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Abstract

Many chemical applications, from spectroscopy to quantum chemistry, involve measuring

or computing a large amount of data, and then compressing this data to retain the most

chemically-relevant information. In contrast, compressed sensing is an emergent technique

that makes it possible to measure or compute an amount of data that is roughly propor-

tional to its information content. In particular, compressed sensing enables the recovery

of a sparse quantity of information from significantly undersampled data by solving an

`1-optimization problem. This thesis represents the application of compressed sensing to

problems in chemistry.

The first half of this thesis is about spectroscopy. Compressed sensing is used to accel-

erate the computation of vibrational and electronic spectra from real-time time-dependent

density functional theory simulations. Using compressed sensing as a drop-in replacement

for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-

fifth the typical simulation time and computational cost. The technique is generalized to

multiple dimensions and applied to two-dimensional absorption spectroscopy using exper-

imental data collected on atomic rubidium vapor. Finally, a related technique known as

super-resolution is applied to open quantum systems to obtain realistic models of a protein

environment, in the form of atomistic spectral densities, at lower computational cost.

The second half of this thesis deals with matrices in quantum chemistry. It presents a

new use of compressed sensing for more e�cient matrix recovery whenever the calculation of

individual matrix elements is the computational bottleneck. The technique is applied to the

iii



computation of the second-derivative Hessian matrices in electronic structure calculations

to obtain the vibrational modes and frequencies of molecules. When applied to anthracene,

this technique results in a threefold speed-up, with greater speed-ups possible for larger

molecules. The implementation of the method in the Q-Chem commercial software package

is described. Moreover, the method provides a general framework for bootstrapping cheap

low-accuracy calculations in order to reduce the required number of expensive high-accuracy

calculations.
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leau and Sam Blau, and getting to run with Nico Sawaya and David Gelbwaser. Other

group members whom I have been fortunate to learn from include Ryan Babbush, Martin

Blood-Forsythe, Adrian Jinich, Ivan Kassal, Ian Kivlichan, Roberto Olivares, Alejandro

Perdomo-Ortiz, Patrick Rebentrost, Jonathan Romero Fontalvo, Benjamin Sanchez, Sang-

woo Shim, Teresa Tamayo, Jennifer Wei, Jon Welch, James Whitfield, Doran Bennett,

Sergio Boixo, Alex Eisfeld, Johannes Hachmann, Christoph Kreisbeck, Sarah Mostame,

John Parkhill, Borja Peropadre, Ed Pyzer-Knapp, César Rodŕıguez-Rosario, David Tem-
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Chapter 1

Introduction

A spectrum is measured but one is interested in just the peaks. An expensive matrix

is computed but one cares only about obtaining accurate eigenvalues. A large microscope

field-of-view is acquired but one is interested only in a few active locations. An entire

magnetic resonance image is constructed bit-by-bit, but the medically-relevant information

is in the locations where the density of the nuclei changes.

All of these scenarios demonstrate the same paradigm which dominates chemistry: we

measure or compute a large amount of data, and then compress this data to focus on the

chemically-relevant information. One might imagine an alternative approach in which one

directly measures or computes the chemical information. The potentially fatal problem, of

course, is that typically one does not know a priori where the information is to be found

within the large set of data or even how much information is in the data.

Nevertheless, an emergent technique in applied mathematics known as compressed

sensing has shown that this problem is far from fatal, and that it is possible to measure

or compute an amount of data that is proportional to the amount of information present

in the data [34, 57, 35, 172]. This thesis represents the application of this new compressed

sensing paradigm to problems in chemistry. In a variety of chemical applications, this thesis
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suggests more e�cient approaches to acquiring chemical information by ensuring that the

amount of data to be calculated or collected is proportional to the information content.

While this thesis focuses on applications to spectroscopy and electronic structure, com-

pressed sensing—which has been termed a paradigm shift from “measure what can be mea-

sured” to “measure what should be measured” [172]—reaches far beyond chemistry, with

an enormous number of other applications springing up across science and engineering. Ex-

perimental applications of compressed sensing include super-resolution microscopy [205],

neuronal circuitry [82], quantum state and process tomography [69, 159, 63, 15], and a car-

bon nanotube-based infrared camera [169]. On the computational side, compressed sensing

is becoming a tool for constructing physics models [128] and for modeling sparse dynamics of

partial di↵erential equations [157]. Such a list of applications could be reconstructed many

times over, using di↵erent applications each time. We begin with a brief mathematical

introduction to compressed sensing.

1.1 Compressed Sensing

Consider a column-vector x containing n unknown variables, and suppose we measure

linear combinations of the unknown variables and collect them in the column-vector b con-

taining m such measurements. We can formulate the problem of solving for the unknowns

as a linear inversion problem,

Ax = b, (1.1)

where A is an m⇥n matrix of coe�cients relating the unknown vector x to the measurement

vector b. From standard linear algebra, we know that if x contains n unknowns, then we

need b to contain m = n linearly independent measurements at which point equation (1.1)
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becomes a square system which admits the unique solution

x = A�1b. (1.2)

When the number of linearly-independent measurements m is less than the number

of unknowns n, equation (1.1) becomes an underdetermined system of equations admitting

an infinite number of solutions. Attempting to solve for n unknowns with fewer than n

measurements is, in the general case, a hopeless endeavor. The key insight of compressed

sensing is that in the special case when the unknown vector x is sparse, meaning it contains

only a small number of nonzero values, it becomes possible to solve for x with fewer than

n measurements.

In compressed sensing, one simply finds the sparsest vector x which satisfies the under-

determined system in equation (1.1). In other words, one solves the following `0 optimization

problem, [34, 57, 35, 16]

min ||x||0 subject to Ax = b, (1.3)

where

||x||0 =
n
X

i=1

|xi|0 (1.4)

is the zero-norm which simply counts the number of non-zero elements in the vector x.

Consider what happens to the solution to the optimization problem (1.3) when the

unknown vector x is known to be sparse. When the measurement vector b contains very

few measurements, so that the system of equations Ax = b is highly underdetermined, it is

likely that the optimization problem (1.3) admits a solution for x that is sparser than the

true solution. However, as more measurements are collected, so that the vector b grows in

size, eventually the solution to the optimization problem (1.3) will converge to the correct
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sparse solution for x. Moreover, if x is sparse enough, this convergence can happen long

there are as many measurements as unknowns, in other words, long before Ax = b is a

square system admitting a unique solution. In fact, the number of required measurements

m scales linearly with the number of non-zeros in the unknown vector x, also known as the

sparsity of x, as discussed further near the end of this section.

Unfortunately, in practice, solving the optimization problem (1.3) turns out to be NP-

hard [16], but luckily it has been proven to be equivalent to the following `1 optimization

problem [34, 57, 35, 16]

min ||x||1 subject to Ax = b, (1.5)

where

||x||1 =
n
X

i=1

|xi|1 (1.6)

is simply the sum of the absolute values of the entries in x. This `1 optimization problem,

which can be formulated as a linear program, is what one actually solves when implementing

compressed sensing.

To understand how compressed sensing works, and in particular why the `1 optimization

problem in equation (1.5) is equivalent to the `0 optimization problem in equation (1.3), it

is useful to examine a simple low-dimensional example [16]. Suppose the vector x = [ x1
x2 ]

contains only two unknowns and is sparse, which in this simple example we take to mean

that x2 = 0. Figure 1.1 illustrates the two-dimensional space of possible solutions for x and

represents the solution by a dot. The standard approach to solving the system Ax = b is

to collect two linearly-independent measurements in b and then invert the square system of

equations. Each measurement corresponds to a line and the point at which these two lines

cross yields the solution for x, as shown in Figure 1.2.

4



x1

x2

Figure 1.1: This figure shows a sparse vector x with x2 = 0 to be recovered.

First row of
Ax = b

Second row of
Ax = b

x1

x2

Figure 1.2: This figure illustrates the conventional recovery of sparse vector x by solving a

square system of linearly-independent equations.
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First row of
Ax = b

x1

x2

Figure 1.3: This figure illustrates the recovery of sparse vector x by applying compressed

sensing via `1 optimization. Each diamond represents constant `1 norm, and the location

where the smallest possible diamond intersects the line is the solution to the optimization

problem in equation (1.5). We see that x is recovered correctly [16].

In compressed sensing, the idea is to make fewer measurements in b and then employ the

`1 optimization in equation (1.5) to solve for x. Suppose we make only one measurement,

b1, thus obtaining only one line in Figure 1.3. In principle, the solution for x could lie

anywhere along this line. The diamonds in Figure 1.3 represent lines of constant `1 norm,

so the smallest diamond to intersect the line represents the solution to the `1 optimization

problem in equation (1.5) [16]. As this simple cartoon shows, compressed sensing via `1

optimization recovers the correct solution for x using only one measurement rather than

two. In more realistic high-dimensional settings, the computational savings can be much

greater.

Figure 1.4 shows that the `1 norm is crucial for solving the compressed sensing problem.

If the ell1 norm is replaced by the `2 sum-of-squares norm, which corresponds to replacing

the diamonds with circles, the recovered solution for x is incorrect and no longer sparse [16].

Thus, the `1 norm represents a happy medium: it is “sharp” enough to favor sparse solutions
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x1

x2

First row of
Ax = b

Figure 1.4: Replacing the `1 optimization by an `2 optimization precludes the correct

recovery of sparse vector x, as the smallest possible circle does not intersect the line in the

correct location [16].

(which is not the case with norms larger than the 1-norm) and it is not NP-hard to minimize

(which is not the case with norms smaller than the 1-norm).

We note that in solving the optimization problem in equation (1.5), the equality of the

underdetermined systemAx = b is enforced to a specified tolerance, so the true optimization

problem which is solved is [184]

min ||x||1 subject to ||Ax� b||2 < ⌘, (1.7)

for some small tolerance ⌘ usually between 10�4 and 10�8.

If we regard x as a vector expressed in a basis {�i},

x =
X

i

xi�i, (1.8)

and b as a vector expressed in a basis { j},

b =
X

j

bj j , (1.9)

so that A becomes the change-of-basis matrix from the {�i} basis to the { j} basis, then
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we can define the coherence µ of the change-of-basis transformation as [58, 31, 35]

µ =
p
n max

1i,jn

h�i| ji
p

h�i|�iih j | ji
, . (1.10)

a number which ranges from a minimum of 1 when each vector in {�i} avoids as much as

possible overlapping with any vector in { j} to a maximum of
p
n when there exist vectors

in the {�i} and { j} that completely coincide. In the former case, we say the two bases

are incoherent while in the latter case, we say they are coherent. In terms of this coherence

parameter, the number of measurements m in the vector b needed to accurately recover the

unknown vector x is proven to scale as [31, 35]

m ⇠ µ2s log n, (1.11)

where s is the sparsity of x (number of nonzeros) and µ is the coherence parameter. This

formula encapsulates two features of compressed sensing. First, the number of measure-

ments required to recover a sparse vector x scales directly with its sparsity. Second, the

fewest measurements are required when the sparse basis {�i} and the measurement basis

{ j} are as incoherent as possible. In more informal language, the optimal situation for

compressed sensing is when A “scrambles up” all the elements of x to give b, as this ensures

that each measured element of b is maximizing the amount of information provided about

all the elements of x.

1.2 Application to Image Processing

One of the most important applications of compressed sensing is to the rapid acquisition

of images, where the technique enables a dramatic reduction in the number of measurements

required to obtain a well-resolved image [35, 16]. In this section, we use image processing

to provide a visual illustration of how compressed sensing works in practice.
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Images are composed of pixels and most of these pixels are nonzero; as such, images

are not immediately sparse. However, most pixels in an image are quite similar to their

neighbors; that is, most areas of an image do not involve pixels undergoing drastic changes

on very short length scales. As a result, the two-dimensional discrete cosine transform (a

real analog of the complex discrete Fourier transform) of an image is typically quite sparse,

containing relatively few nonzero Fourier coe�cients, and this feature is what enables the

application of compressed sensing to image processing. In practice, other transformations

of an image, such as wavelet transformations, can produce even greater sparsity than the

two-dimensional discrete cosine transform, but we will use discrete cosine transforms in this

illustrative example both for their simplicity and because the subsequent chapters of this

thesis, which focus on chemical applications of compressed sensing, use the discrete cosine

transform.

Because the two-dimensional discrete cosine transform of most images is sparse, it is

clear that most images contain fewer independent pieces of “information” than their number

of pixels. Nevertheless, the dominant paradigm in image acquisition has been “collect,

then compress”—in other words, a large number of pixels is acquired, and those pixels are

subsequently compressed to be stored. Compressed sensing represents a dramatic change

in this paradigm: only a much smaller number of pixels is collected, and the full image is

recovered by solving the `1 optimization problem in equation (1.7). The number of pixels

which must be acquired to fully-resolve the image is proportional to that image’s information

content in the sparse representation, that is, to the number of non-zero coe�cients in the

two-dimensional discrete cosine transform of the image, as per equation (1.11).

We can represent an image as a vector b by stacking all of its pixels into a single

column. Similarly, we can represent the two-dimensional discrete cosine transform of the
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image as a vector x by stacking all of the coe�cients into a single column. Finally, the

matrix A is taken to represent the two-dimensional (inverse) discrete cosine transform which

converts the vector x into the vector b. Since the vector x is sparse, we can recover it by

sampling only some of the pixels of the image to form the vector b and then solving the

compressed sensing optimization problem in equation (1.7). After the sparse vector x has

been recovered, it is straightforward to apply the two-dimensional discrete cosine transform

to visualize the recovered image.

This procedure is illustrated in Figure 1.5. The bottom-right panel depicts the true

exact image used for the example and the top-left panel illustrates the pixels from this

image which were sampled to form the measurement vector b. As described in the figure,

only one-quarter of the pixels were sampled. The top-right panel illustrates the recovered

discrete cosine transform from the vector x obtained by solving optimization problem (1.7);

as expected, this quantity is rather sparse. The bottom-left panel illustrates the recovered

image after the (inverse) discrete cosine transform has been applied to the top-right panel.

Comparing the reconstructed image to the exact image reveals that the key features of

the image are recovered accurately through the compressed sensing process, but that only

one-quarter of the pixels were actually needed to recover these key features.

Figure 1.6 illustrates the same process, but with sampling only one-tenth of the pixels

in the true image. Again, the key features of the image are recovered but this time the

details are not as clear. This situation corresponds to the recovery of a discrete cosine

transform that is too sparse compared to the true discrete cosine transform of the original

image. Even so, the recovered image is a reasonable approximation to the true image.

More accurate recovery with fewer pixels may be obtained by choosing a more e↵ective

transformation than the discrete cosine transform, one which yields a quantity that is even
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Figure 1.5: This figure illustrates the application of compressed sensing to reconstruct an

image by sampling only 25% of its pixels. The sparse discrete cosine transform is recovered

from the sampled pixels by solving optimization problem (1.7). The key features of the

image are recovered with reasonably high accuracy.
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Figure 1.6: This figure illustrates the application of compressed sensing to reconstruct an

image by sampling only 10% of its pixels. This time, the accuracy is not as satisfactory.

more sparse, such as a wavelet transformation.

1.3 Applications to Chemistry

The remainder of this thesis contains original applications of compressed sensing to

problems in chemistry. In all of these applications, compressed sensing reduces the number

of measurements or computations required to obtain a quantity of chemical interest.

Chapter 2 focuses on the application of compressed sensing to accelerate the computa-

tion of vibrational and electronic spectra from real-time time-dependent density functional
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theory (TDDFT) simulations [13]. Because the molecular systems being simulated have

discrete energy levels, the spectra are naturally sparse in the frequency domain. While the

typical approach involves real-time propagation in the time domain, followed by application

of a discrete Fourier transform to obtain the spectrum, compressed sensing may be used

as a drop-in replacement for the discrete Fourier transform to reduce the total propagation

time, and hence the computational cost, by a factor of five. Examples include the vibra-

tional spectrum of benzene, the electronic absorption spectrum of benzene, and the circular

dichroism spectrum of (R)-methyloxirane, all of which are substantially accelerated by the

use of compressed sensing.

Chapter 3 extends the compressed sensing approach to multidimensional spectroscopy

and demonstrates the feasibility of its application to experimental data [155]. For the model

experimental system of atomic rubidium vapor, which has a sparse two-dimensional elec-

tronic spectrum, compressed sensing allows for random undersampling of the time-domain

experimental data, down to less than 5% of the experimental dataset, with essentially no

loss in spectral resolution.

Chapter 4 applies super-resolution, a technique closely related to compressed sensing, to

the simulation of realistic environments for open quantum systems, focusing on the exciton

dynamics of the Fenna-Matthews-Olsen (FMO) light-harvesting complex [115]. Realistic

models of the environment are challenging to construct because they incorporate many

degrees of freedom, but increasing computational resources have enabled their construc-

tion from molecular dynamics (MD) simulations combined with time-dependent density

functional theory (TDDFT). In this chapter, super-resolution is employed to derive more

accurate spectral densities for the FMO complex while reducing the required simulation

time by a factor of five. Another attractive feature is that super-resolution directly yields
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the parameters of the spectral densities needed for the subsequent simulation of the FMO

complex via quantum master equation approaches, without the need for a separate step to

extract the parameters from the spectral densities.

Chapter 5 moves away from spectroscopy and presents a new application of compressed

sensing to compute matrices whenever the determination of the entries of a matrix con-

stitutes the computational bottleneck [154]. The method is applied to second-derivative

Hessian matrices frequently computed in electronic structure calculations to obtain the vi-

brations of a molecule. Moreover, the method provides a general framework for bootstrap-

ping cheap low-accuracy calculations in order to reduce the required number of expensive

high-accuracy calculations; the number of required high-accuracy calculations is related to

how much new information they provide over the low-accuracy calculations. When applied

to the Hessian matrix of anthracene, this technique results in a threefold speed-up in the

calculation, with greater speed-ups possible for larger molecules.

Chapters 6 and 7 describe the incorporation of this compressed sensing technique into

the commercial electronic-structure package known as Q-Chem. Chapter 6 describes the

implementation for so-called mixed derivatives, where gradients are computed analytically

and second derivatives are computed via finite di↵erences. In this case, the incorporation of

compressed sensing reduces by roughly half the number of gradients that must be calculated,

which translates directly into a reduction in the number of CPU hours required to compute a

Hessian matrix. Chapter 7 describes the implementation for fully analytic derivatives, where

a savings is possible in the number of first derivatives of the molecular orbital coe�cients

that must be computed, but where further work remains to translate this savings into a

reduction of CPU hours.
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Part I

Compressed Sensing for

Spectroscopy
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Chapter 2

Application of Compressed Sensing to the

Simulation of Atomic Systems

Apart from minor modifications, this chapter originally appeared as [13]:

“Application of Compressed Sensing to the Simulation of Atomic Systems.” Xavier An-
drade, Jacob N. Sanders, and Alán Aspuru-Guzik. Proceedings of the National Academy of
Sciences USA. Volume 109, Number 35: 13928–13933. 2012.

Abstract

Compressed sensing is a method that allows a significant reduction in the number of

samples required for accurate measurements in many applications in experimental sciences

and engineering. In this work, we show that compressed sensing can also be used to speed

up numerical simulations. We apply compressed sensing to extract information from the

real-time simulation of atomic and molecular systems, including electronic and nuclear

dynamics. We find that, compared to the standard discrete Fourier transform approach,

for the calculation of vibrational and optical spectra the total propagation time, and hence

the computational cost, can be reduced by approximately a factor of five.
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2.1 Introduction

A recent development in the field of data analysis is the compressed sensing (CS)

(or compressive sampling) method [34, 57]. The foundation of the method is the concept

of sparsity : a signal expanded in a certain basis is said to be sparse when most of the

expansion coe�cients are zero. This extra information can be used by the CS method

to significantly reduce the number of measurements needed to reconstruct a signal. CS

has been successfully applied to data acquisition in many di↵erent areas [17], including

the improvement of the resolution of medical magnetic-resonance imaging [111] and the

experimental study of atomic and quantum systems [159, 9, 91].

In this article we show that CS can also be an invaluable tool for some numerical

simulations with a considerable reduction of the computational cost. We focus on atomistic

simulations of nanoscopic systems by using CS to extract frequency-resolved information

from real-time methods such as molecular dynamics (MD) and real-time electron dynamics.

MD [146, 5] is one of the most widely used methods to study atomistic systems compu-

tationally as it can be used to compute many static and dynamical properties. In MD the

trajectory of the atomic nuclei is obtained by integrating their equations of motion either

with parametrized force-fields or else by explicitly modeling the electrons [118]. Given its

importance, developing methods that can improve the precision and reduce the computa-

tional cost of this method, especially for ab initio MD, can have a large impact in the field

of atomistic simulation.

Real-time electron dynamics, in particular real-time time-dependent density functional

theory (TDDFT) [153], plays a similarly important role in the study of linear and non-linear

electronic properties [194, 42, 41, 175]. Due to its scalability and parallelizability, real-time

TDDFT is particularly e�cient for large electronic systems [10], so an additional reduction
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in the computational cost can extend the boundaries of the system-sizes that can be studied.

Many physical properties are represented by frequency-dependent quantities. To obtain

these from real-time information, usually a discrete Fourier transform (FT) is used. Our

approach is to replace this FT by a calculation of the Fourier coe�cients based on the CS

method. To obtain a given frequency resolution, the CS method requires a total propagation

time that is several times smaller than that required by a FT.

CS has the potential to provide across-the-board speedup for many applications involv-

ing the computation of sparse spectra. Moreover, this speedup may be obtained without

making any changes to the underlying propagation code used in di↵erent types of elec-

tronic and nuclear calculations; one simply replaces the FT algorithm with the CS method,

making the approach quite straightforward to implement. This paper introduces CS and

demonstrates its broad utility in computational chemistry and physics by applying it to

the calculation of various nuclear and electronic spectra of small molecules. The resulting

computer code is available as open-source software.

The article is structured as follows. We first introduce the CS method and show how

it may be applied to the determination of Fourier coe�cients. Next, we apply CS to the

calculation of vibrational, optical absorption, and circular dichroism spectra. We then

proceed to a discussion of the numerical methods used in our CS implementation. Finally,

we o↵er conclusions and an outlook.

2.2 Compressed sensing

In this section, we briefly introduce the application of the CS method to the calculation

of Fourier coe�cients. More details about the method and its origins may be found in

Refs. [16, 35, 45].
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For simplicity, we assume that we want to calculate a certain frequency-resolved quan-

tity g(!) that is given by the sine transform of a certain time-resolved function h(t)

g(!) =

Z 1

�1
dt sin(!t)h(t) (2.1)

(the analysis is equally valid for the cosine transform). Since we are interested in numerical

solutions, we need to think in terms of discrete quantities. For the numerical problem, we

consider that h(t) has been sampled at Nt equidistant times tj = �tj. We want to obtain

{g1, g2, . . . , gN!} at N! equally-spaced frequencies !j = �! j.

In principle, the gk can be directly obtained using the discrete FT,

gk =
Nt
X

j=1

�t sin(!ktj)hj . (2.2)

However, if we expect that many of the Fourier coe�cients are zero, a property known as

sparsity, we can use this additional information to obtain more precise results. This is the

basis for the CS scheme.

We start by reformulating the discrete Fourier transform in equation (3.2) as a matrix

inversion problem. From this perspective, we are trying to solve the linear equation for g,

Fg = h , (2.3)

where F is the N! ⇥Nt Fourier matrix with entries

Fjk =
2

⇡
�! sin(!jtk) . (2.4)

Our objective is to obtain sensible results with Nt as small as possible. Thus, we are

interested in the case N! > Nt, where the linear system is under-determined, and there are

many solutions for g (in fact, one of them will be given by equation (3.2)). From all the

solutions of equation (3.3), we select the one that has the largest number of zero coe�cients:
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the sparsest solution. This turns out to be equivalent to the so-called basis-pursuit (BP)

optimization problem [35]

min
g

|g|1 subject to Fg = h , (2.5)

which is what one solves in practice (where |g|1 =
P

k |gk| is the standard 1-norm).

The CS scheme can be generalized to allow for a certain amount of noise in the time-

resolved signal. In this case the problem to be solved is known as basis-pursuit de-noising

(BPDN)

min
g

|g|1 subject to |Fg � h| < ⌘ , (2.6)

where ⌘ represents the level of noise in the signal. This is the formulation we use in our

case, since we expect a certain amount of noise coming from the finite-precision numerical

calculations (and possibly other sources).

2.3 Vibrational spectra

MD can be used to obtain information about the vibrational modes of atomic systems.

Experimentally, the quantities that usually give access to the vibrational modes are the

infrared and Raman spectra that can be obtained from MD as the Fourier components

of the electronic polarization and polarizability, respectively. If we are only interested in

the vibrational frequencies, from the nuclear velocities {vi} we can calculate the velocity

autocorrelation function

�(t) =
h
P

i vi(t) · vi(0)i
h
P

i vi(0) · vi(0)i
, (2.7)

where the brackets indicate the average over the ensamble. The cosine transform of � is the

vibrational frequency distribution [55]

f(!) =

Z

dt �(t) cos(!t) . (2.8)
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Since this spectrum is composed of a finite number of frequencies (less than three times the

number of atoms in the system), the calculation is ideal for the CS method.

To illustrate the properties of the CS method we start with a simple case, the sin-

gle vibrational frequency of a diatomic molecule, Na2, which we simulate using ab-initio

molecular dynamics. In Figure 2.1, we show how the vibrational spectrum depends on the

amount of time for which the velocity autocorrelation is calculated, both for CS and for

the discrete FT with a standard polynomial damping function. While the FT requires long

propagations to resolve the vibrational frequency, the CS method gives a well-defined peak

even with less than one oscillation of the molecular vibrational mode. That the peak is well

defined, however, does not imply that the peak position is converged. As seen in Figure 2.2,

the peak position oscillates with the total sampling time until it converges to the true value

after a few periods are sampled. For the FT, on the other hand, the peak position, obtained

by fitting the spectrum to a Gaussian function, is well defined when more than one period

is sampled, but the width of the peak converges very slowly with the sampling time. This

di↵erence in behavior of CS and FT has been reported previously, for example, in Ref. [205].

We remark that the CS process does not use any additional information about the signal

beyond assuming it is sparse.

The advantage of the CS approach is further illustrated when several closely-spaced

frequencies must be resolved. To demonstrate this, we calculate the vibrational spectrum

for a benzene molecule from an ab initio MD simulation in Figure 2.3. We can see that the

CS approach with 1000 fs gives a spectrum that is better resolved than the FT results for

5000 fs. This is directly translated into a reduction of the computational time by five times

or more. It is reasonable to expect that equivalent gains can be obtained for the computer

simulation of other vibrational spectroscopies such as infrared and Raman.
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Figure 2.1: Frequency distribution spectrum of Na2 calculated using a Fourier transform

and compressed sensing for di↵erent total propagation times: (a) 100 fs, (b) 600 fs, and (c)

4000 fs. The left plots show the velocity autocorrelation function and the right plots show

the frequency spectrum.
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respect to total time. For comparison we plot the positions and width of the peak obtained

by using a discrete Fourier transform. For the Fourier transform, the position, !0, and the

width, �, are fit by assuming the peak has a Gaussian form A exp[�(! � !0)2/(2�2)]. For

compressed sensing, the peak width corresponds to the energy spacing, 0.01 1/cm.
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Figure 2.3: Vibrational frequency distribution spectrum of benzene. Comparison of a com-

pressed sensing calculation with 1000 fs and a Fourier transform with 5000 fs.
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2.4 Optical absorption spectra

Optical absorption is an electronic process. While it can be calculated from a linear

response framework [39, 11], it can also be obtained from real-time electron dynamics [194].

To obtain the spectrum from real-time dynamics the electronic system is propagated under

the e↵ect on an electric field of the form E(r, t) = �(t). From the propagation the time-

dependent dipole moment p(t) is obtained, and from the dipole the frequency-dependent

polarizability can be obtained as (atomic units are used in the next two sections)

↵ij(!) =
1

i

Z 1

0
dt e�i!t [pj(t)� pj(0)] . (2.9)

In order to obtain the full ↵ tensor three propagations are required (with  in di↵erent

directions).

The absorption cross-section is related to the trace of the imaginary part of the polar-

izability tensor

�(!) =
4⇡!

3c
Im

3
X

i=1

↵ii(!) . (2.10)

The optical absorption spectrum is an ideal candidate for the application of CS. For a

molecule, the electronic transitions between bound states produce a discrete spectrum in

the low energy region. At higher energies, the transitions to unbound states produce a

continuous spectrum. In general, electronic structure calculations cannot capture this con-

tinuous spectrum and approximate it as a sequence of discrete excitations, so in practice

the whole spectrum is sparse.

In Figure 2.4, we show the optical absorption spectrum for benzene calculated via real-

time TDDFT. There we illustrate the e↵ect of the propagation time on the spectrum for

CS and FT. From the figure, it is clear that the CS method is capable of resolving the

spectrum much better and with a shorter propagation time than a discrete FT. Since the
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Figure 2.4: Optical absorption spectra for benzene computed from real-time TDDFT with

di↵erent propagation times. Comparison between compressed sensing and discrete Fourier

transform. Experimental results from Ref. [95].
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two methods have di↵erent convergence properties, as discussed in the previous section, it is

di�cult to rigorously quantify the speed-up a↵orded by CS. Nevertheless, by comparing the

FT at 25 fs with CS at 5 fs, we can see that the FT requires approximately five times the

propagation time as CS to achieve a similar resolution. Note that for a sampling time of 1

fs, the CS spectrum is not particularly sparse; we attribute this to the fact that perhaps the

1-norm minimization is not a good measure of sparsity in the very short-time regime [34].

2.5 Circular dichroism spectra

Another property that can be calculated from real-time electron dynamics is circular

dichroism (CD) spectra [195, 185]. A CD spectrum measures the di↵erence in a chiral

molecule’s response to left and right circularly-polarized light. The real-time calculation is

performed in the same manner as the optical absorption case, but the key quantity to be

calculated is now the time-dependent orbital magnetizationm(t). The frequency-dependent

electric-magnetic cross-response tensor may be obtained as

�ij(!) =
ic

!i

Z 1

0
dt e�i!t [mj(t)�mj(0)] . (2.11)

The rotatory strength, which is the quantity typically plotted in CD spectra, is related to

the trace of the imaginary part of �(!) according to

R(!) =
!

⇡c
Im

3
X

i=1

�ii(!) . (2.12)

The rotatory strength R(!) is suitable to the CS scheme because it is sparse in frequency

space. In fact, the peaks in a CD spectrum are located at the same positions as in an

absorption spectrum. However, the CD spectrum contains both positive and negative peaks.

Figure 2.5 compares the CD spectrum for (R)-methyloxirane as computed by FT and

CS for two di↵erent propagation times (10 fs and 50 fs). As can be seen from the figure, for a
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given propagation time, the CS method provides better spectral resolution than the discrete

FT. In fact, just as with linear absorption, FT requires a propagation time approximately 5

times as long as CS to obtain a comparable spectral resolution (as can be seen by comparing

the 50 fs FT with the 10 fs CS).

Figure 2.5 also illustrates another feature of CS: unlike a direct FT, the CS method

is non-linear. Adding together time-resolved signals, then applying CS, generally gives

di↵erent results from applying CS first and then adding together the results in the frequency

domain; this is particularly the case if not all the peaks are well-resolved. In other words, the

use of CS to convert time-resolved data into the frequency-domain, as in equation (2.11),

and the calculation of the trace, as in equation (2.12), do not commute. Hence, there

are two approaches to obtain the CD spectrum: we can perform CS for each propagation

direction and then compute the trace, or we can compute the trace in the time-domain and

then perform CS. Both approaches are shown in Figure 2.5; at 10 fs, they give similar but

not identical results. Performing the CS after the trace appears to give a cleaner spectrum

with fewer and better-resolved peaks. This is to be expected from the sparsity requirement.

For longer propagation times (50 fs), all of the peaks are more fully resolved and the

two approaches converge. In any event, both approaches to CS provide much improved

resolution over a direct FT for a given propagation time. This e↵ect is also present in the

absorption spectra, but to a much lesser degree, probably because the spectra are non-

negative.
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Figure 2.5: Circular dichroism spectrum computed for (R)-methyloxirane from real-time

TDDFT with di↵erent propagation times. Comparison between discrete Fourier transform

and compressed sensing (CS). Since the CS process is non-linear we compute the spectra in

two ways. CS before trace: the spectra is calculated for each direction using CS and then

the trace, equation (2.12), is computed. CS after trace: the trace is calculated in the time

domain and then the CS process is used over this averaged signal.
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2.6 Numerical methods

Numerically, to find a spectrum using the CS method we need to solve equation (5.2).

This is not a trivial problem, so we rely on the SPGL1 algorithm developed by van den Berg

and Friedlander [184]. To avoid numerical stability issues we work with a normalized BPDN

problem, where the prefactor 2�!/⇡ of the F matrix, equation (3.4), is left out and h is

normalized. These prefactors are then included in g after the solution is found. This has

the additional advantage of making the noise parameter ⌘ of equation (5.2) dimensionless.

Since we do not a have an a priori estimate for ⌘, we do not set it directly. As the

SPGL1 algorithm finds a sequence of approximate solutions with decreasing values of ⌘, we

set the target value to zero. We assume that the calculation is converged when the value of

⌘ falls below a certain threshold (10�7) or the active space of the system, the set of non-zero

coe�cients, has not changed for a certain number of iterations (50). In the former case we

consider that a solution of the BP problem, equation (2.5), has been found. For all the

calculations presented here ⌘ < 10�3.

CS is much more costly numerically than the discrete FT approach, as it usually

involves several hundreds of matrix multiplications. However, this is not a problem for

the applications we are proposing since this process normally only takes a few minutes,

much less than the computation time required to simulate the real-time dynamics of large

atomic systems.

All the calculations presented in this article were performed using the octopus code [40,

10] at the (time-dependent) density functional theory level with the PBE exchange correla-

tion functional [137]. The adiabatic molecular dynamics calculations were performed from

first principles using the modified Ehrenfest method [8, 12] with an ionic time-scale factor

(µ) of 30 for Na2 and 5 for benzene. The systems were given initial velocities equivalent to
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300 K and the MD is performed at constant energy.

All calculations used norm-conserving pseudo-potentials with a real-space grid dis-

cretization. The shape of the grid is a union of boxes around each atom. We chose the grid

parameters to ensure proper convergence of the results to an accuracy of 1%. For Na2 we

use a spacing of 0.375 a.u. with a sphere radius of 12 a.u., and the MD time-step is 0.057

fs. For benzene, the grid-spacing is 0.35 a.u., the radius is 14 a.u., and the time-step is

0.0085 fs for MD and 0.0017 fs for real-time TDDFT. For (R)-methyloxirane, the spacing

is 0.378 a.u., the sphere radius is 15.1 a.u., and the time-step is 0.0008 fs for real-time

TDDFT. For the vibrational spectrum calculation we use a time-step 10 times the one of

the MD, the energy step is 0.01 1/cm, and the maximum spectrum energy is 5000 1/cm.

For the benzene optical absorption spectra, we use a time-step of 0.0017 fs, the energy

step is 0.027 eV, and the maximum spectrum energy is 820 eV. For the (R)-methyloxirane

circular dichroism spectra, the time-step is 0.0008 fs, the energy step is 0.01 eV, and the

maximum spectrum energy is 330 eV. The structure of benzene was taken from Ref. [53]

and the structure of (R)-methyloxirane was taken from Ref. [37].

All discrete FTs were performed using third-order polynomial damping: each signal at

time t was multiplied by p(t) = 1� 3(t/T )2 + 2(t/T )3 prior to Fourier transform, where T

is the time-length of the signal [196].

The SPGL1 method used for CS was implemented into octopus based on a Fortran

translation of the original Matlab code of van den Berg and Friedlander [184]. We plan

to release this implementation as a standalone tool in the near future (for the moment the

code can be obtained from the octopus repository).
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2.7 Conclusions

We have shown that the CS method can be applied to the numerical calculation of

di↵erent kinds of atomic and electronic spectra. This results in a significant reduction of

the computational time required for the numerical simulations. For the systems tested in

this work, we find that is possible to obtain an speedup of five for CS as compared to the

discrete FT. Since the number of samples required for CS depends on the sparsity of the

signal [35], this ratio could change for other systems.

The e↵ect of this reduction is to increase the size of the systems that are currently

accessible to numerical simulations, and to make possible simulations with more precise,

but more costly, methods. It also means that other types of simulations become more

a↵ordable from a real-time perspective, for example the combined dynamics of nuclei and

electrons that are constrained to short simulation times by the fast dynamics of the electron.

In this work, we have shown the application of CS to the calculation of a few types of

spectra, but the method most likely can be applied to other quantities as well, such as non-

linear optical response [41, 175], magnetic circular dichroism [109], semi-classical nuclear

dynamics [44], 2D spectroscopy [114, 198], etc. Of course, the method is not limited to

atomistic simulations and could be applied to simulations in all scientific fields.

Probably the main advantage of CS is that it is a simple and universal approach that

works as a drop-in replacement for the FT for many applications where discrete or sparse

spectra need to be calculated. The main limitation of the CS approach is that it may not

be as beneficial for quantities that are not sparse.

There are some cases where the sparsity requirement might be circumvented. For ex-

ample, though the real part of the polarizability tensor is not sparse, it could be computed

from the imaginary part by using the Kramers-Kronig relation. Another example is crys-
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talline systems [25], where there is a continuum of excitation energies. In this case it might

be possible to apply the CS scheme to each k-point separately.

Another important issue is the performance of CS in resolving spectral features such as

peak broadening. These features do not appear in the spectra calculated in this article, but

might appear when internal structure or environmental e↵ects are considered. This will be

the focus of future work. Another interesting continuation of our work would be to compare

CS with other approaches for calculating spectral properties such as the maximum entropy

method [70]. This method is related to CS but may better reproduce broadened features

in spectra [171].

Nevertheless, we want to emphasize that for the sparse spectra obtained in atomistic

simulations, compressed sensing is a promising method. We expect that compressed sens-

ing will become widely used in the scientific computing community once its advantageous

properties become more widely known. The main di�culty in the adoption of CS is that it

is more complex to implement than a discrete FT. This problem can be solved by providing

libraries and utilities that can be used by researchers. However, the CS method also has

features researchers will need experience to understand. For example, the CS method is

non-linear as discussed and the peak width is not always related to the convergence of the

spectrum.

We believe that the direct application of the compressed sensing methodology to nu-

merical simulation opens the path for more challenging applications. The principles of

sparsity could be used to design algorithms for numerical simulations that have a reduced

computational cost not only in the number of operations, but also in memory and data

transfer bandwidth requirements; we could call this “compressed computing.”
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Chapter 3

Compressed Sensing for Multidimensional

Spectroscopy Experiments

Apart from minor modifications, this chapter originally appeared as [155]:

“Compressed Sensing for Multidimensional Spectroscopy Experiments.” Jacob N. Sanders,
Semion K. Saikin, Sarah Mostame, Xavier Andrade, Julia R. Widom, Andrew H. Marcus,
and Alán Aspuru-Guzik. The Journal of Physical Chemistry Letters. Volume 3, Number
18: 2697–2702. 2012.

Abstract

Compressed sensing is a processing method that significantly reduces the number of

measurements needed to accurately resolve signals in many fields of science and engineer-

ing. We develop a two-dimensional variant of compressed sensing for multidimensional

spectroscopy and apply it to experimental data. For the model system of atomic rubid-

ium vapor, we find that compressed sensing provides an order-of-magnitude (about tenfold)

improvement in spectral resolution along each dimension, as compared to a conventional

discrete Fourier transform, using the same data set. More attractive is that compressed

sensing allows for random undersampling of the experimental data, down to less than 5%

of the experimental dataset, with essentially no loss in spectral resolution. We believe that

by combining powerful resolution with ease of use, compressed sensing can be a powerful
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tool for the analysis and interpretation of ultrafast spectroscopy data.

3.1 Introduction

Compressed sensing (CS) is a state-of-the-art signal processing method which has re-

cently become popular throughout the physical and biological sciences. The method is

founded on the concept of sparsity. When a signal is known to be sparse in a certain basis

(i.e. most of the coe�cients are negligibly small), this knowledge can be used to dramatically

reduce the number of measurements required to reconstruct the signal [34, 57]. This method

has been applied to many areas of research, ranging from magnetic resonance imaging [111]

to superresolved imaging of single molecules [205] and quantum process tomography [159].

In this letter, we present the application of CS to experimental ultrafast two-dimensional

(2D) optical spectroscopy. Multidimensional spectroscopy [79, 71, 93, 88] is an important

tool for studying ultrafast dynamical processes in complex molecular systems. For instance,

it can be used to analyze vibrational energy transfer at liquid/air interfaces on picosecond

timescales [201] or exciton dynamics in natural light harvesting systems at hundreds of

femtoseconds [30, 198, 200]. It can also be applied to the e�cient detection and identifica-

tion of molecules, which is one of the crucial challenges in chemistry, biology, and medicine

with important applications to molecular sensing, chemical separation, and DNA analy-

sis [127, 67]. Frequently, in these nonlinear optical techniques, the data is collected in the

time domain, and then Fourier transformed to the frequency domain.

While the Fourier transform (FT) is a standard technique in optical spectroscopy,

di↵erent data processing methods have been applied previously mainly in nuclear magnetic

resonance (NMR) spectral analysis [96, 123]. All these techniques can be classified into

two main groups: (a) methods requiring periodic sampling, such as the discrete FT [61, 29]
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and linear prediction (LP) [107, 96] including its variations [176]; and (b) methods that

use non-uniform sampling strategies, for instance maximum entropy methods (see refs.

in [123]). Formally, the CS method belongs to the latter group, where either random or

periodic sampling is applied with no pre-assumptions about the shape of the signal besides

its sparsity. The main drawback of periodic sampling methods is the dual constraint on data

collection: long time data collection is required to obtain good spectral resolution, while

closely-spaced sample points are needed to avoid aliasing. Non-uniform sampling methods

can alleviate these issues, but sometimes introduce sampling artifacts [123].

Earlier, some of us showed that CS can also be used to significantly reduce the com-

putational cost of atomistic simulations [13]. In that work, the application of CS was

particularized for molecular dynamics and real-time time-dependent density functional the-

ory simulations for obtaining linear spectra (vibrational, optical absorption, and circular

dichroism) [10]. However, CS can be applied to other types of simulations and experimental

techniques. Multidimensional non-linear spectroscopy is an interesting and relevant candi-

date to explore the possibilities of CS. Recently, CS has been pursued for the reconstruction

of one of the dimensions in 2D NMR data [165] and for the theoretical simulation of 2D

spectra [7].

As an illustration we apply the method to an experimental system, atomic Rubidium

vapor, which is frequently used as a test model for multidimensional spectroscopy tech-

niques [179, 186, 178]. Many multidimensional experiments are inherently limited in the

amount of time-domain data that may be collected, either due to measurement constraints

or to more fundamental limitations such as the timescale of the dynamics one wishes to

explore (which may be very short due to decoherence and other processes). We believe CS

can extend the range of spectroscopically-observable dynamics from limited time domain
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Figure 3.1: Schematic illustration of the sequence of four pulses used in 2D optical spec-

troscopy.

data. Here, we show that CS resolves spectral lines about an order-of-magnitude better as

compared to a discrete FT using the same dataset. While CS can be applied with a uniform

sampling strategy, the full potential of the method is realized when a non-uniform random

sampling is adopted [57]. In particular, we find that CS with random undersampling down

to only 5% of the data yields spectra that are comparable in resolution to those obtained

using all of the experimental data.

Another benefit of CS is that it is quite easy for experimentalists to integrate into

existing schemes. As discussed below, our basic approach simply replaces the 2D discrete

Fourier transform by a new 2D compressed sensing scheme. It is our hope that CS’s easy

portability will help it become a common method among experimental spectroscopists.

The rest of this letter is structured as follows. We first present the compressed sensing

method and outline its application to the resolution of 2D ultrafast optical spectra. Next, we

apply the method to a model experimental system, namely gas-phase Rubidium atoms, and

show how CS can be used to obtain a tenfold improvement in spectral resolution as compared

to FT. We then turn to the e↵ects of di↵erent sampling patterns on signal reconstruction,

focusing on how random undersampling can be used without sacrificing spectral resolution.

Finally, we o↵er conclusions and a future outlook.
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We begin by describing how the CS method can be applied to 2D ultrafast optical

spectroscopy; see refs. [16, 35, 45] for more detailed information about CS. As an illustration,

we focus on four-wave mixing experiments, similar to those used to study coherent energy

transfer in light-harvesting complexes, quantum dots, and other systems of physical and

biological interest. Typically, these experiments involve irradiating a sample with four

optical pulses and varying the time gaps between the pulses (Figure 3.1). Defining the time

gaps as ⌧ (the coherence time between pulses 1 and 2), T (the population time between

pulses 2 and 3), and t (the detection time between pulses 3 and 4), the signal measured in

the time domain is a function h(⌧, T, t). The standard approach is to perform a 2D discrete

Fourier transform in ⌧ and t to obtain the frequency spectrum g(!, T, w)

g(!, T, w) =

Z

d⌧ dt ei!⌧ eiwt h(⌧, T, t) . (3.1)

This frequency spectrum is typically plotted in !–w space for di↵erent values of T , and the

dynamics of the peaks then give information about the dynamics of the underlying system.

It has been shown previously how the CS method can be used to replace a one-

dimensional discrete FT in converting time-resolved data into the frequency domain [34, 13],

obtaining a significantly better frequency resolution. Our basic approach here is to general-

ize the method to the 2D case. A higher multidimensional CS scheme can also be obtained

as a straightforward generalization.

For 2D spectroscopy the measurement is usually done for a finite set of points {(⌧j , tk)}

arranged on a N⌧ ⇥Nt grid. We call the set of measured time-resolved values h = {h[jk]}.

To obtain the 2D spectra we need to calculate the associated set of Fourier coe�cients

g = {g[lm]} defined on a grid of N! ⇥ Nw points {(!l, wm)} in frequency space. This can
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be done by using a discrete FT

g[lm] =
N⌧
X

j=1

Nt
X

k=1

�⌧�t ei!l⌧j eiwmtk h[jk] , (3.2)

where �⌧ and �t are the values of the spacing of the 2D time grid.

However, if many of the frequency components are zero, then we only need a number

of samples proportional to the number of non-zero coe�cients in the spectrum [57]; this

is the fundamental principle behind CS. The CS approach imposes sparsity as additional

requirement to the determination of the Fourier coe�cients, thereby significantly reducing

the number of samples required for a well-resolved spectrum. We start by reformulating the

2D discrete Fourier transform in equation (3.2) as a linear problem. From this perspective,

we are solving the linear equation for g,

Fg = h , (3.3)

where F is the (N!Nw)⇥ (N⌧Nt) inverse Fourier matrix with entries

F[jk][lm] =
4

⇡2
�!�w e�i!l⌧j e�iwmtk . (3.4)

Our objective is to obtain sensible results with N⌧ and Nt as small as possible, so the linear

problem is underdetermined (N!Nw > N⌧Nt) and as such it has many solutions. From all

of them we select the sparsest one: the solution with the largest number of zero coe�cients.

In practice, this solution can be obtained by solving the basis-pursuit de-noising (BPDN)

problem [34]

min
g

|g|1 subject to |Fg � h|2 < ⌘ , (3.5)

where the 1-norm |g|1 =
P

[jk]

�

�g[jk]
�

� is used. The ⌘ value accounts for a certain level of

noise that can be present in the experimental data. In all calculations which follow, we set

⌘ < 10�4.
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Figure 3.2: Energy level diagram for atomic 87Rb vapor. The transition frequencies are

obtained from ref. [170].

As an example, we consider phase-modulation 2D fluorescence spectroscopy (PM-

2DFS) data collected from atomic 87Rb vapor [178]. The lowest electronic transitions in

87Rb gas may be considered as a quantum three-level system with ground state 5 2S1/2,

first excited state 5 2P1/2, and second excited state 5 2P3/2, as illustrated in Figure ??. The

four light pulses are produced by a titanium saphire laser [with full width at half maximum

(FWHM) ⇠ 42 fs] which is resonant with electronic transitions of 87Rb: 5 2S1/2 ! 5 2P1/2

(with transition frequency 2.3694 rad/fs) and 5 2S1/2 ! 5 2P3/2 (with transition frequency

2.4142 rad/fs). We considered 87Rb vapor to be an ideal candidate for our 2D CS method

as its 2D electronic spectrum is expected to be sparse in frequency space, with diagonal

and cross peaks corresponding to the transitions just mentioned. The natural lifetime of

electronic excitations in 87Rb is about 25 ns, which corresponds to very narrow natural

linewidths (DI 36.1 and DII 38.1 rad/ms). Full and extensive details of the PM-2DFS

experimental method used to collect the data are given in refs. [178, 110, 138]. The experi-

ments yield time-resolved fluorescence-detected “sum” and “di↵erence” signals [hsum(⌧, T, t)

and hdi↵(⌧, T, t)] which are analogous, respectively, to the nonrephasing and rephasing third-

order polarizations collected in more traditional four-wave mixing experiments. In the rest
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Figure 3.3: Comparison between Fourier transform and compressed sensing, with both

uniform and random sampling, in resolving 2D optical spectrum of gas-phase atomic Rb at

population time T = 140 fs. (a) FT using uniform time grid of 25⇥25 evenly-spaced points

with �⌧ = �t = 26.7 fs. (b) CS using exactly the same time-domain data as (a). (c) CS

using random sampling of 252 time points drawn from full grid of 45⇥ 45 time points.

of this paper we focus on the “di↵erence” (rephasing) signal obtained for population time

T = 140 fs. We have observed exactly the same improvements upon applying our 2D CS

method to other population times and to “sum” (nonrephasing) signals.

The main results of this letter are summarized in Figures 3.3–3.5, which compare

the performance of the 2D discrete FT and our 2D CS method, with both uniform and

random sampling, in resolving the spectral peaks corresponding to transitions in the atomic

87Rb vapor. Several conclusions about 2D CS may be drawn by systematically comparing

di↵erent parts of the figures.
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The first important comparison is between Figure 3.3(a) and Figure 3.3(b). These two

figures present the results of applying the 2D FT and 2D CS methods to exactly the same

set of time-domain experimental data (a grid of 25 evenly-spaced points in ⌧ and 25 evenly-

spaced points in t with �⌧ = �t = 26.7 fs, for a total sampling time of 667 fs in each time

dimension). We see that CS produces peaks that are better resolved in frequency space than

those obtained by the discrete FT from exactly the same data. In fact, the CS peaks are

better resolved by an order of magnitude (about 10 times) along each dimension, consistent

with the results we previously obtained for one-dimensional spectra [13]. In Figure 3.3(c),

we compute the 2D spectrum using a randomly selected subset of 252 data points from the

entire 45⇥ 45 grid of available time-domain data. While this is not a full random sampling

on the continuous space, it allows us to use the same data to investigate the e↵ects of

random sampling in CS.

The advantage of 2D CS over 2D FT is quantified in Figure 3.4. This graph compares

the linewidth of the upper-right peak obtained by FT (black) and CS (red) while varying

the number of time points sampled in each dimension. Since the density of time points is

held constant, this corresponds to varying the total experimental sampling time along the

⌧ and t dimensions. As expected, for longer sampling times, the peaks become narrower

and better resolved with both FT and CS methods. However, CS consistently provides an

order of magnitude improvement over the discrete FT for a given sampling time. In fact,

applying CS to the first 10 time points along each dimension (total sampling time 267 fs)

yields higher spectral resolution than applying the discrete FT to 45 time points along each

dimension (total sampling time 1201 fs).

In Figure 3.4 we also compare the linewidths generated by the random-sampling CS

approach (blue dots). For each point we average over 10 di↵erent sets of random samples.
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Figure 3.4: Comparison of linewidths obtained using Fourier transform and compressed

sensing, with both uniform and random sampling, as the number of time-domain mea-

surements is varied. The discrete FT (black) and the CS with uniform grid sampling

(red) are done using the first N2 evenly-spaced points on a two-dimensional time grid with

�⌧ = �t = 26.7 fs. The CS with random grid sampling (blue) is done using N2 points

drawn randomly from the entire 45⇥ 45 time grid. Linewidths are reported as the mean of

the widths along the ! and w axes. For each random sampling data point, linewidths are

averaged over ten di↵erent random samplings; error bars denote the standard deviation.
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As shown in the figure, random sampling drastically reduces the number of time-domain

measurements needed to obtain well-resolved spectra, even beyond what can be achieved by

using CS with uniform sampling. Even randomly sampling only 102 points (about 5% of the

total number of points) in the time-domain (the far-left blue point), we obtain linewidths

that are not much larger than sampling the entire data set of 452 points (the far-right red

point). In other words, randomly undersampling from the time-domain grid provides nearly

the same spectral resolution as if the entire grid was sampled and the spectral resolution

does not change much as the extent of random undersampling increases. Note, however,

that attempting to sample 52 points resulted in failed spectral reconstruction; the extent

of undersampling that is permissible is known to scale with the sparsity of the signal to

be reconstructed [57]. It is reasonable to expect that a fully random CS approach would

provide even better resolution in comparison with selecting random points from a grid as

done in these calculations.

Finally, to confirm the accuracy of FT and CS, with both uniform and random sam-

pling, we computed the error in the frequency di↵erence between the two optical transitions

(Figure 3.5(a)) and the error in the average frequency of these transitions (Figure 3.5(b))

for all three methods. In all cases, both the average and the di↵erence of the frequencies fall

within a few frequency grid points of the true values (the true values are 0.0448 rad/fs for

the frequency di↵erence and 2.3918 rad/fs for the frequency average [170]). Moreover, while

the uniform CS sampling gives a small improvement over the discrete FT, the random CS

sampling provides more accurate frequency di↵erences and average frequencies even using

a minimal number of time-domain measurements.

Uniform CS sampling with reduced density of the grid points, for example by sampling

every N th time point, results in aliasing once the frequency bandwidth is smaller than the
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Figure 3.5: Comparison of (a) the error in the frequency di↵erence between two optical

transitions and (b) the error in the average frequency of these transitions obtained using

Fourier transform and compressed sensing, with both uniform and random sampling, as the

number of time-domain measurements is varied. The true values are 0.0448 rad/fs for the

frequency di↵erence and 2.3918 rad/fs for the frequency average. The discrete FT (black)

and the CS with uniform grid sampling (red) are done using the first N2 evenly-spaced

points on a two-dimensional time grid with �⌧ = �t = 26.7 fs. The CS with random grid

sampling (blue) is done using N2 points drawn randomly from the entire 45⇥ 45 time grid.

For each random sampling data point, the frequency di↵erence and the average frequency

error are averaged over ten di↵erent random samplings; error bars denote the standard

deviation. The gray area shows “exact” positions to within the precision of our frequency

grid (which has spacing 0.000189 rad/fs).
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energy di↵erence between the highest-energy and lowest-energy peaks (similar to discrete

FT). Random CS sampling, in contrast, provides the best of both worlds: a way to decrease

the average sampling density without sacrificing either frequency resolution or frequency

bandwidth.

Taken together, our results give a prescription for how to obtain the highest possible

spectral resolution using CS. Even with our 2D CS method, the spectral resolution is still

limited by the total sampling time. Though CS provides an order of magnitude improvement

compared to the discrete FT, measurements collected at large ⌧ and t will still be required

to achieve high resolution. However, a major advantage of CS is that random sampling can

be used to drastically cut down on the number of measurements needed to achieve this high

resolution.

Despite the improved resolution, CS still does not resolve the natural linewidth of the

peaks, which are very narrow. The issue of peak shape certainly deserves a more extensive

investigation in the future, most likely by applying our 2D CS method to more complex

experimental systems with intricate features that are broadened by internal structure or an

environment. Another interesting continuation of our work would be to compare the CS with

other techniques for resolving spectral lines, including linear prediction (LP) [107, 176, 96]

and maximum entropy methods [70, 171]. Comparison to other sampling methods will

require the use of many experimental signals and the development of performance metrics.

This is an open research direction.

In conclusion, we have demonstrated the first application of compressed sensing to 2D

optical spectroscopy experiments. Focusing on electronic transitions in an atomic 87Rb va-

por model system, we have shown that the 2D CS method that we have developed provides

much finer resolution of the peaks in a 2D spectrum as compared to the standard discrete

46



FT. In particular, experimentalists can apply 2D CS as a simple “drop-in” replacement for

a discrete FT to obtain an order of magnitude improvement in spectral resolution from

the same samples. Moreover, CS theory and our results with quasi-random sets suggest

that, in order to increase even further the amount of useful information obtained per sam-

ple, a fully random sampling strategy should be adopted for experimental measurements.

We expect that 2D CS will substantially reduce the experimental e↵ort needed to obtain

well-resolved spectra, increasing the range of spectral features resolvable in ultrafast ex-

periments, particularly closely-spaced peaks. We are confident that CS will become more

widely investigated and employed in the 2D experimental ultrafast community once its easy

portability and strong resolving power become more widely known.

3.2 Methods

The PM-2D FS method is described in detail in ref. [178]. A Rb vapor cell was ex-

cited by a sequence of four collinear optical pulses with adjustable inter-pulse delays (see

Figure 3.1). The transmitted beam intensity was used to determine the stage positions

corresponding to ⌧ = t = 0. The fluorescence emitted from the sample was detected using

an avalanche photodiode. The phases of the pulse electric fields were continuously swept at

distinct frequencies using acousto-optic Bragg cells, and separate reference waveforms were

constructed from the resultant intensities of pulses 1 and 2, and of pulses 3 and 4, which

were set to 5 kHz and 8 kHz, respectively. The reference signals were sent to a waveform

mixer to construct “sum” and “di↵erence” side-band references (13 and 3 kHz, respectively).

These side-band references were used to phase-synchronously detect the fluorescence. All

measurements were carried out at room temperature.

Time-resolved “sum” and “di↵erence” signals were collected at all points on a two-
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dimensional grid consisting of 45 equally-spaced coherence times ⌧ and 45 equally-spaced

detection times t (with �⌧ = �t = 26.7 fs) for a series of 5 population times T = 140, 175,

210, 245, 280 fs. In this paper, we analyzed the “di↵erence” signal obtained at T = 140 fs,

though similar results were obtained for di↵erent population times as well as for “sum”

signals.

For both the FT and CS calculations, we use a two-dimensional frequency grid consist-

ing of 500 evenly-spaced points between �2⇡/(5�⌧) and 2⇡/(5�⌧) for ! and 500 evenly-

spaced points between �2⇡/(5�t) and 2⇡/(5�t) for w. This corresponds to a frequency

spacing of �! = �w = 0.000189 rad/fs. This frequency grid is wide enough to contain

all of the peaks present in the spectrum. (For more robust numerical stability, in all CS

calculations, we surrounded this grid by a coarser grid with 100 evenly-spaced points in each

dimension covering the entire frequency range [�⇡/�⌧,⇡/�⌧ ]⇥ [�⇡/�t,⇡/�t], excluding

the part already covered by the finer grid.)

Performing the 2D CS calculations involves solving the optimization problem in equa-

tion (5.2) for di↵erent amounts of uniformly-sampled and randomly-sampled time-domain

data as described in the text. Solving this optimization problem is not trivial, so we rely on

the spectral projected gradient for 1-norm minimization (SPGL1) algorithm developed by

van den Berg and Friedlander, which is available as free and open-source MatLab code [184].

To avoid numerical stability issues we work with a normalized BPDN problem, where the

prefactor (4�!�w/⇡2) of the F matrix, equation (3.4), is left out and h is normalized. The

missing factors are included in g after the solution is found.
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Chapter 4

Accelerating the Computation of Bath Spectral

Densities with Super-Resolution

Apart from minor modifications, this chapter originally appeared as [115]:

“More Accurate and E�cient Bath Spectral Densities from Super-Resolution”. Thomas
Markovich, Samuel M. Blau, John Parkhill, Christoph Kreisbeck, Jacob N. Sanders, Xavier
Andrade, and Alán Aspuru-Guzik. arXiv preprint 1307.4407. 2013.

Abstract

Quantum transport and other phenomena are typically modeled by coupling the system

of interest to an environment, or bath, held at thermal equilibrium. Realistic bath models

are at least as challenging to construct as models for the quantum systems themselves,

since they must incorporate many degrees of freedom that interact with the system on a

wide range of timescales. Owing to computational limitations, the environment is often

modeled with simple functional forms, with a few parameters fit to experiment to yield

semi-quantitative results. Growing computational resources have enabled the construction

of more realistic bath models from molecular dynamics (MD) simulations. In this paper,

we develop a numerical technique to construct these atomistic bath models with better

accuracy and decreased cost. We apply a novel signal processing technique, known as

50



super-resolution, combined with a dictionary of physically-motivated bath modes to derive

spectral densities from MD simulations. Our approach reduces the required simulation time

and provides a more accurate spectral density than can be obtained via standard Fourier

transform methods. Moreover, the spectral density is provided as a convenient closed-form

expression which yields an analytic time-dependent bath kernel. Exciton dynamics of the

Fenna-Matthews-Olsen light-harvesting complex are simulated with a second order time-

convolutionless master equation, and spectral densities constructed via super-resolution are

shown to reproduce the dynamics using only a quarter of the amount of MD data.

4.1 Introduction

Irreversible processes such as solvation, energy transfer, and chemical binding have

received renewed interest in recent years. Because these processes involve large systems

with many degrees of freedom, the typical approach to studying these processes is the

open quantum systems formalism, in which the degrees of freedom are partitioned into

a system of interest and a bath held at thermal equilibrium [28, 163]. It is commonly

assumed that the system only couples weakly to the bath, making the precise nature of

the bath a secondary concern in the physical theory. For example, in studying the energy

transfer dynamics in a system of chromophores embedded in a protein framework, each

chromophore is individually coupled to many thousands of atoms in the protein, but the

system-bath formalism dramatically simplifies all of these couplings in order to make the

dynamics tractable [23, 24, 166]. Renewed interest in the strong and intermediate coupling

region, relevant for energy transfer in the exciton dynamics of light-harvesting complexes,

has lead to various studies [87, 124, 140, 148, 36, 83, 85, 156, 1, 192, 125, 102, 167, 150,

147, 166, 135, 187, 38, 204, 151, 132, 131, 75] on the precise influence of the bath on the
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higher systems. Higher order phonon processes, non-Markovian e↵ects and structures in

the exciton-phonon coupling change the energy transfer [49, 48, 101]. Thus, details in the

bath are relevant and need to be taken into account in realistic simulations. Accordingly,

our goal in this paper is to apply a recent signal-processing technique known as super-

resolution to obtain realistic atomistic models of environments containing thousands of

atoms at feasible computational expense. With these atomistic bath models in hand, one

can begin to evaluate the importance of a realistic bath model in a physical theory.

In the approach to open quantum systems employed in this work, we model the bath

by an ensemble of noninteracting harmonic oscillators. The central mathematical object of

such a model is the spectral density, J(!), which gives the frequency-dependent strength

of system-bath coupling. The spectral density can be understood as the density of bath

oscillator states at each frequency. Owing to computational limitations, most studies of

open quantum systems assume an extremely simple functional form for the spectral density,

such as a single broad peak covering all relevant excitonic transitions of the system. With

the goal of providing more physically accurate bath models and dynamics, Valleau et al.

has previously obtained atomistic spectral densities for the Fenna-Matthews-Olson (FMO)

complex from combined Molecular Dynamics (MD) [183, 181] and time-dependent density

functional theory (TDDFT) [153] simulations. However, the di�culty of this more realistic

approach is the high computational cost of running expensive TDDFT calculations at every

step in an MD simulation. In order to obtain a spectral density of su�cient resolution, the

MD-TDDFT simulation must be run for over 40 picoseconds (ps) [113], which may become

computationally intractable for larger systems.

To make progress, we first observe that a typical vibrational bath is not an arbitrary

function but rather a relatively sparse collection of damped harmonic oscillators. Spar-
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sity enables us to apply a novel numerical technique known as super-resolution in order

to reconstruct the spectral density from much shorter MD-TDDFT simulations. Super-

resolution has been applied to a broad range of scientific problems, including image [64]

and video compression [136], image denoising [60], astronomy [144], microscopy [120], and

medical imaging [100]. To our knowledge, this paper is the first application of super-

resolution to quantum dynamics. Super-resolution provides a provably convergent algo-

rithm for the reconstruction of signals from limited time-domain measurements using a

total variation minimization procedure. Super-resolution is related to compressed sens-

ing [112, 57, 130, 78, 145, 111, 182, 159, 122, 59, 51]. Compressed sensing is a technique

designed to recover sparse signals from randomly-sampled data by minimizing the L1 norm

of an underdetermined system of linear equations. Compressed sensing works by finding

the sparsest signals consistent with the underdetermined system of equations. This usually

involves an optimization problem. Despite its success in many applications, the L1-norm

minimization of compressed sensing can result in spurious signals as it emphasizes the spar-

sity of the solution only. Super-resolution is a numerical method that shares the spirit of

compressed sensing. The di↵erence between superresolution and compressed sensing stems

from both the choice of objective function and sampling technique. It was developed to re-

cover sparse signals from nonrandomly undersampled data. By minimizing the L1-norm of

the gradient of the function in addition to the L1 norm of the function itself, super-resolution

allows for smoother solutions to the sampling problem [32, 26, 27].

Because of the ample experimental and theoretical data to compare against [183, 125,

188, 131, 2, 47, 199, 150, 164, 135, 187, 140, 166, 98, 148, 167, 102, 101, 204, 36, 156,

83, 86, 84], we apply super-resolution to the FMO light-harvesting complex of C. tepidium

but emphasize that this technique is broadly applicable. While this paper focuses on a
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vibrational bath which perturbs the energies of molecular electronic states, the techniques

we introduce are generic for any model of a bath which is based on time-correlation functions.

4.2 Super-resolution of Spectral Densities

In this section, we briefly review the procedure for simulating the dynamics of open

quantum systems and computing spectral densities from combined MD-TDDFT simula-

tions. We then apply the theory of super-resolution to accelerate and improve the accuracy

of these computations. Computing spectral densities from atomistic calculations, rather

than from semi-empirical functional forms, enables the inclusion of molecular vibrations and

other physical e↵ects (such as solvation e↵ects) to produce a more realistic bath model [183].

Super-resolution, in turn, brings the construction of these atomistic bath models into the

realm of computational feasibility.

Armed with our more realistic bath model, we will employ a second-order time-convolution-

less master equation (TCL-2) to simulate the dynamics of FMO monomer, allowing us to

evaluate the physical impact of di↵erent approximations to the spectral density. TCL-2

includes non-Markovian e↵ects up to second order in the system-bath coupling. By com-

paring TCL-2 with exact methods like the hierarchical equations of motion (HEOM) [177]

we show that most of the relevant e↵ects of the structured spectral density of the FMO

complex are captured by TCL-2. Here we use TCL-2, since it is numerically more treatable

than HEOM, in particular for structured spectral densities where HEOM becomes cum-

bersome and requires a high performance GPU implementation [102, 101]. We employ the
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equation of motion [28, 147, 148, 164, 124, 204, 139, 180, 4, 76, 160, 168]:

d⇢I(t)

dt
= � i

~ [HI , ⇢I ] (4.1)

� 1

~2
X

n

Z t

0
d⌧ Dn(t� ⌧)[HIn(t), [HIn(⌧), ⇢I(t)]]

Dn(t) = (4.2)
Z 1

0
d! Jn(!)
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coth

✓
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◆

cos(! t)� i sin(! t)

�

where H is the system Hamiltonian, ⇢ is the system density matrix, D is our bath kernel,

the subscript I indicates that we are in the interaction picture, the summation runs over all

sites, and J(!) is the spectral density computed via super-resolution [98, 86, 94, 102]. The

bath kernel is heavily dependent on our spectral density, causing it to play a central role

in our dynamics. Therefore, a more physical bath picture should provide more physically

intuitive dynamics.

In our atomistic bath model, molecular vibrations in the environment (e.g. a protein

framework or solvation e↵ects) create fluctuations in the energy gaps between the ground

and excited states of the system (e.g. a set of chromophores). These time-dependent

energy gaps are computed from TDDFT calculations run on each of the chromophores at

each step of the MD simulation. The key object in the computation of spectral densities is

the correlation function of the energy gap time series,

C(t) = Trb[�(t)�(0)⇢b], (4.3)

where �(t) is the time-dependent energy gap between the ground and the first excited state

of the system (as calculated with TDDFT), ⇢b is the density matrix of the bath at thermal

equilibrium, and C(t) is the correlation function obtained after tracing over all the modes
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of the bath. We discretize this equation by using an unbiased autocorrelation function,

Ck =
1

N � k

N�k
X

i=1

(�i � �̄)(�i+k � �̄), (4.4)

where �̄ is the mean energy gap and i and k denote discrete time indices. Note that Ck

involves comparing energy gaps that are k time steps apart (�i and �i+k), and N � k is

the total number of included comparisons.

The frequency-dependent spectral density, J(!), is typically obtained by computing

the Fourier transform of the correlation function [183]. From the definition of Ck above, it

is easy to check that the correlation function is real and symmetric (Ck = CN�k), which

implies that the Fourier transform should be real and symmetric as well. Because quantum

mechanical spectral densities must instead be antisymmetric and obey detailed balance, it

is necessary to introduce a prefactor that enforces these two properties. Many choices are

possible [22], but Valleau et al. have previously shown that a harmonic prefactor, �~!/2,

produces the most physical temperature dependence [183]. With this choice, the spectral

density becomes the cosine transform

J(!) =
�~!
2

Z 1

�1
cos(!t)C(t)dt, (4.5)

which characterizes the frequency-dependent coupling strength of the system to all of the

nuclear vibrational modes.

The standard approach to performing this integral is the fast Fourier transform. Un-

fortunately, the fast Fourier transform requires sampling on a uniform grid at the Shannon

sampling rate. This means that a relatively long time series, C(t), must be computed in

order to obtain good resolution of the spectral density in the frequency domain [34, 113].

Given the computational cost of MD simulations, and the even greater expense of run-

ning TDDFT calculations on top of these simulations, any method which can reduce the
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required length of the time series C(t) unplugs the computational bottleneck in deriving

physically-accurate atomistic spectral densities. That is our main goal in this paper.

While reducing the amount of time required to reproduce J(!) we also choose a basis of

functions which has a convenient physical form. When decomposed into a basis of damped

cosines,

gij(t) = e��i t cos(⌦jt), (4.6)

the function C(t) is smooth and sparse. This allows for the use of the machinery of super-

resolution.

To apply the super-resolution method, we discretize in time and cast our task as an

inversion problem

Ck = �ije
��i t cos(⌦jtk), (4.7)

where we seek the basis expansion coe�cients �ij and have assumed Einstein summation

convention over repeated indices. This can be rewritten as

Ck = Aijk�ij , (4.8)

where

Aijk = e��i tcos(⌦jtk) (4.9)

is a matrix of damped cosines, and �ij is the set of basis coe�cients we seek to recover.

The central idea of super-resolution is that the sparsity of �ij enables its full recovery

even when the system Ck = Aijk�ij is underdetermined, which is to say the number of

time samples Ck is significantly smaller than the number of total expansion coe�cients

�ij we seek to recover. Hence, we can recover the expansion coe�cients on a dense grid

of frequencies ⌦j and damping coe�cients �i from fewer time samples Ck. Of the many

possible solutions to our underdetermined system, super-resolution simply selects a balance
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between the smoothest and sparsest (with an emphasis on smoothness) set of basis expansion

coe�cients. Formally, this is done by finding the vector �ij that minimizes

argmin
�ij

{||r�ij ||1 + µ||�ij ||1}

subject to ||Aijk�ij � Ck||2 < ⌘,

(4.10)

where the subscript 1 represents the L1 norm (sum of absolute values), µ represents a

sparsity penalty, r�ij represents the total variation norm, and ⌘ represents the solution

tolerance. By minimizing ||r�ij ||1, or total variation term, we are enforcing smoothness

in the time domain on the reconstructed signal. This throws out the “peaky” solutions

that can appear with compressed sensing [13, 155]. The total variation norm also provides

us with a provably exact technique for recovering peak position at the expense of peak

amplitude [32], which solves one of the issues seen previously with compressed sensing [13].

Recovering the expansion coe�cients �ij in this manner by solving an underdetermined

matrix inversion problem takes advantage of the natural sparsity of the problem and, as

we will see in the next section, enables the construction of a well-resolved spectral density

with far less time-domain data. Even more attractive, with the �ij coe�cients in hand, it

is possible to construct an analytical representation of the spectral density by taking the

cosine transform of the basis functions gij(t) and applying the appropriate prefactors:

J(!) =
�ijp
⇡

 

�~!�i
�2i + (! � ⌦j)

2 +
�~!�i

�2i + (! + ⌦j)
2

!

, (4.11)

where the Einstein summation convention has again been assumed. This is an analyti-

cal representation of the spectral density in Drude-Lorentz form, and it explicitly provides

the oscillation frequencies which characterize the system-bath coupling. We note that the

Drude-Lorentz basis naturally provides us with a width parameter, �, that can be un-

derstood as the lifetime of oscillations in the bath. This is seen by examining the time
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dependent formula, Eq. (4.7), where this � parameter determines the strength of damping.

It is important to note that in the limit as � ! 0, we recover the cosine basis in the time do-

main and a Dirac delta distribution in the frequency domain. By using this super-resolution

technique in concert with the Drude-Lorentz basis, we see that we can recover a small set of

peaks with physically-relevant information. Additionally, the parameters that characterize

the Drude-Lorentz spectral densities can be input directly into both TCL-2 and HEOM

without any additional parameter fitting or numerical integration.

4.3 Numerical Methods

We employ the proposed Drude-Lorentz super-resolution method described above and

apply it to a monomer of the Fenna-Matthews-Olsen (FMO) photosynthetic energy transfer

complex of the green-sulfur bacterium C. tepidium. The FMO monomer is a system of

seven chlorophyll molecules which are excitonically coupled to each other, as well as to the

vibrations of the atoms in the protein framework. It functions as a molecular excitonic wire,

passing excitons from the light harvesting antenna complex to the reaction center, where a

biochemical cascade is initiated.

To create spectral densities for the FMO complex, we use the MD-TDDFT results of

Shim et al. [164]. The calculations were done in an isothermal-isobaric ensemble at 77 K

using the AMBER force field [50, 43]. These calculations began with a 2 ns equilibration

before performing the production computations. The production steps ran for a total of

40 picoseconds with a 2 femtosecond timestep, and the optical gap was calculated for each

fragment every 4 femtoseconds using TDDFT with the BLYP [19, 121, 108] functional in

the 3-21G basis set in Q-Chem [161].

To perform super-resolution numerically, we require an algorithm which minimizes
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Figure 4.1: Comparison of the spectral density for site 1 of the FMO complex as a function

of time and technique for spectral density recovery. Compared to the fast Fourier transform

at 40 ps, much of the fine structure is easily recovered by super-resolution in the Drude-

Lorentz basis, even with significant undersampling by a factor of four.
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Figure 4.2: Comparison of the coherences between excitonic eigenstates 1 and 3 as a function

of time and technique for spectral density recovery. Compared to the fast Fourier transform

at 40 ps, the 10 ps Drude-Lorentz decomposition introduces a slight shift in oscillation

frequency, but nevertheless yields more accurate dynamics than the equivalently-sampled

fast Fourier transform at 10 ps.
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Figure 4.3: Comparison of the populations for sites 1-3 as a function of time and technique

for spectral density recovery Compared to the fast Fourier transform at 40 ps, the 10 ps

Drude-Lorentz decomposition recovers the overall shape and provides much more faithful

dynamics than the equivalently-sampled fast Fourier transform at 10 ps.
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the total variation norm to solve the minimization problem described by eq. (4.10). In our

implementation, we use the two step iterative shrinkage thresholding (TwIST) algorithm [26,

27], which combines computational e�ciency with strong convergence. To construct the

measurement matrix A described in eq. (4.9), we must select a grid of possible frequencies

({⌦j}) and linewidths ({�i}). In our implementation, we use a grid of frequencies ranging

from 0 to 2000 cm�1 in 2 cm�1 intervals, and a grid of linewidths ranging from 0 to 160

cm�1 in 6 cm�1 intervals. We assume that our calculations are converged when ⌘ < 10�7 (in

eq. (4.10)), or the solution vector remains constant for 100 iterations. Finally, we perform

an L2 minimization of Aijk�ij � Ck while freezing the recovered nonzero basis functions,

allowing us to further minimize the error. We refer to this procedure as debiasing because it

partly removes the bias towards sparsity and smoothness introduced by the L1 minimization.

This debiasing procedure reduces our solution tolerance to ⌘ < 10�9, allowing convergence

to a better solution. It is important to note that, in general, the super-resolution technique

is robust to an over-complete basis.

4.4 Results

Fig. 4.1 shows the results of employing the Drude-Lorentz super-resolution method

to recover the spectral density for site 1 of FMO. The figure compares Drude-Lorentz

super-resolution with 10 ps of MD to a standard fast Fourier transform approach with

both 10 and 40 ps of MD. We take the fast Fourier transform with 40 ps of MD as our

standard for comparison. By comparing the two methods with 10 ps of MD, it is clear

that super-resolution resolves more features of the spectral density than the standard fast

Fourier transform from the same amount of time-domain data. Moreover, super-resolution

captures most of the features of the fast Fourier transform with the full 40 ps of MD: we
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see the expected CO stretch at 1600 cm�1, which we attribute to the amides in the protein

sca↵old, as well as all of the other major peaks in the spectral density. We attribute a

significant amount of the error in our spectral density reconstruction to the fact that the

truncated MD series does not explore the phase space as thoroughly in only 10 ps.

The Drude-Lorentz basis also provides significant sparsity gains in comparison to the

cosine basis: we require only 56 Drude-Lorentz peaks to create the spectral density given in

Fig. 4.1 whereas. This sparsity provides a significant computational advantage for excitonic

propagation in both hierarchical equations of motion (HEOM) [177] and second order time-

convolutionless master equation [28](TCL-2) approaches because the propagations scale

factorially and linearly, respectively, as a function of the number of peaks included. In the

excitonically accessible regime of 0-540cm�1, we recover only 20 Drude-Lorentz peaks, and

six of them have amplitudes that are two orders of magnitude smaller than the rest. These

Drude-Lorentz peaks can be entered directly into master equation simulations, including

HEOM codes, without the need to perform any intermediate fitting. In summary, super-

resolution yields a well-resolved spectral density using less time-domain data than is required

by the standard fast Fourier transform approach and precludes the need for additional

fitting.

As mentioned above, the TCL-2 propagation of the exciton dynamics of the FMO

complex, with the Hamiltonian coming from [2], was carried out using the Drude-Lorenz

spectral densities obtained from super-resolution. We propagated 1 ps of dynamics and

obtained the populations of sites 1-3, as well as the coherence between sites 1 and 3.

Fig. 4.2 shows the coherence between excitonic eigenstates 1 and 3 as a function of

time. Compared to the 40 ps fast Fourier transform, we see that the 10 ps Drude-Lorentz

super-resolution more faithfully reproduces the coherence dynamics than the 10 ps fast
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Fourier transform, both in terms of the oscillation frequency and the overall damping.

The fast Fourier transform with 10 ps of MD data introduces serious overdamping as well

as a significant shift in oscillation frequency. In contrast, the Drude-Lorentz expansion

with 10 ps of MD data introduces only a small shift in oscillation frequency, resulting in

more accurate coherence dynamics overall. We attribute most of the discrepancies to slight

relative di↵erences in the reorganization of each site between spectral densities constructed

with 10 and 40 ps of MD data. It appears that while the oscillations are extremely sensitive

to the relative reorganization energies between the sites, the damping is more dependent

on the fine structure of the spectral densities. The Drude-Lorentz super-resolution (10 ps

MD-TDDFT data) reproduces the coherence life-times obtained by fast Fourier transform

recovered using all 40 ps of MD-TDDFT data – representing a factor of four improvement.

The contrast between the two approximation techniques becomes even more significant

when we simulate dynamics beginning with an exciton fully localized on site 1. In Fig. 4.3,

we have plotted the populations of the first three sites as a function of time. The Drude-

Lorentz expansion with 10 ps of MD yields good qualitative agreement with our standard

of comparison whereas the fast Fourier transform. The fast Fourier transform on 10 ps

overestimates population transfer to site 3 at short times and grows much more quickly

from there, whereas the Drude-Lorentz expansion slightly under predicts the population

transfer at long times. We attribute these errors in the asymptotic behavior to slight

di↵erences in the reorganization energies for the spectral densities of each of the sites,

since each site is embedded in a di↵erent enviornment, the reorganization process of the

individual pigments is di↵erent. This sensitivity a↵ects overall dissipation and even small

changes in the spectral density of the Drude-Lorentz expansion (10 ps) when compared

to the standard of comparison a↵ects energy relaxation. Beyond that, the Drude-Lorentz
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expansion is capable of reproducing the oscillations at 0.2 and 0.4 ps in the data for sites 1

and 2 whereas the fast Fourier transform reproduces them less faithfully. In summary, the

Drude-Lorentz super-resolution technique provides us with much more physical behavior.

4.5 Conclusions

We have shown that the Drude-Lorentz super-resolution method provides significant

computational advantages for the construction of atomistic bath models. In particular, the

super-resolution calculations require only 10 ps of MD-TDDFT simulations to obtain rea-

sonable atomistic spectral densities and system dynamics; this is one quarter the amount

of data needed in standard fast Fourier transform-based calculations. Ultimately, this will

permit the use of more physically accurate calculations or larger systems. Given the compu-

tational expense of running TDDFT calculations at every MD simulation step, we believe

that the super-resolution method will enable the treatment of larger systems than previously

possible.

One of the most significant advantages of our super-resolution method is the decom-

position of these atomistic spectral densities into a naturally-sparse basis of Drude-Lorentz

oscillators. This makes it easy to perform fast master equation simulations within either

the TCL-2 or HEOM formalisms by exploiting analytic integrals of the spectral density.

Beyond this, we also directly extract physically-important parameters such as the coher-

ence lifetimes of all the oscillators in the bath. In the future, it is easy to imagine turning

this technique on its head to create new spectral densities in a constructive fashion from a

set of Drude-Lorentz oscillators.
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Chapter 5

Compressed Sensing for the Fast Computation of

Matrices: Application to Molecular Vibrations

Apart from minor modifications, this chapter originally appeared as [154]:

“Compressed Sensing for the Fast Computation of Matrices: Application to Molecular
Vibrations.” Jacob N. Sanders, Xavier Andrade, and Alán Aspuru-Guzik. ACS Central
Science. Volume 1, Number 1: 24–32. 2015.

Abstract

This article presents a new method to compute matrices from numerical simulations

based on the ideas of sparse sampling and compressed sensing. The method is useful

for problems where the determination of the entries of a matrix constitutes the compu-

tational bottleneck. We apply this new method to an important problem in computational

chemistry: the determination of molecular vibrations from electronic structure calculations,

where our results show that the overall scaling of the procedure can be improved in some

cases. Moreover, our method provides a general framework for bootstrapping cheap low-

accuracy calculations in order to reduce the required number of expensive high-accuracy

calculations, resulting in a significant 3⇥ speed-up in actual calculations.
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5.1 Introduction

Matrices are one of the most fundamental objects in the mathematical description of

nature, and as such they are ubiquitous in every area of science. For example, they arise

naturally in linear response theory as the first term in a multidimensional Taylor series,

encoding the response of each component of the system to each component of the stimulus.

Hence, in many scientific applications, matrices contain the essential information about the

system being studied.

Despite their ubiquity, the calculation of matrices often requires considerable compu-

tational e↵ort. Returning to the linear response theory example, it might be necessary to

individually calculate the response of every component of the system to every component of

the stimulus and, depending on the area of application, each individual computation may

itself be quite expensive. The overall expense stems from the fact that evaluating a matrix

of dimension N ⇥ M requires, in principle, the individual evaluation of N ⇥ M elements.

But this does not always have to be the case.

For example, if we know a priori the eigenvectors of a N ⇥ N diagonalizable matrix,

then we can obtain the full matrix by only calculating the N diagonal elements. Similarly, a

sparse matrix, which contains many zero elements, can be evaluated by calculating only the

non-zero elements, if we know in advance where such elements are located. In this article,

we present a general approach that can produce a considerable reduction in the cost of

constructing a matrix in many scientific applications by substantially reducing the number

of elements that need to be calculated.

The key numerical procedure of our approach is a method to cheaply recover sparse

matrices with a cost that is essentially proportional to the number of non-zero elements.

The matrix reconstruction procedure is based on the increasingly popular compressed sens-
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ing approach [34, 57, 35, 46], a state-of-the-art signal processing technique developed to

minimize the amount of data that needs to be measured to reconstruct a sparse signal.

Although the theory of compressed sensing is extensive and well-developed, the use

of compressed sensing and sparse sampling methods in scientific development have been

dominated by experimental applications, including multidimensional nuclear magnetic res-

onance [92, 81], super-resolution microscopy [205], and other applications in spectroscopy

and beyond [82, 56, 69, 159, 155, 169, 14, 193]. However compressed sensing is also be-

coming a tool for computational applications [13, 7, 157, 128, 115, 63, 15]. In particular,

in previous work we have shown that compressed sensing can also be used to reduce the

amount of computation in numerical simulations [13].

In this article, we apply compressed sensing to the problem of computing matrices.

This method has two key properties. First, the cost of the procedure is quasi-linear with

the size of the number of non-zero elements in the matrix, without the need to know a priori

the location of the non-zero elements. Second, the reconstruction is exact. Furthermore,

the utility of the method extends beyond the computation of a priori sparse matrices. In

particular, the method suggests a new computing paradigm in which one develops methods

to find a basis in which the matrix is known or suspected to be sparse, based on the

characteristics and prior knowledge of the matrix, and then afterwards attempts to recover

the matrix at lower cost.

To demonstrate the power of our approach, we apply these ideas to an important

problem in quantum chemistry: the determination of the vibrational modes of molecules

from electronic structure methods. These methods require the calculation of the matrix of

the second derivatives of the energy with respect to the nuclear displacements, known as the

force-constant or Hessian matrix. This matrix is routinely obtained in numerical simulations
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by chemists and physicists, but it is relatively expensive to compute when accurate quantum

mechanical methods are used.

The search for more e�cient methods of computing Hessian matrices has a long his-

tory. One of the earliest advances was the development of theoretical methods to compute

the derivatives of the matrix analytically, rather than numerically, first in one of the sim-

plest quantum mechanical methods known as Hartree-Fock theory [66, 141], then in more

sophisticated higher-accuracy correlated methods [72, 73, 103], and later in modern density

functional theory [74]. These analytical derivative techniques have been further optimized

by systematically exploiting molecular symmetries [174] and by organizing calculations more

e�ciently by working directly in the so-called atomic orbital basis [134, 65]. More recent

developments have applied Davidson methods to compute only those vibrational modes

relevant to searching for the transition state in a chemical reaction while sidestepping the

computation of a full Hessian matrix [149, 162]. Finally, another research frontier involves

developing methods that scale favorably with system size for computing energies [106] and

response properties such as molecular vibrations [21, 133], with the ultimate goal of achiev-

ing practical techniques that exhibit linear scaling.

Our approach exploits the sparsity of the Hessian matrix and and cheap auxiliary cal-

culations to further improve the e�ciency of computing the vibrational modes of molecules;

moreover, our approach is compatible with and complementary to some of the aforemen-

tioned techniques. At the same time, our method provides a general framework for boot-

strapping cheap low-accuracy calculations to reduce the required number of expensive high-

accuracy calculations, something which previously was not possible to do in general.

We begin by discussing how compressed sensing makes it practical to take a new ap-

proach for the calculation of matrices based on finding strategies to make the matrix sparse.
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Next, we introduce the mathematical foundations of the method of compressed sensing and

apply them to the problem of sparse matrix reconstruction. This is the numerical tool

that forms the foundation of our approach. Finally, we illustrate these new ideas by ap-

plying them to the problem of obtaining molecular vibrations from quantum mechanical

simulations.

5.2 Finding a Sparse Description of the Problem

The first step in our approach is to find a representation for the problem where the

matrix to be calculated is expected to be sparse. In general, finding this sparsifying basis

is specific to each problem and ranges from trivial to quite complex; it has to do with the

knowledge we have about the problem or what we expect about its solution.

Leveraging additional information about a problem is an essential concept in com-

pressed sensing, but it is also a concept that is routinely exploited in numerical simulations.

For example, in quantum chemistry it is customary to represent the orbitals of a molecule in

a basis formed by the orbitals of the atoms in the molecule [173], which allows for an e�cient

and compact representation and a controlled discretization error. This choice comes from

the notion that the electronic structure of the molecule is roughly described by “patching

together” the electronic structure of the constituent atoms.

An ideal basis in which to reconstruct a matrix is the basis of its eigenvectors, or

eigenbasis, as this basis only requires the evaluation of the diagonal elements to obtain the

entire matrix. Of course, finding the eigenbasis requires knowing the matrix in the first

place, so reconstructing a matrix in its eigenbasis is not practically useful. However, in

many cases it is possible to obtain reasonable approximations to the eigenvectors (an idea

which also forms the basis of perturbation theory in quantum mechanics). The approximate
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eigenbasis probably constitutes a good sparsifying basis for many problems, as we expect

the matrix to be diagonally dominant, with a large fraction of the o↵-diagonal elements

equal to zero or at least small.

Since the determination of an approximate eigenbasis depends on the specific problem

at hand, a general prescription is di�cult to give. Nevertheless, a few general ideas could

work in many situations. For example, in iterative or propagative simulations, results from

previous iterations or steps could be used to generate a guess for the next step. Alternatively,

cheap low-accuracy methods can be used to generate a guess for an approximate eigenbasis.

In this case, the procedure we propose provides a framework for bootstrapping the results

of a low-cost calculation in order to reduce the required number of costly high-accuracy

calculations. This last strategy is the one we apply to the case of molecular vibrations.

What makes looking for sparsifying basis attractive, even at some computational cost

and code-complexity overhead, are the properties of the recovery method. First, the cost

of recovering the matrix is roughly proportional to its sparsity. Second, the reconstruction

of the matrix is always exact up to a desired precision; even if the sparsifying basis is not

a good one, we eventually converge to the correct result. The penalty for a bad sparsifying

basis is additional computation, which in the worst case makes the calculation as costly as

if compressed sensing were not used at all. This feature implies that the method will almost

certainly o↵er some performance gain.

There is one important qualification to this gain. For some matrices, there is a preferred

basis in which the matrix is cheaper to compute, and the extra cost of computing its elements

in a di↵erent basis might o↵set the reduction in cost o↵ered by compressed sensing.
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5.3 Compressed Sensing for Sparse Matrices

Once a sparse representation for the matrix is known, the numerical core of our method

for the fast computation of matrices is the application of compressed sensing to calcu-

late sparse matrices without knowing a priori where the non-zero elements are located.

Related work has been presented in the field of compressive principal component pur-

suit [189, 33, 203, 191], which focuses on reconstructing matrices that are the sum of a

low-rank component and a sparse component. Our work instead outlines a general proce-

dure for reconstructing any sparse matrix by measuring it in a di↵erent basis.

Suppose we wish to recover a N ⇥ N matrix A known to be sparse in a particular

orthonormal basis { i} (for simplicity we restrict ourselves to square matrices and or-

thonormal bases). Without any prior knowledge of where the S non-zero elements of A are

located, it might appear that we need to calculate all N2 elements, but this is not the case.

In a di↵erent orthonormal basis {�i}, the matrix A has a second representation B given

by

B = PAP T , (5.1)

where P is the orthogonal change-of-basis matrix from the basis { i} to the basis {�i}.

Note that in general B is not sparse.

If we regard A and B as N2-element vectors, it is easy to see that the change-of-basis

transformation from A to B given by equation (5.1) is linear. This fact enables us to use

the machinery of compressed sensing to reconstruct the full matrix A by measuring only

some of the entries of B.

For a fully general matrix A, we would indeed need to measure all the entries of B so

that A could be recovered by inverting the linear system in equation (5.1). However, because

the matrix A is sparse, compressed sensing lets us to do better. The idea is to measure
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only some of the entries of B, which means that equation (5.1) is now underdetermined and

admits many possible solutions for A. From these many solutions for A, we simply select the

sparsest one; it has been proven in general [34, 57, 35, 46] that this can be done in a highly

computationally e�cient way by minimizing the sum of the absolute values of the entries

of A. The key insight of compressed sensing is that, as more entries of B are measured, the

sparsest matrix A which satisfies the underdetermined system converges to the true solution

of the full system. Moreover, this convergence typically happens long before the matrix B

has been fully sampled, particularly if the true matrix A is quite sparse.

The compressed sensing reconstruction is done by solving the so-called basis pursuit

(BP) problem [46, 184],

min
A

||A||1 subject to (PAP T )ij = Bij 8 i, j 2 W , (5.2)

where the 1-norm is considered as a vector norm (||A||1 =
P

i,j |Aij |), the change-of-basis

matrix P is known, and W is a set of randomly measured entries in matrix B which are

known. We assume that we have some method of computing the entries of B, but that the

method is expensive, and we would therefore like recover A while computing as few of them

as possible.

The size of the set W , a number that we call M , is the number of matrix elements of B

that are sampled. M determines the quality of the reconstruction of A. From compressed

sensing theory we can find a lower bound for M as a function of the sparsity of A and the

change-of-basis transformation.

One important requirement for compressed sensing is that the sparse basis { i} for A

and the measurement basis {�i} for B should be incoherent, meaning that the maximum

75



Sparse matrix A to recover Undersample matrix B

Incoherent basis
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Figure 5.1: General scheme for the recovery of a sparse matrix A via compressed sensing.

Rather than sampling A directly, the key is to sample the matrix B which corresponds to

A expressed in an di↵erent (known) basis. Recovery of A from the undersampled entries of

B proceeds via compressed sensing by solving equation (5.2).

overlap between any vector in { i} and any vector in {�i}

µ =
p
N max

i,j
h i|�ji (5.3)

should be as small as possible (in general µ ranges from 1 to
p
N). Intuitively, this inco-

herence condition means that the change-of-basis matrix P should thoroughly scramble the

entries of A to generate B.

It can be proven [35] that the number of entries of B which must be measured in order

to fully recover A by solving the BP problem in equation (5.2) scales as

M / µ2S logN2 . (5.4)

This scaling equation encapsulates the important aspect of compressed sensing: if a proper

measurement basis is chosen, the number of entries which must be measured scales linearly

with the sparsity of the matrix and only depends weakly on the full size of the matrix. For

the remainder of this paper, we always choose our measurement basis vectors to be the
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discrete cosine transform (DCT) of the sparse basis vectors, for which the parameter µ is

equal to
p
2. The DCT is a common transformation chosen for compressed sensing because

it is easy to implement, with fast and readily-available algorithms for its computation, and

because it guarantees that the sparse basis and the measurement basis are highly incoherent.

Intuitively, this ensures that each element from the measurement matrix B contains as much

information as possible about the elements of the sparse matrix A. A small value of µ such

as
p
2 cuts down on the number of entries of B which must be measured in order to fully

recover the sparse matrix A. Of course, our method is independent of this choice and could

work with other basis transformations as well.

In order to study the numerical properties of the reconstruction method we performed

a series of numerical experiments. We generate 100⇥ 100 matrices of varying sparsity with

random values drawn uniformly from the interval [�1, 1] and placed in random locations

in the matrix. Matrix elements were then sampled in the DCT measurement basis, and an

attempt was made to recover the original sparse matrix by solving the basis pursuit problem

in equation (5.2).

Figure 5.2 illustrates the percent of matrix elements had to be sampled for accurate

recovery of the sparse matrix compared with other recovery approaches. If no prior knowl-

edge of a matrix is used for its recovery, then one simply measures each entry; this is the

current paradigm in many scientific applications. If one knows exactly where the non-zeros

in a sparse matrix are located, one can simply measure those elements. Compressed sens-

ing interpolates between these two extremes: it provides a method for recovering a sparse

matrix when the locations of the non-zeros are not known in advance. Although this lack

of knowledge comes with a cost, the recovery is still considerably cheaper than measuring

the entire matrix.
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Figure 5.2: Percent of entries that must be sampled for accurate recovery of a matrix as a

function of sparsity. Comparison between compressed sensing and two limiting cases: “no

prior knowledge” of sparsity and the “perfect oracle” who reveals where all non-zero entries

are located. Each point on the compressed sensing curve is an average of ten di↵erent

randomizations. The accuracy criterion is a relative error in the Frobenius norm smaller

than 10�7.
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5.4 Application: Molecular Vibrations

Calculating the vibrations of a molecule, both the frequencies and normal modes, is one

of the most ubiquitous tasks in computational chemistry [190]. Integrated into nearly all

computational chemistry packages, including the Q-Chem package used for this study [161],

molecular vibrations are computed by theoretical and experimental chemists alike. Chemists

routinely optimize molecular geometries to find minimal energy conformations; computing

and confirming the positivity of all vibrational frequencies is the standard method of assur-

ing that a local minimum has been found. Another common task is to find the transition

state for a proposed reaction: here it is also necessary to compute the vibrations to find

one mode with an imaginary frequency, confirming the existence of a local maximum along

the reaction coordinate [52]. Despite the centrality of molecular vibrations in computa-

tional chemistry, it remains one of the most expensive computations routinely performed

by chemists.

The core of the technique lies in calculating the matrix of the mass-weighted second

derivatives of the energy with respect to the atomic positions

HAi,Bj =
1p

MAMB

@2E(R1, . . . ,RN )

@RA
i @R

B
j

(5.5)

where E(R1, . . . ,RN ) is the ground-state energy of the molecule, RA
i is coordinate i of atom

A, and MA is its mass. Hence, the Hessian is a real 3N⇥3N matrix where N is the number

of atoms in the molecule. When the molecule is in a minimum energy conformation, the

eigenvectors of the Hessian correspond to the vibrational modes of the molecule, and the

square root of the eigenvalues correspond to the vibrational frequencies [52].

Our goal, therefore, is to understand how our approach can reduce the cost of computing

the Hessian matrix of a molecule. We achieve this understanding in two complementary
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ways. First, for a moderately-sized molecule, we outline and perform the entire numerical

procedure to show in practice what kinds of speed-ups may be obtained. Second, for

large systems, we investigate the ability of compressed sensing to improve how the cost of

computing the Hessian scales with the number of atoms.

Calculating the Hessian requires a method for obtaining the energy of a given nuclear

configuration. There exist many methods to chose from, which o↵er a trade-o↵ between

accuracy and computational cost. Molecular mechanics approaches, which model the inter-

actions between atoms via empirical potentials [52], are computationally cheap for systems

of hundreds or thousands of atoms, while more accurate and expensive methods explicitly

model the electronic degrees of freedom at some level of approximated quantum mechanics,

such as methods based on density functional theory (DFT) [80, 97, 20] or wavefunction

methods [173]. We focus on these quantum mechanical approaches, since there the compu-

tation time is dominated by the calculation of the elements of the Hessian matrix, making

it an ideal application for our matrix-recovery method.

To recover a quantum mechanical Hessian e�ciently with compressed sensing, we need

to find a basis in which the matrix is sparse. While we might expect to the Hessian to have

some degree of sparsity in the space of atomic Cartesian coordinates, especially for large

molecules, we have found that it is possible to find a better basis. The approach we take is to

use a basis of approximated eigenvectors generated by a molecular mechanics computation,

employing the common MM3 force field [6], which provides a cheap approximation to the

eigenvectors of the quantum mechanical Hessian [158]. This is illustrated in Figure 5.3 for

the benzene molecule (C6H6). The figure compares the quantum mechanical Hessian in the

basis of atomic Cartesian coordinates with the same matrix in the approximate eigenbasis

obtained via an auxiliary molecular mechanics computation. The matrix in the molecular
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Figure 5.3: The quantum mechanical Hessian of benzene in the basis of atomic Cartesian

coordinates (on the left) and in the basis of molecular mechanics normal modes (on the

right). Since the molecular mechanics normal modes form approximate eigenvectors to the

true quantum mechanical Hessian, the matrix on the right is sparse (close to diagonal) and

therefore well-suited to recovery via compressed sensing.

mechanics basis is much sparser, and is therefore better suited to recovery via compressed

sensing.

The second derivatives of the energy required for the Hessian, equation (5.5), can be

calculated either via finite di↵erences, generating what are known as numerical derivatives,

or using perturbation theory, generating so-called analytical derivatives [142, 89, 18, 90].

A property of the calculations of the energy derivatives is that the numerical cost does

not depend on the direction they are calculated. This can be readily seen in the case of

finite di↵erences, as the cost of calculating E(R1, . . . ,Rj + �j , . . . ,RN ) is essentially the

same as computing E(R1 +�1, . . . ,Rj +�j , . . . ,RN +�N ). As discussed previously, this

ability to compute matrix elements at a comparable cost in any desired basis is an essential

requirement of our method.

A second property of both numerical and analytical derivatives that appears in vari-
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ational quantum chemistry formalisms like DFT or Hartree-Fock is that each calculation

yields a full column of the Hessian, rather than a single matrix element. Again, this is easy

to see in finite di↵erence computations. We can write the second derivative of the energy

as a first derivative of the force

@2E(R1, . . . ,RN )

@RA
i @R

B
j

= �
@FB

j (R1, . . . ,RN )

@RA
i

. (5.6)

By the Hellman-Feynman theorem [77, 62], and the appropriate correction for the Pulay

forces [142], a single energy calculation yields the forces acting over all atoms, so the

evaluation of equation (5.6) by finite di↵erences for fixed A and i yields the derivatives

for all values of B and j, a whole column of the Hessian. An equivalent result holds

for analytic derivatives obtained via perturbation theory [18, 90]. Thus, our compressed

sensing procedure for this particular application focuses on measuring random columns of

the quantum mechanical Hessian rather than individual random entries.

The full compressed sensing procedure applied to the calculation of a quantum me-

chanical Hessian is implemented as follows:

1. Calculate approximate vibrational modes using molecular mechanics.

2. Transform the approximate modes using the DCT matrix.

3. Randomly select a few of the transformed modes.

4. Calculate energy second derivatives along these randommodes to yield random columns

of the quantum mechanical Hessian.

5. Apply compressed sensing to rebuild the full quantum mechanical Hessian in the basis

of approximate vibrational modes.

6. Transform the full quantum mechanical Hessian back into the atomic coordinate basis.
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7. Diagonalize the quantum mechanical Hessian to obtain the vibrational modes and

frequencies.

The optimal number of random modes can be selected iteratively, repeating steps 3–7 adding

more random modes each time until convergence is reached. See the Supporting Information

for details.

Figure 5.4 illustrates the results of applying our Hessian recovery procedure to an-

thracene (C14H10), a moderately-sized polyacene consisting of three linearly fused benzene

rings. The top panel illustrates the vibrational frequencies obtained by the compressed sens-

ing procedure outlined above for di↵erent extents of undersampling of the true quantum

mechanical Hessian. Even sampling only 25% of the columns yields vibrational frequen-

cies that are close to the true quantum mechanical frequencies, and much closer than the

molecular mechanics frequencies. The bottom-left panel illustrates the error in the vibra-

tional frequencies from the true quantum mechanical frequencies. Sampling only 30% of

the columns gives a maximum frequency error of less than 3 cm�1, and sampling 35% of

the columns yields nearly exact recovery. The bottom-right panel illustrates the error in

the normal modes. Once again, sampling only 30% of the columns gives accurate recovery

of all vibrational normal modes to within 1%. In short, our compressed sensing procedure

applied to anthracene reduces the number of expensive quantum mechanical computations

by a factor of three. The additional cost of the molecular mechanics computation and the

compressed sensing procedure, which take a few seconds, is negligible compared to the re-

duction in cost for the computation of the Hessian which for anthracene takes on the order

of hours.

Having shown that our compressed sensing procedure gives a 3⇥ speed-up for a moderately-

sized organic molecule, we now move to larger systems and investigate how the cost of com-
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Figure 5.4: Results of applying our compressed sensing procedure to the vibrational modes

and frequencies of anthracene. (Top) Even by sampling only 25% of the quantum mechanical

Hessian, the vibrational frequencies obtained via compressed sensing converge to those

of the true quantum mechanical Hessian. (Bottom Left) Error in vibrational frequencies

for di↵erent extents of undersampling. When only 30% of the columns are sampled, the

maximum error in frequency is within 3 cm�1, and with 35% sampling, the recovery is

essentially exact. (Bottom Right) Error in vibrational normal modes for di↵erent extents

of undersampling on a logarithmic scale; the error is calculated as one minus the overlap

(dot product) between the exact quantum mechanical normal mode and the normal mode

obtained via compressed sensing. Once 30% of the columns are sampled, the normal modes

are recovered to within 1% accuracy.
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puting the Hessian scales with the number of atoms. In the absence of compressed sensing,

if the entries of the Hessian must be calculated independently, the cost of calculating the

Hessian would scale as O(N2) ⇥ OE, where OE is the cost of computing the energy of a

given nuclear configuration (the cost of analytical and numerical derivatives usually have

the same scaling). For example, for a DFT-based calculation, OE is typically O(N3). How-

ever, since many quantum mechanical methods obtain the Hessian one column at a time,

only O(N) calculations are required, so the scaling is improved to O(N)⇥OE.

How does compressed sensing alter this scaling? From equation (5.4), the number of

matrix elements needed to recover the Hessian via compressed sensing scales as O(S logN),

where S is number of non-zero elements in the Hessian, so the net scaling is O(S logN)⇥OE.

By obtaining the Hessian one column at a time, we expect the net scaling to improve to

O(S/N logN)⇥OE. However, we should note that equation (5.4) is only valid in principle

for the random sampling of elements, and it is not necessarily valid for a random column

sampling. This scaling result illustrates the critical importance of recovering the Hessian in

a sparse basis, with S as small as possible. So what is the smallest S that can reasonably

be achieved?

For many large systems, the Hessian is already sparse in the basis of atomic Cartesian

coordinates. Since the elements of the Hessian are partial second derivatives of the energy

with respect to the positions of two atoms, only direct interactions between the two atoms,

with the positions of all other atoms held fixed, must be taken into account. For most

systems we expect that this direct interaction has a finite range or decays strongly with

distance. Note that this does not preclude collective vibrational modes, which can emerge

as a result of “chaining together” direct interactions between nearby atoms.

If we assume that a system has a finite range interaction between atoms, and since each
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atom has an approximately constant number of neighbors, irrespective of the total number

of atoms in the molecule, the number of non-zero elements in a single column of the Hessian

should be constant. Hence, for large molecules, the sparsity S of the Hessian would scale

linearly with the number of atoms N . Putting this result into O(S/N logN) ⇥ OE yields

a best-case scaling of O (logN)⇥OE, which is a significant improvement over the original

O(N)⇥OE in the absence of compressed sensing.

To study the validity of our scaling results we have performed numerical calculations

on a series of polyacene molecules, which are aromatic compounds made of linearly fused

benzene rings. For polyacenes ranging from 1 to 15 rings, Figure 5.5 illustrates the average

number of non-zeros per column in the Hessian matrices obtained via molecular mechanics

and quantum mechanical calculations in the basis of atomic coordinates. In the molecular

mechanics Hessians, the average sparsity per column approaches a constant value as the

size of the polyacene increases, consistent with each atom having direct interaction with a

constant number of other atoms.

Since the molecular mechanics Hessians illustrate the best-case scenario in which the

sparsity S scales linearly with the number of atoms N , we attempted to recover these

Hessians directly in the basis of atomic coordinates via the compressed sensing procedure

we have outlined by sampling columns in the DCT basis. Figure 5.6 illustrates the number

of columns which must be sampled to recover the Hessians to within a relative error of 10�3

as a function of the size of the polyacene. Far fewer than the total number of columns in

the entire matrix need to be sampled. Even more attractive is the fact that the number

of columns grows quite slowly with the size of the polyacene, consistent with the best-case

O (logN) ⇥ OE scaling result obtained above. This result indicates that our compressed

sensing approach is especially promising for the calculation of Hessian matrices for large
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Figure 5.5: Average sparsity per column (S/3N) of molecular mechanics and quantum

mechanical Hessians in the basis of atomic coordinates for the series of polyacenes. (An

entry in the Hessian is considered nonzero if it is greater than 10 (cm�1)2, six orders of

magnitude smaller than the largest entry.) In the molecular mechanics Hessians, the average

sparsity per column is roughly constant with the size of the molecule, because each atom

has a roughly constant number of neighbors regardless of the size of the entire molecule.
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Figure 5.6: Number of columns which must be sampled as a function of the number of

rings in the polyacene to achieve a relative Frobenius norm error less than 10�3 in the

recovered molecular mechanics Hessian. Legend entries indicate the (sparse) recovery basis,

and columns are always sampled in the DCT basis with respect to the recovery basis.

(Relative error is measured by averaging over ten di↵erent trials which sample di↵erent sets

of random columns.)

systems. For comparison, we also recovered the Hessians in their sparsest possible basis,

which is their own eigenbasis. This procedure is not practical for actual calculation since

it requires knowing the entire Hessian beforehand, but it shows the best-case scenario and

illustrates how the compressed sensing procedure can be improved further if an appropriate

sparsifying transformation is known.

While the recovery of molecular mechanics Hessians provides a clear illustration of the

scaling of our compressed sensing procedure, molecular mechanics matrix elements are not

expensive to compute in comparison with rest of the linear algebra operations required to

diagonalize the Hessian. Hence, from a computational standpoint, the real challenge is to

apply our procedure to the computation of quantum mechanical Hessians.
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As Figure 5.5 shows the sparsity S of a quantum mechanical Hessian does not necessar-

ily scale linearly with the number of atoms N in the molecule. Figure 5.7 illustrates the cost

of recovering the quantum mechanical Hessians of polyacenes using compressed sensing in a

variety of sparse bases. Recovering the Hessian in the atomic coordinate basis already pro-

vides a considerable computational advantage over directly computing the entire Hessian.

In fact, this curve mirrors the sparsity per column curve for quantum mechanical Hessians

in Figure 5.5, consistent with our prediction that the number of sampled columns scales

as O(S/N logN)⇥OE. More significantly, recovering the quantum mechanical Hessian in

the molecular mechanics basis provides a substantial advantage over recovery in the atomic

coordinates basis, reducing the number of columns which must be sampled approximately

by a factor of two. This is consistent with the quantum mechanical Hessian being sparser

in the approximate eigenbasis of molecular mechanics normal modes. Of course, nothing

beats recovery in the exact eigenbasis, which is as sparse as possible, but requires knowing

the exact Hessian in the first place.

In short, the take-home message of Figure 5.7 is that using compressed sensing to

recover a quantum mechanical Hessian in its basis of molecular mechanics normal modes is

a practical procedure which substantially reduces the computational cost of the procedure.
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Figure 5.7: Number of columns which must be sampled as a function of the number of rings

in the polyacene to achieve a relative Frobenius norm error less than 10�3 in the recovered

quantum mechanical Hessian. Legend entries indicate the (sparse) recovery basis, and

columns are always sampled in the DCT basis with respect to the recovery basis. (Relative

error is measured by averaging over ten di↵erent trials which sample di↵erent sets of random

columns.)
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5.5 Conclusions

We have presented a new approach for calculating matrices. This method is suitable

for applications where the cost of computing each matrix element is high in comparison

to the cost of linear algebra operations. Our approach leverages the power of compressed

sensing to avoid individually computing every matrix element, thereby achieving substantial

computational savings.

When applied to molecular vibrations of organic molecules, our method results in ac-

curate frequencies and normal modes with about 30% of the expensive quantum mechanical

computations usually required, which represents a quite significant 3⇥ speed-up. Depend-

ing on the sparsity of the Hessian, our method can also improve the overall scaling of

the computation. These computational savings could be further improved by using more

sophisticated compressed sensing approaches, such as recovery algorithms based on belief

propagation [105, 104] which o↵er a recovery cost directly proportional to the sparsity of

the signal, and which could be easily integrated into our approach.

Our method could also be applied to other common calculations in computational

chemistry, including the Fock matrix in electronic structure or the Casida matrix in linear-

response time-dependent DFT [117]. Nevertheless, our method is not restricted to quantum

chemistry and is applicable to many problems throughout the physical sciences and beyond.

The main requirement is an a priori guess of a basis in which the matrix to be computed is

sparse. The optimal way to achieve this requirement is problem-dependent, but as research

into sparsifying transformations continues to develop, we believe our method will enable

considerable computational savings in a wide array of scientific fields.

The power of compressed sensing comes from the fact that it optimizes the amount of

information obtained per measurement, and hence the required number of measurements
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scales with the information content being measured, or in this case calculated [172]. We

believe compressed sensing can change computational chemistry for the better by focus-

ing attention on how to avoid redundant computations and ensure that each computation

delivers as much new information about a system as possible. In broad terms, the key

insight of compressed sensing for computational chemistry is to calculate only what should

be calculated.

In fact, a recent area of interest in compressed sensing is the development of dictionary

learning methods that do not directly require knowledge of a sparsifying basis, but instead

generate it on-the-fly based on the problem [3, 152]. We believe that combining our matrix

recovery protocol with state-of-the-art dictionary learning methods may eventually result

in further progress towards the calculation of scientific matrices. Beyond the problem of

computing matrices, our work demonstrates that compressed sensing can be integrated into

the core of computational simulations as a workhorse to reduce costs by optimizing the

information obtained from each computation.

Finally, we introduced an e↵ective method of bootstrapping low-accuracy calculations

to reduce the number of high-accuracy calculations that need to be done, something which

is not simple to do in quantum chemical calculations. In this new paradigm, the role

of expensive high-accuracy methods is to correct the low-accuracy results, with a cost

proportional to the magnitude of the required correction, rather than recalculating the

results from scratch.

5.6 Computational methods

The main computational task required to implement our approach is the solution of

the `1 optimization problem in equation (5.2). From the many algorithms available for this
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purpose, we rely on the spectral projected gradient `1 (SPGL1) algorithm developed by

van den Berg and Friedlander [184] and their freely-available implementation.

For all compressed sensing calculations in this paper, the change-of-basis matrix be-

tween the sparse basis and the measurement basis is given by the DCT matrix whose

elements are given by

Pij =

r

2

N
cos



⇡

N
(i� 1)

✓

j � 1

2

◆�

, (5.7)

with the first row multiplied by an extra factor of 1/
p
2 to guarantee orthogonality.

For the numerical calculations we avoid explicitly constructing the Kronecker product

of P with itself and instead perform all matrix multiplications in the SPGL1 algorithm

directly in terms of P . This latter approach has much smaller memory requirements and

numerical costs, ensuring that the compressed sensing process itself is rapid and not a

bottleneck in our procedure. The condition PAP T = B is satisfied up to a relative error of

10�7 in the Frobenius norm (vectorial 2-norm).

In order to perform the undersampling required for our compressed sensing calculations,

first the complete Hessians were calculated, then they were converted to the measurement

basis, and finally they were randomly sampled by column. Quantum mechanical Hessians

were obtained with the QChem 4.2 [161] software package, using density functional theory

with the B3LYP exchange-correlation functional [20] and the 6-31G* basis set. Molecular

mechanics Hessians were calculated using the the MM3 force field [6] and the open-source

package Tinker 6.2.
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5.7 Appendix A: Further Comparison of Vibrational Fre-

quencies

One reasonable question is whether the compressed sensing procedure outlined in the

main article accurately recovers changes in the vibrational modes (i.e. the eigenvectors of

the Hessian matrix) or whether it is helpful only in recovering changes in the vibrational fre-

quencies (i.e. only the diagonal elements on the Hessian matrix). To address this question,

we evaluated the true quantum mechanical (QM) vibrational frequencies along the vibra-

tional modes obtained by the cheap molecular mechanics (MM) calculation and compared

the results with compressed sensing. The results for anthracene are shown in Figure 5.8.

In particular, the figure compares the MM frequencies, the QM frequencies along the MM

modes, and the compressed sensing frequencies with 35% sampling of the QM calculations

according to the procedure described in the main article. (Note that the two plots present

the same data with di↵erent frequency scales on the y-axis.)

The top plot shows that computing the QM frequencies along the MM modes provides

a large improvement on the MM frequencies themselves, as expected since the eigenvalue

calculation is quantum mechanical in nature and only the eigenvectors are approximate.

However, substantial errors up to 100 cm�1 remain in some of the frequencies so this

approach does not su�ce for chemical accuracy. In contrast, as the bottom plot shows,

the compressed sensing frequencies are nearly exact, and are far more accurate than the

QM frequencies computed along the MM modes. This result provides concrete numerical

evidence that compressed sensing accurately recovers changes not only in the eigenvalues

(i.e. diagonal elements of the Hessian matrix) but also in the vibrational modes themselves

(i.e. the eigenvectors). As can be seen, only the compressed sensing approach, with accurate
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Figure 5.8: The figure compares the MM frequencies, the QM frequencies along the MM

modes, and the compressed sensing frequencies with 35% sampling of the QM calculations

according to the procedure described in the main article for anthracene. (Note that the two

plots present the same data with di↵erent frequency scales on the y-axis.) The QM frequen-

cies along the MM modes are much more accurate than the MM frequencies themselves,

but only the compressed sensing calculation provides acceptable chemical accuracy.

95



recovery of both vibrational modes and frequencies, su�ces for chemical accuracy.

We also point out that as a method, computing the QM frequencies along the MM

modes is based on an uncontrolled approximation, and the method can fail if the normal

modes are predicted badly. With compressed sensing, a bad prediction of the normal modes

is simply reflected in a more expensive calculation, but the results would still be accurate

to the QM level.

5.8 Appendix B: Convergence Criterion

For practical implementation of the compressed sensing procedure (steps 1–7 in the

main article), an important requirement is a convergence criterion; namely, how do you

know when the procedure is done? In particular, without comparing to a full reference

calculation, how do you know when enough columns of the Hessian have been sampled to

achieve accurate vibrational modes and frequencies?

To address this question, we repeatedly applied the compressed sensing procedure (steps

1–7 in the main article) to the quantum mechanical Hessian matrix of anthracene, and each

time we sampled one additional column. For each additional column sampled, we computed

the relative Frobenius norm (vectorial 2-norm) error against the full reference calculation,

Overall Errorn =
||Hn �Href||2

||Href||2
, (5.8)

where Hn is the Hessian recovered via compressed sensing with n columns sampled in

the measurement basis. We also computed the relative Frobenius norm error against the

calculation in the previous step with one less sampled column,

Successive Errorn =
||Hn �Hn�1||2

||Hn||2
. (5.9)
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Figure 5.9: The figure shows both the overall error and the successive error in the Hessian

of anthracene obtained via the compressed sensing procedure described in the main article

as additional columns are sampled. Because the two errors track each other closely, the

successive error can be used as a basis for developing a convergence criterion in the absence

of a full reference calculation.

Figure 5.9 shows both types of error plotted as a function of the number of sampled columns

n. As the figure shows, the two errors track each other closely (never di↵ering by more than

an order of magnitude), but the successive error can be computed without access to a

full reference calculation. Small successive errors indicate that the Hessian matrix is no

longer changing when additional columns are sampled, and show that the calculation has

converged. Hence, just as in many other numerical methods, the successive error provides

a measure for developing a convergence criterion. For example, to assure robustness, one

might demand small successive errors over three or four consecutive steps before declaring

the calculation complete.
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Chapter 6

Compressed Sensing Reduces CPU Time Needed

to Compute Molecular Hessians

Abstract

This paper describes the implementation of compressed sensing into Q-Chem, a com-

mercial electronic structure software package, to more e�ciently compute Hessian matrices,

whose diagonalization yields the vibrational normal modes and frequencies of a molecule.

The key advantage of compressed sensing is that only a subset of the columns of the Hes-

sian matrix needs to be computed, resulting in a large savings in CPU hours. However, the

columns must be computed not in the usual basis where each atomic nucleus is indepen-

dently displaced in three Cartesian directions, but rather in a basis consisting of collective

displacements of many nuclei at once. This paper outlines the technique and applies it to

the vibrational frequencies of a linear polyacene series computed with density functional

theory using the M06-2X functional in the double-zeta 6-31G(d,p) basis. For this series

of molecules, compressed sensing reduces by 50% the number of columns which must be

computed and correspondingly decreases the required number of CPU hours by over 40%.

Future improvements to the procedure will likely reduce the number of CPU hours even
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further.

6.1 Introduction

Many scientific applications involve many calculations, followed by compressing or con-

solidating the data to obtain new information. An emerging paradigm is instead to “measure

what should be measured,” which is the idea that the number of calculations should di-

rectly relate to the information content present in the data [172]. One way to implement

this paradigm is through a state-of-the-art signal processing method known as compressed

sensing: first, a sparse representation of the data is found and second, this data is recovered

through a number of calculations that is roughly proportional to its sparsity [34, 57, 35].

In quantum chemistry, one of the most fertile applications for this new paradigm is the

computation of Hessian matrices, as this is one of the most expensive computations routinely

performed by chemists to determine whether a particular geometry corresponds to the

ground state of a molecule or the transition state of a reaction [190]. The Hessian matrix of a

molecule contains the mass-weighted second derivatives of its electronic energy with respect

to nuclear displacements, and diagonalization of this matrix provides its vibrational normal

modes (as the eigenvectors) and frequencies (as the square root of the eigenvalues) [52].

In a previous paper [154], we developed and simulated the use of compressed sensing

to reduce the cost of computing Hessian matrices. This paper follows up with an imple-

mentation in the Q-Chem electronic software package [161], translating the simulations of

the previous paper into real reductions in computational cost as measured by fewer CPU

hours.
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6.2 Computational Methods

In quantum chemistry methods, derivatives of the electronic energy may be computed

analytically [197, 66, 141, 65, 74, 54], by di↵erentiating the energy expression, or numeri-

cally, by using finite di↵erences. This paper focuses on so-called mixed derivatives, where

gradients of the electronic energy are computed analytically but second derivatives are

computed via finite di↵erences of the gradients. Mixed derivatives are popular because

analytic second derivatives are typically much more challenging to compute than analytic

gradients. As a consequence of the Hellmann-Feynman theorem [77, 62], analytic gradients

may be obtained without computing the first derivatives of the molecular orbitals with re-

spect to nuclear displacements, but this fortunate state of a↵airs no longer holds for second

derivatives, where the molecular orbital derivatives must be obtained by solving memory-

intensive coupled-perturbed equations. Because of these memory limitations, many popular

electronic structure methods use mixed derivatives, including Møller-Plesset second-order

perturbation theory (MP2) [126], coupled-cluster singles-doubles (CCSD) [143], and many

density functionals including the popular Minnesota functional M06-2X [202]. Hence we

expect our compressed sensing implementation to enjoy broad applicability.

Consider a configuration of N nuclei expressed by the mass-weighted coordinates q =

{q1, . . . , q3N}, and suppose analytic first derivatives of the energy,
@E

@qi
, are available for

each qi. Then, using mixed derivatives, elements of the Hessian matrix are computed as

@2E(q)

@qi@qj
=

1

2h

⇢

@E

@qi
(q + hbqj)�

@E

@qi
(q � hbqj)

�

, (6.1)

where bqj is a unit vector along the jth coordinate and h is the step size used in the finite

di↵erence calculation. It is worth taking a moment to unpack equation (6.1). A single

gradient calculation at a particular point (·) yields
@E

@qi
(·) for all qi. Hence, two gradient
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calculations,
@E

@qi
(q + hbqj) and

@E

@qi
(q � hbqj), are required to obtain the jth column of the

Hessian matrix. Since the Hessian matrix contains 3N columns, it follows that a total of

6N gradient calculations are required to recover the entire matrix.

As discussed in our previous paper [154], the key advantage a↵orded by compressed

sensing is that it enables the full recovery of a Hessian matrix by computing only a subset of

its columns and hence only a subset of the gradient calculations. Since the total CPU time

is directly proportional to the number of gradients which must be computed, the application

of compressed sensing yields a direct reduction in CPU time. Because compressed sensing

is a technique for recovering sparse vectors and matrices from undersampled data, the first

requirement is locating a basis in which the Hessian matrix is sparse. One choice is a basis

of approximate normal modes, as may be obtained from a cheap Hartree-Fock calculation in

a minimal STO-3G basis, in which the more exact Hessian is expected to be nearly diagonal

with a few small o↵-diagonal entries. These approximate normal modes are transformed

according to the discrete cosine transform (DCT) and only a subset of the columns of the

Hessian needs to be computed in this DCT basis. From this subset of columns, compressed

sensing is able to recover the complete sparse Hessian in the approximate normal mode

basis. Once the complete Hessian is recovered, it may be transformed back into the atomic

coordinate basis and diagonalized to obtain the vibrational modes and frequencies.

Hence, the key requirement for compressed sensing is that second derivatives must be

computed not in the usual basis where each atomic nucleus is independently displaced in

three Cartesian directions, but rather in a basis consisting of collective displacements of

many nuclei at once–in particular, the discrete cosine transform basis of the approximate

normal modes. The advantage is that, in this DCT basis, only a subset of the columns need

to be computed [154], which translates directly into a subset of the gradients and hence a
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net reduction of CPU time.

These changes result in the following procedure for computing Hessian matrices, in

which we use upper-case lettersQi to denote coordinates in the DCT basis, while we continue

to use lower-case letters qi to denote mass-weighted coordinates in the atomic nuclei basis.

This procedure, which can be toggled on and o↵ by setting the value of the new Q-Chem

keyword CS HESS to 1 and 0 respectively, is as follows:

1. For a subset of directions cQj in the DCT basis, compute the analytic gradients

@E

@Qi

⇣

Q+ hcQj

⌘

and
@E

@Qi

⇣

Q� hcQj

⌘

. The number of directions cQj chosen is equal

to three times the value of the user-specified keyword CS ATOMS PER ITER.

2. Assemble this subset of analytic gradients to yield columns of the Hessian matrix,

@2E(Q)

@Qi@Qj
=

1

2h

⇢

@E

@Qi

⇣

Q+ hcQj

⌘

� @E

@Qi

⇣

Q� hcQj

⌘

�

. (6.2)

Note that we have all the Qi derivatives (i.e. all the rows) but only a subset of the

Qj derivatives (i.e. only a subset of the columns).

3. Apply compressed sensing, as fully described in our earlier paper [154], to attempt

to recover the full Hessian matrix in the sparse basis of approximate normal modes.

To check for convergence, repeat the compressed sensing procedure using one less

column of the matrix in step 2. The results are converged when the relative Frobenius

norm error between the two recovered matrices is less than 10�CS TOL, where CS TOL

is a user-specified keyword. In Q-Chem, the compressed sensing procedure is done

by the new function bpdn which solves the basis-pursuit denoising problem using the

algorithm described in ref. [184].

4. If the results are not converged, return to Step 1 and choose another subset of direc-

tions cQj along which to compute analytic gradients, thus yielding more columns of
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the Hessian matrix. If the results are converged, convert the recovered matrix back

into the atomic nuclei basis
@2E(q)

@qi@qj
and diagonalize it to obtain the vibrational nor-

mal modes (as the eigenvectors) and vibrational frequencies (as the square root of the

eigenvalues).

6.3 Results and Discussion

This section compares the compressed sensing approach described above to the tradi-

tional approach for computing Hessian matrices. In particular, we examine how many

columns of the Hessian must be computed to recover the vibrational frequencies of a

molecule accurately via compressed sensing and we quantify how much CPU time is saved

compared to the traditional approach as a result.

As a model system, we compute the vibrational frequencies of the linear polyacene series

ranging from benzene to pentacene via density functional theory with the Minnesota M06-

2X functional [202] in a double-zeta 6-31G(d,p) basis. The M06-2X functional is popular in

organic chemistry applications, and elements of the Hessian matrix are generally computed

via the mixed approach described above, using analytical gradients and numerical second

derivatives, as fully analytical second derivatives are not available. Hence, the M06-2X

functional is an ideal test case for the compressed sensing method outlined above. As a

rapid method for obtaining approximate vibrational modes, we use Hartree-Fock theory in

a minimal STO-3G basis, as the M06-2X/6-31G(d,p) Hessian is expected to be reasonably

sparse in the basis of these approximate modes. In all calculations using the compressed

sensing approach, the keyword CS TOL is set to 4, resulting in a tolerance of 10�4 for

determining when the compressed sensing process has converged.

All vibrational frequency calculations were performed on the Edison computational
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Figure 6.1: This figure shows the error in the vibrational frequencies of anthracene obtained

via compressed sensing. All of the frequencies are recovered to within 0.35 cm�1, which is

well within the limit of chemical accuracy.

system of the National Energy Research Scientific Computing Center. In each calculation,

the total number of CPU hours was quantified on a computational node containing two

12-core Intel “Ivy Bridge” processors at 2.4 GHz and 64 GB DDR3 1866 MHz of memory.

We take up two questions. First, how accurate are the frequencies obtained via com-

pressed sensing as compared to the traditional approach? Second, how much CPU time is

saved by the compressed sensing approach?

To answer the first question, Figure 6.1 illustrates the error in the vibrational frequen-

cies of anthracene obtained via compressed sensing (steps 1–4 in the previous section) as

compared to the traditional approach. As the plot shows, all of the vibrational frequen-

cies are recovered to within 0.35 cm�1, well within a few wavenumbers which constitutes

the generally accepted benchmark of chemical accuracy. Similarly accurate results were

obtained for benzene and naphthalene.

Figure 6.2 illustrates the error in vibrational frequencies for pentacene obtained via
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Figure 6.2: This figure shows the absolute error in the vibrational frequencies of pentacene

obtained via compressed sensing. Most of the frequencies are recovered to within 1 cm�1,

but the highest ones corresponding to C–H stretching exhibit larger errors around 5 cm�1.

Figure 6.3: This figure shows the relative error in the vibrational frequencies of pentacene

obtained via compressed sensing, expressed as a percent. All of the frequencies are recovered

to within 0.5%, including the highest ones corresponding to C–H stretching.

106



compressed sensing. Most of the frequencies are recovered accurately to within 1 cm�1, but

the highest frequencies (corresponding to the stretching of C–H bonds) exhibit larger errors

up to just above 5 cm�1. A similar result was also obtained for tetracene, whereby some

of the highest frequencies corresponding to C–H stretches exhibited errors around 5 cm�1.

Figure 6.3 replots this error as the relative error in frequency, expressed as percent error,

and shows that all frequencies are recovered accurately to within 0.5%, and that the relative

error does not display any notable increase at the highest frequencies. Nevertheless, there

are two possible sources of this error. First, the compressed sensing process may not have

fully converged to resolve vibrational frequencies to within 1 cm�1, and hence sampling

more columns of the Hessian in the DCT basis is necessary. Second, the derivatives have

a small amount of variability when they are computed in a di↵erent basis (in this case in

a DCT basis rather than the standard atomic basis), owing to the discretization process

whereby the derivatives are approximated as di↵erences between grid points.

By computing the full Hessian in the DCT basis, we were able to separate these two

sources of error, and the results for pentacene are shown in Figure 6.4. The plot clearly

shows that nearly all of the error comes not from the compressed sensing process but from

the fact that the Hessian is being sampled in the DCT basis rather than the atomic basis.

From a di↵erent perspective, this “error” is not really error after all, since it is natural

variability owing to the discretization process whereby the derivatives are approximated via

finite di↵erences. Such variability could be minimized by using a larger stencil, for example.

As for the second question, regarding how much computational e↵ort is saved by com-

pressed sensing, Figure 6.5 compares the number of columns which must be computed in the

compressed sensing method to the total number of columns which must be computed in the

traditional approach (which is equal to 3N , where N is the number of atoms). Across the
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Figure 6.4: This figure decomposes the error in the vibrational frequencies of pentacene

into two parts: DCT basis error (which is natural variability in the finite di↵erence approx-

imation when derivatives are computed in a di↵erent basis) and compressed sensing error

(which arises when not enough columns of the Hessian have been sampled). The plot shows

that compressed sensing has converged to within chemical accuracy, and nearly all of the

“error” is simply the result of taking derivatives in a di↵erent basis.
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Figure 6.5: This figure shows how many columns of the Hessian must be sampled in both the

traditional approach and compressed sensing for the linear polyacene series. Compressed

sensing yields a savings of approximately 50% in the number of columns that must be

computed.

polyacene series from benzene to pentacene, the number of columns of the Hessian which

must be sampled for accurate recovery of vibrational frequencies consistently hovers at or

slightly below 50%, which corresponds to cutting in half the number of analytic gradient

calculations which must be done.

Figure 6.6 shows that the reduction in the number of analytic gradient calculations

which must be done translates nicely into a reduction of CPU hours required. The number

of CPU hours required for compressed sensing hovers at or below 60% of the number of

CPU hours required in the traditional approach. The reason approximately 60% of the CPU

hours are required when only 50% of the analytic gradients are being computed stems from

the computational cost of the compressed sensing process itself (i.e. the BPDN procedure).

This cost can be almost completely eliminated by increasing the number of columns which

are computed at a time before the compressed sensing process is performed. For example,
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Figure 6.6: This figure quantifies the number of CPU hours required to compute the vi-

brational modes and frequencies of linear polyacenes in both the traditional approach and

compressed sensing. The savings in CPU hours for compressed sensing closely mirror the

reduction in the number of columns of the Hessian that must be computed, with a small

additional cost of CPU hours to perform the compressed sensing process itself.
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if it is known that approximately 50% of the columns are required for accurate recovery of

the vibrational frequencies, then there is no need to perform compressed sensing and check

for convergence before nearly 50% of the columns have been computed. By choosing more

strategically when compressed sensing is performed, the percentage of CPU hours required

can be reduced asymptotically towards the percentage of columns which must be computed.

To enable this possibility, we are introducing a new feature into Q-Chem called FastCS.

By setting the keyword CS FAST to a number between 0 and 100, it is possible to specify

the percentage of columns of the Hessian matrix which are computed a priori before the

compressed sensing process (i.e. the BPDN procedure) is performed for the first time. In

the examples above, for example, it would be prudent to set CS FAST to 40 or 50.

In conclusion, compressed sensing provides a substantial reduction in the number of

CPU hours required to compute the vibrational normal modes and frequencies of molecules.

Further computations will investigate the performance of compressed sensing with other

electronic structure methods such as MP2 and CCSD, as these methods also employ the

mixed approach of analytic gradients and numerical second derivatives. In addition, com-

putations will progress to larger molecules to investigate how the reduction in CPU hours

scales with the number of atoms in the molecule. Finally, by varying the step size used

in the finite di↵erence calculations, we will investigate and attempt to reduce the variabil-

ity in the highest vibrational frequencies with respect to the basis in which the Hessian is

computed. Taken together, these further computations should increase the accuracy and

breadth of applicability of compressed sensing, as well as provide further reductions in CPU

hours to obtain vibrational normal modes and frequencies.
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Chapter 7

Q-Chem Implementation of Compressed Sensing

for the Computation of Analytical Second

Derivatives

Abstract

Q-Chem is a commercial quantum chemistry package used by many theoretical and ex-

perimental chemists to compute molecular energies, geometries, vibrational and electronic

spectra, and other properties. This chapter describes the implementation of compressed

sensing into Q-Chem for the more e�cient computation of Hessian matrices, whose di-

agonalization yields the vibrational normal modes and frequencies of a molecule. Unlike

the previous chapter, which focuses on so-called mixed derivatives (analytic gradients and

numerical second derivatives), this chapter describes the implementation of compressed

sensing with fully analytical second derivatives, as these derivatives are often more e�cient

to compute when they are available for a particular electronic structure method. While

the method has been fully implemented, unlike with mixed derivatives, we have not yet

observed a reduction in the number of CPU hours required to compute analytical second
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derivatives with compressed sensing. Understanding why this is the case is the subject of

ongoing investigation, but we remain optimistic that the approach could prove useful in

certain quantum chemistry packages depending on how they implement analytical second

derivatives.

7.1 Introduction

The chapter begins with a mathematical presentation of first and second derivative

methods in quantum chemistry, with an emphasis on the Hartree-Fock theory. The key

pedagogical reference for wavefunction methods is a monograph by Yamaguchi et al. [197],

with appropriate modifications made to the Hartree-Fock formalism [66, 141, 65] to ac-

count for density functional theory available in references [74, 54]. This first half of the

chapter ends with the step-by-step procedure used by Q-Chem [161] to compute the second

derivatives of the molecular energy needed to obtain the vibrational modes and frequencies,

detailing which functions are responsible for computing the various components. Further

references [99, 68, 129] discuss certain aspects of the implementation of derivative methods

in Q-Chem [161]. We also limit the discussion to restricted closed-shell computations; the

generalization to unrestricted computations is straightforward but more cumbersome.

The second half of the chapter explains how this Hessian computation procedure must

be modified to take advantage of the compressed sensing methods described in the previous

chapter and in ref. [154]. The most expensive parts of the Hessian matrix are the components

which depend on the first derivative of the density matrix, which require solving a new

set of coupled-perturbed equations for each of the 3N derivatives that are required for a

molecule containing N atoms. The key advantage a↵orded by compressed sensing is that it

enables dramatic undersampling below 3N in the number of coupled-perturbed equations
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which must be solved, resulting in a reduction in the amount of computational time and

parallelization needed to compute Hessian matrices. However, to take advantage of this

undersampling, the coupled-perturbed equations must be solved not in the usual basis where

each atomic nucleus is independently displaced in three Cartesian directions, but rather in

an arbitrary basis consisting of collective displacements of many nuclei at once. This yields

an undersampling of the columns of the Hessian in a basis of collective displacements,

from which the full Hessian can be recovered in a sparse basis according to the compressed

sensing methods described in the previous chapter and in ref. [154]. The second half of this

chapter includes a step-by-step procedure for how compressed sensing is implemented into

Q-Chem, with a detailed accounting of which new functions are responsible for the various

modifications to the standard procedure.

7.2 Integrals in Quantum Chemistry

Consider a set of atomic basis functions {�µ} from which we construct molecular or-

bitals {�i} according to

�i =
AO
X

µ

Ci
µ�µ, (7.1)

where the Ci
µ are the molecular orbital expansion coe�cients and AO serves as a reminder

that the sum is over atomic basis functions. For simplicity, we assume all atomic ba-

sis functions and molecular orbitals are real; the generalization to complex functions is

straightforward. In the atomic orbital basis, we define the overlap integral

Sµ⌫ =

Z

�µ(1)�⌫(1)d⌧1, (7.2)
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and the single-electron integral

hµ⌫ =

Z

�µ(1)

 

�1

2
r2

1 �
X

A

ZA

r1A

!

�⌫(1)d⌧1, (7.3)

where ZA is the charge on nucleus A and r1A is the distance from electron 1 to nucleus A,

as well as the two-electron integral

(µ⌫|⇢�) =
Z Z

�µ(1)�⌫(1)
1

r12
�⇢(2)��(2)d⌧1d⌧2, (7.4)

where r12 is the distance from electron 1 to electron 2.

We make similar definitions in the molecular orbital basis, defining the overlap integral

Sij =

Z

�i(1)�j(1)d⌧1 =
AO
X

µ⌫

Ci
µC

j
⌫Sµ⌫ , (7.5)

the single-electron integral

hij =

Z

�i(1)

 

�1

2
r2

1 �
X

A

ZA

r1A

!

�j(1)d⌧1 =
AO
X

µ⌫

Ci
µC

j
⌫hµ⌫ , (7.6)

and the two-electron integral

(ij|kl) =
Z Z

�i(1)�j(1)
1

r12
�k(2)�l(2)d⌧1d⌧2 =

AO
X

µ⌫⇢�

Ci
µC

j
⌫C

k
⇢C

l
�(µ⌫|⇢�), (7.7)

where we have used the relationship between atomic and molecular orbitals in equation

(7.1) to relate the integrals in the MO basis to the integrals in the AO basis.

In terms of these integrals, we define the Fock matrix in the MO basis as

Fij = hij + 2
DO
X

k

⇢

(ij|kk)� 1

2
(ik|ik)

�

(7.8)

where DO signifies that the sum is over all doubly-occupied molecular orbitals. Using the

relationships between the integrals in the MO basis and the integrals in the AO basis in

equations (7.6) and (7.7), the Fock matrix may also be expressed in the AO basis as

Fµ⌫ = hµ⌫ +
AO
X

⇢�

P⇢�

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|⌫�)

�

, (7.9)
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where Pµ⌫ is the density matrix (in the atomic orbital basis) defined by

Pµ⌫ = 2
DO
X

i

Ci
µC

i
⌫ . (7.10)

7.3 Electronic Energy

In a restricted Hartree-Fock calculation, in which all molecular orbitals are doubly-

occupied, the total electronic energy E is given by

E = 2
DO
X

i

hii + 2
DO
X

ij

⇢

(ii|jj)� 1

2
(ij|ij)

�

. (7.11)

Using the relationships between the MO basis and the AO basis in equations (7.6) and (7.7),

as well as the definition of the density matrix in equation (7.10), the total energy may be

expressed in the AO basis as [197]

E =
AO
X

µ⌫

Pµ⌫hµ⌫ +
1

2

AO
X

µ⌫⇢�

Pµ⌫P⇢�

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|⌫�)

�

. (7.12)

Our goal in the first part of this chapter is to explain how derivatives of the electronic

energy, as expressed in equations (7.11) and (7.12), are computed.

7.4 First Derivative of the Molecular Orbitals

We have the choice of di↵erentiating the electronic energy in the MO basis, beginning

from equation (7.11), or in the AO basis, beginning from equation (7.12). For the first

derivative, it is simpler to work in the MO basis. To understand the logic involved in taking

derivatives of equation (7.11), consider a molecule in its ground state and imagine perturbing

its nuclei. The values of the one-electron integrals, hii, and two-electron integrals, (ii|jj)

and (ij|ij), change for two reasons. Most obviously, they change because they contain

explicit dependence on the nuclear coordinates. Slightly more subtle is the fact that the
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molecular orbitals i and j themselves also change when the nuclei are perturbed. Thus,

a derivative computation involves two aspects: derivatives of the one-electron and two-

electron integrals, with the molecular orbitals held fixed, and derivatives of the molecular

orbital coe�cients Ci
µ themselves.

Consider the perturbation of molecular orbital i by the displacement of a nucleus by

�x. We can express this as a perturbation of the expansion coe�cients Ci
µ,

Ci,pert
µ = Ci

µ +�x
@Ci

µ

@x
(7.13)

We then make the ansatz that the changes in the molecular orbital coe�cients Ci
µ may be

expressed as linear combinations of the unperturbed molecular orbitals,

Ci,pert
µ = Ci

µ +�x
MO
X

m

Ux
miC

m
µ , (7.14)

where the Ux
mi are the expansion coe�cients and MO denotes that the sums are over all

molecular orbitals, not just those which are doubly-occupied.

Comparing equations (7.13) and (7.14) reveals that the expansion coe�cients Ux
mi are

defined according to [197]

@Ci
µ

@x
=

MO
X

m

Ux
miC

m
µ . (7.15)

Equation (7.15) expresses the e↵ects of perturbing the molecular orbitals in terms of the

unperturbed molecular orbitals.

7.5 First Derivative of the Electronic Energy

In order to di↵erentiate the electronic energy as expressed in the MO basis in equation

(7.11), we require the derivatives of the overlap Sij , one-electron hij , and two-electron (ij|kl)

integrals. To do this, we relate these integrals in the MO basis to integrals in the AO basis
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and apply the product rule. For example, the orbital overlap Sij may be expressed as the

sum

Sij =
AO
X

µ⌫

Ci
µC

j
⌫Sµ⌫ , (7.16)

and di↵erentiating this expression yields

@Sij

@x
=

AO
X

µ⌫

Ci
µC

j
⌫

@Sµ⌫

@x
+

AO
X

µ⌫

 

@Ci
µ

@x
Cj
⌫ + Ci

µ

@Cj
⌫

@x

!

Sµ⌫ , (7.17)

where the first term

Sx
ij =

AO
X

µ⌫

Ci
µC

j
⌫

@Sµ⌫

@x
(7.18)

is known as a core overlap integral derivative, which is purely due to changes in the atomic

orbitals {�µ} themselves, while the second term accounts for changes in the molecular

orbitals. Using equation (7.15) for the derivatives of the molecular orbital coe�cients, as

well as equation (7.16), the derivative of the overlap integral in the MO basis may be written

as

@Sij

@x
= Sx

ij +
MO
X

m

⇣

Ux
miSmj + Ux

mjSim

⌘

. (7.19)

By exactly the same procedure, the first derivatives of the one-electron integrals may

be computed as

@hij
@x

= hxij +
MO
X

m

⇣

Ux
mihmj + Ux

mjhim
⌘

, (7.20)

where

hxij =
AO
X

µ⌫

Ci
µC

j
⌫

@hµ⌫
@x

(7.21)

is the core one-electron integral derivative, which accounts for changes in the atomic orbitals

and the molecular Hamiltonian, while the second term containing Ux
mi and Ux

mj account for

changes in the molecular orbitals.
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By an analogous process, the first derivatives of the two-electron integrals are given by

@(ij|kl)
@x

= (ij|kl)x +
MO
X

m

n

Ux
mi(mj|kl) + Ux

mj(im|kl) + Ux
mk(ij|ml) + Ux

ml(ij|km)
o

, (7.22)

where

(ij|kl)x =
AO
X

µ⌫⇢�

Ci
µC

j
⌫C

k
⇢C

l
�

@(µ⌫|⇢�)
@x

(7.23)

is the core two-electron integral derivative, which accounts for changes in the atomic orbitals

and the molecular Hamiltonian, while the second term accounts for changes in the molecular

orbitals.

We are finally ready to di↵erentiating the electronic energy in equation (7.11), obtaining

@E

@x
= 2

DO
X

i

@hii
@x

+ 2
DO
X

ij

⇢

@(ii|jj)
@x

� 1

2

@(ij|ij)
@x

�

. (7.24)

Substituting the derivatives of the one-electron and two-electron integrals in equations (7.20)

and (7.22), and making use of the definition of the Fock matrix in equation (7.8), ultimately

yields

@E

@x
= 2

DO
X

i

hxii + 2
DO
X

ij

⇢

(ii|jj)x � 1

2
(ij|ij)x

�

+ 4
MO
X

i

DO
X

j

Ux
ijFij . (7.25)

If the molecular orbitals have been determined variationally, then the Fock matrix in the

molecular orbital basis is diagonal, Fij = ✏i�ij , which enables the further simplification

@E

@x
= 2

DO
X

i

hxii + 2
DO
X

ij

⇢

(ii|jj)x � 1

2
(ij|ij)x

�

+ 4
DO
X

i

Ux
ii✏i. (7.26)

As expected, the first derivative of the electronic energy includes core integral first deriva-

tives (the first two sums) and molecular orbital coe�cient first derivatives (the final sum).

Now comes the key simplification: it is actually possible to eliminate the first derivatives

of the molecular orbital coe�cients entirely by making use of the clever observation that
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the molecular orbitals are orthonormal,

Sij = �ij , (7.27)

and hence

@Sij

@x
= 0. (7.28)

Substituting both of these results into equation (7.19) for the first derivative of the overlap

integral yields the key relationship

0 = Sx
ij + Ux

ji + Ux
ij , (7.29)

from which it follows that the diagonal terms satisfy

Ux
ii = �1

2
Sx
ii. (7.30)

The beauty of equation (7.30) is that it enables the elimination of the first derivative of the

molecular orbital coe�cients from equation (7.26), yielding

@E

@x
= 2

DO
X

i

hxii + 2
DO
X

ij

⇢

(ii|jj)x � 1

2
(ij|ij)x

�

� 2
DO
X

i

Sx
ii✏i. (7.31)

Hence, no explicit computation of the changes in the molecular orbitals is required to find

the first derivative of the energy with respect to a nuclear displacement. This result is

a specific illustration of the more general Hellman-Feynman theorem, which states that

the (2n + 1)st derivative of the energy requires up to the nth derivative of the molecular

orbitals [77, 62].

Having completed the di↵erentiation of the electronic energy in the MO basis, we can

translate the result back into the AO basis to obtain the final expression [197]

@E

@x
=

AO
X

µ⌫

Pµ⌫
@hµ⌫
@x

+
1

2

AO
X

µ⌫⇢�

Pµ⌫P⇢�

⇢

@(µ⌫|⇢�)
@x

� 1

2

@(µ⇢|⌫�)
@x

�

�
AO
X

µ⌫

Wµ⌫
@Sµ⌫

@x
, (7.32)
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where

Wµ⌫ = 2
DO
X

i

Ci
µC

i
⌫✏i (7.33)

is the energy-weighted density matrix.

7.6 Second Derivative of the Electronic Energy

There are two approaches to evaluating the second derivative of the electronic energy:

we can begin from the first derivative equation (7.32) in the AO basis or the first derivative

equation (7.31) in the MO basis. Because most quantum chemistry packages evaluate and

store integrals in the AO basis, this time it proves easier to di↵erentiate the AO equation

(7.32) to obtain [141]

@2E

@x@y
=

AO
X

µ⌫

Pµ⌫
@2hµ⌫
@x@y

+
1

2

AO
X

µ⌫⇢�

Pµ⌫P⇢�

⇢

@2(µ⌫|⇢�)
@x@y

� 1

2

@2(µ⇢|�⌫)
@x@y

�

(7.34)

�
AO
X

µ⌫

Wµ⌫
@2Sµ⌫

@x@y
+

AO
X

µ⌫

@Pµ⌫

@y

@hµ⌫
@x

+
AO
X

µ⌫⇢�

@Pµ⌫

@y
P⇢�

⇢

@(µ⌫|⇢�)
@x

� 1

2

@(µ⇢|⌫�)
@x

�

�
AO
X

µ⌫

@Wµ⌫

@y

@Sµ⌫

@x
.

The first three terms in equation (7.34) involve only core integral derivatives, but the

remaining terms involve first derivatives of the density matrix Pµ⌫ and the energy-weighted

density matrixWµ⌫ , and these quantities in turn involve the first derivatives of the molecular

orbital coe�cients.

We begin by di↵erentiating the density matrix in equation (7.10) to obtain

@Pµ⌫

@y
= 2

DO
X

i

 

@Ci
µ

@y
Ci
⌫ + Ci

µ

@Ci
⌫

@y

!

, (7.35)

122



and using equation (7.15) for the derivatives of the molecular orbital coe�cients gives rise

to the expression

@Pµ⌫

@y
= 2

DO
X

i

MO
X

m

Uy
mi

⇣

Cm
µ Ci

⌫ + Ci
µC

m
⌫

⌘

. (7.36)

Unlike with the first derivative of the electron energy, this time we are interested in non-

diagonal elements Uy
mi which cannot simply be eliminated in favor of the core overlap

integral derivatives. Hence, to obtain the second derivative of the electron energy, we require

knowledge of the first derivatives of the molecular orbital coe�cients. This is another specific

demonstration of the Hellman-Feynman theorem, which states that the (2n+1)st derivative

of the energy requires up to the nth derivative of the molecular orbitals [77, 62].

To di↵erentiate the energy-weighted density matrix, we rewrite the definition of Wµ⌫

in equation (7.33) as

Wµ⌫ = 2
DO
X

ij

Ci
µC

j
⌫Fij . (7.37)

Transforming the Fock matrix from the MO basis to the AO basis yields

Wµ⌫ = 2
DO
X

ij

AO
X

⇢�

Ci
µC

j
⌫C

i
⇢C

j
�F⇢�, (7.38)

and summing over the doubly-occupied molecular orbitals gives the convenient expression

Wµ⌫ =
1

2

AO
X

⇢�

Pµ⇢P⌫�F⇢�. (7.39)

Di↵erentiating this expression gives [141]

@Wµ⌫

@y
=

1

2

AO
X

⇢�

✓

@Pµ⇢

@y
P⌫� + Pµ⇢

@P⌫�

@y

◆

F⇢� +
1

2

AO
X

⇢�

Pµ⇢P⌫�
@F⇢�

@y
, (7.40)

from which it is clear that we need the derivative of the first derivative of the Fock matrix

with respect to nuclear displacements.
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Beginning from the definition of the Fock matrix in the AO basis in equation (7.61)

and taking the first derivative gives [141]

@Fµ⌫

@y
= F y

µ⌫ +
AO
X

⇢�

@P⇢�

@y

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|�⌫)

�

, (7.41)

where the first term

F y
µ⌫ =

@hµ⌫
@y

+
AO
X

⇢�

P⇢�

⇢

@(µ⌫|⇢�)
@y

� 1

2

@(µ⇢|�⌫)
@y

�

(7.42)

is known as the core first derivative Fock matrix where all of the integrals that make up

the Fock matrix have simply been replaced by their first derivatives, and the second term

involves the first derivative of the density matrix, which in turn involves derivatives of the

molecular orbital coe�cients.

7.7 The Coupled-Perturbed Equations

The second derivative expression for the electronic energy in equation (7.34) involves the

first derivative of the density matrix (7.36), which raises the question of how to compute the

first derivatives of the molecular orbital coe�cients which appear in the Uy
ij terms. Unlike

with the first derivative of the electronic energy, where the derivatives of the molecular

orbitals could be eliminated, this question can no longer be avoided. The key fact is that

these molecular orbital coe�cients, and hence their first derivatives, are not generic but are

determined by variational optimization to give the lowest possible electronic energy.

In fact, we already made use of this fact when we assumed the Fock matrix was di-

agonal in the MO basis, Fij = ✏i�ij , and the derivative of this condition gives rise to the

coupled-perturbed equations whose solution yields the first derivative of the molecular orbital

coe�cients. Di↵erentiating the condition Fij = ✏i�ij reveals that the derivative of the Fock
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matrix is also diagonal in the MO basis

@Fij

@y
= �ij

@✏i
@y

, (7.43)

which implies that

@Fij

@y
= 0 for i 6= j. (7.44)

It is this condition which gives rise to the coupled-perturbed equations.

To make use of this condition, we must compute the derivative of the Fock matrix in

the MO basis, as given in equation (7.8), to obtain

@Fij

@y
=

@hij
@y

+
DO
X

k

⇢

2
@(ij|kk)

@y
� @(ik|ik)

@y

�

. (7.45)

Substituting the derivatives of the one-electron and two-electron integrals in equations (7.20)

and (7.22) gives

@Fij

@y
= F y

ij +
MO
X

k

⇣

Uy
kiFkj + Uy

kjFik

⌘

+
MO
X

k

DO
X

l

Uy
klAij,kl, (7.46)

where

Aij,kl = 4(ij|kl)� (ik|jl)� (il|jk) (7.47)

is known as the A-matrix. Taking the Fock matrix to be diagonal so that Fik = ✏i�ik and

Fkj = ✏j�jk allows the implication

@Fij

@y
= F y

ij + Uy
ji✏j + Uy

ij✏i +
MO
X

k

DO
X

l

Uy
klAij,kl. (7.48)

Exploiting the orthonormality of the molecular orbitals in equation (7.29) implies that

Uy
ji = �Sy

ij � Uy
ij , (7.49)
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so that the derivative of the Fock matrix becomes

@Fij

@y
= F y

ij �
⇣

✏j � ✏i
⌘

Uy
ij � Sy

ij✏j +
DO
X

k

DO
X

l

Uy
klAij,kl +

VO
X

k

DO
X

l

Uy
klAij,kl, (7.50)

where the sum over all k molecular orbitals (MO) has been split into a sum over occupied

orbitals (DO) and a sum over virtual orbitals (VO). By relabeling indices and making use

of the orthonormality of the molecular orbitals in equation (7.29), as well as the definition

of the A-matrix in equation 7.47, the fourth term may be rewritten as

DO
X

kl

Uy
klAij,kl = �1

2

DO
X

kl

Sy
kl

n

4(ij|kl)� (ik|jl)� (il|jk)
o

= �
DO
X

kl

Sy
kl

n

2(ij|kl)� (ik|jl)
o

,

(7.51)

which yields the final expression for the derivative of the Fock matrix

@Fij

@y
= F y

ij �
⇣

✏j � ✏i
⌘

Uy
ij � Sy

ij✏j �
DO
X

kl

Sy
kl

n

2(ij|kl)� (ik|j)
o

+
VO
X

k

DO
X

l

Uy
klAij,kl. (7.52)

Using the variational condition that the o↵-diagonal elements of this matrix are equal

to zero, as per equation (7.44), yields the coupled-perturbed equation [141, 197]

⇣

✏j � ✏i
⌘

Uy
ij �

VO
X

y

DO
X

l

Uy
klAij,kl = By

ij (7.53)

where the By-vector is defined for each derivative along the y-direction as

By
ij = F y

ij � Sy
ij✏j �

DO
X

kl

Sy
kl

n

2(ij|kl)� (ik|jl)
o

. (7.54)

For each derivative along the y-direction, equation (7.55) constitutes a system of cou-

pled equations for the unknown variables Uy
ij , where i corresponds to a virtual molecular

orbital and j corresponds to a doubly-occupied molecular orbital. Hence, the dimension

of this system of coupled equations is the number of doubly-occupied molecular orbitals

times the number of virtual molecular orbitals. Solving this system is typically the most
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time-consuming step in evaluating the second derivative of the electronic energy, and it is

typically accomplished by an iterative method [99].

After this system of coupled-perturbed equations has been solved, the remaining Uy
ij ,

where i and j both correspond to doubly-occupied molecular orbitals or both correspond

to virtual molecular orbitals, may be found by simple rearrangement of equation (7.55),

Uy
ij =

1
⇣

✏j � ✏i
⌘

 

By
ij +

VO
X

k

DO
X

l

Uy
klAij,kl

!

. (7.55)

This can give rise to numerical instability if ✏i and ✏j are near-degenerate, and in practice

computing these remaining Uy
ij can be avoided completely. It can be shown from the orthog-

onality relationship in equation (7.29) that when both i and j correspond to doubly-occupied

molecular orbitals, we can substitute Uy
ij by �1

2
Sy
ij , and when both i and j correspond to

virtual molecular orbitals, we can substitute Uy
ij by 0 [141, 134].

7.8 Derivatives of the Nuclear-Nuclear Repulsion

The total energy of a molecule is the sum of its electronic energy and the energy arising

from nuclear-nuclear repulsion,

Enuc =
N
X

A>B

ZAZB

rAB
(7.56)

where ZA is the charge of nucleus A, and rAB, defined by

r2AB =
⇣

xA � xB
⌘2

+
⇣

yA � yB
⌘2

+
⇣

zA � zB
⌘2

, (7.57)

is the distance between nuclei A and B.

The first derivative of the nuclear-nuclear repulsion energy is given by

@Enuc

@xA
= �

N
X

B 6=A

⇣

xA � xB
⌘ZAZB

r3AB

. (7.58)
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There are four unique types of second derivatives, given by [197]

@2Enuc

@x2A
= �

N
X

B 6=A

ZAZB

r3AB

+ 3
N
X

B 6=A

⇣

xA � xB
⌘2ZAZB

r5AB

, (7.59)

@2Enuc

@xA@xB
=

ZAZB

r3AB

� 3
⇣

xA � xB
⌘2ZAZB

r5AB

,

@2Enuc

@xA@yA
= 3

N
X

B 6=A

⇣

xA � xB
⌘⇣

yA � yB
⌘ZAZB

r5AB

,

@2Enuc

@xA@yB
= �3

⇣

xA � xB
⌘⇣

yA � yB
⌘ZAZB

r5AB

.

7.9 Protocol in Q-Chem for Computing Second Derivatives

Combining all of the results from the previous section, the general protocol for the com-

putation of second derivatives in Q-Chem may be summarized in the following steps [161].

It is important to note at the outset that many computational optimizations, such as ex-

ploiting relevant symmetries for the evaluation of integrals, are possible to reduce the com-

putational time and memory required, all of which are documented via comments within

the code itself. However, this procedure outlines the key steps and identifies the functions

in Q-Chem responsible for carrying out each step, which will su�ce for our discussion of

the integration of compressed sensing in the next section.

1. Compute all necessary integrals hµ⌫ and (µ⌫|⇢�), their first derivatives @Sµ⌫

@y
,
@hµ⌫
@y

,

and
@(µ⌫|⇢�)

@y
, and their second derivatives

@2Sµ⌫

@x@y
,
@2hµ⌫
@x@y

, and
@2(µ⌫|⇢�)

@x@y
, as well as

the density matrix

Pµ⌫ = 2
DO
X

i

Ci
µC

i
⌫ ,

the Fock matrix

Fµ⌫ = hµ⌫ +
AO
X

⇢�

P⇢�

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|⌫�)

�

, (7.60)
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and the core first derivative Fock matrix

F y
⇢� =

@h⇢�
@y

+
AO
X

⇢�

P⇢�

⇢

@(µ⌫|⇢�)
@y

� 1

2

@(µ⇢|�⌫)
@y

�

.

2. Transform these integrals as necessary from the AO basis into the MO basis to set up

the coupled-perturbed equations. In particular, assemble the transformed integrals

into the A-matrix

Aij,kl = 4(ij|kl)� (ik|jl)� (il|jk)

and the By-vectors

By
ij = F y

ij � Sy
ij✏j �

DO
X

kl

Sy
kl

n

2(ij|kl)� (ik|jl)
o

,

where

F y
ij = hyij +

DO
X

k

n

2(ij|kk)y � (ik|jk)y
o

is the core first derivative Fock matrix. In Q-Chem, these first two steps are accom-

plished by the CPSCF Lag function.

3. Solve the coupled-perturbed equations

⇣

✏j � ✏i
⌘

Uy
ij �

VO
X

k

DO
X

l

Uy
klAij,kl = By

ij

for the first derivatives of the molecular orbital coe�cients Uy
ij . In Q-Chem, this step

is accomplished by the IterZP function.

4. Use the molecular orbital coe�cients to compute the derivative of the density

@Pµ⌫

@y
= 2

DO
X

i

MO
X

m

Uy
mi

⇣

Cm
µ Ci

⌫ + Ci
µC

m
⌫

⌘

.

In Q-Chem, this step is accomplished by the Get Px function.

129



5. Use the derivative of the density to compute the full derivative of the Fock matrix

@Fµ⌫

@y
= F y

µ⌫ +
AO
X

⇢�

@P⇢�

@y

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|�⌫)

�

.

In Q-Chem, this step is accomplished by the Make Fx function.

6. Use the derivative of the Fock matrix to compute the derivative of the energy-weighted

density matrix

@Wµ⌫

@y
= 2

AO
X

⇢�

✓

@Pµ⇢

@y
P⌫� + Pµ⇢

@P⌫�

@y

◆

F⇢� + 2
AO
X

⇢�

Pµ⇢P⌫�
@F⇢�

@y
.

In Q-Chem, this step is accomplished by the Get Wx SCF function.

7. Use the derivative of the energy-weighted density matrix, as well as the derivative of

the density matrix, to compute the second derivative of the energy

@2E

@x@y
=

AO
X

µ⌫

Pµ⌫
@2hµ⌫
@x@y

+
1

2
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X
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⇢

@2(µ⌫|⇢�)
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� 1

2
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@x@y

�

�
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Wµ⌫
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+
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X
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@Pµ⌫
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P⇢�

⇢
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� 1

2
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�

�
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X
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@y

@Sµ⌫

@x
+

@2Enuc

@x@y
,

where the second derivative of the nuclear-nuclear repulsion energy is computed ac-

cording to the appropriate formula
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⌘ZAZB
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.
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In Q-Chem, this step is accomplished by the SCF Hess function.

8. Mass-weight the matrix
@2E

@x@y
and diagonalize it to obtain the vibrational normal

modes (as the eigenvectors) and vibrational frequencies (as the square root of the

eigenvalues).

7.10 Modifications in Q-Chem for Acceleration via Com-

pressed Sensing

As discussed in the previous chapter and in ref. [154], the first requirement for applying

compressed sensing to the computation of Hessian matrices is finding a basis in which the

Hessian matrix is sparse. One choice is a basis of approximate normal modes, as may be

computed by using a cheap molecular mechanics or electronic structure method, in which

the more exact Hessian is expected to be nearly diagonal with a few small o↵-diagonal

entries. These approximate normal modes are then transformed according to the discrete

cosine transform (DCT). The Hessian is undersampled in this DCT basis, with only a few

of the columns being computed, and compressed sensing is used to recover the complete

sparse Hessian in the approximate normal mode basis. Once the complete Hessian has been

recovered, it may be transformed back into the atomic coordinate basis and diagonalized

to obtain the vibrational modes and frequencies.

As pertains to computing second derivatives of the energy, the key requirement for

compressed sensing is that these derivatives must be computed not in the usual atomic

basis but rather in the discrete cosine transform basis of the approximate normal modes.

The advantage is that, in this DCT basis, only a small undersampling of the derivatives

need to be computed [154]. In what follows, we use upper-case letters X and Y to denote
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derivatives in the DCT basis, while we continue to use lower-case letters x and y to denote

derivatives in the atomic nuclei basis.

The most computationally-expensive part of the Hessian matrix involves the terms

that depend on the first derivative of the density matrix,
@Pµ⌫

@y
, as these are the terms that

require solving the coupled-perturbed equations for the derivatives of the molecular orbital

coe�cients [65, 99]. Table 7.1 confirms that solving the coupled-perturbed equations is

the dominant part of a second derivative calculation, and the dominance increases as the

molecule gets larger [65]. Hence, the key change to the second-derivative algorithm described

above is that we solve the coupled-perturbed equations directly in the DCT basis, thus

directly obtaining the first derivative of the density matrix,
@Pµ⌫

@Y
, in the DCT basis. As

only an undersampling of these derivatives is required, the key computational savings is that

we no longer need to solve all 3N coupled-perturbed equations, where N is the number of

atoms in the molecule, but instead only solve an undersampling of these equations.

The remainder of the Hessian matrix involves integrals over the atomic basis functions,

as well as first and second derivatives of these integrals. Since the atomic basis functions

are centered on individual atoms, it is advantageous to compute this part of the Hessian

matrix directly in the atomic nuclei basis. This means that no undersampling is possible for

this part of the Hessian matrix, as would be possible in the DCT basis. However, since this

part of the Hessian matrix is less expensive to compute than the parts that depend on the

first derivative of the density matrix, there is no computational bottleneck associated with

computing it in the atomic nuclei basis in the conventional way without undersampling.

These changes result in the following modified procedure for computing the second

derivatives of the energy, which can be toggled on and o↵ by setting the value of the new

Q-Chem keyword CS HESS to 1 and 0 respectively:
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Stage of Calculation C4H8N2O2 C14H14N2O

SCF 968 7468

Integral Derivatives 310 2568

Integral Second Derivatives 1005 10589

Coupled-Perturbed Equations 2392 51937

Total 5195 73175

Table 7.1: This table illustrates the time required for various stages of a second derivative

calculation using the so-called “direct” method of analytic derivatives. The first calculation

is ↵-formylaminopropanamide (C4H8N2O2) and the second is a cyan dye (C14H14N2O).

Each calculation was done at the Hartree-Fock level of theory with a 3-21G basis set [65]

on a Multiflow TRACE 14/300 computer. All times are in seconds. It may be seen that

solving the coupled-perturbed equations is the longest part of the calculation, and becomes

more dominant as the number of atoms increases.
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1. Compute all necessary integrals hµ⌫ and (µ⌫|⇢�), their first derivatives @Sµ⌫

@y
,
@hµ⌫
@y

,

and
@(µ⌫|⇢�)

@y
, and their second derivatives

@2Sµ⌫

@x@y
,
@2hµ⌫
@x@y

, and
@2(µ⌫|⇢�)

@x@y
, as well as

the density matrix

Pµ⌫ = 2
DO
X

i

Ci
µC

i
⌫ ,

the Fock matrix

Fµ⌫ = hµ⌫ +
AO
X

⇢�

P⇢�

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|⌫�)

�

, (7.61)

and the core first derivative Fock matrix

F y
⇢� =

@h⇢�
@y

+
AO
X

⇢�

P⇢�

⇢

@(µ⌫|⇢�)
@y

� 1

2

@(µ⇢|�⌫)
@y

�

,

where all the derivatives are in the atomic nuclei basis.

2. Compute the part of the first derivative of the energy-weighted density matrix that

does not depend on the first derivative of the density matrix,

@W (1)
µ⌫

@y
= 2

AO
X

⇢�

Pµ⇢P⌫�F
y
⇢�,

where this derivative is in the atomic nuclei basis. In Q-Chem, this step is accom-

plished by the new Get Wx SCF CS1 function.

3. Use this result to compute all the contributions to the the second derivative of the

energy that do not depend on the first derivative of the density matrix,

@2E(1)

@x@y
=

AO
X

µ⌫

Pµ⌫
@2hµ⌫
@x@y

+
1

2

AO
X

µ⌫⇢�

Pµ⌫P⇢�

⇢

@2(µ⌫|⇢�)
@x@y

� 1

2

@2(µ⇢|�⌫)
@x@y

�

�
AO
X

µ⌫

Wµ⌫
@2Sµ⌫

@x@y
�

AO
X

µ⌫

@W (1)
µ⌫

@y

@Sµ⌫

@x
+

@2Enuc

@x@y
,
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where all the derivatives are in the atomic nuclei basis and the second derivative of the

nuclear-nuclear repulsion energy is computed according to the usual formula (7.59).

In Q-Chem, this step is now accomplished by the SCF Hess CS1 function.

4. Transform the integrals as necessary from the AO basis into the MO basis to set up

the coupled-perturbed equations. In particular, assemble the transformed integrals

into the A-matrix

Aij,kl = 4(ij|kl)� (ik|jl)� (il|jk)

and the By-vectors

By
ij = F y

ij � Sy
ij✏j �

DO
X

kl

Sy
kl

n

2(ij|kl)� (ik|jl)
o

,

where

F y
ij = hyij +

DO
X

k

n

2(ij|kk)y � (ik|jk)y
o

is the core first derivative Fock matrix. In Q-Chem, this step is still accomplished by

the CPSCF Lag function.

5. Transform the By-vectors, which involve derivatives in the basis of atomic nuclei, into

the BY -vectors, which involve derivatives in the discrete cosine transform (DCT) basis

described above. In Q-Chem, this step is accomplished by the new Transform Lag

function.

6. Solve an undersampling of the coupled-perturbed equations

⇣

✏j � ✏i
⌘

UY
ij �

VO
X

k

DO
X

l

UY
klAij,kl = BY

ij
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for the first derivatives of the molecular orbital coe�cients UY
ij . These derivatives

are now obtained in the DCT basis, and the number of coupled-perturbed equa-

tions which are solved is equal to three times the value of the user-specified keyword

CS ATOMS PER ITER (up to a maximum of three times the total number of atoms in

the molecule). In Q-Chem, the solving of these coupled-perturbed equations can still

be done by the same IterZP function.

7. Use the molecular orbital coe�cients to compute the derivative of the density in the

DCT basis

@Pµ⌫

@Y
= 2

DO
X

i

MO
X

m

UY
mi

⇣

Cm
µ Ci

⌫ + Ci
µC

m
⌫

⌘

.

Note that only an undersampling of density derivatives are computed, corresponding

to the undersampling of coupled-perturbed equations which were solved. In Q-Chem,

this step is still accomplished by the Get Px function.

8. Use the derivative of the density to compute its contribution to the first derivative of

the Fock matrix

✓

@Fµ⌫

@Y

◆

no core

=
AO
X

⇢�

@P⇢�

@Y

⇢

(µ⌫|⇢�)� 1

2
(µ⇢|�⌫)

�

.

This derivative is in the DCT basis and excludes the core Fock matrix derivative, which

was accounted for previously. Note again that only an undersampling of derivatives

are computed. In Q-Chem, this step is still accomplished by the Make Fx function.

9. Use this result to compute the part of the derivative of the energy-weighted density

matrix that depends on the derivative of the density matrix

@W (2)
µ⌫

@Y
= 2

AO
X

⇢�

✓

@Pµ⇢

@Y
P⌫� + Pµ⇢

@P⌫�

@Y

◆

F⇢� + 2
AO
X

⇢�

Pµ⇢P⌫�

✓

@Fµ⌫

@Y

◆

no core

.
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Note again that only an undersampling of derivatives are computed. In Q-Chem, this

step is accomplished by the new Get Wx SCF CS2 function.

10. Use this result to compute all the contributions to the second derivative of the energy

that depend on the first derivative of the density matrix

@2E(2)

@x@Y
=

AO
X

µ⌫

@Pµ⌫

@Y

@hµ⌫
@x

+
AO
X

µ⌫⇢�

@Pµ⌫

@Y
P⇢�

⇢

@(µ⌫|⇢�)
@x

� 1

2

@(µ⇢|⌫�)
@x

�

�
AO
X

µ⌫

@W (2)
µ⌫

@Y

@Sµ⌫

@x
.

In Q-Chem, this step is accomplished by the new SCF Hess CS2 function. Note

that only an undersampling of Y derivatives have been computed in the DCT ba-

sis, which corresponds to having only certain columns of the second derivative matrix

@2E(2)

@x@Y
available. The number of available columns is equal to the number of coupled-

perturbed equations which were solved.

11. At this point, the entire matrix
@2E(1)

@x@y
, which are the contributions to the second

derivative that do not depend on the derivatives of the molecular orbital coe�cients,

has been computed in the atomic nuclei basis. In addition, certain columns of the

matrix
@2E(2)

@x@Y
, which are the contributions of the second derivative that do depend

on the derivatives of the molecular orbital coe�cients, have been computed with the

Y derivative in the DCT basis. Convert both of these quantities fully into the DCT

basis and add them together,

@2E

@X@Y
=

@2E(1)

@X@Y
+

@2E(2)

@X@Y
,

to obtain an undersampling of the columns of the full second derivative matrix in the

DCT basis. In Q-Chem, this step is also done in the SCF Hess CS2 function.
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12. Apply compressed sensing, as fully described in the previous chapter and in ref. [154],

to attempt to recover the full second-derivative matrix in the sparse basis of approx-

imate normal modes. Then repeat the compressed sensing procedure using one less

column of the matrix in step 11 to see whether the results are converged. The results

are considered converged when the relative Frobenius norm error between the two

recovered matrices is less than 10�CS TOL, where CS TOL is a user-specified keyword. In

Q-Chem, this compressed sensing procedure is done by the new function bpdn which

solves the basis-pursuit denoising problem using the algorithm described in ref. [184].

13. If the results are not converged, go back to Step 6 and compute more Y derivatives

of the density matrix
@Pµ⌫

@Y
in order to obtain more columns of the second-derivative

matrix
@2E

@X@Y
. If the results are converged, convert the recovered matrix back into

the atomic nuclei basis
@2E

@x@y
, mass-weight the matrix, and diagonalize it to obtain

the vibrational normal modes (as the eigenvectors) and vibrational frequencies (as the

square root of the eigenvalues).

To summarize, the key advantage of compressed sensing is that only an undersampling

of the coupled-perturbed equations are solved to yield the first derivative of the density

matrix,
@Pµ⌫

@Y
, directly in the DCT basis. As solving the coupled-perturbed equations is

typically the most expensive part of a second derivative computation, this undersampling

can result in substantial computational savings. The remaining parts of the Hessian, which

do not depend on the first derivative of the density matrix, are still computed directly in the

atomic basis, and subsequently transformed to the DCT basis, after which the compressed

sensing procedure is applied.

So far, we have not observed a reduction in CPU hours when analytical second deriva-

tives are computed with compressed sensing. While accurate vibrational normal modes and

138



frequencies are obtained by solving fewer coupled-perturbed equations, this does not appear

to translate into fewer CPU hours. Even though fewer coupled-perturbed equations must be

solved with compressed sensing, the total time spent solving these equations is comparable

to the traditional approach. Understanding why solving fewer coupled-perturbed equations

does not translate into a computational speed-up is the subject of ongoing research. Nev-

ertheless, the method above is presented in the hopes that it might prove useful in other

electronic software packages, with di↵erent approaches taken to solve the coupled-perturbed

equations, and that we might also come to understand how to achieve the desired reduction

in CPU hours in Q-Chem.
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Chapter 8

Conclusion

Compressed sensing is revolutionizing how information is measured or computed through-

out the physical sciences and beyond. Many systems have far less information than meets

the eye; they might be governed, for example, by a few key parameters. Yet extracting that

information, if one does not already know it in the first place, is a challenging task. The

typical approach, colloquially termed “collect then compress,” is to measure or compute

a large amount of data, and then to compress that data into a better representation that

reveals the true information content. While at first glance this might seem like the only

possible generic approach, the development of compressed sensing has revealed that this

approach is far from optimal. Instead, compressed sensing provides a general mathemat-

ical framework that makes it possible to measure or compute an amount of data that is

proportional to the amount of information present in the data.

In this thesis, we have applied the compressed sensing paradigm to two problems in

chemistry: one in the area of spectroscopy and one in the area of quantum chemistry and

electronic structure. In traditional approaches to spectroscopy, it is necessary to acquire an

entire spectrum while all of the information content is present in the peaks. In contrast,

we have shown that compressed sensing makes it possible to acquire a spectrum with a
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much smaller number of measurements proportional to the number of peaks, provided the

measurements are taken in such a way that all of the peaks contribute to all of the mea-

surements, so that each measurement is maximizing the amount of new information being

obtained about the system. We have applied the methods to the computation of vibra-

tional, electronic absorption, and circular dichroism spectra in the framework of real-time

time-dependent density functional theory, the experimental measurement of multidimen-

sional atomic spectra, and the extraction of spectral densities from molecular dynamics

simulations.

In traditional approaches to quantum chemistry, an entire Hessian matrix is computed

using an expensive electronic structure method to obtain accurate molecular vibrations and

their frequencies, yet the expensive method provides only a limited amount of “corrective”

information over a cheaper method. Using compressed sensing, we have shown that it is

possible to compute accurate vibrational modes and frequencies with a smaller number of

computations that is proportional only to the amount of new information the expensive

method provides over the cheaper method.

The general lesson of this thesis is to think carefully about where genuinely new chem-

ical information is found within a sea of chemical data. By redesigning the measurement

process, and applying compressed sensing, it becomes possible to obtain this new chemical

information without first measuring or computing the entire sea of data. As more peo-

ple begin working at the interface of chemistry, applied math, and information theory, we

expect that compressed sensing will find many more applications throughout chemistry.

In fact, several other chemical applications have sprung up in other sub-fields during

the creation of this thesis. Compressed sensing has become a tool not only in vibrational and

electronic spectroscopy, but also in nuclear magnetic resonance (NMR) spectroscopy [81].
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At the same time, ideas from compressed sensing have been used to find compact wavefunc-

tion representations to describe many-body quantum systems, such as molecules, without

detailed knowledge of the system. Applying the technique on the ground-state of hydrogen

fluoride within the full configuration interaction, it is possible to obtain 98% of the corre-

lation energy using only 50 configurations out of a possible 107 [119]. In this NOMAGIC

method, the ideas of compressed sensing are harnessed to find those 50 configurations that

best capture the correlation energy. In the right representation, there is far less correlation

information than first meets the eye.

Compressed sensing has been described as a change from “measure what can be mea-

sured” to “measure what should be measured” [172]. This thesis, along with other applica-

tions beginning to emerge in other chemical sub-fields, represents a change from “compute

what can be computed” to “compute what should be computed.”
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two-dimensional echo-spectra of the Fenna–Matthews–Olson complex. New J. Phys.,
14, 023018 (2012).

[76] B. Heinz-Peter, B. Kappler, and F. Petruccione. Time-Convolutionless Stochastic Un-
raveling of Non-Markovian Quantum Master Equations. In P. Blanchard, D. Giulini,
E. Joos, C. Kiefer, and I.-O. Stamatescu, editors, Decoherence: Theoretical, Experi-
mental, and Conceptual Problems, pages 233–241. Springer, 2000.
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