interest. We extend the ‘behavioural public choice 

theorem’ (Ertan, Page, and Putterman 2009; Putterman, Tyran, and Kamei 2011; Kamei, 

Putterman, and Tyran 2014) by demonstrating how voting can allow a majority of prosocial 

individuals to override a purely selfish minority, leading to costly group-level cooperation with 

future generations. Real-world data are consistent with this suggestion: countries that are more 

democratic also have more sustainable energy policies (combining data for 128 countries from the 

Economist’s Democracy Index and World Energy’s Energy Sustainability Index, p<0.001, 

R2=0.36; robust to controlling for GDP, Gini index, population size, literacy rate, unemployment 

rate, life expectancy, and level of corruption; see Figure 4.6 and  Section 4.2.6 for details). Policy 

makers can do much to promote the public good by using a behavioural approach that is informed 

by a more accurate understanding of human psychology (Kamei, Putterman, and Tyran 2014; 

Oullier 2013; Benkler 2011; Haynes et al. 2012). Many citizens are ready to sacrifice for the greater 

good. We just need institutions that help them do so. 

 

 

 



Chapter 4. Cooperating with the future 

115 

4.2 Supporting figures and data 

4.2.1. Theoretical motivation 

In this paper, we ask how different institutional rules lead individuals to conserve resources, 

leaving enough to provide for the next generation. In particular, we are interested in institutions 

that create sustainable outcomes by harnessing social preferences, and thus may be overlooked 

when relying on assumptions of rational self-interest.  

We focus on the institution of median voting (Holcombe 1989; Deacon and Shapiro 1975; 

Walker, Gardner, and Herr 2000; Putterman, Tyran, and Kamei 2011). Among selfish players, 

median voting can promote intra-generational cooperation (i.e. cooperation in traditional public 

goods and common pool resource games) (Walker, Gardner, and Herr 2000; Bernard et al. 2013). 

The essential structure of intra-generational cooperation is that a group of cooperators earns more 

than a group of defectors, but that the highest payoff comes from unilaterally defecting in a group 

where everyone else cooperates. Because median voting binds all players to the same action, 

unilateral defection is impossible. Therefore the highest payoff is earned by being in a group where 

everyone cooperates, and selfish players will vote for cooperation. This makes median voting an 

attractive institution for promoting cooperation under assumptions of rational self-interest in an 

intra-generational social dilemma.  

However, this is not true in the context of intergenerational cooperation. In our 

intergenerational goods game (IGG), all benefits created by the current generation’s cooperation 

are reaped by subsequent generations. Therefore it is no longer true that a group of cooperators 

earns more than a group of defectors. Instead, it is the case that a series of cooperative groups, who 

sustain a pool over multiple generations, earn more in total than a series where one defecting 

groups exhausts the pool early on. But an individual’s payoff is unaffected by the choices of the 
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other members of her own generation. Whereas in the traditional PGG, one’s own payoff increases 

when others in the same group cooperate, in the IGG one’s own payoff increases when members 

of the previous generation have cooperated.  

Therefore a player in generation i maximizes her payoff in the IGG by extracting the 

maximum amount, and is indifferent (monetarily) to the extraction amounts of other members of 

generation i. Because of this, selfish players will vote to extract the maximum amount in the IGG, 

unlike in the PGG. This would lead traditional theories of public choice, based on rational self-

interest, to conclude that median voting is not a good solution for promoting intergenerational 

transfer. 

However, the picture changes dramatically once social preferences are taken into account. 

A large body of literature suggests that a majority of people in many contexts are not purely self-

interested, but instead care to some extent about the well-being of others (Camerer 2003). People 

with these kinds of prosocial preferences may be willing to pay a cost to benefit members of future 

generations. However, they may also have ‘conditional cooperation’ preferences (Fischbacher, 

Gächter, and Fehr 2001), which is to say that they prefer cooperating as long as others (both in 

their own generation and in future generations) cooperate as well.  

Consider how a strong conditional cooperator who cares about future generations would 

play our IGG (in groups of five). In the unregulated condition, she would cooperate if she expected 

all four others to cooperate (and all members of future generations to cooperate), and would defect 

otherwise. Under median voting, however, she would vote for cooperation as long as she expects 

at least two others in her generation (and 3 others in future generations) to vote for cooperation, 

because only three cooperative votes are needed to make the median vote cooperative. Thus, in a 
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population of players of which some are future-oriented conditional cooperators, median voting 

can substantially increase the fraction of people choosing to cooperate.  

Furthermore, median voting decreases the number of cooperators needed for sustainability 

to be achieved. Following similar logic as above, five cooperative choices are needed in the 

unregulated cases, whereas only three are needed under median voting. Therefore, median voting 

also makes it easier not to over-exploit the pool.  

Critically, however, the predicted success of median voting hinges on a large fraction of 

the population having social preferences. If all players were purely self-interested, sustainability 

would never be achieved in either the unregulated or the median voting conditions.  

Our experiments are therefore designed to differentiate between the pessimistic prediction 

of classical public choice theory based on rational self-interest, and the optimistic prediction of a 

‘behavioural public choice theorem’ rooted in social preferences (Kamei, Putterman, and Tyran 

2014).  

 

4.2.2. Methods 

4.2.2.1 Data Collection on Amazon Mechanical Turk 

For all of our experiments, we recruited U.S. residents to participate using the online labour market 

Amazon Mechanical Turk (AMT). Our experiment was approved by Harvard University 

Committee on the Use of Human Subjects in Research, and informed consent was obtained from 

all subjects. 

To preserve random assignment, each generation for all conditions was run at the same 

time, and subjects within each generation were randomly assigned to one of our seven 

experimental condition. Each experimental condition is described in more detail below. 
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AMT is an online market place in which employers can pay users for completing short 

tasks (generally about 10 minutes) – usually referred to as Human Intelligence Tasks (HITs) – for 

a relatively small pay (generally less than a $1). Workers who have been recruited on AMT receive 

a baseline payment and can also be paid a bonus depending on their performance in the task. This 

setup lends itself well to adopt incentivised economic experiments: the baseline payment acts as 

the ‘show up’ fee and the bonus payment may derive from the workers’ behaviour in the economic 

game and/or other tasks throughout the experiment. 

A major advantage for using AMT is that the sample of recruited subjects has been shown 

to be more diverse and more nationally representative than the typical college student sample at 

major research universities, at which many economic games are run (Buhrmester, Kwang, and 

Gosling 2011; Amir et al. 2012; Horton, Rand, and Zeckhauser 2011).  

There may, of course, exist potential issues on AMT that would not occur in a traditional 

laboratory setting. For instance, running an experiment online involves giving up some control 

over subjects, since they cannot be monitored, as is usually the case in laboratories. That is, it 

cannot be ruled out that more than a single person is taking part in the experiment or that one 

person is participating more than once in the experiment (although AMT has put extensive 

measures into place to avoid this from happening; in addition, we have also implemented ways to 

carefully screen out any possible re-takers). Finally, the participating subject sample, albeit more 

diverse and representative than the average college students sample, is biased towards those who 

participate in online labour markets in the first place. To address these possible concerns, 

numerous studies have been carried out to validate results collected using AMT. Of particular 

relevance to the present study, very similar levels of prosociality have been found on AMT and in 

the lab (using an order of magnitude higher stakes) in a one-shot Prisoner’s Dilemma (Horton, 
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Rand, and Zeckhauser 2011), Public Goods Game (Amir et al. 2012), Trust Game (Amir et al. 

2012) and Ultimatum Game (Amir et al. 2012). 

 

4.2.2.2 Basic flow of the experiments 

All participants earned a $0.50 showup fee and had the opportunity to earn up to an additional $1 

in bonus payments depending on the outcome of the IGG. Participants took part in the experiment 

through an online survey provided by Qualtrics. After participants had read the experiment 

instructions (see Section 4.2.6 below), they had to pass a comprehension quiz about the rules of 

the game in order to partake in the actual experiment. Those who didn’t pass the quiz received 

only the baseline payment of $0.50, and are excluded from our analyses (in accordance with 

common practice on AMT (Horton, Rand, and Zeckhauser 2011)).  

The details of the decision-making stage depended on experimental condition, and the state 

of the common pool: if the threshold requirement had not been violated by a previous group and 

the pool had thus refilled to 100 units, participants made their choice about their extraction or vote 

(depending on the experimental condition they were in; explained in more detailed below). If the 

extraction threshold had been exceeded previously, the common pool was empty; in this case, the 

participants were informed about this fact and made no decision nor received any bonus payment 

beyond the baseline payment (i.e., the show-up fee).  

We were concerned that the instructions in the Partial Voting condition were more 

complicated than in the other conditions, and therefore that substantially more subjects might fail 

the initial comprehension check in Partial Voting (and thus be excluded). This could be potentially 

problematic because it would mean that the people who got to participate in the Partial Voting 

condition would be ‘smarter’ on average than participants in the other conditions, and this could 
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bias our results if ability to pass more complicated comprehension questions was correlated with 

behaviour in the IGG.  

We sought to mitigate this problem as follows. After the decision-making stage (so as to 

not influence their decisions), participants in all conditions other than Partial Voting were 

presented with the Partial Voting instructions and the corresponding comprehension quiz. 

Participants had to pass both comprehension checks correctly to receive their bonus, and we only 

include subjects who passed both quizzes in our analyses. (To keep the experiment approximately 

equal length across conditions, we also required participants in the Partial Voting condition to read 

the instructions for the Unregulated condition and answer the associated comprehension 

questions.) 

As expected, substantially fewer subjects passed the first set of comprehension questions 

in the Partial Voting condition (52%) compared to the other simpler conditions (67%). However, 

our mitigation strategy was largely successful: the fraction of subjects passing both sets of 

comprehension questions was much closer, with 49% passing Partial and 54% passing in the other 

conditions. Given the considerable magnitude of our treatment effects reported below, we think it 

is unlikely that this 5% difference in comprehension rates had a substantially effect on our results.  

The experiments were approved by the Harvard University Committee on the Use of 

Human Subjects in Research. 

 

4.2.2.3 General experimental design 

In total our experiment had seven experimental conditions: unregulated, baseline voting, voting 

δ=0.7, voting δ=0.6, voting T=40%, voting T=30%, partial voting. Before describing the details 

of each condition, we describe the basic structure which is common to all conditions.  
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In each condition, 20 resource pools were initiated with 100 units in generation 1. After every 

generation, there was a probability δ that another generation would be recruited (i.e. that the game 

would be ‘continued’). In most conditions, δ = 0.8, such that the expected number of generations 

per game was 5. We chose a sample size of 20 games per condition at the outset of the experiment, 

and did not collect any additional data once all 20 games had been run. 

Generations were recruited sequentially, with each generation being informed of the 

outcome of the previous generation as described below. The list of resulting lengths (i.e. # of 

generations) for each game in each treatment was: 

 

Unregulated 8 2 6 3 4 12 2 2 13 3 6 1 5 4 6 1 5 4 5 4 

Voting baseline 5 2 1 8 5 5 3 5 2 1 12 1 4 5 2 3 1 2 5 2 

Voting δ=0.7 4 1 1 2 5 1 3 2 6 2 2 2 5 3 13 2 9 1 1 6 

Voting δ=0.6 6 1 2 1 1 2 5 8 1 2 2 1 1 2 8 6 3 4 4 1 

Voting T=40% 4 1 12 4 1 12 4 2 6 14 13 5 1 7 12 4 1 5 7 5 

Voting T=30% 5 4 1 6 6 6 3 5 6 4 1 1 3 5 6 13 4 10 2 1 

Partial Voting 13 1 1 3 2 14 5 1 11 2 3 5 9 1 5 7 1 4 9 2 

  

Within each generation of a game, a group of five participants chose how many units to extract 

from the pool (out of a total of 100 units). (The mechanism by which this choice was made varied 

across conditions, as described below). If the fraction extracted within a given group did not exceed 

the extraction threshold of T, that group’s pool would be ‘sustained’: the next generation would 
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receive a pool refilled to 100 units and have a chance to make their own set of extraction decisions 

(provided that the game was continued based on the continuation probability δ such that there was 

indeed another generation).  

If, on the other hand, the fraction extracted exceeded T, the pool was exhausted. All future 

generations were informed that previous more than T units had been extracted from the pool, and 

as a result they (the current generation) would not have the opportunity to play the IGG or receive 

any bonus payment.  

Participants in Generation 1 were informed that they were the first generation. Participants 

in subsequent generations were informed that the previous generation had either sustained or not 

sustained the pool. They were not informed, however, of the specific generation number (other 

than showing that they were not the first) they were because the total number of continued 

generations varied across pools and conditions due to the random continuation device, and we did 

not want to introduce this as a source of bias. 

Note that in the IGG, a series of generations where each generation acts sustainably (i.e., 

extracts T units) has an expected total payoff of T/(1-δ). A series of generations where everyone 

extracts the maximum (and therefore the pool is exhausted after the first generation), has an 

expected total payoff of 100 (the contents of the pool in the first generation). Thus acting 

sustainably is socially efficient as long as T/(1-δ) > 100. 

 

4.2.2.4 Details of each condition 

Our experimental conditions differed in two ways: the manner in which the number of extracted 

units was determined (i.e., the institution: unregulated, voting, or partial voting) and the specific 

values of δ and T. 
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First we describe the three different institutions.  

• Under the unregulated institution, each of the five group members independently selected 

an extraction amount between 0 and 20 units.  

• Under the voting institution, each of the five group members proposed an extraction 

amount between 0 and 20 units. The median proposal amount was then extracted for each 

group member.  

• Under the partial voting institution, (i) three of the five group members proposed an 

extraction amount between 0 and 20 units and the median proposal amount was then 

extracted for each of the three; while (ii) the other two group members independently 

selected an extraction amount between 0 and 20 units. 

 

The values of δ and T used in condition are given below, as well as the average game length and 

resulting number of subjects recruited (note that the criterion for sustainability to be socially 

efficient, T/(1-δ) > 100, is met in all cases): 

Condition δ T Mean # Generations N 

Unregulated 0.8 50% 4.8 480 

Voting 0.8 50% 3.7 370 

Voting δ = 0.7 0.7 50% 3.6 355 

Voting δ = 0.6 0.6 50% 3.1 305 

Voting T = 40% 0.8 40% 6.0 600 

Voting T = 30% 0.8 30% 4.6 460 

Partial voting 0.8 50% 5.0 495 
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4.2.2.5 Statistical analysis 

To analysis the data, we use linear probability models to estimate the effect of institution on pool 

sustainability. Groups in which the game was continued and the pool was sustained are coded as 

1 (i.e., groups which received a full pool and did not extract more than T units).  Groups in which 

the game was continued but the pool was exhausted are coded as 0 (i.e., groups which received a 

full pool and extracted more than T units, or groups which received an exhausted pool). Once a 

game was discontinued (i.e., after the random number drawn for continuation was greater than δ), 

no more groups were recruited and so no subsequent generations for that pool appear in the 

regression.  

Thus we compare the fraction of continued games that have sustained pools, with one 

observation per group of five participants. Because of the randomness of the continuation device, 

the number of groups is not identical across conditions. To partially address this issue, as well as 

to account for the fact that outcomes of groups which receive exhausted pools are not independent 

of outcomes of earlier groups in that game, we cluster standard errors in our regressions at the 

level of the game. Furthermore, in Section 4.2.4, we compliment this regression analysis with an 

analysis using a large number of simulated game lengths and random permutations of extraction 

decisions/proposals.  

 

4.2.3. Future directions for the IGG and relations to previous work 

In the game theoretic tradition, the IGG framework is a great simplification relative to real-world 

intergenerational cooperation. We feel that this simplification captures key elements of the 

intergenerational challenge facing our world: the game is non-zero sum, with cooperation today 

creating greater benefits for the future; the consequences of consumption are non-linear, such that 
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some amount of consumption can occur in the present without imposing costs on the future; and 

the cooperative challenge involves group-level decisions rather than just individual-to-individual 

transfers.  

There are, however, many aspects of intergenerational cooperation which the IGG does yet 

not incorporate. Although we include a probabilistic continuation rule for future discounting, there 

may be important elements of the psychology of discounting which this approach does not capture. 

Additionally, future generations are our relatives, will likely be richer than us, and may have access 

to technological innovations that could mitigate our current environmental concerns. 

Future work extending our IGG framework to examine these issues, as well as exploring 

intergenerational cooperation among larger groups, overlapping generations (Van der Heijden and 

Nelissen 1998), and groups with the possibility of borrowing against the future (i.e. running up 

national debt) will help to advance our understanding of real-world intergenerational cooperation. 

So too will considering spatial effects, where over-consumption in one area has little consequence 

for individuals living far away (Janssen et al. 2010). 

Our IGG experiments add to a nascent literature on cooperation across generations. 

Previous work has demonstrated that coordination, communication and social reputation help meet 

targets in groups to avoid collective loss (Milinski and Sommerfeld 2008; Milinski and Semmann 

2006; Tavoni, Dannenberg, and Kallis 2011; Milinski, Röhl, and Marotzke 2011). Our voting 

intervention is also a type of coordination mechanism. It helps coordinate people’s preferences 

towards their own gains and those of future generations (Jacquet et al. 2013).  

Additionally, other work has emphasised that altruism depends on previous generations’ 

behaviour as well as the personal distance between donors and recipients of the intergenerational 

good (Wade-Benzoni 2002; Wade-Benzoni and Tost 2009). We thus expect that the results in our 
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IGG would be further magnified if the longevity of a common pool was made salient to later 

generations or if personal relationships existed between individual members of generations, as in 

the case of families. In contrast, we expect that factors such as uncertainty, inequality, and global 

sanctioning approaches would lead to lower rates of cooperation and sustainability (Tavoni, 

Dannenberg, and Kallis 2011; Barrett and Dannenberg 2012; Vasconcelos, Santos, and Pacheco 

2013). 

Our experiments also build on previous work exploring the interaction between voting 

institutions and social preferences. In particular, it has been shown that voting mechanisms can 

override anti-social behaviour where cooperators are punished, because typically only a minority 

hold such anti-social preferences (Putterman, Tyran, and Kamei 2011; Kamei, Putterman, and 

Tyran 2014; Ertan, Page, and Putterman 2009). Our results extend this ‘behavioural public choice 

theorem’. We demonstrate how voting can allow a majority of prosocial individuals to override a 

purely selfish (rather than anti-social) minority, leading to costly group-level cooperation with 

future generations. 

 

4.2.4. Statistical details 

4.2.4.1 Unregulated vs. voting 

Here we ask the basic question of how sustainability under the unregulated institution compares 

to sustainability under the voting institution (both using δ = 0.8 and T = 50%). We begin by 

considering just the first generation (Table 4.1 col. 1). We see that dramatically more pools are 

sustained under voting. Pooling across all generations (Table 4.1 col. 2) we see an even bigger 

positive effect of voting.  
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Table 4.1: Linear probability model estimating the effect of institution on pool sustainability. 

Standard errors clustered at pool level. 

 1st Generation All Generations 
1=Voting 0.800 0.938 
 (0.092)*** (0.025)*** 
Constant 0.200 0.062 
 (0.092)* (0.025)* 
R2 0.67 0.87 
N    40 170 

* p<0.05; ** p<0.01; *** p<0.001 

 

In addition to this group-level outcome, we examine how the voting institution changes behaviour 

at the individual level. In particular, we examine the fraction of subjects behaving prosocially in 

each condition.  

To do so, we label individuals as “cooperators” if they choose to extract 10 units or less in 

the unregulated condition, or vote to extract 10 units or less in the voting condition. We then use 

a linear probability model to estimate the effect of institution on proportion of cooperators. Both 

in the first generation (Table 4.2 col. 1) and over all generations (Table 4.2 col. 2), significantly 

more participants are cooperators in the voting condition than the unregulated treatment.  

To demonstrate that this finding is not an artefact of our binary classification of subjects as 

Cooperators or Non-cooperators, we also estimate the effect of institution on participants’ decision 

(extraction amount in unregulated, proposal amount in voting). Consistent with the binary analysis, 

participants’ decision extraction amounts are significantly lower under voting than when 

unregulated, both in the first generation (Table 4.2 col. 3) and over all generations (Table 4.2 col. 

4). 
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Table 4.2: Linear probability model estimating the effect of institution on likelihood of 

cooperation (col 1 and 2). Linear regression estimating the effect of institution on average decision 

(col 3 and 4). Standard errors clustered at the pool level. 

 Cooperator? Decision/Proposal 

 1st Generation All Generations 1st Generation All Generations 
1=Voting 0.220 0.201 -1.980 -2.290 
 (0.062)*** (0.050)*** (0.784)* (0.634)*** 
Constant 0.660 0.677 11.480 11.485 
 (0.054)*** (0.048)*** (0.677)*** (0.589)*** 
R2 0.07 0.05 0.03 0.04 
N       200       500        200        500 

* p<0.05; ** p<0.01; *** p<0.001 

 

4.2.4.2 Effects of reducing δ and T 

Next we ask how reducing the discount factor δ and the extraction threshold T affects sustainability 

in the voting institution. To do so, we analyse all data from the five voting conditions (but not the 

‘partial voting’ condition) jointly in a linear probability model, and estimate the probability of 

pools being sustained. 

Examining just the first generation (Table 4.3 col. 1), we see that neither δ (p = 0.223) nor 

T (p = 0.441) significantly affect sustainability, although both effects are trending in the positive 

direction (i.e. lower δ and lower T lead to less sustainability). Examining all generations (Table 

4.3 col. 2), these effects accumulate, and we do observe significant decreases in sustainability 

when decreasing either δ (p = 0.037) or T (p < 0.001). However, the size of these effects is not so 

large quantitatively: decreasing δ by 0.1 decreases the probability of a pool being sustained by 

4.6%; and decreasing T by 10% decreases the probability of a pool being sustained by 14.6%.  
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Table 4.3: Linear probability model estimating the effect of δ and T on pool sustainability under 

the voting institution. Standard errors clustered at pool level. 

 1st Generation All Generations 
δ 0.300 0.460 
 (0.245) (0.220)* 
T 0.002 0.015 
 (0.003) (0.002)*** 
Constant 0.660 -0.119 
 (0.254)* (0.235) 
R2 0.01 0.08 
N        100        418 

* p<0.05; ** p<0.01; *** p<0.001 

 

Table 4.4: Linear probability model comparing pool sustainability in the unregulated condition 

(taken as the baseline) to the voting institutions with reduced δ or T. Standard errors clustered at 

pool level. 

 1st Generation All Generations 
   
1=Voting δ=0.7 0.750 0.881 
 (0.105)*** (0.037)*** 
1=Voting δ=0.6 0.750 0.823 
 (0.105)*** (0.048)*** 
1=Voting T=40% 0.750 0.644 
 (0.105)*** (0.054)*** 
1=Voting T=30% 0.800 0.746 
 (0.092)*** (0.044)*** 
Constant 0.200 0.062 
 (0.092)* (0.025)* 
R2 0.61 0.46 
N       100       440 

* p<0.05; ** p<0.01; *** p<0.001 

 

Most importantly, the probability of a pool being sustained under voting in any of these reduced δ 

or T cases is dramatically higher than when unregulated (Fraction of pools sustained: Unregulated, 
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6.3%; δ=0.7, 94%; δ=0.6, 89%, T=40, 81%; T=30, 71%; all differences from unregulated p < 

0.001, see Table 4.4). Note that this is true even though the unregulated condition has the advantage 

of higher δ or T, depending on the voting condition.  

 

4.2.4.3 Partial voting 

Finally, we examine the effect of a partial voting institution, under which only three of the five 

group members are bound by a vote. We use δ = 0.8 and T = 50%, and compare the fraction of 

pools sustained to all of our previous conditions. To do so, we use a linear probability model taking 

partial voting as the baseline, and estimate the proportion of pools sustained including dummies 

for each other condition. 

We see that both in the first generation (Table 4.5 col. 1) and over all generations (Table 

4.5 col. 2), sustainability is dramatically lower in the partial voting condition than in any of the 

voting conditions, although partial voting does still lead to somewhat more sustainability than the 

unregulated case. 
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Table 4.5: Linear probability model comparing pool sustainability in the partial voting condition 

(taken as the baseline) to all other conditions. Standard errors clustered at pool level. 

 1st Generation All Generations 
1=Unregulated -0.500 -0.261 
 (0.140)*** (0.053)*** 
1=Voting baseline 0.300 0.677 
 (0.105)** (0.047)*** 
1=Voting δ=0.7 0.300 0.485 
 (0.105)** (0.060)*** 
1=Voting δ=0.6 0.250 0.383 
 (0.116)* (0.067)*** 
1=Voting T=40% 0.250 0.620 
 (0.116)* (0.055)*** 
1=Voting T=30% 0.250 0.562 
 (0.116)* (0.063)*** 
Constant 0.700 0.323 
 (0.105)*** (0.047)*** 
R2 0.50 0.47 
N       140       613 

* p<0.05; ** p<0.01; *** p<0.001 

 

4.2.5. Simulated sustainability analysis 

Our analyses thus far have examined the actual outcomes that occurred in our experiment: the 

fraction of available pools that had been sustained in each generation, across the 20 pools 

initialized at the start of each condition. There are numerous sources of stochasticity that introduce 

noise into these comparisons. Due to the random continuation probability, some conditions lasted 

for more generations on average than others. The particular random matching of subjects into 

groups of five can affect the outcome: consider five subjects that cooperate and extract 10 units in 

the baseline, and five other subjects that defect and extract 20 units. A random matching that puts 

the five cooperators together and the five defectors together results in one sustained pool and one 

exhausted pool. But any other matching would result in two exhausted pools. Finally, a pool which 
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is exhausted in an early generation which is then continued for many generations results in a very 

low sustainability score; whereas if the same pool had been continued for only one round, it would 

have had a high sustainability score. 

We address all of these sources of noise by conducting a set of computer simulations using 

the data generated by our participants. To do so, we take advantage of the fact that after the first 

generation, all subjects in a given condition received the same set of information, and therefore 

made decisions which are effectively interchangeable. Thus in each simulation run, we randomly 

sample (with replacement) a series of generations of participant decisions, and calculate the 

fraction of those generations in which the pool was refilled.  

 

Specifically, our procedure worked as follows, for each condition: 

1. For the first generation, randomly sample (with replacement) five participants from the 

first generation of the current experimental condition. 

2. Based on their decisions, and the rules of the experimental condition, determine whether 

the pool is sustained or exhausted. 

3. Determine if this game is continued for another generation by comparing a random number 

to δ. 

4. If so, randomly sample (with replacement) five participants from all generations of the 

current experimental condition except the first generation. 

5. If the pool has previously been exhausted, mark this generation as non-sustained. If the 

pool has not previously been exhausted, mark this generation as sustained, and determine 

(based on the sampled decisions and the rules of the experimental condition) whether the 

pool is sustained or exhausted for the next generation. 
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6. Determine if this game is continued for another generation by comparing a random number 

to δ. If so, repeated steps 4 thru 6. 

 

Using this procedure, we first simulated 10,000 pools out to 15 generations for the Unregulated, 

Voting and Partial Voting conditions. As can be seen in Figure 4.5a, the results are striking: the 

Voting institution is dramatically more successful at sustaining the pool than either the Partial 

Voting or the Unregulated conditions.  

We also used this procedure to examine the consequences of changing δ and T under the 

Voting institution. To do so, we simulated 10,000 games out to 15 generations for the T = 40% 

and T = 30% conditions, and 1,000,000 games out to 15 generations for the δ = 0.7 and δ = 0.6 

conditions, and compared the results to the Voting condition simulations above. We simulated a 

larger number of replicates for the lower δ conditions because the games in those conditions were 

dramatically shorter on average, and so many more replicated were required to get a reasonable 

amount of data out to 15 generations. As can be seen in Figure 4.5b, reducing δ has only a small 

effect, and although reducing T does undermine sustainability, the effect is much less dramatic 

than that of Unregulated or Partial Voting despite the higher value of T in these less-regulated 

conditions.  
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Figure 4.5. Bootstrapping simulations demonstrate the robustness of full voting, and the failure 

of partial voting. We address sources of noise in the sequence of events that occurred in our 

experiment by conducting a set of computer simulations using the data generated by our 

participants. We randomly sample (with replacement) a series of generations of participant 

decisions, and calculate the fraction of those generations in which the pool was refilled. For each 

condition, we simulate 10,000 pools (or 1,000,000 pools if δ<0.8) for 15 generations. a, Simulated 

data for the unregulated, full voting and partial voting conditions show that the voting is by far 

the most successful at sustaining the pool. b, Simulated data for the T=40%, T=30%, δ=0.7 and 

δ=0.6 conditions shows that reducing δ has only a small effect, and although reducing T does 

undermine sustainability, the effect is much less dramatic than that of unregulated or partial voting 

despite the higher value of T in these less-regulated conditions.  
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4.2.6. Positive association between democracy and sustainability 

Our experiments suggest that a democratic institution can help a majority of prosocial individuals 

override a purely selfish minority, leading to costly group-level cooperation with future 

generations. Real-world data are consistent with this suggestion from our experiments: across 128 

countries, more democratic institutions are associated with greater efforts to act sustainably and 

mitigate environmental impact. 

To provide this evidence, we combine data from two independent sources: The 2012 

Democracy Index (The Economist Intelligence Unit 2012) created by the Economist Intelligence 

Unit (EIU, part of the Economist magazine family of businesses) and the 2013 Sustainability Index 

created by the organization World Energy (WorldEnergy.org, n.d.). Both data files are publicly 

accessible on the respective websites. We examine the 128 countries included in both datasets. 

The Democracy Index (DI) is calculated using a weighted average of a 60-item measure 

with items distributed over five categories: electoral process, civil liberties, government, political 

participation, and political culture. In addition to assigning a numeric DI to each of 167 countries, 

the EIU also classifies each country into one of our regime types by its index. The four regime 

types are (DI ranges in parentheses): Full Democracies (DI ≥ 8), Flawed Democracies (6 ≤ DI < 

8), Hybrid Regimes (4 ≤ DI < 6), and Authoritarian Regimes (DI < 4). 

 

The Energy Sustainability Index is a composite of three subscales:  

• Energy security - the effective management of primary energy supply from domestic and 

external sources, the reliability of energy infrastructure, and the ability of participating 

energy companies to meet current and future demand. 

• Energy equity - the accessibility and affordability of energy supply across the population. 
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• Environmental sustainability - the achievement of supply and demand-side energy 

efficiencies and the development of energy supply from renewable and other low-carbon 

sources. 

 

We analyse both the overall sustainability index as well as the environmental impact mitigation 

subscale since it is the most directly relevant to our question of interest. 

Consistent with our experimental results, we find that there is a significant positive 

correlation between democratic institutions and sustainability (Figure 4.6): countries with higher 

democracy scores also score higher in their efforts to act sustainably (Table 4.6 Col 1; p < 0.001) 

and specifically to mitigate environmental impact (Table 4.7 Col 1; p < 0.001).  

As a first step towards testing the robustness of this relationship, we examine the effect of 

including controls for the 2014 gross domestic product (GDP, in US$, compiled by (World Bank 

2013)), Gini index (a measure of wealth inequality, using the most recent year available for each 

country from (Quandl.com 2014)), literacy rates (using the most recent year available for each 

country, complied in the (CIA World Factbook 2014)), average life expectancy in each country in 

2013 (complied by the (World Health Organization 2013)), the level of corruption in each country 

(compiled in 2004 by the (World Bank 2004)), each country’s population size and the rate of 

unemployment (both using the most recent year available for each country from (Quandl.com 

2014)). Missing values for controls are interpolated, using the mean of all non-missing values. As 

shown in Tables 5.6 col 2 and 5.7 col 2, we continue to find a significant positive relationship 

between democracy scores and both the overall sustainability index (p = 0.001) and the 

environmental impact mitigation score (p < 0.001). Finally, we also consider the effects of the 

logarithmic transformations of GDP and population size of each country, as these variables are 
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heavily right-skewed. We find that our results remain unchanged (col 3 in Tables 5.6 and 5.7): 

more democratic institutions have more sustainable energy policies (p < 0.001) and engage in 

greater efforts to mitigate environmental impact (p < 0.001). 

Thus we provide preliminary evidence that democracy may indeed lead to better 

environmental practices. Obviously this analysis does not control many additional potential 

confounding factors, and is correlational, not causal. We hope that these preliminary results will 

inspire empirical scholars to investigate this issue further in future work. 
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Figure 4.6. Real-world data support our experimental conclusions, as countries with more 

democratic governments have more sustainable energy policies.  Energy sustainability index (as 

measured by World Energy) is shown as a function of the Democracy Index (as measured by the 

Economist’s Intelligence Unit) for N=128 countries. A strong positive association is clearly 

visible, and this association is robust to controlling for gross domestic product (GDP), Gini index, 

population size, literacy rate, unemployment rate, life expectancy, and level of corruption. Thus 

we provide preliminary empirical support for the role of democracy in promoting sustainability 

outside the laboratory. We adopt the colouring and naming scheme from the Economist 

Intelligence Unit’s classification of regimes. 
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Table 4.6. Linear regression predicting the overall sustainability index with democracy score.  

 Sustainability 
Index 

Sustainability Index Sustainability Index 

Democracy index 0.585 0.211 0.227 
 (0.073)*** (0.062)*** (0.054)*** 
GDP (in US$)  1.710e-07  
  (7.143e-08)*  
Gini index  -0.008 -0.004 
  (0.013) (0.012) 
Population size  -1.376e-06  
  (4.761e-07)** 
Literacy rate  2.753 1.003 
  (1.096)* (0.963) 
Unemployment rate  -2.651 -1.298 
  (1.982) (1.703) 
Life expectancy (years)  0.060 0.006 
  (0.028)* (0.022) 
Level of corruption  0.022 0.011 
  (0.006)*** (0.006) 
log(GDP)   0.782 
   (0.170)*** 
log(Population)   -0.591 
   (0.181)** 
Constant 1.454 -3.703 -1.424 
 (0.474)** (1.807)* (1.763) 
R2 0.36 0.63 0.72 
N 128 128 128 

* p<0.05; ** p<0.01; *** p<0.001 
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Table 4.7. Linear regression predicting the environmental impact mitigation score with democracy 

score.  

 Environmental 
Impact Mitigation 

Score 

Environmental 
Impact Mitigation 

Score 

Environmental 
Impact Mitigation 

Score 
Democracy index 0.652 0.662 0.668 
 (0.107)*** (0.130)*** (0.130)*** 
GDP (in US$)  1.274e-08  
  (1.373e-07)  
Gini index  0.040 0.039 
  (0.031) (0.031) 
Population size  -3.523e-06  
   (1.128e-06)** 
Literacy rate  -2.089 -2.022 
  (2.077) (2.295) 
Unemployment rate  -1.598 -1.524 
  (4.408) (4.667) 
Life expectancy 
(years) 

 0.030 0.038 

  (0.049) (0.056) 
Level of corruption  0.002 0.005 
  (0.013) (0.015) 
log(GDP)   -0.118 
   (0.332) 
log(Population)   -0.088 
   (0.351) 
Constant 1.029 -0.796 0.443 
 (0.676) (3.026) (4.371) 
R2 0.21 0.26 0.24 
N 128 128 128 

* p<0.05; ** p<0.01; *** p<0.001 
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Appendix A.  

Heterogeneity in background fitness acts as a 

suppressor of selection 

A.1 Introduction 

Evolutionary dynamics explores how strategies change over time and space in structured or 

unstructured populations (Bürger 2000; Durrett and Levin 1994; Helbing 2010; Fu, Liu, and Wang 

2007; Hofbauer and Sigmund 2003; Imhof and Nowak 2006; Smith 1993; Nowak 2006a; Nowak 

and Sigmund 1992; Nowak and Sigmund 2004; Traulsen and Nowak 2006; Weibull 1997). These 

strategies can be alleles in a genetic context or behaviours in social interactions (Nowak, Tarnita, 

and Wilson 2010; Tarnita, Taubes, and Nowak 2013). In the simplest case, these strategies have a 

fixed fitness. Even in this case, population structure can have subtle influences, suppressing or 

amplifying selection (Allen and Tarnita 2014; Bürger 2000; Helbing 2010; Hofbauer and Sigmund 

2003; Imhof and Nowak 2006; Lieberman, Hauert, and Nowak 2005; Nowak 2006a; Nowak and 

Sigmund 2004; Ohtsuki et al. 2006; Tarnita et al. 2009; Tarnita, Wage, and Nowak 2011; Traulsen, 

Claussen, and Hauert 2005; Weibull 1997).  One important aspect of many real-world population 

structures is that different physical locations or positions in society have different value (Nowak, 

2012): A good breeding site may give a breeding bird an advantage that is sometimes connected 

to its own behaviour (Kokko 1999)  but sometimes also independent of its own behaviour 

(Misenhelter and Rotenberry 2000). A good school district can be influential for one’s career 
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progression (Cullen, Jacob, and Levitt 2005). Inherited wealth may positively affect reproductive 

success (Essock-Vitale 1984).  We consider evolutionary dynamics in such a setting and ask how 

heterogeneity in the implicit value of different physical or societal positions affects the 

evolutionary dynamics. Our model does not include explicit spatial structure, but only considers 

different values for each position. In a biological context, this would mean that nesting site quality 

can crucially contribute to the spreading of new mutations, in addition to behavioural or 

physiological change associated with this mutation. In a social interpretation, it would mean that 

we imitate successful individuals, assuming their success derives from a behaviour we might be 

able to copy. It may also be the case, however, that we not only imitate those who are successful 

due to their behaviour, but also those who are successful due to heritage or their social and 

economic ties. In the latter case, the imitation may be in vain, but this does not preclude strategies 

from spreading.  

In our approach, we assume that fitness is the sum of the background fitness associated 

with a certain position (or location) and the fitness derived from the strategy of an individual. We 

assume that a strategy can spread from any position to any other position through individuals 

copying each other. Thus, we can use the convenient mathematical properties of well-mixed, 

unstructured populations when it comes to the changes in the abundance of a strategy. At the same 

time, however, the distribution in background fitness allows to address an important aspect of 

population structure that has not been considered in this context so far. In contrast, spatial and 

social heterogeneity has been considered in the case of evolutionary dynamics in degree-

heterogeneous networks (Lieberman, Hauert, and Nowak 2005; Ohtsuki et al. 2006; Perc and 

Szolnoki 2008; Poncela et al. 2009; F. C. Santos and Pacheco 2005; Pacheco et al. 2011; F. C. 

Santos et al. 2012; F. C. Santos, Santos, and Pacheco 2008; Szabó and Fath 2007). Another source 



Appendix A. Heterogeneity in background fitness 

143 

of heterogeneity arises from different kinds of interactions within the population (Chatterjee, 

Zufferey, and Nowak 2012; Fu et al. 2008; McNamara, Barta, and Houston 2004; Rand, Tarnita, 

and Ohtsuki 2013; Taylor and Nowak 2006; Traulsen, Pacheco, and Nowak 2007; J. Wang, Fu, 

and Wang 2010). Also in population genetics, heterogeneity in offspring number and nest sites has 

been addressed (Eldon and Wakeley 2006; Lessard 2007; Wakeley 2008). 

Our model is based on a Markov chain with two absorbing states – a new strategy is 

eventually either lost or reaches fixation in a finite population. In homogeneous populations, the 

transition matrix of these processes of reduces to a tri-diagonal matrix, leading to closed 

expressions for the time to absorption or the probability to reach a certain state (Altrock and 

Traulsen 2009; Nowak et al. 2004). In the case of heterogeneous wealth distribution, such an 

approach fails and these quantities typically must be inferred numerically based on standard 

methods (Grinstead and Snell 2012).  However, the same method leads to a full analytical solution 

in closed form for small populations. For larger populations, the corresponding analytical 

expressions become cumbersome, but a Taylor expansion of the small population result in the 

important limit of large heterogeneity gives us an approximation that numerically also holds for 

larger populations. Throughout this paper, we adopt terms (e.g. “wealth”, “rich”, “poor”, 

“inequality” etc.) inspired by economics and sociology. But a biological meaning for each of these 

words can readily be inferred (e.g. “resources”, “high quality of nest site”, “low quality of nest 

site”, “heterogeneous nest site qualities” etc.). 

 

A.2 An evolutionary process with heterogeneous background fitness 

We assume a finite population of size N with two types A and B. Evolution proceeds by selecting 

one individual proportional to its total fitness to reproduce asexually. Its identical offspring 
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replaces another individual chosen with uniform probability to die (Moran 1962). This implies that 

in each time step, the number of individuals of a certain type can change at most by ±1. Hence, 

the dynamics can be captured by a simple birth-death process, which allows calculating the 

probability of fixation and the associated time as well as several related quantities in closed form 

analytically (Antal and Scheuring 2006; Nowak et al. 2004). When mutations arise infrequently, 

the fixation probability is a relevant measure to describe the average abundance of types in a 

mutation-selection equilibrium (Fudenberg and Imhof 2006). In this case, a mutant will fixate or 

go extinct before another mutant arises. Thus, the system effectively reduces to an evolutionary 

process jumping between the two absorbing states where all individuals use the same strategy.  

An individual’s total fitness f is the sum of that individual’s background fitness b and the 

fitness derived from the strategy s the individual has chosen: 

 

 0) = 1) + 3) (1) 

 

where 4	(0 ≤ 4 ≤ 9) denotes an individual in the population. Note that we assume that the strategy 

of the individual has an impact on the fitness that is only dependent on the individual’s type. We 

assume no frequency-dependent interactions between types, such that 3) > 0 is a fixed number. 

Due to heterogeneities in the background fitness 1), however, our state space is not only 

determined by the number of individuals of one type, but also by the unique position of each 

individual. Therefore the transition matrix is no longer tri-diagonal, excluding many analytical 

approaches based on this property. Thus, calculating a closed form for the absorption probabilities 

and times becomes much more cumbersome. 
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 We assume that an offspring inherits its parent’s strategy, but it does not receive its parent’s 

background fitness. Instead, the offspring “inherits” the background fitness of the individual who 

was chosen for death and thus previously occupied the same location. In other words, the topology 

of background fitness remains unchanged over time, but strategies evolve on top of the background 

fitness topology. The fixed background topology thus represents a static environment in which the 

strategies change due to biological or cultural reproduction. Such an environment could be 

breeding sites in biology (Misenhelter and Rotenberry 2000) or economic wealth in human society 

(Wolff 2002).  

 

A.3 Background fitness effectively reduces intensity of selection  

We assume there exist two strategies A and B. If 3< > 	 3= there is constant selection for type A 

and if 3< < 	 3= selection favours B. Thus 3< = 	 3= is the neutral case. Without loss of generality, 

we assume that strategy B’s fitness is always 3= = 1. All values of strategy fitness and background 

fitness are non-negative.  

We are interested in the fixation probability of a single mutant of type A in a population of 

9 − 1 individuals of type B. Let ?) and @) denote the fixation probability and average absorption 

time of type A if the mutant arises in location 4, and let ? and @ denote the average fixation 

probability and absorption time of type A if the mutation arises at a random location in the 

population:  

 

 ? = .
A

?)A
)-.  (2) 

 @ = .
A

@)A
)-.  (3) 
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We combine an analytical approach, which is feasible for small populations only, with 

computational approaches. Numerically, we compute properties from the exact transition matrix 

of the Markov Chain and run stochastic agent-based simulations. Agent-based simulations proceed 

as follows: in every time step, one individual is selected proportional to fitness to reproduce and 

one individual is selected at random to die, until the population has reached a homogeneous state 

in which all individual are of type A or B. We average over B realisations for every possible initial 

location of the mutant to calculate ?). Thus, the fixation probability of a randomly arising mutant 

? is the average over 9B realisations.  

We are interested in the effect that heterogeneous background fitness has on the fixation 

probability ? of a randomly arising mutant. We expect that heterogeneity in background fitness 

modulates and neutralises the effects of selection on a strategy, similar to some population 

structures (Lieberman, Hauert, and Nowak 2005; Traulsen, Claussen, and Hauert 2005) or the 

introduction of a random number of interactions in evolutionary games (Traulsen, Nowak, and 

Pacheco 2007). Intuitively, the strength of selection becomes effectively weaker when any 

background fitness is introduced. This is because the total fitness of an individual is no longer just 

derived from using a strategy, but also from a fixed, non-negative background fitness (see Equation 

(1)). Depending on their relative value, either strategy-dependent fitness or individual background 

fitness may have a greater impact on the total fitness. 

Second, if there exists any heterogeneity in background fitness, richer individuals will be 

favoured over poorer individuals and thus mutants arising in rich individuals are more likely to 

spread. This is especially important if background fitness values are large compared to the strategy 

payoff values. Moreover, the effect of heterogeneity on fixation ought to be largest when the total 
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background fitness in the population is very unequally distributed among individuals of a 

population. We speak of perfect inequality when one individual C in a population possesses the 

entire wealth D = 1)A
)-.  in the population (Keister and Moller 2000): 1+ = D and 1) = 0 for all 

remaining individuals. 

An intuitive prediction is that for a large enough value of total background fitness D in the 

population and under perfect inequality, the probability of fixation approaches the case of neutral 

drift, 1 9. In other words, if the total amount of background fitness is large and all of it is in the 

possession of one individual C, then fixation of type A occurs only if the mutant arises in individual 

C. Mutations arise at a random position in the population, and therefore the probability of fixation 

must converge to 1 9. 

We numerically confirm this hypothesis of perfect inequality (Figure A.1): We vary the 

fitness E of the mutant type A in a population of size 9 = 30 to find the fixation probability for 4 

values of the rich individual’s wealth, 1.. For 1. = 0, we recover the well known results for 

constant selection of a mutant with fitness E in a homogeneous population. As 1. increases, the 

fixation probability increases for disadvantageous mutants, E	 < 	1, and decreases for 

advantageous mutants, E	 > 	1. In other words, by increasing the amount the rich individual 

possesses, fixation of the randomly arising mutant strategy becomes less dependent on the 

strategy’s advantage or disadvantage and more dependent on the origin of the mutation: The 

quality of an individual’s position, not its strategy, becomes the determinant for evolutionary 

success. For 1. = 100, the probability of fixation is already very close to the neutral case where 

3. = 3'. This is an example of how high inequality in background wealth suppresses selection. 
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Figure A.1. Constant selection is suppressed as inequality in background fitness increases. A 

mutant with fitness r arises in a population of size 9 = 30. The population is heterogeneous: b1 

denotes the background fitness of one individual, while all others have background fitness 0. For 

1. = 0, we recover the well known fixation probability under constant selection, 
.GHI
.G H

IJ
  (solid line). 

For very high background fitness and large inequality, 1. ≫ 	1, the fixation probability of a 

randomly arising mutant approaches 1/9. Thus, selection is suppressed through the introduction 

of heterogeneous background fitness (symbols denote individual-based simulations averaged over 

30,000 realisations). 
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A.4 Unequal wealth distributions suppress selection more than an 

equal distribution 

We note that in Figure A.1, as the wealth of the only rich individual 1. increases, so does the total 

wealth K. In other words, the total wealth in the population is increasing but all of it is in the 

possession of one individual. All of the examples with 1. > 1 in Figure 3.1 are thus examples of 

perfect inequality, although the extent to which the rich individual possesses more background 

wealth varies greatly. But this raises the question if selection is suppressed because the total wealth 

has increased or because inequality has increased. 

We therefore separate the effects of K and 1. on fixation. To this end, we are not only 

interested in the fixation probability of type A when 1. = D but also when wealth is distributed 

differently in the population. Wealth can be distributed in many different ways within the 

population. We focus on those distributions where the total wealth is split by an increasing number 

of individuals within the population. That is, in the most unequal case, the total wealth is in the 

hands of one individual (C = 1). The same amount of total wealth is then successively owned by 

two players (C = 2), then by three (C = 3), and so on, until it is split evenly among all individuals 

(C = 15) (Figure A.2). 
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Figure A.2. Increasing a population’s total wealth suppresses selection. Inequality amplifies the 

effect that wealth has on the fixation probability. As the total wealth in a population of 9 = 15 

increases, the fixation probabilities of any wealth distribution shift towards neutral drift. A wealth 

distribution here refers to the number of rich actors C that share the total wealth in the population. 

The fewer rich people own the total population wealth (the smaller C), the more selection is 

suppressed. Perfect inequality (C = 1) is the strongest suppressor of selection, regardless of the 

total wealth D. In contrast, when all individuals are equally wealthy, the fixation probability is 

least suppressed for any given total wealth in the population (C = 15). Lines show the fixation 

probabilities in a homogeneous population and neutral drift. 
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We clearly observe that both forces are driving the suppression of selection (Figure A.2): the total 

amount of wealth in the population and also the inequality in the distribution of the total wealth 

within the population affect the effective intensity of selection. An increase in the total wealth in 

the population also leads to the probability of any fixation being closer to neutrality: it defines the 

possible magnitude to which selection can be suppressed at a minimum and at a maximum. How 

much selection is suppressed is then entirely determined by the inequality in wealth distribution. 

The more unequal wealth is distributed, the more selection is suppressed (i.e. closer to neutrality 

within the possible magnitude defined by the total wealth). Conversely, the more equally wealthy 

everyone is, the less the effect of selection suppression is.  

If there exists no background wealth, heterogeneity is obviously absent and has no effect. 

As background wealth increases, inequality suppresses selection at a faster rate than does equality 

of the same total wealth D, which leads to the observed disparity of fixation probabilities in the 

middle section of D (Figure A.2). This trend, however, is bound by a global minimum (that is, 

neutral drift) for both inequality and equality. Hence, as total background wealth becomes very 

large, selection is suppressed to a similar extend by both inequality and equality because neither 

can suppress selection below 1/9. 

These results show that selection is suppressed when background wealth is added. 

Intuitively, this makes sense because with higher background fitness, the addition of a small fitness 

value from the strategy has little impact. This effect is amplified by an unequal allocation of wealth 

within the population. To understand the exact mechanism, we use an analytical approach to study 

heterogeneity. We analytically solve the fixation probabilities in populations of size 9 =

3, 4	and	5. We also provide an approximation that numerically holds in the limiting case for larger 

population sizes. 
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A.5 Perfect inequality is a strong suppressor of selection  

Based on the Markov Chain process, we construct a stochastic transition matrix ℳ such that ℳ+T 

is the transition probability to go from C to U; C, U	 ∈ {1, … , 2A}. The state space of the transition 

matrix is described by all possible binary strings of 1s (A) and 0s (B). The absorption probabilities 

?) into A are the elements of the eigenvector to the largest eigenvalue of ℳ (Grinstead and Snell 

2012). We find the fixation probability ? and absorption time @ of a randomly arising mutant 

numerically based on Equations 2 and 3.  

The transition matrix is of size 2A×2A. Therefore closed analytical solutions of our model 

are only feasible for small 9. We use numerical solutions based on the transition matrix because, 

in contrast to stochastic agent-based simulations, solutions derived directly from the Markov Chain 

process are exact and do not require a large number of realisations. For an analytical solution, 

which leads to results that can be interpreted most easily, we rearrange the matrix elements in ℳ 

into its canonical form and derive the fundamental matrix containing information on all transient 

states (Grinstead and Snell 2012). In the canonical form, states are renumbered such that the [ 

transient states come first, followed by the two absorbing states where all individuals use the same 

strategy.  

 

 ℳ = \ ℛ
^ _  (4) 

 

where _ is a 2×2 identity matrix (once all individuals use the same strategy, the state is not left 

again), ^ is a [×2 zero matrix (one cannot escape from an absorbing state), ℛ is a non-zero 2×[ 

matrix describing fixation, and \ is a [×[ matrix describing the dynamics within the transient 
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states. Here [ = 2AG. is the number of unique positions of all individuals in a population of size 

9.  

For an absorbing Matrix Chain, there exists an inverse ` of the matrix ℐ − \. `	is called 

the fundamental matrix of ℳ, and ` = ℐ + \ + \' +⋯  (Grinstead and Snell 2012). Each entry 

)̀+ of ` contains the expected number of time steps the chain is in state C, given that it starts in 

state 4. Hence, the time to absorption @), given that the process starts in state 4, is the sum over all 

entries of ` in row 4. Let c)+ be the probability that the process will be absorbed in the absorbing 

state C, given that it starts in the transient state 4. Let c be the [×2 matrix with entries c)+:  

 

 c = `ℛ (5) 

 

Specifically, we speak of a fixation probability ? if the process begins in a transient state 4 where 

only 1 mutant exists. This is only the case for a subset of entries in c. The size of this subset 

depends only on the distribution of the background fitness.  

We can perform the above procedure analytically and thus obtain a closed solution of our 

model in the case of small population sizes 9 = 3, 4	and	5. While analytical solutions for larger 

population sizes are theoretically attainable, they come in intricate form and are very difficult to 

interpret beyond 9 = 5. This is because the starting point for an analytical solution is the transition 

matrix and the analytical procedure implies that we need to find an analytical form for its 

eigenvector. As noted above, the transition matrix is of size 2A×2A. Therefore, this procedure 

quickly becomes very cumbersome as 9 increases. 

We calculate the exact solutions for the fixation probabilities ? for 9 = 3 for any arbitrary 

background wealth distribution d =	(1., 1', 1e)	from Equation (5). Despite the small population 
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size, the exact general solution for an arbitrary wealth distribution spans multiple pages.1 For ease 

of reading, we therefore only print the solution in the case of perfect inequality and simplify our 

notation: we set 1. = 1 for the rich individual and 1' = 1e = 0 for the two poor individuals. We 

then obtain for the fixation probability of the rich individual: 

 

?f)gh = 	
.ij (fk lilji'jm i'fn('ij)i(.ij) 'ij m)

'('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm)
 (6) 

 

Similarly, for each of the two poor individuals, we find: 

 

?rssf = 	
fm tiejijm ifk(liujitjmijk)i'fn('iejijm)

'('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm)
 (7) 

 

Finally, using Equation 2, we can also calculate the fixation probability of a randomly arising 

mutant ? = .
e
?f)gh + 2?rssf : 

 

? = 	 fm(.'i.uji.qjmiojkijn)ifk('.ievji.ljmitjk)iofn('iejijm)
e('('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm))

 (8) 

 

When 1 = 0, no background wealth is present in the population and Equations (6), (7) and (8) 

reduce to the well known fixation probability in the case of a homogeneous environment without 

any background wealth, 
.GHI
.G H

Ik
 .  

                                                
1 A complete solution can be obtained from ohauser@fas.harvard.edu. 
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Furthermore, the analytical solution approaches 1 9 in the limit of 1 → ∞ (Figure A.3a), 

which is also expected from our argument above: When the total wealth in the population is large 

and one individual owns all this wealth, fixation can only occur if the mutation arises in the position 

with high background fitness (Figure A.3b). 

 

 

Figure A.3. In a population of size y = z, the fixation probability of a randomly arising mutant 

approaches {/z as inequality increases because the mutation can only fixate if it arises in the 

wealthy individual. a) For disadvantageous (E = 0.5) and advantageous mutant (E = 2), selection 

is suppressed and approaches neutrality 1/9	 = 	1/3	 for high inequality, 1 ≫ 1. b) As inequality 

increases, the probability of fixation of mutant E = 2 increases for the wealthy individual and 

decreases for all others. This argument holds for any value of E. 
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The exact solutions from the Markov Chain process provide very useful insight into the 

evolutionary dynamics in a heterogeneous population. They are, however, long and complicated 

to interpret. We therefore also present approximated solutions that are more intuitive and easily 

derived from previous results. For each of the three population sizes 9 = 3, 4	and	5, we find the 

first-order Taylor approximations for large 1 for the equations corresponding to (6), (7), and (8): 

 

 ?f)gh ≈ 1 − AG.
fj

 (9) 

 ?rssf ≈ 		
f
j
 (10) 

 ? ≈ 	 .
A
+ AG.

A
f
j
1 − .

fm
 (11) 

 

For very large 1, only the leading term in Equation (11) prevails, ? ≈ 1/9, which is in agreement 

with the limiting case discussed above. We find that the first order approximations work very well 

for small populations with high population wealth under perfect inequality (for instance, the 

fixation probability of a randomly arising mutant using Equation (11) for 9 = 3 is shown in Figure 

A.4a). Moreover, numerical simulations suggest that the Taylor approximations are also in 

reasonable agreement with slightly larger population sizes (Figure A.4b,c). In general, we expect 

this approximation to hold for larger 9 if the wealth of the rich individual also increases. That is, 

1/1 enters in a similar way as E does in the weak selection approximation of the fixation 

probability under constant selection, ? =
.GHI
.G H

IJ
. In that case, the approximation is valid only for 

9 E − 1 ≪ 1. Similarly, in the present case the convergence radius also depends on 9, 1 and E. 

For example, in the case of large E, 9 − 3 E'/((1 + E)1) ≪ 1 is required.  
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Figure A.4. If inequality and background fitness are large, a simple approximation of the rate 

of evolution is derived from the analytical solution for small N. Numerically, it is also reasonable 

for larger N. a) For a randomly arising mutant in 9 = 3, the fixation probability can be 

approximated as	? ≈ 	 .
A
+ AG.

A
f
j
1 − .

fm
 for large b. b) Although the approximation is 

analytically derived only for population sizes 9 ≤ 5, it also appears to hold for slightly larger 9, 

such as 9 = 10 and, for very large background wealth, 9 = 30. Legend: solid lines are exact 

(Markov Chain) solutions, dashed lines are first order Taylor expansions of the solutions for large 

inequality and symbols represent agent-based simulations over 30,000 realisations. 
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on average to reach either of the two absorbing states – that is, either a state of all A or all B 

individuals. It can be calculated from summing over the line corresponding to the initial condition 

in the fundamental matrix ` of the Markov process (Grinstead and Snell 2012). 

In a population of size 9 = 3, the unconditional absorption times of a rich and poor 

individual are, respectively: 

 

@f)gh = 	
e(t('iejijm)if(eviq'jietjmiujk)ifm(tuiuvjiqqjmi.ujkiejn)ifk(eliqtji'ljmiojk)iofn('iejijm))
'('('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm))

   (12) 

@rssf = 	
e(t('iejijm)i'f(.qi'vjipjmi'jk)ifm(tuioqjit.jmi.'jki'jn)ifk(eliqtjievjmiljk)iofn('iejijm))
'('('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm))

   (13) 

 

The unconditional absorption time of a randomly arising mutant (Equation 3) thus is: 

@ = 	 .'('iejij
m)i'f(tqioojieqjmiujk)ifm(.tti'.vji.eljmit'jkiljn)ifk(...i.o'jiuljmi'vjk)i.ufn('iejijm)

'('('iejijm)if(..i.ojipjmi'jk)ifm(.qi''ji.ojmiojkijn)ifk(..i.ojipjmi'jk)i'fn('iejijm))
      (14) 

 

Again, these three equations reduce to the well-known result from homogeneous populations for 

1 = 0 (Altrock and Traulsen 2009). 

When we look at the absorption time of a randomly arising mutant (Equation (14)), we find 

that higher inequality leads to fewer time steps until absorption (Figure A.5a), relative to the same 

amount of wealth being equally distributed among all individuals. When we look at the individual 

components of the absorption time, we find that mutations arising in poor individuals generally 

absorb more quickly than equally wealthy individuals or rich individuals (Figure A.5b). Intuitively, 

the higher the inequality in a population, the quicker the poor individuals absorb back into the 

resident state. This is a consequence of inequality as it hinders poor individuals from fixating and 

fosters their extinction.  
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Figure A.5. The absorption time of a randomly arising mutant decreases with inequality. a) In 

contrast to a population with equal wealth distribution, inequality reduces the number of time 

steps that a randomly arising mutant in a population of 9 = 3 makes on average to absorption. 

b) This effect in reduction of absorption time is driven primarily by the fast extinction of poor 

individuals when inequality disfavours them. In contrast, if inequality exists but it is small, richer 

individuals take longer to fixate than if all were equal. This is because the advantage from 

background wealth is small and rich individuals are therefore only selected slightly more often for 

reproduction than poor individuals. 

 

The absorption time of the rich individual depends on the relative advantage that the background 

wealth bestows on it. When the background wealth of the rich individual is comparable to the 

payoff values of the competing strategies, the time to absorption is longer. This is because the 

advantage from background wealth is small and rich individuals are therefore only selected slightly 

more often for reproduction than poor individuals.  
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As the wealth advantage increases, however, the time to absorption decreases rapidly.  The 

advantage that the background wealth provides to the rich individual increases and selection 

favours this individual for reproduction. The rich individual’s strategies reach fixation more often 

and more quickly than the poor individuals’ strategies. 

 

A.7 Discussion 

We have shown that heterogeneity in background fitness reduces selection regardless of the 

strategy payoff. Background fitness is a concept that has been previously proposed to incorporate 

environmental or otherwise contributing factors to competitiveness, fitness and evolutionary 

survival (Dayton-Johnson and Bardhan 2002; Deng, Tang, and Zhang 2011; McNamara, Barta, 

and Houston 2004). Equal background reduces the intensity of selection: the payoff values of each 

strategy are scaled proportionally to the homogeneous background fitness of all individuals (Deng, 

Tang, and Zhang 2011; Nowak et al. 2004). We focus on shifting the distribution of background 

fitness among individuals in a population. A heterogeneous distribution of background fitness is a 

possible way to address this issue. Such heterogeneities may exist in economic, social, cultural, or 

other dimensions that are all prevalent in nature and society (Dayton-Johnson and Bardhan 2002; 

Droz, Szwabiński, and Szabó 2009; Norton and Ariely 2011; Perc and Szolnoki 2008; F. C. Santos, 

Santos, and Pacheco 2008). 

Our results show that inequalities in background fitness can lead to suppressed selection. 

Many types of suppressors of selection are known (Antal and Scheuring 2006; Lieberman, Hauert, 

and Nowak 2005; Nowak, Michor, and Iwasa 2003; Traulsen, Claussen, and Hauert 2005). The 

largest extent to which selection can be suppressed is if the affected trait fixates at random in a 

population, neutralising the effects derived from fitness entirely (Nowak, Michor, and Iwasa 
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2003). We show that large inequality can lead to this kind of neutral drift. Our work complements 

an existing literature in population genetics on heritable traits when selection is weak and elements 

of population structure are heterogeneous (Eldon and Wakeley 2006; Lessard 2007). 

The evolution of frequency-dependent traits, such as cooperation, under heterogeneous 

background fitness is another interesting aspect alongside constant selection for a heritable trait. It 

has been argued that inequality can either increase cooperation in the public goods management  

(Olson 1965; J. Wang, Fu, and Wang 2010) or, much in contrast, lead to the downfall of 

cooperation (Varughese and Ostrom 2001). Neither effect has been discussed in the context of 

evolutionary biology. Our work provides a first step towards (constant) evolutionary games in a 

finite population, by separating out the effects of interaction from the background fitness of 

individuals.  

Moreover, evolutionary game theory has received much attention on networks (Abramson 

and Kuperman 2001; Fu et al. 2008; Lieberman, Hauert, and Nowak 2005; Perc and Szolnoki 

2010; F. C. Santos and Pacheco 2005; Szabó and Fath 2007). Many networks have been studied 

in regards to imitation of traits or spread of pathogens or emotions (Christakis and Fowler 2007; 

Christakis and Fowler 2008; Hill et al. 2010). Recently the interest in directed networks (Masuda 

and Ohtsuki 2009) or degree-heterogeneous networks has increased (Antal and Scheuring 2006; 

F. C. Santos, Pacheco, and Lenaerts 2006) and produced stimulating results. It would be interesting 

finding the connection between heterogeneous background fitness and heterogeneous networks. 

In our model, we have also shown that absorption times under constant selection are 

negatively affected by heterogeneous background fitness. In other words, the more inequality 

exists, the faster absorption takes place. This stands in contrast to findings on a graph with 

heterogeneous edge weights in which the mean absorption time increases (Voelkl 2010). While 



Appendix A. Heterogeneity in background fitness 

162 

heterogeneity leads to an increase of absorption time in some models (Frean, Rainey, and Traulsen 

2013), it can be a catalyst to determine whether or not a strategy goes to fixation. We find that, 

when fixation time is very fast in an unequal population, often the mutant went extinct after arising 

in a poor individual. This is the case because a poor individual is unlikely to be selected for 

reproduction when inequality in background fitness is large. 

Finally, the co-evolution of background fitness and strategic fitness could lead to 

interesting dynamics. The tendency that individuals in different classes of background fitness 

might show towards choosing an appropriate strategy is a crucial feature of many real-world 

examples, such as differences in votes between social classes over tax reforms (Ogburn and 

Peterson 1916). Other evidence comes from field studies (Dayton-Johnson and Bardhan 2002) that 

show that head-end and tail-end farmers in irrigation systems derive different incentives from their 

location, which in turn influences their strategy whether or not to cooperate.  
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